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Abstract

Extracting fast subpopulations from fragmentary live cell single-particle trajectories

by

Alec B Heckert

Doctor of Philosophy in Molecular & Cell Biology

University of California, Berkeley

Professors Xavier Darzacq & Robert Tjian, Co-Chairs

Stroboscopic photoactivated single particle tracking (spaSPT) relies on stochastic
labeling to isolate the paths of individual fluorophores and can provide informa-
tion about the behavior of biological macromolecules in their native cellular envi-
ronment. Existing spaSPTmodalities generate large numbers of short trajectories,
each representing a fragment of an individual emitter’s path. When interpreting
this data through the lens of diffusion models, it is essential to account for the
fragmentary nature of trajectories, experimental biases arising from the imaging
geometry, and our ignorance about the correct underlying diffusion model. In
this thesis, we describe several methods for interpretation of spaSPT data that
estimate the number and characteristics of mobility states in spaSPT data while
accounting for known experimental artifacts. We explore the uses and limitations
of these models on simulated and experimental datasets.

In the final chapter, we apply these methods to study the competitive chromatin
binding in the type II nuclear receptors (T2NRs). T2NRs are a class of ligand-
activated transcription factors that require heterodimerization with a common fac-
tor, the retinoid X receptor (RXR), to bind chromatin and regulate target genes.
Because all T2NRs must dimerize with a common pool of RXR, competition be-
tween individual T2NRs may limit access to the bound state, a mechanism has
been proposed to underlie the inactivation of the wildtype retinoic acid receptor
alpha (RARA) in the presence of RARA fusion proteins that occur in acute promye-
locytic leukemia (APL). We apply spaSPT to measure the effects of RARA fusion
proteins on the chromatin binding of endogenously tagged RARA and RXR. Using
tools developed in the previous chapters, we find that RARA fusion proteins act as
stronger competitors for dimerization with RXR than wildtype T2NRs, and are also
apparently exempt from autoregulation of RARA concentration. Together, these
results provide new insights into the interdependence of T2NR gene regulation.
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Conventions

This is a list of symbols and conventions used throughout this thesis.

symbol(s) definition

A ◦ B Hadamard product of matrices A and B

A ∗ B Convolution of A with B

X a set of trajectories, not necessarily the same
length

∇∇T f Hessian matrix of a multivariate function f

F [f ] Fourier transform of a function f with respect to
all of its variables

Fx [f ] Fourier transform of a function f with respect to
x

L [f ] Laplace transform of a function f

R [f ] Radon transform of a function f

Probability

When dealing with probability distributions, we use the following conventions:

• fX(x): probability density function for a random variable X

• FX(x): cumulative distribution function for a random variable X

• φX(x): characteristic function for a random variable X

We use X ∼ f to mean that the random variable X is distributed according to the
density function f . For instance, X ∼ N (0, ν2) means that X is distributed accord-
ing to a normal distribution with zero mean and variance ν2.

x



We use E [X ] to mean the expected value of a random variable X , and E [X | Y ] to
mean the expected value of X given Y .

We use a subscript on the expectation to represent taking the expectation with
respect to a subset of the parameters for a joint distribution. For example, if X
and Y are continuous random variables,

EX [g(X ,Y )] =

∫
R

g(x, y) fX ,Y (x, y) dx

For some common distributions, we use the following notation:

N (µ, ν2) is the univariate normal distribution with mean µ and variance ν2, so that
if X ∼ N (µ, ν2), then

fX(x) =
1√
2πν2

exp

(
−(x − µ)2

2ν2

)
N (µ,C) is the multivariate normal distribution with mean µ and covariance C, so
that if µ ∈ Rm, C ∈ Rm×m, and X ∼ N (µ,C), then

fX(x) =
exp

(
−1
2
(x− µ)TC−1(x− µ)

)
(2π)m/2(det(C))

1
2

Gamma(α, β) is the gamma distribution, so that if X ∼ Gamma(α, β), then

fX(x) =

{
βαxα−1e−βx

Γ(α)
if x ≥ 0

0 otherwise

InvGamma(α, β) is the inverse gamma distribution, so that if X ∼ InvGamma(α, β),
then

fX(x) =

{
βαe−β/x

Γ(α)xα+1 if x > 0

0 otherwise

Dirichlet(n) is the Dirichlet distribution, so that if n, τ ∈ RK and τ ∼ Dirichlet(n),
then

fτ (τ ) =
1

B(τ )

K∏
j=1

τ
nj−1
j

where B(n) is the multivariate beta function, given by

B(n) =
Γ(n1) · · ·Γ(nK )
Γ(n1 + ...+ nK )
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Spatial coordinates

We will generally take the following unless otherwise specified:

• R = (X1, ...,Xm)
T is the vector jump of a particle in m dimensions. That is, it

represents the spatial coordinates of a particle that starts out at the origin
after time t.

• R2 = (X2
1 , ...,X

2
m)

T is the corresponding squared vector jump.

• S = R2 =
m∑
i=1

R2
i is the scalar squared radial jump of the particle.

• R =
√
S is the scalar radial jump.

• R1 denotes the scalar radial jump in 1 dimension, R2 denotes the scalar radial
jump in 2 dimensions, and so on.

Fourier transforms

Several parts of the thesis use the characteristic function from probability theory.
To keep the Fourier transform consistent with the definition of the characteristic
function, we use the Fourier transform defined by

f̃ (k) = F [f ] =

+∞∫
−∞

f (x)eik
Txdx

which corresponds to the inverse transform

f (x) = F−1
[
f̃
]
=

1

2π

+∞∫
−∞

f̃ (k)e−ixTkdk

In this way, the characteristic function of a random variable X can be written simply
as the Fourier transform of its PDF:

φX(k) = E
[
eikX

]
=

+∞∫
−∞

fX(x)e
ikxdx = F [fX ] (k)

As usual, for the Laplacian we have

F
[
∇2f

]
= − |k|2 f̃ (k)

despite the change in the sign of the exponent relative to the usual Fourier trans-
form.
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Chapter 1

Introduction

Biological processes are driven by the movements and interactions of discrete
molecules. Because cells are mixtures of thousands of different molecular species,
it has been historically challenging to isolate the role of any single component.

Fluorescence microscopy has proven to be a powerful paradigm to overcome this
challenge. Genetically encoded fluorescent or photoconvertible proteins [1] [18]
and biologically orthogonal dyes [12] [14] can be used to selectively visualize sub-
populations of components inside cells. These labeling strategies provide the
basis for a collection of techniques that measure the dynamics of single molecular
species in live cells. Such techniques include fluorescence recovery after photo-
bleaching (FRAP) [16], fluorescence correlation spectroscopy (FCS) [17], Förster
resonance energy transfer (FRET), small molecule biosensors, and fluorescent sin-
gle particle tracking [5] [6] [7].

One such approach is the use of photoconvertible, photoswitchable, or pho-
toactivatable fluorophores, a strategy descended from fixed-cell stochastic label-
ing approaches including photoactivated localization microscopy (PALM) [3] and
stochastic optical reconstruction microscopy (STORM) [4]. While chemically di-
verse, these techniques share the common strategy of limiting coincidentally flu-
orescent molecules per cell to a bare handful. At these low densities, fluorophores
are sufficiently separated to identify individual molecules. Fast detectors are then
used to track themotion of emitters between frames [8] with short pulses of excita-
tion light to limit motion blur [21]. Individual fluorophores bleach quickly, so these
methods cycle between imaging active fluorophores and renewing the population
of active fluorophores. The result is thousands to tens of thousands of trajectories
per cell, each generated by the motion of a single fluorophore. Together, these
innovations have enabled the application of SPT to intracellular settings with fast-
moving subpopulations [9] [10] [11] [23]. We refer to this class of techniques as
stroboscopic photoactivated single particle tracking (spaSPT).
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In this thesis, we examine methods to identify and extract subpopulations of tra-
jectories with distinct mobility characteristics from spaSPT datasets. These meth-
ods are prerequisite or related to several of the more common types of informa-
tion accessible via spaSPT, including:

1. Viscosities. By measuring the motion of a tracer fluorescent protein with
known Stokes radius, spaSPT can be used to estimate spatially-resolved vis-
cosities, providing information about subcellular environments [19].

2. Active vs. passive transport. The statistical characteristics of trajectories
can be used to identify when a particle is moving in a directed manner [20].
Fractional Brownianmotion (explored later in this thesis) provides a powerful
statistical framework for testing these hypotheses.

3. Existence and occupancies of distinct mobility states. By resolving sets of
trajectories into subpopulations with distinctmobility characteristics, spaSPT
can provide information about the fraction of particles involved in different
activities. These techniques become particularly useful when coupled with
domain deletions and mutations that can help assign the observed subpop-
ulations to specific molecular functions [23] [60].

4. Kinetics of state transitions. By identifying transitions between states with
distinct mobility characteristics, spaSPT can be used to measure rates of
conversion between these states [50] [21].

5. Barriers to molecular motion. Trajectories provide information about which
parts of the cell are accessible from other parts. The set of all trajectories
in a cell can be used to identify barriers to motion, or can be used to test
hypotheses about whether a given subcellular feature presents a barrier of
motion [24].

6. Distances between components. The ability of spaSPT to resolve absolute
distances between molecular components at super-optical resolutions has
proven particularly useful when studying the dynamics of chromatin looping
[25].

7. Confinement and molecular crowding. There have been attempts to apply
spaSPT to measure molecular crowding, although these applications are in
their infancy [26].

These aspects of spaSPT have attracted decades of attention from the biophysics
community [27], particularly in the classic problems of membrane receptor dy-
namics [22] transcription factor target search [28]. As a result, the spaSPT field
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benefits from a wealth of theory relating underlying physical structure of biolog-
ical systems to their dynamics. However, comparatively little attention has been
focused on robust and scalable statistical procedures to extract this information
from actual spaSPT datasets. In some cases, the techniques applied to spaSPT
data today vary little from the experiments of Jean Perrin over a century ago [29].
Analysis is often performed on small, handpicked datasets with manual oversight
over each step, posing challenges for scaling up the assay.

As a demonstration of the issues that confront the spaSPT practitioner, we briefly
highlight five challenges that are discussed later in the thesis.

Challenge 1: Localization error

spaSPT relies on statistical procedures inherited from PALM and STORM to esti-
mate the position of fluorescent emitters at subpixel resolution, given the distri-
bution of light they present to a detector. In fixed-cell PALM/STORM, one can
reasonably assume that this distribution is given by the microscope’s point spread
function (PSF). This is not the case for mobile emitters, which generate a distribu-
tion (colloquially, a ”spot”) produced by the convolution of the PSF with the path
of the emitter.

This raises two issues. First, since the true path of an emitter is unknown, ”localiza-
tion error” - the deviation of the estimated position from the particle’s true posi-
tion - is undefined in this context, since there is no single true position. Whether a
point estimate is supposed to report on the center of mass of an emitter’s path or
some other statistic is often left unsaid. As a result, reported estimates of ”local-
ization error” are entirely dependent on whatever method was used to measure it.

Second, because the path of each emitter is different and cannot be predicted,
the error associated with estimating a mobile emitter’s position is higher than for
immobile emitters. Exactly how much higher is usually unknown. The typical way
to estimate localization error in PALM/STORM - measuring the variance in the po-
sition of an immobile probe - does not accurately reflect the error associated with
a mobile molecule. In other words, localization error is a function of the mobility
characteristics of the emitter [30] [31] [32].

We are aware of neither a commonly accepted convention in the spaSPT field to
measure the localization error of mobile emitters, nor a comprehensive compari-
son of the error with which different PALM/STORM localization methods identify
the ”position” (say, the integrated path center of mass) of mobile emitters. (In
Chapter 2 of this thesis, we propose methods that could form the basis for such
a comparison.)
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Figure 1.1: Illustration of the role of localization error/motion blur on the spaSPT
measurement. (a) Temporal cycle for stroboscopic illumination, intended to limit the
effects of motion blur. The excitation pulse is concentrated in a 1-2 ms period at the
beginning of each integration period, while photoactivation (if relevant) is performed
during the camera transition time. (b) Some simulated paths of particles and the
integrated intensities on a hypothetical camera. The faster a particle moves, the broader
the apparent spot it presents. (c) Observed spots for three different proteins. All
proteins were conjugated to HaloTag, labeled with photoactivatable PA-JF549 dye [15],
and tracked with 7.48 ms frame intervals with 1.5 ms pulse widths. Sixteen spots were
randomly selected from each dataset.

At the same time, the issue of localization error assumes even greater importance
for downstream analysis in spaSPT than in fixed cell PALM/STORM. Most of the
time, spaSPT analysis involves making estimates of motion from trajectories. Due
to localization error, even immobile particles appear to move. When analyzing
spaSPT data in terms of single jumps between frames, this ”apparent” motion
due to error has characteristics indistinguishable from regular Brownian motion.
Worse, when incorporating information across multiple frames, localization error
presents signatures of subdiffusion - usually one of the primary characteristics of
molecular motion on which spaSPT is supposed to report. Even regular Brownian
motion, a quintessential Markov process, becomes non-Markovian in the presence
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of localization error. These effects are particularly dangerous for methods such as
angular distributions. (We investigate these effects in section 3.2.)

In this thesis, while we develop most of our estimators with explicit consideration
of localization error, it remains for future work to determine robust ways to jointly
estimate localization error and model parameters for multi-state diffusion models
in spaSPT experiments.

Challenge 2: Observation geometry

To collect a sufficient number of photons from individual fluorescent emitters for
detection, typical spaSPT setups rely on high numerical aperture (NA) objectives
with short depth of field (”focal depth”) - often as little as 500-1000 nm [23]. At the
same time, the interval between frames must be constrained to a few milliseconds
to observe the high speed of molecular motion. These combined requirements
for high NA and fast acquisition mean that most spaSPT setups measure motion
in a single, thin 2D plane, as there are currently no widely adopted methods to
gather z-stacks at the speeds requisite for these experiments. Multi-focal plane
microscopy presents a promising avenue to escape this limit [33], but remains a
specialized technique maintained by a small handful of laboratories.

The diffusion coefficient for free HaloTag or GFP molecules inside the cell is often
measured between 20 and 60 µm2 s−1. If observed at 5 ms frame intervals, this
range corresponds to mean 2D radial jumps of 560 nm to 970 nm. These jumps
are comparable to the focal depth itself. Many or most of them are lost because
both endpoints do not fall within focus. In contrast, a slow-moving molecule with
a diffusion coefficient 1.0 µm2 s−1 has a mean radial jump of 125 nm, meaning that
most of its jumps will be observed. In a population comprised of half slow-moving,
half fast-moving molecules, the majority of observed jumps will be collected from
emitters the slow state, leading to an inherent bias in the estimation of different
states [75] [59] [60]. In this thesis, we term this situation defocalization bias.

Accounting for defocalization bias is not trivial. Existing methods are based on
Monte Carlo presimulations of the specific experimental conditions in question,
and are limited to the special case of regular Brownian motion. In chapter 4,
we present numerical procedures to account for defocalization bias to arbitrary
precision without simulation and for much broader categories of motion. These
methods are based on the Green’s function for the motion (in the case of Markov
processes) or on the model covariance matrix (for fractional Brownian motion).

State biases are not the only issue presented by short focal depth. Probably the
most important issue is that, because trajectories only make short transits through
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Figure 1.2: Demonstration of the effect of defocalization on the analysis of spaSPT
data. (a) Schematic of the size of a typical spaSPT focal depth compared to a nucleus in
mammalian cell culture. The red lines indicate the excitation profile under HiLo
illumination [13]. The focal depth, rather than the width of the excitation sheet, is the
limiting factor for observation. (b) Several frames from an spaSPT movie, showing the
loss of an emitter due to defocalization. (c) Examination of the consequence of
defocalization for MSD analysis of simulated data. In the left two subplots, a
homogeneous set of trajectories were simulated, resulting in straight MSDs as expected
for Fickian diffusion. However, when the states are mixed (in the middle-right subplot),
defocalization of the faster state results in an apparent sublinear MSD, similar to true
subdiffusive models (far right subplot). In order to distinguish true subdiffusion from the
presence of multiple diffusing states, it is necessary to take into account the effect of
defocalization.

the focal volume, trajectory lengths for moving particles are often limited to a few
frames (as few as 3-4 on average in our setup). Defocalization is actually more
consequential for trajectory length than photobleaching in a typical fast tracking
experiment (Fig. 1.3). The extremely limited set of points for most trajectories
poses serious problems for analysis methods based on analyzing temporal corre-
lations in molecular behavior, such as hidden Markov models.

Finally, for some categories of motion, jumps in 3D space may not be separable
into x, y, and z components. This is the case, for example, in every kind of Levy
flight except for regular Brownian motion. For these types of motion, truncating
the observed jumps in z by imposing a short focal depth actually affects the distri-
butions of xy jumps presented by the particle. In chapter section 3.1 we will see
that this kills the Markov property of Levy flights. The strongest effects impact
the same category of long jumps that are usually considered to be characteristic
of the Levy flight stability parameter.
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Figure 1.3: Relation between defocalization and trajectory length. Trajectories from
RARA-HT tracking experiments were grouped into five bins according to the maximum
likelihood estimate for their diffusion coefficient, as indicated on the x-axis of the plot.
The mean number of jumps across all trajectories in each bin were plotted as points. For
these experiments, we measured retinoic acid receptor α fused to HaloTag and tracked
with 7.48 ms frame intervals in human U2OS osteosarcoma nuclei. Each point represents
a separate biological replicate, and the bar heights are the mean across biological
replicates.

Challenge 3: Tracking

Many spaSPT pipelines are PALM/STORM pipelines that have been retrofitted
with an additional step - connecting detections into trajectories. Seldom is this
a good option. Most of these pipelines have inherent filters against fits that fail
to converge (for instance, by imposing limits on the Hessian determinant after
a run of Gauss-Newton). Since - due to motion blur - these problems are more
likely to occur for fast-moving than slow-moving emitters, they impose inherent
state biases beyond those considered in the previous sections. Indeed, it may be
preferable to overdetect, then identify subsets of detections that are more likely
to originate from true trajectories. A localization method with modest accuracy
and a 0.1% fail rate may be better than another method with high accuracy and a
5% fail rate.

When data is extremely sparse so that there is fewer than onemolecule on average
per frame, many tracking algorithms perform comparably. It is in situations with
ambiguity - for example, when several particles are in close proximity - that most
errors arise. In such situations, the tracking algorithm must make a choice:

1. attempt to resolve the situation, for example by choosing the maximum like-
lihood set of connections according to some diffusion model;
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2. do not attempt to make any connections, discarding this data

Different algorithms handle this choice differently. In a competition that evaluated
the accuracy of a variety of trackingmethods on the same data [34], no single tech-
nique performed the best in all circumstances. While approach (2) seems safer,
it may introduce additional biases into spaSPT data. In contrast, when applied
naively, approach (1) can return nonsense.

In chapter 2, we examine a simple framework for detection and tracking, de-
scended conceptually from [112], that we have found useful to control the infor-
mation presented to the tracking algorithm. This framework actually encompasses
a variety of detection and tracking algorithms. It can be considered on its own
or as a complement to the GitHub repository quot, which also provides a graphic
user interface for exploring the use of different detection and tracking algorithms
on user datasets.

Challenge 4: Model selection

spaSPT generates thousands of trajectories per cell, each of which may only be
a few frames in length. Unlike that of other microscopic modalities, this kind of
data is not readily intepretable by a human scientist in its raw state. Instead, in-
terpretation is often performed through the lens of stochastic diffusion models.
Such approaches boil down thousands of trajectories to a small number of model
parameters.

While the use of diffusion models is ubiquitous in spaSPT studies, there are only a
few ways to identify an appropriate diffusion model for a given dataset. Among
the most important question are:

• How many types of motion (”states”) are present in the dataset?

• What kind of motion? (regular Brownian, fractional Brownian, Levy flights,
etc.)

For some inference frameworks - for example, when using radial jump histogram
fitting to analyze data - using an inappropriate model for a given dataset can
have disastrous consequences, as investigated in chapter 4. At the same time,
because situations in real biological settings are invariably more complex than
diffusion models, any diffusionmodel is necessarily a simplification. Methods from
Bayesian statistics are a promising approach for model selection that balances a
model’s sparsity against its likelihood given the data in a statistically principled
way [50]. An investigation of approaches using these techniques forms the heart
of chapter 5. Still, these methods are currently only applicable to a fairly small
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Figure 1.4: Analysis of the origins of variability in an experiment spaSPT dataset.
Trajectories are from endogenously tagged retinoic acid receptor α-HaloTag in U2OS
nuclei, labeled with the photoactivatable dye PA-JFX549 [15]. Twelve nuclei each from
three independent knock-in clones were used for the analysis. The majority of variability
at high subsampling counts comes from nucleus-to-nucleus variability.

number of tractable diffusion models. An important area for future work is to
develop efficient numerical methods for model inference with a broader category
of diffusion models, perhaps using approaches based on Gibbs sampling similar
to those outlined in chapter 4 and chapter 5.

Challenge 5: Biological variability

The primary source of noise in spaSPT is cell-to-cell variability (”extrinsic variabil-
ity”), rather than variability arising from the finite samples of trajectories in any
given cell (”intrinsic variability”) (Fig. 1.4). The cell cycle, genetic heterogeneity,
and cell state heterogeneity mean that spaSPT experiments performed on dif-
ferent cells in a population do not necessarily represent ”draws from the same
distribution”. This poses additional challenges for the interpretation of spaSPT
data. For instance, if we identify a distinct subpopulation of trajectories in an
spaSPT dataset according to some criterion, it is important to determine whether
the subpopulation is found in all cells or is restricted to one or a few cells. Indeed,
it may also be important to determine whether the subpopulation is only found in
spatially distinct parts of a cell.

The best tools for assessing biological variability are bootstrapping and visualiza-
tion. In particular, in section 3.2 we explore ”aggregate likelihood” approaches
that are useful for spaSPT practitioners who wish to assess the cell-to-cell and
position-to-position variability in their spaSPT dataset.
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1.0.1 Outline

The five problems outlined above - localization error, observation geometry, track-
ing, model selection, and biological variability - have direct consequences for the
interpretation of spaSPT data with diffusion models. In this thesis, we derive in-
ference frameworks for diffusion models that are conscious of these constraints.
While no single method provides a one-size-fits-all approach to spaSPT analysis,
we find that together the techniques constitute a useful toolkit for the spaSPT
experimentalist.

In chapter 2, we describe a simple framework for detection and tracking in spaSPT
data. The framework actually encompasses a variety of different tracking algo-
rithms, and while unsophisticated, it provides the user with intuitive ways to con-
trol the tracking algorithms’ behavior in situations with ambiguity. The chapter
should be considered a complement to the GitHub repository quot, which im-
plements the algorithms described and also provides a graphic user interface for
examining the output of the tracking algorithm along with various other visualiza-
tion utilities geared toward spaSPT data.

In section 3.1, we review methods to extract parameters governing single-state
diffusion models from experimental spaSPT datasets. In particular, we examine
three types of diffusion models:

1. regular Brownian motion

2. fractional Brownan motion

3. Levy flights

The first arises as a special case of the second and third. In addition to directly
enabling the measurement of parameters for these types of motion in biological
settings, the chapter also lays the mathematical groundwork for the combinations
of diffusive states considered in later chapters.

In section 3.2, we describe simple nonparametric analyses of spaSPT data. The
methods outlined in this chapter can be considered alternatives to the model-
based analyses elsewhere in the thesis. However, they are still dependent on con-
straints in the spaSPT experiment and these dependencies are examined in detail.

In chapter 4, we examine multi-state diffusion models (”mixture models”). A com-
mon way to extract parameters for mixture models is radial jump fitting [60],
which is reviewed here. In addition, we describe two alternative frameworks
for model inference - expectation-maximization and Gibbs sampling - that per-
form comparably and provide the basis for the methods outlined in the next
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chapter. These two alternative frameworks have publicly available implementa-
tions at github.com/alecheckert/emdiff (emdiff) and github.com/alecheckert/gib-
berdiff (gibberdiff), respectively.

chapter 5 is the heart of the thesis. We attempt to address the issue of model
selection in spaSPT data, describing three methods (finite-state variational Bayes,
arrayed state samplers, and Dirichlet process mixture models) that performmodel
selection in combination with parameter inference. We examine the efficiency of
these approaches in various simulated and real datasets. The methods described
in this section are available as simple, easy-to-use tools in the following software
packages:

• github.com/alecheckert/emdiff (vbdiff): discrete-state variational Bayes

• github.com/alecheckert/dpsp (dpsp): Dirichlet process mixture models

Finally, chapter 6 applies the methods developed in previous chapters to some
biological problems of interest. In particular, we focus on how the combination of
information from different methods can help provide clarity on the behavior of a
particular protein target.

An important subject for future work is to integrate the techniques here with ad-
ditional dimensions of information accessible to the spaSPT user - for instance,
spectral information [35] or the axial dimension [33].
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Chapter 2

Detection and tracking algorithms
for live cell stroboscopic PALM

Fluorescent single particle tracking (spaSPT) produces a time-indexed sequence
of images with spots corresponding to the paths of individual particles convolved
with the microscope point spread function (PSF). Prerequisite to any analysis of
diffusion is the accurate identification and tracking of individual spots between
frames.

Perhaps due to their history as retrofitted PALM/STORM localization pipelines,
most spaSPT pipelines operate in three steps:

1. Particle detection. The approximate (nearest-pixel) position of spots are
identified in each frame.

2. Subpixel localization. Identified spots are subjected to an estimation of the
subpixel position - for instance, using iterative fitting methods.

3. Tracking. Once localized, spots are tracked between frames according to
heuristic or probabilistic criteria.

Because camera integration times in spaSPT are often a small fraction of those
used in fixed-cell PALM/STORM, the number of photons per spot is often around
∼100-300 rather than in the 1000s. In some cases, detected spots may have fewer
than 100 photons. In these low-light conditions, it is far more critical to have ro-
bust detection and trackingmethods than extremely precise localizationmethods.

Since the ideal detection and tracking methods for spaSPT are not yet known,
user supervision to maintain the quality of trajectories is still an important step.
To address this need, we produced a combined API and graphic user interface
for spaSPT analysis in Python (Fig. 2.1), accessible at quot. This graphic user in-
terface incorporates several sub-GUIs that address different parts of the spaSPT

12

https://github.com/alecheckert/quot


pipeline, from the initial optimization of detection and tracking settings to review
of processed trajectories, and finally to downstream analyses and sub-ROI mask-
ing (Fig. 2.1B). Any of the settings accessible in the GUI can also be arranged into
pipelines that can be executed in parallel with the dask Python library (Fig. 2.1A).

The purpose of this chapter is to provide a reference for the methods in the quot
repository. As more detection, localization, and tracking methods are added to
quot, this reference will grow. Since the thesis is a static document, users are rec-
ommended to quot for an updated set of methods.

2.1 Spot detection

quot features a set of basic computer vision methods for particle detection. Many
of these are variants of generalized log likelihood ratio tests (GLLRTs), which are
explored in detail in Appendix A. GLLRTs are attractive in that they are invariant
with respect to the absolute intensities of the underlying image due to implicit
normalization against local noise, and so the same detection settings can often
be used for spaSPT movies from different cell lines or even on different micro-
scopes.

The GLLRT’s property of intensity invariance can also be transferred in a lim-
ited form to other detection methods (Appendix A, section A.3). Essentially,
this process equips a detection method with a final step prior to thresholding
that renormalizes each pixel against local variance, and can be deployed quickly
with the FFT. In this way, we created Hessian determinant-based spot detection
algorithms that are more intensity-invariant than previous methods (hess_det,
hess_det_broad_var in quot).

Other detection methods have been described in detail elsewhere [34].

2.2 Spot localization

Due to motion blur, subpixel localization takes a different form for spaSPT than
for fixed-cell PALM/STORM. Specifically, robustness is far more critical than pre-
cision. Whereas in fixed-cell PALM/STORM individual detections can always be
discarded if localization fails to converge, in spaSPT discarding localizations can
pose a problem for downstream tracking analysis.

While a comprehensive analysis of the efficacy of localization methods on PSFs
with motion blur is still lacking, we find that often the simplest localization meth-
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Figure 2.1: Schematic of the quot tool. (A) Steps in typical spaSPT pipelines. ”UI”
arrows indicate points where iterative user feedback is usually required to improve the
method. quot has both a GUI for investigation of different filtering, detection,
localization, and tracking methods as well as an API for combining these methods into
custom pipelines. (B) Screenshots of sub-GUIs in the quot tool.

ods work best.

Radial symmetry. Proposed by Parthasarathy [39], the radial symmetry method
is a non-iterative, non-PSF model based method. Given a spot, the least-squares
solution to the point of maximal radial symmetry can be solved in a single step.
While the resulting estimator does not perform as well on iterative methods when
the PSF model is known, it is highly robust to localization error. In all of the it-
erative methods in quot, radial symmetry is the initial guess used to seed the fit.
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Radial symmetry has some pixel center bias (Fig. 2.3A).

Gauss-Newton with pointwise 2D Gaussian PSF. The Gauss-Newton algorithm
is an iterative least-squares method to find the maximum likelihood estimator for
a model with Gaussian-distributed noise.

Specifically, suppose that f (x, y | θ) is the PSF model evaluated on pixel (x, y),
that θ is the vector of model parameters for the PSF, and that X is the vector of
observed pixel intensities so that Xk is the pixel intensity for the pixel at (xk , yk).
Then the log likelihood of θ given X under Gaussian noise with variance ν2 is

logL [θ | X] = − 1

2ν2

K∑
k=1

(Xk − f (xk , yk | θ))2 − K log(2πν2)

This has the gradient

∂ logL
∂θj

=
1

ν2

K∑
k=1

(Xk − f (xk , yk | θ)
∂f

∂θj

and the Hessian

Hij =
∂2 logL
∂θi∂θj

=
1

ν2

K∑
k=1

(Xk − f (xk , yk | θ))
∂2f

∂θi∂θj
− 1

ν2

K∑
k=1

∂f

∂θi

∂f

∂θj

Figure 2.2: Some detections method in the quot package. Both the raw convolved
images and post-threshold detections are accessible in the quot interface.
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Figure 2.3: Assessing center-edge bias of localization methods on simulated spots
in low-light regimes. (A) Moving particles with a Gaussian PSF and radius 200 nm were
simulated on a two-dimensional surface and sampled as a Poisson process, then
localized with three different algorithms. The position of the localized spot relative to
the true spot was plotted as a heat map. (B) Number of photons per spot in real spaSPT
data with transfected mEos4B or HaloTag labeled with HTL-PAJFX549. (C) Number of
iterations of the ”poisson_int_gaussian” algorithm to converge on experimental spaSPT
spots. (D) Root mean square radial error of the three localization methods in (A) on
simulated spots, with approximate photon regimes.

If we assume that ∂2f /∂θi∂θj ≈ 0, then the Hessian can be expressed

Hij = − 1

ν2
JTJ

where J is the Jacobian with elements

Jki =
∂f (xk , yk | θ)

∂θi

The multivariate Newton’s method for a function g is

θt+1 = θt −
(
∇∇Tg

)−1∇g
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Substituting the log likelihood for g, we have

θt+1 = θj +
(
JTJ

)−1
JTr

where r is the vector of model residuals, so that rk = Xk − f (xk , yk | θt).

Because this involves a matrix inversion, we regularize the problem by subtracting
a ridge term from the approximate Hessian to guarantee it is negative definite,
and then damp the iteration by some γ ∈ [0,1] so that the final Gauss-Newton
algorithm is

θt+1 = θj + γ
(
JTJ− aI

)−1
JTr

To determine the magnitude of the ridge term a, we use Sylvester’s law of inertia,
which states that the pivots of the matrix JTJ in LU form can be used to determine
the definiteness of the matrix.

The ls_point_gaussian method is obtained by simply letting

f (x, y | θ) = θI
2πσ20

exp

(
−
(x − θx)

2 + (y − θy)
2

2σ20

)
+ θbg

for some suitably chosen PSF radius σ20. Four parameters are estimated through
Gauss-Newton: the PSF intensity θI, the background intensity per pixel θbg, and
the center coordinates of the spot θy , θx.

Gauss-Newton with integrated 2D Gaussian PSF. The pointwise 2D Gaussian
PSF assumes that the intensity across an entire pixel is described by the PSF eval-
uated in the pixel’s center. Because this is only approximately true, it leads to
edge-center bias in low-light regimes (Fig. 2.3A).

A solution to the problem can be found by integrated the Gaussian PSF across the
borders of each pixel [40]. If we take PSF(u, v | θ) to be the pointwise evaluated
Gaussian PSF from the previous section, then the integrated intensity on the unit-
size pixel centered at (x, y) has intensity

f (x, y | θ) =

x+ 1
2∫

x− 1
2

y+ 1
2∫

y− 1
2

PSF(u, v) du dv

=
θI
4

erf
x − θx +

1
2√

2σ20

− erf

x − θx − 1
2√

2σ20


·

erf
y − θy +

1
2√

2σ20

− erf

y − θy − 1
2√

2σ20

+ θbg
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The rest of the Gauss-Newton algorithm proceeds as before.

Poisson noise MLE with integrated 2D Gaussian PSF. Since shot noise on EM-
CCD cameras is Poisson-distributed rather than Gaussian-distributed, a more ac-
curate representation of the observed PSFs can be obtained by replacing the
Gaussian likelihood function with a Poisson log likelihood function. If f (x, y | θ) is
the PSF model for pixel (x, y) andX is a vector of observed pixel intensities, then
this likelihood is

logL [X | θ] = Xk log f (θ)− f (θ)− logXk !

This corresponds to the gradient

∂ logL
∂θj

=
∂f

∂θj

(
Xk

f (θ)
− 1

)
and the Hessian

∂2 logL
∂θj∂θi

=
∂2f

∂θj∂θi

(
Xk

f (θ)
− 1

)
− Xk

f (θ)2
∂f

∂θj

∂f

∂θk

Again assuming that ∂2f /∂θi∂θj can be neglected, we obtain the approximate Hes-
sian

Hij =
∂2 logL
∂θj∂θi

≈ − Xk

f (θ)2
∂f

∂θj

∂f

∂θk

This can then be used in the iterative Levenberg-Marquardt iterative scheme

θt+1 ≈ θt − γ(H− aI)−1∇ logL [X | θ]

where γ ∈ [0,1] is a damping term and a is a suitably chosen regularization coeffi-
cient. This algorithm is equivalent to a Levenberg-Marquardtmethodwith Poisson
deviates [41].

Centroid. The centroid algorithm is among the oldest subpixel localization meth-
ods, which simplest relies on finding the center of mass of a spot.

2.3 Measuring localization error

A critical step for downstream analysis is determination of the localization error in
the experiment. As discussed in the introduction, the localization error is itself a
function of the diffusion coefficient [31]. Jointly estimatingmotion and localization
from trajectories is an outstanding problem in spaSPT. In this thesis, we make the
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simplifying assumption that localization error is the same for all molecules. Future
work must remove this assumption.

Methods to measure localization error for spaSPT data generally fall into one of
five categories:

1. Measure the standard deviation of the estimated position of immobile beads.

2. Measure the standard deviation of the estimated position of an immobile
molecule inside cells, such as histone H2B-HaloTag. The labeling method
for H2B should be identical to the labeling method used on the intended
target (photoactivatable fluorophores, photoconvertible proteins, etc.).

3. Measure the mean squared displacement (MSD) of a moving molecule, and
extrapolate to the y-intercept. This is equal to 2σ2loc.

4. Measure the jump length distribution of a molecule with an immobile com-
ponent (for instance, H2B-HaloTag). Fit the jump length distribution to a
model with an immobile state parametrized by the localization error.

5. Invert the so-called observed information matrix (negative Hessian) for the
localization problem. The diagonal gives the estimated error for each pa-
rameter in localization.

Method (1) is misleading, given that we will obtain far more photons from a sta-
tionary bead than from a typical fluorophore. As a result, this method systemati-
cally underestimates the localization error associated with real molecules, mobile
and immobile alike.

Method (2) is useful, but because it implicitly involves selecting molecules that are
immobile, it also systematically underestimates the localization error for moving
molecules.

Method (3) is attractive but is sensitive to the same problems as method (2). If im-
mobile trajectories are included in the calculation of the MSD, the localization er-
ror for moving particles will be systematically underestimated. A better approach
is to stratify the trajectories into populations with distinct estimated diffusion co-
efficients and take the MSD and localization error of each population separately.
So far as we know, this has not been explored.

Method (4) is subject to the same biases as method (2) - it involves calculating the
localization error specifically for the immobile population.

Method (5) is dependent on the PSF model used to evaluate the Hessian matrix.
While it is a useful way to judge the relative error in different datasets that have
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been analyzed with the same localization pipeline, it cannot provide absolute lo-
calization error.

We propose an alternative to these methods. If we can measure the diffusion of
a molecule with true Markov dynamics (for instance, a purified protein or labeled
oligo in solution), then we can exploit the dependence of equation 3.32 (discussed
later) on the localization error. The important part here is that the covariance be-
tween subsequent 1D jumps in a trajectory is −σ2loc for a Markov process, inde-
pendent of time scaling effects. This provides a straightforward way to determine
localization error for moving molecules with any diffusion coefficient. The nonzero
covariance arises from the mutual dependence of the first and second jumps on
the shared localization error inherent in their shared middle point.

Of course, as we will seee in equation 3.31, memory effects such as subdiffusion
also contribute to this covariance. Sincememory effects are operative in biological
diffusion, the ideal case would be to use in vitro experiments for determination of
the relation between the diffusion coefficient and the localization error.

2.4 Tracking algorithms

Tracking refers to the method by which detections (“spots”) are joined to recon-
struct trajectories. The goal of tracking is to make connections between detec-
tions, which are statements of the belief that two detections originate from the
same emitter. Tracking algorithms are somewhat less familiar to PALM/STORM
practitioners than detection and localization methods, so we focus more atten-
tion on them in this chapter.

Intuitively, a trajectory can only be in one place at one time, and - provided we
use a fast enough frame interval - trajectories won’t move far from one frame to
the next. The challenge of tracking, especially in 3D settings, comes from the
ambiguity induced by the following effects:

1. If two detections in frame t are both near a detection in frame t+1, it is not
clear which pair of detections should be connected. The problem becomes
more complicated the more detections are in close proximity.

2. Emitters may bleach, defocalize, or blink, causing them to “disappear”. In
some of these cases (defocalization and blinking), they can reappear at sub-
sequent frames, causing “gaps” in the trajectory.

Exactly how problematic these gaps are depends on what the user wants to
do with the trajectories. Analyses based on hidden Markov models or on
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the length of trajectories (binding models) are much more sensitive to the
presence of gaps than methods based on jump length distributions.

3. Emitters may photoactivate or enter the focal volume from outside, gener-
ating new trajectories.

Here, we outline a set of tracking methods that are useful for spaSPT data. These
tracking methods are based around a simple matrix formalism that enables the
user to incorporate information from the quality of detections, the local spatiotem-
poral detection density, and prior beliefs about the nature of the emitters’ diffu-
sion.

2.4.1 The detection/tracking problem

The problems of spot detection and connection are intimately connected. Exactly
how information from one problem is used to solve the other - that is, how we use
the set of observed detections to construct trajectories, or use potential trajecto-
ries to decide which detections to record - is one of the primary determinants of
spaSPT quality. (It may actually be the primary determinant.)

How can we treat this problem? Imagine that we are considering a particular
spaSPT movie. Let S be our set of detections and R be the set of connections
between detections, so that Rij = 1 when detections i and j originate from the
same emitter and Rij = 0 otherwise. The goal of the image processing/tracking
steps in spaSPT is to determine S and R.

There are some natural constraints onR. For instance, we cannot make a connec-
tion between detections i and j if they originate from the same frame. For a given
S, however, the number of possibilities for R is still usually very large. As a result,
tracking algorithms introduce additional assumptions that reduce the complexity
of the problem while introducing a tolerably low amount of bias.

It is useful to categorize detection/tracking algorithms into two classes by exactly
how they treat the interaction between S and R:

1. A detection/tracking algorithm canworkwith the full joint distribution pS,R(s, r).
This is the more general class of algorithms. It explicitly acknowledges the
relationship between detection and tracking. For instance,

• We may be less likely to make a connection between spots if our con-
fidence in the detection of those spots is low.

• Conversely, we may be less likely to detect a spot if the possible con-
nections induced by it have low likelihood.
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Because of the high complexity of pS,R(s, r), additional assumptions are typ-
ically required to make the problem tractable. Examples include joint prob-
abilistic data association filters (JPDAFs), applied in radar and sonar [44].

2. Factorizing pS,R(s, r) = pR|S(r|s)pS(s), a detection/tracking algorithm can
first determine some likely set of detections S′ using the marginal distribu-
tion pS(s). Then the connections R are determined using the conditional
density pR|S(r|S′) separately.

In other words: first we get a set of detections, and second we treat the set
of detections as a constant when considering the possible connections.

Many algorithms in class 1 (for instance, JPDAFs) work by iteratively sampling the
conditional densities pR|S(r|s) and pS|R(s|r) with Markov chains - that is, using
Gibbs sampling [45]. As a result, these share the general shortcoming of MCMC
methods in that they are limited in the size of the tracking problems that can be
treated.

Another major difficulty with algorithms in class 1 is choosing what the form of
pS,R(s, r) should be. This typically involves parametrizing the problem according
to prior beliefs.

To see this, suppose are using a Gibbs sampling approach to evaluate pS,R(s, r),
which requires that we model the conditional density pR|S(r|s). The probability of
a given connection Rij is a function not only of the number and positions of the
detections (which we suppose are contained in S), but also of themode of their dif-
fusion (Brownian or non-Brownian), whether convection is present, whether each
emitter has a distinct mobility, and the error associated with their positions. Un-
less we are prepared to incorporate all of these variables into the joint distribution,
then we run the risk of strongly biasing our results to our previous beliefs about
the way our emitters behave. Assumptions about the nature of the emitters’ dif-
fusion is no substitute for sparsity.

For both of these reasons, here we only deal with algorithms in class 2. In other
words, we’ll assume that we already know the set of detections S and our sole
problem is to determine R.

2.4.2 Matrix formalism for connection

Let nt be the number of detections in frame t ∈ {0,1, ...,T − 1} for a movie with T
total frames. Our goal is to determine which, if any, detections in frame t should
be connected to detections in frame t + 1.
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Connection matrices

Define the connectionmatrixLwith size (nt ,nt+1) such that, for any two detections
i ∈ {1, ..., nt} and j ∈ {1, ..., nt+1}, element Lij is proportional to the probability that
detection i in frame t originates from the same emitter as detection j in frame t+1.

In addition, define an “augmented” connection matrix L with an extra row and
column, so its size is (nt + 1,nt+1 + 1). The extra entries represent the probability
that a given detection does not connect to any detections in the other frame:

• L̃nt+1,j is the probability that a localization j in frame t + 1 does not originate
from any emitter present in frame t

• L̃i,nt+1+1 is the probability that a localization i in frame t does not originate
from any emitter present in frame t + 1

For example, if nt = 2 and nt+1 = 3, then we would have

L =

[
L11 L12 L13
L21 L22 L23

]

L =

L11 L12 L13 B1
L21 L22 L23 B2
C1 C2 C3 0

 (2.1)

L400,403 = L400,401L401,402L402,403

A400,403 = A400,401A401,402A402,403

where Bi is the likelihood that detection i in frame t doesn’t connect to anything
in frame t + 1, while Cj is the likelihood that detection j in frame t + 1 doesn’t
connect to anything in frame t.

If we normalize L over rows so that
nt+1+1∑
j=1

L̃ij = 1, then each element of L can be

interpreted as the probability that a trajectory active in frame t connects to each
detection in the subsequent frame, or is terminated. Likewise, normalization over
columns gives the probability matrix for the same process moving backwards in
time. L will be assumed to be normalized over rows unless otherwise stated.

Because we have defined Lij = L̃ij for all pairs of detections (i, j), in general the
rows of L will not sum to 1. The difference 1−

∑
j

Lij is the probability that detec-

tion i does not connect to anything in the next frame.

Suppose we have the situation outlined in Fig. 2.4. Let L(t) be the connection
matrix between frames t−1 and t, and likewise let L(t+1) be the connection matrix

23



Figure 2.4: A potential situation for connecting detections across subsequent
frames. Dots represent detections, which are numbered according to their index in their
respective frames. The dotted lines indicate the three possible paths by which detection
1 in frame t − 1 can connect to detection 1 in frame t + 1 via an intermediate detection
in frame t.

between frames t and t+1. Then, to determine how the detections in frame t−1
are related to the detections in frame t + 1, we can form the matrix product

L(t)L(t+1) =

[
L
(t)
11 L

(t)
12 L

(t)
13

L
(t)
21 L

(t)
22 L

(t)
23

]L
(t+1)
11

L
(t+1)
21

L
(t+1)
31


=

[
L
(t)
11 L

(t+1)
11 + L

(t)
12 L

(t+1)
21 + L

(t)
13 L

(t+1)
31

L
(t)
21 L

(t+1)
11 + L

(t)
22 L

(t+1)
21 + L

(t)
23 L

(t+1)
31

]

Take the first element of this product as an example. This element is the probabil-
ity that detection 1 in frame t − 1 connects to detection 1 in frame t + 1 through
an intermediate detection in frame t. Each of the terms represents the probability
contributed by one of the three possible routes between these detections, shown
by the dotted lines in Fig. 2.4. Because of the possibility that either detection
1 in frame t − 1 or any of the detections in frame t will be dropped rather than
connected, in general (L(t)L(t+1))1,1 6= 1.

This logic extends to any number of frames. The probability that detection i in
frame t0 will be connected to detection j in frame t1 through intermediate detec-

24



tions can be determined by the matrix product(
L(t0+1) · · · L(t1)

)
i,j

2.4.3 Search radii and adjacency matrices

In addition to the connection matrix, we can define the adjacency matrix A with
shape (nt ,nt+1) such that, for any detections i and j in frames t and t + 1 respec-
tively,

Aij =

{
1 if the distance between i and j is less than sr

0 otherwise

sr is the so-called search radius, and is defined as an effective upper bound on the
displacements of an emitter over a single frame interval. The word “effective” is
important here. Suppose we observe a Brownian motion with diffusion coefficient
D = 10 µm2 s−1 at 5 ms frame intervals. While there is no upper bound on this
particle’s displacements, the probability that it diffuses more than 2.0 µm in 2D
over the course of a single frame interval is e−(22)/(4D∆t) ≈ 2 · 10−9. In order to
have a 50-50 chance of observing such a displacement, we would need to mea-
sure ∼ 300 · 106 displacements. This is effectively zero for all practical purposes.

Figure 2.5: Illustration of the role of the search radius. The green and blue circles in
frame t represent the search radii of detections 1 and 2 in frame t − 1, respectively.
Dotted-line arrows represent potential reconnections between frame t − 1 and t.
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The search radius has two practical benefits for us:

1. It allows us to reduce the chance of misconnections that arise from a poorly
determined connection matrix L. Because the mode of diffusion in a cellular
context is never known a priori, we can never select L perfectly and so the
search radius fulfills an important regularization function.

2. When chosen intelligently, it can break the connection matrix into separate
“subproblems” that are faster to solve without introducing substantial bias
into the result.

For instance, suppose we take the example illustrated in Fig. 2.4 and impose a
search radius (Fig. 2.5). This produces the adjacency matrices

A(t) =

[
1 1 0
0 0 1

]

A(t+1) =

11
0


The first can be broken into two separate subproblems:

A
(t)
1 =

[
1 1

]
A

(t)
2 =

[
1
]

In the first, we have two detections in frame t competing for a single detection
in frame t − 1. This situation involves ambiguity - we can make an estimate as
to which connection to make by assigning weights to each of the edges. In the
euclidean algorithm in quot, these weights are the Euclidean distances between
the points, whereas in the diffusion algorithm they are the negative log likeli-
hoods for particle (1) in frame t−1 to diffuse to either of the two options in frame
t, given its past history.

In contrast, A
(t)
2 contains a single potential reconnection (assuming our search ra-

dius is indeed an upper bound on the jumps). In the conservative algorithm in
quot, this is the only reconnection that we would make; the potential connections
in A

(t)
1 would be discarded and detections 1 and 2 would be used to seed new

trajectories. Notice that while the conservative algorithm tends to make higher-
confidence connections, it is also biased toward molecules that inhabit less dense
parts of the cell.

Finally, there are several categories of tracking errors that can arise from these
algorithms:
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1. In situations with multiple potential connections (such as A
(t)
1 in the exam-

ple above), we may choose the wrong connections. Since trajectories are
unpredictable, even a carefully chosen weighting scheme for the likelihood
matrix will go awry in a subset of cases.

2. A trajectory can be connected to a false detection (not a real particle). Since
detection with the GLLRT is excellent, we rarely have this problem.

3. A trajectory can be dropped due to a missing detection. This is a far more
common error.

4. A trajectory can defocalize or bleach at the same time that another trajectory
enters the focal plane or photoactivates.

Of these errors, the last is themost difficult to detect and also surprisingly common
in spaSPT data. Note that because the adjacency matrix is 1 × 1 in these cases,
these errors also escape the notice of the conservative algorithm. A potential
solution to these problems is to impose a limit on the local spatiotemporal density
of particles prior to tracking.

2.5 Summary

Detection, localization, and tracking are fundamental prerequisites tomodel-based
analysis of spaSPT data. By providing a tool that can help the user to compare
simple spaSPT pipelines, we hope to facilitate the identification of algorithms
that work better than existing methods and also to enable users to quickly as-
sess whether existing tracking parameters are transferable to new settings, such
as a new cell line or organism.
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Chapter 3

Single diffusing states

Fluorescent single particle tracking (spaSPT) enables the measurement of mobility
coefficients for single molecular species in complex mixtures, including the intra-
cellular environment. These mobility coefficients - such as the diffusion coefficient
for regular Brownian motion - often represent the primary outputs of the spaSPT
experiment. As a consequence, the descriptive repertoire of the spaSPT assay
is fundamentally limited by the ability to identify and infer model parameters for
distinct types of motion in realistic settings.

In this chapter, we examine methods to extract mobility coefficients from spaSPT
datasets while accounting for known experimental biases. We derive robust esti-
mators for three types of motion - regular Brownian motion, fractional Brownian
motion, and Levy flights. As workhorse models in diffusion modeling, these three
provide a simple framework to parametrize categories of molecular behavior of
biological interest, including memory (fractional Brownian motion) and balance
between local and remote exploration (Levy flights). Together, the methods pre-
sented here extend the types of motion measurable with spaSPT and provide the
formal basis for multi-state mixture models considered in subsequent chapters.

The chapter is subdivided into two parts:

In the first part, we derive estimators for the three types of motion listed above
and evaluate their accuracy on simulated spaSPT datasets. We highlight methods
to account for localization error and defocalization in these measurements. Many
of the results in this section are used by subsequent chapters.

In the second part, we examine methods to identify the type of motion when this
information is not known a priori. Classic approaches such as the mean-squared
displacement (MSD) method are compared with newer approaches such as angu-
lar distributions, covariance matrices, and aggregate likelihood functions. While
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many of the approaches are found to be insufficient on their own to deal with the
problems posed by localization error and defocalization, together they provide
a first-pass toolkit to identify characteristics of motion in spaSPT datasets in the
absence of prior information about the mobility of the molecule in question.

3.1 Model-based analysis of single diffusing states

A homogeneous population of diffusing molecules is characterized by some mea-
sure of spatial dispersion per unit time - such as the diffusion coefficient. In addi-
tion, for non-normal diffusion, there may be one or more ”anomaly” parameters
that subcategorize the mode of diffusion, such as the Hurst parameter for frac-
tional Brownian motion (FBM) or the stability parameter for Levy flights. The cen-
tral goal of this part is to relate these model parameters to concrete observables
in spaSPT data such as the radial jump histogram.

We begin by reviewing the increment distributions of regular Brownian motion
(RBM), focusing on the radial increment (or ”jump”) distributions as well as the
squared jump distributions. We then examine the mean squared displacement
(MSD), which is the maximum likelihood estimator for the diffusion coefficient for
regular Brownian motion. While the MSD has been a workhorse for historical SPT
analysis, we see that localization error places a caveat into most MSD-based anal-
yses. At the end, we discuss least-squares fitting approaches based on the radial
jump histogram. This can be seen as an alternative to MSD that extends easily to
non-normal diffusion models. Such models, however, do not always share the sep-
arability property of RBM’s jump distributions. As a result, the finite focal depth
of most spaSPT setups has a strong effect on the resulting estimators.

Before continuing, we make one remark concerning the motivation for the way
we have structured this chapter. While there are countless models that can be
used to interpret spaSPT data, a small number are actually useful for the spaSPT
practitioner. In this case, ”useful” does not just mean that themodel is an accurate
representation of the physical and biological process under study, but also that
(1) there are simple, nonparametric ways to rule out the model as appropriate
to apply to a given dataset, (2) the model is tractable, (3) the model provides
information in a form interpretable by humans, and (4) the model is conscious of
important experimental constraints in spaSPT (such as localization error and depth
of field).
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3.1.1 Regular Brownian motion

Definition

We define regular Brownian motion as Fickian diffusion with Gaussian-distributed
jumps.

Concerned primarily with the movement of gases across fluid membranes in the
human circulatory system, the physician-physicist Adolf Fick drew on Joseph Fourier’s
theory of heat conduction to formulate the first mathematical theory of diffusion
in 1855 [2]. If c(r, t) is the concentration of solute at position r and time t, then
Fick’s first law states that the flux of the solute through this surface is proportional
to the local concentration gradient

J = −D∇c (first law)

∂c

∂t
= −∇ · J (conservation relation)

∂c

∂t
= ∇ · (D∇c)

If D is the same everywhere, then the last equation is just ∂c/∂t = D∇2c, which is
known as Fick’s second law. (We ignore additional convective terms in this thesis.).

Diffusion processes that obey Fick’s first and second laws are called Fickian. We
highlight the points at which non-Fickian diffusion can arise:

1. The flux is not proportional to the concentration gradient, breaking the first
law.

2. There are sources or sinks of solute, violating the conservation relation.

3. The diffusion coefficient varies as a function of position or concentration.

All of these violations occur in biological systems. For instance:

1. Diffusion of a solute in fast binding equilibrium with an immobile scaffold
manifests as diffusion with a slower diffusion coefficient [43]. With a fixed
number of binding sites per unit volume, the fraction of particles bound
to the scaffold decreases with increasing concentration. As a result, the
apparent diffusion coefficient becomes concentration-dependent.

2. Barriers to motion - such as large macromolecular complexes - break Fick’s
first law.

3. Synthesis and degradation of proteins violate the conservation relation.
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4. The cell is not homogeneous, varying in composition and viscosity from
place to place. Consequently even inert probes that do not interact with
any of the cellular components have a diffusion coefficient that is generally
a function of position [19].

Fractional Brownian motion and Levy flights provide frameworks to parametrize
deviations from Fickian motion.

Under what conditions is regular Brownian motion to be expected in spaSPT ex-
periments? Examining the motion of a particle suspended in a solution at ther-
mal equilibrium, Einstein used an implicit version of the central limit theorem to
derive the movements of the particle as Fickian with Gaussian-distributed jumps
[36]. While this is mathematically convenient - of course, the Gaussian distribution
is the Green’s function for Fick’s second law - its realm of applicability is restricted
to situations where the sources of force on a particle have correlation times far
below the measurement interval. In other words, the central limit theorem must
hold. The sources of noise in biological experiments, however, rarely satisfy this
criterion. They include contributions with very long correlation times, such as the
movements of molecular motors, organelle rearrangements, and cell motility. As a
result, deviations from regular Brownian motion are routinely observed in a variety
of systems, even when the long-term motion is Fickian [79] [37] [38]. This situation
has been termed ”Brownian, yet non-Gaussian” diffusion. Attempts to provide a
model-based framework of this mode of motion that do not incorporate memory
effects include a distribution over the diffusivity [79] or a diffusing diffusivity [37].

Alternative definition as a Gaussian process

Regular Brownian can alternatively be described as a Gaussian process Xt with
covariance function Cov(Xt ,Xs) = D ·min(t, s). This approach is discussed in detail
Appendix B, and is particularly convenient when accounting for localization error.

3.1.2 Jump distributions for regular Brownian motion

The Gaussian character of an RBM’s jumps mean that its jump distributions have
a simple form. Radial jumps distributions also play a central role in some current
frameworks for inferring model parameters in spaSPT data [59] [79] [60].

Suppose that we have an RBM with position R and that the probability density
function for R is fR(r, t). Assuming that concentration and probability are inter-
changeable, fR is a solution to Fick’s second law. Taking the Fourier transform of
the second law,

∂φR

∂t
= −D |k|2 φR
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where φR is the characteristic function for R, and we have assumed that fR has
a finite support. Integrating from time 0 to t, this has the solution φR(k, t) =

φR(k,0)e
−D|k|2t . If the particle starts out at the origin, then φR(k,0) is unity and

we have the Green’s function

φR(k, t) = e−D|k|2t (3.1)

This is the jumping off point for Levy flights, which modify the Green’s function by
changing the exponent on |k|. We continue to focus on RBMs for now.

3.1 is separable in the frequency coordinate, which implies separability in real
space. As a result, 3.1 corresponds to the PDF

fR(r, t) =
1

(4πDt)m/2
exp

(
− |r|2

4Dt

)
where m is the number of spatial dimensions. In a single dimension,

fX(x, t | D) =
1√
4πDt

exp

(
− x2

4Dt

)
(3.2)

In real spaSPT experiments this density is never encountered, due to the ubiquity
of error associated with the estimation of the particle’s position. Suppose our
error is a random vectorW given by the multivariate normal density

W ∼ N
(
0,2σ2locI

)
where I is an n× n identity matrix and σ2loc is the localization error associated with
the position of a particle along any single axis. The factor 2 appears because for
any observed jump, we have error associated with both the first and the second
points that define the endpoints of the jump [55].

ThenW has the CF
φW(k) = exp

(
−σ2loc |k|

2
)

Define R = R +W, the random n-dimensional jump of an RBM with localization
error. Assuming thatW and R are independent, then we can apply eq. C.6 from
Appendix C to derive the corresponding CF:

f̃R(k, t) = φW(k)f̃R(k, t | D)

= exp
(
−(Dt + σ2loc) |k|

2
)

This corresponds to the PDF

fR(r, t) =
1

(4π(Dt + σ2loc))
m/2

exp

(
− |r|2

4(Dt + σ2loc)

)
(3.3)
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Along a single dimension,

fX(x, t) =
1√

4π(Dt + σ2loc)
exp

(
− x2

4(Dt + σ2loc)

)
(3.4)

In subsequent sections, we’ll useR instead ofR to denote the position of an RBM
with localization error, for simplicity.

Squared 1D jumps of an RBM

The point of the preceding discussion, apart from getting the central equations
3.3 and 3.4, was to stress that the increments of an RBM along each spatial dimen-
sion are independent stochastic processes. This property is key to using squared
jump-based methods, as we investigate here.

Let X be the jump of an RBM with localization error in one dimension. We’ve seen
that X has the PDF given by eq. 3.4. Let S = X2 be the corresponding squared
jump. Then the CDF of S can be written

FS(s) = Pr(S ≤ s) = Pr(X2 ≤ s) = Pr(X ≤
√
s)− Pr(X ≤ −

√
s)

= FX(
√
s)− FX(−

√
s)

The corresponding PDF is

fS(s) =
∂FS
∂s

=
∂

∂s

(
FX(

√
s)− FX(−

√
s)
)

=
1√

4πs(Dt + σ2loc)
exp

(
− s

4(Dt + σ2loc)

)
, (s ≥ 0)

Comparing with the standard gamma density

fgamma(s | α, β) =
βα

Γ(α)
sα−1e−βs (s ≥ 0) (3.5)

we see that

S ∼ Gamma

(
1

2
,

1

4(Dt + σ2loc)

)
This gamma density has the characteristic function

φS(k) =

(
1

1− 4ik(Dt + σ2loc)

)1/2
(3.6)
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Squared radial jumps of an RBM in n dimensions

Consider now the squared radial displacement of a random vectorR = (X1, ...,Xn)
T

in m dimensions distributed according to eq. 3.3: S = X2
1 + ... + X2

m. We’ve seen
that the jumps Xi are mutually independent random variables, and that each X2

i

has a CF given by eq. 3.6. So, applying the convolution property eq. C.6, their
sum has the CF

φS(k) =

(
1

1− 4ik(Dt + σ2loc)

)n/2

(3.7)

This means that S is another gamma random variable with the density

S ∼ Gamma

(
m

2
,

1

4(Dt + σ2loc)

)
(3.8)

Since the expected value for a gamma random variable 3.5 is α/β, we have

E [S] = 2n
(
Dt + σ2loc

)
which is the familiar MSD for RBM.

Radial displacements of an RBM in m dimensions

Finally, we seek the distribution of the root squared radial displacement R =
√
S.

We’ll usually refer to R simply as the radial jump.

Examining the CDF of R,

FR(r) = Pr (R ≤ r) = Pr
(
S ≤ r2

)
= FS(r

2)

which corresponds to the PDF

fR(r) =
∂FS(r

2)

∂r
= 2r fS(r

2)

Using 3.8, this is

fR (r) =
2rm−1 exp

(
− r2

4(Dt+σ2
loc

)

)
Γ
(
m
2

) (
4(Dt + σ2loc)

) n
2

(3.9)

for r ≥ 0, and 0 otherwise.
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Taking the CDF FR(r) =
r∫

−∞
fR(r

′)dr ′, we find that it has a simple form:

FR(r) =

{
γl

(
m
2
, r2

4(Dt+σ2
loc

)

)
if r ≥ 0

0 otherwise
(3.10)

where γl is the regularized lower incomplete gamma function, defined by

γl(α, x) =
1

Γ(α)

x∫
0

tα−1e−tdt

Another useful metric is the mean radial distance traversed by the RBM after time
t:

E [R] =
Γ
(
m+1
2

)
Γ
(
m
2

) √4(Dt + σ2loc)

Special cases

The radial displacements of a Brownian motion (eq. 3.9) have well-known special
cases for numbers of spatial dimensions m.

If m = 1, then we recover the usual 1D jump for an RBM:

fR(r) =
2√

4π(Dt + σ2loc)
exp

(
− r2

4(Dt + σ2loc)

)

If m = 2, we recover the Rayleigh distribution:

fR(r) =
r

2(Dt + σ2loc)
exp

(
− r2

4(Dt + σ2loc)

)
(3.11)

If m = 3, we recover the Maxwell-Boltzmann distribution:

fR(r) =

√
2

π

r2 exp
(
− r2

4(Dt+σ2
loc

)

)
(2(Dt + σ2loc))

3
2

(3.12)

and so on.

The various special cases above raise an interesting question: does the density
3.9 have any physical meaning for noninteger m ∈ R? Certainly this defines the
jump distribution of a valid diffusion process, at least if we drop the localization
error term for the moment. If we require that this hypothetical diffusion process is
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embedded in a 3D space and has jumpsRwhose radial magnitude R is distributed
according to 3.9 and whose direction is uniformly selected from the surface of
a sphere, then the displacements in the x, y, and z dimensions are distributed
according to

fX ,Y ,Z(x, y, z) ∝
(
x2 + y2 + z2

)m−1
2 exp

(
−x2 + y2 + z2

4Dt

)
This density is only separable when m = 3, matching the dimension of the space
in which the process is embedded. Noting that the characteristic function for the
squared radial displacements is still given by eq. 3.7, if we attempt to require
that the CF separate into a sum of iid gamma random variables we run into sin-
gularities at the origin. This is physically unreasonable, so it is likely that if such
a model does describe a diffusion process of physical origin, it cannot arise from
separable processes in the x, y, and z dimensions. Diffusion in systems with non-
integer geometry has been considered by numerous other authors, most notably
by Ben-Avraham and Havlin [57]. We do not comment on these densities further
in this thesis.

3.1.3 Maximum likelihood estimator for diffusion coefficient

Given a particular trajectory, how can we infer its diffusion coefficient and how
accurately can we do it?

Consider an RBM with jumps X = (X1, ...,XL) and Y = (Y1, ...,YL) in the x and y
directions, respectively. We have L jumps in this trajectory, so the trajectory has a
total of L + 1 points. As outlined in Appendix B, X and Y are independent with

Figure 3.1: Visualization of two sequential jumps in a trajectory, with and without
the influence of localization error. Even when the ∆x1 and ∆x2 are independent, the
observed jumps are not due to the mutual dependence on the localization error e1.
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probability density functions given by

fX(x) =
exp

(
−1
2
xTC−1

∆ x
)

(2π)
1
2 det(C∆)

1
2

fY(y) =
exp

(
−1
2
yTC−1

∆ y
)

(2π)
1
2 det(C∆)

1
2

where
(C∆)ij = 2(D∆t + σ2loc)Ii=j − σ2locI|i−j|=1 (3.13)

Examining the structure of the covariance matrix C∆, notice that it can be viewed
as the sum of a ridge and off-diagonal term:

C∆ = 2(D∆t + σ2loc)



1 0 0 ... 0 0 0
0 1 0 ... 0 0 0
0 0 1 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 1 0 0
0 0 0 ... 0 1 0
0 0 0 ... 0 0 1


− σ2loc



0 1 0 ... 0 0 0
1 0 1 ... 0 0 0
0 1 0 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 0 1 0
0 0 0 ... 1 0 1
0 0 0 ... 0 1 0


All of the covariance between the components ofX orY - that is, between subse-
quent jumps in the trajectory - comes from the localization error in the off-diagonal
terms. Only when σ2loc = 0 does the matrix become diagonal. In this ideal case,
all of the jumps (Xi,Yi) are mutually independent.

For the moment we’ll assume that σ2loc = 0 and return to the nonzero case later.
In this case, the covariance matrix reduces to C∆ = (2D∆t)I and its inverse is
(2D∆t)−1I. The determinant is (2D∆t)L.

Because X and Y are independent, their joint density is just the product of their
marginal densities:

fX,Y(x,y) =
exp

[
−1
2

(
xTC−1

∆ x+ yTC−1
∆ y

)]
2π det(C∆)

(3.14)

The corresponding log density is

log fX,Y(x,y) = −1
2

(
xTC−1

∆ x+ yTC−1
∆ y

)
− log(2π)− logdet(C∆)

Substituting the covariance identities for the case σ2loc = 0, this becomes

log fX,Y(x,y) = − 1

4D∆t

(
xTx+ yTy

)
− log(2π)− L log(2D∆t) (3.15)
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This is solely a function of xTx+yTy, the sum of squared displacements. Seek the
maximum likelihood estimator D̂ by differentiating this density with respect to D
and setting the result equal to zero:

∂ log fX,Y(x,y)

∂D

∣∣∣
D=D̂

=
xTx+ yTy

4D̂2∆t
− L

D̂
= 0

and so we have the MLE

D̂ =

m∑
j=1

(
x2j + y2j

)
4L∆t

=
1

4∆t
E
[
X2 + Y 2

] (3.16)

where X and Y are the x and y components of any displacement in the trajectory.
Thus, when localization error is absent, the mean squared displacement is the
maximum likelihood estimator for the diffusion coefficient of a single diffusing
state.

Influence of localization error on the diffusion coefficient MLE

The reader may notice that there is a much simpler route to deriving the estimator
3.16. We could have simply modeled each jump in the trajectory as an indepen-
dent draw from the PDF 3.9. The PDF for the sum of these jumps would then be
equivalent to equation 3.15.

The reason we built the result from the multivariate normal density 3.14 is that it
stresses the rather nonintuitive role that localization error plays in the estimator.
To the point: when σ2loc > 0, then the MSD ceases to be the maximum likelihood
estimator for the diffusion coefficient [30] [32]. The effect is illustrated in Fig. 3.1.
Two sequential jumps in a trajectory, no matter how many dimensions the trajec-
tory is measured in, will always be codependent due to their mutual dependence
on the localization error in their shared point. This is true even when the trajectory
is a Markov process, as in the case of RBM.

Themagnitude of the covariance between sequential jumps is−σ2loc, andmanifests
in the off-diagonal terms of the covariance matrix 3.13. This has been investigated
in detail in the previous chapter.

Let’s attempt, however, to stomach the assumption that sequential jumps in the
same trajectory are independent - even in the presence of localization error. In
this case, the sumof squared displacements is distributed according to the gamma
density
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S =
L∑

j=1

(
Y 2
j + X2

j

)
∼ Gamma

(
mL

2
,

1

4(Dt + σ2loc)

)
(3.17)

where we have applied the convolution property C.6 to 3.8. Taking the two-
dimension case (m = 2) and writing the log density explicitly, we have

log fS(s) = (L − 1) log(s)− s

4(D∆t + σ2loc)
− logΓ(L)− L log(4(D∆t + σ2loc))

Differentiating this density with respect to D and solving for the maximum likeli-
hood estimator, we find

D̂ =
(s/4L)− σ2loc

∆t
(3.18)

which is just a shifted version of 3.16. Notice that this may lead to negative esti-
mates of the diffusion coefficient.

3.1.4 Cramer-Rao lower bound for MSD estimators

Trajectories generated by spaSPT modalities are often very short - each trajectory
often has as few as 3 to 4 points. Given this limited information, we may ask: how
accurately can we estimate the diffusion coefficient from a single trajectory?

A natural choice to evaluate the accuracy of the MSD estimator is the Cramer-Rao
lower bound (CRLB), which we briefly summarize here. Suppose that fX(x | θ) is
the probability density for a random variable X dependent on parameter θ. Imag-
ine that we have a method to generate an estimate of θ based on an observation
of X . We’ll call this estimate θ̂.

Imagine that we run this estimator many times on independent datasets. We
should hope that our estimator guesses θ correctly on average. That is, we should
hope that

EX |θ

[
θ̂ − θ

]
= 0

Here, θ is the true parameter value, θ̂ is our estimate, and the expectation is de-
fined respective to the conditional density of X given θ:

EX |θ

[
θ̂ − θ

]
=

∫ (
θ̂ − θ

)
fX |θ(x|θ)dx

When this is satisfied, our estimator is unbiased. Still, the estimator may not be
very good. If it tends on average to guess the parameter correctly, but with a high
variance, it might still be useless. As such, we should seek an estimator that also
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tends to return parameters close to the real parameter.

A maximum likelihood estimator (like 3.16) is defined as the peak in the (log) likeli-
hood of θ given some observation X . If the log likelihood is sharply peaked around
θ̂, then it’s fairly easy to pick out θ̂ above the noise. But if the curvature around θ̂
is shallow, then we’re much more sensitive to effects of local noise.

This intuition is formalized in the Fisher information, which for a single parameter
is defined

I(θ) = −E
[
∂2 log fX(x | θ)

∂θ2

∣∣∣ θ] = −
∫
∂2 log fX(x | θ)

∂θ2
fX(x | θ)dx

(At least, provided that log fX(x | θ) is twice differentiable.) Intuitively, this is the
expected curvature of the log likelihood function around the true parameter value,
reflecting how well we can pick out the true parameter value from its close neigh-
bors.

The CRLB is the inverse of the Fisher information. It can be shown to place a lower
bound on the variance of any unbiased estimator:

CRLB(θ) =
1

I(θ)
≤ Var(θ̂)

Here, we derive the Cramer-Rao lower bound (CRLB) for the MSD-based estima-
tors 3.16 and 3.18. In both cases, we will assume that the jumps of a trajectory -
localization error included - are independent, swallowing the caveats surrounding
the localization error discussed earlier.

Take the estimator for the diffusion coefficient with localization error (3.18). Given
the probability density 3.17, we seek the CRLB

I(D) =

+∞∫
−∞

∂2 log fS(s|D)

∂D2
fS(s|D)ds

which is

I(D) =
Lt2(

Dt + σ2loc
)2

As such, the variance of the maximum likelihood estimator is

Var(D̂) =

{ (
Dt+σ2

loc

)2
Lt2

if σ2loc > 0
D2

L
otherwise

(3.19)
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Figure 3.2: Cramer-Rao lower bound for the mean squared displacement estimator
of the diffusion coefficient of a single trajectory. In this case, the frame interval was
held constant at 10 ms.

where L is the number of points in this 2D trajectory.

This error is visualized in Fig. 3.2, which shows the square root of the CRLB as a
function of trajectory length for several different diffusion coefficients. Notice that
for the higher diffusion coefficients, the standard deviation of the estimator at 3-4
displacements (the mean trajectory length in real spaSPT datasets) is nearly equal
in magnitude to the diffusion coefficient itself. Meanwhile, at lower diffusion co-
efficients, the accuracy of estimators becomes independent of D and is instead
dominated by localization error.

If we measure in more than two dimensions - say, m dimensions - then the CRLB
for the estimate of D is

Var(D̂) ≥
2
(
D∆t + σ2loc

)2
∆t2Lm

Again, L is the number of jumps in the trajectory.
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3.1.5 Estimators based on the jump length distribution

We’ve seen that, for a regular Brownian motion trajectory, the mean squared dis-
placement is the maximum likelihood estimator when localization error is negli-
gible. Even when localization error is present, the MSD with localization error
(equation 3.18) is often useful as first-pass estimator.
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Algorithm 3.1: Estimation of the diffusion coefficient and localization error for a single
diffusing state in n dimensions

Parameters:

• A set of trajectories (X1, ...,XN) where (Xi)j is the vectorial j
th position of

the ith trajectory. Let Li be the length of trajectory i.

• Rmax, the maximum jump length to consider

• T , the total number of frame delays to consider

• ∆r, the bin size

Algorithm:

1. For each frame gap t = 1, ...,T , define Mt as the total number of jumps in
the dataset that occur over exactly t frames.

2. For t = 1, ...,T , define Ht(r) as the fraction of jumps over t frames with radial
displacement equal to or less than r. That is,

Ht(r) =
1

Mt

N∑
i=1

Li−t∑
j=1

I∣∣(Xi)j+t−(Xi)j
∣∣≤r

where I is the indicator function and
∣∣(Xi)j+1 − (Xi)j

∣∣ is the radial distance of
the jth jump in trajectory i.

3. Divide the range [0,Rmax] into a set of bins r0 = 0, r1 = ∆r, r2 = 2∆r, ...,
rK = Rmax.

4. Define the sum of squares function

S(D, σ2loc) =
T∑

t=1

Mt

K∑
k=0

(
Ht(rk)− γl

(
m

2
,

1

4(Dt∆t + σ2loc)

))2

5. Minimize S(D, σ2loc) with standard nonlinear least-squares methods (e.g.
Levenberg-Marquardt, dogbox, etc.).

However, we can also attempt to fit the distribution of jumps directly, which is
easier to generalize to multi-state models in the next chapter. The best way to
do this is typically to fit the empirical distribution function of the observed dis-
placements to the CDF for the radial displacements of a particle at various time
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delays (equation 3.10). This approach is summarized in Algorithm 3.1. Notice in
particular that estimating the localization error is only possible when considering
multiple possible delays in the data.

3.1.6 Fractional Brownian motion

Fractional Brownian motion (FBM) is a Gaussian process, like RBM ( Appendix B).
As a result, its jump distributions extend in a straightforward manner from those
discussed for RBM in section 6.1. Only the temporal scaling of the distribution
changes.

In particular, if Xt is the spatial position of a one-dimensional FBM after time t,
then the joint distribution of Xt1, Xt2, ... for any set of time indices t1, t2, ... is given
by a multivariate normal distribution with expectation E [Xt ] = 0 and covariance
defined by

Cov (Xt ,Xs) = D
(
t2H + s2H − |t − s|2H

)
Two parameters characterize the FBM. D ≥ 0 is a scaling factor for the overall
dispersion per unit time of the process and H ∈ (0,1) is the Hurst parameter,
parametrizing the dependence between the jumps. For H < 1/2 the jumps are
anticorrelated, for H > 1/2 the jumps are correlated, and for H = 1/2 the jumps
are completely independent and the process is regular Brownian motion (see the
previous chapter for a complete discussion).

For all of the results in this chapter, we can use either the regular diffusion co-
efficient for D, which has units of µm2 s−2H, or the modified diffusion coefficient
discussed in Appendix B, which has units of µm2 s−1 regardless of the Hurst pa-
rameter. The covariance is then

Cov (Xt ,Xs) = D
(
t2H + s2H − |t − s|2H

)
=

D

∆t2H−1

(
t2H + s2H − |t − s|2H

)
Here, ∆t is the experimental frame interval.

We prefer the modified diffusion coefficient as it makes it easier to compare FBMs
with different Hurst parameters for the illustrations in this section. However, as it
depends on ∆t, it must always be reported alongside the frame interval.

MSD-based estimators

The covariance above leads directly to the one-dimensional jump length variance

Var (Xt) = 2Dt2H
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Since Var(Xt) = E
[
X2
t

]
for a mean-zero Gaussian process Xt , we have the simple

mean-squared displacement

MSD(t) = 2m
(
Dt2H + σ2loc

)
where m is the number of spatial dimensions. This is a simple extension of the
results for RBM in the previous sections.

A large fraction of the literature defines anomalous diffusion as any process for
which the mean-squared displacement of a single particle goes as tα with α 6= 1.
We immediately see that H = α/2. This makes FBM a particularly attractive model
for anomalous diffusion, since it inherits many of the analyticall tractable charac-
teristics of RBM while incorporating nonlinear MSD scaling.

See Fig. B.2 in Appendix B for an illustration of the MSDs of FBMs with various
Hurst parameters.

Radial jump distribution-based estimators

The covariance above leads directly to the one-dimensional jump length variance

Var (Xt) = 2Dt2H

As a result, we can make a simple modification to the radial jump distributions
(equations 3.9 and 3.10) to obtain the jump distributions for an FBM in m dimen-
sions:

fR(r) =
2rm−1 exp

(
− r2

4(Dt2H+σ2
loc

)

)
Γ
(
m
2

) (
4(Dt2H + σ2loc)

) n
2

(PDF)

FR(r) = γl

(
m

2
,

r2

4(Dt2H + σ2loc)

)
(CDF)

(3.20)

Here, we have assumed that the process is represented by an independent FBM
in each spatial dimension.

In addition, all of the other results in Section 6.1 still apply with the substitution
of Dt2H + σ2loc for Dt + σ2loc. In addition, we can use Algorithm 3.1 for estimation
of the diffusion coefficient and Hurst parameter.

Fig. 3.3 demonstrates CDFs for a FBM evaluated at several frame intervals and
with three different Hurst parameters. Notice how the Hurst parameter deter-
mines the way that the dispersion of the jump distribution changes in time. But
the fundamental shape of the jump distribution is itself unaltered, reflecting FBM’s
identity as a Gaussian process.
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Figure 3.3: Some examples of the cumulative distribution function for the
two-dimensional radial jumps of fractional Brownian motions with various Hurst
parameters. Each line in the subplots represents the CDF at a subsequent frame
interval: 1∆t, 2∆t, 3∆t and so on with ∆t = 0.00748 seconds in this case. The modified
diffusion coefficient was held constant at 2 µm2 s−1.

Figure 3.4: Some examples of radial jump histograms for fractional Brownian
motions with various Hurst parameters, with fits. Each subplot represents the results
of one simulation; the histogram are the observed jumps and the black line is the model
fit. The modified diffusion coefficient was held constant at 2 µm2 s−1. Simulations were
performed in a 10 µm spherical nucleus with a 700 nm focal depths, 10 ms frame
intervals, 35 nm 1D localization error, and 10 Hz bleaching rate. Collisions of the particles
with the walls of the nucleus were resolved by specular reflections of the jump density.
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3.1.7 Levy flights

Fractional Brownian motion (FBM) is a straightforward extension of RBM. Its jumps
are still distributed as Gaussians. Consequently, its estimators are simple tweaks
of the estimators for RBM. But this is not the case for other anomalous diffusion
models, which may depart from RBM in more fundamental ways.

In this section, we examine the case of Levy flights, which produce more interest-
ing and varied departures from RBM. We will see that unlike RBM and RBM, Levy
flights have jump distributions that are generally not separable in the geometry
of most spaSPT experiments.

Jump distributions

A Levy flight in m dimensions is a random walk with independent jumps that are
distributed according to a Levy stable distribution. This means that the character-
istic function for the steps is

φ (k, t | α,D) = exp (−Dt |k|α) (3.21)

Or, if we wish to emphasize the radial symmetry, we can express it in terms of the
radial distance from the origin of the Fourier domain, k = |k|:

φ (k, t | α,D) = exp (−Dtkα) , k ≥ 0

We’ll see presently that only a few special cases have any sort of closed-form PDF.
So we’ll stick to working with characteristic functions as much as possible. One
special case, α = 2, corresponds to regular Brownian motion with diffusion coef-
ficient D.

Equation 3.21 emerges as a solution to the fractional diffusion equation

∂f (r, t)

∂t
= D∇αf (r, t) (3.22)

where∇α is a fractional Laplacian operator, implicitly defined via its Fourier trans-
form:

F
[
∂αf (x)

∂ |x|α
]
(k) = − |k|αF [f ] (k) (one dimension)

F [∇αf (r)] (k) = − |k|αF [f ] (k) (m dimensions)

(3.23)

We will tend to avoid referring to equation 3.22, but we highlight one important
feature. When α = 2, the fractional Laplacian coincides with the regular Laplacian.
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For example, in 2D we have ∇2 = ∂2

∂x2
+ ∂2

∂y2
. However, this separation into a sum

of derivatives for each spatial dimension does not hold more generally for other
α:

∇αf (x, y) 6= ∂αf

∂xα
+
∂αf

∂yα
if α 6= 2

If this were the case, we would have the Fourier transform

F [∇αf ] (kx, ky) = −
(
|kx|α +

∣∣ky∣∣α)F [f ] (kx, ky)

This is physically nonsensical due to the lack of rotational symmetry in the Fourier
transform when α 6= 2. That is, we get a completely different answer if the x and
y axes for f (x, y) are rotated. Of course, nature does not care which direction our
axes point.

As we will see, this property of the fractional Laplacian operator is at the root of
most mathematical difficulties associated with Levy flights in imaging setups with
finite depth of field.

Generalized central limit theorem

There are many ways to parametrize anomalous diffusion processes. But some are
more useful than others. Fractional Brownian motion, with its Gaussian displace-
ments, retains the central utility of RBM for modeling diffusion that results from
many independent sources of noise with finite variance. This is a consequence
of the central limit theorem. Indeed, the CLT was implicitly used to define the
jump distributions of RBM in Einstein’s 1905 paper. As outlined in Appendix B,
section B.5, the sources of variance for FBM have a different temporal structure
than RBM, which means that despite sharing the Gaussian character of RBM, FBM
is capable of modeling a broad variety of processes beyond Markov processes,
hence its utility to the experimentalist.

So if that’s what FBMs are good for, what are Levy flights good for?

The answer comes from the generalization of the central limit theorem by Gne-
denko & Kolmogorov [61]. These authors considered sums of independent ran-
dom variables with potentially infinite variance, focusing in particular on random
variables with power law tails so that fX(x) ∝ |x|−α−1.

If we gather a lot of these kind of random variables and take their mean, the result
will tend to a Levy stable distribution with the characteristic function exp (−c |k|α),
where c is a dispersion parameter and α is the stability parameter. α is fundamen-
tally related to the character of the underlying random variables. The fatter the
tails of the PDF for the constituent random variables, the lower α becomes and
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Figure 3.5: Some Levy flights with different stability (α) parameters. Each Levy flight
has the same dispersion parameter D and have been projected from their native 3D
space onto a 2D plane.

the “wilder” the resulting motion is.

If we assume that the dispersion scales linearly in time, we recover the character-
istic function for Levy flights (equation 3.21).

The natural emergence of Levy flights as a consequence of the generalized cen-
tral limit theorem is perhaps responsible for their observation in a wide range of
fields, from the fluctuations of stock-market prices [62] [63] to the paths of forag-
ing animals [64]. Having random variables with infinite variance is not as exotic as
it may seem; in fact, heavy-tailed probability distributions with this property seem
to be the norm rather than the exception in biological research.

The effect of these types of noise is that Levy flights transition between explo-
ration of local spatial neighborhoods and longer jumps between neighborhoods.
The balance between local exploration and longer jumps is set by the stability
parameter. As α → 2, local exploration dominates while when α → 0, the longer
jumps become dominant.

Fig. 3.5 demonstrates this effect. Note that as α becomes lower, the motion
becomes more erratic, prone to overexploring local neighborhoods and jumping
between distant neighborhoods.
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Special cases of Levy flights

Levy flights have a serious problem from a practical perspective: closed-form PDFs
corresponding to the characteristic function 3.21 only exist for three specific val-
ues of α. We’ve already investigated one of them - regular Brownian motion -
in detail. Clearly, these special cases are not going to carry us very far, but ex-
amining them can give some insight into the practical significance of the stability
parameter.

When α = 2, we have a Gaussian random walk, equivalent to a regular Brownian
motion observed at a discrete set of timepoints. The jump length distributions for
this type of motion were discussed extensively in the first section of this chapter.

Whenα = 1, we haveCauchymotion. The characteristic function is exp
(
−Dt |k|2

)
.

Comparing with equation C.11 in Appendix C, we can draw out the real-space
density

fR(r) =
Γ
(
m+1
2

)
π

m+1
2 (Dt)m

(
1+

(
|r|
Dt

)2)m+1
2

(3.24)

Substitutingm = 1, we recover the familiar univariate Cauchy density with disper-
sion parameter Dt.

Both the expectation and variance of the Cauchy jump density are undefined.
To see this, let’s examine the one-dimensional case more closely. Applying the
moment property C.2 from Appendix C,

iE [X ] =
∂φX(k)

∂k

∣∣∣
k=0

=
∂

∂k
exp (−Dt |k|)

∣∣∣
k=0

But

∂

∂k
exp (−Dt |k|) =


e−Dt|k| if k > 0

−e−Dt|k| if k < 0

undefined if k = 0

As a result, the expectation of the Cauchy density is undefined. Indeed, this prop-
erty extends to all Levy stable variables with α ≤ 1. To see this, consider the first
derivative of the characteristic function 3.21:

∂φX(k)

∂k
= αsgn(k) |k|α−1 e−|k|α

Since this only has a unique limit at k = 0 for α > 1, it is only at these values that
the jumps of a Levy flight have finite expectation.
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Likewise, differentiating the characteristic function twice gives us

∂2φX(k)

∂k2
= αDt

(
−(α− 1) |k|α−2 + αDt |k|2(α−1)

)
e−Dt|k|α

This is only continuous at k = 0 when α = 2. As a result of equation C.2, this
means that the variance of the jump density is not defined for any α < 2.

The last special case is α = 1/2, which corresponds to a random walk where
the steps have a Levy distribution. (The name is unfortunate. This should not
be confused with the more general class of Levy stable distributions.) While this
has a closed-form PDF for the univariate case, in general no solution exists for
the multivariate case and so we refrain from discussing it, in part because the
ambiguous naming produces serious headaches.

Radial jump distributions of Levy flights

The previous section poses a conundrum. Levy flights are a useful model for
spaSPT analysis because they are in a sense the simplest possible distributions
that incorporate sources of noise wilder than the finite-variance noise that leads
to Brownian motion. In short, they provide valuable models when the sources of
noise have a different character than those that Einstein assumed in his 1905 pa-
per.

But the problem is that we can only get closed-form solutions for the PDF in two
special cases: α = 2 and α = 1. Apart from these two cases, the situation is much
more difficult. In order to extract parameters for these types of motion from bi-
ological data, we need efficient numerical methods to evaluate the jump PDFs.
Since radial jump PDFs are most useful from the perspective of modeling, we fo-
cus on obtaining on these, rather than Cartesian densities.

First we’ll look at the naive approach, where we simply take the inverse Fourier
transform of the characteristic function 3.21. Then we’ll examine a more elegant,
faster, and more accurate approach.

In what follows, we’ll continue to use fR(r) to denote the jump PDF represented
in Cartesian coordinates and fR(r) to denote the same PDF represented in terms
of the radial distance from the origin r =

√
x2 + y2 + z2.

Naive approach

One approach is simply to take the inverse transform of the Levy flight character-
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istic function 3.21, then marginalize on all of the angular components:

fR(r) = F−1
m [φR(k)]

fR(r) =

2π∫
0

dψ

∞∫
0

dθ

∞∫
0

dr r2 sin θ fR(r) (m = 3)

Here, F−1
m is the inverse Fourier transform in n dimensions. Using the relation C.10

from Appendix C, and assuming that the process natively happens in 3D, we can
write the radial density as

fR(r) =
1

(2π)
3
2 r

1
2

H 1
2

[
k
1
2e−Dt|k|α

]
(r)

where H 1
2
is a Hankel transform of order 1/2. So this approach boils down to tak-

ing a Hankel transform. This is feasible, but computationally demanding to do at
high accuracy and throughput. It also tends to Gibbs phenomena near the origin
when the parameters for numerical integration are chosen carelessly.

Radon transform approach

An alternative route to evaluating the jump density for a Levy flight comes from
the operator cycle C.17, which can be written

F1 [R [fR]] (k) = Fn [fR] (k)

R is the Radon transform, defined in 3D as

f̂ (p,v) = R [fR] =

∞∫∫∫
−∞

fR (r) δ(p − v · r)dr

As discussed in Appendix C, this operator projects the density fR onto a line in
the direction v. When the density is radially symmetric, we can choose whatever
v we like.

In our case, we don’t know the real domain function fR and start instead know-
ing φR(k) = Fn [fR] = e−Dtkα. So our problem is essentially to invert the Radon
transform:

fR(r) = R−1 [F−1
1 [φR]

]
First, we note that for a radially symmetric 3D function, we can choose v = (1,0,0)

52



to make things simpler. Then we can express the Radon transform as

f̂R(p) = R [fR] =

∞∫∫∫
−∞

fR

(√
x2 + y2 + z2

)
δ(p − x) dx dy dz

=

∞∫∫
−∞

fR

(√
p2 + y2 + z2

)
dy dz

Let r22 = y2 + z2. Then this integral can be expressed in polar coordinates as

f̂R(p) = 2π

∞∫
0

fR

(√
r22 + p2

)
r2 dr2

Noting that p is simply a constant for the right side, let r2 = r22 + p2 so that
r2dr2 = rdr. Then, changing variables, the integral becomes

f̂R(p) = 2π

∞∫
p

fR(r)r dr, p > 0

Differentiation of both sides yields

∂ f̂R
∂p

= −2πp fR(p)

Recognizing that p is a dummy variable, we can then write the PDF as

fR = − 1

2πr

∂ f̂R
∂r

An interesting sidenote, remarked by Barrett [65], is that this result was derived
several times independently - by Vest and Steel in the context of optics in 1978
[66], by Du Mond in the context of Compton scattering in 1929 [67], and by Stew-
art (1957) and Mijnarends (1967) in the context of positron annihilation.

Now, since the operator cycle gives us f̂R(r) = F−1
1 [φR1

(k)], we have

fR(r) = − 1

2πr

∂

∂r
F−1
1 [φR1

(k)]

= − 1

2πr
F−1
1 [ikφR1

(k)]
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Here, we’ve used the fact that differentiation in the real domain corresponds to
multiplication by ik in the Fourier domain. Now the PDF for 3D radial displace-
ments fR(r) is given by

fR(r) ∝ r2fR(r) ∝ −irR−1
1 [ikφR(k)]

The proportionality holds to within a normalization constant. Multiplication by
ir in the real domain corresponds to differentiation in the Fourier domain, from
which we obtain

fR(r) ∼ F−1
1

[
∂

∂k
(kφR(k))

]
(3.25)

Substituting the definition for the Levy flight characteristic function 3.21, this eval-
uates explicitly to

fR(r) ∝ F−1
1

[
(1− αDt |k|α)e−Dt|k|α

]
(3.26)

Equation 3.26 represents the fastest and most accurate method we are aware of
for calculating the probability of the 3D radial jumps of a Levy flight. In practice,
we approximate this PDF by sampling it at a series of finely spaced points, then
normalize over this finite support.

Fig. 3.6 shows the radial jump distributions of Levy flights with various stability
parameters in different spatial dimensions. As α decreases, the overall mobility

Figure 3.6: Some radial jump distributions for Levy flights with various stability
parameters. All Levy flights have the same dispersion parameter D = 1 µmαs−1 and the
jumps are measured with zero localization error in 3D at 10 ms frame intervals. The
upper row is 1D jumps, the middle row is 2D jumps, and the lower row is 3D jumps. As
discussed in the text, marginalization of a higher-dimensional Levy flight jump
distribution only becomes a lower-dimensional distribution when the focal depth is
infinite.

54



is dominated by a few long-distance jumps between neighborhoods, followed by
overexploration of individual neighborhoods.

It is tempting to take this another step further, calculating the CDF by introducing
a (ik)−1 in the Fourier transform, then normalizing in the real domain. However,
due to ensuing discontinuities at the origin, this approach is numerically unfeasi-
ble. Instead, we can approximate the CDF by numerically accumulating the PDF
at finely spaced points in the real domain.

Levy flights with localization error

One of the advantages of the numerical approach introduced in the previous sec-
tion is that we can easily incorporate localization error.

Suppose thatR is the jump of a Levy flight over some finite time interval t. We’ve
seen that this jump has the characteristic function

φR(k) = exp (−Dt |k|α)

Now imagine each endpoint of the jump has some normally distributed localiza-
tion error with mean zero and one-dimensional variance σ2loc. Since the error at
both endpoints is independent, the one-dimensional variance contributed to the
jump is 2σ2loc. We can incorporate this by modeling the jump asR = R+X, where

X ∼ N
(
0,2σ2locI

)
Here, I is the identity matrix.

Using the convolution property C.6, R has the characteristic function

φR(k) = φR(k)φX(k)

= exp
(
−Dt |k|α − σ2loc |k|

2
)

= exp
(
−Dtkα − σ2lock

2
)
, k ≥ 0

In the last equation, we have emphasized that this characteristic function is only a
function of the radial distance from the origin k = |k|. As a result, we can directly
apply equation 3.25 to numerically compute the 3D radial displacement PDF.

2D radial jumps

Suppose we have a Levy flight in 3D. The characteristic function for the jumps is
given by equation 3.21. Suppose we project these jumps out of their native 3D
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onto a 2D surface - for instance, the surface of a camera.

For clarity, let R be the Cartesian coordinates of the jump, let R3 be the radial
distance from the origin in 3D, and let R2 be the radial distance from the origin in
the 2D projection plane.

Then, applying the Fourier slice theorem C.8,

fR2(r) = F−1
2 [φR(k)] (r)

=
1

2π
H0 [φR(k)] (r)

where H0 is the zeroth order Hankel transform (see equation C.10).

In practice, it is actually easier to start from a 3D radial density as computed by
3.25, then apply the Abel transform to shift down by a dimension:

fR2(r) = A
[
F−1
1

[
∂

∂k
(kφR(k))

]]
= A

[
irF−1

1 [kφR(k)]
]

There’s a problem here for real experiments though. Imagine that we’re specifi-
cally projecting a Levy flight onto the lateral XY plane of a camera. In essence, the
Fourier slice theorem integrates over the jump distribution in the axial Z direction.
Implicit in the use of the slice theorem is that the integration bounds are at ±∞.

Suppose instead that we can only observe particles in a thin slice in the axial di-
rection with thickness ∆z. This is the case, for instance, in any imaging situation
with a finite depth of field. The depth of field is especially shallow when using
the high-NA objectives required for spaSPT experiments - - about 700 nm in our
experiments. Imagine that our particle starts at z = 0, so that the boundaries of
observation are at ±∆z/2.

We can attempt to derive the Fourier slice theorem in this geometry, following
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the general pattern of Section C.4 in Appendix C. Marginalizing over z,

fR2
(x, y) =

+∆z/2∫
−∆z/2

dz fR3
(x, y, z)

=

+∆z/2∫
−∆z/2

dz
1

(2π)3

∞∫∫∫
−∞

dk φR3
(kx, ky , kz)e

−i(kxx+kyy+kzz)

=
1

(2π)3

∞∫∫∫
−∞

dk φR3
(kx, ky , kz)e

−i(kxx+kyy)

+∆z/2∫
−∆z/2

dz e−ikzz

This gives

fR2
(x, y) =

∆z

(2π)2

∞∫∫∫
−∞

dk φR3
(k) sinc

(
kz∆z

2π

)
e−i(kxx+kyy) (3.27)

where

sinc(x) =
sin (πx)

πx

Only when ∆z → ∞ does this resolve into the slice theorem.

Suppose, further, that φR3
(k) is inseparable, meaning we cannot factor it into com-

ponents along each spatial dimension:

φR3
(k) 6= φX ,Y (kx, ky)φZ(kz)

Placing this into equation 3.27, a rather unexpected result emerges: the 2D ra-
dial jump distribution in this projection will not be the same as the 2D radial jump
distribution in free space.

This result is profound. It means that, unless we are able to observe jumps across
the entirety of the z axis, the distribution of XY displacements of jumps will be
dependent on our imaging geometry. Moreover, the jump distribution in the XY
plane will depend on the exact position that the particle started in Z.

This is remarkable because we started with a true Markov process: a Levy flight
in 3D, with a fully radially symmetric jump distribution. The result has a jump dis-
tribution that depends on where the particle starts in z. In essence, the imaging
geometry transforms a Markov diffusion process into a non-Markov diffusion pro-
cess.
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In order to accurately compute the jump distribution observed in the plane of the
camera, we need to account for this finite depth of field. Our approach is the
following:

1. Calculate the 3D radial jump distribution using the fast method defined by
3.25 on the characteristic function exp

(
−Dtkα − σ2lock

2
)
.

2. Project out of a 3D slice with finite thickness ∆z onto a 2D plane using the
finite depth Abel transform.

We define the finite depth Abel transform in the followingway. Suppose we have a
particle that begins at the position (0,0,Z0) and thenmakes a jumpR3 = (X ,Y ,Z).
Because the axial dimension is hidden to us in the SPT experiment, we only mea-
sure R2 = (X ,Y )T . Further, we only actually observe this jump if it ends up
in the focal volume. That is, we only observe the jump if Z0 ∈

[
−∆z

2
, ∆z
2

]
and

Z0 + Z ∈
[
−∆z

2
, ∆z
2

]
.

If we let R2 =
√
X2 + Y 2, then we can represent the distribution of R2 conditional

on some starting axial position Z0 as

fR2|Z0(r2|z0) =
∆z/2−z0∫

−∆z/2−z0

fR3

(√
r22 + z2

)
dz

But we don’t know the starting position z0. Assuming complete ignorance, we’ll
give Z0 a uniform distribution from −∆z/2 to ∆z/2. Then, marginalizing out Z0,
we have

A∆z [fR3 ] = fR2(r2) =
1

∆z

∆z/2∫
−∆z/2

dz0

∆z/2−z0∫
−∆z/2−z0

dz fR3

(√
r22 + z2

)
(3.28)

This will be our definition of the finite-depth Abel transform.

To compare with the Abel transform C.13, we can also rearrange the finite-depth
Abel transform as

fR2(r2) =
1

∆z

∆z/2∫
−∆z/2

dz0

√
r2
2
+(∆z/2−z0)2∫

√
r2
2
+(∆z/2+z0)2

fR3(r3)r3√
r23 − r22

dr3

Here, the subscripts in r3 and r2 emphasize the role they play in the geometry.
While somewhat intimidating, the idea of this transform is simple. It represents the
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actual process by which the 3D path of our particle in the focal depth is projected
onto the 2D surface of the camera. When the jump distribution is separable in the
spatial dimensions so that

fR3

(√
r2 + z2

)
= fR2 (r2) fZ (z)

then the finite-depth Abel transform just becomes

A∆z [fR3 ] = (constant term) · fR2(r2)

This is the case, for example, for regular or fractional Brownian motion. As we
have seen, it is not the case for Levy flights due to the inseparability of their 3D
density.

While the finite-depth Abel transform is not usually possible to solve analytically, it
does lend itself to a fast numerical algorithm to transform 3D histograms into 2D
histograms (Algorithm 3.2). This is sufficient for most practical purposes, including
model fitting.
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Algorithm 3.2: Numerical finite-depth Abel transform

Purpose:

Projects a distribution of 3D radial displacements into a distribution of 2D radial
displacements, given a finite depth of field∆z and a random starting position in z.

Parameters:

• ∆z, the focal depth

• Rmax, the maximum jump length to consider

• ∆r, the bin size

Precomputations:

Allocate a histogram H. The element Hj,i corresponds to jumps that have a 3D
radial displacement R3 that falls into the range [i∆r, (i + 1)∆r) and a 2D radial
displacement R2 that falls into the range [j∆r, (j + 1)∆r).

For some suitably high number of iterations N, sample in the following way:

1. For each bin i = 0,1,2, ... such that 0 ≤ i∆r < Rmax:

(a) Pick an point (X ,Y ,Z) with uniform probability from the surface of the
unit sphere.

(b) Generate a random number Z0 ∼ Uniform
(
−∆z

2
, ∆z
2

)
.

(c) Generate a random number u ∼ Uniform(0,1), then determine the
radius

R3 =
(
r30 + u

(
(r0 +∆r)3 − r30

))1/3
(d) If R3Z+Z0 ∈ [−∆z/2,+∆z/2], then determine R2 =

√
X2 + Y 2 and place

it in the corresponding bin ofH. Find the j such that R2 ∈ [j∆r, (j+1)∆r]
and increment the corresponding Hj,i by 1/N.

The array H, which is a matrix operator corresponding to the finite-depth Abel
transform, can be saved for later use.

Algorithm: Represent a 3D radial jump distribution as a vector v, where the el-
ement vi is the fraction of jumps that fall into the interval [i∆r, (i + 1)∆r). Then
the distribution of 2D jumps is Hv. Additionally, 1 −

∑
j

(Hv)j is is the fraction of

jumps that do not land within the focal volume.
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Since it takes some time to precompute the matrix operatorH, Algorithm 3.2 lim-
its us to working with jump histograms with a maximum displacement Rmax and
bin size ∆r that are known in advance. This is usually not a problem, provided
Rmax is chosen to be much larger than any experimentally observed displacement.
In our case, we usually choose Rmax = 20 µm.

Fig. 3.7 shows some examples of this approach applied to measure the stability
parameter α for various Levy flights. In this case, jumps from 10 ms to 40 ms were
used for fitting, which produces reasonably accurate estimates of α.

3.1.8 Summary

Here, we briefly review some of the most important results from this part of the
chapter:

1. The mean-squared displacement (MSD) provides a fast and easy approxi-
mation to the maximum likelihood estimator for RBM with localization error.

Figure 3.7: Using the radial jump histogram to extract the stability parameter from
simulated Levy flights. In all cases, the dispersion parameter was kept constant at
D = 2.0 µmα s−1. Histograms are observed jumps, black lines are model fits. Simulations
were performed in a 10 µm spherical nucleus with a 700 nm focal depth, 10 ms frame
intervals, 35 nm 1D localization error, and a 10 Hz bleaching rate. The probability density
for individual jumps interacts with the nuclear boundaries via specular reflections.

61



The approximation becomes exact when localization error is zero.

2. Due to localization error, even immobile objects appear to diffuse in spaSPT
data.

• When considering single jumps, the apparent diffusion coefficient due
to localization error is Derr = σ2loc/∆t, where σ2loc is the 1D variance as-
sociated with the localization method and ∆t is the frame interval.

• For RBM and FBM, diffusion cannot be distinguished from localization
error without considering jumps over multiple frame intervals.

3. Parameters for non-RBM diffusion models, such as FBM and Levy flights,
can be extracted to fitting the empirical distribution function (“CDF”) for
the radial jumps.

• In the case of FBM, it is also possible to extract model parameters via
the MSD relation MSD(t) ∝ Dt2H, although the jump length histogram
is preferable because it generalizes more readily to mixture models.

4. For separable diffusion models like RBM and FBM, we can treat diffusion in
the plane of the camera as intrinsically two-dimensional. This is not the case
for inseparable models like Levy flights, which require that we consider the
finite focal depth of the spaSPT setup.

5. Fast algorithms to calculate the PDF and CDF for Levy flights exist based on
the finite-depth Abel transform.

The models considered in this chapter provide the building blocks for more com-
plex diffusion models. In the next chapter, we construct some of these by com-
bining individual diffusive states into mixtures.

3.2 Identifying the type of motion

The previous section provided methods to parametrize regular Brownian motion
(RBM) and two kinds of departure from it - fractional Brownian motion (FBM) and
Levy flights. These estimators work well when dealing with single diffusing states
where we have a reasonably well defined idea about the mode of diffusion. How-
ever, assumptions in model selection - for instance, that diffusion is normal, that
localization error can be neglected, or that each molecule can be treated as a
sample from the same distribution - can have strong consequences for inference.
In later chapters, we examine diffusion model inference techniques that attempt
to remove some of these assumptions.
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This chapter examines a different, and earlier, aspect of spaSPT analysis. Before
spaSPT data is interpreted with diffusion models, it should first be subjected to
simple nonparametric methods that interrogate qualitative aspects of the mode
of motion. These methods can guide subsequent choices for the type of model
to use with a given spaSPT dataset.

In the course of these experiments, two of the most important questions before
proceeding to any model-dependent analysis are:

1. How many distinct types of motion are present in the dataset?

2. What is the type of motion? (Is there evidence of subdiffusion or superdif-
fusion?)

Of course, it is also possible to interpret spaSPT data with a model first, then dis-
criminate between models later. A common way to discriminate between models
is the Akaike information criterion or the Bayesian information criterion, which
are based on essentially arbitrary penalties for the number of model parame-
ters. (Indeed, there exist many situations for which the AIC and BIC give op-
posite answers.) A more principled approach from Bayesian statistics is the max-
imum evidence method [48], which is the criterion used for model selection in
the variational Bayesian framework vbSPT [50] and in the variational Bayes meth-
ods described later in this thesis (chapter 5). However, when applied to discim-
inate between normal and anomalous diffusion models, the maximum evidence
method depends heavily on the specific parametrization and can sometimes re-
sult in sharp, sudden transitions between “normal” and “anomalous” regimes.
Nature is under no constraint to be so categorical. As such, even when the maxi-
mum evidence method is used, simple visual nonparametric ways to find anoma-
lous diffusion are still valuable aids, and they become essential at the stage when
parametrization of the process is still incomplete.

In SPT experiments with exactly one diffusive state, linearity of the mean squared
displacement (MSD) with respect to time is an excellent example of a nonparamet-
ric way to identify anomalous diffusion. As we saw in the introduction, however,
the MSD is nearly useless in the presence of multiple diffusing states when the
microscope’s depth of field is finite. Since this is the case in essentially every live
cell spaSPT experiment performed to date, we must seek other methods.

First we discuss angular distributions, which may be seen as a direct alternative to
MSDs for identifying subdiffusion and superdiffusion. In the course of this discus-
sion, however, we demonstrate that any test based on the detection of Markov
(memoryless) dynamics is a flawed predictor of anomalous diffusion due to the
ubiquity of localization error. Indeed, localization error delivers a death blow to
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the Markov property of all Gaussian processes, encompassing many diffusion pro-
cesses beyond the ones considered in this chapter. Finally, we discuss a method
that paints a more general portrait of anomalous diffusion.

3.2.1 Angular distributions

An attractive alternative to the MSD is the angular distribution, which is schema-
tized in Fig. 3.8. In particular the angular distribution can be related directly to the
Hurst parameter of a fractional Brownian motion (FBM), which opens the door to
the powerful techniques associated with FBM and more generally Gaussian pro-
cesses.

Motivated by this application, we’ll examine the angular distribution through the
lens of FBM. First, we derive the angular distribution for an FBM with any Hurst
parameter. Next, we construct a Gaussian process closely related to an FBM that
incorporates localization error, an unavoidable aspect of real spaSPT data with
strong consequences for the memory effects of an FBM. Finally, we discuss the
MSD and the angular distributions as parametrizations of a Gaussian process co-
variance function, which can be seen as a more general alternative to either of
these methods.

Figure 3.8: Schematic of the angle θ between subsequent displacements in a
trajectory. The histogram on the right is the distribution of experimentally observed
angles for H2B-HaloTag in U2OS nuclei labeled with the dye PA-JFX549 and imaged at
7.48 ms frame intervals, considering only displacements equal to or greater than 160 nm
in length.
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3.2.2 Angular distribution for processes with long-range mem-

ory

We consider the angular distribution of a 2D FBM with Hurst parameter H and
diffusion coefficient D. A 2D FBM is constructed simply by the combination of
two orthogonal 1D FBMs: diffusion along the x and y axes is assumed to be given
by two independent stochastic processes Xt and Yt such that t ∈ R and

E [Xt ] = 0

E [Yt ] = 0

Cov (Xt ,Xs) = D
(
t2H + s2H − |t − s|2H

)
Cov (Yt ,Ys) = D

(
t2H + s2H − |t − s|2H

)
Along with the mean and covariance functions, we assume that the joint distri-
bution of the stochastic process at any finite set of points t1, ..., tn is given by the
multivariate normal density. This assumption qualifies the 2D FBM as a Gaussian
process. (See Appendix B for a full discussion).

Consider three points from this process: (X0,Y0), (X∆t ,Y∆t), and (X2∆t ,Y2∆t). Given
the length of the jump between the first two points, we seek the distribution of
angles formed by these three points in the XY plane.

From the definition above we have X0 = 0 and Y0 = 0. Further, let X∆t = x1 and
Y∆t = 0. We can do the latter since the distribution is isotropic, so we can always
rotate the three points so that the first jump aligns with the x axis without affect-
ing the angle.

The next step is to find the joint distribution of (X2∆t ,Y2∆t). Here, we exploit the
useful conditioning property of Gaussian processes (equation B.3, described in
Appendix B) to find that

X2∆t | (X∆t = x1) ∼ N
(
22H−1x1,D∆t2H(22H+1 − 24H−1)

)
Y2∆t | (Y∆t = 0) ∼ N

(
0,D∆t2H(22H+1 − 24H−1)

)
For convenience we shift the entire process Xt by −x1 so that the second point
coincides with the origin. This makes it easier to work in polar coordinates. As a
result, the conditional densities above become

X2∆t | (X∆t = 0,X0 = −x1) ∼ N
(
(22H−1 − 1)x1,D∆t2H(22H+1 − 24H−1)

)
Y2∆t | (Y∆t = 0,Y0 = 0) ∼ N

(
0,D∆t2H(22H+1 − 24H−1)

)
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Because the processes in x and y are independent, these variables have the joint
distribution

fX2∆t ,Y2∆t
(x, y) =

1

2πσ2
exp

(
−1
2σ2

(
(x − x)2 + y2

))
where we have defined

x = (22H−1 − 1)x1

σ2 = D∆t2H(22H+1 − 24H−1)

Let R and θ be the polar coordinates of X2∆t and Y2∆t , so that X2∆t = R cos θ and
Y2∆t = R sin θ. Then the joint density can be expressed

fR,θ(r, θ) =
1

2πσ2
exp

(
−1
2σ2

(
(r cos θ − x)2 + r2 sin2 θ

))
Rearranging,

fR,θ(r, θ) =
1

2πσ2
exp

(
−1
2σ2

(r − x cos θ)2
)
exp

(
−x2 sin2 θ

2σ2

)

The final step is to integrate out R to get the marginal distribution of θ. This
requires the integral

∞∫
0

r exp

(
−1
2σ2

(r − x cos θ)2
)
dr

This integral evaluates to

σ2 exp

(
−x2 cos2 θ

2σ2

)
+
√
2πσ2x cos(θ)Φ

(
x cos θ√

σ2

)
where Φ is the unit Gaussian CDF:

Φ(x) =
1√
2π

x∫
−∞

e−t2/2dt

With this, we have the final angular distribution

fθ(θ) =
1

2π
exp

(
− x2

2σ2

)
+

x cos θ√
2πσ2

Φ

(
x cos θ√

σ2

)
exp

(
−x2 sin2 θ

2σ2

)
(3.29)

To summarize, we have derived the distribution for the angles formed by subse-
quent displacements of a fractional Brownian motion with Hurst parameter H and
diffusion coefficientD, imaged at frame intervals of length∆t, with no localization
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error, given that the first displacement has radial length x1.

Fig. 3.9 shows several examples of the angular distribution for different values of
the Hurst parameter, and table 3.1 illustrates the relationship between the angular
distribution and the MSD for an FBM.

Hurst parameter angles MSD anomaly α
H < 1/2 biased toward 180° sublinear α < 1
H = 1/2 uniform linear α = 1
H > 1/2 biased toward 0° superlinear α > 1

Table 3.1: Distinct regimes of FBM as manifest in the angular distribution and MSD. The
parameter α refers to the exponent in the common ad hoc equation MSD(t) ∝ tα.

The result is equally applicable for the modified diffusion coefficient D (Fig. 3.10),
which is detailed in Appendix B. This is also a excellent demonstration of the role
of the modified diffusion coefficient in separating the magnitude of the jumps
from their correlation.

3.2.3 Fractional Brownianmotionwith localization error (FBME)

In real data, we never have processes corresponding to the fractional Brownian
motion Xt considered above, due to the ubiquity of localization error. As we will
see, localization error has strong consequences for the measurement of memory
effects in diffusion. To examine these effects, here we consider a Gaussian pro-
cess derived from FBM that incorporates a constant localization error term.

First, define the process X t by adding some Gaussian noise to an FBM:

X t = Xt +Nt

Specifically, Xt is an FBM with Hurst parameter H and diffusion coefficient D, and
Nt is white Gaussian noise such that

Nt ∼ N
(
0, σ2loc

)
Cov [Nt ,Ns] =

{
σ2loc if t = s

0 otherwise

The resulting stochastic process, X t , is another Gaussian process with the mean
and covariance functions

E
[
X t

]
= 0

Cov
[
X t ,X s

]
= E

[
X tX s

]
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Figure 3.9: Some sample FBM angular distributions with the regular diffusion
coefficient. FBMs were simulated and the outcome was compared with equation 3.29.
The two crosshairs in the “Cartesian density” column correspond to the positions of the
particle at time 0 and ∆t. The length of the first jump is held constant at 300 nm in this
case. The black line in the “model overlay” column corresponds to the prediction of
equation 3.29. Noting the strong dependence between the variance of the Cartesian
density and the Hurst parameter, compare this figure with Fig. 3.10.

textCov
[
X t ,X s

]
=

{
2Dt2H + σ2loc if t = s

D(t2H + s2H − |t − s|2H) otherwise
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In effect, we have added a diagonal term to the covariance matrix. This changes
the variance of each point’s position without affecting the covariance between
points. This process was considered recently by other authors [47].

Unlike for regular FBM, the first point X0 isn’t necessarily zero due to the localiza-
tion error. In reality we measure all of the points in the trajectory relative to the
first point (localization error included, since its exact value in X0 is unknown to us).

Figure 3.10: Some sample FBM angular distributions with the modified diffusion
coefficient. FBMs were simulated according to simulation and equation 3.29, using the
modified diffusion coefficient D. The two crosshairs corresponds to the positions of the
particle at time 0 and ∆t. The length of the first jump is held constant at 300 nm. Note
that using the modified diffusion coefficient prevents the Hurst parameter from exerting
too much influence over the variance of the displacements, effectively decoupling the
size of individual jumps from the correlation between jumps.

69



So we define a new stochastic process X̃t such that

X̃t = X t − X0

Now X̃t is what we actually measure experimentally. This is another Gaussian pro-
cess such that

E
[
X̃t

]
= 0

Cov
[
X̃t , X̃s

]
= E

[
X̃tX̃s

]
=


0 if t = s = 0

2(Dt2H + σ2loc) if t = s 6= 0

D(t2H + s2H − |t − s|2H) + σ2loc if t 6= s 6= 0

(3.30)

Importantly, notice that the localization error of the first point enters into the co-
variance of X̃t and X̃s for t > 0. Strictly speaking, this means that even when
H = 1

2
(which, for an FBM, corresponds to regular Brownian motion), the process

X̃t is not Markovian. As a result, in order to say anything about memory in dif-
fusion, we have to be extremely aware of the effect of localization error on our
measurements.

Elsewhere in this thesis, we’ll refer to the Gaussian process X̃t just defined as frac-
tional Brownian motion with localization error, or FBME.

In the sections that follow, we’ll examine some of the properties of FBME, with
special focus on the consequences for identifying and interpreting memory in SPT
experiments.

Angular distribution for FBME

Since FBME is the closest model to what we actually measure on the microscope,
it can give us insight into how localization error impacts our measurement. Here,
we derive the distribution of angles formed by every three points in the trajectory
of an FBME.

Suppose X̃t and Ỹt are independent FBMEs with Hurst parameter H and diffusion
coefficient D that determine the x and y position of a diffusing particle, respec-
tively. As in the previous case of FBM, we’ll record the positions of these particles
at three timepoints 0, ∆t, and 2∆t. For FBME, we always have X̃0 = Ỹ0 = 0.

As before, we’ll condition on X̃∆t = x1 and Ỹ∆t = 0, which we can rotate in the
XY plane to obtain any radial displacement of size x1. We can then apply the
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conditioning property of Gaussian processes B.3 and shift by x1 (exactly as in the
case of FBMs) to derive the conditional densities

X̃2∆t − x1 |
(
X̃∆t = x1

)
∼ N

(
x, σ2

)
Ỹ2∆t |

(
Ỹ∆t = 0

)
∼ N

(
0, σ2

)
where

x =

(
D(2∆t)2H + σ2loc
2(D∆t2H + σ2loc)

− 1

)
x1

σ2 = 2
(
D(2∆t)2H + σ2loc

)
−
(
D(2∆t)2H + σ2loc

)2
2(D∆t2H + σ2loc)

This is quite ungainly, but it’s worth examining the special case of H = 1
2
before

continuing, which can give some intuition about the role of localization error. In
FBM with H = 1/2 we had x = 0, meaning that the third point X̃2∆t on average
landed on top of X̃∆t . This is what one would expect for Brownian motion. But
for an FBME we have x ≤ 0 (with equality holding only if the localization error is
nonexistent). This is somewhat shocking. It means that, if we’ve seen two points
in a Brownian trajectory with localization error, the mean of a future third point is
not equal to the second point, but rather lies between the first and second points.

The magnitude of these deviations from martingale behavior depend on the ratio
D∆t/σ2loc, and become very significant when dealing with slow-moving molecules.

Figure 3.11: Demonstration of the effect of localization error on Brownian motion
Relative positions in the trajectory were measured relative to the first point in a
trajectory. In this case, D = 0.2 µm2 s−1 and the frame interval is 10 ms.
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To see this, suppose that we have a Brownian motion with a diffusion coefficient
D = 0.2 µm2 s−1 and localization error σloc = 0.035 nm. If we measure the parti-
cle’s position at 10 ms frame intervals (as in 3.11), then the mean apparent jump
between the first and second observations is about 100 nm. Taking x1 = 100
nm, we have x ' −19 nm. So despite that - on average - the real position of
the particle does not change, the apparent position of the particle will undergo a
mean shift of 19 nm back toward the first point in the trajectory, which represents
∼ 20% of the distance of the first jump itself. Due to these results, we should be
quite careful about analyzing memory in slow-moving molecules without taking
into account the effect of localization error. The reader may note that this gives
us some expectation about what to expect from the angular distributions of these
slow-moving molecules.

Returning to the problem of angular distributions, we note that with the condi-
tional densities above, the angular distribution is just 3.29 with the appropriate
substitutions for x and σ2. The general effect is to induce apparent subdiffusion,
with a magnitude that depend strongly on the ratio D∆t/σ2loc.

Figure 3.12 examines the effects of localization error at several Hurst parameters
for a slow-moving particle with D = 0.5 µm2 s−1. Notably, the effect of the lo-

Figure 3.12: Effect of localization error on the reversal probability of FBMEs.
FBMEs were simulated at various Hurst parameters for a particle with the modified
diffusion coefficient D = 0.5 µm2 s−1. Here we use 10 ms frame intervals.
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Figure 3.13: Reversal probabilities of FBMEs conditioned on long jumps. FBMEs
were simulated as in Fig. 3.12, except the reversal probabilities were computed on all
jumps greater than 0.16 µm rather than a specific jump length. The diffusion coefficient
given here is the regular (non-modified) diffusion coefficient, and the frame intervals are
7.48 ms.

calization error is strongest for superdiffusion, essentially making directed motion
impossible to detect by angular analysis. This is particularly important because
the primary sources of directed motion in the cell - molecular motors including
the myosin and kinesin networks - are intrinsically slow compared to diffusion.

However, the effect of localization error is decidedly less problematic for H < 1/2,
which is the more common case observed inside cells. The main challenge is dis-
tinguishing these subdiffusive cases from genuine Brownian motion, which will
always have a reversal probability greater than 0.5, despite being based on an
underlying Markov process.

The problem can be mitigated by conditioning the angular distribution on jumps
that are greater than some cutoff value - say, xmin. While the exact distribution of
angles expected for an FBME is difficult to obtain analytically for this case, it is
easy to evaluate with a Monte Carlo approach based on rejection sampling. The
result of this procedure is shown in Fig. 3.13, which demonstrates the difficulty of
inferring anomalous diffusion at low diffusion coefficients.

3.2.4 Increment process of FBMEs

We’ve seen that angular analysis of trajectories can be compromised by local-
ization error, especially for slow-moving molecules. So does there exist another
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nonparametric method to identify memory processes apart from the MSD and
the angular distribution? In the following section, we will propose the increment
covariance matrix as an alternative. To provide motivation and background for
this proposal, here we develop a theory for the increment process of the FBMEs
considered in the previous section.

Consider the process X t = Xt + Nt considered in the previous section, where Xt

is an FBM with Hurst parameter H and diffusion coefficient D and Nt is a Gaus-
sian white noise process with Cov(Nt ,Ns) = σ2loc if t = s and 0 otherwise. (This is

equivalent to considering X̃t ; the extra localization error term will drop out.)

We’ll imagine that we measure the position of this process at regular frame inter-
vals t0 = 0, t1 = ∆t, t2 = 2∆t, and so on.

Define the FBME increment process as Yi∆t = X i∆t − X (i−1)∆t for i = 1,2, .... Then
Yi∆t is another zero-mean Gaussian process such that

E
[
Yk∆j

]
= 0

Cov
(
Yi∆t ,Yj∆t

)
= D∆t2H

(
|i − j + 1|2H + |i − j − 1|2H − 2 |i − j|2H

)
+ 2σ2locIi=j − σ2locI|i−j|=1

(3.31)

where Ii=j is the indicator function:

Ii=j =

{
1 if i = j

0 otherwise

Examining the specific case of regular Brownian motion for which H = 1/2, we
have the increment covariance

Cov
(
Yi∆t ,Yj∆t

)
=


2
(
D∆t + σ2loc

)
if i = j

−σ2loc if |i − j| = 1

0 otherwise

(3.32)

This highlights two important features of FBME. First, the increments are station-
ary as their covariance depends only on themagnitude of |i − j| rather than the ab-
solute values of i or j. Second, the role of localization error is to induce a negative
correlation between subsequent jumps in a trajectory. The negative correlation is
absent when comparing jumps that do not share a common detection.

3.2.5 Position and jump covariance matrices

Just as the MSD is the diagonal of the FBME covariance matrix (3.30), so is the
angular distribution a representation of the diagonal and first off-diagonal posi-
tions of the increment covariance matrix (3.31). Neither function is free of the
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effects of localization error, and in the case of the angular distribution, the role of
localization error is actually fairly nonintuitive.

A simple alternative is to consider the full empirical covariance matrix. If X is an
experimentally observed set of trajectories so that Xij is the j

th position of the ith

trajectory, and so that the positions have been measured relative to the first point
in each trajectory, then the sample position covariance is

Cov(X) =
1

n− 1
XXT

where n is the number of trajectories, and the factor of (n−1)−1 reflects the Bessel
correction. The sample jump covariance can be obtained by the same procedure,
except substituting ∆X, the matrix of jumps such that (∆X)ij is the jth jump for
the ith trajectory.

When considering motion in 2D dimensions, we’ll have two such matrices X and
Y representing the positions in the x and y axes. It is then most convenient to
consider the sample covariance

Cov ({X,Y}) = 1

2n− 1

(
XXT +YYT

)
which assumes that the processes in the x and y dimensions are independent.

Figure 3.14: Visualization of the covariance matrices for several FBMEs. The
modified diffusion coefficient was held constant at D = 0.5 µm s−1 and the frame
interval is ∆t = 0.00748 ms. Note that while the jump covariances have all been colored
according to the same scale, the position covariances have individually scaled colormaps
for the purpose of illustration.
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(We discuss the question of determining dependence in section 3.2.6 below.)

When computing the sample covariance on trajectories, two points are worth
stressing:

1. To build the n × n covariance, all trajectories with fewer than n points (or
n+1 points, if using the jump covariance) must be excluded from the matrix
X (or ∆X).

2. To minimize the effects of localization error, which otherwise dominate the
covariance matrix via their effect on the diagonal, it is a good idea to ex-
clude immobile trajectories by imposing some lower limit on the trajectory
mobility.

A common method to do the latter is simply to exclude trajectories for which the
maximum likelihood estimate for the diffusion coefficient is below some lower
limit. If ∆xi and ∆yi are the x and y displacements of a trajectory with length n,
then the maximum likelihood estimate for its diffusion coefficient is

D̂mle =

n−1∑
i=1

(∆x2i +∆y2i )− 4(n− 1)σ2loc

4(n− 1)∆t

where∆t is the frame interval and σ2loc is the localization error. Alternatives include
classifying trajectories into bound or free states via an HMM and then running the
analysis on the free state, although this is not preferred because usually the HMM
classification is highly parametric and can potentially inject difficult-to-track biases
into the data.

Some covariance matrices for single-state regular Brownian motion are shown in
Fig. 3.14. Notice in particular the zero off-diagonal terms in the jump covariance
of a regular Brownian motion, and how the addition of localization error induces
negative covariance between subsequent jumps in a trajectory.

Covariance matrices for several real spaSPT experiments are shown in 3.15. No-
tice that while the primary sources of variance for jumps are the diagonal terms (in
a sense reflecting the “Markov” component of diffusion), the off-diagonal terms
are significant in magnitude for RARA-HT and in particular H2B-HaloTag.

Covariance between x and y displacements

As a sanity check, we can also compute the covariance between the x and y dis-
placements:

Cov (∆X,∆Y) =
1

n− 1
∆X∆YT
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where ∆Xij is the x component of the j
th jump for the ith trajectory, and likewise

for∆Yij. As before, n is the total number of trajectories in the dataset.

Provided diffusion and localization error are isotropic, these sample covariances
should be distributed around zero. Fig. 3.16 displays some of these “cross”
covariances. The lack of consistent covariances between replicates suffices to
demonstrate the isotropy of diffusion and localization error in these experiments.

Figure 3.15: Covariance matrices computed on 7.48 ms tracking experiments with
various biological samples. The colorscale of each subplot has been scaled individually.
Note the stronger off-diagonal terms for RARA-HT and in particular H2B-HaloTag,
reflecting a combination of localization error and subdiffusion. Both x and y
displacements were considered in the computation of these matrices.
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Figure 3.16: Cross covariance between the x and y components of jumps in
experimentally observed trajectories in 7.48 ms tracking.

3.2.6 Separability of diffusion in the x and y dimensions

Nonzero covariance between the x and y components of the jumps (as consid-
ered in the previous section) would reflect something quite wrong with the ex-
periment or image processing. However, zero covariance only implies indepen-
dence if diffusion and localization error are both Gaussian processes. For various
types of non-Gaussian diffusion, we may have zero covariance between the x and
y components of the jumps, but these components may nonetheless be depen-
dent processes. In this section, we examine this dependence through the lens of
Levy flights, a popular model that exhibits this behavior.

A 2D diffusion process R with x coordinates X and y coordinates Y is separable
in x and y if the joint PDF for its positions along each axis is factorable:

fR(x,y) = fX(x)fY(y)

FBMs and FBMEs, as Gaussian processes, are naturally separable. However, many
other non-normal diffusion processes are inseparable. This includes all Levy flights
except Brownian motion.

Let’s examine the inseparability of Levy flights in more detail. Suppose that X
and Y represent the x and y displacements for a single jump of a Levy flight with
diffusion coefficientD and stability parameter α, and that k = (kx, ky)

T is the corre-
sponding frequency vector. Then the process has the joint characteristic function

φX ,Y (k, t) = exp (−D |k|α t)

Because |k|α =
(
k2x + k2y

)α
2 only separates into a sum of kx and ky terms when

α = 2, and because separability in Fourier space implies separability in real space,
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Figure 3.17: Mutual dependence of the magnitudes of x and y components of
jumps for several types of Levy flights. The color scale reflects the relative probability
of a jump falling into the respective bin. The lower row has been normalized over the
bin corresponding to each x displacement. In these simulations, all Levy flights were
given a diffusion coefficient of 2.0 µm2 s−1 and were imaged at 7.48 ms intervals with 35
nm localization error in a 5 µm radius spherical nucleus with a 700 nm focal depth and a
13.4 Hz bleaching rate.

we can see that the PDF for the displacement will only be separable in the special
case of regular Brownian motion.

The process remains isotropic and Markovian - at least if we ignore defocalization
for the moment. What inseparability means here is that, when α < 2, seeing the
magnitude of a jump in the x dimension informs us about the magnitude of the
corresponding jump in the y dimension. Specifically, a longer jump in x implies a
longer jump in y.

We can use this insight to derive a simple test for separability: systematically vary
the magnitude of the jumps in x and see how the magnitudes of the jumps in y
respond. That is, we compute the conditional probability

Pr
(
|∆y|

∣∣∣ |∆x|
)

where ∆x and ∆y are the x and y components of a single jump in an spaSPT
dataset.

Fig. 3.17 shows the result of this process for simulations of Levy flights with differ-
ent stability parameters. Notice that only in the case of Brownian motion (α = 2)
is the displacement in the y dimension independent of the displacement in the x
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dimension.

Fig. 3.18 shows the results of this analysis applied to several real datasets. In
general, the x and y components of the displacements are not separable for real
trajectories.

There is a major caveat associated with the separability approach to identifying
anomalous diffusion: inseparability is a straightforward consequence of the pres-
ence of multiple diffusing states. Of the proteins shown in Fig. 3.18, only HaloTag
and HaloTag-NLS could be reasonably approximated by a single diffusing state.

Figure 3.18: Mutual dependence of the magnitudes of x and y components of
jumps for real trajectories collected in U2OS nuclei. All data were collected with the
photoactivatable dye PAJFX549 at 7.48 frame intervals with 1.0 - 1.5 ms pulse widths
and 1100 mW 561 nm laser power.
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Determining whether inseparability is the result of anomalous diffusion or multiple
diffusing states is a major challenge for this approach, and so it should be com-
plemented by other approaches, particularly those based on identifying diffusing
states in real data.

3.2.7 Aggregate likelihoods

One of the most central questions for the analysis of spaSPT data is how many dif-
fusive states are present in a given dataset. One approach to identifying diffusive
states is described in chapter 5 of this thesis, which relies on Bayesian methods to
select between models. However, sometimes even this approach is too paramet-
ric and we need simpler methods.

A very simple approach is to simply plot the likelihood function for model pa-
rameters, aggregated across all trajectories in a dataset. The general idea is to
evaluate the function

Pr (state j) ≈
∑

trajectory i

Pr (trajectory i given state j)

This approach has a justification in variational Bayesian statistics (see 5.4). Using
this approach, we can systematically vary the model parameters to identify which
are most probable, given an observed set of trajectories. This approach is quite
useful for identifying multiple diffusing states in a nonparametric way.

In this section, first we provide a brief justification of the method, then illustrate
its application to datasets using regular and fractional Brownian motion likelihood
functions.

Principle

A full justification for the aggregate likelihoodmethod in the context of variational
Bayes is given in section 5.4. Here, we provide a short intuitive argument for the
method.

Suppose we have a set of N trajectories, so that the ith trajectory is Xi. Use X
to denote the whole set of trajectories. (We use the ”blackboard bold” typeface
becauase X is often neither vector nor matrix, but a set of matrices of potentially
variable shape. For instance, each Xi may represent the point coordinates of tra-
jectory i.)

We’ll imagine that our trajectories can inhabit one of K distinct diffusive states,
each of which is parametrized by a parameter set θj (j ∈ {1, ...,K}). Let the vector
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of all θj be θ. For regular diffusion, θj may simply be the regular diffusion coeffi-
cient. Alongwith the specification of the parameter sets, we also need a likelihood
function, which we will write as

fX |θ(Xi | θj) = p(Xi | θj)
= probability of trajectory i given state parameters j

Now, we assume that each trajectory is generated from one of the K different
states. Of course, for any single trajectory, we may have very little confidence
which state that is. So we represent the state assignment as a random matrix Z,
where Zij = 1 if trajectory i is in state j and Zij = 0 otherwise. Since we are only
allowing a trajectory to inhabit one state at a time, the rows of Z must sum to 1:
K∑
j=1

Zij = 1.

Assume that the true fractional occupancy of the different diffusive states is some

vector τ , so that τj is the fractional occupancy of state j and
K∑
j=1

τj = 1.

We don’t have any reasonable belief as to what τ should be before seeing any
data, so assume that p

(
τj
)
= constant for all j. That is, we have no particular

reason to favor one state over another. A natural way to represent this condition
in Bayesian statistics is to choose the prior

τ ∼ Dirichlet (n0, ..., n0)

In a full Bayesian framework, wewould estimate the posterior distribution p (Z, τ | X).
However, in the aggregate likelihood method, we’ll instead estimate p(τ | Z,X),
the distribution over τ given constant X and Z. Of course, we don’t know the
state assignments Z. So we’ll make the mean field approximation

Zij ≈ rij =
fX |θ
(
Xi | θj

)
K∑

k=1

fX |θ (Xi | θk)

This actually corresponds to the posterior mean over Z given a uniform distribu-
tion for τ . (The full details are provided in 5.4.) Holding Z constant at r, Bayes’
theorem gives us

p(τ | Z) = p(Z | τ )p(τ )
p(Z)

= Dirichlet

(
n0 +

N∑
i=1

ri,1, ..., n0 +
N∑
i=1

ri,K

)
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For reasons outlined in chapter 4, we choose to weight the contribution of each
trajectory to the posterior distribution by the number of jumps. If Li is the number
of jumps in trajectory i, then

p(τ | Z) = Dirichlet

(
n0 +

N∑
i=1

Liri,1, ..., n0 +
N∑
i=1

Liri,K , ...,

)
Finally, if we let the weight of the prior n0 go to 0, then the mean of this posterior
distribution is

E
[
τj | Z

]
=

nj
K∑

k=1

nk

where nj =
N∑
i=1

Lirij

We use this posterior mean as the estimate for the occupancy of each state in the
aggregate likelihood method. Intuitively, this is just the sum of the normalized
likelihood functions for each trajectory. In chapter 5, we’ll see that this represents
a single step in the variational Bayes algorithm.

Regular Brownian motion likelihoods

Suppose that we have a trajectory in two dimensions with x-coordinates given by
Xi and y-coordinates given by Yi, so that the kth point in the trajectory is given
by (Xi,k ,Yi,k). Further, imagine there are Li + 1 total points in the trajectory.

As outlined in section 3.1, if the trajectory is a regular Brownian motion (RBM), its
likelihood function can be approximated by

fXi |θ
(
Si | θj

)
≈ Gamma

(
Li,

1

4(θ∆t + σ2loc)

)
(3.33)

where Si is the sum of squared jumps for trajectory i:

Si =

Li∑
k=1

(
(Xi,k+1 − Xi,k)

2 + (Yi,k+1 − Yi,k)
2
)

and θj is a diffusion coefficient.

Then the aggregated likelihood function for a set of trajectories X under the RBM
likelihood function is

F(θj) =
N∑
i=1

LifXi |θ(Si | θj)
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Figure 3.19: Aggregated likelihood function for regular Brownian motion. The labels
for the subplots correspond to: RARA-HT : endogenously tagged retinoic acid receptor
α-HaloTag in U2OS nuclei; H2B-HT : stably transfected histone H2B-HaloTag-SNAPf in
U2OS nuclei; HT : transiently transfected HaloTag in U2OS nuclei; HT-NLS: transiently
transfected HaloTag-3xNLS in U2OS nuclei. Cells were labeled with 100 nM PA-JFX549
for 30 min, then washed four times at 30 min for each wash. Imaging was performed
with a 100X NA 1.49 objective under HiLo illumination with 7.48 ms frame intervals and
1 ms pulsed laser illumination. In these conditions, the approximate depth of field is 700
nm and the localization error is ∼ 35 nm. Each subplot represents a separate biological
replicate, while each row of each subplot (”File”) represents a separate nucleus.

Fig. 3.19 demonstrates the application of this function to some real trajectories.
Importantly, we have not inferred the number or the diffusion coefficients of any
diffusing states. Nevertheless, from this plot we can tell immediately that

1. RARA-HaloTag and H2B-HaloTag occupy a broader range of states than
HaloTag or HaloTag-NLS.

2. While RARA-HaloTag and H2B-HaloTag have a substantial immobile fraction
at the lower end of the distribution, HaloTag and HaloTag-NLS do not.

84



3. HaloTag diffuses much faster than HaloTag-NLS.

Some less obvious features are that

1. There is substantial variability in the immobile fraction of RARA-HaloTag and
H2B-HaloTag between individual cells.

2. There is substantial variability in the slower-diffusing substates for HaloTag
and HaloTag-NLS.

3. H2B-HaloTag has a low-occupation fast-diffusing state around∼ 10 µm2 s−1.

From these results, we see that a multi-state diffusion model may be merited for
RARA-HT and H2B-HT, but not necessarily for HaloTag or HaloTag-NLS. In short,
we can abstract a substantial amount of information from these plots without fur-
ther analysis.

Fractional Brownian motion

The aggregated likelihood method is applicable to any trajectory likelihood func-
tion, not just the RBM likelihood 3.33. In later chapters, we’ll see that a useful
likelihood function to model memory effects in diffusion is the fractional Brown-
ian motion likelihood

fX|H,D(x | H,D) =
exp

(
−1
2
xTC−1x

)
(2π)

m
2 det (C)1/2

where X is a one-dimensional trajectory, m is the number of spatial dmensions,
and C is a covariance matrix with elements

Cij = D
(
(i∆t)2H + (j∆t2H − |(j − i)∆t|2H

)
Here, D is the diffusion coefficient, H is the Hurst parameter, and ∆t is the frame
interval. FBM treats diffusion in each dimension as independent, so the likelihood
function for a 2D trajectory is just the product of the likelihoods for the trajectory
along each axis. Exactly how localization error plays into the covariance matrix is
explored in the next chapter. For now, it suffices to remark that when H = 1/2, we
recover Brownian motion as a special case. For other values of H, the motion is
no longer Markovian; memory effects enter into play. As a result, the FBM model
is useful to describe molecules that exhibit subdiffusion or superdiffusion. As in
the case of the RBM likelihood function, it is useful to evaluate the likelihood on
a grid spaced logarithmically with respect to the diffusion coefficient to account
for the higher dispersion of the faster states.
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Fig. 3.20 shows the application of the FBM aggregate likelihood to simulated
trajectories. Notice that, due to the short trajectory length in these simulated ex-
periments, the dispersion of individual peaks tends to be quite broad, yet the true
number of states can still be identified.

Fig. 3.21 applies the same method to experimental spaSPT datasets. Several
features of the real dataset are worth mentioning:

• A small subpopulation of very high diffusion coefficient trajectories is ap-
parent in all of the experiments. This is due to the contribution of tracking
errors.

• H2B-HaloTag and RARA-HaloTag both have substantial populations at the
lower end of the diffusion coefficient range, indicating the presence of an
immobile population.

• H2B-HaloTag and RARA-HaloTag also both have slow-moving, highly subd-
iffusive states between 0.1 and 1.0 µm2 s−1. From this plot alone, it can’t
be determined whether these states are due to bona fide subdiffusion or
localization error.

Some of these features are annotated in Fig. 3.22. Altogether, the aggregate
likelihood method provides a simple way to identify the number and approximate
qualities of diffusing states in spaSPT data without subjecting them to model fit-
ting.

3.2.8 Spot shape

Because the distribution of light presented by a mobile emitter is integrated over
a finite time interval, this distribution represents the point spread function of the
microscope convolved with the path of the particle. As a result, the spot itself
can be used to parametrize diffusion independently of any correlative informa-
tion (e.g. tracking) of spots between frames.

A simple method to parametrize spot shape is the Zernike transform [73], which is
more frequently used to parametrize optical aberrations. The Zernike transform
represents each spot as a linear combination of orthogonal functions on the unit
disk called Zernike polynomials. By scaling the domain of the Zernike polynomi-
als to a spatial extent appropriate for the molecule in question and extending the
camera integration times to tens of milliseconds, it is possible to delineate the
spatial compartments of the cell purely on the basis of the PSFs they present (Fig.
3.23).
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We provide a software package, zzernike, for representing spots in spaSPT data
as linear combinations of Zernike polynomials. The input is fully compatible with
the output of the quot package.

3.2.9 Summary

Simple and nonparametric methods to identify the mode of motion are valuable
for spaSPT data, especially since the workhorse in this area - the mean squared
displacement - is rendered useless by the presence of multiple diffusing states
with finite depth of field.

In this part, we have described several potential replacements for the MSD in
order to characterize the mode of motion of a particle in a live cell spaSPT ex-
periment. All are subject to shortcomings, but together they constitute a viable
first pass at understanding the nature of a new spaSPT dataset. The merits and
shortcomings of each approach are summarized in Table 3.2.
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Figure 3.20: Aggregated likelihood function for fractional Brownian motion,
evaluated on simulated trajectories in a HiLo geometry. White crosshairs indicate the
simulated parameter sets, while the color maps are the aggregate likelihood function. In
this simulation, we used a frame interval of 7.48 ms, 14 Hz bleaching rate, 5 µm radial
nucleus, and a 700 nm focal depth. The mean trajectory length under these conditions is
3.5 frames, and about 10000 trajectories were used per subplot. The aggregated
likelihood function for FBM was evaluated on a grid spaced logarithmically with respect
to the diffusion coefficient.
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Figure 3.21: Aggregated likelihood function for fractional Brownian motion,
evaluated on various experimental spaSPT datasets. All experiments were performed
in U2OS nuclei as described in Fig. 3.19. Replicates indicate biological replicates, while
the ”c156”, ”c239”, and ”c258” next to the RARA-HT titles indicate independent
knock-in clones. The absolute values of the likelihood function will depend on the size of
the dataset, so the color maps have been scaled independently for each subplot. The
aggregated likelihood function was evaluated a grid spaced logarithmically with respect
to the diffusion coefficient.

Figure 3.22: Aggregated likelihood function for fractional Brownian motion
evaluated on retinoic acid receptor-HaloTag trajectories, with labeled features. All
experiments were performed in U2OS nuclei as described in Fig. 3.19.

89



Figure 3.23: Using the Zernike transform to parametrize the mode of diffusion of
nucleophosmin-HaloTag in different parts of the nucleus. (A) Schematic of the Zernike
transform. A set of observed 2D spots are represented as a linear combination of
Zernike modes on the unit disk. (B) Nucleophosmin-HaloTag-expressing U2OS cells
were stained with PA-JFX549 and tracked with 30 ms exposures with continuous
integration, rather than the stroboscopic schemes used elsewhere in this thesis. The
color scale in each subplot reflects the value of the corresponding Zernike coefficient for
each localization.
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Method Reports on Advantages / shortcomings

MSD Memory
effects

Simple to compute and easy to identify
localization error as the y intercept. But
cannot distinguish between defocaliza-
tion and subdiffusion in the presence of
finite depth of field.

Jump angles Memory
effects

Independent of defocalization for sepa-
rable diffusion processes, making it valu-
able as a complement to MSD. Sensitive
to localization error, and effects of local-
ization error are not always intuitive and
easy to control.

Position co-
variance ma-
trix

Memory
effects, lo-
calization
error

Contains all information about the diffu-
sion for a Gaussian process, but is fairly
nonintuitive for nonspecialists. Difficult
to visually distinguish anomalous diffu-
sion from normal diffusion without a sta-
tistical test.

Jump covari-
ance matrix

Memory
effects, lo-
calization
error

More intuitive and makes the connection
between subdiffusion and localization er-
ror clear. However, visualization is domi-
nated by the magnitude of the diagonal
term, which is dependent on the magni-
tude of the diffusion coefficient and lo-
calization error.

Conditional
jump magni-
tude

Separability
of diffusion
in x and y

Simple to visually interpret and identifies
inseparable diffusion processes. How-
ever, is sensitive to multiple diffusing
states if these cannot be ruled out.

Aggregated
likelihood

Presence of
multiple dif-
fusing states

Requires few trajectories, and can be
used to get a rough idea of state occu-
pancies. Sensitive to tracking errors.

Spot shape Spatial vari-
ability in
diffusion
coefficient

Does not require tracking, so can be
performed at higher densities. Requires
longer integration time, slowing down
acquisition. Probably cannot be used to
measure non-Brownianmodes ofmotion.

Table 3.2: Methods to identify modes of motion discussed in this chapter.
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Chapter 4

Multiple diffusing states

Biological molecules characterized by a single diffusive state are the exception
rather than the norm inside the cell. Local viscosities, transient interactions with
the environment, and multimolecular complexes in which biomolecules partici-
pate often result inmixtures of diffusive states. For example, transcription factors
present a distinct mode of diffusion when bound to the effective immobile scaf-
fold of DNA than when diffusing freely through the nucleoplasm, or in complex
with cofactors. As a result, different trajectories collected from the same cell can
display remarkably varied modes of diffusion (Fig. 4.1).

A central goal in spaSPT analysis is to resolve these mixtures into individual com-
ponents. This involves several related problems:

1. Identify the number of distinct states

2. Estimate the diffusive parameters for each state (e.g. diffusion coefficients
and/or Hurst parameters)

3. Estimate the fractional occupancy of each state

4. Determine the most likely state(s) for each trajectory

In this chapter, we examine points (2) and (3), assuming that the number of dif-
fusive states is known in advance. As we will see in the first section, these two
points turn out to be linked due to the defocalization problem, which generates a
dependence between the apparent fractional occupancy of a state and its diffu-
sive parameters. Incorporating explicit knowledge of defocalization can remedy
this problem and enable accurate state estimation for regular Brownian motion
(RBM), fractional Brownian motion (FBM), and Levy flights. We then consider two
approaches to solve the finite state estimation problem, one based on a maximum
likelihood framework and one based on a least-squares framework.
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At the end of this chapter, we return to points (1) and (4) above, reviewing existing
approaches to infer the number of diffusive states from spaSPT data. This discus-
sion lays the foundation for the next chapter, which generalizes the finite-state
models considered here.

4.1 Defocalization

Consider an spaSPT experiment with two kinds of molecules - one slow-moving
and one fast-moving. In the first frame, an equal number of both varieties are
present in our field of view. We then track each of them to the next frame. How
many jumps will we collect from each state?

If the microscope faithfully detects all fluorescent molecules in the cell, we would
collect equal number of jumps from both states. However, spaSPT setups typ-
ically only resolve a thin slice of the cell. This shallow depth of field (or “focal
depth”) is a consequence of both the high NA objectives required to collect suf-
ficient photons from each fluorophore as well as the inability to take z-stacks at

Figure 4.1: A set of randomly selected trajectories from an spaSPT dataset.
Endogenous tagged retinoic acid receptor alpha (RARA)-HaloTag was labeled with
PAJFX549 and tracked at 7.48 ms frame intervals with 1.5 ms pulse widths in live U2OS
nuclei.
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speeds requisite for tracking individual molecules. While multi-focal plane setups
that would resolve many of these difficulties have been described [33], these are
currently not widely available.

The result is that jumps are preferentially collected from the slow-moving states,
which tends to remain within the focal volume (Fig. 4.2). The magnitude of this
bias can be strong. For instance, if the slow-moving state has a diffusion coeffi-
cient of 0.1 µm2 s−1 and the fast-moving state has a diffusion coefficient of 8.0
µm2 s−1 - well within the range of experimentally observed variability - then 65%
of jumps will be collected from the slow-moving state. In general, state estimators
blind to the defocalization problem will systematically overestimate the occupan-
cies of slow-moving states.

Defocalization was considered by Kues and Kubitscheck as a way to help measure
the diffusion coefficient, since it induces a dependence between the diffusion co-
efficient and trajectory length [75]. Their approach was based on the assumption
of absorbing boundaries at the edges of the detection slice. Because molecules
can reenter the focal volume after leaving, this overestimates the defocalized
fraction. Mazza implemented a similar correction for two-state regular Brownian
motion models in spaSPT [59], and this approach was reimplemented by Hansen
and Woringer [60]. Because these methods are based on Kues and Kubitscheck’s

Figure 4.2: Schematic of the defocalization problem. Due to the finite depth of field
(“focal depth”) of most spaSPT setups, fast-moving molecules tend to contribute fewer
observed jumps than bound molecules. This can lead to various misinterpretations,
including systematically biased state estimation and apparent anomalous diffusion
(sublinear MSDs).
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model, which is fundamentally approximate, both Mazza and Hansen/Woringer’s
methods rely on correction factors derived from Monte Carlo simulations in order
to accurately compute the fraction of defocalized molecules for a given diffusion
coefficient. These simulations are performed in advance and then stored in a
look-up table for subsequent model fitting. Unfortunately, because the number
of Monte Carlo simulations quickly becomes unmanageable when considering all
possible combinations of model parameters, focal depths, frame intervals, and
gaps, the approach is unfeasible for models with more than a single diffusive pa-
rameter.

In this section, we describe a fast Fourier transform-based method to evaluate the
defocalization function. This approach does not rely on Monte Carlo simulations
or correctino factors, works for all focal depths and for any number of gaps, and
extends easily to Markov processes beyond regular Brownian motion. In particu-
lar, we apply the method to Levy flights. We then consider a different method to
address the defocalization problem for fractional Brownian motion, an important
non-Markovian diffusion model. Integration of the defocalized correction with
finite-state mixture model estimators are considered later in the chapter.

4.1.1 Computing defocalization for Markov processes

How do we account for the effect of defocalization on our data? In this section,
we derive formulas to compute the fraction of particles that defocalize for several
diffusion models. These formulas will subsequently be applied to state occupa-
tion measurements in spaSPT.

Consider the probability that a diffusing particle will leave the focal volume after
some time n∆t, where ∆t is the frame interval. Call this pdefoc(n∆t | θ). Here, θ
represents whatever parameters of the diffusion model are relevant to calculating
this probability.

The form of pdefoc will depend on the specific diffusion model. As it turns out, if
the diffusion process is Markovian - that is, if the jump between times 0 and ∆t
is independent of the jump between times ∆t and 2∆t - then there is a simple
algorithm to calculate pdefoc, which we describe here.

For now, assume we can observe particles if their z-position lies between −∆z/2
and ∆z/2. If a particle is found within this range, it is assumed detected and
tracked with probability 1.

Our trajectory starts out at some position (X0,Y0,Z0)
T . We’ll assume that the xy

plane is infinite in extent and we can observe all of it. This is reasonable since the
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Figure 4.3: Schematic of an approach to calculate the fraction of observed
trajectories that are contiguously observed in a finite-depth focal volume for
gapless tracking. An initial density for detection is sequentially convolved with the
Green’s function for the diffusion model, then at each observation (corresponding to a
laser pulse in stroboscopic tracking) the density outside the bounds of observation is set
to zero.

average radius of a nucleus is > 10 µm - a lot larger than experimentally observed
jumps. So for simplicity we’ll let X0 = Y0 = 0.

However, it matters where the particle starts in z because the depth of field is
shallow. Particles that begin closer to the limits ±∆z/2 have a greater chance to
defocalize. So we’ll imagine for the moment that our particle starts with uniform
probability density between these limits:

Z0 ∼ Uniform

(
−∆z

2
,
∆z

2

)
(4.1)

Use fZ0(z0) to denote the PDF corresponding to 4.1.

Let f∆R(x, y, z) = f∆X ,∆Y ,∆Z(x, y, z) be the PDF for a jump over some time interval

∆t, so that position of the particle after one frame interval is (∆X ,∆Y ,Z0 +∆Z)T .
If this jump density is radially symmetric, then there is some f∆Z(z) corresponding
to the jump density along the z axis exclusively.

Then, using the convolution property C.6, the random variable Z0 + ∆Z has the
characteristic function

φZ0+∆Z(k) = φZ0(k)φ∆Z(k)

96



For instance, if our particle moves according to a Levy flight with stability param-
eter α and dispersion D and starts out with the density 4.1, then this is

φZ0+∆Z(k) = sinc

(
k∆z

2π

)
exp (−Dt |k|α)

where

sinc (x) =
sin (πx)

πx

Then, using F1 to mean the one-dimensional Fourier transform, the fraction of
molecules that remain within the focal volume after one frame interval is

fraction inside focal volume after ∆t =

∆z/2∫
−∆z/2

F−1
1 [φZ0φ∆Z ]dz

Due to the Markov property, the jumps at later timepoints are independent of
this first jump, and so the fraction of particles found within the focal depth after
n frame intervals is

fraction inside focal volume after n∆t =

∆z/2∫
−∆z/2

F−1
1 [φZ0φ

n
∆Z ]dz (4.2)

Figure 4.4: Comparison of Algorithm 7.1 with two other approximations to the
defocalization function for regular Brownian motion. “FFT-based method” refers to
Algorithm 4.1 in this text, “fraction inside focal volume” is the result of directly
integrating the probability density inside the focal volume, and “absorbing boundaries”
is the approximation used by Mazza, Hansen, and Woringer [59] [60]. The black dots
reflect the results of simulation: trajectories with diffusion coefficient 2.0 µm2 s−1 were
photoactivated with uniform probability density in a 700 nm focal depth within a 10 µm
spherical nucleus and were subsequently computationally imaged with 10 ms frame
intervals.
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However, this is not equal to the fraction of trajectories we actually observe in
the focal volume after n frames. The reason is that many of these particles will
make transits outside the focal volume for one or more of the intermediate frame
intervals ∆t, 2∆t, ..., (n− 1)∆t. Indeed, they may have immediately left the focal
volume and returned only for a brief visit on n∆t. If we track without gaps, then
these particles are lost - even if a particle is found outside the focal volume for a
single frame interval, it will not be observed and the trajectory will be truncated.
Equation 4.2 is always an underestimate.

In order to calculate the fraction of molecules that actually defocalize after n frame
intervals, we need to remove the density present at each of the intermediate frame
intervals. To do this, define the operator

K∆z [f ] (z) =

{
F−1
1 [φ∆zF1 (f )] (z) if z ∈

[
−∆z

2
, ∆z
2

]
0 otherwise

(4.3)

The idea here is to convolve some initial density f (z) with the Green’s function for
the diffusion model, then set all of the density outside the focal volume to zero.
The approach is schematized in Fig. 4.3.

Then, assuming some initial density fZ0(z), the experimentally observed profile in
z after n frame intervals is

pdefoc(n∆t) =

∆z/2∫
−∆z/2

Kn
∆zF1 [fZ0 ] dz (4.4)

where Kn
∆z means n sequential applications of the operator K∆z. Algorithm 4.1

describes this approach in detail.
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Algorithm 4.1: Defocalized fraction of a Markov process after n frame intervals

Parameters:

• fZ(z, t), the model jump PDF over time t

• g(z), a real-space transmission function. For instance, if we only observe
particles between

[
−∆z

2
, ∆z
2

]
, then this might be

g(z) =

{
1 if z ∈

[
−∆z

2
, ∆z
2

]
0 otherwise

• ∆z, the focal depth

• ∆t, the experimental frame interval

• N, the number of frame intervals over which to compute defocalization

Precompute:

• φZ(k) = F1 [fZ(z,∆t)] (k), the Green’s function for the diffusion model over
one frame interval

Algorithm:

Instantiate the result vector v ∈ RN, where vj is the fraction of molecules that
have not defocalized at time j∆t.

Instantiate the density p
(0)
curr(z) = f0(z)with an appropriate numerical discretization.

For each t = 1,2, ...,N:

1. Convolve the current density with the Green’s function for the diffusion
model, then apply the real-space transmission function:

p(t)
curr(z) = g(z) F−1

1

[
F1

[
p(t−1)
curr

]
φZ
]
(z)

2. Record vt =
∞∫

−∞
p
(t)
curr(z)dz.
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Figure 4.5: Schematic of the recursive approach to calculate defocalization with
gaps. An initial probability density is sequentially evolved according to a diffusion
model, then split into components that are inside and outside the focal volume. This is
repeated at a recursion depth equal to the maximum number of frame intervals over
which we want to calculate the defocalization correction. In this specific case, each line
represents a 4 µm interval in the axial direction with a focal depth of ∆z = 700 nm. The
Green’s function corresponds to Brownian motion with diffusion coefficient D = 2.0 µm2

s−1 imaged at 10 ms frame intervals.

4.1.2 Defocalization with gaps

The method outlined in the previous section can be easily extended to tracking
with gaps. Whereas in Algorithm 4.1 we set all of the probability density outside
the focal volume to zero at each iteration, we can instead split off the probability
density outside the focal volume and continue propagating it separately according
to the Green’s function for the diffusion model (Fig. 4.5).
Fig. 4.5 is a recursive approach, requiring a potentially large number of FFTs if the
number of frames is high. However, by realizing that all of the density inside the
focal volume can be aggregated into a single distribution, it can be modified to
yield a fast iterative algorithm (Algorithm 4.2).

In this iterative algorithm, each p
(g)
curr(z) represents the probability density for a

particle that starts out in the focal volume at frame 0 and is subsequently outside
the focal volume for g frames, up to some maximum tolerated number of gap
frames ngaps. When this is exceeded, the density that remains outside the focal
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volume is lost forever. The algorithm works by taking the gapped density p
(g)
curr(z),

propagating it according to the diffusion model, then adding whatever density
lands inside the focal volume back to the density inside the focal volume. This ef-
fectively sets the “gap count” for these trajectories back to zero. This whole cycle
is repeated for however many frame intervals are relevant to the current analysis.
The algorithm is linear in the product of the maximum tolerated gap count ngaps
and the number of frame intervals under consideration. In practice it is quite fast
and amenable to iterative fitting algorithms.

Figure 4.6 compares Algorithm 4.2 with the result of simulated tracking data. Even
for the fairly small number of trajectories in this experiment, the calculation is
highly accurate. The effect of increasing the number of gaps is to decrease the
proportion of trajectories that are lost to defocalization, since some of them return
to the focal volume after a few gap frames. In particular, notice that the effect of
gaps on tracking is to change the apparent state occupations by as much as 30%.

Figure 4.6: Comparison of the algorithm 4.2 with tracking simulations. Each subplot
corresponds to a different focal depth ∆z. At each focal depth, tracking was simulated
with 10000 trajectories and the indicated number of gaps. Trajectories were initially
photoactivated with uniform probability density in the interval

[
−∆z

2 , ∆z
2

]
. For all

simulations, the mode of diffusion was regular Brownian motion with diffusion coefficient
was held constant at D = 2 µm2 s−1 and frame interval ∆t = 0.00748 ms.
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Algorithm 4.2: Defocalized fraction of a Markov process for tracking with gaps

Parameters: fZ(z, t), the model jump PDF over time t; ∆z, the focal depth; ∆t,
the frame interval; N, the number of frame intervals over which to compute defo-
calization; ngaps, the maximum number of gaps allowed during tracking.
Precompute:

• φZ(k) = F1 [fZ(z,∆t)] (k), the Green’s function for the diffusion model over
one frame interval

Algorithm:

Instantiate the result vector v ∈ RN. vj is the fraction of molecules that have not
defocalized at time j∆t. Instantiate a set of buffers pg,curr(z) with g = 0,1, ..., ngaps,
using an appropriate numerical discretization. For instance, a set of 1 nm bins
from -2.0 µm to 2.0 µm works well for our purposes. Set the first buffer:
p0,curr(z) = f0(z), and the others to all 0. Also make two more auxiliary buffers
R(z) and S(z) with the same discretization as fg,curr(z).

For each frame t = 1,2, ...,N:

1. For each gap g = ngaps,ngaps − 1, ..., 0:

(a) Set S(z) := 0 for all z.

(b) Evolve the probability density by setting

R(z) := F−1
1

[
F1

[
p(t−1)
g,curr(z)

]
φZ
]

(c) Take all of the probability density in R(z) that lies within the focal volume
and add it to the buffer S(z):

S(z) := S(z) + R(z) for all z ∈
[
−∆z

2
,
∆z

2

]
(d) Set R(z) := 0 for all z ∈

[
−∆z

2
, ∆z
2

]
.

(e) If g < ngaps, then set p
t
(g+1),curr(z) = R(z).

2. Set p
(t)
0,curr(z) := S(z).

3. Integrate the fraction of particles remaining inside the focal volume at this
frame interval:

vi :=

∆z/2∫
−∆z/2

p
(t)
0,curr(z) dz
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4.1.3 Non-uniform detection profiles in z

In our discussion of the defocalization problem so far, we have used two assump-
tions:

1. The particle starts out at a completely random position withinin the focal
volume. That is, its axial position starts with uniform probability density be-
tween −∆z/2 and ∆z/2.

2. At each frame, if the particle is inside the focal volume, it is detected and
correctly tracked with probability 1.

In reality, detection may be harder at the edges of the focal volume than toward
the center. We can accommodate a generalized detection profile as follows.

To relax assumption 1, we can substitute any initial profile fZ0(z) in algorithms 4.1
and 4.2, instead of the uniform profile.

To relax assumption 2, examine algorithm 4.1. At each frame interval, we annihi-
lated all probability density outside the focal volume by setting pcurr(z) = 0 for all
z ∈

[
−∆z

2
, ∆z
2

]
. This relied on the transmission function

g(z) =

{
1 if z ∈

[
−∆z

2
, ∆z
2

]
0 otherwise

Instead, we can filter the current density through any other g(z) that reflects the
probability to detect a particle at axial position z. The range of g(z) should lie
between 0 and 1, reflecting zero and unity probabilities of detection at that axial
position.

To make the corresponding modification for the gapped tracking algorithm, no-

tice that if p
(t−1)
curr (z) is the probability density for the axial position at the (t − 1)th

frame, then g(z)p
(t)
curr(z) is the probability density for the particles that are ob-

served in the next frame and (1− g(z))p
(t−1)
curr (z) is the probability density for par-

ticles that are not observed in the next frame. Then we can replace steps 1(c) and
1(d) in Algorithm 4.2 with the following:

[Step 1(c)] S(z) := S(z) + g(z)R(z))

[Step 1(d)] R(z) := (1− g(z))R(z)

The rest of the algorithm remains the same. Since detection at the first frame of
the trajectory and at subsequent frames of the trajectory has no real distinction
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from an image processing perspective, it’s usually appropriate to set the initial
density as

fZ0(z) =
g(z)

∞∫
−∞

g(z)dz

4.1.4 Computing defocalization for fractional Brownian motion

Fractional Brownian motion (FBM) is an important non-Markovian category of dif-
fusion. Algorithms 4.1 and 4.2 won’t work for FBM because the behavior of an
FBM trajectory will generally depend on its past. In other words, a single static
Green’s function cannot be used to evolve the probability density.

However, we can still account for defocalization by taking advantage of FBM’s na-
ture as a Gaussian process.

As outlined in Appendix B, the positions of a FBM along the z axis at a discrete
set of time points t = (∆t,2∆t, ..., n∆t) can be descibed as a multivariate normal
random vector Z with covariance C:

Z ∼ N (0,C)

Cij = D∆t2H
(
|i|2H + |j|2H − |i − j|2H

)
= D∆t

(
|i|2H + |j|2H − |i − j|2H

)
Here, D is the modified diffusion coefficient described in Appendix B. This means
that the PDF for Z is

fZ(z) =
exp

(
−1
2
zTC−1z

)
(2π)

n
2 det(C)

1
2

Suppose we have such an FBM that starts out at some initial position Z0, which
means that we shift the mean of the process above by Z0. The probability that
the particle is found within the focal volume at each of the discrete time points t
is then

Pr (remain in focal volume | starting position Z0) =
∆z/2∫
· · ·
∫

−∆z/2

fZ (z− Z0) dz

The integration is in a hyper-rectangular region defined by zj ∈
[
−∆z

2
, ∆z
2

]
for all

zj ∈ z. Then, supposing that Z0 ∼ Uniform
(
−∆z

2
, ∆z
2

)
, we can marginalize out Z0
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Figure 4.7: Comparison of the evaluation speeds for the FBM defocalization
function. Computation of equation 4.5 was assessed for a Gaussian quadrature
approach (from QUADPACK) against Alan Genz’s QSILATMVNV method.

by taking

pfbm defoc(D∆t,H,∆z,n) = Pr (remain in focal volume)

=

∆z/2∫
−∆z/2

dz0

∆z/2∫
· · ·
∫

−∆z/2

dz fZ (z− z0)
(4.5)

Here, we have emphasized the dependence on the parameters for the motion D
and H, as well as the imaging parameters ∆t, n, and ∆z. Only the product D∆t
is relevant for this integral, rather than D or ∆t alone.

Unfortunately, this integral is intractable for traditional method such as Gaussian
quadrature. However, there exist fast Monte Carlo methods for integrating these
variables. In particular, the state of the art is represented by the methods of Alan
Genz, particular the QSILATMVNV algorithm [74] which relies on an extremely
efficient scheme to sample integrals over multivariate normal densities. The im-
provements of this method over Gaussian quadrature method is impressive (4.7).

In practice, we evaluate integral 4.5 at a discrete set of points in the space ofD∆t,
H, and ∆z, then compute a cubic spline over this space for a quick approximation
of the defocalization function at any other point in this space.

Fig. 4.8 compares the results of this approach against the results of simulation
for FBMs with a variety of Hurst parameters and diffusion coefficients. Notice
that both of these parameters have an effect on the defocalized fraction, even
when using the modified diffusion coefficient. In particular, FBMs with higher
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Hurst parameters tend to leave the focal volume sooner than FBMs with lower
Hurst parameters.

4.2 Maximum likelihood estimators

In this section, we consider maximum likelihood estimators for the model parame-
ters governing diffusive mixture models with a finite number of components. This
discussion also serves to set up some constructions of mixture models that will
prove useful in later sections, and demonstrates how the defocalization factors
derived in the previous section can be used to improve state occupation esti-
mates in spaSPT.

One advantage of maximum-likelihood estimators over the radial jump histogram-
based estimators (considered later in this chapter) is that they remove several ele-
ments of choice in model fitting - including the number of frame intervals to con-
sider, bounds on parameter values, and the parameters governing the binning of
the jump distribution itself. But ML methods bring their own challenges too: the
kind of mixture models we consider in this thesis have no closed-form maximum
likelihood estimator. Instead we rely on iterative algorithms. The expectation-
maximization (EM) algorithm is a classic choice for mixture models, and we de-
velop it here in the context of spaSPT data.

This section has four parts. First, we state the problem of maximum likelihood

Figure 4.8: Comparison of simulation with the analytical defocalization equation 4.5
for various types of FBM. Each row of subplots corresponds to one of two focal depths
- 0.5 or 0.7 µm - and each column corresponds to a different Hurst parameter. Dots
correspond to the results of individual simulations, while dotted lines are the prediction
of 4.5. All simulations were performed in a 10 µm spherical nucleus with specular
reflections with 10 ms frame intervals. In these simulations, D refers to the modified
diffusion coefficient described in Appendix B.
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Figure 4.9: Defocalization functions and 2D radial jump CDFs for the three
categories of diffusion considered in this thesis. For each category of diffusion, 10000
trajectories were photoactivated with uniform probability density in a 700 nm focal
depth in a 10 µm spherical nucleus and positions were recorded with 35 nm localization
error at 10 ms frame intervals. The simulation parameters for each model were as
follows: Brownian motion, D = 3.0 µm2 s−1; FBM, D = 3.0 µm−1, Hurst parameter 0.25;
Levy flight, D = 3.0 µm1.5 s−1, alpha = 1.5.

inference for mixture models. Second, we discuss an EM routine for finding the
ML parameters. Third, we discuss modifications of this algorithm to accommo-
date state biases arising from defocalization. Finally, we discuss instances of the
algorithm applied to specific diffusive models.
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4.2.1 Statement of the maximum likelihood problem

Given a diffusive model with parameter vector θ and a set of observed trajectories
X, we seek the parameters that maximize a likelihood function:

θ̂mle = argmax
θ

L [θ | X]

We use the “blackboard bold” symbol X to denote the set of trajectories because
it is neither a vector nor a matrix, but a set of N matrices, each corresponding to
a trajectory. We’ll write these matrices as Xi ∈ X. Each matrix may be the spatial
coordinates of a trajectory, the jump vectors of a trajectory, or some statistic cal-
culated on the trajectory, and the different matrices Xi may not be the same size.
Whatever is most convenient for the specific problem should be selected.

It’s equivalent, and usually easier, to maximize logL [θ | X]. If each trajectoryXi ∈
X is independent of the others, then this log likelihood is

logL [θ | X] =
N∑
i=1

logL [θ | Xi]

In order to proceed, we need to choose the specific form for the likelihood of
a mixture model. We’ll construct the mixture model in the following way. First
choose some fixed number of states K . Let Zi ∈ {1, ...,K} represent the diffusive
state of trajectory i. We don’t know Zi; we only see the observed trajectory Xi.
Each state has some underlying proportion τj = Pr (Zi = j) in the mixture, which

make up a vector τ . These proportions must satisfy
K∑
j=1

τj = 1.

Let θj be the part of θ that parametrizes the diffusive state j. For example, in a
regular Brownian motion model, θj would be the diffusion coefficient for the jth

state. Together, the vectors θ and τ are what we’re trying to infer.

Use fX|Z
(
x | Z = j, θj

)
to represent the probability density of observing a trajec-

tory X = x, given that it inhabits state j and that the state is parametrized by θj.
The specific form of fX|Z will depend on the choice of diffusion model.

Then the likelihood function for a single trajectory, lacking knowledge of its state
Zi, can be written

L [θ, τ | Xi] = Pr (Xi | θ, τ ) =
K∑
j=1

τj fX|Z (Xi | Zi = j)
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and the likelihood function for the whole dataset is

L [θ, τ | X] =
N∏
i=1

K∑
j=1

τj fX|Z
(
Xi | Zi = j, θj

)
(4.6)

Equation 4.6 is sometimes known as the “incomplete” log likelihood, because it
represents the likelihood when have incomplete knowledge: we only know X, not
Z. Unfortunately, it corresponds to the log likelihood

logL [θ, τ | X] =
N∑
i=1

log

 K∑
j=1

τj fX|Z
(
Xi | Zi = j, θj

)
Due to the sum within the logarithm, this is intractable for inference.

However, if we knew the vector of state assignments Z, then the likelihood would
become

L [θ, τ | X,Z] = fX,Z (X,Z | θ, τ ) =
N∏
i=1

K∏
j=1

[
τj fX|Z

(
Xi | Zi = j, θj

)]IZi=j

This is known as the “complete” likelihood, since it assumes knowledge of both
the trajectories X and the state assignments Z. IZi=j is the indicator function,
which is 1 if its argument is true and 0 if it is false. This reflects our knowledge of
Zi. Taking the logarithm, we have

logL [θ, τ | X,Z] =
N∑
i=1

K∑
j=1

IZi=j

[
log τj + log fX|Z

(
Xi | Zi = j, θj

)]
=

N∑
i=1

[
log τZi + log fX|Z (Xi | Zi, θZi)

] (4.7)

Unlike 4.6, equation 4.7 is quite tractable for inference. If for some reason we
actually knew Z, finding the maximum likelihood estimates θ̂mle and τ̂mle would
be a cinch. In practice, numerous methods can still be used to maximize it while
working around our ignorance about Z. In the next part we examine one of these
methods.

4.2.2 Expectation-maximization

The maximum likelihood solution to the finite mixture model can be obtained by
an expectation-maximization (EM) routine. The idea here is that, even if we don’t
know the real vector of state assignments Z, we can still work with a probability
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distribution over Z that we’ll refine along with our guess for the model parameters
θ and τ . The algorithm iterates between two steps: (1) Determine the maximum-
likelihood solutions for θ and τ given the current distribution over Z, and (2) recal-
culate the probability distribution over Z given the new estimates of θ and τ . A
proof for the algorithm’s convergence to the maximum likelihood solution can be
found in the original EM paper [49]. An excellent general review is Chapter 9 in
Bishop’s book [48]. We provide an interpretation of the EM algorithm (including
the merit function Q below) in section 5.4.

Call the parameter estimates for the tth iteration θ(t) and τ (t). Then define the
merit function

Q
(
θ, τ | θ(t), τ (t)

)
= EZ|X,θ(t),τ (t) [logL (θ, τ | X,Z)]

= EZ|X,θ(t),τ (t)

[
N∑
i=1

(
log τZi + log fX|Z(Xi | Zi, θZi)

)]

=
K∑
j=1

N∑
i=1

Pr
(
Zi = j | Xi,θ

(t), τ (t)
) (
log τZi + log fX|Z(Xi | Zi, θZi)

)
(4.8)

Define the matrix T(t) ∈ RK×N such that

T
(t)
ji = Pr

(
Zi = j | Xi,θ

(t), τ (t)
)
=

τ
(t)
j fX|Z

(
Xi | Zi = j, θ

(t)
j

)
K∑

k=1

τ
(t)
k fX|Z

(
Xi | Zi = k, θ

(t)
k

) (4.9)

Then the merit function becomes

Q
(
θ, τ | θ(t), τ (t)

)
=

K∑
j=1

N∑
i=1

T
(t)
ji

(
log τj + log fX|Z(Xi | Zi = j, θj)

)
(4.10)

At each iteration, we seek

θ(t+1), τ (t+1) = argmax
θ,τ

Q
(
θ, τ | θ(t), τ (t)

)
Since τ and θ appear in separate terms in equation 4.10, they can be maximized
separately. The solution for τ can be found with Lagrange multipliers as

τ
(t+1)
j =

N∑
i=1

T
(t)
ji (4.11)
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In addition, each diffusive state appears as a separate term in 4.10. So they can
also be maximized separately:

θ
(t+1)
j = argmax

θj

N∑
i=1

T
(t)
ji log fX|Z

(
Xi | Zi = j, θj

)
(4.12)

The solution requires specification of the likelihood function fX|Z
(
Xi | Zi = j, θj

)
.

This depends on the type of diffusion (Brownian, FBM, etc.).

We highlight the important special case of regular Brownian motion.

4.2.3 Accounting for defocalization bias

The EM algorithm described in the previous section assumes that the frequency
with which we observe each diffusive state reflects the true state occupations τ .
This is not the case, for example, in situations with finite focal volume because
some states escape the focal volume faster than others. If we have a trajectory in
some state j, let ηj be the probability that our microscope observes this trajectory.
In the general case, ηj is a function of the focal depth∆z, the frame interval∆t, the
diffusion parameters θj, and the length of each trajectory Lj. Retaining the symbol
τ as the “true” state occupation vector, define the “observed” state occupation
vector µ such that

µj =
ηjτj
K∑
j=1

ηjτj

∝ ηjτj

(4.13)

Assuming that µj ∝ ηjτj will be sufficient for our purposes, since we can impose
normalization with Lagrange multipliers as shown below.

We can choose ηj to account for changes in the state occupation due to either
defocalization or photobleaching. But since photobleaching affects all diffusive
states equally, it factors out from the numerator and denominator in 4.13 and
we’re left with only the defocalization part.

Incorporating 4.13 into the complete log likelihood 4.7, we have

logL [θ, τ | X,Z] =
N∑
i=1

[
log ηj + log τZi + log fX|Z (Xi | Zi, θZi)

]
(4.14)
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Based on this, we can make the following modifications to the EM algorithm to
account for defocalization biases. Let

T
(t)
ji = Pr

(
Zi = j | Xi,θ

(t), τ (t)
)
=

ηjτ
(t)
j fX|Z

(
Xi | Zi = j, θ

(t)
j

)
K∑

k=1

ηkτ
(t)
k fX|Z

(
Xi | Zi = k, θ

(t)
k

)
Then we have the merit function

Q
(
θ, τ | θ(t), τ (t)

)
=

K∑
j=1

N∑
i=1

T
(t)
ji

(
log ηj + log τj + log fX|Z(Xi | Zi = j, θj)

)
(4.15)

As before, at each iteration t, we seek

θ(t+1), τ (t+1) = argmax
θ,τ

Q
(
θ, τ | θ(t), τ (t)

)
To be exact, ηj is actually a function of θj. However, we will make the approxi-
mation that ηj can be treated as a constant for any given iteration. Then we can
maximize the parts of Q(θ, τ ) corresponding to τ and θ separately.

For the τ part, we use Lagrangian multipliers. Impose the constraint
K∑
j=1

ηjτj = 1.

Then we seek the τ that maximizes the Lagrangian

L(τ ) =
K∑
j=1

N∑
i=1

T
(t)
ji

(
log ηj + log τj

)
− λ

N∑
j=1

ηjτj

where λ is the Lagrange multiplier. Taking the first derivative and setting to zero,
we have the solution

τ
(t+1)
j =

N∑
i=1

T
(t)
ji

ηj
K∑

k=1

N∑
i=1

T
(t)
ji

∝ 1

ηj

N∑
i=1

T
(t)
ji (4.16)

This is the same solution with an additional bias factor η−1j . As before, finding the

θ is specific to each diffusion model.

4.2.4 Accounting for photobleaching

In a typical SPT experiment, fluorescent molecules only last for a few frames be-
fore bleaching.
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Figure 4.10: Some snapshots of a simulation demonstrating the state bias issue.
The true occupations of state 1 and state 2 were each 50%. However, due to repeated
reentry of the faster state into the focal volume, we count more apparent trajectories
from state 1. In this simulation, the focal depth was 700 nm, the frame interval was 10
nm, the bleach rate was 20 Hz, and the diffusion coefficients corresponding to states 1
and 2 were D1 = 0.01 µm2 s−1 and D2 = 2.0 µm2 s−1 respectively.

This poses an issue for state occupations which echoes the defocalization discus-
sions in the previous section. Imagine that we only have two classes of molecules
- a completely immobile class and a highly mobile class. Fig. 4.10 illustrates this
situation. All trajectories are subject to the same photobleaching rate, so they all
eventually die out. However, we observe many more trajectories corresponding
to state 2 than to state 1. The reason is that trajectories in state 1 - because they
are slow - tend to contribute single, long trajectories within the focal volume. In
contrast, trajectories in state 2 tend to transit multiple times through the focal
volume before bleaching. As a result, we overcount the number of trajectories
from state 2.

Any kind of state estimation based on counting the fraction of trajectories in dif-
ferent diffusive states will fail with finite focal volume.

Instead, we must weight our samples by jump rather than trajectory. This means
that the fact that trajectories from state 2 reenter the focal volume multiple times
doesn’t matter. The only thing that we need to account for is the probability that
a jump from either state lands inside the focal volume.

To accommodate this, we make the following simple modification to the EM al-
gorithm. Instead of the matrix T defined above, instead weight each trajectory
by the number of displacements. If Li is the length of trajectory i in frames, then
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define T ∈ RK×N such that

T
(t)
ji = Pr

(
Zi = j | Xi,θ

(t), τ (t)
)
=

(Li − 1)ηjτ
(t)
j fX|Z

(
Xi | Zi = j, θ

(t)
j

)
K∑

k=1

ηkτ
(t)
k fX|Z

(
Xi | Zi = k, θ

(t)
k

) (4.17)

The remainder of the algorithm can be applied as described in the previous sec-
tion.

4.2.5 EM algorithm applied to regular Brownian motion

Having developed the machinery for estimating state occupations, let’s consider
the specific case of regular Brownian motion (RBM). Suppose that we have a tra-
jectory of length n + 1 frames measured in m spatial dimensions with diffusion
coefficient θj and localization error σ

2
loc. Let the jth spatial coordinate of this tra-

jectory be ξj ∈ Rm. If we use the approximation 3.17, then the sum of squared
displacements Si has the distribution

Si =
n∑

j=1

∣∣ξj+1 − ξj
∣∣2 ∼ Gamma

(
nm

2
,

1

4(θj∆t + σ2loc)

)

Let the vector of all such Si be S. This produces the EM merit function

Q
(
θ, τ | θ(t), τ (t)

)
=

K∑
j=1

N∑
i=1

T
(t)
ji

[
log ηj + log τj −

Si

4
(
θj∆t + σ2loc

) − mni
2

log
(
4
(
θj∆t + σ2loc

))]

Solving for ∂Q/∂θj = 0, we find

θ
(t+1)
j =

N∑
i=1

T
(t)
ji Si

2m∆t
N∑
i=1

T
(t)
ji ni

−
σ2loc
∆t

Along with definition 4.17 and the state estimate update equation 4.16, this com-
pletes the EM algorithm for regular Brownian motion. This approach is summa-
rized in Algorithm 4.3.
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Algorithm 4.3: Maximum likelihood estimation for K regular Brownian diffusive states

Parameters: X, a set of N experimentally observed trajectories in m spatial
dimensions; K , the number of diffusive states; σ2loc, the localization error in µm

2;
∆t, the frame interval; ∆z, the focal depth.

Precompute: For each trajectory i = 1, ...,N, calculate the sum of squared radial
jumps Si and the number of jumps ni.

Algorithm:

1. Choose some initial diffusion coefficients θ(0) and state occupations τ (0).

2. For each iteration t = 0,1, ...:

(a) Calculate the vector of state biases η, given the current diffusion coef-
ficients θ(t).

(b) Calculate the state probabilities

T
(t)
ji = ni

ηjτ
(t)
j fS|Z

(
Si | Zi = j, θ

(t)
j

)
K∑

k=1

ηkτ
(t)
k fS|Z

(
Si | Zi = k, θ

(t)
k

)
Here, fS|Z(s|j, θj) is the PDF corresponding to Gamma

(
nim
2
, 1
4(D∆t+σ2

loc
)

)
.

(c) Determine the new state occupations

τ
(t+1)
j =

η−1j

N∑
i=1

T
(t)
ji

K∑
k=1

η−1k

N∑
i=1

T
(t)
ji

(d) Determine the new diffusion coefficients

θ(t+1) =
TS

2m∆tTn
−
σ2loc
∆t

(e) If a convergence criterion on θ and/or τ is reached, terminate.

The most difficult part of the EM algorithm as currently stated is that we need an
analytical solution for θ(t+1) at each step. Even in the case of regular Brownian mo-
tion, we need to introduce an approximation (neglecting the correlation between
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subsequent jumps due to localization error) in order to produce this solution.

To avoid analytical solutions for the model parameters at each step, we can either
resort to MCMC methods (such as Gibbs sampling) or jump length histogram
estimators.

4.3 Gibbs sampling

While the EM algorithm is powerful, it requires analytical solutions for the param-
eters that maximize the conditional likelihood at each step. These are often hard
to obtain. Another challenge is the one inherent to maximum likelihood methods
- EM only generates a single point estimate of the model parameters. If many
other sets of parameters describe the data equally well, we will not learn this by
EM (or radial jump histograms, for that matter).

A potential solution to both of these problems is to useMarkov chain Monte Carlo
(MCMC) methods. Because MCMC methods only require evaluation of the likeli-
hood rather than its derivatives and do not require closed-form solutions at each
step, they can be more easily applied to complex diffusion models. And because
they return a distribution over model parameters rather than point estimates, they
can also be used to judgewhether one set of parameters describes the data better
than others. Nevertheless, MCMC methods have their own drawbacks. These in-
clude the identifiability problem, the method’s inherent randomness (which makes
it difficult to write deterministic tests), long computation times, and the selection
of parameters governing the MCMC iteration itself. These issues are discussed in
this section.

Here, we describe an MCMC framework based on Gibbs sampling for the prob-
lem of state estimation in spaSPT data. Building on the models introduced in the
previous section, we introduce a Bayesian treatment of the estimation problem,
which is important for regularizing the Gibbs sampling technique.

While EM or radial jump methods are generally more practical for finite-state
mixture models, this discussion lays the groundwork for the more non-traditional
MCMC methods necessary to implement the models in the next chapter.

4.3.1 Bayesian framework for finite-state diffusive mixtures

As before, suppose we have a set of N trajectories that we denote X, so that the
ith trajectory is Xi ∈ X. We assume that each trajectory is associated with a state
Zi ∈ {1, ...,K}. Each state j ∈ {1, ...,K} is characterized by a set of one or more
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state parameters θj. The fractional occupancy of the jth state across the whole
dataset is τj.

Our goal is to evaluate the probability of the model parameters τ and θ given the
observed trajectories using Bayes’ theorem:

Pr (τ ,θ | X) = L [τ ,θ | X]Pr (τ ,θ)
Pr (X)

Here, Pr (τ ,θ) is the prior probability for the model parameters, Pr (X) is a normal-
ization factor known as the evidence, and the likelihoodL [τ ,θ | X]was introduced
in the previous section (equation 4.6). The left-hand side is the posterior proba-
bility for the mixture parameters τ and θ. Because the prior and the posterior are
usually probability densities rather than discrete masses, we’ll write this as

π (τ ,θ | X) = L [τ ,θ | X] π (τ ,θ)
Pr (X)

(4.18)

where the prior π (τ ,θ) and the posterior π (τ ,θ | X) are treated as probability
densities. This scheme is illustrated as a graphical model in Fig. 4.11.

In order to define the prior π (τ ,θ), we assume that τ and θ are drawn from some
factorizable distribution:

π (τ ,θ | α,H) = π (τ | α) π (θ | H)

Figure 4.11: Graphical model for a Bayesian model for a finite-state mixture of
diffusive states. Each state j is associated with a fractional occupancy τj and a set of
one or more state parameters θj. Boxes represent plates, which represent sets of
random variables with the same conditional structure. The goal of inference is to
estimate the vectors τ and θ.
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α and H are hyperparameters for the priors. For the prior over τ , we choose

τ | α ∼ Dirichlet (α)

The Dirichlet prior is a natural choice for discrete probabilities like τ . Because
it is the conjugate prior for the multinomial distribution, it simplifies sampling
for MCMC methods. For instance, if we have a multinomial random vector n ∼
Mult (τ ,N) where τ ∼ Dirichlet (α), then Bayes’ theorem gives us

τ | n ∼ Dirichlet (α+ n)

This makes it clear that the hyperparameter α acts as a set of pseudocounts for
each state. As we accumulate more data (that is, asN increases), the magnitude of
n will become much larger than the magnitude of α and the prior will contribute
less weight to the posterior estimate of τ .

Motivated by this interpretation, we’ll usually choose to represent the hyperpa-
rameter in the form

α =
(α
K
, ...,

α

K

)T
(4.19)

Since all of the elements ofα are equal, this imposes no favoritism onto the states.
α represents the total pseudocounts in the prior. An important quantity is the
pseudocount fraction α/(α + N), which determines the relative strength of the
prior against the data.

The prior over θ will depend on the exact nature of the diffusion model. Consider
the specific case of regular Brownian motion as an example. For RBM, θj is the
diffusion coefficient for state j. Because the likelihood for RBM can be represented
as a product of gamma distributions (eq. 3.17), the conjugate prior over θj would
be another gamma distribution. This certainly simplifies the math, but using a
gamma prior will lead to sampling some diffusion coefficients far more often than
others. This isn’t a very good reflection of our prior beliefs; we usually have no
idea what θ is in advance. An alternative choice is

θj ∼ Uniform (θmin, θmax) (4.20)

In real data, θmin = 0 and θmax = 100 µm2 s−1, which bracket the range of protein
diffusion coefficients observed in live cells to date, are good choices. Then the
prior becomes

π
(
θj
)
=

{
1/(θmax − θmin) if θj ∈ [θmin, θmax]

0 otherwise

for all states j.
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4.3.2 Rationale for the Gibbs sampler

As in the case of EM, the incomplete likelihood in eq. 4.18 poses challenges for
inference. Inherent in the likelihood 4.6 is a marginalization over Z. There are N
elements in Z, each of which can assume one of K different values, for a total of
KN terms. This quickly becomes unfeasible. We usually have thousands of trajec-
tories or more (N > 1000) in each dataset.

Knowledge of Z would dramatically simplify the problem:

π (τ ,θ | Z,X) = L [τ ,θ | Z,X] π (τ | α) π (θ | H)
Pr (Z,X)

(4.21)

The likelihood function in eq. 4.21 corresponds to the “complete” likelihood in
eq. 4.7, which is far more tractable than the incomplete likelihood 4.6.

The problem, of course, is that we don’t actually know the state assignments Z.
So let’s pull the same trick, but now in reverse: suppose that we know τ and θ,
but not Z. Then Bayes’ theorem becomes

π (Z | τ ,θ,X) = L [Z | τ ,θ,X] π (Z)
Pr (X)

(4.22)

where

L [Z | τ ,θ,X] =
N∏
i=1

τZi fX|Z
(
Xi | Zi = j, θj

)
fX|Z(x | j, θj) is the probability density for a single trajectory in state j. We will usu-
ally take a noninformative prior for π (Z).

Unlike the joint posterior π (τ ,θ,Z | X), the conditional posteriors 4.21 and 4.22
are highly amenable to sampling. This suggests the following scheme:

1. Guess some initial τ (0) and θ(0).

2. For each iteration t = 1,2, ...:

(a) Conditioning on τ (t−1) and θ(t−1), sample Z(t) from eq. 4.22.

(b) Conditioning on Z(t), sample τ (t) and θ(t) from eq. 4.21.

This scheme is the central idea of the MCMC method known as blocked Gibbs
sampling. Proofs for its correctness generally need to demonstrate two things:
first, that sequentially sampling from conditional distributions actually produces
samples from the joint posterior, and second, that the Markov chain defined by
the samples τ (t), θ(t), Z(t) is ergodic on the joint posterior density. These proofs
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has been discussed in great detail elsewhere - in particular, we like Casella and
George’s 1992 review [76] and Bishop’s book [48], which both have plenty of ex-
amples.

One aspect of these proofs is worth highlighting here. A sufficient criterion for
the MC to be ergodic is that neither of the conditional distributions 4.21 and 4.22
are anywhere zero. This means that any point in the parameter space is accessible
from any other point. All of the diffusion models we have discussed so far satisfy
this requirement. However, just because another point in the parameter space is
accessible does not mean it is easy to get to.

To highlight this problem, consider the issue of sampling θ
(t)
j , given Z(t) and X.

SinceZ(t) gives us the exact set of trajectories belonging to state j, the component
of 4.21 corresponding to θj is

π
(
θj | Z,X

)
∝ π

(
θj
) N∏
i=1

fX|Z
(
Xi | Zi = j, θj

)IZi=j

where π(θj) is the prior from 4.20. Since this prior is not conjugate to the likelihood
fX|Z(x), we have no direct analytical representation for the posterior π(θj|Z,X).
Instead, we must sample from the posterior numerically, most commonly by a
Metropolis-Hastings step:

1. Generate θ∗j according to some proposal distribution g(θ∗j | θ(t)j ). The most

common choice for the proposal distribution is

θ∗j | θ
(t)
j ∼ N

(
θ
(t)
j , ν2

)
2. Evaluate the acceptance ratio

r =
g(θ∗j |θ

(t)
j )

g(θ
(t)
j |θ∗j )

π
(
θ∗j | Z,X

)
π
(
θ
(t)
j | Z,X

)

=
g(θ

(t)
j |θ∗j )

g(θ∗j |θ
(t)
j )

N∏
i=1

fX|Z

(
Xi | Zi = j, θ∗j

)IZi=j

N∏
i=1

fX|Z

(
Xi | Zi = j, θ

(t)
j

)IZi=j

3. Sample u ∼ Uniform(0,1). If u < r, set θ
(t+1)
j = θ∗j . Otherwise, set θ

(t+1)
j =

θ
(t)
j .
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Several points are worth noting about this scheme. First, notice how the noninfor-
mative prior 4.20 cancels, effectively exerting no influence on the result. Second,
when we use Gaussian-distributed steps like this, the bias term becomes

g(θ
(t)
j |θ∗j )

g(θ∗j |θ
(t)
j )

=

Φ

(
θmax−θ(t)j

ν

)
− Φ

(
θmin−θ

(t)
j

ν

)
Φ
(
θmax−θ∗j

ν

)
− Φ

(
θmin−θ∗j

ν

) (4.23)

where Φ(x) is the CDF for a Gaussian with zero mean and unit variance.

The most crucial part of this scheme is the selection of ν2, the variance of the
steps. While any choice of ν2 leads to a correctly ergodic Markov chain, some ν2

lead to more efficient samplers than others. If the steps are too large, then few of
them will land on values of θj that are feasible given the current Z. As a result, the
proposal θ∗j will only rarely be accepted and exploration of the parameter space

will be inefficient. On the other hand, if ν2 is too small, then the Markov chain will
take a high number of iterations to traverse any significant distance in parameter
space; the samples will have a high autocorrelation.

This demonstrates the point mentioned above: while points in parameter space
may be accessible, they may not be easy to get to. We can overcome such issues
by using more iterations, but for very large datasets this may be unfeasible. This
is a fundamental limitation of the Gibbs sampling approach.

4.3.3 Gibbs sampler for regular Brownian motion

As an example, we apply the Gibbs sampler to regular Brownian motion (RBM)
observed on a microcope with a shallow depth of field ∆z. If each trajectory i has
Li jumps in m spatial dimensions and the sum of squared radial jumps is Si, then
the trajectory likelihood is (using eq. 3.17)

fX|Z
(
Xi | Zi = j, θj

)
=

S
mLi
2

−1
i exp

(
− Si
4(θj∆t+σ2

loc
)

)
Γ
(
mLi
2

) (
4(θj∆t + σ2loc)

)mLi
2

As before, we assume that defocalization imposes some bias on the observed
fractional occupancies. If ηj is the probability to observe a jump from a trajectory
in state j, then the observed occupancy of state j is µj ∝ ηjτj.

Algorithm 4.4 is a straightforward implementation of this scheme. Notice that the
output of the method is a sequence of samples from the posterior distribution.
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Algorithm 4.4: Gibbs sampling for a finite-state mixture of regular Brownian motions

Parameters: X, a set of N experimentally observed trajectories; K , the number of
diffusive states; α, the number of pseudocounts; ν2, the Metropolis step variance;
θmin and θmax, bounds on the acceptable diffusion coefficient; σ

2
loc, the localization

error in µm2; ∆t, the frame interval; ∆z, the focal depth.

Algorithm:

1. Generate some initial guesses τ (0) ∼ Dirichlet
(
α
K
, ..., α

K

)
and θj ∼

Uniform (θmin, θmax) for j = 1, ...,K .

2. For each iteration t = 1,2, ...:

(a) For each trajectory i = 1, ...,N, draw Zi ∼ Mult (pi,N) where

pi,j ∝
τ
(t−1)
j

ηj
fX|Z(Xi|Zi = j, θ

(t−1)
j )

(b) Draw a new state occupation vector:

τ (t) | Z(t) ∼ Dirichlet
(
n1 +

α

K
, ..., nK +

α

K

)
where nj =

N∑
i=1

I
Z
(t)
i =j

.

(c) For each state j = 1, ...,K :

i. Propose a new diffusion coefficient θ∗j ∼ N
(
θ
(t−1)
j , ν2

)
.

ii. Calculate the acceptance ratio

r =

Φ

(
θmax−θ(t)j

ν

)
− Φ

(
θmin−θ

(t)
j

ν

)
Φ
(
θmax−θ∗j

ν

)
− Φ

(
θmin−θ∗j

ν

)
N∏
i=1

fX|Z

(
Xi | Zi = j, θ∗j

)IZi=j

N∏
i=1

fX|Z

(
Xi | Zi = j, θ

(t)
j

)IZi=j

iii. Draw u ∼ Uniform(0,1). If u < r, set θ
(t)
j = θ∗j ; otherwise set θ

(t)
j =

θ
(t−1)
j .

3. Return the sequence of samples
(
τ (t),θ(t),Z(t)

)
t∈N
.
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Gibbs sampler for fractional Brownian motion

Algorithm 4.4 is easily tweaked to accommodate fractional Brownianmotion rather
than regular Brownian motion. The ability of Gibbs sampling to generalize easily
to non-Brownian models is a major advantage over methods like EM.

The likelihood function for FBM cannot be boiled down to a single statistic analo-
gous to the sum of squared jumps for RBM. As a result, we’ll need to make some
notational changes to accommodate it.

Represent each trajectory Xi ∈ X as the set of 1D jumps along each spatial di-
mension, so that Xi,d,j represents the j

th jump in the dth spatial dimension for the
ith trajectory. Let Li be the number of jumps in trajectory i.

For the state parameters, let θj =
(
Dj,Hj

)
where Dj and Hj are the diffusion coef-

ficient and Hurst parameter for state j, respectively. Then replace fX|Z(x) with the
density function generated by eq. 3.31, which in m spatial dimensions is

fX|Z(Xi | Zi = j, θj) =

exp

(
−1
2

m∑
d=1

XT
i,dC

−1
∆ Xi,d

)
(2π)mLi/2 det(C∆)

m
2

with

(C∆)kl = Dj∆t
(
|k − l + 1|2Hj + |k − l − 1|2Hj − 2 |k − l|2Hj

)
+ 2σ2locIi=j − σ2locI|i−j|=1

and Dj = Dj∆t2Hj−1 is the modified diffusion coefficient, discussed in Appendix B.

The Metropolis-Hastings step (step 2(c) in Algorithm 4.4) can then be replaced
with the joint proposal

H∗
j ∼ N

(
H

(t−1)
j , ν2H

)
D∗

j ∼ N
(
D

(t−1)
j , ν2D

)
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Then acceptance ratio then becomes

r =

Φ

(
Dmax−D

(t)
j

νD

)
− Φ

(
Dmin−D

(t)
j

νD

)
Φ
(
Dmax−D∗

j

νD

)
− Φ

(
Dmin−D∗

j

νD

)

Φ

(
1−H

(t)
j

νH

)
− Φ

(
−H

(t)
j

νH

)
Φ
(
1−H∗

j

νH

)
− Φ

(−H∗
j

νH

)


·


N∏
i=1

fX|Z

(
Xi | Zi = j, θ∗j

)IZi=j

N∏
i=1

fX|Z

(
Xi | Zi = j, θ

(t)
j

)IZi=j


The rest of the algorithm proceeds as before. Importantly, if we hold H = 0.5,
then this algorithm also provides a means to estimate the localization error, which
can be defined on a state-by-state basis.

4.3.4 Posterior point estimates

The output of Gibbs sampling as represented in Algorithm 4.4 is a set of samples

of the joint posterior distribution
(
τ (t),θ(t),Z(t)

)
t∈N
. Typically we want to obtain

some kind of point estimates τ̂ and θ̂ from these samples.

Two options are most common: the maximum a posteriori estimate and the pos-
terior mean.

Maximum a posteriori estimate

The maximum a posteriori (MAP) estimate is defined as the point in the marginal
posterior distribution with the maximum posterior probability. For τ , this defini-
tion is

τ̂MAP = argmax
τ

π (τ | X)

and likewise for θ. Since we only have discrete samples from the posterior dis-
tribution, it is necessary either to bin the posterior distribution or use some kind
of kernel density estimate. The parameters governing binning and the KDE are
choices that the experimentalist must make.

Posterior mean

In contrast to the MAP estimate, the posterior mean is nonparametric:

τ̂mean = E [τ ] =
1

# iterations

∑
iter t

τ (t)
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and likewise for θ.

Because it is simpler and tends to provide more conservative estimates of model
parameters, we use the posterior mean in this thesis. Typically, we only include
samples after a certain “burn-in” period. Gibbs samplers of the type introduced in
Algorithm 4.4 frequently converge rapidly to the posterior distribution, so usually
20 - 100 iterations are sufficient for the burn-in period.

4.3.5 Identifiability

The most serious issue with the Gibbs sampling approach is that the states are
not unique. To see this, imagine that we have a two-component (K = 2) regular
Brownian motion model, and that there is a maximum in the posterior probability
at

τ1 = 0.3

τ2 = 0.7

D1 = 0.1 µm2 s−1

D2 = 1.0 µm2 s−1

Then there is necessarily another maximum at

τ1 = 0.7

τ2 = 0.3

D1 = 1.0 µm2 s−1

D2 = 0.1 µm2 s−1

The two models differ only in the labels assigned to the two states, which have no
intrinsic meaning apart from notational convenience. The model is invariant under
any permutation of these labels. Since there are K ! permutations for K labels, a
mixture of K diffusing states will have at least K ! maxima in the posterior distri-
bution that are equivalent. This is known as the identifiability or label-switching
problem, and has been reviewed in the context of mixture models in [77].

There are numerous ways to deal with identifiability, some more elegant than oth-
ers. The simplest solution is to impose a constraint on the diffusion coefficients -
for instance, requiring that D2 ≥ D1 in the model above. However, this seemingly
innocuous assumption can have severe consequences for inference and can even
contradict the prior on D.

An alternative approach is to compute the posterior mean, and then reorder the
components in terms of some condition - for instance, strictly increasing diffusion
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coefficient. This does not work when the Gibbs sampler traverses multiple modes
during the course of inference, but this is rarely the case for real spaSPT data and
so it mostly suffices for our purposes.

The approaches outlined in the next chapter remove most of the identifiability
concerns raised here, which can be considered an artifact of considering K dis-
crete states.

4.4 Radial jump histogram-based estimators

The EM algorithm and Gibbs sampler considered previously are two ways to an-
alyze mixtures of diffusive states. Another is to fit the empirical jump length his-
togram. (Usually, fitting to the empirical distribution function/CDF is more ap-
propriate, since it limits discretization artifacts associated with binning.) This ap-
proach has been discussed in detail for the specific case of regular Brownian mo-
tion by Mazza [59] and Hansen & Woringer [60], so here we only provide a high-
altitude overview.

Suppose, as before, that we have a mixture of K diffusing states characterized
by the state occupation vector τ = (τ1, ..., τK )

T and the diffusive parameters θ =
(θ1, ..., θK )

T . Let R ∈ Rm be a random jump made by a particle taken from this
mixture over n successive frame intervals, and let R = |R| be the end-to-end ra-
dial distance of this jump.

If we know that the jump is made from some diffusive state j with parameters θj,
then we can write the CDF for R as

FR
(
r,n | state j, θj,∆t, σ2loc,m

)
= Pr

(
R ≤ r | θj,n∆t, σ2loc,m

)
For example, if we have regular Brownian motion in two dimensions (m = 2) after
three frames (n = 3), we can apply eq. 3.10 to get the CDF

FR (r,n = 3) = 1− exp

(
− r2

4(nθj∆t + σ2loc)

)
If we don’t know the state that R comes from, the CDF for a jump taken from the
mixture is

FR
(
r,n | τ ,θ,∆t, σ2loc,m

)
=

K∑
j=1

τjFR
(
r | state j, θj,n∆t, σ2loc,m

)
(4.24)

This equation assumes that we sample in an unbiasedmanner from all of the states
in the mixture, neglecting the effects of defocalization. It is straightforward to
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incorporate defocalization corrections. Suppose as before that ηj(n) is the prob-
ability that our microscope observes a jump from a trajectory in state j after n
frame intervals. ηj(n) is a function of the diffusive parameters θj, the frame interval
∆t, and the focal depth ∆z, and can be computed with Algorithms 4.1 or 4.2, as
appropriate for the diffusion model and the number of gaps. If we let

µj =
ηjτj

K∑
k=1

ηkτk

be the apparent fraction of the jth state in the mixture after the effects of defocal-
ization, then we have the mixture CDF

FR
(
r,n | τ ,θ,∆t,∆z, σ2loc,m

)
=

K∑
j=1

µj(θj,∆t,∆z)FR
(
r | state j, θj,n∆t, σ2loc,m

)
(4.25)

As a simple example, consider a two-component mixture of regular Brownian mo-
tion states in two spatial dimensions (m = 2). Then, dropping the parameter
dependences for clarity, we would have

FR (r,n) = 1− 1

η1(n)τ1 + η2(n)τ2

(
η1(n)τ1e

− r2

4(nθ1∆t+σ2
loc

) + η2(n)τ2e
− r2

4(nθ2∆t+σ2
loc

)

)

As another example, if we replace the two RBM states with two FBM states char-
acterized by diffusion coefficients D1 and D2 and Hurst parameters H1 and H2,
then we would have

FR (r,n) = 1− 1

η1(n)τ1 + η2(n)τ2

(
η1(n)τ1e

− r2

4(nD1∆tH1+σ2
loc

) + η2(n)τ2e
− r2

4(nD2∆tH2+σ2
loc

)

)

The function FR(r,n) is fit with respect to the parameters τ and θ, and potentially
σ2loc if desired.

The mathematical simplicity of CDF fitting makes it particularly suited to dealing
with complex diffusion models without efficient maximum likelihood estimators,
such as Levy flights. However, the approach has some serious limitations:

1. The CDF fitting approach is not guaranteed to converge to a likelihoodmax-
imum.
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2. The approach is dependent on the jump binning scheme. If the jump bins
have linear spacing, then longer jumps have a stronger influence on the re-
sult than shorter jumps due to the higher number of points in the tail of the
CDF.

3. By discarding all connectivity information between subsequent jumps in a
trajectory, the approach has limited inferential utility for complex mixtures
of states or diffusion models with memory (such as FBM).

4. Because the CDF fitting approach is not phrased in terms of probability,
it cannot assign component likelihoods to individual trajectories. In other
words, we cannot go back to the original set of trajectories and estimate
how likely each trajectory is to have to come from a particular diffusive state.

The last point is particularly relevant when we want to understand whether tra-
jectories have different diffusive properties in different parts of the cell. Without
being able to relate individual trajectories to the likelihoods of different states,
we lose all of the spatial information inherent in raw spaSPT data.

4.5 Comparison of estimators for finite-statemixtures

We have described three frameworks for inference on finite-state mixtures of dif-
fusing states - expectation maximization, Gibbs sampling, and radial jump his-
togram fitting. Are these approaches equivalent solutions to the problem?

We compared the number of trajectories required for convergence for the three
different approaches (Fig. 4.12), finding that all three approaches converged at a
similar number of trajectories to the true model parameters. After 1000 trajecto-
ries, little additional improvements on accuracy were made by any trajectory.

In contrast, on real data, the three methods show more variability. This variability
is small but systematic when using a two-state model (Fig. 4.13), while it becomes
more considerable when analyzing data with a three-state model (Fig. 4.14). Two-
or three-state models are approximations for trajectories gathered from real cells,
which reflect molecules in perhaps dozens or hundreds of distinct diffusive states.
The deviations between models reflect the degree to which these methods han-
dle this complexity.

The comparisons in Figs. 4.13 and 4.14 demonstrate an important challenge for
SPTmethods: how to deal with complex input. Somemethods - in particular radial
jump fitting methods - take advantage of the full complexity of the models that
we fit with. This results in instability when fitting in higher-dimensional parameter
spaces. In contrast, other methods have a natural penalty on the complexity of the
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model. This latter class of methods, which are mostly descended from Bayesian
techniques, are the subject of the next chapter and address many of the concerns
with the finite-state estimators compared here.

4.6 Some model selection concerns

In the last three chapters, we considered three categories of motion - regular
Brownian motion, fractional Brownian motion, and Levy flights. For all three ap-
proaches, given the correct choice of model, it is possible to extract model param-
eters for that model. However, this does not address the issue of model selection

Figure 4.12: Comparison of the convergence efficiency for three different
finite-state mixture estimators in simulated SPT. Trajectories were simulated in two
diffusing states - a slow state (fraction 30%) with diffusion coefficient 0.01 µm2 s−1 and a
fast state (fraction 70%) with diffusion coefficient 3.0 µm2 s−1. Tracking was simulated in
a thin focal volume (700 nm) bisecting a spherical nucleus with 5 µm radius, with 10 ms
frame intervals, 30 nm localization error, and a 10 Hz bleaching rate. Box edges
represent the 25th and 75th quantiles. 100 iterations were run per experiment.
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Figure 4.13: Comparison of three different finite-state mixture estimators on real
trajectories with a two-state model. The constructs correspond to the following:
RARA-HT, endogenously tagged retinoic acid receptor α-HaloTag-3xFLAG in U2OS
nuclei; H2B-HT, stably transfected H2B-HaloTag-SNAPf in U2OS nuclei; HT, transiently
transfected HaloTag-MCS in U2OS nuclei; HT-NLS, transiently transfected
HaloTag-3xNLS in U2OS nuclei. Cells were labeled with 100 nM PA-JFX549 for 30 min,
followed by four 30 min washes. Tracking was performed with 7.48 ms frame intervals,
1.5 ms pulse widths on microscope with approximately 700 nm depth of field and 160
nm pixels; the approximate 1D dimensional root positional variance associated with
localization under these settings is ∼ 35 nm. Fits were performed without parameter
constraints.

in the first place. Two questions are especially important:

1. Howdowe decidewhether themode of diffusion is Brownian or non-Brownian?

2. How do we decide how many diffusive states are present in our data?

The first point was addressed in section 3.2. Selecting the wrongmodel does have
some consequences for the ability to infer state occupations - see Fig. 4.16. But
the second point is equally important. Indeed, much of the biological interpreta-
tion of SPT revolves around assigning different diffusive states to one or another
biochemical function. In the next chapter, we consider models that are geared
toward resolving the second question.
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Figure 4.14: Comparison of three different finite-state mixture estimators on real
trajectories with a three-state model. Sample preparation and tracking were
performed as in Fig. 4.13. Fits were performed without parameter constraints.
Individual dots indicate biological replicates.
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Figure 4.15: Using the radial jump histogram to extract the Hurst parameter from
fractional Brownian motion and the stability parameter from Levy flights. Accuracy
for parameter retrieval for non-Brownian diffusion models. (a) Estimating the Hurst
parameter for sampled fractional Brownian motion (FBM) trajectories. 10000 trajectories
were simulated in a nucleus observed with a synthetic focal depth of 0.7 µm in one of
two diffusing states with diffusion coefficients different by two orders of magnitude,
then fit at four frame intervals using the FBM diffusion model incorporating
defocalization. (b) Estimating the stability parameter for simulated Levy flight
trajectories 10000 trajectories were simulated in a nucleus observed with a synthetic
focal depth of 0.7 µm in one of two diffusing states (”immobile” refers to the fraction of
molecules in the slower-diffusing state), then fit at four frame intervals using the Levy
flight diffusion model (c) Accuracy of parameter retrieval for two-state FBM at various
numbers of sampled trajectories.
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Figure 4.16: Assessing the accuracy of immobile fraction estimation when the
model doesn’t match the data. For each subplot, one of three categories of diffusion
was simulated and then fit with a variety of other models. Estimates of the immobile
fraction are generally less accurate when the real fraction immobile is low.
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Chapter 5

Model selection

The previous two chapters presented some methods to infer the parameters gov-
erning mixtures of diffusing states. However, these chapters did not address the
question of how to select a particular mixture model from a set of alternatives. In
most of the cases dealt with so far, we assumed we know the underlying type of
diffusion and the number of states, but this is rarely the case in experiments.

In this chapter, we consider methods to learn diffusion models from data. Given a
particular set of trajectories, we seek not only to learn the occupations, diffusion
coefficients, and anomaly parameters for the various states, but also to learn the
type of diffusion and the number of states - a problem we refer to as model se-
lection.

Some of the approaches previously outlined - for example, the jump histogram
fitting method - tend to exploit all the available degrees of freedom in the model.
This means that model selection cannot be informed by the data itself (unless we
are willing to employ ad hoc methods like the Akaike or Bayes information crite-
ria), but must depend on our prior beliefs about the states available to a molecule
of interest. In many cases, however, we do not have access to this information.
Indeed, learning how many distinct diffusive states a particular protein can inhabit
in the cellular milieu is probably one of the most valuable pieces of information we
could learn from spaSPT. The failure of jump length histogrammethods to provide
this information is one of their principal shortcomings.

The primary results of this chapter are a set of three algorithmic frameworks for
model selection: discrete-state variational Bayes, arrayed state samplers, and
Dirichlet processes. The latter two methods extend easily to non-Brownian diffu-
sion models, but we also find that the discrete-state variational Bayes framework
is a valuable drop-in replacement for jump length histogram methods.

134



5.1 Jump histogram-based methods

A few techniques for nonparametric recovery of the distribution of diffusion coef-
ficients operate on the jump histogram, aggregated across all trajectories. Here,
we highlight two of these as a counterpoint to the Bayesian methods considered
later in the chapter.

5.1.1 Laplace transform methods

When trajectories are collected in two dimensions, a simple and naïve method to
recover the distribution of the diffusion coefficient relies on the inverse Laplace
transform of the jump length histogram.

Let S = (Xt+∆t − Xt)
2+(Yt+∆t − Yt)

2 represent a single squared jump for a regular
Brownian motion in two dimensions. We saw that the probability density for this
jump conditional on some diffusion coefficient D is given by

S | D ∼ Gamma

(
1,

1

4(D∆t + σ2loc)

)
= Expon

(
1

4(D∆t + σ2loc)

)
where σ2loc is the localization error and Expon is the exponential density. Define
the spatial variance φ = 4(D∆t + σ2loc), which collects the contributions to the ob-
served jumps from both diffusion and localization error.

Then, if the true underlying distribution of φ is fφ(φ), the observed distribution of
jumps is

fS(s) =

∞∫
0

fS|φ(s|φ)fφ(φ)dφ

=

∞∫
0

φ−1fφ(φ)e
−sφ−1

dφ

Let p = φ−1. Then this becomes

fS(s) =

∞∫
0

(
fφ(p

−1)

p

)
e−spdp

= L
[
fφ(p

−1)

p

]
(s)
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whereL is the Laplace transform. Recognizing that division by p in the real domain
corresponds to integration in the Laplace domain, and accounting for the term at
p = 0, we have

fφ(p
−1) = L−1 [1− FS(s)] (p) (5.1)

Here, FS(s) =
s∫
0

fS(s
′)ds′ is the cumulative distribution function of S.

So in principle, we can get the distribution of diffusion coefficients by taking the
inverse Laplace transform of the squared jump distribution. This is analogous to
the use of the inverse Laplace transform to get the residence times for single
molecules binding to chromatin, proposed recently [78]. Unfortunately, this ap-
proach is highly impractical. The inverse Laplace transform is numerically unstable
and requires a great deal of regularization, especially since our actual distribution
of S is discrete and usually has substantial noise associated with it. Indeed, the
behavior at very low φ (very high p) can be entirely determined by a small number
of bins at the lower end of the jump distribution. Gebhardt and coworkers have
investigated these problems in detail for the residence time estimation problem
[78], and most of their work is devoted to imposing regularization conditions on
the ILT.

At a more fundamental level, using the squared jump distribution disregards most
of the information inherent in trajectories. That is, we can learn more about a tra-
jectory by considering it in its entirety than by decomposing it into a sequence of
jumps.

5.1.2 Richardson-Lucy algorithm

Amethod proposed byWang et al. [79] takes an alternative approach that is math-
ematically similar to but far more stable than the naïve inverse Laplace transform.
This method is based on the Richardson-Lucy algorithm, which is more commonly
used for image deconvolution.

As above, let φ be the spatial variance, collecting time-dependent and -independent
contributions to the apparent particle position. Suppose that fS,obs(s) is the ex-

perimentally observed jump histogram, that f
(t)
φ (φ) is the estimated distribution

of spatial variances at the tth iteration, and that f
(t)
S,model(s) is the predicted jump

histogram based on f
(t)
φ (φ). That is,

fS,model(s) =

φmax∫
0

f
(t)
φ (φ)fS|φ(s|φ)dφ
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Then we can directly apply Lucy’s method [80] to generate the iterative scheme

f
(t+1)
φ (φ) = f

(t)
φ (φ)

∫
fS,obs(s)

f
(t)
S,model(s)

fS|φ(s|φ)dS

In the light of 5.1, this method can be viewed as a way to regularize the inverse
Laplace transform. As such, it requires a very large number of jumps to avoid
sensitivity to noise and in practice takes a large number of iterations to converge.
Like the inverse Laplace transform approach, this also disregards most of the in-
formation inherent in the trajectories by reducing them to a single jump histogram.

An alternative approach is to use Bayesian inference. As we will see, this also
regularizes the inverse problem, but in a more principled way than for the inverse
Laplace transform.

5.2 Discrete-state variational Bayes

The expectation-maximization (EM) algorithm described in the previous chapter
relied on iterative maximization of the “merit function” (equation 4.10)

θ(t+1), τ (t+1) = argmax
θ,τ

E [logL (θ, τ |Z,X)]

In this criterion, X was an experimentally observed set of trajectories which could
inhabit one of K different diffusive states with occupations τ and state parameters
(e.g. diffusion coefficients) θ.

Equation 4.10 was presented without justification. Here, we provide motivation
for this scheme from the context of variational Bayesian (VB) statistics. Interpre-
tation of EM in this context is well-established; chapter 10 in [48] is highly recom-
mended as a reference. The vbSPT algorithm [50] is a prototypical application of
the approach to spaSPT data.

For practical spaSPT analysis, the major advantage of a full VB treatment over EM
is that it provides a natural criterion for model selection - in particular, for choosing
the number of diffusing states in a mixture. This criterion appears in the form of
the variational lower bound on themarginal likelihood. (This quantity is also some-
times known as the evidence lower bound or “ELBO”.) Because VB maximizes the
variational lower bound rather than the model likelihood, it incorporates a natural
penalty on model complexity in the form of the negative entropies of the poste-
rior distribution. As a result, the framework naturally favors the simplest possible
models that describe the data.
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In this section, first we provide a brief review of VB methods in the context of
spaSPT, then proceed to derive what is probably the simplest possible variational
framework for mixtures of regular Brownian motions. Next, we show how this
framework can be used for model selection. Finally, we comment on some of
the limitations of variational Bayes methods for spaSPT analysis, particularly when
applied to non-normal diffusion models.

5.2.1 Variational lower bound

For a second, we’ll forget about trajectories and diffusion coefficients to keep the
notation less cluttered. Suppose that X represents a set of random variables that
we have observed and Y represents a set of random variables that we have not
observed. For example, X might be some data and Y might be model parame-
ters or state assignments for each data point. From a Bayesian context, there is
no fundamental difference betweenX andY apart from that one is observed and
one is not. In other words, both are treated as sets of random variables that are
linked by some kind of relationship (a “model”).

Our goal is to see how much we can learn about Y given the observed X. The
recipe to do this is Bayes’ theorem:

p (Y|X) =
p (X|Y)p (Y)

p (X)

For the vast majority of models, one or more of these terms will be analytically
intractable. In particular, the marginal likelihood (also known as the model evi-
dence)

p(X) =

∫
Y

p(X,Y)dY

lacks a closed-form expression for all but the simplest models. All of the Bayesian
methods considered in this thesis are ways to work around this problem. They pro-
pose some kind of approximation to the posterior that is refined through iteration,
often without having to evaluate p(X). In the case of Monte Carlo techniques like
Gibbs sampling, the approximation is numerical, achieved by simulation. In vari-
ational Bayes, the approximation is some analytical function q(Y). Our goal is to
change q until

q(Y) ≈ p(Y|X)

In other words, we want our inference method to find a q(Y) that is in some
sense “close” to the real posterior. A natural way to quantify “closeness” is the
Kullback-Leibler divergence

KL(q||p) = −
∫
Y

q(Y) log

[
p(Y|X)

q(Y)

]
dY
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(The integral can be replaced with summation, for parts of Y that are discrete.)
An important property of the divergence is that KL(q||p) ≥ 0, with equality hold-
ing only if q and p are identical. As a result, one way to obtain an approximation
to the posterior is to minimize the Kullback-Leibler divergence with respect to q.
The problem is that the divergence is difficult to minimize directly: after all, it de-
pends on p(Y|X), which is exactly what we’re trying to infer.

There is a way around this difficulty. Define the variational lower bound

L[q] =

∫
Y

q(Y) log

[
p(X,Y)

q(Y)

]
dY (5.2)

L[q] is a functional, mapping each distribution q to a real number. The motivation
for the name “lower bound” will become clear shortly.

According to the multiplication law of probability,

p(X,Y) = p(Y|X)p(X)

Substituting this into 5.2 and rearranging, we obtain

logp(X) = L[q] + KL(q||p)

Since KL(q||p) ≥ 0, we have logp(X) ≥ L[q] So L[q] places a lower bound on
the marginal log likelihood (hence its name). The two are equal if and only if the
Kullback-Leibler divergence between q(Y) and p(Y|X) is zero - that is, if our ap-
proximation is perfect. Since p(X) doesn’t depend on Y, it is a constant with
respect to our choice of q. As a result, minimizing KL(q||p) is equivalent to maxi-
mizing L[q].

This is vital because it is usually easier to maximize L[q] than it is to minimize
KL(q||p). L[q] depends on logp(X,Y) (the “complete log likelihood” from the
previous chapter) rather than the posterior logp(Z|X). The former is often far
easier to work with, as we saw in the discussion of finite-state mixture models in
the previous section.

In order to maximize L[q], we next inspect the structure of the approximative pos-
terior q.

5.2.2 Factorable approximations to the posterior

So far, we’ve made no assumptions about the form of the model apart from segre-
gating the random variables into two categories X and Y. In particular, the form
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of q remains completely unspecified.

One approach to define q is simply to choose some function expected to provide
reasonably good approximations to the true posterior. While viable, this approach
often introduces more assumptions about the form of the posterior than is strictly
necessary. The alternative proposed in variational Bayes is the following.

Segregate the parameters Y into disjoint groups labeled by k, so that the kth

group is Yk. We assume that the function q is separable with respect to these
groups:

q(Y) =
∏
k

qk(Yk) (5.3)

For many models, appropriate selection of the groups along with the priors and
the likelihood p(X|Y) is sufficient to induce a closed form for the factors qk. In
other words, this is the only assumption we need to make.

To see this, we’ll focus on a particular term qj(Yj), holding the others constant.
Substituting 5.3 into 5.2, we have

L[q] =

∫
Yj

qj(Yj)

 ∫
Yk 6=j

logp(X,Y)
∏
k 6=j

qk(Yk)dYk 6=j

dYj

−
∑
k

∫
Yk

qk(Yk) logqk(Yk)dYk

The second term is just the sum of entropies of the individual factors qk. This pro-
vides a hint of the natural penalty against model complexity built into variational
Bayes - part of maximizing L[q] involves maximizing the entropies of the factors
of q. The first term is the negative “cross-entropy” between qj and the term in
parentheses, which is also a function of Yj. Call this function logp; that is, define

logp
(
X,Yj

)
= EYk 6=j

[logp(X,Y)] + constant (5.4)

Here, the constant is chosen such that the distribution p(X,Zj) is normalized. Then
the lower bound can be expressed

L[q] =

∫
Yj

qj(Yj) logp
(
X,Yj

)
dYj −

∫
Yj

qj(Yj) logqj(Yj)dYj + constant

=

∫
Yj

qj(Yj) log

[
p(X,Yj)

qj(Zj)

]
+ constant

= −KL(qj||p) + constant
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All terms that do not depend on Yj, including the entropies of the other qk 6=j,
have been absorbed into the constant. If we maximize L[q] with respect to the
term qj without changing the other factors of q, then this constant is irrelevant.
From this we see that L[q] is maximized with respect to qj when the Kullback-
Leibler divergence KL(qj||p) is minimized. Since the divergence is zero when its
arguments are equal, this condition is just the condition qj(Yj) = p(X,Yj). So,
using 5.4, the ideal choice for qj is

logqj(Yj) = EZk 6=j
[logp(X,Y))] + constant (5.5)

Equations 5.3 and 5.5 represent the central machinery of the variational Bayes
approach. The constant in 5.5 should be chosen so that the distribution qj is
normalized. When working with conjugate priors, this is usually automatically de-
termined by finding EYk 6=j

[logp].

In the expectation 5.5, the optimal form for qj is conditional on the other qk 6=j.
So in practice we cycle between the different qj, deriving each in turn until some
convergence criterion is reached. Procedurally:

1. Choose some initial guess for each qj.

2. For iterations t = 1,2, ...:

(a) For each qj, hold qk 6=j constant and find qj such that

logqj(Yj) = EYk 6=j
[logp(X,Y)] + constant

(b) Call convergence either based on some statistic on the individual qj or
based on the lower bound L[q].

5.2.3 Regular Brownian mixtures

Here, we apply the variational Bayes framework introduced in the previous section
to the specific problem of mixtures of regular Brownian states. This is probably
the simplest variational framework for spaSPT data. The version considered in
[50] works with a different model that considers state transitions as well. Since
typical trajectories in spaSPT data are very short, comprising only a handful of
observations over several milliseconds, state transitions are difficult to infer with
any degree of accuracy unless the datasets are very large and the model perfectly
matches the data. So we neglect them. The framework presented here has the
virtue of mathematical and computational simplicity.

We will assume that we have a dataset of N trajectories in m spatial dimensions.
Use X to denote this set of trajectories. The trajectories have been tracked with
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frame interval ∆t and we assume that the localization error σ2loc is known and can
be treated as a constant. (Later on, we’ll examine the effect of variable localiza-
tion error on inference.)

If our motion is regular Brownian with diffusion coefficientD, then each jump along
a given spatial dimension has a normal distribution with variance 2(D∆t+σ2loc). As
a result, if the ith trajectory has Li jumps, then the sum of its squared displacements
Si has the distribution

Si ∼ Gamma

(
mLi
2
,
(
4(D∆t + σ2loc)

)−1)
We will assume that the trajectory can inhabit any of K different diffusive states.
To represent the state assignments, define a binary matrix Z of shape N × K so
that zij is 1 if trajectory i belongs to state j and 0 otherwise. As a result, each row
of Z sums to 1. Notice that this is a slightly different representation of Z than
the one considered in the previous chapter; however, the spirit (assigning each
trajectory to one of K states) is the same.

Define φj = 4(Dj∆t + σ2loc), so that we have the single-trajectory likelihood

p(Si | state j, φj) = Gamma

(
mLi
2
, φ−1

j

)
As a prior on each φj, choose φj ∼ InvGamma (α0, β0) so that

p(φj) =
βα00 e−β0/φj

Γ(α0)φ
α0+1
j

Figure 5.1: Graphical model for the variational Bayes model for regular Brownian
motion considered in the text. Notice that rather than dealing with each state’s
diffusion coefficient Dk directly, we instead infer the “spatial variance”
φk = 4(Dk∆t + σ2loc), and then account for the effect of localization error later.
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As a consequence, the posterior distribution over φj given a single trajectory in
state j is

φj | Si ∼ InvGamma

(
α0 +

mLi
2
, β0 + Si

)
We’ll assume that the state occupations are τ , so that

p(Z|τ ) =
K∏
j=1

N∏
i=1

τ
zij
j

and we have the whole-dataset likelihood

p (X|Z, τ ,φ) =
K∏
j=1

N∏
i=1

p
(
Si | state j, φ−1

j

)zij
Define a Dirichlet prior over the state occupations

τ ∼ Dirichlet (n0, ..., n0) =
1

B(n0, ..., n0)

K∏
j=1

τ n0−1j

B(...) is the variadic beta function, defined by

B(x1, ..., xK ) =
Γ(x1) · ... · Γ(xK )
Γ(x1 + ...+ xK )

Notice that, if we were able to observe Z, the posterior over τ given Z would be

τ | Z ∼ Dirichlet

(
n0 +

N∑
i=1

zi,0, ..., n0 +
N∑
i=1

zi,K

)
The choice of these conjugate priors over τ and φ will considerably simplify later
steps.

Finally, note that the joint distribution of all variables factors as

p (X,Z, τ ,φ) = p (X | Z, τ ,φ)p (Z | τ )p (τ )p (φ) (5.6)

We seek an approximation q(Z, τ ,φ) to the posterior distribution p(Z, τ ,φ | X).
We make the mean-field approximation

q(Z, τ ,φ) = q(Z)q(τ ,φ) (5.7)

This is the sole approximation we need to make in order to obtain a tractable q.
As we will see, this choice also induces further factoring of q(τ ,φ) down the line.

In order to find the factors q(Z) and q(τ ,φ), we rely on the following iterative
scheme:
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1. Set q(0)(Z) and q(0)(τ ,φ) equal to the corresponding priors.

2. For each iteration t = 1,2, ...:

(a) Holding q(t−1)(Z) constant, find q(τ ,φ) by solving

logq(τ ,φ) = EZ [logp(X,Z, τ ,φ)] + constant

(b) Holding q(t)(τ ,φ) constant, find q(Z) by solving

logq(Z) = Eτ ,φ [logp(X,Z, τ ,φ)] + constant

First we focus on q(τ ,φ). Substituting 5.6 into 5.5,

logq(τ ,φ) = EZ [logp(X|Z, τ ,φ) + logp(Z|τ ) + logp(τ ) + logp(φ)] + constant

=
K∑
j=1

(
n0 − 1+

N∑
i=1

EZ

[
zij
])

log τj

+
K∑
j=1

[(
β0 +

N∑
i=1

EZ

[
zij
]
Si

)
φ−1
j −

(
α0 + 1+

N∑
i=1

EZ

[
zij
])

logφj

]
+ constant

We have absorbed all terms that don’t depend on τ or φ into the constant. This
equation is additively separable in τ and each φj, which implies that q further
factors as

q(Z, τ ,φ) = q(Z)q(τ )
K∏
j=1

q(φj)

It’s important to mention that we’ve no additional assumptions beyond 5.7. The
additional factors are a consequence of the structure of our model and prior se-
lection.

This factorization means that we can first address q(τ ) and then each q(φj) sepa-
rately. Absorbing all but terms dependent on τ into the constant,

logq(τ ) =
K∑
j=1

(
n0 − 1+

N∑
i=1

EZ

[
zij
])

log τj + constant

Taking the exponent, we see that this is another Dirichlet distribution:

q(τ ) = Dirichlet

(
n0 +

N∑
i=1

EZ [zi,0] , ..., n0 +
N∑
i=1

EZ [zi,K ]

)

Now, look closely at the terms
∑
i

EZ

[
zij
]
. Summing over the columns of Z gives

us the number of trajectories assigned to each state. We might instead consider
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counting the number of jumps assigned to each state. When there is no reason
why the number of jumps per trajectory should depend on φj, both choices are
equivalent. However, in real settings with finite depth of field, weighting by the
number of jumps is far preferable for the reasons outlined in the previous chapter.
Acknowledging this, we choose

q(τ ) = Dirichlet (n0 +N1, ..., n0 +NK ) (5.8)

with

Nj =
N∑
i=1

mLi
2

EZ

[
zij
]

Given some q(Z), we can evaluate the expectations with respect to Z. We derive
a closed form for these expectations shortly.

Turning to q(φj), we drop all terms that do not directly depend on φj. This leaves

logq(φj) =

(
β0 +

N∑
i=1

EZ

[
zij
]
Si

)
φ−1
j −

(
α0 + 1+

N∑
i=1

mLi
2

EZ

[
zij
])

logφj+constant

This is another inverse gamma density:

q(φj) = InvGamma

(
α0 +

N∑
i=1

mLi
2

EZ

[
zij
]
, β0 +

N∑
i=1

EZ

[
zij
]
Si

)
(5.9)

With both q(τ ) and q(φ) specified, we turn to q(Z). This is defined through

logq(Z) = Eτ ,φ [p(X,Z, τ ,φ)] + constant

= Eτ ,φ

logp(X | Z, τ ,φ) + logp(Z | τ ) + logp(τ ) +
K∑
j=1

logp(φj)

+ constant

=
K∑
j=1

N∑
i=1

((
mLi
2

− 1

)
logSi − SiEφ

[
φ−1
j

]
− logΓ

(
mLi
2

)

− mLi
2

Eφ

[
logφj

]
+ Eτ

[
log τj

])
zij + constant

Taking the exponent, we have

q(Z) ∝
K∏
j=1

N∏
i=1

ρ
zij
ij
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with ρij defined via

log ρij =

(
mLi
2

− 1

)
logSi − SiEφ

[
φ−1
j

]
− logΓ

(
mLi
2

)
− mLi

2
Eφ

[
logφj

]
+ Eτ

[
log τj

]
We can normalize by recognizing that Z represents a probability distribution over
the different states for each trajectory. So let

rij =
ρij
K∑
j=1

ρij

whereupon

q(Z) =
K∏
j=1

N∏
i=1

r
zij
ij (5.10)

Together, eqs. 5.8, 5.9, and 5.10 provide us with a way to determine the distribu-
tions q(Z), q(τ ), and q(φ). Each of these distributions is defined in terms of the
expectations over some of the others - in particular, we need EZ

[
zij
]
, Eτ

[
log τj

]
,

Eφ

[
φ−1
j

]
, and Eφ

[
logφj

]
. For the most part, these are well known results for their

respective distributions:

EZ

[
zij
]
= rij

Eτ

[
log τj

]
= ψ

(
n0 +Nj

)
− ψ

(
K∑

k=1

(n0 +Nk)

)

Eφ

[
φ−1
j

]
=

Aj

Bj

Eφ

[
logφj

]
= logBj − ψ(Aj)

(5.11)

where

Nj = n0 +
N∑
i=1

mLi
2

EZ

[
zij
]

Aj = α0 +
N∑
i=1

mLi
2

EZ

[
zij
]

Bj = β0 +
N∑
i=1

SiEZ

[
zij
]
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and ψ is the digamma function, defined by

ψ(x) =
d

dx
logΓ(x)

Finally, with the form of q specified, we can now determine the variational lower
bound L[q] on the marginal likelihood logp(X). Expanding this in terms of the
factorizations 5.6 and 5.7,

L[q] =

∫
q(Z, τ ,φ) log

[
p (X,Z, τ ,φ)
q (Z, τ ,φ)

]
dZ dτ dφ

= E [logp (X | Z, τ ,φ)] + E [logp (Z | τ )] + E [logp (τ )] + E [logp (φ)]

− E [logq (Z)]− E [logq (τ )]− E [logq (φ)]

where the expectations are taken with respect to the posterior variational distri-
bution q(Z, τ ,φ). The result is entirely in terms of the previously defined expec-
tations for zij, log τj, φ

−1
j , and logφj.

We can account for defocalization in the usual way by taking

q(τ ) = Dirichlet

(
n0 +

N1

η1
, ..., n0 +

NK

ηK

)
where ηj is proportional to the probability that a trajectory with spatial variance φj
defocalizes after one frame interval.

Usually we find it convenient to set α0 = n0, so that n0 represents the pseudo-
counts accorded to the priors over both state occupations τ and the spatial vari-
ances φ.
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Algorithm 5.1: Variational Bayes inference for mixtures of regular Brownian states (”VB
algorithm”)

Parameters: X, an experimental set of trajectories; ∆t, the frame interval; ∆z, the
focal depth; σ2loc, the 1D localization error; K , the number of states in the mixture;
n0, the pseudocounts in the prior; D, guesses for the diffusion coefficient of each
state.

Precompute:

• For each trajectory i, calculate the sum of squared jumps Si and the number
of jumps Li. For the hyperparameter β0,j on each φj, set β0,j = n0/(4(Dj∆t +

σ2loc)). Make an initial guess for rij by taking rij ∝ exp
(
−Sin0

β0,j
− mLi

2
log β0,j

)
and

normalizing over the different states for each trajectory, so that
K∑
j=1

rij = 1

Algorithm: For each iteration t = 1,2, ...

1. Set nj = n0 +
1
ηj

N∑
i=1

mLi
2
rij. Set Aj = n0 +

N∑
i=1

mLi
2
rij. Set Bj = β0,j +

N∑
i=1

Sirij.

2. Evaluate E
[
log τj

]
= ψ(nj) − ψ

(
K∑
j=1

nj

)
, E
[
φ−1
j

]
= Aj/Bj, and E

[
logφj

]
=

logBj − ψ(Aj).

3. Set rij ∝ exp
(
E
[
log τj

]
− SiE

[
φ−1
j

]
− mLi

2
E
[
logφj

])
, and normalize over the

K different states for each i so that
K∑
j=1

rij = 1.

Return:

• The set of rij, nj, Aj, and Bj, which characterize the posterior according to

q(Z) =
K∏
j=1

N∏
i=1

r
zij
ij

q(τ ) = Dirichlet (n1, ..., nK )

q(φ) =
K∏
j=1

InvGamma
(
Aj,Bj

)
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Algorithm 5.1 describes the implementation of this simple variational scheme,
where we have let α0 = n0 and we determine the priors β0,j for each state j based
on a user guess for the diffusion coefficient. In practice, setting n0 < 10 means
that this specific guess has very little influence on the eventual result of the algo-
rithm, although it serves a vital role in regularizing the early steps.

Notice that the output is the set of parameters governing the posterior approxi-
mation q(Z, τ ,φ). Most of the time, it’s also useful to provide the posterior mean
over each parameter in this distribution. These posterior means are given by

E
[
zij
]
= rij (likelihood for trajectory i to inhabit state j)

E
[
τj
]
=

nj
K∑

k=1

nk

(occupancy of state j)

E
[
Dj

]
=

Bj

4∆t(Aj − 1)
−
σ2loc
∆t

(diffusion coefficient of state j)

5.2.4 Automatic relevance determination

One of the main advantages of Bayesian methods over other approaches to ana-
lyzing spaSPT data, such as jump histogram fitting, is that the former deals much
more naturally with model complexity. When using complex mixture models with
a high number of components K , Bayesian methods tend to drive most of the
state coefficients to zero, favoring more compact models. This is a consequence
of maximizing the model evidence p(X) rather than the model likelihood p(X|Y);
the former balances increases in model likelihood against increases in the model’s
descriptive repertoire, or the range of possible data that can be generated from
it. This quality of Bayesian algorithms is sometimes called automatic relevance de-
termination in the context of machine learning. In contrast, maximum likelihood
or least-squares approaches (such as jump histogram fitting) will tend to exploit
all of the degrees of freedom in the model.

To investigate this effect, we simulated an spaSPT experiment in a 10 µm× 10 µm
× 10 µm nucleus with a 700 nm focal depth, 10 ms frame intervals, and normally
distributed localization error along each dimension with standard deviation σ2loc =
30 nm. Trajectories were drawn from one of four states:

• 10% chance to have diffusion coefficient 0.001 µm2 s−1

• 30% chance to have diffusion coefficient 0.7 µm2 s−1

• 20% chance to have diffusion coefficient 2.3 µm2 s−1

• 40% chance to have diffusion coefficient 8.0 µm2 s−1
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The same set of trajectories was used for fitting by two approaches - the varia-
tional Bayes approach (Algorithm 5.1) or a jump length histogram fitting approach
(“LS”, analogous to [60]). For each method, we tried fitting with mixtures of four,
eight, or sixteen states (K = 4,8,16). Because only 5246 trajectories were ob-
served in the focal volume, the information available to both methods is highly
limited.

The results are summarized in the following table. The columns correspond to the
outputs of either the VB or the least-squares jump histogram (“LS”) algorithms.

K = 4 VB occupancy VB diff. coef. (µm2 s−1) LS occupancy LS diff. coeff. (µm2 s−1)

State 1 0.115 0.008 0.108 0.000

State 2 0.364 0.802 0.370 0.753

State 3 0.157 2.739 0.176 2.873

State 4 0.363 7.931 0.346 8.429

K = 8 VB occupancy VB diff. coef. (µm2 s−1) LS occupancy LS diff. coef. (µm2 s−1)

State 1 0.115 0.009 0.108 0.000

State 2 0.364 0.804 0.127 0.691

State 3 0.155 2.749 0.117 0.709

State 4 0.001 2.841 0.141 0.929

State 5 0.001 3.041 0.110 2.904

State 6 0.001 3.727 0.071 4.303

State 7 0.001 5.767 0.027 4.807

State 8 0.362 7.944 0.299 8.933

K = 16 VB occupancy VB diff. coef. (µm2 s−1) LS occupancy LS diff. coef. (µm2 s−1)

State 1 0.115 0.008 0.033 0.000

State 2 0.362 0.801 0.029 0.000

State 3 0.001 2.521 0.045 0.000

State 4 0.027 2.697 0.110 0.701

State 5 0.057 2.726 0.151 0.711

State 6 0.001 2.730 0.021 0.721

State 7 0.070 2.731 0.033 0.911

State 8 0.001 2.756 0.054 1.004

State 9 0.001 3.062 0.000 1.330

State 10 0.001 3.441 0.049 1.924

State 11 0.001 4.619 0.061 2.731

State 12 0.001 5.241 0.015 4.336

State 13 0.001 5.411 0.057 5.185

State 14 0.001 5.613 0.056 5.523

State 15 0.001 5.690 0.114 7.012

State 16 0.360 7.945 0.171 10.110

Both the VB algorithm and the LS algorithm perform similarly when using K = 4
- which is the true number of underlying states. However, their behavior departs
markedly when using higher K . The jump histogram fitting approach tends to
use as many components as it can, so that at K = 8 or K = 16, we have a large
number of low-occupancy states. In fact, we may make very different biological
interpretations on the outcome of the method when K = 4 than when K = 16.
In contrast, the outputs of the VB algorithm are much sparser, with most of the
occupancies close to zero. In fact, if we ignore the components with occupancies
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close to zero, the result when K = 16 is actually fairly similar to the result when
K = 4. The only major difference is that one of the intermediate states has been
split into three states with similar diffusion coefficients.

Fig. 5.2 systematically compares the two methods across a broader range of con-
ditions. In general, the jump histogram fitting method takes advantage of the full
set of states available to it, giving little indication of the true number of under-
lying states. In contrast, the VB method tends to approach a stable number of
significantly occupied states that are close to the true number.

The ability of Bayesian methods to respond intelligently to changes in the com-
plexity of the model via the “automatic relevance determination” effect is one of
their advantages over the jump length histogram fitting or maximum likelihood
approaches. The algorithm tends to generate the simplest possible models to
describe the data and does not necessarily exploit every degree of freedom that

Figure 5.2: Systematic comparison of the ability of the VB algorithm 5.1 and jump
histogram fitting to infer the number of components in a mixture of Brownian
states. The x-axis of each plot represents the number of components that were allowed
in the model fit, and the y-axis represents the number of those components with
significant occupancy after fitting. The dotted lines represent the ground truth for the
simulations. Trajectories with the indicated number of states were simulated in a nucleus
with 5 µm radius, 700 nm focal depth, 10 ms frame intervals, 30 nm localization error,
and a 20 Hz bleaching rate. Each data point represents the result of 5-10 simulations.
Proceeding from left to right, the state parameters and occupancies were as follows:
(far-left) diffusion coefficients 0.01, 1.5, 8.0 µm2 s−1, occupancies 0.1, 0.3, 0.6; (mid-left)
diffusion coefficients 0.001, 0.7, 1.5, 8.0 µm2 s−1, occupancies 0.1, 0.3, 0.2, 0.4;
(mid-right) diffusion coefficients 0.001, 0.3, 1.3, 3.5, 10.0 µm2 s−1, occupancies 0.1, 0.2,
0.4, 0.1, 0.2; (far right) diffusion coefficients 0.001, 0.2, 1.0, 2.5, 5.5, 10.0 µm2 s−1,
occupancies 0.15, 0.1, 0.15, 0.3, 0.1, 0.2.
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Figure 5.3: Comparison of the number of trajectories against the number of
components with significant occupancy recovered by the variational Bayes
algorithm. The simulations were performed the same as in 5.2. The dotted lines in each
subplot represent the true number of states in the corresponding simulation.

we give it. This means that the outcome of our analysis with Bayesian methods
like the VB algorithm is less sensitive on the parameters we use. Whereas chang-
ing K qualitatively changes the output of the jump histogram fitting approach, it
has little effect on the VB algorithm.

A more sophisticated approach, explored by [84], explicitly incorporates the num-
ber of components K as a random variable in the model and mixes the models
over K . This approach can be seen as an alternative to the Dirichlet processes
considered later in the chapter.

Importantly, the ability of the VB algorithm to discern the true number of states
is critically dependent on the amount of data available. In Fig. 5.3, we can see
that when only a few hundred trajectories are used, the algorithm is not confident
enough to drive most of the occupancies to zero. This is a direct consequence of
the strength of the prior. As more trajectories are acquired, the relative weight
of the data against the prior becomes stronger and the algorithm approaches the
true number of underlying states in the mixture.
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Fig. 5.4 demonstrates several runs of the VB algorithm on experimental SPT tra-
jectories. In this plot, the area of each state is proportional to the posterior mean
occupation of that state. For instance, the posterior occupations of the fastest
diffusing state for HT and HT-NLS account for about 70% and 85% of the total
occupation for those conditions, respectively.

Notice that after about 6 states, we don’t acquiremuch additional posterior model
complexity by adding more states to the model. This is a general result for the
VB algorithm; unless there is very strong evidence for more states, usually it con-
verges on 5-6 posterior states with significant occupation.

Figure 5.4: Posterior models for the VB algorithm (Algorithm 5.1) on experimental
SPT trajectories. Each point is a state, and the area of each point is proportional to the
occupation of that state under the posterior model. K reflects the number of states
allowed during fitting. The x-labels have the following meaning: RARA-HT,
endogenously tagged retinoic acid receptor α-HaloTag-3xFLAG in U2OS nuclei;
H2B-HT, stably transfected H2B-HaloTag-SNAPf in U2OS nuclei; HT, transiently
transfected HaloTag-MCS in U2OS nuclei; HT-NLS, transiently transfected
HaloTag-3xNLS in U2OS nuclei. Cells were labeled with 100 nM PA-JFX549 for 30 min,
followed by four 30 min washes. Tracking was performed with 7.48 ms frame intervals,
1.5 ms pulse widths on microscope with approximately 700 nm depth of field and 160
nm pixels; the approximate 1D dimensional root positional variance associated with
localization under these settings is ∼ 35 nm. Each column represents a separate
biological replicate. For the RARA-HT samples, each biological replicate was taken from
a separate knock-in clone.
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5.2.5 Comparison with EM

The variational Bayes method represented by Algorithm 5.1 is an expanded ver-
sion of the EM algorithm outlined in the previous chapter. Recall that the EM
algorithm worked by maximizing a “merit function”. In that algorithm, we used
θj to represent the parameters for the j

th diffusive state. (In the variational Bayes
algorithm for RBMs, the only parameter in θj is the spatial variance φj.) The update
criterion for τ and θ was

τ (t+1),θ(t+1) = argmax
τ ,θ

Q
(
τ ,θ | τ (t),θ(t)

)
= argmax

τ ,θ

EZ|X,τ (t),θ(t) [logL [τ ,θ | X,Z]]

= argmax
τ ,θ

EZ|X,τ (t),θ(t) [logp (X,Z | τ ,θ)]

We saw that this solution could be expressed

τ
(t+1)
j =

N∑
i=1

T
(t)
ji

θ
(t+1)
j = argmax

θj

N∑
i=1

T
(t)
ji log fX|Z

(
Xi | state j, θj

)
where the matrix T(t) was defined in terms of the previous iteration’s parameters

T
(t)
ji =

τ
(t)
j fX|Z

(
Xi | state j, θ(t)j

)
K∑

k=1

τ
(t)
k fX|Z

(
Xi | state j, θ(t)k

)
Comparing the structure of this scheme with the update equations for q(Z, τ ,φ)
in the variational Bayes algorithm, we immediately see that maximization of Q
corresponds to taking

q (τ ,φ) = EZ [p (X,Z, τ ,φ)] + constant

In the EM algorithm, we held τ and θ constant at the previous iteration’s val-
ues τ (t), θ(t). In the VB algorithm, we instead hold the distributions q(τ ) and
q(φ) constant. Meanwhile, taking T(t) is analogous to evaluating the expecta-
tions rij = EZ

[
zij
]
. Again, the only difference is that the VB algorithms works with

a full approximation for the posterior, while EM only works with point estimates
for the parameters (namely, their expectations with respect to the posterior).

If the EM and VB algorithms are so similar, what should compel us to use one
over the other? While the EM algorithm can be slightly faster, there are two main
reasons why the VB algorithm is superior:
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• By providing a lower bound on the marginal likelihood, the VB algorithm
provides a powerful criterion to choose between competing models for the
same data. This is particularly useful when choosing the number of states K .

• The posterior estimate q can generate both point estimates for the model
parameters in the style of EM, but can also be analyzed in its own right. For
instance, we can determine whether any of the parameters differs substan-
tially from its prior value, or use the entropies over each of the factors in q
to determine their respective “information” contents.

However, VB has some drawbacks. These include:

• The accuracy with which q models the true posterior distribution is funda-
mentally dependent on the mean field approximations used to derive it.

• In mixture models, the identifiability problem means that q only models one
of the K ! posterior maxima.

• The VB algorithm requires analytical solutions to 5.5 at each step. While we
could obtain these for RBM, more general diffusion models (such as FBM)
do not have analytical solutions without introducing further approximations.

• The VB algorithm does not handle non-discrete distributions of diffusion co-
efficients.

The last two points are the most limiting for us, and are the primary motivation
for the next two classes of estimators considered in this chapter - arrayed state
samplers and Dirichlet processes.

5.2.6 Accounting for localization error

A disadvantage of Algorithm 5.1 is that it only considers jumps over a single
frame interval. This means that if the tracking algorithm produces jumps over
gap frames, these jumps will not be used for inference, which is wasteful of data.
Additionally, separating the spatial variance φ into temporally dependent and in-
dependent components is necessary to distinguish the contribution of the diffu-
sion coefficient from the contribution of localization error, if the localization error
is unknown.

We can make the following modifications to accommodate multiple frame inter-
vals. Choose some maximum number of frame intervals to consider, and call this
C. Instead of associating each trajectory with a single sum-squared jump Si, in-
stead associate it with a sequence of variables (Si,c , Li,c) for each frame gap being
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considered (c = 1, ...,C). Here, Si,c is the sum of all squared jumps in that trajec-
tory over c frame intervals, and Li,c is the number of such jumps.

For defocalization, rather than considering a single corrective factor ηj for state j,
instead consider C different factors ηc,j. Each of these is defined as the probabil-
ity that a particle with the spatial variance φj remains in the focal volume after c
frames. These factors can be calculated at each iteration treating φj as if it were a
constant.

Redefine the approximative posterior over the state occupations τ as

q(τ ) = Dirichlet (n1, ..., nK )

nj = n0 +
C∑

c=1

(
1

ηc,φj

N∑
i=1

rij
mLi,c
2

)

Further, redefine the approximative posterior over the spatial variance φj as

q(φj) = InvGamma
(
Aj,Bj

)
Aj = n0 +

C∑
c=1

Aj,c

Bj = β0 +
C∑

c=1

Bj,c

Aj,c =
N∑
i=1

rij
mLi,c
2

Bj,c =
N∑
i=1

rij

(
Si,c + 2mLi,c(c − 1)σ2loc

c

)
The approximative posterior over Z then becomes

q(Z) =
K∏
j=1

N∏
i=1

r
zij
ij

rij =
ρij

K∑
k=1

ρik

log ρij = Eτ

[
log τj

]
−

C∑
c=1

[
Si,cAj,c

Bj,c

+
mLi,c
2

(
logBj,c − ψ(Aj,c)

)]
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where ψ is the digamma function. We have the expected log occupancy Eτ

[
τj
]
=

ψ(nj)− ψ

(
K∑

k=1

nk

)
, as usual.

Notice that the priors over Z, τ , and φ are the same as before, but our likelihood
has changed to a product of gamma distributions for each (Si,c , Li,c) with the vari-
ance parameters φj,c = cφj − 4(c − 1)σ2loc.

Steps to update q(Z), q(τ ), and q(φj) can be interleaved with a update equation
for σ2loc:

σ2loc ≈
1

N

C∑
c=2

N∑
i=1


(
c
mLi,c
2

)
φj − Si,c

4(c − 1)


N =

N∑
c=2

N∑
i=1

ILi,c>0

If desired, the single value for σ2loc can be replaced with multiple values σ
2
loc,j for

each state j.

While the ability to model multiple frame intervals is useful when tracking with
gaps, in general the assumed value of localization error does not have much of an
effect on the regular finite-state variational Bayes algorithm (Fig. 5.5). As a result,
it is generally recommended to hold localization error constant.

5.3 Arrayed state samplers

The variational Bayes (VB) methods considered in the previous chapter exhibit a
remarkable ability to identify the number of diffusing states in mixtures. The fact
that they work with analytical approximations to the posterior distribution means
that we have access to a broad range of powerful analytical tools.

However, the VB method generalizes poorly to two important cases: (1) non-
normal diffusive states and (2) non-discrete diffusive states.

What dowemean by “non-discrete diffusive states”? All of themodels considered
so far in this thesis could be described by the following generative model:

1. Choose a random state from a mixture of K different states. Each state j has
some associated probability τj to be chosen.

2. Generate a trajectory based on the corresponding state parameters θj.
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In this kind of scheme, the goal is to infer τj and θj for each state.

In cells, a given protein may participate in dozens of different complexes, each
of which may have distinct dynamics in different environments. For instance, the
TBP-associated factors (TAFs) that make up the TFIID complex may also partici-
pate in a variety of other complexes corresponding to variant TFIIDs, incomplete
complexes, and monomers. Each of these states may have different diffusion co-
efficients depending on whether they are detected in the nucleoplasm, nucleoli,
cytoplasm, or other compartments. As a result, there is strongmotivation to ques-
tion the assumption of a small number of discrete diffusing states, and develop a
more general kind of mixture.

5.3.1 Principle

We can imagine generalizing the generative scheme above by eliminating the
mixing coefficients τ , and instead sampling directly from a distribution over the
state parameters:

1. Choose random state parameters θ from a distribution f (θ), which need not
necessarily be discrete.

2. Generate a trajectory based on the chosen θ.

Figure 5.5: Sequential runs of the variational Bayes algorithm 5.1 on the same
trajectories with different assumed localization error. Two regular Brownian states
were simulated in a spherical nucleus with 5 µm radius, 700 nm focal depth, 10 ms frame
intervals, 20 Hz bleaching rate, and 30 nm of normally distributed localization error
along each axis. Trajectories were drawn from a slow state (0.001 µm2 s−1) with
probability 0.3 and from a fast state (3.0 µm2 s−1) with probability 0.7.
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Figure 5.6: Schematic of the approach used by the arrayed state sampler for a
regular Brownian mixture, compared to a discrete mixture model. Whereas a
discrete mixture concentrates all of the probability density into a small number of
diffusion coefficients, the arrayed state sampler instead partitions the range of possible
diffusion coefficients into “bins”, each of which is treated as a distinct state. This
reduces the problem of model inference into estimating the posterior probability for
each of the bins.

Our inference goal is then to find the distribution f (θ), rather than the values of τj
and θj for each state.

How can we find f (θ)? In the remainder of this chapter, we consider two ap-
proaches - arrayed state samplers and Dirichlet processes. In this section, we
describe arrayed state samplers, which can be considered as a stepping stone to
Dirichlet processes.

The idea of arrayed state samplers is schematized in Fig. 5.6. Rather than treat-
ing each of the diffusive states as discrete point densities in the space of model
parameters, instead the range of possible model parameters is partitioned into
bins, each of which is treated as a state with some occupation τk. If a trajectory is
drawn from bin k, its parameters are assumed to be sampled from that bin with
uniform probability density.

Similar to the VB algorithm, we’ll treat the problem in a Bayesian manner, as illus-
trated in the graphical model in Fig. 5.7. For the prior over the state occupations
τ , we take

τ ∼ Dirichlet (n0, ..., n0)

We have seen that, given a trajectory with Li jumps in m spatial dimensions with
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a sum of squared jumps Si, the likelihood of a particular diffusion coefficient Dj is

L
[
θj | trajectory i

]
= Gamma

(
mLi
2
,

1

4(Dj∆t + σ2loc)

)
where ∆t is the frame interval and σ2loc is the 1D variance due to localization error.

As in the case of the VB algorithm, it’s convenient to work with the spatial variance
φ = 4(D∆t + σ2loc) instead of D directly, so that the likelihood is just

L
[
θj | trajectory i

]
= Gamma

(
mLi
2
, φ−1

j

)
In the arrayed state sampler, we need the likelihood of the kth bin over φ rather
than a single point. We take this to be the integrated likelihood between the bin
edges φk and φk+1:

L [bin k | trajectory i] =
φk+1∫
φk

Gamma

(
mLi
2
, φ−1

)
dφ

=
S

mLi
2

−1
i

Γ
(
mLi
2

) φk+1∫
φk

φ−mLi
2 e−Siφ

−1

dφ

When mLi/2 > 1, this can be expressed

L [bin k | trajectory i] =
γ l
(
mLi
2

− 1, Siφ
−1
k

)
− γ l

(
mLi
2

− 1, Siφ
−1
k+1

)
Γ
(
mL
2
− 1
)

Figure 5.7: Graphical model for the arrayed state sampler. The solid black node
corresponding to the range of state parameters [Dk ,Dk+1) for state k indicates that this
variable is treated as invariant.
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where γ l is the regularized lower incomplete gamma function

γ l (α, x) =
1

Γ(α)

x∫
0

tα−1e−tdt

When mLi/2 = 1 - for instance, in the case of a trajectory with a single jump in
two dimensions - γ l is undefined and we must instead represent the likelihood as

L [bin k | trajectory i] = Ei
(
−Siφ−1

k

)
− Ei

(
−Siφ−1

k+1

)
where we’ve used the exponential integral

Ei (x) = −
∞∫

−x

t−1e−tdt

Because the exponential integral diverges when x → 0, it is necessary to constrain
the inferred values of φ to lie below some maximum φmax = 4(Dmax∆t + σ2loc). We
can also choose some appropriate φmin, for instance by letting Dmin = 0 where-
upon φmin = 4σ2loc. Then the set of bins for φ can be obtained by partitioning the
range [φmin, φmax] into K bins.

5.3.2 Inference methods

Inference for arrayed state samplers can be accomplished in one of two ways:

1. Gibbs sampling. We start with some guess for Z(0) and at each subsequent
iterations t = 1,2, ... sample from the conditional distributions

τ (t) | Z(t−1) ∼ Dirichlet

(
n0 +

N∑
i=1

mLi
2

zi,0, ..., n0 +
N∑
i=1

mLi
2

z
(t−1)
i,K

)

Z(t) | τ (t) ∼
K∏
j=1

N∏
i=1

(
τ
(t)
j

)zij
2. Variational Bayes. Wemake themean field approximation p (Z, τ ) ≈ q (Z)q (τ ),

where q(Z) is a categorical distribution and q(τ ) is a Dirichlet distribution.
Then we iteratively improve these distributions by taking

logq(Z) = Eτ [logp(X,Z, τ )] + constant

logq(τ ) = EZ [logp(X,Z, τ )] + constant

These approaches are outlined for the special case of regular Brownian motion in
Algorithms 5.2 and 5.3. Both of these algorithms can be quite fast because the
likelihood for each bin only needs to be calculated once, at the beginning of the
algorithm.

161



Algorithm 5.2: Gibbs sampling for regular Brownian arrayed state samplers

Parameters: X, an experimentally observed set of N trajectories in m spatial
dimensions; ∆t, the frame interval; σ2loc, the 1D localization error; Dmin and Dmax,
the minimum and maximum diffusion coefficients to consider, and the number of
bins K ; n0, the number of pseudocounts per bin in the prior.

Precompute:

• Calculate φmin = 4(Dmin + σ2loc) and φmax = 4(Dmax + σ2loc). Then partition the
range [φmin, φmax] into K bins, so that the kth bin has edges (φk, φk+1).

• For each trajectory i, measure the number of jumps Li and the sum of
squared jumps Si

• Calculate the likelihood matrix A where

Aji =

{
γ l
(
mLi
2

− 1, φ−1
k

)
− γ l

(
mLi
2

− 1, φ−1
k+1

)
if mLi

2
> 1

Ei
(
−Siφ−1

k

)
− Ei

(
−Siφ−1

k+1

)
if mLi

2
= 1

• The initial binary state assignment matrix Z(0), which has shape K × N. For

each trajectory i, set Z
(0)
ji = 1 with probability proportional to Aji and set

Z
(0)
ki = 0 for the other k 6= j.

Algorithm. For each iteration t = 1,2, ...

1. For each bin j, calculate Nj =
N∑
i=1

mLi
2
Z
(t−1)
ji .

2. Sample τ (t) ∼ Dirichlet (N1, ...,NK ).

3. Sample Z(t) conditional on τ (t) in the following way. For each trajectory i,
choose a state j with probability

τ
(t)
j Aji

K∑
k=1

τ
(t)
k Aki

Set Z
(t)
ji = 1 for the selected j, and set Z

(t)
ki = 0 for all other k 6= j.

Return: The set of samples τ
(t)
j ; the posterior mean over the jth bin is estimated

1
T

∑
t

τj, where T is the total number of iterations
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Algorithm 5.3: Variational Bayes estimation for regular Brownian arrayed state samplers

Parameters: X, an experimentally observed set of N trajectories in m spatial
dimensions; ∆t, the frame interval; σ2loc, the 1D localization error; Dmin and Dmax,
the minimum and maximum diffusion coefficients to consider, and the number of
bins K ; n0, the number of pseudocounts per bin in the prior.

Precompute: φmin = 4(Dmin + σ2loc) and φmax = 4(Dmax + σ2loc). Then partition the
range [φmin, φmax] into K bins, so that the kth bin has edges (φk, φk+1). For each
trajectory i, measure the number of jumps Li and the sum of squared jumps Si.
Then calculate the likelihood matrix A where

Aji =


γ l

(
mLi
2

−1,φ−1
k

)
−γ l

(
mLi
2

−1,φ−1
k+1

)
Γ
(
mLi
2

−1
) if mLi

2
> 1

Ei
(
−Siφ−1

k

)
− Ei

(
−Siφ−1

k+1

)
if mLi

2
= 1

Create a K ×N matrix R such that, initially, R
(0)
ji =

Aji

K∑
k=1

Aki

.

Algorithm. For each iteration t = 1,2, ...

1. For each bin j, calculate n
(t)
j =

N∑
i=1

mLi
2
R
(t−1)
ji . Then set

R
(t)
ji =

Ajie
ψ(n

(t)
j )

K∑
k=1

Akie
ψ(n

(t)
k

)

where ψ(x) = d
dx logΓ(x) is the digamma function.

Return:

• MatrixR and vectorn, which characterize the approximation to the posterior
distribution via

p (Z, τ | X) ≈ q (Z)q (τ )

q (Z) =
K∏
j=1

N∏
i=1

R
Zij
ji

q (τ ) = Dirichlet (n1, ..., nK )

The mean posterior occupation of each bin is nj/
∑
k

nk.
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In the case of the variational Bayes algorithm 5.3, we can also compute the evi-
dence lower bound for the posterior distribution, which gives some insight into
the arrayed state sampler. The complete likelihood factors as

p(X,Z, τ ) = p(X | Z, τ )p(Z | τ )p(τ )

Then the lower bound is

L[q] =

∫
Z,τ

q(Z, τ ) log

[
p(X,Z, τ )
q(Z)q(τ )

]
dZdτ

= E [logp(X | Z, τ )] + E [logp (Z | τ )] + E [p(τ )] + H[q]

where H[q] is the entropy of q:

H[q] = H[q(Z)] + H[q(τ )]

= −
∫
Z,τ

q(Z, τ ) logq(Z, τ )dZdτ

The first term in L[q] grows with the model likelihood p(X|Z, τ ), the second and
third terms are related to the priors, and the last grows with the entropy of the
posterior approximation q. For a given choice of prior, the second and third terms
are constant. So the algorithm boils down to balancing the model likelihood on
one hand and the entropy of the posterior approximation on the other. Again,
this demonstrates the tendency of the Bayesian approach to avoid overfitting by
choosing simple models with a small number of components when possible.

5.3.3 Extension to mixtures of anomalous states

While arrayed state samplers have plenty of disadvantages - such as the assump-
tion that a single likelihood characterizes each parameter bin - their major advan-
tage is the ease with which they extend to non-normal modes of diffusion.

Fig. 5.8 demonstrates the extension of arrayed state samplers to resolve mix-
tures of fractional Brownian motions. Inference becomes increasingly challeng-
ing at higher numbers of states, and the dispersion of the parameters associated
with any single state increases. Notice in particular that at six states, the fastest-
diffusing state becomes joined into the second-fastest state.

5.4 Interpretation of aggregate likelihood methods

Together, the previous sections on finite-state variational Bayes and arrayed state
samplers provide justification for the ”aggregate likelihood” methods presented
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in section 3.2. Here, we redevelop the aggregate likelihood method from the
perspective of variational Bayes.

Suppose that we have a set of N trajectories, which we represent X. The ith tra-
jectory is Xi. Suppose that there are Li jumps in the trajectory i.

Just as for arrayed state samplers, we choose a set of K different diffusive states
with fixed parameters θj for each j ∈ {1, ...,K}. The assignment of each trajectory
to one of the K different states is represented by a matrix Z where Zij = 1 if tra-
jectory i is from state j and 0 otherwise.

This situation is captured by the Bayesian mixture model

τ ∼ Dirichlet (n0, ..., n0)

Zi ∼ Mult (τ ,1)

Xi | (i in state j) ∼ fX |θ
(
Xi | θj

)
Here, fX |θ(Xi|θj) is the likelihood function for our diffusion model, defined as the
relative probability of seeing a trajectory Xi given that it comes from a state char-

Figure 5.8: Application of arrayed state samplers to identify multiple anomalously
diffusing states. Fractional Brownian motions (FBMs) were simulated in a spherical
nucleus with 5 µm radius and 700 nm focal depth with a 10 Hz bleaching rate. The frame
interval was 7.48 ms and 30 nm of normally-distributed 1D localization error was added
to the coordinates of each point. Variable numbers of states were simulated; the white
crosshairs indicate the true parameters for each state, while the color maps indicate the
posterior state probabilities after running the arrayed state sampler algorithm.
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acterized by the parameters θj.

The complete likelihood factors as

p (X,Z, τ ) = p (X | Z, τ )p (Z | τ )p (τ )

We saw that if we approximate the posterior distribution of Z and τ as q (Z, τ ) =
q (Z)q (τ ), then the choice for q(Z) and q(τ ) that maximizes the variational lower
bound is

logq(Z) = Eτ [logp (X,Z, τ )] + constant

logq(τ ) = EZ [logp (X,Z, τ )] + constant

Examining the first term,

logq(Z) = Eτ [logp (X | Z) + logp (Z | τ )] + constant

=
K∑
j=1

N∑
i=1

Zij
(
log fX |θ(Xi | θj) + Eτ

[
log τj

])
+ constant

Assume that E
[
log τj

]
= constant for all j. This is the case, for example, under the

prior distribution for τ . Then, since
K∑
j=1

Zij = 1 for all i, the last term is absorbed

into the constant and we have

logq(Z) =
K∑
j=1

N∑
i=1

Zij log fX |θ(Xi | θj) + constant

Then the distribution for q(Z) is

q(Z) =
N∏
i=1

K∏
j=1

r
Zij
ij

rij =
fX |θ(Xi | θj)

K∑
k=1

fX |θ(Xi | θk)

Notice that this does not depend on τ . Now, treating q(Z) as a fixed distribution,
we have

q (τ ) =
1

B(n1, ..., nK )

K∏
j=1

τ
nj−1
j

nj = n0 +
N∑
i=1

mLi
2

rij
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where Li is the number of jumps in trajectory i. If we choose n0 = 0, this is the
aggregate likelihood function as defined in section 3.2. At this point, it should
be clear that this is just the first iteration of a variational Bayes algorithm accord-
ing to an arrayed state sampler. In other words, the aggregate likelihood is the
mean estimate over τ given a completely naive estimate for the distribution of
the state assignments Z. Importantly, this does not ”mix” information between
trajectories. It treats each trajectory as truly independent. While this is often less
effective at picking out individual states, it is very unbiased and hence useful for
nonparametric analyses of spaSPT data.

5.5 Dirichlet processes

With arrayed state samplers, we replaced point estimates with a distribution over
state parameters like the diffusion coefficient. This distribution was discrete. It
cut up the range of possible values for θ into bins, and then treated the likelihood
of each bin as a constant.

A serious problem with this approach is that the selection of the bins is arbitrary.
The algorithm’s outcome may depend on whether the bins are coarse or fine. To
see this, recall that one of the assumptions underying the arrayed state sampler
for RBM is that if a trajectory is generated from a given bin, its diffusion coeffi-
cient is sampled from that bin with uniform probability density. This assumption
made it possible to obtain an analytical expression for the integrated likelihood
across the bin. But if the bins are too coarse, then our trajectory may be poorly
described by the range of diffusion coefficients in that bin. Worse, it lends its in-
ferential weight to trajectories that share little similarity with it. Finer bins, while
more costly, are preferable. Exactly how fine is “fine enough” is not clear for a
given diffusion model or dataset.

At this point, we should ask whether it is possible to let the width of the bins ap-
proach zero. In effect, this would replace the discrete distribution over the states
with a continuous distribution. Rather than having a set of K bins, each with a
range of parameter values [θk , θk+1], we would have a single continuous distribu-
tion f (θ) so that the probability density to draw a trajectory with parameter θ is
proportional to f (θ). The central challenge is that we can no longer rely on the
discrete-state Dirichlet distribution to represent the state occupations. Comput-
ers cannot actually represent arbitrary continuous probability densities.

This challenge can be overcomewithDirichlet processes, which are infinite-dimensional
analogs of the Dirichlet distribution. In this section, we first briefly review Dirichlet
processes, then discuss their application to spaSPT data. As we will see, Dirichlet
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processes lend themselves to a simpler Bayesian framework than the ones consid-
ered so far. We derive a Dirichlet process sampler specifically for RBM mixtures,
and then explore its application to simulated and real datasets.

5.5.1 Summary of Dirichlet processes

Suppose that X denotes a set of trajectories that inhabit an unknown number of
true diffusive states. Let’s begin with a familiar approach: model this situation by
a mixture of K different states, which are parametrized by one or more state vari-
ables θj for j = 1, ...,K . (For example, in a regular Brownian mixture, θj represents
the diffusion coefficient.)

Each Xi ∈ X may be the raw spatial coordinates of the trajectory, the jump vec-
tors, the sum of squared jumps, or whatever is convenient for the problem. Let
Zi ∈ {1, ...,K} be the state assignment for the ith trajectory.

A general Bayesian mixture model, such as the kind used in the finite-state VB
algorithm, can be summarized as

τ ∼ Dirichlet
(α
K
, ...,

α

K

)
Zi | τ ∼ Mult (τ ,1)

θk | H ∼ H

Xi | Zi,θ ∼ fX |θ(Xi | θZi)

(5.12)

Here, τ is the vector of state occupancies, so that
K∑
j=1

τj = 1. α is the “concen-

tration parameter”, to be investigated in detail in this section, and H is a prior
distribution over each θk. Mult (τ ,1) is a categorical random variable. It means
that we drawn one of the K different states, with the probability to draw the jth

state given by τj. Finally, the last equation is the likelihood function - the proba-
bility to generate a trajectory, given a particular set of state parameters.

The central issue of this chapter is the selection of K , the number of states in the
mixture. We want our model to be capable of capturing the complexity of multi-
state diffusion in cells. But we don’t want to overfit, creating a sea of meaningless
parameters.

As we saw previously in the section on finite-state variational Bayes methods, in-
creasing K means very different things depending on our analysis method. Max-
imum likelihood or least-squares algorithms like jump histogram fitting tend to
exploit all of the degrees of freedom we give them. When K is too high, our
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results are dominated by noise. While the resulting models appear to closely fit
the training data, they generalize poorly outside of the experiment and tend to
be uninterpretable. The variational Bayes (VB) algorithm behaved differently. In
effect, the VB algorithm strikes a balance between how well the model describes
the data (the model likelihood) and how probable the data is given the model (the
model’s descriptive repertoire). The latter condition emphasizes that in situations
where many models can describe the data equally well, the simplest one is fa-
vored. When we specify values of K that are too high, Bayesian methods tend to
drive most of the occupancies to zero, favoring simple models with the smallest
number of components required to effectively describe the data.

For example, in Fig. 5.2, we saw that the VB algorithm recovered essentially the
same model for a four-state mixture of Brownian states when K = 4, K = 8, and
K = 16. But what happens when we make the number of components very high
- say, K = 100 or K = 1000?

An excellent data-motivated investigation of this question is Radford Neal’s 1992
chapter [85], which we strongly refer to the interested reader. As K becomes large,
the number of components used to “explain” a given dataset of size N grows as
O (α logN), where α is the pseudocount parameter for the mixture model 5.12.
(This relation is derived later in the section.) Importantly, this is independent of
the number of components. In fact, we can even let K → ∞ and the resulting
models will still be discrete.

Allowing that K → ∞ is the basis for the so-called “nonparametric Bayes” ap-
proach to mixture models. This approach has the benefit that it completely re-
moves user decisions about the number of components in a mixture. The critical
parameter that remains is α. What meaning does α have in this limit, and what
exactly happens to the state occupancies?

Definition

The Dirichlet process (DP) can be seen as an infinite-dimensional generalization
of the mixture model 5.12. As in the case of a regular Dirichlet distribution, draws
from a DP are themselves probability distributions. However, these draws are dif-
ferent in character.

Suppose that the set of all possible state parameter values is Θ. For example,
Θ may represent a range of biologically feasible diffusion coefficient - say, 0 to
100 µm2 s−1. The measure G is distributed according to a Dirichlet process with
concentration parameter α and base distribution H if, for any finite partition T1,
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..., Td ⊆ Θ, we have

(G(T1), ...,G(Td)) ∼ Dirichlet (αH(T1), ..., αH(Td)) (5.13)

That is, the marginal distributions ofG are Dirichlet distributions. (For this expres-
sion to have any meaning, Θ must be G-measurable. Since this is the case for
all of the diffusion models we deal with in spaSPT data, we generally gloss over
issues of measurability in this thesis.)

Properties

An immediate consequence of the definition is that G is a probability measure,
since the draws of the ordinary Dirichlet distribution are probability measures.

What do the parameters α and H mean? Taking the expectation of one of the
elements in 5.13, which can be done easily using the properties of the regular
Dirichlet distribution, we have

E
[
G(Tj)

]
=

H(Tj)∑
k

H(Tk)
= H(Tj)

The denominator is unity since H is a distribution onΘ. This makes it clear that the
base distribution H plays the role of the “mean” for a DP. That is, a DP generates
realizations distributed around H the same way that a regular random variable
generates realizations distributed around its mean.

5.13 also illustrates the role of the concentration parameter. To see this, examine
the variance of G(Tj):

Var
(
G(Tj)

)
=

H(Tj)
(
1− H(Tj)

)
1+ α

So α is analogous to the precision (inverse variance) of a regular random vari-
able. As α increases, the marginal probabilities G(Tj) of the realizations G get
increasingly close to those of the base distribution, H(Tj). As α decreases, the
distributions G generated by the DP become more wild, straying far from the
base distribution.

Suppose that θ ∼ G ∼ DP(α,H). That is, first we generate a random probability
measure G from DP(α,H), then we draw a parameter θ from G. We can write this
situation with the hierarchical model

G ∼ DP (α,H)

θ | G ∼ G
(5.14)
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Let’s sample a few θ this way. Imagine that we see nj of these values fall into
Tj ⊆ Θ. Then, using the Dirichlet distribution’s conjugate prior property, we have

(G(T1), ...,G(Td)) | θ1, ..., θn ∼ Dirichlet (αH(T1) + n1, ..., αH(Td) + nd)

This is contingent on a particular partition T1, ..., Td, but we can remove this as-
sumption in the following way. Let δθi be the identity probability measure for an
observation θi, so that

δθi (T) =

{
1 if θi ∈ T

0 otherwise

where T ⊆ Θ.

Then we can rewrite the posterior distribution as

(G(T1), ...,G(Td)) | θ1, ..., θn ∼ Dirichlet

(
αH(T1) +

n∑
i=1

δθi(T1), ..., αH(Td) +
n∑

i=1

δθi(Td)

)
(5.15)

Now this is true no matter which partition of Θ we pick, for any number of parti-
tion components d. Since this equation satisfies the definition of a DP 5.13, the
posterior distribution is also a DP:

G | θ1, ..., θn ∼ DP

(
α + n, αH +

n∑
i=1

δθi

)
(5.16)

Examining 5.16 closely, we see that the posterior base distribution is a weighted
average between the prior base distributionH and the sample distribution formed

by 1
n

n∑
i=1

δθi . As the number of observations increases, the balance tilts away from

the prior and toward the sample distribution.

These results are dependent on a particular draw G ∼ DP(α,H). Imagine that
we’ve already drawn n parameters from G, which we’ll label as θ1, ..., θn. If we
know that we’re dealing with a particular realization G, then the distribution of
any future θn+1 doesn’t depend on what we’ve already seen. We still have

θn+1 | G, θ1, ..., θn ∼ G

As a result, for any T ∈ Θ,

p (θn+1 ∈ T | G, θ1, ..., θn) = G(T)
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Marginalizing out G, we can take (loosely speaking)

p (θn+1 ∈ A | θ1, ..., θn) =
∑
G

p (θn+1 ∈ A | G, θ1, ..., θn)p(G | θ1, ..., θN)

=
∑
G

G(A)p(G | θ1, ..., θN)

= E [G(A) | θ1, ..., θn]

But due to 5.15, this is

θn+1

∣∣∣ θ1, ..., θn ∼ αH +
n∑

i=1

δθi

α + n
(5.17)

Equation 5.17, first derived by Blackwell and MacQueen [87], is the central equa-
tion that enables inference for Dirichlet process priors. The predictive distribution
for a new observation is given by the posterior base distribution. In other words,
given some prior observations, the expectation of any future observation is dis-
tributed according to 5.17. Vitally, this distribution need not be discrete.

This observation is sometimes known as the Blackwell-MacQueen urn scheme, in
reference to the following analogy. Suppose that each element in Θ is a unique
color. Each draw θ will represent a ball of a particular color, which we will drop
into an urn. Initially, there are no balls in the urn. For the first ball, we select a
random color θ from the repertoire Θ with probability H(θ), and then drop it into
the urn. For the second ball, we either select a new color from Θ with probability
αH(θ)/(α+1), or we paint it the color of the first ball and drop it into the urn. For
the (n+ 1)th ball, we select a new color from Θ with probability αH(θ)/(α+ n), or
we randomly draw a ball from the urn, paint our new ball to match it, and drop
them both back in. The probability to draw a ball with color j from the urn is pro-
portional to nj, the number of balls that already have that color in the urn. As n
grows, the chance to select a new ball becomes exceedingly unlikely, and all of
the probability mass for future observations becomes concentrated among the
existing colors. The probability measure produced by this scheme is the realiza-
tion of a Dirichlet process, G ∼ DP(α,H).

A somewhat unexpected consequence is that while the base distribution H can
be continuous, the realizations G are almost surely discrete. Only a finite number
of different colors are represented in the urn. In other words, all of the probability
mass is concentrated onto a countable number of points in Θ. (A proof can be
found in [86].) Of course, exactly which colors are represented is different for each
G. But by marginalizing over the individual G as in 5.17, we sidestep this problem
and obtain continuous posterior estimates over all of the colors in the repertoireΘ.
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Figure 5.9: Graphical model for Dirichlet process mixture models. The discrete
distribution G is generated from the base distribution H via a Dirichlet process. The goal
of inference is to marginalize over G to get the posterior distribution of θi.

In practice, we usually cannot observe θ directly. Instead we observe various ex-
perimental consequences of it. A common example in this thesis is when θ rep-
resents a diffusion coefficient. A microscope doesn’t hand us the diffusion coeffi-
cient on a platter, but instead presents us with some trajectories that are gener-
ated from it. If these trajectories are denoted by the random variable X , then the
model is

G ∼ DP (α,H)

θ | G ∼ G

X | θ ∼ fX |θ

(5.18)

where fX |θ is the model likelihood, the various forms of which were investigated in
detail in section 3.1. This scheme is illustrated in Fig. 5.9. For normal diffusion,
fX |θ is the probability to create a particular trajectory with diffusion coefficient θ.
We’ll refer to 5.18 as the Dirichlet process mixture model (DPMM).

Relation to finite-state mixtures

5.18 is actually simpler than the finite-state mixture model 5.12. We no longer
have separate distributions over the state occupations and the state parameters,
but they are joined into a single density function over all possible state parameters.

We now have the machinery to show how the DP mixture model emerges from a
finite-state mixture as the number of states is allowed to become arbitrarily large
[88]. Start with the finite-state mixture model 5.12. Given some sequence of
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observations Z1, ..., Zn, we’d like the posterior distribution for a future observation
Zn+1. Using the multiplication law of probability,

p (Zn+1 | Z1, ...,Zn) =
p (Z1, ...,Zn,Zn+1)

p (Z1, ...,Zn)

Since each Zi is just a categorical random variable with probabilities τ ,

p (Z1, ...,Zn | τ ) = τZ1 · · · τZn

Marginalizing out τ , we have

p (Z1, ...,Zn) =

∫
(τZ1 · · · τZn)p (τ )dτ

=
1

B
(
α
K
, ..., α

K

) 1∫
0

τZ1 · · · τZnτ
α
K
−1

1 · · · τ
α
K
−1

K dτ

= Γ(α)Γ (α/K )−K

1∫
0

τ
α
K
+n1−1

1 · · · τ
α
K
+nK−1

K dτ

where nj is the number of observations in Z1, ..., Zn that fall into category j. Using
a property of the multivariate beta function, this is

p (Z1, ...,Zn) =
Γ (α) Γ

(
α
K
+ n1

)
· · ·Γ

(
α
K
+ nK

)
Γ
(
α
K

)K
Γ (α + n)

Then our conditional probability for a new observation is

p (Zn+1 = j | Z1, ...,Zn) =
nj + α/K

α + n

Letting K → ∞, we have

lim
K→∞

p (Zn+1 | Z1, ...,Zn) =
nj

α + n

lim
K→∞

p
(
Zn+1 6= Zj for j = 1, ...n

)
=

α

α + n

(5.19)

The second equation is the probability that the new observation doesn’t fall into
one of the categories represented by the other observations. Following these
equations procedurally for n = 1,2, ... produces the Blackwell-MacQueen urn
scheme. As a result, the limit of the discrete-state mixture model 5.12 as K → ∞
is the DP mixture model 5.18.
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Number of nonzero components

Whenwe use infinite mixturemodels, do we get an infinite number of components
in the output? To answer this, consider the Blackwell-MacQueen urn scheme as
represented in 5.19. Suppose that kn represents the number of colors already
represented in the urn after the nth draw. Let En+1 be the event that we pick a
new color on the nth draw, so that

Pr (En+1) =
α

α + n

Then kn =
n∑

i=1

IEi , where I is the indicator function. Linearity of expectation then

provides

E [kn] =
n∑

i=1

E [IEi ]

=
n∑

i=1

α

α + i − 1

= α
n∑

i=1

1

α + i − 1

Since this series is bounded by the harmonic series
n∑

i=1

1
i
, which is itself bounded

by logn+ 1 as n → ∞, we have

kn ∼ O (α logn)

This provides support for our earlier assertion that the number of components in
this kind of mixture becomes independent of K at large K . It also demonstrates
the dependence of these mixtures on the concentration parameter. When α is
low, we tend to find simple models consisting of a few components. When α is
large, we find more complex models with many occupied components. The value
of α is more significant than the amount of data for the resultingmodels, especially
at large numbers of trajectories n.

5.5.2 Inference methods

The ability of DPs to model continuous posterior distributions is both the moti-
vation for using them and a source of algorithmic challenges. These challenges
were reviewed in detail by Neal [88], who also provided the basis for the strategies
discussed here.
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The Gibbs sampling schemes explored for arrayed state samplers clearly won’t
work for DPMMs because they would require that we evaluate the likelihood for
each of an infinite number of states. A hint at the solution is provided by 5.17.
Notice that the posterior distribution of θn+1 given a current sample for θ1, ..., θn
only requires that we consider the point densities produced by θ1, ..., θn along with
the prior distribution. To see why this is useful, use θi to denote the parameters
that produced each trajectory Xi. For each trajectory, we have one θi. Because the
sequence of observations for a DPMM is exchangeable - that is, the probabilities
remain the same no matter how we order the observations - we can always use
5.17 for a given trajectory i, imagining that all of the other trajectories came before
it in the sequence:

θi

∣∣∣ {all θj for which j 6= i
}
∼
αH +

∑
j

δθj

α + n− 1

For convenience, let θ−i be the set of all θj for which j 6= i. Then, using Bayes’
theorem,

p (θi | Xi,θ−i) =
p (Xi | θi,θ−i)p (θi | θ−i)

p (Xi | θ−i)

=
p (Xi | θi)p (θi | θ−i)

p (Xi | θ−i)

The last part is due to the fact that, given known θi, Xi does not depend on any
other θj 6=i. Using 5.17 and dropping the evidence term, this is

p (θi | Xi,θ−i) ∝ p (Xi | θi)

αH(θi) +
∑
j 6=i

δθj(θi)

n+ α− 1

 (5.20)

The first term on the right side is just the model likelihood fX |θ(Xi | θi), while the
second term is analogous to the role that the state occupancies τ play in finite-
state mixture models. Crucially, this form is amenable to Gibbs sampling: we
can sequentially sample each θi while holding the other θj 6=i constant according
to 5.20. The sequence of samples thus produced are samples from the posterior
distribution θ | X1, ...,Xn.

Algorithmically, this scheme is:

1. Start with some set of parameter assignments θ
(0)
i for each trajectory Xi.

2. For each iteration t = 1, ...:

(a) For each trajectory i = 1, ..., n
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i. With probability α/(α + n− 1), draw a new θ
(t)
i from Θ. The prob-

ability for each possibility θ is proportional to

H(θ)fX |θ(Xi|θ)

ii. With probability (n − 1)/(α + n − 1), draw θ
(t)
i from the set of θ

already represented in θ
(t−1)
−i . The probability of each possibility θ

is proportional to
nθfX |θ(Xi | θ)

where nθ is the number of observations already associated with θ.

3. Return the set of all θ(t), each of which is a sample of the posterior density
over Θ.

This algorithm was used, for instance, by [89] and [90]. Although it works, the
only way for us to generate new values of θ is by drawing from H(θ)fX |θ(Xi|θ). If
there are many observations associated with a high likelihood state θ′, then many
iterations are required before θ′ becomes depleted enough by chance to explore
nearby states that may also have high likelihood. As a result, the scheme is ex-
tremely inefficient.

As an alternative, we can endow the sampler with additional degrees of freedom
that enable it to explore the posterior more rapidly. To do this, suppose that
θ = {θ1, ..., θK} is a set of currently “active” parameters. This is analogous to the
support for a particular draw G ∼ DP(α,H). Let Zi ∈ {1, ...,K} be the assignment
of trajectory i to one of the parameters in θ, so that the parameter corresponding
to trajectory i is θZi . The set of all assignments Z = (Z1, ...,Zn) is now an auxiliary
random variable in our model. When marginalized over θ, the elements Zi can as-
sume any of an infinite number of states. But given a particular θ, K is finite. Thus
it is actually possible to generate samples from the conditional distribution Z | θ
with a computer. Our goal is to construct a Gibbs sampler based on this scheme,
drawing from the posterior distribution p (Z,θ|X) by sequentially sampling from
p (Z|θ,X) and p (θ|Z,X).

Using Bayes’ theorem, the probability to assign trajectory i to some state z with
parameter θz is

p (Zi = z | Xi,Z−i,θ) =
p (Xi | θz)p (Zi = z | Z−i)

p (Xi | Z−i,θ)

∝

{
p (Xi | θz)

(
nz

α+n−1

)
if θz ∈ θ

p (Xi | θz)
(
αH(θz)
α+n−1

)
if θz /∈ θ

(5.21)
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where the last is a consequence of 5.19. This gives us a mechanism to update the
state assignments Z. For the conditional distribution of θ given Z, for each θj ∈ θ
we can use Bayes’ theorem to write

p
(
θj | Z,X,θ−i

)
∝ p

(
Z,X | θj

)
p
(
θj
)

= H(θj)
n∏

i=1

IZi=jfX |θ(Xi|θj)
(5.22)

In other words, the likelihood for a particular choice of θj is the product of the like-
lihoods for all of the trajectories currently assigned to state j. These two equations
give us the raw substrate for a Gibbs sampler, which would operate according to
the following scheme:

1. Start with some set of states θ(0) and some set of state assignments Z(0) for
each trajectory.

2. For each iteration t = 1,2, ...

(a) For each trajectory i = 1, ..., n, sample Z
(t)
i according to 5.21. If we pick

a state not already in θ(t−1), add it to θ(t−1).

(b) For each state θ
(t−1)
j ∈ θ(t−1), sample a new θ

(t)
j according to 5.22.

3. Return the set of samples θ(t) along with their associated point densities n(t),

where n
(t)
j is the number of observations corresponding to θ

(t)
j .

By allowing the state parameters θ to “move”, exploration of the posterior with
this scheme is much more rapid than the previous scheme. An important wrinkle
remains: how do we sample θj according to 5.22, or in 5.21 when θz is not already
in the existing set θ? H(θ) is a continuous distribution. When it is conjugate to the
likelihood p (Xi | θ), we can just use the analytical posterior distribution in 5.22. In
most cases, however, we won’t choose a conjugate H(θ) - in fact, we’d like to use
uniform priors to represent our complete lack of knowledge about the state pa-
rameters.

One approach in the case of 5.22 is to numerically integrate H(θj)
n∏

i=1

IZi=jfX |θ(Xi|θj),

which was pursued by numerous authors in the 90s. Neal [88] proposed a sim-
pler approach: use a Metropolis-Hastings update step when selecting the new θj.
While this increases the autocorrelation of the sampler’s state sequence - that is,

it often chooses θ
(t)
j that are close to the old values θ

(t−1)
j - it is far less costly in

most cases than approaches based on numerical integration.
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Of course, we can’t use Metropolis-Hastings when drawing θ ∼ H in 5.21. In-
stead, Neals implemented the following scheme: choose some random trial val-
ues θ1, ..., θm0

from Θ. Then set θz to one of these values with probability propor-
tional to H(θ)fX |θ(Xi|θ).

Algorithm 5.4 illustrates this scheme, which is equivalent to Algorithm 8 fromNeal
[88]. The end result is a sequence of diffusion coefficients θ(t) at each iteration t,
along with n(t), the number of trajectories assigned to each diffusion coefficient.
The posterior distribution of θ can be then be approximated by taking a histogram
over these samples. That is,

p (θ ∈ [θk , θk+1] | X) =
∑
t

Kt∑
j=1

n
(t)
j I

θ
(t)
j ∈

[
θk ,θk+1

]

One can also use these samples to approximate the posterior by a kernel density
estimate, although we dislike this approach because it requires that we choose a
kernel.
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Algorithm 5.4: General sampler for a Dirichlet process mixture model

Parameters: X, an observed set of n trajectories; Θ, the set of permissible state
parameters; H, the base distribution (prior) over Θ; α, the concentration param-
eter; fX |θ(x|θ), the trajectory likelihood function, where θ ∈ Θ; m0, the number of
trials to use when drawing from the prior, and g, a Metropolis-Hastings proposal
distribution.

Algorithm:

1. Draw a set of random parameters θ(0) = (θ1, ...θm0
) with each element dis-

tributed according to θ ∼ H(θ)
n∏

i=1

fX |θ(Xi|θ).

2. Assign each trajectory i to one of the elements of θ(0) with probability pro-

portional to H(θ)fX |θ(Xi|θ). Let this assignment be Z (0)
i .

3. At each iteration t = 1,2, ...

(a) For each trajectory i = 1, ..., n, do one of the following:

• With probability n/(α + n − 1), set Z
(t)
i to an existing state in

θ(t−1). The probability to select a particular state j is proportional
to njfX |θ(Xi|θj) where nj is the number of other trajectories assigned
to θj.

• Otherwise choose a new state for Z
(t)
i . Pick m0 random parame-

ter values from Θ. Among these, accept a particular value θ′ with
probability proportional to H(θ′)fX |θ(Xi|θ′). Add this new state to

θ(t−1).

(b) For each θj ∈ θ(t−1), if there are no observations currently assigned to

state j, drop it. Otherwise add it to θ(t) and update it as follows:

i. Propose a new θ′j ∼ g(θ′j | θ
(t−1)
j ) and evaluate the likelihood ratio

r =

n∏
i=1

IZi=jfX |θ(Xi|θ′j)
n∏

i=1

IZi=jfX |θ(Xi|θ(t−1)j )

g
(
θ
(t−1)
j | θ′j

)
g
(
θ′j | θ

(t−1)
j

)
ii. Draw u ∼ Uniform(0,1). If r > u, set θ

(t)
j = θ′j . Otherwise set

θ
(t)
j = θ

(t−1)
j . In either case, add θ

(t)
j to θ(t).

Return: The set of θ(t) and n(t), where n
(t)
j is the number of trajectories that were

assigned to θ
(t)
j at iteration t.
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5.5.3 Infinite mixture of regular Brownian motions

It is straightforward to apply Algorithm 5.4 to the case of mixtures of regular Brow-
nian motions. Because it’s useful as a example, we outline the result of this here,
then show a few biological applications in the next section.

In the case of regular Brownian motion, we will deal with ω = log(4D∆t + σ2loc)
rather than the diffusion coefficient D directly. It is more useful to work with distri-
butions defined on ω since the error associated with the estimate of D broadens
rapidly with increasing D. Recalling the CRLB 3.19, the inherent variance asso-
ciated with any estimate of D from a single trajectory goes as D2. As a result,
distributions over the diffusion coefficient defined on a linear scale tend to be
highly nonintuitive for humans, since at higher D the probability density for any
single D is dispersed over a large plot area. Working with a logarithmic scale miti-
gates this effect. An important note of caution is that it is not necessarily trivial to
convert between a distribution defined in linear space and a distribution defined
in log space, so the data should generally be presented according to the type of
space in which the algorithm was actually run.

We will generally assume that the localization error σ2loc is a constant here. Remov-
ing this assumption is a subject for future work.

For the parameter space Θ, we will choose all values of ω that correspond to a
diffusion coefficient in the range Dmin and Dmax, which in this thesis we always take
to be

Dmin = 10−2 µm2 s−1

Dmax = 102 µm2 s−1

We choose this Dmax because no biological proteins to date have been observed
with diffusion coefficients higher than 100 µm2 s−1. Our choice of Dmin is moti-
vated in the following way. Imagine we have a completely immobile object that
presents itself to the microscope with localization error σ2loc. In section 3.2, we saw
that the apparent diffusion coefficient of this object due to localization error alone
is σ2loc/∆t, where ∆t is the frame interval. For typical values of σ2loc and ∆t, this is
usually between 0.02 and 0.2 µm2 s−1. While it is still possible to infer diffusion
coefficients below this value, one requires high statistics to do so. Accordingly,
we set Dmin = 10−2 µm2 s−1.

If we have a trajectory i in m dimensions such that the sum of its radial squared
jumps is Si and there are Li jumps total, then we have the RBM model likelihood
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(equation 3.17)

fS|D(Si | D) =
S

mLi
2

−1
i e−Si/4(D∆t+σ2

loc
)

Γ
(
mLi
2

) (
4(D∆t + σ2loc)

)mLi/2

This corresponds to the log likelihood

log fS|ω(Si | ω) ∝ −Sie−ω − mLi
2
ω (5.23)

This proportionality can be taken as equality for our purposes, since the other
terms are constant for a given trajectory. This means they are removed during
any normalization over different states.

Since we have hard upper and lower limits for ω, we’ll choose the Metropolis-
Hastings proposal distribution

g (ω′ | ω) =

{
1

A
√
2πν2

exp
(
− (ω′−ω)2

2ν2

)
if ω′ ∈ [ωmin, ωmax]

0 otherwise
(5.24)

where

A = Φ

(
ωmax − ω

ν

)
− Φ

(
ωmin − ω

ν

)

Φ(x) =

x∫
−∞

1√
2π

e−t2/2 dt

The factor A accounts for the missing jump density below ωmin and above ωmax,
and its inclusion is necessary for computing the correct Metropolis-Hastings ac-
ceptance probability.

Finally, for the prior distribution, two different choices are reasonable for a nonin-
formative prior:

• Uniform priors. Choose the base distribution H such that

H(ω) =

{
1

ωmax−ωmin
if ω ∈ [ωmin, ωmax]

0 otherwise

This means that, lacking any trajectories, we have no reason to prefer a given
ω over another. Notice that this is not the same as a uniform prior over the
diffusion coefficient.
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• Defocalization-conscious priors. Choose the base distribution H such that

H(ω) =

{
1

ωmax−ωmin
1
ηω

if ω ∈ [ωmin, ωmax]

0 otherwise

where ηω is the probability for a trajectory with log variance ω to defocalize
over one frame interval. This reflects the fact that, under a truly uniform
prior, some trajectories are more likely to be observed than others due to
defocalization.

Here, we always make the first choice. This means that the result, although some-
what more biased toward the slower states, is less dependent on our choice of
parameters.

Algorithm 5.5 outlines the Dirichlet process mixture model sampler for regular
Brownian motion with upper and lower bounds on the diffusion coefficient.
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Algorithm 5.5: Dirichlet process mixture model sampler for regular Brownian motion

Parameters: X, an observed set of n trajectories; ∆t, the frame interval; σ2loc, the
localization error; ωmin = log(4(Dmin∆t + σ2loc)) and ωmax = log(4(Dmax∆t + σ2loc)),
the minimum and maximum diffusion coefficient; α, the concentration parameter;
m0, the number of trials to use when drawing from the prior; ν2, the variance for
the Metropolis-Hastings proposal distribution 5.24.

Algorithm:

1. Draw a set of random parameters ω(0) = (ω1, ..., ωm0
) from a uniform distri-

bution on the interval [ωmin, ωmax].

2. Assign each trajectory i to one of the elements in ω(0) with log probability

given by 5.23. Let this assignment be Z
(0)
i .

3. At each iteration t = 1,2, ...

(a) For each trajectory i = 1,2, ..., either set Z
(t)
i to an existing state in

ω(t−1) with probability (n − 1)/(α + n − 1), or create a new state with
probability α/(α + n− 1).

• If setting to an existing state, choose state ωj ∈ ω(t−1) with log
probability proportional to lognj + log fS|ω

(
Si | ωj

)
, where nj is the

number of jumps already assigned to state j

• If choosing a new state, pick m0 values of ω from the interval
[ωmin, ωmax]. Among these, accept a particular value ω′ with log
probability proportional to log fS|ω (Si | ω′). Add this new state to
ω(t−1).

(b) For each ωj ∈ ω(t), if there are no trajectories currently assigned to state
j, drop it. Otherwise add it to ω(t) and update it as follows:

i. Propose a new ω′ ∼ g(ω′ | ω(t−1)
j ) and evaluate the likelihood ratio

r =

n∏
i=1

IZi=jfS|ω(Si|ω′)

n∏
i=1

IZi=jfS|ω(Si|ω(t−1)
j )

Φ

(
ωmax−ω(t−1)

j

ν

)
− Φ

(
ωmin−ω

(t−1)
j

ν

)
Φ
(
ωmax−ω′

ν

)
− Φ

(
ωmin−ω′

ν

)
ii. Draw u ∼ Uniform(0,1). If r > u, set ω

(t)
j = ω

(t−1)
j . Otherwise set

ω
(t)
j = ω′

j . In either case, add ω
(t)
j to ω(t).

Return: The set of ω(t) and n(t), where n
(t)
j is the total number of jumps assigned

to θ
(t)
j at iteration t.
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5.5.4 Note on DPMM model complexity

When analyzing data with Dirichlet process mixture models, we generally want to
minimize model complexity while describing the data as accurately as possible.
However, “model complexity” can have a slightly different meaning from the per-
spective of a Bayesian mixture model than for a human. For a Bayesian mixture
model like eq. 5.12, model complexity means the number of states with signif-
icant occupancy in the posterior model. When two models - one with 10 states
and one with 5 states - describe the data equally well, the one with 5 states is
preferred.

This property carries over to Dirichlet process mixture models (eq. 5.18). How-
ever, because the state distribution is now continuous rather than discrete, the
models with minimum complexity tend to be described a few disjoint peaks rather
than a continuous smear. Thismay not be the desired behavior. For instance, when
we expect smears of diffusion coefficients, or would rather not refine our estimate
of the diffusion coefficient of a individual state unnecessarily. The worst that a
method can do is to create peaks - which a human interprets as distinct states -
where in reality there is a continuous smear of diffusion coefficients. This is anal-
ogous to the problem of cluster identification in unsupervised machine learning.

We find that unmodified Dirichlet process samplers often exhibit this issue on
small datasets (<10000 trajectories) with few real peaks when the concentration
parameter is too low. In short, the DPMMs appear to identify sporadic peaks in
smears, creating an almost Gibbs phemonenon-like appearance. While the issue
can always be overcome with additional data, users often will not have sufficient
data or will not be sufficiently aware of the problem.

To correct this behavior, we can introduce a method that dampens the “peak de-
tection” property of DPMMs. The resulting methods are more conservative when
identifying diffusion coefficients that stand out among the rest. This can be viewed
as essentially a safety feature - by damping the sensitivity of the DPMM, we can
increase its reliability on small datasets.

The modification is the following. Change step 3(a) in Algorithm 5.4. If Xi is the
ith trajectory, then rather than selecting one of the existing states with probability
proportional to

njfX |θ
(
Xi|θj

)
where nj is the number of jumps already assigned to state j, instead select a state
j with probability proportional to

max
(
nmax,nj

)
fX |θ
(
Xi|θj

)
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The rest of Algorithm 5.4 proceeds normally. Intuitively, this modification limits the
extent to which trajectories influence each other’s choice of state. While arbitrary,
it has the convenient limiting cases:

• When nmax → 1, the posterior distribution is just the likelihood function for
the diffusion model. This treats all trajectories as independent.

• When nmax → ∞, the posterior distribution is the true posterior distribution
for a Dirichlet process mixture model of the type 5.18.

• For all nmax between 1 and∞, the posterior distribution is intermediate be-
tween the likelihood function and the true posterior.

In experimental datasets, we find it useful to set nmax = 100. From a computational
perspective, lower values of nmax will result in higher numbers of active states at
each iteration, lowering the speed. However, this rarely limits the algorithm to
taking more than a couple of minutes to run on a laptop.

5.5.5 Examples

In this section, we show some applications of the Dirichlet process mixture mod-
els to simulated datasets. We investigate the application of these models on real
spaSPT datasets in the next chapter.

First, we applied the DPMM sampler (Algorithm 5.5) to simple mixtures of regular
Brownian motions (Fig. 5.10). In these experiments, we simulated trajectories un-
der realistic SPT constraints, including defocalization, localization error, and pho-
tobleaching (see caption for Fig. 5.10).

The method was able to recover the distribution of states, even in the presence
of mixtures of six diffusing states. Comparison with another method to recover
distributions of diffusion coefficients, the MSD histogram method (Fig. 5.11)) re-
vealed the superior resolution of the DPMM sampler. However, if the states were
simulated with diffusion coefficients that were very close (Fig. 5.12), the DPMM
sampler tended to aggregate nearby states into single states. Although increased
resolution can be achieved by setting nmax higher, we prefer to limit the resolution
of the DPMM sampler in exchange for more regular behavior on complex mix-
tures.

Next, we applied the DPMM sampler to non-discrete distributions of diffusion
coefficients (Fig. 5.13). In these simulations, trajectories are not drawn from a
finite number of states, but from continuous distributions over the diffusion coef-
ficient as indicated in the ”generate density” subplots. The DPMM sampler (with
nmax = 100) faithfully recovered the distributions of diffusion coefficients, even
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Figure 5.10: Application of the Dirichlet process mixture model sampler to simple
mixtures of regular Brownian motions. In each panel, the upper plot indicates the
simulated distribution of diffusion coefficients and the bottom is the posterior density
estimated from the output of a Dirichlet process mixture model sampler (Algorithm 5.5).
The following was simulated: trajectories corresponding to the generative density were
photoactivated with uniform probability throughout a spherical nucleus (5 µm radius),
subject to a 13.4 Hz bleaching rate. Localizations within a 700 nm focal depth bisecting
the nucleus were recorded and tracked. The simulated frame interval was 7.48 ms, and
each localization has associated with it 35 nm of 1D localization error (root variance).
Under these conditions, the mean trajectory length is about 3-4 frames, and about
10000 trajectories were used for inference. Six instances of the DPMM sampler 5.5 were
run for 1000 iterations with a 20 iteration burn-in period, α = 10, and nmax = 100 (as
described in the previous section). The samples produced by the DPMM were used to
obtain a posterior mean estimate over the diffusion coefficient by discretizing the
posterior density in log-spaced bins (with no kernel density estimation). The dotted line
is the apparent diffusion coefficient of a completely immobile object due to localization
error (σ2loc/∆t, where ∆t is the frame interval).

when the underlying distribution was a log-uniform or log-triangular distribution.
The selection of a low nmax value, and the use of >10000 trajectories, is important
for the accuracy of the method when applied to these types of simulations.

Non-discrete distributions of diffusion coefficients also provide a good opportu-
nity to demonstrate the role of the defocalization terms in the sampler (Fig. 5.14).
These take the form of the η terms in Algorithm 5.5, which can be computed with
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either 4.1 or 4.2 (depending on whether gaps are used during tracking). Without
accounting for defocalization, the shallow depth of field of this simulated micro-
scope setup results in a strong bias against fast-moving molecules, leading to
overestimation of the occupation of slow diffusion coefficients.

Altogether, we find that the DPMM sampler performs at least as well as the ar-
rayed state samplers for recovering complex distributions of the diffusion coeffi-
cient. Because the only parameters governing the DPMM are the concentration
parameter α and the coupling term nmax, the DPMM sampler represents a more
nonparametric approach to spaSPT analysis than the approaches outlined in the
previous chapter.

Finally, we summarize four important aspects of the DPMM sampler for users:

• There is a ”resolution limit” to the DPMM sampler. If two states have very
similar diffusion coefficients, the DPMM sampler will tend to see a single

Figure 5.11: Comparison of Dirichlet process mixture models with the MSD
histogram approach. Simulations and DPMM were performed as in Fig. 5.10.
Trajectories were then either subjected to a run of Algorithm 5.5 as in Fig. 5.10, or were
subjected to the ”MSD histogram” approach to fitting. Briefly, for the latter approach,
we removed all trajectories shorter than 4 jumps, computed the MSD, and fit to a linear
model MSD(t) = 4(σ2loc +D∆t). The fits for D were then binned according to the same
scheme as the DPMM posterior density and plotted.

188



Figure 5.12: Illustration of the ”aggregating” effect of Dirichlet process mixture
models for nearby states. Simulations and DPMM inference were performed as in Fig.
5.10. A total of twelve distinct diffusive states were simulated. The upper subplot is the
”ground truth” (simulated density), while the bottom is the posterior mean from a run of
Algorithm 5.5. Notice that when there are multiple states that have similar diffusion
coefficients, the algorithm tends to aggregate them into a single peak.

state.

• nmax can be used to tune the ”confidence” of the DPMM sampler. Higher
values will make the DPMM sampler more confident in calling peaks.

• Depth of field and localization error are important constants in the DPMM.
They must be determined ahead of time.

• The DPMM sampler, like other methods, has difficulty inferring the distri-
bution of diffusion coefficients below σ2loc/∆t (where σ2loc is the localization
error and ∆t is the frame interval).

5.6 Summary

We saw in the last chapter that, given the correct model for a set of spaSPT data,
there are fairly robust frameworks for recovering the model parameters. Deter-
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mining the correct model in the first place is more challenging. The most impor-
tant questions when choosing a model for spaSPT data are

• How many states?

• What kind of motion? (regular Brownian, fractional Brownian, etc.)

Existing frameworks for interpreting spaSPT data, such as radial jump histogram
fits or MSD histogram fitting, lack robust ways to distinguish between the viability
of different models apart from examination of fit residuals or arbitrary penalties
such as the AIC or BIC. Indeed, such methods tend to exploit all of the degrees of
freedom with which we provide them. As a result, the inferred parameters tend
to be sensitive to noise and vary strongly between experiments.

In this chapter, we explored some Bayesian alternatives to least squares-based
methods. By construction, these alternatives have a natural tradeoff between
model complexity and the model’s likelihood given a dataset. The resulting mod-
els tend to be sparse. For instance, in the VB algorithm with 16 states, most of
the states have zero occupation in the posterior model. Exactly how many states
are ”used” by the algorithm depends on whether the algorithm can find sufficient
evidence for them in the data. As we have more data, the algorithm becomes
more confident in using more states.

Figure 5.13: Application of Dirichlet process mixture model samplers to
non-discrete distributions of diffusing states. Simulations and DPMM inference were
performed as in Fig. 5.10, except instead of simulated a discrete number of diffusive
states, the diffusion coefficients for each trajectory were drawn from the distribution
indicated by the dotted line in the upper subplots. As in Fig. 5.10, about 10000
trajectories were used for inference.
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Figure 5.14: Demonstration of the role of the defocalization correction. Simulations
and DPMM inference were performed as in Fig. 5.13, with and without the η factors to
correct for defocalization. Notice that, similar to the observations of [59] and [60],
without explicitly accounting for defocalization, we end up overestimating the fraction
of slower-moving molecules.

This does not mean that these methods always return the true number of states.
However, the accuracy with which they estimate the true model complexity in-
creases as more trajectories are collected. In the case of Dirichlet process mixture
models (DPMMs), probably at least 10000 trajectories are required for robust in-
ference. This is on the order of 5 - 15 spaSPT experiments, depending on the
length of acquisition and localization density.

While most of the methods in this chapter descend from the field of ”nonparamet-
ric” Bayesian statistics, in reality they are not actually nonparametric and depend
critically on the user choice of variables such as the concentration parameter α and
the maximum occupation weight nmax. In all cases, the reliability of the methods
with a given parameter selection should be determined by biological replicates.

We recommend the following when approaching a completely novel protein in a
novel setting (such as an endogenously tagged cell line):

1. Evaluate the regular Brownian motion likelihood function for all of the indi-
vidual tracking files in the dataset. This accomplishes two things: (1) allows
the experimenter to assess file-to-file variability, and (2) allows the exper-
imenter to determine whether there are multiple diffusing states present.
Importantly, this method doesn’t involve statistical inference and is simple
to compute.

2. Evaluate the jump covariance matrix and angular distribution for the protein,
as described in section 3.2. This enables the experimenter to determine
whethermemory effects are likely to play a role in themotion of their protein.
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Figure 5.15: Assessing spatial bias in posterior model probabilities. Endogenously
tagged nucleophosmin (NPM1)-HaloTag cells labeled with the photoactivatable
PA-JFX549 dye were assayed by spaSPT with 7.48 ms frame intervals. (A) Dirichlet
process mixture model posterior density for all trajectories from one movie, using a
regular Brownian motion likelihood function. (B) Gaussian kernel density estimate for
localization density, pooling all localizations from the same movie. (C) Posterior model
likelihood function for each trajectory at the indicated diffusion coefficients, plotted as a
function of space. Each subplot represents the likelihood function evaluated at the
corresponding diffusion coefficient from (A). Localizations have been convolved with a
circular kernel of radius 320 nm for visualization.

If so, fractional Brownian motion is a model that can capture these effects.
In contrast, if they are negligible, then regular Brownian motion models are
more useful.

3. If the motion is regular Brownian, then we recommend application of the
variational Bayes algorithm 5.1, then application of the Dirichlet processmix-
ture model 5.5.

4. If the motion has non-negligible memory effects, then we recommend ap-
plication of the arrayed state sampler for fractional Brownian motion 5.3.

5. In both of the above cases, the posterior model should be compared with
the raw likelihood function.

What should be clear from this list is that it is vital to compare multiple methods
to analyze a dataset. Anomalies in the output of one method can potentially be
windows into unexpected, novel behavior.
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Chapter 6

Competition in type II nuclear
receptors

6.1 Introduction

Type II nuclear receptors (T2NRs) are a family of ligand-activated transcription fac-
tors in vertebrates that includes retinoic acid receptor (RAR), vitamin D receptor
(VDR), thyroid hormone receptor (TR), and others [91]. All T2NRs are believed to
require heterodimerization with a common factor, the retinoid X receptor (RXR),
to bind chromatin and regulate their target genes (Fig. 6.1A). Because the pool
of RXR is shared among all T2NRs, competition between individual T2NRs has the
potential to limit access to the chromatin-bound state (Fig. 6.1B,C).

Such competition, if it exists, would be important for two reasons. First, it would
result in an interdependence between the activity of T2NRs. There is some sug-
gestion that this may be important in development. For instance, the orphan
T2NR Nr0b1 (homolog of the human DAX1 protein) has been implicated in early
murine embryogenesis and stem cell pluripotency [92] [93] [94]. NR0B1 is a T2NR
that lacks a DNA-binding domain but retains a ligand-binding domain capable of
dimerization with other T2NRs, and was shown to inhibit retinoic acid- induced
activation of RARA in its cloning paper [95]. A potential explanation for this result
is that NR0B1 competes away RXR from the other T2NRs by heterodimerization,
reducing the sensitivity of mESCs to differentiating agents such as retinoic acid.
The idea that competition for RXR modulates endogenous T2NR-mediated gene
regulation is also supported by the observed antagonism between the gene ex-
pression of combinations of T2NRs in luciferase assays [97] [96].

The second reason is that competition between T2NRs has been proposed to
underlie the inactivation of RAR in acute promyelocytic leukemia (APL). APL is
characterized by chromosomal rearrangements that join the 3’ exons of the RARA
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Figure 6.1: Schematic of the type II nuclear receptor network. (A) Cartoon of a type
II nuclear receptor heterodimer composed of retinoic acid receptor (RAR) and retinoid X
receptor (RXR). Agonists toggle the specificity of the RAR ligand-binding domain from
corepressors to coactivators. Common physiological agonists include retinoic acids. (B)
Simplified version of the type II nuclear receptor network. Double-headed arrows
between two nodes indicate that that the nodes dimerize. RARA fusion proteins in acute
promyelocytic leukemia do not exist naturally, but are produced by chromosomal
rearrangement and can dimerize with RXR. (C) Hypothetical competitive equilibrium
governing RARA chromatin binding. (D) Schematic of the experimental approach in this
paper. RARA and RXRA are endogenously tagged, and then their expression and
binding dynamics are assayed in the presence of various competitors. (E) Anti-FLAG
Western blot to determine the presence of endogenously tagged
RARA-HaloTag-3xFLAG in U2OS cells. ”atRA” is all-trans retinoic acid, a RARA agonist
that also causes RARA degradation. (F) Luciferase assays with a retinoic acid response
element (RARE)-driven reporeter to assess the response of endogenously tagged
RARA-HaloTag-3xFLAG cell lines to retinoic acid.

locus to 5’ exons from various other genes, producing fusion proteins [99]. Cells
containing RARA fusion proteins are resistant to differentiation induced by phys-
iological concentrations of the agonist all-trans retinoic acid (atRA), requiring ei-
ther therapeutic concentrations of atRA or other drugs (such as arsenic trioxide).
Competition for RXR would explain why the presence of RARA fusion proteins ap-
parently inhibits activity by the remaining wildtype RARA allele. Indeed, a mutant
of the PML-RARA fusion protein defective for RXR dimerization failed to trigger
APL development in transgenic mice [100].

Nevertheless, there appear to be additional determinants of T2NR crosstalk in live
cells beyond RXR heterodimerization. Studying competition between thyroid hor-
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mone receptor α (TRA) and peroxisome proliferator-activated receptor γ (PPARG),
Hunter et al. found that despite TRA and PPARG antagonism of each each other’s
DNA binding in vitro, they exhibited a cooperative effect on gene expression of
PPARG target genes in human breast cancer cell lines [98]. These results highlight
that the codependence of T2NRs in their native context can depart markedly from
models constructed purely from in vitro experiments.

Here, we examine the interdependence of T2NR dynamics by endogenously tag-
ging the RAR and RXR genes with HaloTag and tracking their movement in live
cells using fluorescent single particle tracking (spaSPT). These results provide a
complement to existing dynamics experiments in vitro and in vivo.

6.2 Results

6.2.1 Endogenous tagging of RARA-HaloTag in U2OS osteosar-

coma cells

To assess whether T2NRs compete for a common pool of RXR, we endogenously
tagged retinoic acid receptor alpha (RARA) with HaloTag-3xFLAG in U2OS os-
teosarcoma cells (Fig. 6.1). We took three homozygous clones (c156, c239, and
c258) for subsequent assays. These clones have a similar expression level of RARA-
HT, which is reduced by approximately 50% in the presence of all-trans retinoic
acid (Fig. 6.1E). All clones responded to all-trans retinoic acid by upregulating ex-
pression of a retinoic acid response element (RARE)-driven luciferase reporter (Fig.
6.1F), albeit to an extent that depended on the clone in question. Using quantita-
tive spinning disk confocal microscopy to quantify expression levels across several
knock-in clones showed that the expression level of RARA-HT is similar between
subclones in U2OS cells (Fig. 6.2D).

To further assess whether RARAwas still functional when fused toHaloTag-3xFLAG,
we performed luciferase assays with transfected transgenes containing either the
wildtype RARA, RARA-HaloTag-3xFLAG, or RARA[C88G]-HaloTag-3xFLAG (Fig.
6.2B). C88G is a point mutation in the zinc fingers that abolishes DNA binding in
vitro [102]. Transfection of either wildtype RARA or RARA-HaloTag-3xFLAG re-
duces expression of the RARE-driven luciferase reporter in response to atRA, per-
haps due to a squelching effect. The reduction was the same for either wildtype
RARAor RARA-HaloTag. In contrast, expression of the nonfunctional RARA[C88G]-
HaloTag-3xFLAG reduced the expression by a larger extent.
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Figure 6.2: Supplementary plots for U2OS retinoic acid receptor alpha knock-in cell
lines. (A) Full Western blots from 6.1(E). (B) Luciferase assays to assess the ability of
transgene RARA to activate transcription in response to agonist. Am580 is a synthetic
retinoid analog agonist. Each data point is a biological replicate. Transgenes have been
expressed under a EF1a promoter on a PiggyBac vector. (C) Spinning disk confocal
microscopy images of TMR-labeled endogenously tagged U2OS RARA-HT cell lines.
Colors have been scaled identically for all subplots. (D) Quantification of spinning disk
confocal microscopy images of TMR-labeled endogenously tagged U2OS RARA-HT cell
lines. Each bar represents a separate clone, and each data point represents a separate
nucleus for that clone.

6.2.2 Heterogeneity of diffusive states for RARA-HaloTag

First, we established a baseline expectation for the diffusive behavior of RARA-
HaloTag in unperturbed U2OS nuclei. We performed spaSPT experiments on
RARA-HaloTag labeled with photoactivatable PA-JFX549 [15] at 7.48 ms frame
intervals with 1.5 ms pulse widths (Fig. 6.3). Under these conditions, the mean
trajectory length is 3-4 frames and the focal depth is ∼ 700 nm.

To assess heterogeneity between individual nuclei in the same dataset, we used
the aggregate likelihood method with regular Brownian motion (Fig. 6.3D). Com-
pared to HaloTag-NLS or HaloTag alone, RARA-HaloTag-3xFLAG exhibits a broad
range of diffusion coefficients and a substantial immobile fraction present across
most nuclei. In contrast, slower-diffusing states were inconsistently observed be-
tween nuclei in the HaloTag and HaloTag-NLS datasets. Similar to other reports
[19], we observed that the addition of an NLS to HaloTag reduces its diffusion
coefficient by 2-3 times.
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Figure 6.3: Assessing the native dynamics of RARA-HaloTag in U2OS nuclei. (A)
Cartoon of the imaging geometry for an spaSPT experiment with HiLo geometry. (B)
Schematic for the illumination sequence. All excitation is concentrated in a period of 1-2
ms at the beginning of each frame interval to minimize motion blur. Photoactivation of
PA-Janelia Fluor [15] dyes is relegated to the frame transition times. (C) Sample images
of individual spots observed with the tracking algorithm. (D) Aggregate regular
Brownian motion likelihoods for endogenously tagged RARA-HaloTag c258 and three
control proteins (histone H2B, HaloTag-NLS, and HaloTag) evaluated on a log-spaced
grid of diffusion coefficients. Each row represents an spaSPT experiment on an
individual nucleus. Colors have been scaled individually for each subplot. (E) Output of a
Dirichlet process mixture model run on the same datasets. Trajectories across all nuclei
have been aggregated for the Dirichlet process mixture model runs. The posterior mean
density has been estimated by binning into log-spaced diffusion coefficient bins, without
kernel density estimation. The dotted line represents the apparent diffusion object of a
completely immobile object due to localization error at this frame interval. (F)
Aggregate fractional Brownian motion likelihoods for the same conditions. In this case,
the localization error was held constant at 30 nm (one dimensional root variance).
Trajectories from all files in each condition have been aggregated for each condition.
The color map has been scaled independently for each subplot.

Surprisingly, while both RARA-HaloTag and histone H2B-HaloTag both have im-
mobile fractions, they differ markedly in the distribution of mobile diffusion coef-
ficients. In particular, diffusion coefficients in the range 1.0 to 5.0 µm2 s−1 are rare
for H2B-HaloTag, although there is a low-occupancy fast diffusing state at ∼10
µm2 s−1.

To more precisely quantify the fraction of molecules in different diffusing states,
we pooled trajectories across the nuclei in each of these datasets and analyzed
this pool with a Dirichlet process mixture model. In this case, we used a regular
Brownian motion likelihood function and a branch probability of 0.1 (Fig. 6.3E).
This analysis revealed small but consistent immobile fractions for HaloTag and
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Figure 6.4: Effect of mutations and domain deletions on RARA-HT dynamics. (A)
Schematic of RARA domain structure. DBD is the DNA-binding domain and LBD is the
ligand-binding domain, which is also responsible for dimerization with RXR. C88G is a
point mutation that abolishes DNA binding in vitro. (B) Fluorescence recovery after
photobleaching for transfected wildtype RARA-HaloTag or RARA bearing domain
deletions. (C) Aggregate regular Brownian motion likelihoods for either endogenously
tagged RARA-HT or exogenously expressed RARA-HT bearing domain deletions.

HaloTag-NLS, which may be stuck dye molecules. In addition, we observed that
most histone H2B-HaloTag molecules are immobile and about 30-35% of RARA-
HaloTag molecules are immobile. Consistent with the aggregate likelihood anal-
ysis, RARA-HaloTag exhibits a ”smear” of diffusion coefficients in the range 0.1
to 10.0 µm2 s−1, while H2B-HaloTag shows two major modes centered at approx-
imately 0.2 and 10.0 µm2 s−1. Interestingly, only the upper state appears to have
a Hurst parameter around 0.5, consistent with regular Brownianmotion (Fig. 6.3F).

To gain additional insight into the origin of the state landscape for RARA-HaloTag,
we created transgenes with RARA bearing either point mutations or domain dele-
tions and assayed dynamics with spaSPT (Fig. 6.4). Since these constructs were
expressed exogenously, we compared the dynamics of both exogenously and en-
dogenously expressed RARA-HaloTag against these domain deletions.

Using the aggregate likelihood method, we observed a generally similar profile
of diffusion coefficients for exogenously expressed RARA-HaloTag as endogenous
RARA-HaloTag, albeit with a bias toward faster-moving states. Deletion of either
the DNA-binding domain (DBD) or ligand-binding domain (LBD) abolished the
immobile fraction of RARA-HaloTag, as did mutation of a key residue involved in
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Figure 6.5: Live cell ”competition” experiments with single particle tracking. (A)
Schematic of the competition experiment. Endogenously tagged cell lines are
transfected with GFP-bearing transgenes, and the resulting mixture is analyzed with
spaSPT analysis modalities. (B) Aggregate regular Brownian motion likelihoods
(localization error 30 nm) for endogenously expressed RARA-HT in the presence of
overexpressed transgenes. The subplots on the right are transiently expressed
PML-RARA-HaloTag and NPM1-RARA-HaloTag. (C) Aggregate regulate Brownian
motion likelihoods for HaloTagged RARA fusion proteins in U2OS cells. Fusion protein
were expressed by Lonza Amaxa II nucleofection. (D) Quantification of the fraction of
immobile RARa-HT particles using a finite-state variational Bayes algorithm.

DNAbinding (C88). In contrast, deletion of the unstructuredNTD had no effect on
the immobile fraction. Since RARA requires the LBD to form a heterodimer with
RXR competent to bind DNA, these observations support the hypothesis that the
origin of the immobile state in these experiments is DNA-bound RARA-HaloTag.

Interestingly, the aggregate likelihood method also revealed that the distribution
of diffusion coefficients for either RARA[∆LBD] or RARA[∆DBD] was tighter than
for the RARA[∆NTD] or RARA[∆CTD] constructs, with a near absence of slowly
diffusing particles in the range <5.0 µm2 s−1. This suggests that slowly-diffusing
states may correspond to the heterodimeric state, although further experiments
are required to determine this. We remark that deletion of the unstructured CTD
seemed to markedly reduce the immobile fraction while retaining slow-diffusing
states. Since deletion of the unstructured CTD is expected to place HaloTag in
close proximity to the LBD, further experiments analgous to Fig. 6.2B are required
to determine that this construct is still function for activation of target genes.
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Deletion of the DBD or LBD also increased fluorescence recovery after photo-
bleaching (Fig. 6.4B). Combined with the spaSPT results, it is likely that the faster
recovery is due to the loss of the immobile fraction along with the mobile state
becoming associated with generally higher diffusion coefficients. Since most of
the recovery occurs within 10 seconds for wildtype RARA-HaloTag, DNA binding
times by RARA are expected to be faster than 10 seconds. We observed no ef-
fect of agonist treatment on recovery, indicating that exchange of corepressors
for coactivators does not modify the diffusive behavior of RARA sufficiently to be
observed in a FRAP experiment. Since changes in mobility have been observed
by FCS [101], this may reflect the low sensitivity of the FRAP technique.

6.2.3 Assessing competition between RARA and exogenously

expressed competitors

To determine how the diffusive behavior of RARA-HaloTag is affected by the pres-
ence of RARA fusion proteins derived from APL, we expressed three mEGFP-
tagged fusion proteins in our RARA-HaloTag cell lines and assayed the endoge-
nous RARA-HaloTag by spaSPT (Fig. 6.5A). The fusion proteins selected include
the PML-RARA, most common fusion protein in APL, as well as the rarer variants
NPM1-RARA and NUMA1-RARA. Expression of these fusion proteins impacted
RARA-HaloTag dynamics as strongly as deletion of the DNA-binding domain it-
self (Fig. 6.5B). All three fusion proteins had a similar effect. In contrast, overex-
pression of wildtype RARA-mEGFP had a milder effect, resulting in a slight shift
toward faster diffusion coefficients along with a reduction in the immobile fraction.

Curious about the diffusive behavior of the RARA fusion proteins themselves, we
expressed HaloTagged NPM1-RARA and PML-RARA fusion proteins in wildtype
U2OS nuclei (Fig. 6.5C). Interestingly, both fusion proteins exhibited distinct dy-
namics - PML-RARA is strongly biased toward slower diffusion coefficients and
has a substantial immobile fraction, while NPM1-RARA has a much small immo-
bile fraction that is only present in a subset of the nuclei assayed. Strangely, the
profile for NPM1-RARA-HaloTag is unlike that of both RARA-HaloTag and endoge-
nously tagged NPM1-HaloTag (Fig. 5.15).

The effect of the RARA fusion proteins on wildtype RARA was consistent with a
competition mechanism. To determine if this was also the case for the effects of
RXRA, we assayed the effect of RARA fusion protein expression on RXRA binding
dynamics with FRAP (Fig. 6.6). While overexpression of wildtype RARA mod-
estly reduced recovery, expression of the RARA fusion proteins had a much more
pronounced effect, generally slowing RXRA recover (Fig. 6.6B). Moreover, the
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ordinarily uniform distribution of nuclear RXRA-SNAPf is disrupted in these the
presence of the fusion proteins. RXRA colocalizes with the small, speckle-like
bodies exhibited by the PML-RARA-mEGFP transgene (Fig. 6.6C). Recovery in
these speckles was markedly slower than in the nucleoplasm, and this effects also
held in the case of NPM1-RARA for FRAP experiments performed in the nucleolus
(Fig. 6.6B).

Because the RARA fusion proteins have apparently opposite effects on RARA-
HaloTag and RXRA-SNAPf, these spaSPT experiments support a competitionmech-
anism. However, experiments with endogenously tagged RXRA must be per-
formed for corroboration.

6.2.4 Autoregulation of RARA expression levels

A puzzling aspect of these results was that the exogenously expressed RARA-
mEGFP acted as an extremely weak competitor compared to the RARA fusion
proteins (Fig. 6.5B, C). On one hand, this could be due to an increased affinity
between RXRA and the RARA fusion proteins relative to the native RXRA-RARA
interaction. On the other, it could arise from changes in the expression levels of
these proteins. In the course of the spaSPT experiments, we had noticeably fewer
detections for RARA-HT in the presence of exogenously expressed RARA-mEGFP,
suggesting changing in the expression level of RARA-HT may be at least partly re-
sponsible for this effect.

To investigate this effect in more detail, we assayed the change in the expres-
sion level of endogenous RARA-HaloTag in response to exogenous expression of
RARA- or RXRA-mEGFP (Fig. 6.7). RARA-HaloTag ordinarily exhibits extremely
similar expression levels between cells (Fig. 6.2C, 6.2D), but in the presence
of exogenous RARA-mEGFP the expression heterogeneity was increased, with
a notable negative covariance between the levels of endogenous and exoge-
nous RARA (Fig. 6.7B, C). Interestingly, this effect became stronger under atRA
treatment, under which the entire pool of RARA contracts due to atRA-triggered
degradation [102].

Expression of exogenous RXRA-mEGFP appeared to have the opposite effect
(Fig. 6.7D), in both the presence and absence of atRA. The opposite effects of
RARA and RXRA suggest the presence of amode of heterodimerization-dependent
autoregulation.

Analysis of the spatial distribution of exogenously expressed RARA-mEGFP showed
an expression level-dependent localization (Fig. 6.7E). At low expression levels,
RARA-mEGFP is predominately nuclear, while the distributions becomes less bi-
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ased between the nucleus and cytoplasm at higher expression levels.

Known modes of autoregulation in the RAR genes fall into two categories (Fig.
6.7F). The three RAR genes each have two promoters. The second promoter
often contains a RARE and is activated in response to retinoic acid [103]. The
second mode of autoregulation is the agonist-induced degradation of RAR/RXR
heterodimers [102]. Neither of these mechanisms can account for the expression
level effects observed here, which occur in the absence of retinoic acid.

202



Figure 6.8: Endogenous tagging of RARA and coregulators in JM8N4 mouse
embryonic stem cells. (A) Anti-FLAG and anti-V5 Western blots verifying the
endogenous tag for Rara-HaloTag-3xFLAG and V5-HaloTag-Rxra in JM8N4 cells.
Rara-HaloTag-3xFLAG clones c5 and c13 are heterozygotes. (B) Raw Western blots
corresponding to (A). (C) RT-qPCR to assess expression of pluripotency-related genes in
endogenously tagged Rara-HaloTag and HaloTag-Rxra cell lines. In the absence of RA or
another agonist, Rarb2 is not expressed. (D) RT-qPCR to assess response of Rarb2
transcript to all-trans retinoic acid (atRA) in tagged cell lines. (E) Spinning disk confocal
microscopy of tagged cell lines. (F) Luciferase assays confirming response of
endogenously tagged cell lines to atRA. (G) spaSPT jump length distributions for tagged
cell lines using the photoactivatable PA-JFX549 dye. (H) Quantification of diffusion
modes for endogenously tagged Rara, Rxra, Ncor1, and Ncoa3 using two-state SpotOn
[60]. (I) Same as (G), but in the presence of agonists/inverse agonists of retinoic acid
receptor. Trajectories were spatially segregated into nuclear and cytoplasmic
components and analyzed separately.
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6.2.5 Mobility of Rara, Rxra, and coregulators in mouse embry-

onic stem cell nuclei

All-trans retinoic acid has a pronounced effect on mouse embryonic stem cells, in-
ducing differentiation [104]. To understand how the mobility of Rara is affected by
this process, we produced JM8N4mouse embryonic stem cell lines with HaloTagged
Rara, Rxra, Ncor1, and Ncoa3 (Fig. 6.8). Rara- and Rxra-tagged cell lines ex-
pressed pluripotency-related transcripts at levels indistinguishable from the par-
ent population (Fig. 6.8C) and upregulated the Rarb2 transcript in response to all-
trans retinoic acid (Fig. 6.8D). Additionally, these cell lines activated expression
of a RARE-driven luciferase reporter comparably to the parent cells (Fig. 6.8F).
All four proteins localized to the nucleus, while subnuclear speckles apparent for
Ncor1-HaloTag (Fig. 6.8E). Notably, the morphology of nuclei was aberrant for
Ncoa3-HaloTag cells, and these cells generally have a reduced growth rate as
well, probably indicating that the tagged Ncoa3 has reduced or no function.

To assay the dynamics of these proteins, we used a multi-state regular Brown-
ian motion model with a jump histogram-based inference method (Fig. 6.8G).
In all cases, the diffusion coefficient for one of the states converged to a value
below 0.01 µm2 s−1, which are effectively immobile molecules for the purpose of
the spaSPT assay. Interestingly, while both Rara-HaloTag and Rxra-HaloTag exhib-
ited nearly identical mobile diffusion coefficients, Ncor1-HaloTag was substantially
slower (Fig. 6.8H) and also had a larger bound fraction.

Upon treatment with Am580, a strong synthetic retinoid analog, or BMS493, an in-
verse agonist that promotes association with corepressors [105], we observed no
change in the immobile fraction of Rara-HaloTag. In contrast, treatment with both
Am580 and BMS493 decreased the mobile diffusion coefficient of Rara-HaloTag.
While agonists have been observed to slow the diffusion of RARA before [101], an
effect attributed to the association of RARA with large coactivator complexes, the
fact that BMS493 has a similar effect indicates that not all Rara-HaloTag molecules
are in complex with corepressors in the absence of agonist as implied by Fig. 6.1A.

Revisiting these experiments with the techniques developed elsewhere in this the-
sis will prove useful for comparison with the U2OS RARA-HT experiments.

6.3 Discussion

The complexity of the T2NR regulatory network has made this system challenging
to dissect. In vitro studies have identified a regulatory logic underlying binding
site selection and heterodimerization among T2NRs that is not always replicated in
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cells [106]. For this reason, measurements of T2NR dynamics in cells are valuable
complements to our existing body of in vitro knowledge about these proteins.

An unexpected aspect of our results is the large heterogeneity in the observed
modes of diffusion for RARA (Fig. 6.3). RARA appears to occupy diffusive states
ranging from 0.1 to 10.0 µm2 s−1. Mutation of the DNA-binding domain not only
abolishes the immobile fraction, but also upshifts the mobile diffusion coefficients.
This suggests that the slow modes of diffusion are dependent on DNA binding
events, perhaps too fast to be observedwith spaSPT. Indeed, diffusion of a particle
in equilibrium between two diffusive states with sufficiently fast rates of conver-
sion manifests as a single state with diffusion coefficient intermediate between
that of the two states [43].

While further spaSPT studies with endogenously tagged RXR need to be con-
ducted, our existing results support a competition-for-RXR mechanism. Indeed,
the presence of RARA fusion proteins strongly reduces chromatin binding by en-
dogenous RARA. This effect is comparable in magnitude to deletion of the RARA
DNA-binding domain itself (Fig. 6.5). At the same time, the immobile fraction
of RXR is increased (Fig. 6.6), and RXR colocalizes with the PML-RARA fusion
protein. Together, these results support a mechanism wherein the RARA fusion
proteins sequester endogenous RXR in long-lived immobile states, rendering en-
dogenous RARA monomeric and unable to bind chromatin.

Wildtype RARA is a much weaker competitor than the RARA fusion proteins (Fig.
6.5C). We observed negative autoregulation of RARA expression levels on the
timescale of a typical spaSPT experiment that may contribute to this effect (Fig.
6.7). In contrast to the known modes of RARA autoregulation, this effect was
retinoic acid-independent, although it became more pronounced in the presence
of atRA. Intriguingly, exogenously expressed RARA and RXR had opposite effects
on the expression level of endogenous RARA. A possible explanation is that the
monomeric RARAmay be intrinsically less stable than the RARA/RXR heterodimer.

Finally, preliminary results in mouse embryonic stem cells provide insight into
the relation of Rar/Rxr and coregulator dynamics. In the absence of agonist,
T2NRs are believed to be associatedwith corepressor complexes NCoR and SMRT
(Ncor1 andNcor2, respectively), which dissociate upon agonist binding. We found
that in the absence of agonist, Rar/Rxr and Ncor1 exhibit distinct modes of motion
(Fig. 6.8). In particular, Ncor1 diffusesmore slowly than Rar/Rxr. Biochemical stud-
ies have shown that Ncor1 exists in a large protein complex containing HDACs,
which may account for this slow diffusion [107]. Agonist or inverse agonist treat-
ment both reduced the mobility of Rar/Rxr, suggesting that in untreated mESCs,
a substantial fraction free Rar/Rxr monomers and dimers are not associated with
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either corepressor or activator. These results are consistent with an RXR FCS study
in which agonist was observed to shift Rxr to a slower-moving state [108]. An in-
teresting subject for future work is to identify whether the genomic binding profile
of Rar and Rxr is modified by inverse agonist treatment in mESCs.

6.4 Materials and methods

Tissue culture. Human U2OS cells (female, 15 year old, osteosarcoma) were cul-
tured under 5% CO2 at 37 degrees C in DMEM containing 4.5 g/L glucose supple-
mented with 10% fetal bovine serum and 10 U/mL penicillin-streptomycin. Cells
were subpassaged at a ratio of 1:6 every 3-4 days. The stable cell line expressing
H2B-HaloTag-SNAPf was described previously [23] [24]. Expression of HaloTag
and HaloTag-NLS were induced by nucleofection of PiggyBac vectors containing
the proteins under EF1a promoters.

JM8N4 mouse embryonic stem cells [109] (RRID CVCL-J962; obtained from the
KOMP Repository at UC Davis) were cultured on plates pre-coated with auto-
claved 0.1% gelatin solution in feeder-free conditions. Culturemediumwas knock-
out DMEM supplemented with 15% fetal bovine serum and LIF: 500 mL knock-
out DMEM (ThermoFisher, Waltham, MA, 10829018), 6 mL MEM non-essential
amino acids (ThermoFisher 11140050), 6 mL GlutaMax (ThermoFisher 35050061),
5 mL penicillin-streptomycin (ThermoFisher 15140122), 4.6 µL β-mercaptoethanol
(Sigma-AldrichM3148), 90mL fetal bovine serum (HyClone, Logan, UT, FBS SH30910.03
lot AXJ47554) and in-house purified LIF. Medium on mES cells were changed daily
and cells were subpassaged every 2 days.

For spaSPT experiments, cells were grown on 25 mm circular No. 1.5H cover-
glasses (Marienfeld, Germany, High-Precision 0117650) that had been sonicated
in ethanol for 10 min, plasma-cleaned, then stored in isopropanol until use. U2OS
cells were grown directly on the coverglasses in the regular culture medium. mES
cells were grown on coverglasses that had been coated with CorningMatrigel ma-
trix (Corning 354277; ThermoFisher 08-774-552) according to the manufacturer’s
instructions. For both U2OS and mES cells, the medium was changed immedi-
ately before imaging (after dye labeling) into phenol red-free mediujm to reduce
background, while all other components of the medium remained unchanged.

Nucleofection. Because lipofection-based transfection methods often produce
substantial background labeling in experiments with fluorescent dyes, for all imag-
ing experiments involving exogenous expression we used the Lonza Amaxa II Nu-
cleofector System with Cell Line Nucleofector Kit V reagent (Lonza VCA-1003).
Briefly, U2OS cells were grown in 10 cm plates (ThermoFisher) for two days prior to
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nucleofection, trypsinized, spun down at 1200 rpm for 5 min, combined with vec-
tor and Kit V reagent according to manufacturer’s instructions, and nucleofected
with program X-001 on an Lonza Amaxa II Nucleofector. After nucleofection, cells
were immediately resuspended in regular culture medium at 37˚ C and plated.

CRISPR/Cas9-mediated gene editing. Endogenous tagging of RARA in U2OS
cells and Rara, Rxra, Ncor1, and Ncoa3 in mES cells were performed with a pro-
tocol roughly following [23] with some modifications. This protocl relies on FACS
sorting for cells that have been correctly modified to express HaloTag fused to
the target protein. Briefly, for U2OS cells, we nucleofected cells with plasmid ex-
pressing 3xFLAG-SV40NLS-pSpCas9 from a CBh promoter [111], mVenus from a
PGK promoter, and guide RNA from a U6 promoter, along with a second plasmid
encoding the homology repair donor. The homology repair donor was built in a
pUC57 backbone modified to contain HaloTag (and/or 3xFLAG/V5, as relevant)
with ∼500 base pairs of homologous genomic sequence on either side. Synony-
mous mutations were introduced at the cut site to prevent repeated targeting by
Cas9. Three distinct guide RNAs were used for each target, which were nucle-
ofected into separate populations of cells to be pooled for subsequent analysis.
24 hours after the initial nucleofection, we screened for mVenus-expressing cells
using FACS and pooled these mVenus-positive cells in 10 cm plates. 5 days after
plating, we labeled cells with HTL-TMR (Promega G8251) and screened for TMR-
positive, mVenus-negative cells. Cells were diluted to single clones and plated in
96-well plates for a 2-3 week outgrowth step, during which the medium was re-
placed every 3 days. The 96-well plates were then screened for wells containing
single colonies of U2OS cells, which were split by manual passage into two repli-
cate wells in separate 96-well plates. One of these replicates was used to subpas-
sage, while the other was used to harvest genomic DNA for PCR and sequencing-
based screening for the correct homology repair product. In PCR screens, we
used three primer sets: (A) primers external to HaloTag, expected to amplify both
the wildtype allele and the edited allele, (B) a primer internal to HaloTag and an-
other external to it on the 5’ side, expected to amplify only the edited allele, and
(C) a primer internal to HaloTag and another external to it on the 3’ side, expected
to amplify only the edited allele. PCR products were gel-purified (Qiagen 28704)
and sequenced; only clones with the target sequence were kept for continued
screening. Finally, we selected a subset of these clones to confirm the expression
of the HaloTagged allele by Western blot.

For mES cells, we used the same general strategy. Lipofectamine 3000 was used
to transfect Cas9 plasmid [111] and homology repair donor into a wildtype JM8N4
population. One day later, cells were sorted for mVenus, replated, and at the
next passage were labeled with TMR-HTL, and sorted for TMR-positive, mVenus-
negative cells. These cells were plated at low density on gelatin-coated 15 cm
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plates. Clones were then picked and expanded for screening as described for
U2OS cells.

Western blots. Antibodies were as follows. The ratio indicate the dilution fac-
tors used for Western blot. human TBP, Abcam Ab51841, 1:2500 (mouse); FLAG,
Sigma-Aldrich F3165, 1:2000 (mouse); V5, Invitrogen R960-25, 1:2500 (mouse);
mRxra, Abcam 125001, 1:500 (mouse); mRara, Abcam Ab41934, 1:400 (mouse);
anti-Mouse HRP, Invitrogen 31430, 1:5000 (goat).

For Western blots, cells were collected by scraping from plates in ice-cold PBS,
then pelleted. Cell pellets were resuspended in lysis buffer (0.15 M NaCl, 1% NP-
40, 50 mM Tris-HCl (pH 8.0), and a cocktail of protease inhibitors (Sigma-Aldrich
11697498001)), agitated for 30 min at 4˚ C, then centrifuged for 20 min at 12000
rpm, 4˚ C. The supernatant was then mixed with 2x Laemmli (to final 1x), boiled
for 5 min, then run on 12.5% SDS-PAGE. After transfer to nitrocellulose, the mem-
brane was blocked with 10% condensed milk in TBST (500 mM NaCl, 10 mM
Tris-HCl (pH 7.4), 0.1% Tween-20) for one hour at room temperature. Antibodies
were suspended in 5% condensed milk in TBST at the dilutions indicated above
and incubated, rocking at 4˚ C overnight. After hybridization, the membrane was
washed three times for 10 min with TBST at room temperature, hybridized with an
anti-mouse HRP secondary antibody in 5% condensed milk in TBST for 60 min at
room temperature, washed threemore times with TBST for 10min, then visualized
with Western Lightning Plus-ECL reagent (PerkinElmer NEL103001) according to
manufacturer instructions and imaged on a Bio-Rad ChemiDoc imaging system.
Different exposure times were used for each target.

Luciferase assays. All luciferase assays used pGL3-RARE-luciferase, a reporter
containing firefly luciferase driven by an SV40 promoter with three retinoic acid
response elements (RAREs). pGL3-RARE-luciferase was a gift from T. Michael
Underhill (Addgene plasmid 13458 ; http://n2t.net/addgene:13458 ; RRID:Ad-
dgene_13458) [110]. Luciferase assays were performed on cells cultivated in 6-
well plates; cells were transfected with 100 ng pGL3-RARE-luciferase and 10 ng
pRL Renilla (Promega E2261) usingMirus TransIT-2020 Transfection Reagent (Mirus
MIR 5404) for U2OS cells or Lipofectamine 3000 (ThermoFisher L3000015) formES
cells. Transfection was performed one day before assaying luciferase expression
with the Dual-Luciferase Reporter Assay System (Promega E1910) according to
manufacturer’s instructions. Readout was performed on a GloMax luminometer
(Promega).

RT-qPCR. Total RNA was purified from cell pellets with RNeas Plus Mini kit (Qia-
gen) and quantified by UV absorption (Nanodrop). We used 1 µg of total RNA for
reverse transcriptionwith iScript reverse transcription supermix (Bio-Rad 1708840).
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qPCR was performed with SYBR Select Master Mix for CFX (Applied Biosystems,
ThermoFisher) on a Bio-Rad CFX Real-Time PCR system.

Cell labeling. For spaSPT and FRAP experiments, cells were labeled with one of
two methods, depending on the type of dye. For non-photoactivatable fluores-
cence dyes including TMR-HTL (tetramethylrhodamine-HaloTag ligand; Promega
G8251) and SNAPtag-JF646 (a generous gift from Luke Lavis; [14]), we stained
cells with 100 nM dye in regular culture medium for 10-20 min, then performed
three 10 min incubations in dye-free culture medium separated by PBS washes.
All PBS and culture medium was kept at 37˚ C during washes.

For experiments with photoactivatable dyes, which have lower cell permeability
and slower wash in/wash out kinetics, we labeled cells with 100 nM dye in reg-
ular culture medium for 30 min, followed by four 30 min incubations in dye-free
culture medium at 37˚ C. Between each incubation, we washed twice with PBS at
37˚ C. After the final incubation, cells were changed into phenol red-free medium
for imaging.

spaSPT. spaSPT experiments were performed with a custom-bulit Nikon TI micro-
scope equipped with a 100X/NA 1.49 oil-immersion TIRF objective (Nikon apoc-
hromat CFI Apo TIRF 100X Oil), an EMCCD camera (Andor iXon Ultra 897), a
perfect focus system to account for axial drift, an incubation chamber maintain-
ing a humidified 37˚ C atmosphere with 5% CO2, and a laser launch with 405
nm (140 mW, OBIS, Coherent), 488 nm, 561 nm, and 633 nm (all 1 W, Genesis
Coherent) laser lines. Laser intensities were controlled by an acousto-optic Tun-
able Filter (AA Opto-Electronic, AOTFnC-VIS-TN) and triggered with the camera
TTL exposure output signal. Lasers were directed to the microscope by an optical
fiber, reflected using amulti-band dichroic (405 nm/488 nm/561 nm/633 nm quad-
band, Semrock) and focused in the back focal plane of the objective. The angle
of incident laser was adjusted for highly inclined laminated optical sheet (HiLo)
conditions [13]. Emission light was filtered using single band-pass filters (Semrock
593/40 nm for PAJFX549 and Semrock 676/37 nm for PAJF646). Hardware was
controlled with the Nikon NIS-Elements software.

For stroboscopic illumination, the excitation laser (561 nm or 633 nm) was pulsed
for 1-2 ms (most commonly 1.5 ms) at maximum (1 W) power at the beginning
of the frame interval, while the photoactivation laser (405 nm) was pulsed during
the ∼447 µs camera transition time, so that the background contribution from
the photoactivation laser is not integrated. For all spaSPT, we used an EMCCD
vertical shift speed of 0.9µs and conversion gain setting 2. On our setup, the
pixel size after magnification is 160 nm and the photon-to-grayscale gain is 109.
15000-30000 frames with this sequence were collected per nucleus, during which
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the 405 nm intensity was manually tuned to maintain low density of fluorescent
particles per frame.

Localization and tracking. To produce trajectories from raw spaSPT movies, we
used a custom tracking tool publicly available on GitHub (quot). All localization
and tracking was performed with the following settings:

• Detection: generalized log likelihood ratio test with a 2D Gaussian kernel of
fixed radius 190 nm (detection method llr with k = 1.2, a 15 pixel window
size (w = 15), and a log ratio threshold of 16.0 (t = 16.0).

• Localization: Gauss-Newton estimation of a 2D integrated Gaussian point
spread function model (localization methood ls_int_gaussian) with fixed
radius 190 nm, window size 9 pixels, maximum 20 iterations per PSF, with a
damping term of 0.3 for parameter updates.

• Tracking: Method conservative with a 1.2 µm search radius.

After localization and tracking, all trajectories in the first 1000 frames of each
movie were discarded. Localization density tends to be high in these frames,
so they can contribute tracking errors that compromise accuracy. The mean lo-
calization density for most movies in the remaining set of frames is less than one
emitter per frame.

For experiments involving HaloTag or HaloTag-NLS, which move quickly, we used
a broader search radius at 2.5 µm. All other settings were kept the same.

FRAP. For fluorescence recovery after photobleaching experiments, we used an
inverted Zeiss LSM 710 AxioObserver confocal microscope equipped with a mo-
torized stage, an incubation chamber maintaining 37˚ C and 5% CO2, a heated
stage, an X-Cite 120 illumination source and a 561 nm laser line. All FRAP ex-
periments used the TMR 561 nm laser line and a 40X Plan NeoFluar NA1.3 oil-
immersion objective at a 100 nm pixel size. 20 frames were acquired before
bleaching a circular spot with the 561 nm microscope. In all cases, the spot was
chosen with radius 13 pixels and the pixel dwell time of the laser was slowed to
its minimum setting to maximize bleaching. In these experiments, the bleaching
time is 1-2 seconds, meaning that dynamics below this timescale are not accessi-
ble.

For FRAP analysis, we used a custom Python pipeline to integrate the intensity of
the bleach spot at each frame while accounting for cell drift. Recovery was quan-
tified by normalizing the integrated intensity of the spot to its average intensity
in the 20 pre-bleach frames. We normalized for photobleaching by dividing the
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recovery curve by the normalized sum nuclear intensity at each frame.

Spinning disk confocal imaging. Experiments using spinning disk confocal imag-
ing were performed at the UC Berkeley High-Throughput Screening Facility on
a Perkin Elmer Opera Phenix equipped with a controller for 37˚ C and 5% CO2,
using a built-in 40X water immersion objective.
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Figure 6.6: Influence of exogenously expressed RARA and RARA fusion proteins on
RXRA binding dynamics. (A) Schematic of the assay. Cells bearing a stably expressed
RXRA-SNAPf are transfected with mEGFP-tagged RARA or RARA fusion proteins. Cells
with GFP expression are then selected for FRAP experiments. (B) FRAP results. In all
cases, the recovery curves represent FRAP experiments for the same stably expressed
RXRA-SNAPf U2OS cell line. atRA is all-trans retinoic acid. In the case of the lower
subplot, ”subnuclear body” refers to the small speckle-like bodies produced by
expression of PML-RARA (see (C)). (C) Confocal microscopy images. The upper two
subplots are stably expressed RXRA-SNAPf stained with JF646 (Methods) and the lower
subplot is an mEGFP PML-RARA transgene.
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Figure 6.7: Influence of exogenously expressed RARA on endogenously RARA
expression levels. (A) Schematic of the experiment. Cells bearing endogenously
tagged RARA-HaloTag-3xFLAG are labeled with TMR, then are made to express
exogenous mEGFP-tagged RARA by nucleofection. 24 hours later, expression levels are
assayed. (B) Example spinning disk microscopy image of exogenous and endogenous
RARA in a population of U2OS cells. (C) Quantification of the results in (B) using a
high-througphut spinning disk microscope. The levels of exogenous and endogenous
RARA on the axes are the integrated intensities across each nucleus. (D) Quantification
of the same experiment using FACS. Cells were analyzed in two populations - mEGFP
fluorescent cells (which contain the transgene) and mEGFP(-) cells. Fluorescence was
quantified relative to a wildtype U2OS control labeled with TMR. (E) Sample widefield
fluorescence microscopy images of RARA-mEGFP transgene at different expression
levels. (F) Cartoon depicting the known RAR autoregulatory logic. Note that the only
the α2, β2, and γ2 promoters are responsive to retinoic acid activation.
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Appendix A

Appendix: Spot detection with
generalized log likelihood ratio tests
and related variance-normalized
detection algorithms.

Spot detection is often the first step in the treatment of raw data generated in
spaSPT. Here, we outline a method for detection with an arbitrary “spot model”
- taking the place of a PSF in traditional fixed-cell PALM/STORM - based on a
general log likelihood ratio test (GLRT). The development that follows is strongly
inspired by Stephen Kay’s book [81] as well as the GLRT described in Sergé and
coworkers’ tracking algorithm [112].

From an algorithmic perspective, many detection methods operate along the
same general lines as the GLRT method: an image is convolved with one or more
kernels, which are combined in some way to yield a modified image that is subse-
quently thresholded to identify spots. A critical factor in these algorithms is the
final threshold that defines the detection criterion. Classic spot detection meth-
ods such as difference-of-Gaussian (DoG) or Laplacian-of-Gaussian (LoG) filtering,
require tuning this threshold to the particular intensity and camera noise charac-
teristics of each dataset.

The advantage of the GLRT is that it is invariant with respect to the intensity of
the original image. As a result, a user can apply a threshold on data collected in
different experiments, or even on different cameras, and expect the same general
behavior of the algorithm.

As it turns out, the GLRT can be phrased in a particularly convenient algorith-
mic form in terms of image convolutions that allows us to transfer this intensity-
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invariant property to a much broader class of image detection methods, including
classic DoG and LoG filters.

A.1 Generalized likelihood ratio tests for spot detec-

tion in 2D images

Consider the problem of spot detection in a noisy 2D image. Say we start with
the following:

1. We have an image A with shape M × N pixels, so that Aij is the observed
intensity of the ith, jth pixel (with i ∈ {1,2, ...,M}, j ∈ {1,2, ...,N}).

2. We have a spot model S with dimensions m × n, so that Sij is the model
intensity for the ith, jth pixel (with i ∈ {1,2, ...,m}, j ∈ {1,2, ..., n}).

3. The spot model is normalized so that
∑
i

∑
j

Sij = 1.

A common choice for S is a 2D Gaussian. Then we have

Sij ∝ exp

(
−
(i − m+1

2
)2 + (j − n+1

2
)2

2r20

)

Normalization of this density on i ∈ {1,2, ...,m}, j ∈ {1,2, ..., n} yields the spot
model. (Because we are working with discrete pixels - this is not equivalent to the
usual 2D Gaussian normalization factor (2πr20)

−1.)

Here, r0 defines the width of the Gaussian kernel. We assume that r0, and what-
ever other parameters that define S for other models, are constant.

Divide the image A into subregions A∗
yc ,xc that are each centered on a pixel (yc , xc),

so that A∗
i,j = Ayc−m+1

2
+i,xc− n+1

2
+j. (When m and n are not odd, the division in the

indices can be assumed to give the division floor, so that 8+1
2

= 4.)

Then for every choice of (yc , xc), consider two hypotheses, H0 and H1:

H0. The neighborhood A∗ contains only normally distributed noise, so that

A∗
ij = b0 +Nij

Nij ∼ N
(
0, σ20

)
where b0 is a background term.
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H1. There is a spot centered at (yc , xc), so that

A∗
ij = ISij + b1 +Nij

Nij ∼ N
(
0, σ21

)
where I is the spot intensity, b1 is a background term, and Nij is normally
distributed noise with variance σ21.

The approach for the GLRT is first to identify the maximum likelihood of each
hypothesis given the observed A∗. This requires implicitly finding the maximum
likelihood parameters for each hypothesis, which we’ll denote as m̂0, σ̂

2
0 (for hy-

pothesis H0) and m̂1, σ̂
2
1, Î (for hypothesis H1). Then the log likelihood ratio of the

two hypothesis is compared to a given threshold T . If the log ratio exceeds T ,
then we call a spot centered on (yc , xc). Otherwise, the neighborhood A∗ is not
considered for subsequent analysis.

Maximum likelihood parameters for hypothesis H0

First consider hypothesis H0, which models the observed A∗ data as normally dis-
tributed noise on top of some background term. Then the likelihood of parame-
ters m0, σ

2
0 given the observed spot profile A

∗ is

L
[
m0, σ

2
0 | A∗] =∏

i,j

1√
2πσ20

exp

(
−
(A∗

ij − b0)
2

2σ20

)

logL
[
m0, σ

2
0 | A∗] = −nm

2
log

(
2πσ20

)
− 1

2σ20

∑
ij

(
A∗
ij − b0

)2 (A.1)

We seek the maximum likelihood estimate b̂0. Differentiating A.1 with respect to
b0 and setting this equal to zero,

∂ logL
[
b0, σ

2
0 | A∗]

∂b0

∣∣∣∣
b̂0

=
1

σ20

∑
ij

(
A∗
ij − b̂0

)
= 0

b̂0 =
1

nm

∑
ij

A∗
ij
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which is just the sample mean of A∗. Solving similarly for σ̂21,

∂ logL
[
b̂0, σ

2
0

]
∂σ20

∣∣∣∣
σ̂2
0

= − nm

2σ̂20
+
1

σ̂40

∑
ij

(
A∗
ij − b̂0

)2
= 0

=⇒ σ̂20 =
1

nm

∑
ij

(
A∗
ij − b̂0

)2
which is the sample variance of A∗. Now that we have maximum likelihood esti-
mates for b0 and σ

2
0, define the log likelihood of hypothesisH0 as the log likelihood

evaluated at these estimates:

logL [H0 | A∗] = logL
[
b̂0, σ̂

2
0 | A∗

]
Plugging this back into the log likelihood A.1, we obtain

logL [H0 | A∗] = −nm

2

(
1+ log

(
2πσ̂20

))
(A.2)

Maximum likelihood parameters for hypothesis H1

The maximum likelihood parameters for hypothesis H1 are m̂1, σ̂
2
1, and Î. We can

obtain these using similar methods to above, albeit with added complexity due
to the spot model. Our log likelihood function is now

logL
[
b1, σ

2
1, I | A∗] = −nm

2
log

(
2πσ21

)
− 1

2σ21

∑
ij

(
A∗
ij − b1 − ISij

)2
(A.3)

First, differentiate the log likelihood with respect to σ21 and evaluate at the ML
estimate σ̂21:

∂ logL
[
b1, σ

2
1, I | A∗]

∂σ21

∣∣∣∣
σ̂21

= − nm

2σ̂21
+

1

2σ̂41

∑
ij

(
A∗
ij − b1 − ISij

)2
= 0

σ̂21 =
1

nm

∑
ij

(
A∗
ij − b1 − ISij

)2 (A.4)

Substituting this back into the log likelihood A.3, we obtain

logL
[
b1, σ̂

2
1, I | A∗] = −nm

2

(
1+ log

(
2πσ̂21

))
(A.5)
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Now seek b̂1 by differentiating A.5:

∂ logL
[
b1, σ

2
1, I | A∗]

∂b1

∣∣∣∣
b̂1

= − nm

2σ̂21

∂σ̂21
∂b1

∣∣∣∣
b̂1

= 0

=⇒ b̂1 =
1

nm

∑
ij

(
A∗
ij − ISij

)
Plugging this back into A.4, we have

σ̂21 =
1

nm

∑
ij

A∗
ij −

1

nm

∑
i
′
j
′

(
A∗
i
′
j
′ − ISi′ j′

)
− ISij

2

=
1

nm

∑
ij

((
A∗
ij − 〈A∗〉

)
− I
(
Sij − 〈S〉

))2
=

1

nm

∑
ij

(
Ã∗
ij − IS̃ij

)2
where in the last line we have defined Ã∗

ij = A∗
ij−〈A∗〉 and S̃ij = Sij−〈S〉, the mean-

subtracted image and model intensities. Notice that when I = 0, we recover the
maximum likelihood estimator for σ̃21 under H0, which is just the sample variance.

Now, the only variable that remains is Î. We seek Î such that

∂ logL
[
b̂1, σ̂

2
1, Î
]

∂I

∣∣∣∣
Î

= − nm

2σ̂21

∂σ̂21
∂I

∣∣∣∣
Î

= 0

= − 2

nm

∑
ij

(
Ã∗
ij − ÎS̃ij

)
S̃ij

=
2

nm

−
∑
ij

Ã∗
ij S̃ij + Î

∑
ij

S̃2ij


Î =

∑
ij

Ã∗
ij S̃ij∑

ij

S̃2ij
=
1

ξ

∑
ij

Ã∗
ij S̃ij

where in the last equation we have let ξ =
∑
ij

S̃2ij , a constant for each choice of

model S. Now the maximum likelihood estimate for the variance under H1 be-
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comes

σ̂21 =
1

nm

∑
ij

(
Ã∗
ij − ÎS̃ij

)2
=

1

nm

∑
ij

(Ã∗
ij)
2 − 2Î

nm

∑
ij

Ã∗
ij S̃ij +

Î2

nm

∑
ij

S̃2ij

=
1

nm

∑
ij

(Ã∗
ij)
2 − 2Î2ξ

nm
+

Î2

nm

∑
ij

S̃2ij

=
1

nm

∑
ij

(Ã∗
ij)
2 − ξ

nm
Î2

= σ̂20 −
ξ

nm
Î2

Log likelihood ratio of hypotheses H0 and H1

With σ̂20 and σ̂
2
1 in hand, we can evaluate the log likelihood ratio of the two hy-

potheses. Suppose, as before, that we have a subregion A∗ of an image A cen-
tered at the point (yc , xc). Then, using A.2 and A.5, the log likelihood ofH1 relative
to H0 reduces to a comparison of the variances:

logL [yc , xc ] = logL [H1 | A∗]− logL [H0 | A∗]

=
(
−nm

2

(
1+ log

(
2πσ̂21

)))
−
(
−nm

2

(
1+ log

(
2πσ̂20

)))
= −nm

2
log

(
σ̂21
σ̂20

)
= −nm

2
log

(
σ̂20 −

ξ
nm
Î2

σ̂20

)

= −nm

2
log

(
1− ξ Î2

nmσ̂20

)

= −nm

2
log

1−
(∑

ij

Ã∗
ij S̃ij

)2

nmξσ̂20
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Recognizing that
∑
ij

Ã∗
ij S̃ij =

∑
ij

A∗
ij S̃ij and that

σ̂20 =
1

nm

∑
ij

(
A∗
ij − 〈A∗〉

)2
=

1

nm

∑
ij

(A∗
ij)
2 − 2 〈A∗〉

∑
ij

A∗
ij + nm 〈A∗〉2


=

1

nm

∑
ij

(A∗
ij)
2 − 1

nm

∑
ij

A∗
ij

2
 ,

where Ũij =
1
nm
for all pixels (i, j).

we can rewrite this log likelihood ratio as

logL [yc , xc ] = −nm

2
log

1−
(∑

ij

A∗
ij S̃ij

)2

ξ

∑
ij

(A∗
ij)
2 − 1

nm

(∑
ij

A∗
ij

)2


 (A.6)

This is now solely in terms of the observed subimage A∗ and the model S. We call
a spot centered at (yc , xc) when

logL [A∗] ≥ T

for some log likelihood threshold T .

A.2 Algorithms to compute the GLRT on sequences

of images

Equation A.6 can be put into a computationally tractable form using image con-
volutions. Here, we’ll use A ∗ K to denote the convolution of the image A with a
kernel K , so that if K has dimensions n×m,

(A ∗ K )ij =
n∑

i′=1

m∑
j′=1

Si′j′A
∗
i+m+1

2
−i′,j+ n+1

2
−j′
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Then we note that, if U is a uniform kernel of shape m × n where Uij = 1/nm for
all i, j, ∑

ij

(A∗
ij)
2 = nm

(
A2 ∗ U

)
ij∑

ij

A∗
ij

2

= nm (A ∗ U)2ij

where A2 = A ◦ A is the Hadamard product of A with itself.

Then we can rewrite the GLRT as

logL [yc , xc ] = −nm

2
log

1−
(
A ∗ S̃

)2
yc ,xc

ξ
(
nm(A2 ∗ U)yc ,xc − (A ∗ U)2yc ,xc

)
 (A.7)

Again, our criterion for detection is that this log ratio exceed some threshold T .
Forming this inequality and rearranging, we can eliminate the logarithm to yield
an equivalent criterion for detection:(

A ∗ S̃
)2
ij

nm (A2 ∗ U)ij − (A ∗ U)2ij
≥ ξ

(
1− e−2T/nm) (A.8)

Now the right-hand side is a constant for a particular choice of S and T .

Because the left-hand side of equation A.8 can be computed for every point
(yc , xc) in the original image in a small number of vectorizable operations (con-
volution, multiplication, subtraction, and division), it lends itself readily to a fast
detection algorithm (Algorithm A.1).

The numerator (A ∗ S̃)2 will be equal and positive for spots of both positive and
negative curvature. Since we generally do not want spots with positive curvature
(which are “holes” in the image), it is useful to filter on the curvature by setting
the ratio in A.8 to zero for all pixels (i, j) such that (A ∗ S̃)ij < 0.

Finally, it is useful to add a morphological closing step with a circular structuring
element to the binary image after thresholding for spots. This makes it less likely
that a single spot generates multiple detections.

221



Algorithm A.1: Generalized log likelihood ratio test for a sequence of images

Parameters:

• An image stack (A)t∈{1,2,...} with image dimensions N ×M

• A spot model S with dimensions m× n

• A log likelihood ratio for detection T

Precompute:

• S, the Fourier transform of the mean-subtracted kernel S−〈S〉 padded with
zeroes to N ×M

• U, the Fourier transform of a uniform kernel padded with zeroes to N ×M

• The normalization term ξ =
∑
ij

(
Sij − 〈S〉

)2
• The adjusted detection threshold T ∗ = ξ

(
1− e−2T/mn

)
Algorithm: For each image frame t = 1,2, ...:

1. Calculate the Fourier transforms A = F [At ] and A2 = F
[
A2
t

]
.

2. Generate the convolution I = F−1
[
A ◦ S

]
.

3. Generate the convolution B = nmF−1
[
A2 ◦ U

]
.

4. Generate the convolution C = F−1 [A ◦ U
]
.

5. Generate the binary image L = [(I ◦ I)/(B− C) ≥ T ∗], where the division and
subtraction operations are taken to apply elementwise.

6. Set Lij = false for all i, j such that Iij < 0.

7. Call spots in pixels (i, j) such that Lij is true.
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A.3 Other variance-normalized spot detection algo-

rithms

Examining the left-hand side of equation A.8, one can see that it operates as a
kind of signal-to-noise metric:(

A ∗ S̃
)2

nm (A2 ∗ U)− (A ∗ U)2
∼ ξ2

(signal)2

local variance
(A.9)

The factor ξ2 appears since the maximum likelihood estimator for the intensity of

a spot centered at (yc , xc) is Îyc ,xc =
1
ξ

(
A ∗ S̃

)
yc ,xc

.

As discussed previously, the tremendous utility of the GLRT comes from the in-
variance of the intensity threshold T with respect to the absolute intensity of the
images on which it is run. In other words, one threshold can be used for images
with very different intensities. Equation A.9 provides an intuitive reason for this
property. We can see that the GLRT operates by:

1. for every pixel, evaluate the maximum likelihood estimate for the intensity
of a spot centered on that pixel

2. for every pixel, evaluate the local variance in a box surrounding that pixel

3. compare the ratio of (1) and (2)

Spot detection methods like DoG or LoG, which work by convolving the image
with amean-zero kernel, correspond to the “signal” part of the ratio in A.9. (These
convolutions differ from the maximum likelihood estimator for the spot intensity,
Î, by a factor of ξ.) Simply by substituting either a DoG or LoG kernel for S, we
can obtain viable GLRTs. The resulting detection methods work similarly to naive
DoG or LoG, but inherit the intensity invariance characteristic of the GLRT. This can
make them much more reliable for high-throughput image processing, a setting
in which the user cannot manually examine all images to check that the detection
method is both sensitive and accurate.

There are also numerous spot detection methods that do not operate by simple
convolution of the image with a kernel. These include, for example, methods
based on the local Hessian determinant. While such methods do not transfer in a
straightforward manner to the GLRT framework, many still share the general prin-
ciple of thresholding a function defined on the original image. Departing from
the GLRT, we can use A.9 as inspiration for a very simple “variance-normalization”
method.
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Suppose, again, that A is a M × N image. We’ll assume that we have a spot de-
tection method that returns I, an M × N array such that the value of Iij is related
to the likelihood that there is a spot centered on (i, j) in the original image.

Choose some odd integer α > 1. Define U� as a “hollow” square kernel of shape
m× n (where m and n are both odd) such that

(U�)ij =


0 if

∣∣i − m+1
2

∣∣ ≤ α−1
2
and∣∣j − n+1

2

∣∣ ≤ α−1
2
,

1 otherwise

Then we propose the following normalization:

I =
I2

mn (I2 ∗ U�)− (I ∗ U�)
2

(A.10)

I is now in terms of the ratio of the local SNR of the original spot detectionmethod.
The method penalizes spots that have magnitude similar to the magnitude of lo-
cal noise. As a result, the method safeguards against spurious detection of spots
in noisy neighborhoods.

The normalization A.10 is not perfect in that we’re missing the factor ξ, which
accounts for the variance contributed by the choice of spot model. Nevertheless,
A.10 operates fairly well in practice for detection methods such as the Hessian
determinant (see main text).
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Algorithm A.2: Simple variance-normalized spot detectors

Parameters:

• an image A of shape M ×N

• a spot detection algorithm, represented by the operator D [·]

• the variance window size n, an odd integer

• the spot width α, an odd integer

Precompute:

• U, the Fourier transform of the hollow kernel padded with zeroes to N ×M

Algorithm: For each image frame t = 1,2, ...,

1. Run the normal spot detection method I = D [A].

2. Compute the convolution A = F−1 [F [I]U
]

3. Compute the convolution B = F−1 [F [I2]U]
4. Calculate the normalized image I = I2/(n2A − B2)

5. Apply a spot detection threshold T
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Appendix B

Appendix: Gaussian processes

Both regular Brownian motion (RBM) and fractional Brownian motion (FBM) are
instances of Gaussian processes and inherit the powerful inferential techniques
associated with these processes. Here we briefly review Gaussian processes, fo-
cusing on the cases of RBM and FBM. We also describe the “modified diffusion
coefficient” D, which is useful in practical situations involving FBM.

B.1 Definition

A Gaussian process Xt for t ∈ R, t ≥ 0 is a stochastic process such that, for any
finite collection of indices t1, t2, ..., tn, the vector X = (Xt1 ,Xt2 , ...,Xtn) has a multi-
variate normal PDF.

Because the multivariate normal density is completely described by its second-
order statistics, the specification of a mean function µ(t) and a covariance function
Cov(t, s) is sufficient to completely define a Gaussian process.

Imagine that we evaluate the mean and covariance functions on a specific set of
indices t1, ..., tn, corresponding to the vector X = (Xt1 , ...,Xtn). For convenience
we’ll usually denote this mean as µX and the covariance matrix as ΣX so that

µX =


E [Xt1 ]
E [Xt2 ]
...

E [Xtn ]

 =


µ(t1)
µ(t2)
...

µ(tn)


ΣX =

Cov(t1, t1) ... Cov(t1, tn)
... ... ...

Cov(tn, t1) ... Cov(tn, tn)


When considering the process at two possibly disjoint sets of indices - for instance,
X1 = (Xt1 , ...,Xtn) and X2 =

(
Xtn+1 , ...,Xtm

)
- we’ll extend the covariance function
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to vectorial arguments such that

Cov (X1,X2) = Σ12 =

Cov(t1, tn+1) ... Cov(t1, tm)
... ... ...

Cov(tn, tn+1) ... Cov(tn, tm)


Note that Σ12 = ΣT

21.

B.2 Properties of Gaussian processes

Suppose that we have a discrete set of indices t1, ..., tm that we’ve divided into
two groups. The first group runs from t1 to tn and the second runs from tn+1 to
tm. DefineX as the vector of a Gaussian process evaluated at the complete set of
indices so that X = (Xt1 , ...,Xtm). Likewise, define X1 and X2 as the vector of the
process evaluated at the first and second groups of indices respectively, so that
X1 = (Xt1 , ...,Xtn) and X2 = (tn+1, ..., tm).

Then X has a multivariate normal density with the mean vector

µX =

[
µX1

µX2

]
and the block covariance matrix

ΣX =

[
Σ11 Σ12

Σ21 Σ22

]
The vector X inherits the properties associated with multivariate normal random
vectors, the most useful of which we summarize below.

B.2.1 Independence

X1 and X2 are independent if and only if Cov(X1,X2) = 0.

B.2.2 Sum of two independent multivariate normal vectors

If X1 and X2 are independent and equal in cardinality, then their sum has the
multivariate normal density

X1 +X2 ∼ N (µX1
+ µX2

,Σ11 + Σ22) (B.1)
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B.2.3 Marginal distributions

The marginal distributions of X1 or X2 are also multivariate normal random vec-
tors:

X1 ∼ N (µX1
,Σ11)

X2 ∼ N (µX2
,Σ22)

(B.2)

B.2.4 Conditional distributions

The conditional distribution ofX2 givenX1 is another multivariate normal random
vector:

X2

∣∣∣ X1 ∼ N
(
µX2

+ Σ21Σ
−1
11 (X1 − µX1

) , Σ22 − Σ21Σ
−1
11 Σ12

)
(B.3)

Equation B.3 is the basis for most of the inference techniques associated with
Gaussian processes in machine learning, since it enables the user to predict the
value of the process at new indices given some previous observations.

B.2.5 Conditioning in the presence of measurement error

Suppose, as in B.3, that we have observed X1 = (Xt1 , ...,Xtn) and we wish to pre-
dict the values of the process at a different set of indices, X2 =

(
Xtn+1 , ...,Xtm

)
.

Equation B.3 assumes that we know the value of X1 exactly. More often, our
measurement has some error associated with it. We’ll imagine that this error is a
Gaussian white noise process Et , so that for E = (Et1 , ...,Etn) we have

E ∼ N
(
0, ν2I

)
where I is the identity matrix. Using B.1, we then have

X1 + E ∼ N
(
µX1

,Σ11 + ν2I
)

So we can simply apply B.3 while substituting Σ11 + ν2I for Σ11.

B.3 Regular and fractional Brownian motion

Fractional Brownian motion can be defined as a Gaussian process with the mean
function µ(t) = 0 and the covariance function

Cov(t, s) = D
(
|t|2H + |s|2H − |t − s|2H

)
(B.4)
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where D ≥ 0 and 0 < H < 1. We’ll refer to D as the diffusion coefficient and H as
the Hurst parameter. D governs the magnitude of the displacements of the mo-
tion, whileH governs thememory effects. In particular, whenH < 1/2, the process
is subdiffusive and its increments (when measured at a discrete set of timepoints)
are anticorrelated. Likewise, when H > 1/2, the process is superdiffusive and the
increments are positively correlated. In the special case H = 1/2, the increments
are uncorrelated and we have regular Brownian motion with the covariance

Cov(t, s) = 2D min(t, s) (B.5)

This leads to the familiar RBM mean squared displacement Var(t) = 2Dt.

Figure B.1 shows some sample FBM trajectories. The position of each process
has been observed at ten discrete time points, and we demonstrate the use of
conditioning property B.3 to obtain error bounds on the position at the rest of
the time points. Note that the high amount of local noise in the subdiffusive FBM
(H = 0.3) results in larger error bounds, even quite close to the observed points.

B.4 Modified diffusion coefficient D

FBMs are useful because - in theory - they allow us to separately parametrize the
magnitude of the spatial increments (via D) and the correlations between incre-
ments (via H). The magnitude of the spatial increments produced from FBM as
defined in equation B.4, however, are highly dependent on both H and D.

It’s easy to see this from the FBM mean squared displacement:

MSDH(t) = CovH(t, t) = 2D |t|2H

Suppose that t = 0.005 s (a typical spaSPT frame interval) and D = 1.0 µm2 s−2H.
Then the root mean squared displacement of a process after one frame interval
with H = 0.3 is 0.289 µm, while the same measurement for a process with H = 0.5
is 0.100 µm, and for H = 0.7 it becomes 0.035 µm.

This is nearly an order of magnitude variation in the mean jump length contributed
by the Hurst parameter alone, which makes it difficult to experimentally compare
diffusion coefficients when using FBMmodels. There is no general way to normal-
ize the diffusion coefficient so that the Hurst parameter does not exert an effect
on the spatial variance, since it goes contrary to the definition B.4. However, we
can modify the diffusion coefficient to make comparisons easier at a particular
timescale.
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Figure B.1: Examples of fractional Brownian motion trajectories with different
Hurst parameters. The upper process, with H = 0.3, corresponds to subdiffusion; the
middle process, with H = 0.5, corresponds to regular Brownian motion; the lower
process, with H = 0.7, corresponds to superdiffusion. Open circles indicate the points at
which the process has been observed, and the gray lines indicate 90% confidence
intervals obtained with the conditioning property B.3. These simulations make use of
the modified diffusion coefficient D.

In particular, let ∆t be our frame interval, so that our observations are at times 0,
∆t, 2∆t, and so on. Then define the modified diffusion coefficient

D∆t = D∆t2H−1 (B.6)

D has units of µm2 s−1 and is defined so that MSDH(∆t) = 2D∆t, regardless of the
value of H. This facilitates comparisons of the diffusion coefficient at the frame
interval of interest. The two diffusion coefficients are easily converted using equa-
tion B.6. Figure B.2 demonstrates the effect of the modified diffusion coefficient
on theMSDs for some FBMs. Notice that without the modification, the variance of
FBMs with a low Hurst parameter undergoes an extremely large increase at early
time values, making comparison between diffusion coefficients all but impossible.
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Figure B.2: Mean squared displacements of FBMs with various diffusion
coefficients, using 5 ms frame intervals. Each line corresponds to a simulation with
100000 separate trajectories. (a) Using the unmodified diffusion coefficient D = 2.0 µm2

s−2H. (b) Using the modified diffusion coefficient D = 2.0 µm2 s−1.

B.5 Alternative constructions of FBM

Here we have defined FBM by appealing to the covariance function of a zero-
mean Gaussian process, but this is not the only way. The original constructions by
Paul Levy [53] and Mandelbrot & Van Ness [51] followed a fundamentally differ-
ent route. We feel this alternative route provides insight into the nature of FBM,
and so we examine some of the analytical properties of this representation in this
section. Our goal is not to present a mathematically rigorous view of FBMs and
fractional calculus, but to introduce some informal relations that help to build in-
tuition about the nature of FBM.

Suppose that Nt is a Gaussian white noise process so that Nt ∼ N
(
0, ν2

)
and

Cov (Nt ,Ns) =

{
ν2 if t = s

0 otherwise

As Kiyoshi Ito observed, the Wiener process Bt can be considered as the integral
of this process:

Bt =

t∫
−∞

dNs

where the integral is defined in the sense of Ito [52]. Using the connection be-
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tween the Fourier transform and integration, we have

B̃k = −Ñk

ik

where k is the frequency coordinate and B̃k, Ñk are the Fourier transforms of Bt ,
Nt . The properties of Gaussian white noise require that Ñk is also a Gaussian
white noise process - that is, it has equal intensity on all frequencies. Vitally, this
means that the Wiener process can be understood as the sum of random frequen-
cies (drawn from Ñk) with amplitudes that are damped by 1/k. (Equivalently, the
power spectrum is damped by 1/k2.)

Since multiplication in Fourier space corresponds to convolution in real space, this
implies the existence of a kernel S(t) such that F [S] = −1/ik and so that Bt can
be obtained by the convolution of Nt with S(t).

A kernel satisfying these criteria is a modified signum function:

S(t) =
1

2
(sgn(t) + 1) =


0 if t < 0

1 if t > 0
1
2

otherwise

(The identity F [S] = −1/ik for k 6= 0 can be obtained by noting that d(sgn)/dt =
2δ(t) where δ(t) is the delta function, then integrating by parts.)

This means that the Wiener process can be represented by the convolution

Bt =

∞∫
−∞

S(t − s)dNs

One can verify that, substituting the definition of S(t), we recover Ito’s integral.

So far, this is just an overly complicated way to write an integral. The interesting
part comeswhenwe consider other ways to damp thewhite noise spectrum, which
will produce types of random motion distinct from the Wiener process. Suppose
that, rather than damping the frequencies by (−ik)−1 as above, we instead damp
them by (−ik)α−1, with some α ∈ R. Specifically, consider the transfer function

S̃(H)(k) =

{
(−ik)H−

3
2 if k 6= 0

0 if k = 0
(B.7)

which corresponds to a real-spaceWeyl kernel

S(H)(t) =
sgn(t) + 1

2 |t|H−
1
2
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We’ve neglected some integration constants because they are inconsequential to
our discussion. Notice that when H = 1/2, we recover the damping term (−ik)−1,
corresponding to the Wiener process. The Weyl kernel is the basis for the integral
transform known as theWeyl fractional integral.

We are now in a position to appreciate the constructions by Levy and Mandel-
brot/Van Ness. Inspired by a similar line of reasoning as the one that led to equa-
tion B.7, Paul Levy [53] considered the process defined by

X
(H)
t =

1

Γ(H + 1
2
)

t∫
0

sgn(t − s)dNs

(t − s)H−
1
2

=
1

Γ(H + 1
2
)

t∫
0

dBs

(t − s)H−
1
2

The main problem here is that Levy somewhat arbitrarily chose the lower limit of
integration to be 0, which corresponds to a Riemann-Liouville fractional integral
(rather than a Weyl integral) with base point 0. The gamma function emerges
when considering the integration constants we have neglected.

Mandelbrot & Van Ness, who were the first to examine this process in detail, kept
the spirit of Levy’s construction intact while replacing the Riemann-Liouville inte-
gral with a Weyl fractional integral, which is very simply the convolution of a white
noise process with the Weyl kernel:

X
(H)
t =

1

Γ(H + 1
2
)

 0∫
−∞

(
(t − s)H−

1
2 − (−s)H−

1
2

)
dBs +

t∫
0

(t − s)H−
1
2dBs


Our goal here is not to go into the intricacies of comparing the Riemann-Liouville
and Weyl fractional integrals. In our opinion, both Levy’s and Mandelbrot/Van
Ness’s constructions provide less intuition than the Weyl transfer function B.7 it-
self, which illustrates the following:

• When H = 1/2, Brownian motion is produced by damping the amplitudes
of randomly chosen frequencies by k−1.

• When H < 1/2, then we damp the amplitudes of randomly chosen frequen-
cies by k−α with α < 1. As a result, the higher frequencies have a stronger
influence - and the lower frequencies have a weaker influence - on the mo-
tion than for Brownian motion.

• When H > 1/2, then we damp the amplitudes of randomly chosen frequen-
cies by k−α with α > 1. The lower frequencies have a stronger influence on
the motion than for Brownian motion.
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Figure B.3: Illustration of the construction of an FBM by convolution of white noise with
the Weyl kernel.

The same white noise process (sampled at 6 · 10−5 second timepoints) was con-
volved with Weyl kernels corresponding to subdiffusion (H = 0.3), regular Brow-
nian diffusion (H = 0.5), and superdiffusion (H = 0.7). The second panel shows
the Weyl kernels at a single timepoint t. The magnitude of each motion has been
scaled by their local variance to show all on the same axis.

This means that, when compared to Brownian motion, the case H < 1/2 will have
stronger local (short-timescale) variations in position with weaker long-range cor-
relations between displacements, while H > 1/2 will have weaker local variations
with stronger long-range correlations. The cases H > 1/2 were the ones originally
considered by Hurst [54]. In fact, unless H = 1/2, the increments of an FBM are
never independent.

Figure B.3 illustrates the process of constructing an FBM by convolving white
noise with a Weyl kernel, using a discrete-time approximation. Notice that when
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H < 1/2, the Weyl kernel accentuates recent noise, and the magnitude of their
influence on the present position decays in time. When H > 1/2, recent noise
has very little influence on the present position, but the influence grows in time.
Only when H = 1/2 exactly does each noise event have exactly the same effect
on the current position, independent of time. As a result, FBM is an appropriate
model when the underlying sources of noise that produce changes in position are
distributed rather than instantaneous in time. In particular, subdiffusive FBM has
found application in viscoelastic dynamics since the sources of noise decay in time.

As the reader may notice, the constructions of Levy and Mandelbrot/Van Ness
highlight the analytical properties of FBM, while the Gaussian process construc-
tion considered in the opening paragraphs of section B.3 highlights its utility for
practical inference. We prefer the Gaussian process construction and the only
reason we highlight the analytical constructions, apart from providing historical
background on FBM’s origin, is that B.7 provides a great deal of intuition about
the nature of FBM.

B.6 Simulation of FBM and other Gaussian processes

In practice, while the convolution-based construction illustrated in B.3 is straight-
forward and provides intuition about the nature of FBM, it does not produce very
accurate approximations of FBM.

Instead, an approach based on the Cholesky factorization of the covariance matrix
at a discrete set of time points (algorithm B.1) works best. (This is just the regular
way to simulate multivariate normal random vectors with arbitrary mean and co-
variance.) Notice that the Cholesky factor L, which is lower triangular, plays the
same role as the Weyl kernel when operating on the white Gaussian noise vector
z.
Algorithm ?? is the basis for all of the FBM simulations considered in this thesis.
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Algorithm B.1: Simulation of an arbitrary Gaussian process at a discrete set of time
points

Parameters:

• The mean function µ(t) and covariance function Cov(t, s) associated with
the process

• A vector of time points t = (t1, ..., tn)

Algorithm:

1. Evaluate the mean µX = µ(t).

2. Evaluate the covariance matrix Σ = Cov(t, t).

3. Find the Cholesky decomposition Σ = LL∗, where L is lower triangular

4. Simulate a standard Gaussian vector z ∼ N (0, I) of size n

5. Form the productX = Lz+µX, which is a sample from the Gaussian process.
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Appendix C

Appendix: Characteristic functions

In probability, characteristic functions (CFs) provide an alternative to PDFs or CDFs
for deriving results on random variables. Getting these results is often simpler
when working with the PDF. So we rely on the CF heavily in this thesis.

Here, we review some of the properties of the CF relevant elsewhere in the thesis.
Some of these, such as the Fourier slice theorem and the Radon transform, are
not usually presented in the context of the CF.

As outlined in the Definitions chapter, we will stick to the following nomenclature:

• fX(x): probability density function (PDF) for a random variable X

• FX(x): cumulative distribution function (CDF) for a random variable X

• φX(x): characteristic function (CF) for a random variable X

C.1 Definition

The characteristic function for a random variable X is defined

φX(k) = E
[
eikX

]
(C.1)

The characteristic function of a random variable always exists, even when its PDF
does not.

As equation C.1 suggests, if a random variable has a PDF, then its characteristic
function is the Fourier transform of its PDF:

E
[
eikX

]
=

∞∫
−∞

eikX fX(x)dx = F [fX ] (k)
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Notice in particular that the sign of the exponent is reversed relative to the most
common FT definition. For consistency, we have adopted this reversed sign through-
out this thesis.

If X is a random vector, then its CF is defined

φX(k) = E
[
eik

TX
]

C.2 Moments

Given the exponential series

ex = 1+ x +
x2

2
+ ... =

∞∑
n=0

xn

n!

we have

φX(x) = E

[
∞∑
n=0

(ikX)n

n!

]
=

∞∑
k=0

(ik)n

n!
E [Xn]

= 1+ ikE [X ] +
(ik)2

2
E
[
X2
]
+ ...

From this, we immediately acquire the moment-generating formula

E [Xn] =
1

in
∂nφX(k)

∂kn

∣∣∣
k=0

(C.2)

If the nth moment of X is defined, then the CF is at least n times differentiable.
Notice how the 0th moment of a random variable is always 1, due to the normal-
ization condition on the probability density.

To see how this extends to the multivariate case, we’ll look at the situation with
two random variables X and Y :

φX ,Y (kx, ky) = E
[
1+ i(kxX + kyY ) +

i2

2
(kxX + kyY )

2 + ...

]
= 1+ ikxE [X ] + ikyE [Y ] +

i2

2
k2xE

[
X2
]

+
i2

2
k2yE

[
Y 2
]
+ i2kxkyE [XY ] + ...

Then
∂nφX ,Y
∂knx

= inE [Xn] +
(
dependence on kx or ky

)
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so that

E [Xn] =
1

in
∂nφX ,Y
∂knx

∣∣∣
k=0

(C.3)

Using a similar logic, we can get the cross moment formula

E [XnYm] =
1

in+m

∂n+mφX ,Y
∂knx∂k

n
y

∣∣∣
k=0

(C.4)

and this easily extends to higher dimensions.

From C.3, we also have

1

i2
∇2φX ,Y (kx, ky)

∣∣∣
k=0

= E
[
X2 + Y 2

]
(C.5)

This useful, for example, when determining the mean-squared displacement of
particles under various types of random motion.

C.3 Sums of independent random variables

Suppose that X and Y are two independent random variables with the PDFs fX(x)
and fY (y). We seek the distribution of their sum X + Y .

We’ll call this sum Z , and we’ll call the corresponding PDF fZ(z). If we fix X at some
value x′, then the probability that Z takes on the value z is just the probability that
Y takes on the value z − x′. That is,

Pr (Z = z | X = x′) = Pr (Y = z − x′)

Then Pr (Z = z) can be found via the law of total probability by summing over all
possible values for x′:

fZ(z) =

∫
fX(x)fY (z − x)dx

This is a convolution. Since the CF is the Fourier transform of the PDF, this means
we can apply the Fourier transform’s convolution theorem to write the CF of Z as
the simple product of the CFs for X and Y :

φZ(k) = φX(k)φY (k)

More generally, for independent random variables X1, ..., Xn, the CF of their sum
is the product of their individual CFs:

φX1+...+Xn(k) =
n∏

j=1

φXj(k) (C.6)

The extension to themultivariate case is straightforward. Equation C.6 is endlessly
useful for us in this thesis.
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C.4 Slice theorem

The characteristic function inherits many of the the powerful projection techniques
of the Fourier transform familiar from image processing. This is useful for marginal
distributions, since marginalization can be understood as the projection of prob-
ability densities. Here, we review the Fourier slice theorem (sometimes known as
the “central slice theorem”) and apply it to derive marginal distributions of ran-
dom variables.

What is a marginal distribution? If X and Y are two random variables with the joint
PDF fX ,Y (x, y), then the marginal distribution of X is obtained by integrating out
the dependence on y:

fX(x) =

∞∫
−∞

fX ,Y (x, y)dy

Intuitively, the marginal distribution represents what we know about X when we
lack any knowledge whatsoever about Y . Geometrically, it is equivalent to the
projection of the joint PDF onto the x axis.

Substituting the joint characteristic function for fX ,Y in the equation above, we
have

fX(x) =

∞∫
−∞

dy

 1

(2π)2

∞∫∫
−∞

dkxdky φX ,Y (kx, ky)e
−i(kxx+kyy)


Swapping the order of integration,

fX(x) =
1

(2π)2

∞∫∫
−∞

dkxdky φX ,Y (kx, ky)e
−ikxx

∞∫
−∞

dye−ikyy

But we know from the sifting property of the delta function that

∞∫
−∞

δ(ky)e
ikyy dky = 1

so that, inverting the transform,

δ(ky) =
1

2π

∞∫
−∞

(1)e−ikyydy
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Substituting this into our marginalization equation, we have

fX(x) =
1

2π

∞∫∫
−∞

dkxdky φX ,Y (kx, ky)e
−ikxxδ(ky)

Again applying the sifting property,

fX(x) =
1

2π

∞∫
−∞

φX ,Y (kx,0)e
−ikxx dkx

= F−1 [φX ,Y (kx,0)]

(C.7)

It is easy to see how this proof extends to higher dimensions. If we have a joint
distribution of X1, ..., Xn with 1 < m < n and we wish to marginalize out Xm+1

through Xn, then we have

fX1,...,Xm(x) =
1

(2π)m

∫
Rm

φX1,...,Xn(k1, ..., km,0, ..., 0)e
−i(k1x1+...+kmxm) dk (C.8)

C.5 Radially symmetric densities

Imagine we have some random vector R = (R1, ...,Rn)
T . To any value of R, we

can assign a Euclidean distance from the origin R. We’ll write this as

R = |R| =
(
R21 + ...+ R2n

)1/2
The density function fR(r) is radially symmetric if it can be expressed as a function
of R alone. We usually write this form as fR(r).

If fR(r) is radially symmetric, then its characteristic function φR(k) is also radially
symmetric. It can be expressed solely as a function of k = |k|, the radial distance
from the origin of the Fourier domain.

If fR(r) is radially symmetric and R ∈ Rn, then its characteristic function can be
written as the hyperspherical Fourier-Bessel transform

φR(k) =
(2π)

n
2

k
n−1
2

+∞∫
0

r
n−1
2 fR(r)J n

2
−1(kr) (kr)

1
2 dr (C.9)

where J n
2
−1 is a Bessel function of the first kind of order n

2
− 1. The inverse is

identical except for scaling factors:

fR(r) =
1

(2π)
n
2 r

n−1
2

+∞∫
0

k
n−1
2 φR(k)J n

2
−1(kr) (kr)

1
2 dk
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The scaling factors are consequences of our definition of the Fourier transform,
derived from the CF. It’s possible to define the Fourier transform such that equa-
tion C.9 becomes truly identical to its inverse, which is the more familiar situation.
We’re generally not too concerned with scaling factors, since normalization takes
care of most of the difficulties for us.

The term
+∞∫
0

fR(r)J n
2
−1(kr)rdr

corresponds to a Hankel transform of order n
2
−1, sometimes written H n

2
−1 [fR] (k).

As a result, the CF can be expressed

φR(k) =
(2π)n/2

k
n
2
−1 H n

2
−1

[
r
n
2
−1fR(r)

]
(k) (C.10)

The Hankel transform is associated with a large number of identities that prove
useful when dealing with radially symmetric characteristic functions. An extremely
useful reference for these identities is Harry Bateman’s book [70], which can be
compared directly to equation C.9 to obtain transforms for a variety of radially
symmetric functions.

Two of the most useful identities for this thesis are presented here.

(Identity 1) If φR(r) = e−ar , then

fR(r) =
Γ
(
n+1
2

)
π

n+1
2 an

(
1+

(
r
a

)2) n+1
2

(C.11)

Equation C.11 is useful when dealing with n-dimensional Cauchy flights.

(Identity 2) If φR(r) = e−ar2, then

fR(r) =
exp

(
− r2

4a

)
(4πa)

n
2

(C.12)

C.6 Abel and Radon transforms

For practical image processing, the Fourier slice theorem C.8 is often phrased in
so-called “cycles of operators”. These representations are particularly popular in
tomographic reconstruction, but we’ll see that they’re also useful when working
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with probability densities.

The central idea of these “cycles” is the following. SupposeFn is the n-dimensional
Fourier transform and Pn→m is some projection operator that projects a function
from a space of dimension n onto some subspace of dimension m. Further, let
Sn→m be a “slice operator” that evaluates one or more of the arguments of a
function at zero. A few examples:

S2→1 [f (x, y)] = f (x,0)

S3→2 [f (x, y, z)] = f (x, y,0)

S3→1 [f (x, y, z)] = f (x,0,0)

and so on. There are multiple choices for a given Sn→m that will produce different
results when the function f is not radially symmetric.

Then one way to state the slice theorem C.8 is

FmPn→mf = Sn→mFnf

Exactly what kind of projection is produced depends on the identity of the pro-
jection and slice operators. When f is not radially symmetric, then the choice of
S must match the choice of P.

The Abel and Radon transforms represent two specific types of projection opera-
tors:

• The Abel transform projects a function out of Rn into Rn−1.

• The Radon transform projects a function out of Rn into R1. That is, the func-
tion is projected onto a line.

The Abel transform is defined only for radially symmetric functions, which means
that the specific identity of Sn→(n−1) is irrelevant. The Radon transform is also de-
fined for non-radially symmetric functions, but we will generally apply it to sym-
metric functions and won’t dwell too much on the asymmetric cases.

These kind of operators have special significance for the problem of spaSPT state
estimation because they represent two extremely important operations in our
imaging geometry:

• The Abel transform projects a particle’s motion from its native three dimen-
sions onto our camera’s two dimensions.

• The Radon transform projects a particle’s motion from its native three di-
mensions onto the one-dimensional axis of our camera. This allows us to
directly treat the defocalization problem using density functions defined in
3D.
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Motivated by these applications, we focus our attention on the application of
these two operators to probability density functions. A more complete treatment
can be found in Stanley Deans’ chapter [71], from which many of the details in this
section are taken.

C.6.1 Abel transforms

The Abel transform of a function f is defined

A [f ] (y) = 2

∞∫
|y|

f (r)r√
r2 − y2

dr (C.13)

Intuitively, the Abel transform is the projection of an n-dimensional function onto
an (n − 1)-dimensional plane. To see this, imagine we have a bivariate function
fX ,Y (x, y). This function is radially symmetric, so that it can be expressed as some

fX ,Y (r) with r =
√
x2 + y2.

To project this function onto the y-axis, we can take

fY (y) =

∞∫
−∞

fX ,Y (r)dx

Since fX ,Y (r) is even in x, this can also be written

fY (y) = 2

∞∫
0

fX ,Y (r)dx

Now, because x =
√
r2 − y2, we have dx = rdr/

√
r2 − y2. Changing from x to r,

the integration limits now run from r = |y| to r = ∞, and we have

fY (y) = 2

∞∫
|y|

fX ,Y (r)√
r2 − y2

rdr

which brings us back to the definition of the Abel transform. The n-dimensional

case follows by replacing our r =
√
x2 + y2 with r =

√
x2 + y21 + ...+ y2n−1 and re-

alizing that none of the above changes.

Now, the slice theorem tells us that this projection can also be represented as the
one-dimensional inverse Fourier transform

fY (y) = F−1
1

[
φX ,Y (0, ky)

]
(y)
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In this way, we have the identification

F−1
1

[
F2 [fX ,Y ] (0, ky)

]
(y) = A [fX ,Y ] (y)

where F1 and F2 represent one- and two-dimensional Fourier transforms respec-
tively. This can be simplified further because fX ,Y (x, y) is radially symmetric. This
means we can apply equation C.10, which says that the two-dimensional Fourier
transform of a symmetric function becomes a Hankel transform of order 0. Then

H0 [fX ,Y (r)] (y) = F1 [A [fX ,Y (r)]] (y) (C.14)

This is the so-called FHA cycle of operators. The letters mean Fourier-Hankel-
Abel. This extends easily to higher dimensions. Let rn be the distance of a random
vector R from the origin in Rn and let rn−1 =

√
r2n − y2 be its distance from the

origin in some (n − 1)-dimensional subspace. y is the component of R in the
direction orthogonal to this subspace. Then

Fn [fR] (rn−1) = Fn−1 [A [fR]] (rn−1) (C.15)

Of course, we can drop rn and rn−1 to make this cleaner, but we include them here
to illustrate the relationship between the spaces and to show the implicit use of
the slice operator in this equation. Both sides of equation C.15 project the func-
tion out of an n-dimensional space onto an (n− 1)-dimensional hyperplane.

Taking advantage of equation C.10, we can also write this in terms of Hankel trans-
forms:

H n
2
−1

[
r
n
2
−1fR(r)

]
= H n−3

2

[
r
n−3
2 A [fR] (r)

]
However, we prefer C.15 for clarity.

C.6.2 Radon transforms

The Radon transform of a function fX(x) in n dimensions is defined

R [fX] (p, ξ) =

∫
Rn

fX(x)δ
(
p − ξTx

)
dx (C.16)

where δ is a delta function, and ξ,x ∈ Rn.

Since p−ξTx = 0 defines a (n−1)-dimensional plane in Rn with the normal vector
ξ, the Radon transform can be understood as the projection of an n-dimensional
density onto the line f (p) = pξ. If the density fX(x) is radially symmetric, then the
choice of ξ is irrelevant.
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It’s easy to see that the Abel transform coincides with the Radon transform when
working with a radially symmetric function in two dimensions. In three dimensions,
the Radon transform is equivalent to two sequential applications of the Abel trans-
form, which we write as R = A2, and so on.

Due to the slice theorem C.8, we know that we can also obtain the projection of
an n-dimensional density onto a one-dimensional line ξ ∈ Rn by taking

fX(x) = F−1
1 [Fn [fX(x)] (xξ)]

Here, F1 and Fn represent one-dimensional and n-dimensional Fourier transforms
respectively. The term xξ = x (ξ1, ..., ξn)

T is a vector in the direction of the line
onto which we wish to project. The transform F−1

1 is taken with respect to this
line. From a probability perspective, the resulting random variable X on the left
side of this equation is defined by a linear combination of the random vector X:
X = ξ1X1 + ...+ ξnXn.

The previous equation leads us to the identification

R [f ] (p, ξ) = F−1
1 [Fn [fX(x)] (pξ)]

or, more often,
F1 [R [f ]] = Fn [f ] (C.17)

Equation C.17 is a special case of the Fourier slice theorem, with the Radon trans-
form defining the projection operator. It is endlessly useful in applications, par-
ticularly in tomographic reconstruction and, for us, when projecting probability
densities from 3D to 1D.

C.6.3 Note on efficiency

Not all of the operators F1, Fn, A, Hν , and R are equally easy for a computer to
perform. One of the most important uses of equations like C.15 and C.17 is to
produce fast shortcuts for calculations.

For example, Hankel transformsmight makemath easier in (hyper)spherically sym-
metric systems, but they are rather difficult to perform numerically. Even the most
efficient approaches, such as the method of Ogata 2005 [72], often encounter dif-
ficulties due to the highly oscillatory nature of the transform and the Gibbs phe-
nomena at the origin. If we have the radial density of a two-dimensional function,
then using the right side of equation C.14 is far preferable to using the left side.
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Likewise, in spaces of high dimensionality, taking the n dimensional Fourier trans-
form becomes unfeasible. Indeed, n = 3 is impractical for any task that needs to
be done quickly, such as curve fitting. In many cases, we are not even interested
in the n-dimensional density, and only care about the radial distance from the ori-
gin. In these cases, equation C.17 gives us a fast shortcut for computing radial
densities. This is heavily exploited in our algorithms for Levy flights.
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