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Quantum Theory of Ndnequi]ibrium Processes. II.

Application to Nuclear Col]isions*.

. . _t
P. Danielewicz
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT
In the high-energy (Elab % 200 MeV/nucl) heavy ion-collisions, the
quantum uncertainty of nucleon energies, given by the collision frequency, is

of the order of (50—100)'Mev. At hundreds MeV/nucl beam energies, the

uncertainty is comparable with nucleon energies in the equal ion-velocity

frame, indicating a quantum character of the dynamics. We eXamine the quantum
dynamicé of a collision process using nonequilibrium Green's fﬁnction

methods. We perform numerical calculations of collisions in an
1nterpenetrating nuclear matter model, at the energy E1ab = 400 MeV/nucl.
Comparison of the quantum dynamics, with the classical Markovian dynamics from
the Boltzmann equation, reveals effects of the ill-defined nucleon energfes in
the nucleon momentum distribution. We show that the quantum dynamics proceeds
twiée as slow as Boltzmann dynamics, but the off-shell kinematics compensates

for this somewhat.

* This work was supported by the Director, Office of Energy Research,
Division of High Energy and Nuclear Phys1cs of the U.S. Department of Energy
under Contract DE-ACO3- 76SF00098.

T On leave of absence from Institute of Theoretical Phys1cs Warsaw
University, Warsaw, Poland.



1. Introduction

With recent availability of high—energy beams, the physics of high-energy : . .-

peavy—ion collisions has undergone a rapid development. The theory of .the
collisions has concentrated on the explanation of basic reaction mechanisms
and on the possible occurrence of exotic phenomena in the reactions (see the
reviews [1,21). in principle, a full theoretical description of the ‘
collisions would necessitate a complete relativistic quantum field theory of
strohg fntéfattions; At sufficiently lbw density and low excitation enefgies

of a system, it is, however, believed that nucleons may be described as -

‘structureless particiés interacting via'méson exchange. Below the particle

production thresholds one may simp]ify,the:theory'by ignoring the relativistic -
effects éﬁd iﬁtrodUcihg a static two-body potential for nucleons.- Even within
that formulation there haS'Been so far no’possibi]ity of describing the

reaction process. Because of a large number of nucleons taking part in a

1

collision, it is not possible to evaluate an S matrix.” For low-energy

heavy-ion co]lisidns‘(E]ab'< 10 MeV/nucl) one solves the equations of motion
for l-particle wave functions (l-particle density matrix) in the mean-field

approximation. This approach cannot be applied at high energies, because the

~ binary NN collisions are not suppressed by the Pauli principle and dominate

the dynamics.
That situation led to the deve]dpment of numerous- phenomenological models

for high-energy heavy-ion collisions. The idea that heavy-ion collisions can

1 In connection with a previous paper of this series [37, we may mention

that the evaluation of the S matrix for'a collision corresponds through the
reduction formula to an evaluation of the N-particle vacuum chronological

Green's function, with N - a total number of particles. -



be described classically has gained a rather common acceptance. It has been
argued that the de Bfoglie wave length of a nucleon from an oncoming nucleus
is small in comparison with a nucleon's mean free path.

In some calculations [4-97, the classical nucleons' equations of motion
have been solved numerically. On the basis of a smallness of a NN interaction
time, of the order of 1 fm/c, in comparison with a mean time Tre1 between
successive NN collisions, cascade calculations have been carried out [10-211,
and the Boltzmann equation has been applied 22-24]. In the initial phase of
an ion collision tre1 & 1/(nonv) 2 (1.7-3.5) fm/c, where n, is the
normal nuclear density, o a total NN cross section, v a relative velocity of
ions, E]ab > 200 MeV/nucl. (Because of the Pau]i’pkincip]e we take into
account only collisions with nucleons from the opposite nucieus.) Cascade
ca]culations.and the kinetic description may be essentially considered as
equivalent approaches.

A hydrodynamic description of heavy-ion collisions [25-35] relies on an
assumption of a local thermodynamic equilibrium: this corresponds to a
smallness of the relaxation time Tre1 in comparison with the heavy-ion
collision time Tfol < 20 fm/c.

In statistical [36,37] and thermodynamic [38-4371 models one assumes that
the dynamics leads to a uniform population of the available phase space.

At the beam energies per nucleon exceeding the Fermi energy, at least a
doubling of the nuclear-matter density may be expected. Hypotheses have been
put forward on occurrence in the dense excited matter of an anomé]ous nuclear
state [44,457, a = meson condensation [46-5117, or quark matter [52-547. The |
calculations of these phenoména? requiring the use of a field theory,
concerned static situations, and there has been no possibility of

investigating exotic phenomena in dynamic situations.

’
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Can:one'rea11y describe the high-energy heavy-ion co]]isioné‘
c1assica11y3~ The'mean.time between'succeséive NN collisions (the
characteristic time of changes in the nucleon distribution), equal initially
to Tfei x (1.7-3.5) fm/c, implies uncertainties of nucleons' energies of the .
order of ﬁ/tré] z'(55-115) MeV, due to the uncertainty princip]e.-’wjth the
diminishing role of the Pauli princjp]e in the course of an ion collision, the
mean time between successive co}]isions might diminish by as much as-factor of
two, ahd'réSpective1y the uncertainties could be even larger. At the beam
' energies E]ab‘;-BOO MeV/nucl, the nucleons will have energies less than 200
MeV/nuc}, in the equal ion-velocity frame, during the whole course of the
c011isi6n;. This indicates that the jon-collision dynamics at these beam
energies.shoﬁid have a quantum character, because uncertafnties would be
1anEr thén’qr comparable with the energies of nucleons.

- Eveh at much higher beam energies quéntum effects may be expected, in
cases when sfrong_kinematica] restrictions occur, e.g., in.the production or .
absorption of particles.

In the present paper, we examine the quantum dynamiés-of a collision
process. We perform numerical calculations of collisions in an.
interpenetrating nuclear matter model, at the energy E]ab = 400 MeV/nucl.
The quantum dynamics is confronted with a classical Markovian dynamics given
_ by the Boitzmann equation. The calculations are the first attempt at a
quantum description of a collision process at high energies. We employ the:
methods of nonequilibrium Green's functions, desribed in a previous paper of
the series [3] (hereafter referred to as I). |

-Nohequi]ibr{um Green's function techniques have recently received certain

attention in nuclear physics. —In.Ref. [55] the methods have been applied to a

nucleon moving in nuclear matter, radiating = mesons. Several authors [56-597



-4-

have considered Green's function methods to go beyond the time-dependent
Hartree-Fock approximation in the description of low-energy heavy-ion
collisions.

The interpenetrating nuclear matter model, considered in the paper, has
been previously applied if Refs., [50,221 (also in [607). Randrup [22] studied
the Boltzmann equation dynamics.

In calculating the nuclear-matter collisions we solve the Green's
function equations of motion with self-energies. In Sect. 2 we present
results for a two Fermi-spheres Hartree-Fock initial state of the nuclear
system. The evolution is compared with the one given by the Boltzmann
equation. Details of the calculations are contained in Appendices A and B.

At initial stages of the nuclear-matter collision, the nucleon momentum
distributions, resulting from the Green's function equations of motion, differ
from distributions from the Boltzmann equation, reflecting i11-defined nucleon
energies. The approach to equilibrium is slower in the quantum dynamics than
in the Boltzmann dynamics.

In Sect. 3 we repeat the quantum calculation of the nuclear-matter
collision, starting from a correlated initial state. The correlated state is
prepared through the imaginary-time evolution., Details of the calculation are
contained in Appx. C. |

In Sect. 4, we analyse the effect of the slowing down of the quantum
dynamics in comparison with the Boltzmann dynamics, observed in the.
calculations.

The calculations presented in the paper concern a uniform-medium
problem. When solving a nonuniform problem it may be indispeﬁsab]e to expand
the Green's functions and self-energies in some l-particle basis. Such

attempts have been presented in Refs. [56-59].
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In a following péper of the series, we discuss the honequilibrium Green's
function methods for a system of fermions coupled with bosons. Results
contained there should be of interest in connection with the r-meson

condensation studies, and also the particle production in heavy-ion collisions.



2. Nuclear matter collisions.

The model which we employ is the following. We coqsiderlspatially
infinite and uniform, spin-isospin symmetric-system oﬁ nucleons. At the
initial moment the nucleons are confined to two separqﬁe Fermi spheres; The
picture refers to the initial phase of a nuclear collision, when the huc]ef |
haQe partially overlapped, but the thermaiization has not yet taken place.

The radii of the Fermi spheres in the calculations have been taken equal
to Pe = 255 MeV/c (which corresponds to the normal nuclear density No =
0.145 fm"3). For numerical reasons the extent of the momentum space in the
model has been limited to a sphere of a radius 900 MeV/c.

For the model system we have bofh solved the Green's function equations
of motion, discussed in Sect. 3 of I, and the Boltzmann equation.
Calculations, described in detail in Appendices A and B, have been carried out
for a separatibn 2 Po> between the centers of the Fermi spheres,
corresponding to E]ab‘= 400 MeV. For the self-energy, in the Green's
function equations of motion, the direct Born approximation ha§ been used.
Parameters of the local potential (approximation to thé T-matrix) have been
taken from a Born approximation fit to the differential nucleon-nucleon cross
sections. |

Evolutions of the nucleon momentum distribution, following from the
calculations, are presented in Fig. 1. The leftmost figures represent the
Boltzmann-equation evolution. The central figures represent an evolution
given by the Green's function equations of motion. The evolution starts from
a two Fermi-spheres Hartree-Fock initial state. The rightmost figures also
represent an evolution given by the Green's function équations of motion, but
one starting from a correlated initial state. The last evolution will be

discussed only in the next section. In Fig. 1 the nucleon momentum

distributions are seen to evolve from two separate Fermi spheres towards



equi librium. |

At an initiai stage of the Boltzmann-equation evolution, a characteristic
hollow shé]l deve]ops in the nuc]ebn distribution,.refiecting energy and
momentum,conservatioh in binary collisions. See Fig. 1 for t = 0.5, 1 fm/c,
and Fig. erqr‘t = 1,2 fm/c. In Fig. 2, values of the;distribution‘functions‘
at 45°‘and 90° CMS angles are depicted. According to the Boltzmann equation;
a scattering of’particles from two different points in the momentum spacé
feeds a spherical-she]] in_the_momentum space. The quantum evolution gives no
shell in the distribution function, which may be expected, because of
i11-défiﬁed energy conservation in the interactions (see Appx. G of I) and
ill;defined nuc]edn energies. On the basis of the equilibrium self-energy
forms (Eq.:(E.B) of 1), one could actually COnsider_a scattering of particles .
in théis;eady cpnditidns of . thermodynamic equiiibriuﬁ, With a half-width I ("
~ ﬁ/f}e]) of initial and final states, one finds that a scattering of
particies, from two differénf points of the momentum space, feeds a diffpse
shell with.afwidth.2|1in the kinetic eﬁergy of the final particle.

.The approach to.equi]ibkium is more rapid with the Boltzmann equation
than with the quantum equations of motion. For an average deviation of thé

172

distribution from equilibrium ( gdB(f(g,t) - feq(p))z/ jdg fiq(P)) equal to

'1/2, which corresponds to t = 4.7 fm/c in the Boltzmann and to t = 6.3 fm/c in

~ the quantum evolution, we get respective rates

y :=h (Idg(af/at)zl SdB(f(B,t) - fq (p))z)ll2 equal to 73 MeV and to 53 MeV.

q

At the time t = 10 fm/c, the nucleon distribution fkom the Boltzmann equation
is practically at equilibrium, while the distribution from the quantum
evolution still exhibits nonequilibrium features. We shall discuss the effect
in some detail in Sect. 4. |

To assess the validity of a hydrodynamic approach to nuclear collisions,



k> towards

it is interesting to study the relaxation of the tensor <pip
isotropy. The avérage is taken here with respect to the distribution function.
In Fig. 3, an anisotropy of the tensor, given by (2<p22>/<p12> - 1), fis

" presented as a function of time. An anisdtropy equal to 1/2 is achieved after.
6.7 and 9.2 fm/c for the Boltzmann equation and the Green's function equafions
of motion, respettivé]y.

If one goes beyond the self-energy in the Hartree-Fock approximation, in
the Green's function equations of motibn, then the nucleon distribution given
by a Fermi sphere is not stationary. Figure 4 presents a radial profile of a
single evoﬁving Fermi sphere placed in the center of the momentum épace——the
calculation was performed with the same numerica] code as the nuclear matter
cb]]isions; The sphere decays, occupation in the central part of the sphere
drops, stabilizing at around 0.7, and the sphere acquires a tail. At a time
t = 6 fm/c, when we interrupt the evolution, the changes occur only in the
vicinity of the Fermi momentum. In the next section we consider an evolution
of the nuclear system, that starts not from the two Fermi-spheres Hartree-Fock

state, but from a Cbrre]ated initial state prepared through the imaginary-time

evolution (Sect. 5 of I).
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3. Dynamics for a correlated initial state v

In Ref. [61] attention was paid tobthe’facf that, if oﬁe intends to
consider nucleon-nucleon collisions in Huc]ear collisions, then in a
conéistent appfoach to the problem one should inc]udé the collisions in the’
nuclear ground states. When the widths of states are finite, the occupations
inside a Fermi sphere are less than unity and outside the sphere possesses a

tail. At a temperature T = 0 in nuclear matter, according to Eqs._(E.Za),

(E.5), and (E.13) of I (B >oe0),

P(pa“’) : ‘ (3.1)

» o .
- 167 (p,w) = o(u = w) _
N | (0-p?/2m - ReT (p,w))® + (M(p.w)/2)°
and ‘the nucleon distribution

u ) . ’ . .
- f(p) = -5 2 - - . - (3.2)
R LZ (o7 /2m - ReT (p,0))? + (Mp,w)2)?

In the second quantum calculation of nuclear matter collision, an initial
nuclear mdttef_state was obtained from a two Fermi spheres Hartree-Fock state
through the imaginary time_evolution described in Sect. 5 of I. The evolution

generator in the imginary time was of the form

C e ks . | .
H=H-v PO+ P70 | | (3.3)

~ Here p*Z are the heam-axis components of the operators of the total momen tum _
in the forward and backward momentum sphace hemispheres, respectively. The

Lagrange multiplier Vo has been taken'equal‘to vV = po/m. Equation

0
(3.3) corresponds to the replacement of l-particle energies

.z ot
H™ = b
paa Zm paa "paa
2 2
A0 Z pl . + (p_z"'po) at A .
>R = . 2m bpaa bpaa

do



12 z 2
pre + ([p*]-p)" At s
- —2m bgaa bgaa

N

Here bpaa is the annihilation operator of the state with momentum p and
respec;ive spin and isospin projections.

The self-energy on a contour in the complex time plane hés\been taken in
the direct Born approximation. 1In detail, the calculation is described in
Appx. C. The nuclear matter system has been evolved in the imaginary time for
3 fm/c. In case of a single Fermi sphere, with jl::ﬁ, the chosen time of the
imaginary evolution assures a reasonable stationarity of‘the distribution for
real times.

An evolution of the nucleon distribution,.for a state prepared through
the imaginary evolution, is presented in Fig. 1, the rightmost figures. At an
initial moment, the occupations inside the Fermi spheres are equal to about
- 0.8. The profiles of the distribution at 45° and 90° CMS angles are depicted
in Fig. 2 (solid Tines). |

Early stages of distributions from the quantum and classical evolutions
differ qualitatively because of the uncertainty principle. Again in the
quantum evolution we obtain no shell in the momentum space. Starting from the
initial state, more nucleons populate-high momenta in the quantum case than in
the Boltzmann equation case. These are the results of ill-defined ﬁuc]eon
energies and ill-defined energy conservation in the interactions, in the
quantum case.

The inclusion of correlations in the initial sfate narrows the nucleon

distributions at Tate stages of the evolution. The slowing down of the



-11-

quantum.eyo1ution,ﬂin comparisqn with the_Boftzmann evo1utjon,»is now soméwhat
more direct]y visible in the nucleon distfibutions. Qﬁanfitative1y, for'an
average dev{ation from equilibrium equal to 1/2 (see the pfe?ious section) at
t = 6.9}fm/c, we get the effectiVe rate f = 50.MeV. The approach of the
distributiph to‘edui1ibrium turns out about SO%,more répid in_fhe Bdltzmann‘
dynamics than in the quantum dypémiés. = _ »: _

The time for the tensor <pipk> to achieve:an_aniéotropy eqpal to 1/2

is now equal to 9.9 fm/c 2, see Fig. 3.

2 Let us mention that our finite momentum space favors quick equilibration

of;ahisotnopy, especially in the quantum dynahics.
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4. The slowing down of quantum dynamics
Let us discuss in some detail the slowing down of the quantum evolutfdn.
In Fig. 5 we plot the values of the scattering-in and -out rates in the
,BOthmann equation at 90° for t = 10 fm/c. Similar values of the rates
prevail throughout the m&mentum space during mbst of the evolution. The
lowering of the scattering-out rate with momentum, in Fig. 5, is an effect of
the Pauli principle. According to the Green's function equations of motion,

the distribution function satisfies
) t N .
2 f(pt) = 2Re( [ dt' (-D)T(pst,tr) i67(pit',t)

t .
- Jdt' iZ>(Q:t,-t')(—i)Gf(g:t',t)) . (4.1)

On the basis of (4.1) we may define auxiliary rates

~i5%(p:t)
- 2Re( Stdt'(—i)Zf(E}t,t')iG>(Ejtf,t))/(1 - fpat)) (4.2a)
and
i27(p;t)
| = 2Re(jtdt' iz>(g;1§,t')(_1)G<(g:t',t))/f(g;t) y (4.2b)

and in Fig. 5 we compare the values of the rates with the values of the rates
from the Boltzmann equation.3 For F(p:t) = (2> - Z<)(B;t) averaged
over the nucleon momentum distribution at t = 10 fm/c, we get 68 MeV in the

quantum calculation with the Hartree-Fock initial state and 61 MeV in the

3 In the Boltzmann limit, the auxiliary rates coincide with the rates from the

Boltzmann equation. In thermodynamic equilibrium, the rates are —iZ<(E) =

J(dar2n) (-2 (p,0) 167 (R0 1 (1-F(R)), 2(p)=[(dw/2n)iZ>(p,) (~1)6%(R0) /£ (p) -
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calculation with a correlated initial state, as compared with an average r
‘frOm the Bdltzmanﬁ_talculation equal to-136 MeV. -Average rates vary weakly
throughoﬁf'ﬁosﬁfbf thé evolutions and are seen to be about twice 1owér fh the
quantum evolutions as compared withfthe,Bo]tzmann.evolution. There are‘two
reésonstfor the lower rates. - Partially the lowering comes from the decay of
the Green's functions as.functions of difference of time argumehts. Ne bTot‘
the functions' moduli for several momenta in Fig. 6. Straight lines drawn in
the figuré correspond‘to exponential decay rates.P(Eft)/Z. An exponentia1

| - , Y '
decay 1Gh(gzt,t')|'= ]G‘( )l X exp (4%}T(E,mp)|t_- t'l) is found in thermal

p
equilibrium (Appx. E of I), when one ignores the frequency dependence of

self-energies /in the spectral function, Eq. (E.5) of I, and in the expressions
“for Gk , Eq. .(E.2) of I, one replaces the occupation function f with its value

at o = mp:'”COUpWing to macroscopic variations in the.system is .particularly

~ .
evident for a'momentum inside the Fermi.sphere, Fig. 6d. The decay of the

Green's functions restricts the time integration ranges in Eé. (4.1)(see Eqgs.
v(G;S) and (6.6) of 1) and reduces the integrals. _we may considervthat the
decay of the Green's functions in the integrals accoUntS'for‘an overlapbing of
- the 1nteractioh zones in the medium, which is due to finite_interactioﬁ
 times. By considering the equilibrium functions in the frequency
representation, it may be seen th&t finite widths of the states in the
self—energy‘integrals induce high-momentum tfansfers‘in the scattering, hence
the cross section drops. Apart from the mere detay of thé Green's functions,
there is another effect that, as the numerical investigations show, is
responsible for most of the drop of the rates. This is a rather different
‘~osci11atory behavior of the functions 6< and 6> for a given momentum, as
functions of the time argument difference. In fact, from Eqé. (E.2), (E.5),

and (E.13) of I, a necessary existence of a frequency gap, between the

' funct_ions'.G< and G, follows for gI'~ 1, with the particle frequencies
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lying below hole frequencies. (For reference, in the Boltzmann calculation wé
have T = 3*1 2 80 MeV.) In the ‘low-density limit, for small gl', the gap‘can
be expected to be of the order of BFZ, With f'tncv, we have BPZ ~

1/(m?), where » = 1/(no) stands for the mean free path, and- the effect

seems to be related to the energy spacing of levels. in a»finite spatial region.

Despite a factor of two difference in the magnitudes of the
scattering-out and -in rates in ‘the Boltzmann and quantum evolutions, the
actual approach to equilibrium of the distribution from the Boltzmann equation
- is not that much more rapid (as is indicated by the values of effective rate§
quoted earlier). This js due to the following: On the apprqach to
equilibrium there are two regions in the momentum space with excessive
partic1e=deﬁsity, around the -two originaT Fermi spheres. In the Boltzmann
dynamics, because of mdmentum and energy conservation in binary interactions,
the feeding of the momentum space from scattering of particles from one
excessive'regiop*is basically restricted to the same region. By contrast, in -
the quantum dynamics the feeding“ffom such scattering is in principle smeared
over the whole momentum space. -

To demonstrate the effect of the slowing down of the quantum evolution,
we have repeated the calculations for the potential in the eQUatiohs'
multiplied by a constant that has been varied from one set of calculations to
the other. In the Boltzmann equation the operation amounts to. the scaling of
time variable and vaiues of rates (uniform medium). In Fig. 7 we plot the
values of the effective rdtes v in the quantum evolutions vs effective rate y
in the Boltzmann evolution, at a fixed average deviation from equilibrium,
when the mu]tip1ication:constant is varied. Figure 8 displays values of
F(E;t) averaged over particle momentum distribution close to equilibrium vs
average I’ from the Boltzmann equation. Note the saturation of the quantum

rate!



-15-

5. 'Final remarks |
‘We have applied‘the'nqnequi1ibrium Green's function methods to study the

quantum dynémics:of a heavy-ion collision process. In heavy-ion collisions at
hundreds MeV/nucl beam energies, the quantum uncertainty of nucleon energies,
of the order of :NN collision rate, is comparable with nucleon energies. For
that reason, inappropriate in describing the collisions are the classical
equations of motibn [4-97, cascade calculations [10-21], ‘or the.Boltzmann -
equation E22;24}, and indispensible is the quantum description. The quantum
description may be even necessary at much higher. beam energies,bfor processes
with strong kinematical restrictions. | |

"vLet us mention that, at beém energies lower than the Fermi energy, the
collision rate drops because of the Pauli principle. Use of the
self-consistent equations, supplied with a Boltzmann-type collision-term for
;tates3cldse-to'the Ferhi-surface,“should be justified at sufficiently. low
enefgies. | _ |

We have carried numerical calculations of collisions in an

interpenetrating nﬁc]ear—hatter model. Wé have compared the Boltzmann
equation dynamics with a dynamics given by the Green's function equations of
motion. The quantum Ca1cd1ations have beén performed for two types of an
initial state: the Hartree-Fock state, and the correlated state. To the
author's knowledge, the Ca]cu]ations of the present paper are the first
attempt at a quantum description of the collision process. The quantum
.dynamics‘differs qualitatively from the Boltzmann dynamics. The nucleon
momentum distributions evolve through different shapes, in effect of the
i1l1-defined nucleon energies and the ill-defined energy-conservation in the
interactions in'tﬁe quantum case. The quantum dynamics proceeds at a slower

rate, which may be traced to the energy spacing of levels in a spatial region

of a dimension of the mean free-path. When artificialy increasing
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cross—sections in the Boltzmann-equation dynamics, the rates from the
corresponding quantum dynamics exhibit a saturating behaviour.

It should be noted that the time for achieving an isotropy of the nucleon
momentum distribution occurs to be unfavourably large regarding the
possibility of a hydrodynamic description [25-357 of heavy-ion collision.

In real nuclear collisions, phenomena observed in nuclear-matter
collisions will be modified by finite particle-number effects. The collisions
will be affected by the uncertainty principle in space and momentum, of a
special interest in the collisions is the problem of particles going on-éhe11'

during the expansion of the system into vacuum.
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Appendices. - Calculations df nuc]ear—maiter collisions
For the outline of the formalism see I [3].
A. Gfeen!svfunciidn‘équations of motion

Beqaus?(of the:homogeneity.of the system we employ the momentum
rep}esentaﬁion fbr the Green's functiohé and self-energies. If we adopt;an
interééfiéh ihdépehaent of the spin and isospin, then in the spin-isospin

symmetric system the functions will be diagona] in the spin énd isospin indices

ab o

O Fggfﬁ??ft ),=,6 bSagh (RIE-E)

From‘EQ§;:(3;1)*and (3.2) of 1 wé have for tzt' on the contour
" .3 bZ 0 1 | _
LA (..l_a_f_'.__ ﬁ)G(B“t’t') = t{dt_“Z(B:t’t")G(R,:t..’t") , | ) (A‘.].)
.2 p2 (9., . |
(_1317._‘§E)G(E}t,t ) = t%dt G(Q;t ,t )Z(E}F ,t') > (A.2)
and from (2.12) of 1 |
CiG%(prt,t) = 1o (-6 (pit,t) L (A.3)
The' nucleon momentum-distribution is given by f(p,t) = -i6<(p;t,t).

The ée]f—energy in 'the calculations has been taken in the direct Born

approximation

' (9 (9
J

3 . , >
Tp:t.t') = ‘I 5 (V(R'-p) 26 (gt 116 (p'ot,t")

x 6 pp-ptit,tt) L | (A.4)

The factor 4 comes from the summation over spin and isospin indices. The
"potentia1‘(approximatioﬁ to the T-matrix) had to be taken local - depending
only on the momentum transfer - in order that the numerical calculations could

he carried. The parameters of the potential of a gaussian form,
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Vip) = w3/2n3VOeXb(%n2p2) , (A.5)

have bheen fitted, wifhih the Born approximation, to the spin-isospin averaged
differential nucleon-nucleon cross-sections, in the energy range E]ab =

(0-500) MeV. The parameters of thé potential were the fo11ow1ng:vn = 0.57 fm,'
]VO‘ = 453 MeV. We did not introduce the Hartree-Fock energy which could
influence the evolution of the distribution function only indirectly. (In a
homogenous system, for a local interactioh, the direct term of the | o
Hartree-Fock energy may be besides ruled out from the equations of hotion.)

In the momentum space, Fig. 9, a mesh has been taken with an interval
between the points 54 MeV/c. Symmetries of the system have been exploited:
'the axial symmetry with respect to the collision axis, and the reflection
symmetry with respect to a plane perpendicular to the collision axis. The
. initial Green's functions . -

1 p inside the Fermi spheres

—1'G<(R:to,to) ={ (A.6)

0 p outside the Fermi spheres.

~

- Differential equations of motion (A.1) and (A.2) have been solved with a
predictor - central point-slope method, and a corrector - trapezoidal method,
and in solving the factor exp(—i(p2/2m)(t—t')) has been excluded from the

Greens functions. The hermiticity of the Green's functions

i6¥(ptt,t) = Mie¥(p:t, e 1", | (A.7)

‘and the relation (A.3) have been exploited. The step in time was equal to 0.5
fm/c. The time integrations at the r.h.s. of Eqs. (A.1l) and (A.Z) have been
evaluated with a trépezoida] method. The momentum integrals in the self |
-energies (A.4) have been evaluated through subsequent Fourier transformations.
The application of that method was critical for the possibility of

accomplishing numerical calculations of nuclear-matter collisions.
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Stability of the solution agéinsfbthe_variation of the time step has been
tested. - It was found that the chosen size of the momentum spéce affects the
sb]ution'to'alcertain‘extent.

Duringvthe calculated evolution (0-10) fm/c, the ﬁumber of nucleons per
unft volume was conserved with éﬁ‘acéuracy 6f 0.2%, and the energy with an
accuracy of 17%. |

Within the first 2 fm/c of the evolution of the nuclear-matter system,
‘roughly 30xMeV/hh§1‘of the kinetic energy is released. .Later on the kinetic

energy remains essentialy constant.
" In the additional nuclear—matter collision calculations, when the
potential was multiplied by some constatnt, the time step was reduced to 0.25

fm/c for the constant equal to or exceeding {2\

B. Boltzmann equation

The Boltzmann equation for the distribution function f is of the form

_ ‘ d \‘ . .
afgs,t) - 4J{(2E;3 dQn(IE_E]I /m)(m2/16w2)(V(p'—Q) )2

[(1 - F(p,t))(1 - flpy, t))F(p',t)(F(p],t)

- F(RE)F(Ry, ) (1 - F(LE))(L - Flpi,t)T . (8.1)

Thé integration fdﬂ!, over the so]id angle determining.the orientation of the.
relative momentum, and the factors next to the potential, come from integration
of the 57functﬁons of energy and momentum conservation in the collision
integral.

In tHe'momentum space a mesh has been taken,.such as in the quantum
case. The differentié] equation in time (B.1) has been solved using
second-order methods as in the quantum case. The integral at the r.h.s. of

(B.1) has been evaluated with a Monte-Carlo method. The method was devised so
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that it would treat possibly equa]ly Various areas of the momentum space, and
give possibly small fluctuations in the distributions. The number of nucleons
vper unit volume was éonserved with an accuracy of 27, and the energy with an |
accuracy of 4%. To the results presented in Figs. 1 and 2 certain smoothing
.has been applied; The smoothing was only effective in the initial stages of

the evolution.

C. Green's function equations of motion on the contour in the imaginary time
plane

From Eq. (6.20) of I, with Eqs. (6.25) and (6.26) of I, we have for t ¢ t'

on the contour

t -itT
0, 0
(2 - wd(£))6(pst,t') = f dt" 7 (pst,t")6(p;st", ) (c.1)
R e 5
iT '
o o
-iT
to LA
(—i%t—. - mg(t'))G(g:t,t') = f dt" G(pst,t")Z(p:t",t") (c.2)
to+ito :
‘where
12 z 2
P ('l - Po) t at the imaginary _
wg(t) 4, Zm part of the contour,‘ (c.3)
L t real.

m

From the field-operator commutation rﬁ]es, there follows a relation (A.3) for
the Green's functions on a contour, Eq. (6.17) of 1. |

The self-energy on a complex contour has been taken in the direct Born
approximation (A.4). The boundary Green's function values for the imaginary

evolution are

-1‘G<(B;to-ifo,to-1‘to) = ~i6% (p3t +iT,, b *iT))
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{1 ’ p inside the Fermi spheres,
‘ ' (C.4)

_O R_odtside'the Fermi Spheres,

First in the calculation, in a self consistent manner; the evoluation
equations on the imaginary part of the contour, Fig.7 of I, have beeh solved.
With real boun&ary values for fuﬁctions in:((C.d) and (A.3)), the functions
i6 % and'izaiare real on the imaginary part of contour. The time of the
imaginary evolution zo was taken equal to 3 fm/c. Both for the imaginary
and real time§ the time step was equal to 0.5 fm/c. The number of nucleons,
and for the real times energy, were conserved in the calculation respectively
.with accuracies of 0,2Zsand 2.5%. | |

The kinetic energy, larger by about 10 MeV/nucl than in thé Boltzmann
dynamics, remains essentially constant tﬁroughout the evolution. |

In the additional nuclear-matter collision .calculations, the tjme step
was eventually reduced to 0.25 fm/c, as in the calculations with a non-

correlated initial state. The time of imaginary evo]ution!ﬁo has been kept

constant.
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Contour plots of the evolving nucleon momentum distribution
f(pL,pZ,t). Leftmost figures - Boltzmann equation evolution;

central figures - Green's function equation of motion evolution

for a two Fermi-spheres Hartree-Fock initial state: rightmost

figures - evolution for a correlated initial state. Horizontal
axes are the collision axes. The momentum space is restricted

to 900 MeV/c as shown by the outer circles.

Nucleon momentum distributions at,ﬁ5° and 90° CMS-anQ]és}
Short-dashed lines - distributions from the Bo]tzmann equéffon.
Long-dashed lines - distributions from the Green's function
equatjons,wf;h a Hartree-Fock initial state. So]id 1ine$ -

distributions from equations with a correlated initial state.

~Evolution of the momentum distribution anisotropy. Short-dashed

line corresponds to the Boltzmann equation, 1ong—da§hed line to
the Green's function equation of motion and the Hartree-Fock
initial state, and solid line to the correlated initial state.
The dashed horizontal line at 0.5 is a guide to the eye

representing <p22> = 1.5 x (<pl2>/2).

Radial profile of a single evolving Fermi sphere. An initial

state of the evolution was a Hartree-Fock state.

Scattering-out iZ>(B,mg:t) and -in (—i)l<(g,w8;t)

rates from the Boltzmann equation at 90° CMS angle (short-



Fig. 6.

- Fig. 7.

Fig. 8.
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dashed 1ines). The rates from the Boltzmann equation are
depjcted tOgéther.With the auxiiiary rates from the Green's
function equatidné (see text), for a Hartree-Fock initial
state - long-dashed lines and for a cdrre]ated initial state -

solid lines.

Green's function moduli IG}(Q:t,t')| as functions of (t -t'),
for several momenta and t = 10 fm/c. Thin straight lines

correspond to exponential decay rates r(p:t)/Z (see text).

Effective rates y = ﬁ(fdg (af(g,t)/at)?/

fdg (f(g,t) - feq(p))z)l/z‘from quantum evoiutions

p1otted vs y from Boltzmann evolution, for a fixed average
deviation from equilibrium

(fdp (F(p,t) - fo(p))?/ fdp 5 (pN1/2 = 172, when

the multiplication constant in the potential is varied. Long-
dashed line corresponds to a Hartree;Fock initial state, solid
line - to cofre]ated initial states. Short-dashed line y =
YBo1tzmann serves as a guide to the eye. The arrow locates

the values corresponding to the multiplication constant in the

potential equal to 1.

Rates F(B;t) from quantum evolutioﬁs, averaged over momentum
distributions close to equilibrium, plotted vs averaged
F(E,mgzt) from Boltzmann equation, whenvthe multiplication
constant in the potentiai js varied. Long-dashed line

corresponds to a Hartree-Fock initial state; solid -



Fig. 9.
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to correlated initial states. Short-dashed line <> =
<[3Boltzmann serves as a guide to the eye. The arrow Tocates
the values corresponding to the multiplication constant in the

potential equal to 1.

Mesh in the momentum space for the numerical ca]cuTations.



Son
o

0.5 fm/c

1 fm/c

1.5‘fm/c f?.

XBL 8212-12083

Fig. 1a



3.5 fm/c

4 fm/c

4.5 fm/c

-32-

XBL 8212-12084



[ ad

o .

[ad

[ ad

053
' 0.05|
= 8.5 fm/c

= 7.5 fn/c

=8 fm/c

XBL 8212-12085

Fig. 1c



9.5 fm/c

10 fm/c

-34-

XBL 8212-12086

Fig. 1d



-35-

-l

o]

100

200

100 |

200

p2/2n

;
E

ERY.N

1uth

100

© 200

p2/2m

P
o
o

400 0 ~ 100 200

I =1

o]

200 300 400
p2/2m
XBL 829-11825-



- -36-

[TT T 171

T

| -<prd>/<520>2

0

!

1 (fm/c)

XBL 829-11826

Fig. 3



-37-.

| X4
O -
AT S |
v 4\ \ 500 p(MeV/c)
/ — ‘. y, / » / y - :
ﬁ\ \ % L/ /
4 N //

XBL829-4642

Fig. 4



1507

o
e

@)
O

Scattering rates (MeV)

-38-

| |

t=10 fm/
- |z>///“\\\ —
< \
Pid \
_-- \
a2
__//';/"'_\\\
—< iz
N
_|z< \
SN |
-2 \\ |
_.._\< N
-|z \\\
|
O 500

p(MeV/c)

XBL829-4641

Fig. 5



Ol

();C)I

Green's function moduli 1G> (t,1)1

0.00I

©

I I I =

3 3

| t=10 fm/c ;_ | i N [ ]
p=0 4 pZs pZ=380 MeV/c p2=430MeV/c -

- B + [ pt=600Mev/e\ -| [ pt=380Mev/c | [ p*=0 .
N N RN R Pl SRR E RN

G>

a)

R

T

R i

rrryrrrig

b)

Lt

I

1

I A

c)

[

= T = e I B

d)

O

5

10 O

5 100 5

t-t' (fm/c)

Fig. 6

10 O

5

0

XBL829-4643

- -6€-



200

100

Y (MeV)

-40-

Fﬁg. 7

' T
/
/
- , ]
/
/7
/7
/
N , i
/. .
/S
/7 /
/7
i / -
- +
/7 |
Vi
0 -100 2 200
7 Boltzmann (MeV)
| XBL 8210-4839



<I'> (MeV)

I | I ‘ T
400 R
.,
o/
/7
/
300 //_ -_
: S
-/
. / ]
/7 - | .
100 /7 — , -
i 1
100 200 - 300 400
<I'> Boltzmann (MeV)
| ~ XBL 8210-4840

41~

' Fig. 8




-42-

A~

* e ®

. L I

LI I o s ®

LR R S R ¢ v s

® @ ¢ % e 0...

S e o s & & o . s ®

® & 4 8 % @ e o ¢ e

T« & & 4 9 v & o * o °
@« o ® & 4 % o+ % e . o @
T ¢ & 4 & a ¢ o o -« ° 0
® % a 4 o v N 4 & s ¢ L
« S 8 8 42" ® 9 e 0 e ® o
* 3 ® ¢ % & % s a @ o o 9
*= & % & ® 3 ® & 4 v o LY
« ® 6 & @& g ¢ ¢ ® % o .- e
e @« & & 3 & v q & e oo * o
« & 8. 4 % % o v 0w . ®

XBL 8211-3425

Fig. 9



~ This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.
Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable. .




"TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
- BERKELEY, CALIFORNIA 94720





