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Abstract

This paper applies quantal response equilibrium (QRE) models (McKelvey and Palfrey,

Games and Economic Behavior 10 (1995), 6-38) to a wide class of symmetric coordination

games in which each player's best response is determined by an order statistic of all players'

decisions, as in the classic experiments of Van Huyck, Battalio, and Beil (American Eco-

nomic Review 80 (1990), 234-248; Quarterly Journal of Economics 106 (1991), 885-910), but

players have a bounded continuum of decisions, which approximates to Van Huyck, Bat-

talio, and Rankin's (1996) environment. Generalizing the results of Anderson, Goeree, and

Holt (1998) with a quadratic payo� function, I show that as the noise vanishes the QRE

approaches the most e�cient equilibrium as a unique limit for all order statistics, including

the minimum.
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1 Introduction

This paper applies \quantal response equilibrium" (henceforth, QRE) models, proposed

by McKelvey and Palfrey (1995), to a wide class of symmetric coordination games in which

each player's best response is determined by an order statistic of all players' decisions, as in

the classic experiments of Van Huyck, Battalio, and Beil (1990, 1991), but players have a

bounded continuum of decisions, which approximates to Van Huyck, Battalio, and Rankin's

(1996) environment.

The notion of QRE is motivated to model human subjects' imperfectly optimizing be-

havior, which often observed in experiments. A QRE is de�ned as an equilibrium in which

players choose their strategies stochastically, with strategies that have higher expected pay-

o�s chosen with higher probabilities. In the equilibrium the players take the noise in each

other's strategy choices rationally into account, choosing strategies with probabilities that

are increasing in their expected payo�s based on the distributions of others' strategies. Thus,

the QRE describes imperfectly optimizing behavior by assuming a stochastic decision rule,

but maintains most of the parsimony of an equilibrium analysis.

QRE allows a wide class of probabilistic choice rules to be substituted for perfect maxi-

mizing behavior in an equilibrium context. In this paper, the QRE is specialized to the case

of the logistic response to determine a \logit equilibrium", in which the amount of strategic

uncertainty is measured by a single parameter. I call a limit point of a sequence of logit equi-

libria as the noise vanishes a \limiting logit equilibrium." Since a limiting logit equilibrium

gives the clearest results, the present analysis focuses on a limiting logit equilibrium.1

Stochastic choice models like multinomial logit and multinomial probit that underlie

QRE are well known in econometrics, but in games players' choice probabilities interact

in ways that make the analysis considerably more di�cult. As a result, most applications

have relied on numerical solutions. Using such methods, McKelvey and Palfrey (1995, 1998)

have shown that, for values of the error parameter estimated from experimental data, the

logit equilibrium often gives an accurate description of experimental outcomes. In those

1McKelvey and Palfrey (1995) used term \limiting logit equilibrium" for the limit point of a speci�c

sequence of logit equilibria, which McKelvey and Palfrey (1996) called \logit solution," and they did not

make a distinction between \limiting logit equilibrium" and \logit solution." In this paper, limiting logit

equilibrium is used to denote a limit point of a sequence of logit equilibria. See footnote 9 for a informal

de�nition of logit solution.
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papers, a limiting logit equilibrium (strictly speaking, logit solution) is used as a benchmark

to compare it with other re�nements. McKelvey and Palfrey (1995, 1998) suggested the

possibility of using the limiting logit equilibrium as an equilibrium selection criterion (see

footnote 9), but very little is known about the implications of this notion in games with

multiple equilibria.

Anderson, Goeree and Holt (1998b) have recently applied the notion of limiting logit

equilibrium to analyze some coordination games that have been studied experimentally by

Van Huyck, Battalio, and Beil (henceforth \VHBB") (1990). They showed that the limiting

logit equilibrium not only selects a unique equilibrium in those games but also describes

the limiting outcomes in VHBB's (1990) experiments with surprising accuracy. Their result

suggests that logit equilibrium may also determine a unique equilibrium that describes the

experimental results on the closely related games studied experimentally by VHBB (1991)

and Van Huyck, Battalio, and Rankin (henceforth \VHBR") (1996).

In VHBB's (1990, 1991) and VHBR's (1996) games, each of a group of symmetric players

simultaneously chose among pure strategies called \e�orts," and players' payo�s and best

responses were determined by their own e�orts and simple summary statistics of their own

and the other players' e�orts. In each case, any con�guration in which all players choose the

same e�ort is a strict, symmetric, pure-strategy equilibrium, and these equilibria are Pareto-

ranked. Other things equal, the closer subjects' e�orts were to the summary statistic, the

higher their payo�s, with all players preferring equilibria with higher e�orts to those with

lower e�orts. These games are of particular economic interest because they capture some

essential features of the equilibrium selection problem in important applications. Bryant

(1983) and Cooper and John (1988), for instance, have used this kind of game as a model of

Keynesian e�ective demand failures.2

In VHBB (1990), each player chose among seven e�orts and a given set of subjects

participated in a sequence of treatments. In the large group minimum treatments, A and B,

\large" groups consisted of 14-16 subjects played minimum games. Small group treatment,

C, used \small" groups of 2 subjects, randomly selected from that set. There were two

versions of small group minimum treatment. In one, here called \Cd", subjects pairing were

2VHBB (1990, 1991), VHBR (1996), and Crawford (1991) describe the design and the results in more

detail. My discussion of VHBB's designs and results follows Crawford (1991).
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di�erent in each stage; in the other, here called \Cf", they were �xed. Treatments A and

C combined a preference for a higher minimum e�ort, other things equal, with increasingly

severe penalties for being further and further away from the minimum. In treatment B,

the e�ort cost was set equal to 0, making highest e�ort (and the only one consistent with

e�ciency) a weakly dominant strategy.

In VHBB's (1990) experiments, the e�ects of strategic uncertainty showed up especially

clearly in the dynamics and limiting outcomes. Although the e�cient high-e�ort equilibrium

is best for all players, its payo�s are more sensitive to coordination failures than other

equilibria. As a result, there were interesting, systematic tendencies in the dynamics, and

subjects often converged to ine�cient equilibria, even though they would all have preferred

to coordinate on higher common e�ort level. In treatment A, the play gravitated toward

an ine�cient Nash outcome without an exception. By contrast, in treatment B, almost

all subjects (96%) reached the highest e�ort by the last round. The outcomes were very

di�erent in the small groups of minimum treatments Cd and Cf , which had the same payo�

function as treatment A. In treatment Cd, subjects' choices drifted over time with no clearly

discernible trend with a median e�ort level of 5 in the 1-7 scale, while in treatment Cf most

subjects (90%) reached the highest e�ort by the last round.

Anderson, Goeree, and Holt (1998b) characterized logit equilibrium in games that main-

tain the general features of the payo� structures of VHBB's (1990) minimum games, but

approximate the strategy space with a bounded continuum of e�orts. They showed that logit

equilibria are unique for any given value of the error parameter (despite the games' continua

of strict Nash equilibria without errors), and for reasonable values of the error parameter,

surprisingly close to the last period outcomes of VHBB's (1990) treatments.3 Their model

also yields comparative statics results that the e�orts decrease stochastically with increases

in e�ort costs and the number of players. This resembles the e�ects of those changes across

VHBB's (1990) treatments; between treatments A and B, and between treatments A and

3Logit equilibrium of a stage game does not discriminate the �xed- pair 2-person minimum treatment and

the random-pairing minimum treatment, and in both treatments the limiting logit equilibrium strategy is

translated to an e�ort level of 4 in the 1-7 scale used by VHBB (1990). In random-pairingminimumtreatment

the median e�ort level was 5 which is very close to the prediction, but in the �xed-pair 2-person minimum

treatment most subjects played the highest possible e�ort level, which is far from the logit equilibrium. This

result suggests that a kind of dynamic game aspects of the �xed-pair treatment facilitated coordination,

which is not modeled in stage game logit equilibrium.
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Cd.

In VHBB's (1991) experiment, with a �xed group playing in each stage, groups of 9

subjects played median games that had similar payo� structures as in VHBB (1990), but

each player's payo� decreased quadratically in the distance between the median and his own

e�ort.4 The play converged to the initially determined median, which is usually ine�cient.

Such history dependence was not observed in VHBB's (1990) experiments.

In VHBR's (1996) experiment, the subjects played 5- and 7-person second-order statis-

tic games and fourth-order statistic games with 101 e�ort levels and with the identical payo�

functional form that used in VHBB (1991), but with di�erent payo� parameters. Interest-

ingly, changing the grid size of e�ort levels made the result strikingly di�erent from those in

VHBB (1990, 1991). A most striking contrast to VHBB (1990, 1991) is that each treatment

elicited several di�erent patterns of convergence. Since in every treatment in VHBB (1990,

1991) plays exhibited similar dynamics, the changing grid size seem to have an important

in
uence on behavior. Moreover, in the 7-person second order statistic game, 2 out of 10

groups were converging to the most e�cient outcome which requires that at least 6 players

should coordinate on the higher e�ort while 2 players are enough to lower the order statistic.5

Although VHBB's (1991) median games are very similar in structure to VHBB's (1990)

minimum games, and Anderson, Goeree, and Holt's (1998) continuous strategy spaces bring

their analysis much closer to VHBR's (1996) environment, Anderson, Goeree, and Holt's

(1998) analysis is con�ned to minimum games, and they do not attempt to use their results

to suggest an interpretation of the results in VHBB's (1991) and VHBR's (1996) experiments.

In this paper, I extend Anderson, Goeree, and Holt's analysis to �ll that gap, character-

izing the limiting logit equilibrium in a class of order statistic games with continuous strategy

spaces that includes both minimum and median games. The results can be used to evalu-

4In the experiment, they used various payo� functions which satisfy the basic properties described before.

In treatment �, a player's payo� is linearly increasing in the group summary statistic and quadratically

decreasing in the di�erence between the summary statistic and his own e�ort choice. In treatment �, a

higher median does not raise payo�, but one who mismatches the median is penalized in the same way in

treatment �. In treatment 
, a player's payo� increases linearly in the median e�ort, but the payo� is 0

when his e�ort is di�erent from the order statistic. In the text, I focus on the baseline payo� function which

used in treatment �.

5VHBR (1996) suggested \Reducing the opportunity cost of local exploration increases subjects' propen-

sity to experiment with actions slightly higher than last period's order statistic." The analysis in this paper

shows that the logit equilibrium e�ort density induces similar behavior.
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ate the ability of the logit equilibrium and related notions to describe limiting outcomes in

VHBB's (1991) and VHBR's (1996) experiments, as well as in VHBB's (1990) experiments.

The main results are that, in every order statistic game in the class under consideration, the

most e�cient Nash equilibrium is the unique limiting logit equilibrium.6 This result suggests

that the logit equilibrium fails to capture some important aspects of subjects' responses to

VHBB's (1991) median games, but that it has the potential to explain some of the otherwise

extremely puzzling outcomes of VHBR's (1996) experiments.

In their analysis, Anderson, Goeree, and Holt (1998b) focused on the e�ect of costs and

number of players, and paid little attention to the di�erence between their continuous strat-

egy spaces and the discrete strategy spaces used in the experiment. With the payo� function

used in the minimum treatments, the continuous approximation to the coarse strategy space

does not distort the game structure very much. However, the present analysis shows that

with the payo� function used in VHBB (1991) and VHBR (1996), the continuous approxi-

mation changes the game structure to the extent that even some re�nement criteria like risk

dominance also make di�erent predictions with �ner grid size of the e�ort level, even though

the set of Nash equilibria is not a�ected by such a change. This suggests that, by taking

the coarseness of the strategy space into account, the logit equilibrium could explain most

of the experimental results reported in VHBB (1990, 1991) and VHBR (1996), but I do not

pursue that line of research in this paper. Instead I use simple calculations to demonstrate

the e�ect of the grid size on the individual subjects' incentive problems in VHBB's (1990,

1991) and VHBR's (1996) experiments.

The rest of the paper is organized as follows. Section 2 introduces a broad class of

order statistic games with bounded, continuous strategy spaces, and de�nes the notions

of logit equilibrium and limiting logit equilibrium for those games. In Section 3, I adapt

Anderson, Goeree, and Holt's (1998b) methods to characterize the limiting logit equilibrium

in those games. I illustrate by means of examples the e�ect of the continuity and functional

form of the payo� function on behavior. Section 3 concludes by discussing the usefulness of

the logit equilibrium in describing subjects' behavior in VHBB's and VHBR's experiments.

Section 4 studies a variant of logit equilibrium that I call the \competitive logit equilibrium,"

6When a higher order statistic does not raise payo�s (a = 0 in Eq.(1)) as in treatment � in VHBB (1991),

all equilibria are equally e�cient.
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which is plausible in games with larger numbers of players, in which people often seem to

use a \competitive" approximation to the e�ects of others' strategies on their own payo�s.

The competitive logit equilibrium in order-statistic games is de�ned like the original logit

equilibrium, but with players ignoring their own in
uences on the order statistic. One

might expect that a Nash equilibrium of a game with a large �nite number of players is

close to the analogous notion in which players ignore their own in
uences, the limiting

competitive logit equilibrium can be very di�erent from the limiting logit equilibrium, even

in the nonpathological class of order-statistic games studied here. Section 5 is the conclusion.

2 Order Statistic Games and Logit Equilibrium

In an n-person order statistic game, a player's payo� is determined by his own e�ort

and an order statistic of his own and the other players' e�orts. Each player chooses an e�ort

level xi 2 [0; �x]; i = 1; � � � ; n, and �x is a �nite maximum e�ort level. Each player is assumed

to have a risk-neutral preference. Let ui(xi;m) be the player i's payo� when he plays xi and

the prespeci�ed order statistic is m. The basic structure of payo� function in the economic

literature is that ui(m;m) � ui(m
0;m0) for all m > m0, and ui(xi;m) > ui(x

0
i;m) for all

jxi �mj < jx0i �mj.7 In this paper, I use a speci�c functional form which has been used in

VHBB (1991) and VHBR (1996).

ui(xi;mj:n) = amj:n � b(mj:n � xi)
2 + c; a; b; c � 0(1)

where mj:n is the jth inclusive order statistic which is de�ned by m1:n � m2:n � � � � � mn:n,

where the mj:n is the j
th element of choice combinations fx1; � � � ; xng arranged in increasing

order. When no confusion will arise, ui(xi;m) is denoted by ui(xi).

With a strictly positive a, it is always best to coordinate on the highest e�ort, �x. To

realize the e�cient outcome, however, players must overcome a subtle incentive problem.

For instance, in a minimum game, the higher e�ort's higher payo� when all choose it must

be traded o� against its greater risk of lower payo�s if others do not. That risk is entirely

due to strategic uncertainty. For a player to �nd it rational to choose �x, he must believe

that the correctness of this choice is su�ciently obvious that it is likely that \all" of the

other players will believe that its correctness is su�ciently obvious to all. The strategic

7In some treatments in VHBB (1990, 1991), ui(xi;m) = ui(x
0
i;m) if xi 6= m and x

0
i 6= m.
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uncertainty that underlies this incentive problem can profoundly a�ect behavior. In the

order statistic games, however, the present analysis shows that the restriction of QRE on

belief and behavior removes the indeterminacy of conditional probabilities of outcomes and

eliminates strategy uncertainty.

In this paper, I focus on a specialized version of QRE where the choice probabilities are

analogue of the standard multinomial logit distribution (McFadden, 1974). The probability

density of player i's choosing xi is a function of the expected payo� �i(xi) and the density

of each choice is an increasing function of the expected payo� for that choice:

fi(xi) =
exp (��i(xi))R �x

0 exp (��i(y)) dy
(2)

where 0 � � < 1 measures the amount of noise, or equivalently, the degree of rationality.

This functional form is called a logit function where the odds are determined by the expo-

nential transformation of the utility times a given non-negative constant �. The ratio of

probabilities of two di�erent e�ort choices is fi(xi)=fi(x
0
i) = exp[�(�i(xi) � �i(x

0
i))] and the

logit function is invariant to the transformation of expected payo�s by changing the origin.

As �!1, the probability of the choice having the highest expected payo� becomes one, if

it is unique, so that the choice behavior becomes best response; when � = 0 all choices have

equal probability. Throughout this paper I assume that � is the same for all players and it is

common knowledge.8 Logit equilibrium for � is de�ned by a �xed point in these probability

distributions with a given �.

In general, logit equilibriumand limiting logit equilibriumare not unique.9 In particular,

in �nite games with multiple strict equilibria, logit equilibrium is not unique for a su�ciently

large � and any strict Nash equilibrium can be found as a limit of logit equilibrium.10

Therefore, given a su�ciently large �, the \initial belief" (or \initial play") is crucial in

8In principle, QRE permits di�erent �'s across players (see McKelvey and Palfrey, 1996), but the common

knowledge assumption is indispensable for the analysis in this paper.

9One can de�ne a unique selection from the set of Nash equilibria by \tracing" the graph of the logit

equilibrium correspondence beginning at the centroid of the strategy simplex (the unique solution when

� = 0) and continuing for larger and larger values of �. McKelvey and Palfrey (1996) called the limit point

of such sequence of logit equilibrium \logit solution" of a game. McKelvey and Palfrey (1995, 1998) showed

that logit solution is unique in almost all �nite games, but little is known about the properties of logit

solution.

10By de�nition, a strict equilibrium is necessarily a pure-strategy equilibrium and strict equilibria remain

strict when the payo� are slightly perturbed since the strict inequality remains satis�ed.
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determining a limiting logit equilibrium. In games with a continuum of Nash equilibria,

however, since not every equilibrium can survive small perturbations, the notion of QRE

re�nes the set of equilibria.

Next step is to apply the probabilistic choice rule, Eq.(2), to the payo� structure in

Eq.(1). Let Fi(x) denote the cumulative distribution function associated with fi(x). Let

Gi
j:n�1(x) be the cumulative distribution function of jth order statistic regarding

fx1; � � � ; xi�1; xi+1; � � � ; xng where the x's are drawn from distributions,

fF1; � � � ; Fi�1; Fi+1; � � � ; Fng, respectively. Let g
i
j:n�1(x) be the associated probability density

function. Given fF1; � � � ; Fi�1; Fi+1; � � � ; Fng, in the minimum game,

Gi
1:n�1(x) = 1�

Q
i 6=k(1�Fi(x)) where

Q
i 6=k Fi(x) = F1(x) � � �Fk�1(x) �Fk+1(x) � � �Fn(x), and

�i(xi) =

Z xi

0
(ay � b(y � xi)

2)gi1:n�1(y)dy + axi(1�Gi
1:n�1(xi)) + c

= axiG
i
1:n�1(xi)� a

Z xi

0
Gi

1:n�1(y)dy + 2b

Z xi

0
yGi

1:n�1(y)dy

�2bxi

Z xi

0
Gi

1:n�1(y)dy + axi � axiG
i
1:n�1(xi) + c

or

�i(xi) = a

�
xi �

Z xi

0
Gi

1:n�1(y)dy

�
+ 2b

�Z xi

0
(y � xi)G

i
1:n�1(y)dy

�
+ c(3)

When 2 � j � n� 1, given xi,

P (mj:n < y) = P (mj:n�1 < y) = Gi
j:n�1(y); for y < xi

P (mj:n < y) = P (mj�1:n�1 < y) = Gi
j�1:n�1(y); for y > xi

P (mj:n = y) = P (mj�1:n�1 � y � mj:n�1) = Gi
j�1:n�1(y)�Gi

j:n�1(y); for y = xi

and

Gi
j�1:n�1(x) =

n�1X
k=j�1

X
Sk

kY
l=1

Fil(x)
n�1Y
l=k+1

(1� Fil(x))

where the summation Sk extends over all permutations i1; � � � ; in�1 of 1; � � � ; n� 1 for which

i1 < � � � < ik and ik+1 < � � � < in�1. Then the expected payo� becomes

�i(xi) = a
Z xi

0
ygij:n�1(y)dy � b

Z xi

0
(y � xi)

2gij:n�1(y)dy

+a

Z �x

xi

ygij�1:n�1(y)dy � b

Z �x

xi

(y � xi)
2gij�1:n�1(y)dy

+ax(Gi
j�1:n�1(xi)�Gi

j:n�1(xi)) + c
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= �a
Z xi

0
y(gij�1:n�1(y)� gij:n�1(y))dy

+b
Z xi

0
(y � xi)

2(gij�1:n�1(y)� gij:n�1(y))dy

+a
Z �x

0
ygij�1:n�1(y)dy � b

Z �x

0
(y � xi)

2gij�1:n�1(y)dy

+ax(Gi
j�1:n�1(xi)�Gi

j:n�1(xi)) + c

= �axi(G
i
j�1:n�1(xi)�Gi

j:n�1(xi)) + a

Z xi

0
(Gi

j�1:n�1(y)�Gi
j:n�1(y))dy

+bx2i (G
i
j�1:n�1(xi)�Gi

j:n�1(xi))� 2b
Z xi

0
y(Gi

j�1:n�1(y)�Gi
j:n�1(y))dy

�2bx2i (G
i
j�1:n�1(xi)�Gi

j:n�1(xi)) + 2bxi

Z xi

0
(Gi

j�1:n�1(y)�Gi
j:n�1(y))dy

+bx2i (G
i
j�1:n�1(xi)�Gi

j:n�1(xi)) + aEi(mj�1:n�1)� bEi(m
2
j�1:n�1)

+2bxiEi(mj�1:n�1)� bx2i + axi(G
i
j�1:n�1(xi)�Gi

j:n�1(xi)) + c

= aEi(mj�1:n�1) � bEi(m
2
j�1:n�1) + 2bEi(mj�1:n�1)xi � bx2i

+

Z xi

0
(a� 2by + 2bxi)(G

i
j�1:n�1(y)�Gi

j:n�1(y))dy + c

Since the logit e�ort density is invariant to the changing of the origin, the �rst two terms in

the last equation, which are independent of xi, are irrelevant in determining the equilibrium

density function as well as c. �i(xi) can therefore be rescaled as follows:

�i(xi) = 2bEi(mj�1:n�1)xi � bx2i +

Z xi

0
(a� 2by + 2bxi)(G

i
j�1:n�1(y)�Gi

j:n�1(y))dy(4)

The e�ort density function is constructed by substituting Eq.(3) and Eq.(4) in Eq.(2).

3 Limiting Logit Equilibria of Order Statistic Games

Anderson, Goeree, and Holt (1998b) characterized the logit equilibrium in the minimum

game with a continuous strategy space and with a linear payo� function used in VHBB

(1990). Their main result is that the logit equilibrium is unique for any given value of �

and the logit equilibrium strategy is stochastically decrease with increases in e�ort costs and

the number of players. They also showed that the e�ciency of a limiting logit equilibrium

depends on the payo� parameters. In this section, with a quadratic payo� function as in

Eq.(1), it is shown that the limiting logit equilibrium is always e�cient regardless of the

order statistic, the number of players, and the values of payo� parameters as long as a > 0

and b � 0.
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For games with a �nite discrete strategy space and a �nite number of players, McKelvey

and Palfrey (1995) proved the existence and the convergence of logit equilibrium to a Nash

equilibrium as the � goes to in�nity. In order statistic games, the same properties hold with

continuous strategy space.

Proposition 1. There exists a logit equilibrium for every � � 0.

The proof of Proposition 1 is a simple modi�cation of the existence proof in Anderson,

Goeree, and Holt (1998a, Appendix A). For completeness, I provide the proof in Appendix.

(Every omitted proof in the text can be found in Appendix.)

Lemma 1. In every order statistic game with Eq.(1), the limiting logit equilibrium is a

symmetric pure-strategy Nash equilibrium.

In fact, when the payo� function is given by Eq.(1), there is no mixed-strategy Nash equi-

librium while with a linear payo� function there is a continuum of mixed-strategy Nash

equilibria (see Anderson, Goeree, and Holt, 1998b).

In order statistic games, not only is the limiting logit equilibrium symmetric, but so is

the logit equilibrium for every �nite �. This symmetry is crucial in calculating the limiting

logit equilibrium. Since in�nite � is the \rationality" limit, a limiting logit equilibrium gives

a selection from Nash equilibria. The way to analyze logit equilibrium is adapted from

Anderson, Goeree, and Holt (1998b).

Lemma 2. The logit equilibrium e�ort density fi(xi) is jointly continuous in xi and �, and

di�erentiable with respect to xi.

Proof. In Eq.(3) and Eq.(4), �i(xi) is jointly continuous in xi and �, and di�erentiable

with respect to xi. In Eq.(2), given strictly positive denominator, for any xi and �, fi(xi) is

the ratio of continuous transformation of �i(xi) and �. Q.E.D.

Lemma 3. Any logit equilibrium is symmetric across players.

By Lemma 2 and 3, the �rst order di�erential equation of Eq.(2) can be written as:

f 0(x) = �f(x)Dx�(x)(5)
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and the �rst derivatives of expected payo�s in the minimum game and the games with

2 � j � n� 1 are

Dx�(x) = a(1�G1:n�1(x))� 2b

Z x

0
G1:n�1(y)dy(6)

Dx�(x) = 2b

�
E(mj�1:n�1)� x+

Z x

0
(Gj�1:n�1(y)�Gj:n�1(y))dy

�
(7)

+a(Gj�1:n�1(x)�Gj:n�1(x))

After substituting Eq.(6) and Eq.(7), integrating Eq.(5) from 0 to x yields,

f(x) = f(0) + �a

Z x

0
(1 �G1:n�1(y))f(y)dy � 2�b

Z x

0

Z y

0
G1:n�1(z)dzf(y)dy(8)

f(x) = f(0) + 2�b

�
E(mj�1:n�1)F (x)�

Z x

0
yf(y)dy(9)

+

Z x

0

Z y

0
(Gj�1:n�1(z)�Gj:n�1(z))dzf(y)dy

�

+�a
Z x

0
(Gj�1:n�1(y)�Gj:n�1(y))f(y)dy

Proposition 2. In every order statistic game with a quadratic payo� function and a > 0,

as � goes to in�nity, the logit equilibrium converges to the most e�cient Nash equilibrium,

xi = �x for all i.

Proof. Lemma 1 implies that only one e�ort level can be played with positive probability

in the limit of �. In order to show that the limiting logit equilibrium is the most e�cient

Nash equilibrium, it is su�cient to show that f(�x) diverges in the limit.

Consider a minimum game �rst. From Eq.(8),

f(x) = f(0) + �a

Z x

0
(1 �G1:n�1(y))f(y)dy � 2�b

Z x

0

Z y

0
G1:n�1(z)dzf(y)dy(10)

= f(0) +
�a

n

Z x

0
(n1 )(1� F (y))n�2f(y)dy

�2�b

�Z x

0
G1:n�1(y)dyF (x)�

Z x

0
G1:n�1(y)F (y)dy

�

= f(0) +
�a

n
G1:n(x)� 2�b

Z x

0
G1:n�1(y)[F (x)� F (y)]dy

Since F 2 [0; 1], (1 � F (x))n � (1 � nF (x)). Therefore, G1:n�1(x) � nF (x).

f(�x) � f(0) + �

�
a

n
� 2bn

Z �x

0
F (y)(1� F (y))dy

�

12



Suppose f(x) converges to a point-mass at x�. Since �00(x) < 0, by Lemma 1, for every " > 0

and x, there exists a �"(x) such that f(x) < f(x� � ") < " for x 2 [0;max(0; x� � ")] and

f(x) < f(x� + ") < " for x 2 [min(x� + "; �x); �x] for every � > �". Then

f(�x) > �"

"
a

n
� 2bn

(Z x��"

0
F (y)(1� F (y))dy

+
Z x�+"

x��"
F (y)(1� F (y))dy+

Z �x

x�+"
F (y)(1� F (y))dy

)#

> �"

�
a

n
� 2bn [(x� � ")"+ 2"+ (�x� x� � ")"]

�

> �"

�
a

n
� 2bn(�x+ 2)"

�

Since logit equilibrium converges to a pure-strategy Nash equilibrium, there exists a �" with

" < a

2bn2(�x+2)
, and f(�x) diverges as � goes to in�nity.

Consider 2 � j � n � 1. In Eq.(9),
R x
0

R y
0 (Gj�1:n�1(z) � Gj:n�1(z))dzf(y)dy is non-

negative for all � and x. Hence,

f(�x) � f(0) + 2�b(E(mj�1:n�1)� E(x)) + �a

Z �x

0
(Gj�1:n�1(y)� Gj:n�1(y))f(y)dy(11)

= f(0) + 2�b(E(mj�1:n�1)� E(x)) + �a

Z �x

0
(n�1j�1 )[F (y)]j�1[(1� F (y))]n�jf(y)dy

= f(0) + 2�b(E(mj�1:n�1)� E(x)) +
�a

n
Gj:n(�x)

= f(0) + �

�
2b(E(mj�1:n�1)�E(x)) +

a

n

�

By Lemma 1, jE(mj�1:n�1)�E(x)j ! 0 as �!1. Since a

n
is independent of �, the limiting

logit equilibrium is the most e�cient Nash equilibrium. Q.E.D.

When the payo� function is quadratic as Eq.(1), the �neness of the strategy space a�ects

the payo� structure with given a and b. Consider the following 2-person Stag-hunt games.

G1 1 1 ��

1 a; a a(1��)� b�2; a(1��)

1 �� a(1��); a(1��)� b�2 a(1��); a(1��)

G2 1 1 ��

1 a; a a(1��)� b�; a(1��)

1 �� a(1��); a(1��)� b� a(1��); a(1��)

13



where a; b > 0 and � 2 (0; 1). The payo�s in game G1 correspond to the quadratic payo�

function, Eq.(1), when mj:n is the minimum. Let p denote the probability of playing 1,

then mixed-strategy Nash equilibrium is p� = b�
a+b�

and, thus, the strategy pro�le (1; 1) is

p-dominant action pair for all p > p� (Morris, Rob and Shin, 1995). As � vanishes, p�

converges to 0 and (1; 1) action pair is becoming 0-dominant, and the game is \almost"

dominance solvable. When each player believes that his opponent plays 1 with a probability

more than p�, 1 � � becomes a conditionally dominated strategy. A continuous strategy

space with a quadratic payo� function makes the e�ective ratio of a and b in�nite. It is not

surprising that a unique limiting logit equilibrium is the most e�cient Nash equilibrium in

every order statistic game.

In contrast, with a linear payo� function as used in VHBB (1990), both the penalty and

the bene�t increase linearly with an increase in e�ort. The following game corresponds to

the (piecewise) linear payo� function, ui(xi) = amj:n � bjmj:n � xij+ c.

In game G2, the mixed-strategy Nash equilibrium strategy is b

a+b
, which is independent

of �. The critical value of a

b
is not a�ected by the �neness of the strategy space. The

empirical success of logit equilibrium in the minimum game is partly because of the success

of continuous approximation to the e�ort levels which does not change the payo� structure

when the payo� function is linear. Anderson, Goeree and Holt (1998) show that, in a

minimum game with a linear payo� function, ui(xi) = am1:n � bxi + c, the limiting logit

equilibrium depends on the value of a
bn
. The limiting logit equilibria are xi = 0 and xi = �x

for all i when a

bn
< 1 and a

bn
> 1, respectively. If a

bn
= 1, it is xi =

�x
n
. By rescaling the

e�ort according to VHBB's (1990) 1-7 scale, the limiting logit equilibria are 1, 7, and 4 in

treatments A, B, and Cd, respectively. Those predictions are surprisingly close to the last

period outcomes of VHBB's (1990) treatments.

The prediction of continuous version of logit equilibrium is very poor for VHBB's (1991)

median treatments where subjects invariably converged to the equilibrium determined by

the initial median which were usually ine�cient. Treatment � used a = :1 and b = :05 and

treatment � used a = 0 and b = :05. In treatment 
, payo�s are positive only when a

player chooses the median e�ort level and the equilibrium is Pareto-ranked as in treatment

�. Using the scale 1-7 as in VHBB (1991), in treatments � and �, the subjects played e�ort

4 or 5; in treatment 
, the �nal medians were 5 in one run and 7 in two runs. The limiting

14



logit equilibrium is 4 in all treatments (the limiting logit equilibria (precisely, logit solution)

of treatments � and 
 are calculated by simulation.)11 Such a poor prediction is mainly

due to the improper continuous approximation to the discrete strategy space. When the

strategy space is discrete, QRE has as little predictive power as most traditional equilibrium

selection model except notions of risk-dominance and payo�-dominance as I brie
y discuss

in Section 2. However, by taking the discreteness into account, following exercise shows that

the limiting logit equilibrium is quite sensitive to the initial belief.

The strong history dependence showed up in VHBB (1991) can be easily explained in

QRE framework by calculating the expected payo� given the amount of noise. Let m� be

the median in the previous period. Suppose, given m�, players have only two choices in

each period; they should choose m� with probability 1 � p and choose m = m� + 1 with

probability p.12 Using the same payo� function used in VHBB (1991), in a 9-person median

game (treatment �),

�i(m
�) = (1 � P1)� (:1 m�) + P1 � [:1 (m� + 1)� :05]

�i(m
� + 1) = (1 � P2)� (:1 m�

� :05) + P2 � :1 (m� + 1)

where P1 =
P8

k=5(
8
k)p

k(1 � p)8�k and P2 =
P8

k=4(
8
k)p

k(1 � p)8�k when players choose e�orts

independently. In order for �i(m
� + 1) > �i(m

�), for all possible values of m� (the values

are almost independent to the level of m�), p should be greater than .392. When the initial

belief is concentrated enough (or � is su�ciently large), it is hardly expected for players to

raise their e�ort. The strong history dependence observed in VHBB (1991) is a product of

j, n, a, b, and the grid size. Other things equal, the value of p for the 9-person median game

with 101 e�ort choices drops to .172.

VHBR (1996) used the same value of a = :1 and b = :05 as in VHBB (1991), but they

transform the e�ort level using e = 1 + :06x, x 2 f0; 1; � � � ; 100g, so that 1 � e � 7. Let

mj:n(x) be the j
th order statistic of fx1; � � � ; xng. Since mj:n(e) = �+ �mj:n(x) for �; � > 0,

�i(xi) = :1 mj:n(e)� :05 (mj:n(e)� ei)
2 + c

11However, the limiting logit equilibrium with the initial belief calculated from the �rst period play are

same as every �nal outcome in every treatment.

12Since the penalty is so severe when jmj:n� xij � 2, it seems very unlikely for a player to choose m� + 2.

To justify lowering e�ort, one needs a large probability that the median will be lower. This simpli�ed setting

seems enough to describe the incentive problem that each individual player faced.
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= [:06� :1] mj:n(x)� [(:06)2 � :05] (mj:n(x)� xi)
2 + c0

As a result, the ratio a

b
changes from 2 to 100

3
. Literally, with a continuous strategy space, the

e�ective a

b
is in�nity. In VHBR's (1996) experiment, the play converged to 0 e�ort only in two

runs out of 36. Otherwise, the play either converged to the most e�cient outcome (18/36)

or exhibited fairly strong history dependence (16/36). Table 1 summarizes the number of

runs that converged to the most e�cient outcome and the corresponding value of p for each

treatment.13

number of runs that converged to

Treatment most e�cient outcome p

5-person fourth order statistic game 6/8 (75%) .0074

7-person fourth order statistic game 6/10 (60%) .103

5-person second order statistic game 4/8 (50%) .209

7-person second order statistic game 2/10 (20%) .240

Table 1: Number of E�cient Outcomes

4 Limiting Competitive Logit Equilibria of Order Statistic Games

The analysis of the previous section shows that if the payo� function is quadratic, for

any �nite n, the limiting logit equilibrium of every order statistic game is e�cient. However,

when a game involves a large number of players, people often seem to use \competitive"

approximation in which players ignore their own in
uence on \market signal" (here it is the

order statistic) as if the market signal is given. Although it usually gives a good approxi-

mation to Nash equilibrium in a game with a large number of players, I show in this section

that such behavior could lead the play far from the e�cient equilibrium in an order statistic

game. More importantly, the analysis provides a way to identify the normal limiting logit

equilibrium when a = 0.14

13In 7-person second order statistic game treatment, the play was \moving toward" the highest e�ort in

2 runs, which I count as \converged" in Table 1.

14In this section, I do not consider a minimum game. First, if players believe that they cannot in
uence
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\Competitive logit equilibrium" is de�ned similar to the original logit equilibriumexcept

that players ignores their own in
uence on the order statistic. Let Gi
c;j:n(x) denote the player

i's expectation of distribution function of mj:n excluding his own choice in an n-person jth

order statistic game so that Gi
c;j:n(x) maps F�i(x) into [0; 1]. In an n-person game, however,

there are n � 1 opponents each player should consider and the functional form of Gi
c;j:n(x)

is not well de�ned. In the analysis, instead of de�ning exact functional form of Gi
c;j:n(x), I

assume that Gi
c;j:n(x)'s satisfy following properties.

Assumption 1. Gi
c;j:n(x)'s satisfy basic properties of a probability distribution function

and Gi
c;j:n(x)'s are continuous in F�i.

Assumption 2. Given F�i and F�i0 , if at least one of the components in F�i �rst-order

stochastically dominates one of the component in F�i0 and others are the same, then Gi
c;j:n(x)

�rst-order stochastically dominates Gi0

c;j:n(x).

Assumption 3. Given F�i, G
i
j�1:n�1(x) � Gi

c;j:n(x) � Gi
j:n�1(x) for all x 2 [0; �x], where

Gi
j:n(x)'s are de�ned as in Section 2.

Assumption 1 and 2 make Gi
c;j:n(x)'s satisfy basic properties of order statistics, and com-

petitiveness and Assumption 2 imply identical Gi
c;j:n(x)'s across players (Lemma 2A) in

equilibrium. Assumption 2 is crucial in every proofs in this section on its own. Assump-

tion 3 links players' perceptions of the order statistic to the objective order statistic. As-

sumption 3 is very restrictive but it is necessary to prove the existence using the same

technique in the proof of Proposition 1. For the other results, I use only the relationship,

the minimum, the analysis in this section remains valid. However, this is implausible in a minimum game:

if a player believes the expected minimum is 0 < m < �x, the assumption requires that he should believe it

is m even when he chooses 0. If player i takes the e�ect of his own choice into account holding Ei(m1:n�1)

constant, his expected payo� is:

�i(xi) = amin[xi; Ei(m1:n�1)]� b(min[xi; Ei(m1:n�1)]� xi)
2

which is not di�erentiable and that makes the analysis di�cult. However, an informal analysis is still possible.

In a minimum game, �i(Ei(m1:n�1) � ") = aEi(m1:n�1)� a" and �i(Ei(m1:n�1) + ") = aEi(m1:n�1)� b"
2.

Since Ei(m1:n�1) depends on the expected payo�s of "-neighbor of Ei(m1:n�1) with su�ciently large �

(because Ei(m1:n�1) is a unique best response), a conjecture can be made that a strictly positive a is enough

to lead the play to the most e�cient Nash equilibrium. As in a logit equilibrium, once players recognize

their in
uence on the order statistic, there is a tension between the bene�t and the penalty. In this case,

together with the continuous strategy space, the quadratic payo� function would work in favor of more

e�cient outcomes and that results in the most e�cient outcome.
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E(mj�1:n�1) � Ei
c(mj:n) � E(mj:n�1), implied by Assumption 3. Those three assumptions

insure the existence of competitive logit equilibrium.

Under the competitiveness assumption, the expected payo� is

Ei
c(�c;i(xi)) = aEi

c(mj:n)� b(Ei
c(mj:n)� xi)

2 + c(12)

Notice that a matters in determining expected payo�s but it does not change the relative

expected payo�s. Since the e�ort density is invariant to the change of the origin, the relevant

part of expected payo� is

Ei
c(�c;i(xi)) = b[2Ei

c(mj:n)xi � x2i ](13)

and the e�ort density is

f ic(xi) =
exp [�b (2Ei

c(mj:n)xi � x2i )]R �x
0 exp [�b (2Ei

c(mj:n)y � y2)] dy
(14)

Because each player thinks that the order statistic is independent of his own choice, his only

concern is how close his choice is to Ei
c(mj:n). Therefore, the problem each individual player

faces is similar to a game with a = 0, but the competitive logit equilibrium outcome is still

Pareto-ranked as long as a > 0.

Consider a �nite-person order statistic game with j < n+1
2
. For the sake of intuition,

assume that Ei
c(mj:n) = E(mj:n�1) for all i. Suppose E(mj:n�1) > 0. The best response

in the order statistic game is E(mj:n�1) at which the e�ort density should attain its max-

imum. Under the competitiveness assumption, since the expected payo� depends only on

the distance to E(mj:n�1), the e�ort density is symmetric around E(mj:n�1) (Lemma 4A).

Moreover, as � goes to in�nity, only the expected payo�s of "-neighbor of E(mj:n�1) are

relevant to determine E(mj:n�1). By the nature of the order statistic, when j is less than

n
2
, there is a force which pushes E(mj:n�1) toward 0. Even though there is no incentive for

individual players to change their e�ort levels, the equilibrium e�ort density depends on j

and n via E(mj:n�1).

Proposition 3. If Gi
c;j:n(x)'s satisfy Assumption 1 { 3, as � goes to in�nity, the competitive

logit equilibrium converges to the point-mass at 0 when j � n+1
2
� 1 and it converges to �x

when j � n+1
2

+ 1.
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When n

2
� j � n+2

2
, the limiting competitive logit equilibrium depends on the players'

perceptions of the order statistic. The result is summarized in following corollary.

Corollary 1. Under Assumption 1 { 3, as � goes to in�nity, if Ei
c(mj:n) < E(mn

2
:n�1), the

competitive quantal response equilibrium converges to the least e�cient Nash equilibrium;

if Ei
c(mj:n) > E(mn

2
:n�1), it converges to the most e�cient one; if Ei

c(mj:n) = E(mn
2
:n�1) or

Ei
c(mj:n) = E(mn�1

2
:n�2);

15 it converges to a point-mass at �x
2
.

The prediction of the competitive logit equilibrium is the similar to that of Kandori,

Mailath and Rob's (1993) evolutionary model. Robles (1997) has applied Kandori, Mailath

and Rob's model to order statistic games and has shown that when players do not consider

the e�ect of their own choice on the order statistic, that is, Ei
c(mj:n) = E(mj:n); if j <

n+1
2

(j > n+1
2
), the evolutionary model selects a unique equilibrium where the e�ort choice is 0

(�x); when j = n+1
2
, every strict Nash equilibrium has the same size of basin of attraction

and it does not shrink the set of Nash equilibria. That is not a coincidence. While the

competitive logit equilibrium depend on the statistical property of order statistics, the long-

run equilibrium depends on sizes of basins of attraction which are determined by the order

statistic.

Proposition 2 states that it is su�cient for e�ciency that a �nite n and sophisticated

enough players to process their own chances of a�ecting the order statistic, while Proposition

3 states that the competitive behavior could result in ine�ciency. A question arises if the

competitiveness assumption can be justi�ed in the limit of n. If � grows faster than n, or if

players choices converges to the best response fast enough, the conclusion of Proposition 2

remains valid.

Proposition 4. In order statistic games with 2 � j � n� 1, if nt and �t go to in�nity with

a�t
nt
!1 and jt

nt+1
� q where q = j

n+1
, the logit equilibrium converges to the most e�cient

Nash equilibrium.

Proof. Choosing nt = t(n+ 1) makes jt and nt integers. When j � 2, from Eq.(11),

ft(�x) � ft(0) + �t

�
2b(Et(mjt�1:nt�1)� Et(x)) +

a

nt

�

15This is the case where Ei
c(mj:n) =

1
2
[E(mn�1

2
:n�1) + E(mn+1

2
:n�1)] when n is odd.
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Since the variance of x, denoted by s2, is order of ��2, and �s
q

n�j

j
� E(mjt�1:nt�1) �

Et(x) � s
q

j�1

n�j+1
(Wolkowicz and Styan, 1979) or�s

q
1�q

q
� E(mjt�1:nt�1)�Et(x) � s

q
q

1�q
,

E(mjt�1:nt�1)�Et(x) is, at least, of order O(�
�1) and by the assumption a

nt
is of order o(��")

for some 0 < " < 1. Therefore, ft(�x) diverges and the result follows. Q.E.D.

Proposition 4 implies that if � grows fast enough so that
@Ei(mj:n)

@xi
remains big enough,

the limiting logit equilibrium should be e�cient. Therefore, although a large number of

players is not su�cient for a justi�cation for the use of the competitive model, if n grows

quickly enough relative to �, the individual in
uences become too small to a�ect the resulting

order statistic, and the logit equilibrium and the competitive logit equilibrium converge to

the same Nash equilibrium in the limit of �. To prove this claim, after de�ning a competitive

logit equilibrium in the limit of n, I show a logit equilibrium converges to that.

As n goes to in�nity, an order statistic can be represented by a quantile. Given q-

quantile for 0 < q < 1, let fq and Fq be the common equilibrium e�ort density function and

cumulative distribution function, respectively. Then the limit of the sequence of competitive

logit equilibria as the number of players goes to in�nity is well de�ned. In this case, the

expected payo� is given by

�eq(x) = amq � b(mq � x)2 + c(15)

where mq = F�1
q (q). Since the competitive logit equilibrium e�ort density function is in-

variant to the changing the origin and mq is independent of x, �eq(x) can be rescaled as

follows:

�eq(x) = b[2mqx� x2](16)

Then the competitive logit equilibrium e�ort density in q-quantile game is

fq(x) =
exp [�b (2mqx� x2)]R �x

0 exp [�b (2mqy � y2)] dy
(17)

or

fq(x) = fq(0) + 2�b

�
mqFq(x)�

Z x

0
yfq(y)dy

�
(18)

The equilibrium is a solution, fq(x), to Eq.(18).
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In a quantile game, given �, it is the best to set the e�ort to the quantile of current

distribution of the order statistic because each individual player cannot a�ect the quantile.

However, as � grows, by construction, Fq(mq) must be q in the competitive logit equilibrium

and mq = argmaxxfq(x). These two conditions make the competitive logit equilibrium

converge to the extreme Nash equilibria except in the median game.

Lemma 4. Given q, as � goes to in�nity, the q-quantile competitive logit equilibrium e�ort

density converges to a point-mass at 0, �x
2
and �x when q < 1

2
, q = 1

2
and q > 1

2
, respectively.

Proposition 5. In order statistic games with 2 � j � n� 1 and j 6= n+1
2
, if nt and �t go to

in�nity with nt > �2+"t for any " > 0 and jt
nt+1

� q where q = j

n+1
, the logit equilibrium e�ort

density of a order statistic game converges to the limiting competitive logit equilibrium of

corresponding q-quantile game.

Proposition 5 leaves the limiting logit equilibrium of a median game unidenti�ed. This is

because bounds for a logit equilibrium in the proof is (too) wide. Since
R �x
0 (Gj�1:n�1(y) �

Gj:n�1(y))dy = E(mj:n�1)� E(mj�1:n�1), Eq.(7) can be rewritten as:

Dx�
e(x) = 2b

�
E(mj:n�1)� x�

Z �x

x
(Gj�1:n�1(y)�Gj:n�1(y))dy

�

+a(Gj�1:n�1(x)�Gj:n�1(x))

Then

f(x) = f(0) + 2�b

�
E(mj:n�1)F (x)�

Z x

0
yf(y)dy(19)

�

Z x

0

Z �x

y
(Gj�1:n�1(z)�Gj:n�1(z))dzf(y)dy

�

+�a

Z x

0
(Gj�1:n�1(y)�Gj:n�1(y))f(y)dy

Since both
R x
0

R y
0 (Gj�1:n�1(z)�Gj:n�1(z))dzf(y)dy in Eq.(9) andR x

0

R �x
y (Gj�1:n�1(z)�Gj:n�1(z))dzf(y)dy in Eq.(19) vanishes as � and n increase, we need the

exact value of
R x
0

R y
0 (Gj�1:n�1(z)�Gj:n�1(z))dzf(y)dy to calculate limiting logit equilibrium

of a median game.

When a = 0, the expected payo� is �(x) = �b(E(mj:n) � x)2. In this case, the best

response is to place the choice between E(mj�1:n�1) and E(mj:n�1). Following proposition
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uses the result in Corollary 1 and characterizes the limiting logit equilibriumexcept for games

with n

2
� j � n

2
+1. In a minimum game, since 0 is a unique weakly dominant strategy and

there is no mixed-strategy Nash equilibrium, the limiting logit equilibrium should be xi = 0

for all i as � goes to in�nity.

Proposition 6. When a = 0, the limiting logit equilibrium for j < n

2
is xi = 0 and for

j > n

2
+ 1, it is xi = �x for all i.16

5 Conclusion

This paper considers logit equilibrium as a way of modeling players' behavior in a class

of order-statistic coordination games studied experimentally by VHBB (1990, 1991) and

VHBR (1996), and theoretically by Anderson, Goeree, and Holt (1998). The standard

notion of equilibrium requires common knowledge of rationality and the structure of the

game. It also requires mutually consistent beliefs, which is a particularly strong assumption

when there are multiple equilibria. Those assumptions, however, imply only the iterated

elimination of strategies that are never weakly best replies, which in many games yields no

useful restrictions on behavior. The QRE also assumes common knowledge of rationality

and of the structure, but models the strategic uncertainty that such games often create by

assuming that each player forms beliefs about the others' strategies based on a stochastic

decision rule, and requiring mutually consistent beliefs about the distribution of the resulting

decision errors.17 The QRE, by assuming noisy but equilibriumbased responses to systematic

decision errors, allows players to use a common principle to make independent predictions

about others' strategies. As a result, indeterminacy of conditional probabilities of outcomes

is largely eliminated.

16When j = n
2
, xi �

�x
2
and when j = n

2
+ 1, xi �

�x
2
for all i.

17QRE also requires players' abilities to process a good deal of information to calculate \correct" beliefs.

This assumption can be relaxed by replacing equilibrium beliefs with adaptive learning models like �ctitious

play. Chen, Friedman, and Thisse (1997) identi�ed conditions such that for a given � the path of choices

over time converges to a QRE when the players update their beliefs based on �ctitious play.
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Appendix

Proof of Proposition 1

This is a slight modi�cation of the existence proof in Anderson, Goeree and Holt (1996).

When j = 1 and j = n, the proofs are identical with appropriate expected payo�s.

When 2 � j � n� 1, the expected payo� is given by

�ei (xi) = 2bEi(mj�1:n�1)xi � bx2i +

Z xi

0
(a� 2by + 2bxi)G

i
j�1:n�1(y)dy

After substituting �ei in Eq.(2) with above expected payo�, integrating both side yields the

equilibrium cumulative distribution function Fi(xi) as a �xed point of the operator T;

TFi(xi) =

R xi
0 exp [� (2bEi(mj�1:n�1)xi � by2 +

R y
0 (a� 2bz + 2by)Gi(z)dz)] dyR �x

0 exp [� (2bEi(mj�1:n�1)xi � by2 +
R y
0 (a� 2bz + 2by)Gi(z)dz)]dy

where F is a vector, (F1; � � � ; Fn), Fi is an ith element of F, Gi(x) � Gi
j�1:n�1(x)�Gi

j:n�1(x)

and the de�nition of Gi
j:n�1(x) is in Section 2. If a �xed point exists, we know that Fi(xi)

is continuous, so is F (x). Therefore we can restrict the solution set to the set of contin-

uous function on [0; �x], denoted by C[0; �x]. In particular, consider the set: S � fF 2

C[0; �x] j kFk � 1g, where k � k denotes the sup norm. The set, which includes all continuous

cumulative distributions, is an in�nite dimensional unit ball, and is thus a closed and convex

subset of C[0; �x]. Since S is not compact I will use the following �xed point theorem (Gri�el,

1985, p158).

Schauder's Second Theorem If S is a closed convex set of a normed space and R is a

relatively compact subset of S, then every continuous mapping of S to R has a �xed point.

To apply the theorem, we need to prove that

(1) R � fTFjF 2 Sg is relatively compact, and

(2) T is a continuous mapping from S to R.

(1) Proof of the relative compactness of R

A theorem due to Arzela-Ascoli (Gri�el, 1985, p156) states that a set of function in

C[0; �x], with sup norm, is relatively compact if and only if it is uniformly bounded and

equicontinuous on [0; �x]. The set R � fTFjF 2 Sg is uniformly bounded if there exists a

number K such that kF(x)k � K for all F 2 S and x 2 [0; �x]. Since mapping TF(x) is

positive and nondecreasing, kTF(x)k � kTF(�x)k = 1 for all F 2 S and x 2 [0; �x]. So TF is

uniformly bounded for all F 2 S.
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To prove equicontinuity of R, I have to show that for every " > 0 there exists a � > 0

such that kTF(x1)�TF(x2)k < " whenever jx1�x2j < �, for all TF 2 R and x1;x2 2 [0; �x].

kTF(x1)�TF(x2)k

<
maxi j

R x2
x1

exp
h
�
�
2bmi

j�1:n�1y � by2 +
R y
0 (a� 2bz + 2by)Gi(z)dz

�i
dyj

mini
R �x
0 exp

h
�
�
2bmi

j�1:n�1y � by2 +
R y
0 (a� 2bz + 2by)Gi(z)dz

�i
dy

<
jx2 � x1jexp[�(4b�x

2 + a�x)]

�xexp(�b�x2)
=
jx2 � x1j

�x
exp[�(5b�x2 + a�x)]

The second inequality holds because
R x
0 (a � 2by + 2bx)Gi(y)dy > 0 for all x. Thus the

di�erence in the value of the TF operator is ensured to be less than " by setting jx1�x2j < �,

where � = �xexp[��(5b�x2 + a�x)]". Therefore TF is equicontinuous for all F 2 S.

(2) Proof of the continuity of T

The mapping T is continuous if for all F1;F2
2 S and for every " > 0, there exists a

� > 0 such that kTF1 � TF2k < " whenever kF1 � F2k < �. In order to get a bound on

kTF1 �TF2k, we need to compare E1
i (mj:n) and E2

i (mj:n), and Gi
1(x) and Gi

2(x).

Let's write F1(x) = F2(x) + h(x) with kh(x)k < � for all x 2 [0; �x]. Then 1�F1(x) =

1�F2(x)�h(x), which is greater than 1�F2(x)� � and less than 1�F2(x) + � for all x.

Using the upper bound,

Gi
1;j�1:n�1 <

n�1X
k=j�1

X
Sk

kY
l=1

(F 1
il
(x) + �)

n�1Y
l=k+1

(1� F 1
il
(x) + �)

Using following relation,

(F 1
1 + �)(F 1

2 + �) � � � (F 1
k + �) �

h
F 1
1 (F

1
2 + �) � � � (F 1

k + �)
i
+ �(1 + �)k�1

�

kY
l=1

F 1
l + (1 + �)k � 1

we have

Gi
1;j�1:n�1 < Gi

2;j�1:n�1 + ((1 + �)n�1 � 1)
n�1X

k=j�1

X
Sk

1

and, similarly, using 1� F1(x) = 1� F2(x)� h(x) > 1 � F2(x)� �, we derive

Gi
1;j�1:n�1 > Gi

2;j�1:n�1 + ((1� �)n�1 � 1)
n�1X

k=j�1

X
Sk

1

This yields

Ei
2(mj:n)� �x((1 + �)n�1 � 1)

n�1X
k=j�1

X
Sk

1 < Ei
1(mj:n)

< Ei
2(mj:n)� �x((1� �)n�1 � 1)

n�1X
k=j�1

X
Sk

1
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and

Gi
2 + ((1 � �)n�1 � 1)

X
Sj�1

1 < Gi
1 < Gi

2 + ((1 + �)n�1 � 1)
X
Sj�1

1

In the de�nition of the operator TF1, we can use the upper bound for the integral in

the numerator and the lower bound for the internal in the denominator to obtain

TF 1
i (xi) <

R xi
0 exp [� (2bEi

2(mj�1:n�1)y � by2 +
R y
0 (a� 2bz + 2by)Gi

2(z)dz) +K1] dyR �x
0 exp [� (2bE

i
2(mj�1:n�1)y � by2 +

R y
0 (a� 2bz + 2by)Gi

2(z)dz) +K2] dy

where

K1(�) = �2b�x((1� �)n�1 � 1)
n�1X

k=j�1

X
Sk

1 + �x(a+ 2b�x)((1 + �)n�1 � 1)
X
Sj�1

1

K2(�) = �2b�x((1 + �)n�1 � 1)
n�1X

k=j�1

X
Sk

1 + �x(a+ 2b�x)((1 � �)n�1 � 1)
X
Sj�1

1

Since K1 > 0 and K2 < 0,

TF1 < K(�)TF2; where K(�) =
exp (��xK1(�))

exp (��xK2(�))

The same approach can be used to show that TF 1 > K(�)�1TF 2. Thus we conclude that

K(�)�1TF2 < TF1 < K(�)TF2

Notice that K(�) is strictly increasing for � > 0, with K(0) = 1. The �nal step is to obtain

a bound on kTF2 � TF1k. Suppose that the supremum is obtained at some x� at which

TF1 > TF2, without loss of generality. On the other hand, TF1 < K(�)TF2. Now we have

kTF1 �TF2k = kTF1(x
�)�TF2(x

�)k < (K(�)� 1)kTF2k < K(�)� 1

Since K(�) is continuous and increasing in � with K(0) = 1, there exists a ��(�) such that

K(�)� 1 is less than � for all 0 < � < ��(�). Hence T is a continuous mapping from S to R.

Q.E.D.

Proof of Lemma 1

For the convergence of logit equilibrium to a Nash equilibrium, Theorem 2 and Lemma 2

in McKelvey and Palfrey (1995)) extend to games with continuous strategy spaces provided

that a logit equilibrium exists (the proof does not require a discrete strategy space.)

Theorem (McKelvey and Palfrey, 1995; Chen, Friedman, and Thisse, 1997) Let f�1; �2; � � �g

be a sequence such that �t > 0 and limt!1 �t = 1. In a �nite-person game, for each �t,

let ft be a �xed point (logit equilibrium). Then the sequence of ff1; f2; � � �g has at least one

point of accumulation, f�, and any such point of accumulation is a Nash equilibrium of the

game.
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Given the convergence result, it is su�cient to show that every Nash equilibrium is a

symmetric pure-strategy equilibrium. Consider a pure-strategy Nash equilibrium �rst. In

the minimum game, suppose a pure-strategy equilibrium is not symmetric. Let xm and xM
be the minimum and the maximum e�ort levels of the Nash equilibrium strategy pro�le.

In this case, the minimum is always xm, and xM cannot be the best response as long as

xm 6= xM . For the games other than the minimum game, similar arguments hold.

Next, I need to show that there is no mixed-strategy Nash equilibrium. Suppose that

there is a mixed-strategyNash equilibrium,which can have three forms; either the e�ort levels

played with positive probability are isolated or the support involves contiguous intervals or

both. In any case, the expected payo�s are given by Eq.(3) and Eq.(4). That is,

�ei (xi) = a

�
xi �

Z xi

0
Gi

1:n�1(y)dy

�
+ 2b

�Z xi

0
(y � xi)G

i
1:n�1(y)dy

�

�ei (xi) = 2bEi(mj�1:n�1)xi � bx2i

+
Z xi

0
(a� 2by + 2bxi)(G

i
j�1:n�1(y)�Gi

j:n�1(y))dy

Let xm and xm0 be two e�ort levels in the same interval such that xm < xm0 and fi(x)

and Fi(x) be player i's e�ort density and e�ort distribution functions, respectively. Then

fi(x) > 0 and 0 < Fi(x) < 1 on (xm; xm0).

First, consider the minimum game. If the support of a equilibrium strategy involves

an interval [xm; xm0 ], then a player's expected payo� must be constant at all e�ort levels.

Then the �rst derivative of expected payo� exists and must be zero, and so does the second

derivative. For x 2 [xm; xm0], by the construction,

D2
x�

e
i (x) = �(a+ 2b)gi1:n�1(x) < 0

This is a contradiction. Hence the equilibrium density can only involve atoms.

Suppose there are more than two atoms: xa < xb < xc < � � �.

�i(xa) = axa

�i(xb) = pa[axa � b(xa � xb)
2] + (1 � pa)axb

�i(xc) = pa[axa � b(xa � xc)
2] + pb[axb � b(xb � xc)

2] + (1� pa � pb)axc

where pk is the probability that xk is the minimum. By equating �i(xa) and �i(xb), we have

a(1� pa) = bpa(xb � xa). Equating last two equations gives

bpa(xc + xb � 2xa) + bpb(xc � xb) = a(1� pa)

Substituting a(1� pa) = bpa(xb � xa) yields

pa(xc � xa) + pb(xc � xb) = 0

This is a contradiction. Hence a mixed-strategy Nash equilibrium could involve only two

atoms. Choose x� such that x� 2 (xa; xb).

Pi(m1:n = xajxi = xa) = 1;
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Pi(m1:n = xajxi = x�) = Pi(m1:n�1 = xa) � p

Pi(m1:n = x�jxi = x�) = Pi(m1:n�1 � x�) � 1� p

and

Pi(m1:n = xajxi = xb) = Pi(m1:n�1 = xa) = p

Pi(m1:n = xbjxi = xb) = Pi(m1:n�1 � xb) = 1 � p

By equating �i(xa) and �i(xb), p =
a

a+b(xb�xa)
. By the equilibrium condition,

�i(xa) � �i(x
�) ! axa � p(axa � b(xa � x�)2) + (1 � p)ax�

! p � 1� b(x��xa)

a

!
a

a+b(xb�xa)
�

a�b(x��xa)

a

By choosing x� < xa +
a(xb�xa)

a+b(xb�xa)
, we have a

a+b(xb�xa)
< a�b(x��xa)

a
, a contradiction.

Next, consider games with 2 � j � n � 1. If the support of strategy space involves an

interval, for all x 2 [xm; xm0],

�ei (xm) = 2bEi(mj�1:n�1)xm � bx2m

+
Z xm

0
(a� 2by + 2bxm)(G

i
j�1:n�1(y)�Gi

j:n�1(y))dy

�ei (xm0) = 2bEi(mj�1:n�1)xm0 � bx2m0

+

Z xm0

0
(a� 2by + 2bxm0)(Gi

j�1:n�1(y)�Gi
j:n�1(y))dy

Since
R xm
0 (a�2by+2bxm)(G

i
j�1:n�1(y)�Gi

j:n�1(y))dy <
R xm0

0 (a�2by+2bxm0)(Gi
j�1:n�1(y)�

Gi
j:n�1(y))dy, by equating those two expected payo�s, we have Ei(mj�1:n�1) <

xm+xm0

2
. Then

we are left with only two possibilities, Ei(mj�1:n�1) = xm and Ei(mj�1:n�1) < xm. Since

Dxi�i(Ei(mj�1:n�1)) > 0, xm cannot be Ei(mj�1:n�1). Therefore, Ei(mj�1:n�1) < xm and this

implies that the minimum e�ort level in a Nash equilibrium strategy pro�le is isolated. Let

player i0 be the one who play the minimume�ort level, xa. Since at least player i puts positive

probability on xm which is greater than xa, xa < Ei0(mj�1:n�1) and xa cannot be a weakly

best response for player i0. This is a contradiction. Hence a equilibrium mixed-strategy

could involve only atoms.

Let xa denote the minimum e�ort level and let xb be the second largest e�ort level

to be played with positive probability (xb could be xm). Choose x� such that xa < x� <

Ei(mj�1:n�1) < xb. Then,

Pi(mj:n = xajxi = xa) = Pi(mj�1:n�1 = xa)

Pi(mj:n � xbjxi = xa) = Pi(mj�1:n�1 � xb)

and

Pi(mj:n = xajxi = x�) = Pi(mj:n�1 = xa)

= Pi(mj�1:n�1 = xa) + Pi(mj:n�1 = xa)� Pi(mj�1:n�1 = xa)

Pi(mj:n = x�jxi = x�) = Pi(mj�1:n�1 � x�)

= Pi(mj�1:n�1 = xa)� Pi(mj:n�1 = xa)

Pi(mj:n � xbjxi = x�) = Pi(mj�1:n�1 � xb)
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Since Pi(mj:n � xjxi = xa) = Pi(mj:n � xjxi = x�) for all x � xb,

�ei (xa) = Ei(amj:n � b(mj:n � xa)
2)

�ei (x
�) = Ei(amj:n � b(mj:n � x�)2)

+(Pi(mj:n�1 = xa)� Pi(mj�1:n�1 = xa))(axa � b(xa � x�)2)

+(Pi(mj�1:n�1 = xa)� Pi(mj:n�1 = xa))(ax
�)

= Ei(amj:n � b(mj:n � x�)2)

+(Pi(mj�1:n�1 = xa)� Pi(mj:n�1 = xa))(ax
�
� axa + b(xa � x�)2)

Since Pi(mj�1:n�1 = xa)� Pi(mj:n�1 = xa) > 0, in order for a strategy pro�le to be a mixed
strategy equilibrium,

�
e
i (xa) � �

e
i (x

�) ! Ei(amj�1:n�1 � b(mj�1:n�1 � xa)
2) � Ei(amj�1:n�1 � b(mj�1:n�1 � x

�)2)

! 2bEi(mj�1:n�1)(xa � x
�)� b(xa

2 � x�
2) � 0

! xa + x
� � 2Ei(mj�1:n�1)

This is a contradiction and there is no mixed-strategy Nash equilibrium. Q.E.D.

Proof of Lemma 3

Suppose there be two di�erent logit equilibrium densities, f1(x) and f2(x). Suppose f1(x) >

f2(x) on (xa; xb) where xa is the smallest one from which two densities have di�erent values

and xa could be 0. Since they have to cross before �x, there exists xb < �x such that f1(xb) =

f2(xb), f
0
1(xb) < f 02(xb), and F1(xb) > F2(xb).

Consider a minimum game �rst. From Eq.(6),

Dx�
e
1(x) = a

Y
i6=1

(1� Fi(x))� 2b

Z x

0

2
41�Y

i 6=1

(1 � Fi(y))

3
5 dy

and, in Eq.(5), f 01 is decreasing in F2. This is a contradiction.

For games with 2 � j � n � 1, regardless of what are the equilibrium densities of

players i1 and i2, they share the beliefs about the other (n � 2) players. Let Qj:n�2(x) be

the probability that exactly j of the xi's are less than or equal to x and n� j� 2 are greater

than or equal to x in the random sample n � 2. Then

G1
j:n(x) = Qj�1:n�2(x)F2(x) +

n�2X
k=j

Qk:n�2(x)

and

G1
j�1:n(x)�G1

j:n(x) = Qj�1:n�2(x) + F2(x)

�
Qj�2:n�2(x)�Qj�1:n�2(x)

�

where Q0:n�2(x) = 1.
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First, consider a case that F1(x) � F2(x) for all x. Then F2(x) �rst-order stochastically

dominates F1(x), and E1(mj�1:n�1) < E2(mj�1:n�1). However, since E1(mj�1:n�1) depends

on F2 not on F1, E1(mj�1:n�1) > E2(mj�1:n�1), which is a contradiction.

F1(x) and F2(x) have to cross more than once and f1(x) and f2(x) cross at xb and xc.

Let H(x) � 1
�

�
f 0
1
(x)

f1(x)
�

f 0
2
(x)

f2(x)

�
. Then H(xb) < 0 < H(xc). From Eq.(5) and Eq.(7),

H(x) = 2b

�
E1(mj�1:n�1)� E2(mj�1:n�1)

+

Z x

0
(F2(y)� F1(y))(Qj�2:n�2(y)�Qj�1:n�2(y))dy

�
+a(F2(x)� F1(x))(Qj�2:n�2(x)�Qj�1:n�2(x))

Since F2(x)� F1(x) � 0 for all x 2 [0; x�] for some x� > xb, DxH(0) < 0 and H(x) attains

its local minimum at xb < x� < xc where F2(x
�)� F1(x

�) = 0. The �rst order condition is:

DxH(x�) = 2b(F2(x
�)� F1(x

�))(Qj�2:n�2(x
�)�Qj�1:n�2(x

�))

+a(F2(x
�)� F1(x

�))(DxQj�2:n�2(x
�)�DxQj�1:n�2(x

�))

+a(f2(x
�)� f1(x

�))(Qj�2:n�2(x
�)�Qj�1:n�2(x

�))

= a(f2(x
�)� f1(x

�))(Qj�2:n�2(x
�)�Qj�1:n�2(x

�)) = 0

When a > 0, since Qj�2:n�2(x)�Qj�1:n�2(x) > 0 for all x 2 (0; �x), the condition implies

f2(x
�)� f1(x

�) = 0. This is a contradiction.

When a = 0, by inspection, H(x) attains a strictly positive local maximum at xc. This

implies that DxH(xc) = 0 and F2(xc)� F1(xc) = 0. This is a contradiction. Q.E.D.

Proof of Proposition 3

Let's de�ne some notation for the proof. Let f ic;j:n(x) and F i
c;j:n(x) be player i's competitive

equilibrium e�ort density and distribution function in the game with j and n, respectively.

Ef (mj:n) and Ef (x) denote unconditional expectations of order statistic mj:n and x with

given f . Let fj:n�1(x) and fj�1:n�1(x) denote the equilibrium e�ort densities associated with

Ec(mj:n) = E(mj�1:n�1) and Ec(mj:n) = E(mj:n�1), respectively. Fj:n�1(x) and Fj�1:n�1(x)

denote corresponding cumulative distribution functions.

Lemma 1A. Given �, for any i1; i2, j1; j2, and n1; n2, if E
i1
c (mj1:n1) > Ei2

c (mj2:n2) then

F i1
c;j1:n1

(x) �rst-order stochastically dominates F i2
c;j2:n2

(x), and if Ei1
c (mj1:n1) = Ei2

c (mj2:n1),

then F i1
c;j1:n1

(x) = F i2
c;j2:n2

(x) for all x.

Proof. From Eq.(14), f i0c;j:n(xi) = 2�bf ic;j:n(xi)(E
i
c(mj:n)� xi), and

f i10c;j1:n1
(x)

f i1c;j1:n1(x)
�
f i20c;j2:n2

(x)

f i2c;j2:n2(x)
= 2�b

h
Ei1
c (mj1:n1)� Ei2

c (mj2:n2)
i
> 0
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and f ic;j:n(0) is decreasing in Ei
c(mj:n). Thus they cannot cross more than once and the �rst

result follows. The second result is direct from Eq.(14). The converse is true when � > 0.

Q.E.D.

Lemma 2A. Every competitive logit equilibrium is symmetric across players.

Proof. By Lemma 1A, if two players have di�erent Ei
c(mj:n)'s, then the e�ort densities

should be di�erent. Suppose E1
c (mj:n) > E2

c (mj:n). f1c;j:n(x) depends on f2c;j:n(x) as well

as the other f ic;j:n(x)'s but not on itself, so does f2j:n(x). By Lemma 1A, F 1
c;j:n(x) �rst-

order stochastically dominates F 2
c;j:n(x). Therefore, by Assumption 2, G2

c;j:n(x) �rst-order

stochastically dominates G1
c;j:n(x). This is a contradiction. Q.E.D.

By Lemma 2A, the superscript i can be suppressed.

Lemma 3A. Given �, for any j1 < j2, E
1
c (mj1:n) < E2

c (mj2:n) in a competitive logit equilib-

rium.

Proof. For a given �, in order to reach a contradiction, suppose E1
c (mj1:n) > E2

c (mj2:n)

in a equilibrium. When � = 0, by Assumption 3, fc;j:n(x) is uniformly distributed and

E1
c (mj1:n) < E2

c (mj2:n). Since Ec(mj:n) is continuous in �, there must exist a �� such that

E1
c (mj1:n) = E2

c (mj2:n). Then f1c;j1:n(x) = f2c;j2:n(x) by Lemma 1A. However, if f1c;j1:n(x) =

f2c;j2:n(x), E
1
c (mj1:n) < E2

c (mj2:n) by Assumption 3. This is a contradiction. Q.E.D.

Lemma 3A enable to compare competitive logit equilibrium e�ort densities based only on the

Ec(mj:n) given �. Since there is a unique \best response", Ec(mj:n), from Eq.(12), fc;j:n(x)

converges to a point-mass at Ec(mj:n). Together with Assumption 3, by comparing uncon-

ditional expectations E(mj:n)'s, one can \order" Ec(mj:n)'s because equilibrium E(mj:n) is

well ordered by Lemma 3A. In other words, in order to prove Proposition 3, it is su�cient

to show that E(mj�1:n�1) goes to �x and E(mj:n�1) goes to 0 as � goes to in�nity.

Lemma 4A. Given �, for any 2 � j � n� 1 and n, fc;j:n(x) is symmetric around Ec(mj:n).

That is, if (2Ec(mj:n)� x) 2 [0; �x], then fc;j:n(x) = fc;j:n(2Ec(mj:n)� x).

Proof. If (2Ec(mj:n)� x) 2 [0; �x],

fc;j:n(2Ec(mj:n)� x) =
exp [�b (2Ec(mj:n)(2Ec(mj:n)� x)� (2Ec(mj:n)� x)2)]R �x

0 exp [�b (2Ec(mj:n)y � y2)] dy

Q.E.D.

Lemma 5A (Ali and Chen, 1965). If a distribution function, F (x), is symmetric, continuous,

strictly positive and unimodal, for j > n+1
2
, E(mj:n) � F�1( j

n+1
) and for j = n+1

2
E(mj:n) =

F�1( j

n+1
).

where F is unimodal if there exists at least one real c such that F�1 is concave for x < c

and convex for x > c.
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Lemma 6A. In a competitive logit equilibrium, for all �, if j � n+1
2
�1, then Ec(mj:n) <

�x
2
;

if j � n+1
2

+ 1, then Ec(mj:n) >
�x
2
.

Proof. By Lemma 3A and Assumption 2, it is su�cient to show that Efc(mj�1:n�1) >
�x
2

when j � n+1
2

+ 1, and Efc(mj:n�1) <
�x
2
when j � n+1

2
� 1.

When n is even, consider the case of j = n

2
+ 1. Suppose fj�1:n�1(x) is the competitive

logit equilibrium e�ort density and Ef (mj�1:n�1) <
�x
2
. (This is a median game in terms of

players' perceptions.) Let's de�ne a density;

f�(x) = fj�1:n�1(x) +
1

2Ef (mj�1:n�1)

Z �x

2Ef(mj�1:n�1)
fj�1:n�1(y)dy(20)

if x � 2Ef (mj�1:n�1)

= 0 if x > 2Ef (mj�1:n�1)

By Lemma 4A, f�(x) satis�es the conditions in Lemma 5A and Ef (mj�1:n�1) =

Ef�(mj�1:n�1). If Ef (mj�1:n�1) <
�x
2
, fc(x) �rst-order stochastically dominates f�(x) and it

contradicts to the equality. Therefore Ef (mj�1:n�1) �
�x
2
. Since j = n

2
+ 1 < n+1

2
+ 1, n

2
+ 2

is the smallest integer which is greater than n+1
2

+ 1. By Assumption 3,

�x

2
� E(mn

2
:n�1) < E(mn

2
+1:n�1) � Ec(mn

2
+2:n)

and the result follows. The same arguments hold for j = n
2
with

f��(x) = fj:n�1(x) +
1

2(�x� Ef(mj:n�1))

Z 2Ef (mj:n�1)��x

0
fj:n�1(y)dy(21)

if x � 2Ef (mj:n�1)� �x

= 0 if x < 2Ef (mj:n�1)� �x

If n is odd, consider the case of j = n+1
2

+ 1. Suppose Ef (mj�1:n�1) �
�x
2
, then by Lemma

4A and 5A, Ef�(mj�1:n) = Ef (mj�1:n�1). If Ef (mj�1:n�1) =
�x
2
, fj�1:n�1(x) and f�(x) are

identical, but by the de�nition of order statistic it is not the case. Therefore Fj�1:n�1(x)

should �rst-order stochastically dominates F �(x). Since Ef�(mj�1:n) < Ef�(mj�1:n�1),

Ef�(mj�1:n�1) > Ef(mj�1:n�1). However, Fj�1:n�1(x) �rst-order stochastically dominates

F �(x), which is a contradiction. The proof for j = n+1
2
� 1 is identical with f��(x). Q.E.D.

For the �nal result, we need Lemma 4A, 5A and 6A, but Lemma 5A is valid only for j � n+1
2
.

Following lemma takes care of the cases j � n+1
2
� 1.

Lemma 7A. In competitive logit equilibria, given �, for any j1 and j2, if Ec(mj1:n) =

E(mj�1:n�1) and Ec(mj2:n) = E(mn�j+1:n�1) for some j, then Ec(mj1:n) = �x� Ec(mj2:n).

Proof. Let Fj�1:n�1(x) be a competitive logit equilibrium e�ort distribution function in a

game with j and n.

Fj�1:n�1(x) =

R x
0 exp [�b (2E(mj�1:n�1)y � y2)]dyR �x
0 exp [�b (2E(mj�1:n�1)y � y2)]dy
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By change of variable,

Fj�1:n�1(x) = 1 �

R �x�x
0 exp [�b (2(�x� E(mj�1:n�1))y � y2)]dyR �x
0 exp [�b (2(�x� E(mj�1:n�1))y � y2)] dy

Let

F �(x) =

R x
0 exp [�b (2(�x� E(mj�1:n�1))y � y2)] dyR �x
0 exp [�b (2(�x� E(mj�1:n�1))y � y2)] dy

Then F �(x) = 1 � Fj�1:n�1(�x � x). Next, one needs to show that F �(x) is a �xed point.
From the above de�nition, it su�ces to show that E�(mn�j+1:n�1) = �x�E(mj�1:n�1).

E
�(mn�j+1:n�1) = �x�

Z �x

0

G
�

c;n�j+1:n�1(y)dy

= �x�

Z �x

0

n�1X
k=n�j+1

B(n � 1; k)[F �(y)]k[1� F
�(y)]n�k�1

dy

= �x�

Z �x

0

n�1X
k=n�j+1

B(n � 1; k)[1� Fj�1:n�1(�x� y)]k[Fj�1:n�1(�x� y)]n�k�1
dy

= �x�

Z �x

0

n�1X
k=n�j+1

B(n � 1; k)[1� Fj�1:n�1(y)]
k[Fj�1:n�1(y)]

n�k�1
dy

Since B(n� 1; k) = B(n� 1; n� k � 1), by substituting r = n� k � 1,

E�(mn�j+1:n�1) = �x�

Z �x

0

j�2X
r=0

B(n� 1; r)[Fj�1:n�1(y)]
r[1� Fj�1:n�1(y)]

n�r�1dy

=

Z �x

0

2
41 � j�2X

r=0

B(n� 1; r)[Fj�1:n�1(y)]
r[1� Fj�1:n�1(y)]

n�r�1

3
5 dy

By using
Pn�1

r=0 B(n� 1; r)[Fj�1:n�1(z)]
n�r�1[1� Fj�1:n�1(z)]

r = 1,

E�(mn�j+1:n�1) =
Z �x

0

n�1X
r=j�1

B(n� 1; r)[Fj�1:n�1(y)]
n�r�1[1� Fj�1:n�1(y)]

rdy

= �x�E(mj�1:n�1)

Q.E.D.

Proof of Proposition 3. When j � n+1
2
+1, by Assumption 2 and Lemma 3A, it is su�cient

to show that E(mj�1:n�1) = E(mn+1
2

:n�1) converges to �x. By Lemma 6A, E(mj�1:n�1) should

be greater than �x
2
. By Lemma 4A,

(2Ef (mj�1:n�1)� �x)fj�1:n�1(�x) = (2Ef (mj�1:n�1)� �x)fj�1:n�1(2Ef (mj�1:n�1)� �x)(22)
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and Z 2Ef (mj�1:n�1)��x

0
fj�1:n�1(y)dy = 1�

Z �x

2Ef (mj�1:n�1)��x
fj�1:n�1(y)dy(23)

= 1� 2

Z �x

Ef (mj�1:n�1)
fj�1:n�1(y)dy

= 1� 2(1 � Fj�1:n�1(Ef (mj�1:n�1))

= 2Fj�1:n�1(Ef (mj�1:n�1) � 1

Suppose fj�1:n�1(x) converges to a mass-point at m < �x, then fj�1:n�1(�x) converges to 0

and fj�1:n�1(2Ef (mj�1:n�1) � �x) converges to 0. That implies that for every " > 0, there

exists a �� such that jfj�1:n�1(x) � f��(x)j < " for all � > �� where f��(x) is de�ned as in

Eq.(21). Let jFj�1:n�1(Ef (mj�1:n�1)) � F ��(Ef��(mj�1:n�1))j = ��, then �� < �xfc(�x). Since

fj�1:n�1(�x) � fj�1:n�1(x) for every x 2 [0; 2Ef (mj�1:n�1)� �x], from Eq.(22) and Eq.(23),

(2Ef (mj�1:n�1)� �x)fj�1:n�1(�x) �

Z 2Ef(mj�1:n�1)��x

0
fj�1:n�1(y)dy

= 2Fj�1:n�1(Ef(mj�1:n�1))� 1

= 2F ��

j�1:n�1(Ef��(mj�1:n�1))� 1 � 2��

By Lemma 5A, F ��
j�1:n�1(Ef��c

(mj�1:n�1)) �
j�1

n
, and

(2Ef (mj�1:n�1)� �x)fj�1:n�1(�x) + 2�� >
2(j � 1)

n
� 1 =

1

n

By the hypothesis, fj�1:n�1(�x) and �� vanish as � goes to in�nity. This is a contradiction.

When j � n+1
2
� 1, by Assumption 3 and Lemma 3A, it is su�cient to show that

Ef (mj:n�1) = Ef(mn+1
2
�1:n�1) converges to 0. By Lemma 7A, Ef (mn+1

2
:n�1) =

�x�Ef(mn+1
2
�1:n�1). By taking smallestEf(mn+1

2
:n�1), if not unique, Ef(mn+1

2
�1:n�1) becomes

the greatest equilibrium value. The result follows from that Ef (mn+1
2

:n�1) goes to �x as �

increases. Q.E.D.

Proof of Lemma 4

Lemma 8A. Given �, for any q, fq(x) is symmetric around mq. That is, if (2mq�x) 2 [0; �x],

then fq(x) = fq(2mq � x).

Proof. Identical to the proof of Lemma 4A.

Lemma 9A. In a competitive equilibrium, for all �, if q < 1
2
, then mq <

�x
2
; if q > 1

2
, then

mq >
�x
2
; When q = 1

2
, mq =

�x
2
.

Proof. By Lemma 8A, Fq(mq) <
1
2
if mq <

�x
2
; if Fq(mq)q >

1
2
if mq >

�x
2
; Fq(mq) =

1
2
if

mq =
�x
2
. Q.E.D.
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Proof of Lemma 4. When q < 1
2
, by Lemma 8A, fq(2mq) > fq(x) for all x 2 (2mq; �x] and

0 < 1� 2q = 1� Fq(2mq) =

Z �x

2mq

fq(y)dy < (�x� 2mq)fq(0)

This implies fq(0) > 0. In Eq.(17), only fq(mq) can have positive value in the limit of �

and fq(mq)!1 as � !1. Since 0 < fq(0) = fq(2mq) � fq(mq), 2mq ! 0 and the result

follows. Similarly, when q > 1
2
,

0 < 2q � 1 = Fq(2mq � �x) =

Z 2mq��x

0
fq(y)dy < (2mq � �x)fq(�x)

When q = 1
2
, the result follows from the convergence of fq(x) to a point mass. Q.E.D.

Proof of Proposition 5

The proof consists of two parts. After showing a logit equilibrium e�ort density converges

uniformly on [0; �x] to the competitive logit equilibrium e�ort density as � and n go to in�nity,

I show that it converges uniformly to that of the q-quantile game. Then the result follows

from Lemma 4.

Let q = j

n+1
and (jt; nt) be increasing sequences such that jt

nt+1
� q, t = 1; 2; � � �,

with nt = t(n + 1). Then jt and nt are integers. Let's de�ne a competitive QRE where

Ec(mj:n) = E(mj:n).

�ec;t(x) = b[2Et(mjt:nt)x� x2](24)

The corresponding equilibrium e�ort density satis�es

fc;t(x) = fc;t(0) + 2�tb

�
Et(mjt:nt)Fc;t(x)�

Z x

0
yfc;t(y)dy

�
(25)

A logit equilibrium e�ort density is

ft(x) = ft(0) + 2�tb

�
Et(mjt�1:nt�1)Ft(x)�

Z x

0
yft(y)dy

�
(26)

+2�tb
Z x

0

Z y

0
(Gt

jt�1:nt�1
(z)�Gt

jt:nt�1
(z))dzft(y)dy +

a�t

nt
Gt

jt :nt
(x)

and the last term vanishes under the assumption. For the convergence, it is su�cient to

show that �tjEt(mjt�1:nt�1))�Et(mjt:nt�1)j ! 0 because, then, from Eq.(9) or Eq.(19), ft(x)

converges to either

ft(x) ! ft(0) + 2�tb

�
Et(mjt�1:nt�1)Ft(x)�

Z x

0
yft(y)dy

�

ft(x) ! ft(0) + 2�tb

�
Et(mjt:nt�1)Ft(x)�

Z x

0
yft(y)dy

�
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Since Et(mjt�1:nt)) < Et(mjt�1:nt�1) < Et(mjt:nt)) < Et(mjt:nt�1)) < Et(mjt+1:nt), I show

that �tjEt(mjt�1:nt))� Et(mjt+1:nt)j ! 0. Then, ft(x) converges to the corresponding com-

petitive logit equilibrium.

In the proof, the expected value of each order statistic is approximated by Taylor series

expansion. The precision in terms of n is shown in David and Johnson (1954), but for the

precision in terms of �, following exercise is necessary.

The probability integral transformation, u = F (x), transforms the order statistic mj:n

from a continuous population with distribution function F (x) into the uniform order statistic

Uj:n on [0; 1]. Hence, by inverting the above transformation, we have

mj:n = F�1(Uj:n) = Q(Uj:n)

By Taylor's theorem, there exists a ~q 2 [min[Uj:n; q];max[Uj:n; q]] such that

mj:n = Q(q) +Q0(q)(Uj:n � q) +
1

2
Q00(~q)(Uj:n � q)2(27)

The central moments of uniform order statistics are

E(Uj:n) = q; E(Uj:n � E(Uj:n))
2 =

q(1� q)

n+ 2

By taking expectation on both sides of Eq.(27) and using the values of central moments,

E(mj:n) = Q(q) +
q(1� q)

2(n+ 2)
Q00(~q)(28)

and in a logit equilibrium,

Q0(q) =
1

f(Q(q))
; Q00(~q) = �

f 0(Q(~q))Q0(~q)

f(Q(~q))2
= �

��0(Q(~q))

f(Q(~q))2

Therefore,

Et(mjt�1:nt)�Et(mjt+1:nt) = Qt(q�
1

nt + 1
)�Qt(q+

1

nt + 1
)+

q(1� q)

2(nt + 2)
[Q00

t (q̂)�Q
00

t (�q)](29)

where

q̂ 2

�
min[Ft(E(mjt�1:nt)); q];max[Ft(E(mjt�1:nt)); q]

�

�q 2

�
min[Ft(E(mjt+1:nt)); q];max[Ft(E(mjt+1:nt)); q]

�

Since Ft(Qt(q)) > 0, ft(Qt(q)).
18 ft(Et(mjt:nt)) is strictly positive for all jt and nt and �0(x)

is bounded. Thus both Q00
t (q̂) and Q00

t (�q) are of order O(�) and O(n0). Therefore, under

18By letting x� = argmaxxf(x), when Q(q) < x
�, F (Q(q)) =

RQ(q)

0
f(y)dy < Q(q)f(Q(q)) and f(Q(q)) >

0. Similarly, f(Q(q)) > 0 when Q(q) > x
�.
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the assumption that n > �2+", if �[Qt(q �
1

nt+1
) � Qt(q +

1
nt+1

)] ! 0, �[Et(mjt�1:nt)) �

Et(mjt+1:nt)]! 0. Since

Qt(q +
1

nt + 1
) = Qt(q) +

1

nt + 1
Q0

t(q) +
1

2(nt + 1)2
Q00

t (�q)

Qt(q �
1

nt + 1
) = Qt(q)�

1

nt + 1
Q0

t(q) +
1

2(nt + 1)2
Q00

t (�q)

where q � �q � q + 1
n+1

and q � 1
n+1

� �q � q, we have

Qt(q +
1

nt + 1
)�Qt(q �

1

nt + 1
) =

2

nt + 1

1

ft(Q(q))
+

1

(nt + 1)2
[Q00

t (�q)�Q00

t (�q)]

Using the same argument above, Q00
t (�q) and Q00

t (�q) are of order O(�), and the result follows.

Next, I need to show that the competitive e�ort density converges uniformly to that of

q-quantile game as t goes to in�nity, that is, for every " > 0 there exists a T > 0 such that

jEt1(mjt1 :nt1
)� Et2(mjt2 :nt2

)j < " for all T < t1 < t2.

Suppose Et1(mjt1+1:nt1
) < Et2(mjt2 :nt2

) for a given �. Since fc;t is uniformly distributed

when � = 0, Et(mjt:nt) = �x jt
nt+1

and Et1(mjt1+1:nt1
) > Et2(mjt2 :nt2

). Since Et(mjt:nt) is

continuous in �, there exists a �� such that Et1(mjt1+1:nt1
) = Et2(mjt2 :nt2

), and fc;t1 and fc;t2
are identical.

By Taylor's theorem,

Qc;t(q +
1

nt1 + 1
) = Qc;t(q) +

1

(nt1 + 1)

1

fc;t(Qc;t(q))
+

1

2(nt + 1)2
Q00

c;t(q̂)

By substituting this into Eq.(28),

Et1(mjt1+1:nt1
) = Qct;jt1+1:nt1

(q) +
1

(nt1 + 1)fc;t(Qct;jt1+1:nt+1
(q))

(30)

+
1

2(nt1 + 1)2
Q00

ct;jt1+1:nt1
(q̂) +

1

2(nt1 + 2)2
Q00

ct;jt1+1:nt1
(�q)

Et2(mjt2 :nt2
) = Qct;jt2 :nt2

(q) +
1

2(nt2 + 2)2
Q00

ct;jt1+1:nt2
(�q)(31)

Following identical argument before, one can show that fct1(Qct;jt1+1:nt1
(q̂)),

fct1(Qct;jt1+1:nt1
(�q)), and fct2(Qct;jt2+1:nt2

(�q)) are strictly positive. Since fc;t1 and fc;t2 are

identical, Qct;jt1+1:nt1
(q) = Qct;jt2 :nt2

(q). Comparing the orders of the terms in the right hand

sides of Eq.(30) and Eq.(31) shows that there exists a T such that for every T < t1 < t2,

Et1(mjt1+1:nt1
) > Et2(mjt2 :nt2

). This is a contradiction. Therefore, for a su�ciently large T ,

Et1(mjt1+1:nt1
) � Et2(mjt2 :nt2

) for all T < t1 < t2.

Similarly, Et1(mjt1�1:nt1
) � Et2(mjt2 :nt2

) and we have

Et1(mjt1�1:nt1
) � Et2(mjt2 :nt2

) � Et1(mjt1+1:nt1
). By combining this with Et1(mjt1�1:nt1

) �

Et1(mjt1 :nt1
) � Et1(mjt1+1:nt1

),

we have jEt1(mjt1 :nt1
)� Et2(mjt2 :nt2

)j � Et1(mjt1+1:nt1
)� Et1(mjt1�1:nt1

).
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Using identical steps before, one can show that �jEt1(mjt1+1:nt1
)� Et1(mjt1�1:nt1

)j ! 0

as T ! 1. From Eq.(28), �jF�1
c;t (q) � Et(mjt:nt)j ! 0 as t ! 1 and fc;t(x) converges

uniformly to the competitive logit equilibrium of corresponding q-quantile game.

Since the competitive logit equilibrium converges under the assumption, the �nal step

is to determine the value of F�1
q (q) in the limit. The convergence results implies that if

fc;t(mjt:nt�1) converges to a point-mass at 0, then so does fjt:nt(x). By Lemma 4 and the

convergence results, if jt <
nt
2
, then fc;t(mjt:nt�1) converges to a point-mass at 0. Moreover,

jt

nt
<

1

2
)

q(nt + 1)

nt
<

1

2
)

q

1 � 1
nt+1

<
1

2

and for every �nite j and n with j < n+1
2
, there exists a su�ciently large t which satis�es

above inequality. The same argument applies to j > n+1
2
. This completes the proof. Q.E.D.

Proof of Proposition 6

Consider a game with following expected payo�.

�(x;�) = 2bE(mj�1:n�1)x� bx2 + 2�b
Z x

0
(x� y)(Gj�1:n�1(y)�Gj:n�1(y))dy(32)

where � 2 [0; 1] is a constant. When � = 1, Eq.(32) is identical to Eq.(4). Let

Fj:n(x;�) =

R x
0 exp (��(y;�)) dyR �x
0 exp (��(y;�)) dy

Since the proof of Proposition 1 is valid for all �, there exists a logit equilibrium for this

game. Let F c
j:n(x) denote the competitive logit equilibrium e�ort distribution for games with

j and n. Then the logit equilibrium e�ort distribution is Fj:n(x;� = 1) and Fj:n(x;� = 0) =

F c
j�1:n�1(x).

Di�erentiating Fj:n(x;�) with respect to � yields:

D�Fj:n(x;�) =

�Z �x

0
exp (��(y;�)) dy

��2
�"Z x

0
exp (��(y;�))�

@�(y;�)

@�
dy �

Z �x

0
exp (��(y;�)) dy

�

Z x

0
exp (��(y;�))dy �

Z �x

0
exp (��(y;�))�

@�(y;�)

@�
dy

#

=

"Z �x

0
exp (��(y;�)) dy �

Z �x

0
exp (��(y;�))�

@�(y;�)

@�
dy

#�1
�

2
4R x0 exp (��(y;�))�@�(y;�)

@�
dyR �x

0 exp (��(y;�))�@�(y;�)

@�
dy

�

R x
0 exp (��(y;�)) dyR �x
0 exp (��(y;�)) dy

3
5

Since @�(y;�)

@�
is strictly positive for x > 0 and strictly increasing in x, D�Fj:n(x;�) � 0 for

all x and �. Therefore, Fj:n(x;� = 1) � Fj:n(x;� = 0) = F c
j�1:n�1(x).
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From Eq.(4) with a = 0,

�(x) = 2bE(mj�1:n�1)x� bx2 + 2b
Z x

0
(x� y)(Gj�1:n�1(y)�Gj:n�1(y))dy

= 2bE(mj:n�1)x� bx2 � 2b
Z x

0
y(Gj�1:n�1(y)�Gj:n�1(y))dy

�2bx
Z �x

x
Gj�1:n�1(y)�Gj:n�1(y)dy

Consider following game for the lower bound.

�(x;�) = 2bE(mj:n�1)x� bx2 � 2�b
Z x

0
y(Gj�1:n�1(y)�Gj:n�1(y))dy(33)

�2�bx

Z �x

x
Gj�1:n�1(y)�Gj:n�1(y)dy

where � 2 [0; 1] is a constant. When � = 1, Eq.(33) is equivalent to Eq.(4). Let Fj:n(x;�)

be associated distribution function. Then the logit equilibrium distribution is Fj:n(x;� = 1)

and Fj:n(x;� = 0) = F c
j:n�1(x). Since D��(x;�) � 0 and it is decreasing (D2

��(x;�) < 0),

following the identical steps above, we have Fj:n(x;� = 1) > Fj:n(x;� = 0) = F c
j:n�1(x).

F c
j�1:n�1(x) and F c

j:n�1(x) serve the lower-bound and the upper-bound of a logit equi-

librium e�ort distribution with a = 0. Combining those bounds and the result in Corollary

1 yields the result. Q.E.D.
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