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ABSTRACT OF THE THESIS 

 

Cell-free RNA Sequencing from Microliters of Unprocessed Serum 

 

by 

 

Zixu Zhou 

 

Master of Science in Bioengineering 

 

University of California, San Diego, 2017 

 

Professor Sheng Zhong, Chair 

 

 

Though numerous treatments for breast cancer have been developed, recurrence 



 

viii 

 

still exists, biomarkers and risk assessment tools are thus desired by the field. Cell-free 

RNA in blood or serum is now receiving more and more interest as a pool of biomarkers 

and RNA sequencing was believed to be a powerful tool for its analysis. However, 

development of the field was hindered by large volume of serum required for RNA 

extraction.  

In this study, by circumventing RNA extraction and with the inspiration from 

single-cell RNA sequencing, we developed a technology being able to construct RNA 

sequencing libraries in large scale with microliters of direct unprocessed serum input. 

Optimizations for sequencing and mapping qualities, library complexity and library 

construction efficiency were conducted by varying serum input volume, adding custom 

sequencing primer and applying liquid handling instrument epMotion 5075. The 

optimized strategy “construct 96 different libraries in one single automated batch with 7ul 

serum input” was proposed accordingly. A huge diversity of genes could be found in 

serum with this technology. The developed technology was then applied to 96 breast 

cancer patients’ serums for its performance and potential in clinical cases. Based on the 

sequencing data: 465, 601 and 1259 genes were identified by three methods respectively 

to behave differently in recurrence and non-recurrence patients; The two populations 

could be separated by principle component analysis with all three sets of genes 

mentioned above; Preliminary recurrence risk assessment was conducted successfully 

with the classifier random forest. 
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Introduction 

Though numerous of treatments for breast cancer have been developed, 

recurrence of breast cancer still exists, its risk assessment and potential biomarkers are 

thus desired by the field. With the potential to provide an easily accessible window for 

monitoring changes not only in breast cancer, but also at distant metastatic sites, blood as 

a minimally invasive, rapid and cost-effective biopsy source is nowadays receiving more 

and more clinical interest. In blood/serum exist three major categories of potential 

biomarker sources circulating tumor cells, cell-free DNA and cell-free RNA (serum is 

usually used when studying cell-free DNA and RNA). Lots of research has already been 

conducted on circulating tumor cells and cell-free DNA, while studies on cell-free RNA 

are still at its early stage with more effort needed. However, though studies on it were just 

started, cell-free RNA was already shown with great potential being a promising 

biomarker pool. One of the advantages of cell-free RNA is that it reveals not only 

sequence information, but also gene expression and regulation details, an important 

information none of the other two sources feature [1-2]. Some early stage efforts in the 

field studying cell-free RNA disease biomarkers in serum were spent on their 

concentrations [3-4], but due to the fact that yield of cell-free RNA extraction was always 

highly variable [5] and release of RNA into the blood was reported mostly not due to 

specific conditions [6], limited achievement was made. Meanwhile, another way studying 

cell-free RNA: high-throughput RNA sequencing (RNA-Seq), a method making full use 

of cell-free RNA’s advantage on expression and regulation details, is getting to the center 

of the stage [7]. In a word, studies on expression and regulation details of cell-free RNA 
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in serum with RNA-Seq are now more and more emphasized in the field. 

     Among numerous studies in the field, RNA-Seq are mostly performed based on 

libraries constructed with extracted RNA harvested from milliliters of serum. However, 

this requirement of milliliters of serum volume could potentially limit the development of 

the field, and RNA-Seq with low serum starting volume is thus needed. With one of the 

most important reasons why large serum starting volume is necessary being the huge 

RNA molecule loss during RNA extraction, low starting serum volume RNA-Seq library 

construction might be possible if this extraction step could be bypassed, namely, if RNA-

Seq library construction could be constructed directly from serum. The question now 

comes as how should one develop such an application. Studies have reported that most of 

cell-free RNA in serum locates inside exosomes, and these lipid bilayer structure similar 

to cell membrane prevent or slow cell-free RNA digestion and degradation [6, 8-9]. This 

structural similarity between exosomes and cells enlightened us to refer to single-cell 

sequencing technology. One step further, with the ability to construct full-length total 

RNA library from low amount of RNA input, “Switching Mechanism At the 5’ end of 

RNA Template (SMART)-Sequencing (SMART-Seq)” [10] widely used in cell RNA-

Seq library construction is not only a representative of the technology but also a good 

candidate for the application. To summarize, the low starting serum volume goal 

mentioned above and studies on stable existence of cell-free RNA in serum point together 

to one potential direction: applying single-cell RNA Sequencing technology “SMART-

Seq” on low starting volume of unprocessed serum directly to construct RNA-Seq library 

for downstream sequencing and analysis. 
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Thus, here, we firstly introduce a novel technology developed based on single-cell 

RNA-Seq technology “SMART-Seq” to provide a deeper view into human serum using 

microliters of unprocessed serum as input, and then apply the technology to the case of 

breast cancer recurrence to examine its performance and reveal its potential in clinical 

scenarios.  
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Results 

I. Cell-Free RNA Concentration and Size in Breast Cancer Patient Serum 

     Four kits/methods, “TRIzol LS”, “exoRNeasy”, “NORGEN w/ DNase” and 

“QIAzol Method”, were applied to a total of 4 serum samples from 3 different breast 

cancer patients (serum 6025_8, 6025_9, 6038_1, 6046_3 from patients 6025, 6038 and 

6046). These four methods above covered almost all commercially available technology 

for cell-free RNA extraction. Input serum volumes were 1ml for the first three methods 

and 200ul for QIAzol method. TRIzol LS was used to extract cell-free RNA from 1ml 

6025_9 serum. Cell-free RNA extraction from serum 6038_1 was also conducted with 

three different methods, exoRNeasy, NORGEN w/ DNase and QIAzol method. 

Biological replicates were tested as well by applying exoRNeasy to serum 6025_8, 

6038_1 and NORGEN w/ DNase to 6038_1, 6046_3 (Table.1). Quantification and size 

distribution of extracted RNA were determined with Bioanalyzer RNA Pico 6000. 

The observed cell-free RNA concentrations in breast cancer patient serum were in 

the range from 0.2957ng/ml to 4.2ng/ml. TRIzol LS gave cell-free RNA concentration 

0.8132 ± 0.364ng/ml in serum 6025_9, exoRNeasy gave 0.2957 ng/ml for serum 6025_8 

and 0.6197ng/ml for 6038_1, NORGEN w/ DNase gave 3.2 ± 0.3ng/ml for 6038_1 and 

1.8 ± 0.3ng/ml for 6046_3, QIAzol Method gave 4.2 ng/ml for 6038_1 (Table.1). TRIzol 

LS and exoRNeasy appeared to capture less RNA than NORGEN w/ DNase I and 

QIAzol Method.  

Cell-free RNA extracted from breast cancer patient serums fell in the size range 

40-300nt and two high concentration areas could be identified at sizes 70nt and 140nt for 



5 

 

most RNA samples extracted. Size distributions of all extracted RNA were obviously 

different from that of ultrapure water control, in terms of both concentration (or 

equivalently Florescence Units, FU) and shape. (Figure.1) 

 

Methods Purification Mechanism Serum 

Cell-free RNA 

Concentration in Serum 

(ng/ml) * 

TRIzol LS 
Phenol-chloroform phase 

separation 
6025_9 0.8132  0.364 (N = 3) 

exoRNeasy 

Kit 

Affinity binding column for 

EVs then phenol-chloroform 

and silica membrane spin 

column purification 

6025_8 0.2957 

6038_1 0.6197 

NORGEN 

w/ DNase 

Two spin column 

chromatography, DNase I 

digestion and silica membrane 

spin column purification 

6038_1 3.2  0.3 (N = 2) 

6046_3 1.8  0.3 (N = 2) 

QIAzol 

Method 

Phenol-chloroform phase 

separation 
6038_1 4.2 

 

 

 

 

 

Table.1 RNA Extraction Methods and Corresponding RNA Concentrations Detected in Serums. 

“Methods” are the short names of the extraction methods, as mentioned in the section “Methods”. 

“Purification Mechanism” shows brief summaries of working principles of the methods. “Serum” 

gives unique IDs to the serums, starting with a 4-digit patient ID followed by a 1-2 digit follow up 

number. In the last column contains corresponding cell-free RNA concentrations detected in specific 

serum with designated RNA extraction method. Averages and standard deviations of cell-free RNA 

concentrations detected in each serum with specific method were calculated, with number of 

measurement conducted being N in bracket (e.g. N=2 means a sample of extracted RNA was measured 

twice). 

* All concentrations were derived from by Bioanalyzer quantification results, Qubit RNA HS gave too 

low for all samples of extracted RNA except the one in first row, which is 352pg/ul (only one 

measurement made). This value was not included since this was a different quantification tool.  
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Figure.1 Size Distribution Results of Cell-free RNA Extracted from All 4 Serums with All 4 

Different Methods. Marker signals (<37nt) were removed, x-axis is size with the unit of nucleotides, y-

axis is fluorescence unit (FU), which is proportional to concentration. Almost all size distributions 

shared the same shape and most of the cell-free RNA fell in the size range of 40-300nt with two major 

concentrated area around 70 and 140nt. Water: 1ul ultrapure water was given as direct input to 

bioanalyzer. 
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II. Development of Ultra-Low Starting Volume Cell-free RNA Library 

Construction and Sequencing Technology 

1. Optimization of Library Sequencing and Mapping Quality 

     Sequencing quality of a library was mostly represented by total read counts and 

mapping quality was mostly represented by uniquely mapped percentage to human 

genome (will be mentioned as “sample total read counts” and “uniquely mapped 

percentage”). Two conditions most possibly affecting sequencing and mapping qualities, 

and most easily to be manipulated during library construction and sequencing were serum 

input volume and addition of custom sequencing primer. 

a. Optimization with Serum Input Volume to Library Construction Protocol 

     We firstly set off to identify the volume range of serum input that would lead to 

completion of sequencing library construction. Two serums, 6004_9 and 6057_5, were 

tested with input volumes being 3, 7, 11 15ul and 3, 7, 15, 30ul respectively. Library 

construction could not be completed with 11ul of serum input as gel-like structure 

would form in tubes and made following procedures not feasible. Viscosity increase was 

observed with 7ul serum input and library construction completion could just be 

achieved. Thus, the serum input volume range where library construction could be 

completed was  7ul. 

     Optimization with serum input volume was thus conducted with the range  7ul. 

Tests within the range were carried out for trend between qualities and serum input 

volume as shown below. 8 libraries were constructed from 3ul, 5ul, 6ul and 7ul input of 

serum 2010_4, two libraries for each volume, and these 8 libraries will be mentioned as 

“Set 1”. Besides, 4 and 2 libraries were constructed from 3ul and 7ul input of serum 
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6004_9, 5 and 4 libraries were constructed from 3ul and 7ul input of serum 6057_5 

respectively, and these libraries will be mentioned as “Set 2”. Averages and standard 

deviations were calculated for sample total read counts and uniquely mapped percentage 

in each condition if applicable (Appendix Table.A1). 

     Observed from the results of Set 1libraries, both sample total reads and uniquely 

mapped percentage increased as serum input volume increases (Figure.2). The drop of 

sample total read counts shown by the left-most column was expected and due to human 

error. Sequencing results from Set 2 libraries showed also better sequencing and mapping 

quality when serum input volume is 7ul (Figure.3). Thus, 7ul was the optimized serum 

volume input with the restriction of library construction completion. 

 

 

Figure.2 Sequencing and Mapping Qualities Optimization with 3ul-7ul Input of Serum 2010_4. 

Data used in this plot are from sequencing results of 3ul, 5ul, 6ul and 7ul input of serum 2010_4 (i.e. 

Set 1). Blue bars are sample total read counts and their readings could be obtained from the vertical axis 

on the left. Orange bars are uniquely mapped percentages, and their readings could be obtained from the 

vertical axis on the right. 
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Figure.3 Effect of Increasing Serum Input Volume on Sequencing and Mapping Qualities. Effect 

of increasing serum input volume on sequencing (upper) and mapping (lower) qualities with results 

from serum 2010_4, 6004_9 and 6057_5. Blue bars represent qualities from libraries constructed from 

3ul or 7ul serum 2010_4 input, green bars represent those from 3ul or 7ul serum 6004_9 input, gray 

bars represent those from 3ul or 7ul serum 6057_5. 
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b. Optimization with Addition of Custom R1 Sequencing Primer 

     We tested both sequencing and mapping qualities with and without custom R1 

sequencing primer. 4 and 6 libraries were constructed from 3ul input of serums 6004_9 

and sequenced with and without custom sequencing primer respectively, 5 and 6 libraries 

were constructed from 3ul input of serums 6057_5 and sequenced with and without 

custom primer respectively. Averages and standard deviations of sample total read counts 

and uniquely mapped percentages were calculated in each condition (Appendix 

Table.A2).  

     From the comparison, addition of custom read 1 sequencing primer almost 

doubled sample total read counts, yet had no obvious effect on uniquely mapped 

percentage, i.e. adding custom R1 sequencing primer improved sequencing quality but 

had no obvious effect on mapping quality (Figure.4). 

      

In a word, sequencing and mapping qualities were optimized with the 

combination of 7ul library construction serum input volume and custom sequencing 

primer under the library construction input volume restriction. 
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Figure.4 Effect of Adding Custom R1 Sequencing Primer on Sequencing and Mapping Qualities. 

Effect of adding custom R1 sequencing primer on sequencing (upper) and mapping (lower) qualities 

with results from serum 6004_9 and 6057_5. Green bars represent qualities from libraries constructed 

from serum 6004_9, gray bars represent those from serum 6057_5. 
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2. Optimization of RNA-Seq Library Complexity 

     Library complexity was mostly indicated by number of genes detected. With 

serum input volume being the easiest factor to manipulate, and the most possible factor 

related, library complexity was optimized by identifying a volume where most genes 

could be detected. Optimization was conducted over the range consisted of two sections: 

less, and more than 7ul serum input volume inclusively, theses sections will be referred 

as lower and higher range sections respectively. Sequencing data from each constructed 

library with serum input volume less than 7ul were used directly for analysis in lower 

range section and because library construction was not feasible with >7ul serum input, 

“combined” sequence data (will be mentioned with more details in next paragraph) from 

libraries with 3-7ul input of same serums were used for analysis in higher section range. 

A total of 39 libraries constructed from 3ul to 7ul input of the serums 2010_4, 6004_9 

and 6057_5 were studied here for the optimization. 

     Optimization in lower range section was conducted with a subset of 23 libraries of 

the total 39 libraries: 2 libraries from each of 3ul, 5ul, 6ul and 7ul input of serum 2010_4 

(8 libraries in total), 4 and 2 libraries from 3ul and 7ul of serum 6004_9 respectively (6 

libraries in total), 5 and 4 libraries from 3ul and 7ul of serum 6057_5 respectively (9 

libraries in total). Optimization in higher range section was carried out by combining 

sequencing data of all 9, 15 and 15 libraries constructed from serums 2010_4, 6004_9 

and 6057_5 respectively. To elaborate “combining sequencing data” with details, 

sequencing data from each serum were cumulatively combined starting and continuing 

with a random uncombined library built from highest serum input volumes (i.e. combine 

all sequencing data from 7ul first and then cumulatively combine all sequence data from 
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6ul, then same for 5ul, and finally 3ul, this method will be mentioned as “sequencing data 

combination” in the rest of the report). Number of genes detected together with the 

corresponding total volumes of serum involved were recorded in pair for analysis (see 

Table.2 for an example). 

     In serum 2010_4, it was observed that increase of serum input volume in 3ul to 

7ul range improved number of genes detected, i.e. library complexity (Figure.5). This 

improvement was confirmed with those 6 libraries from serum 6004_9 and 9 libraries 

from 6057_5 mentioned above (Appendix Table.A3 and Figure.6). For all three serums, 

among all 60675 human genes (ENSEMBL gene annotation (HG38)), no less than 30000 

genes in most cases (35353 and 32477 for serum 2010_4, 34416 and 29334 for serum 

6004_9 and 28034, 31950, 34002 and 34241 for serum 6057_5) were detected (TPM, 

transcripts per million>1) with only 7ul direct serum input for library construction. 

Besides, it was observed that in higher range section (> 7ul), for all three serums, 

numbers of detected genes (TPM>1) went up almost monotonically with total volume of 

serum involved. However, the increase was much less obvious after around 26ul for 

serum 2010_4 or 28ul for the other two was involved, indicating plateaus being reached. 

More than 47000 genes (47540 for serum 2010_4, 47851 for 6004_9 and 47490 for 

6057_5) or around 78% of all human genes were detected (TPM>1) with 26ul of serum 

2010_4 involved or 28ul of the other two involved. Numbers of genes detected (TPM>1) 

with sequencing data of all 9, 15 and 15 libraries combined were 50606, 50949 and 

50544 for serums 2010_4, 6004_9 and 6057_5 respectively. (Figure.7, red lines) 

     Though highest number of genes were detected with the total involved serum 

volumes being 45ul, 61ul and 61ul for serums 2010_4, 6004_9 and 6057_5, with the 
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plateaus being reached at around 26ul or 28ul and library protocol restriction (input 

volume < 7ul), optimization of library complexity gave the strategy: combining sequence 

data from 4 libraries constructed from 7ul serum volume input to achieve a 28ul total 

volume of serum involved. 

 

Total Volume of Serum Involved (ul) Number of Genes Detected 

7 39669 

14 44402 

21 46662 

28 47851 

31 48482 

34 48720 

37 48880 

40 49136 

43 49316 

46 49764 

49 49888 

52 49992 

55 50057 

58 50339 

61 50544 

 

 

 

Table.2 An Example of “Sequencing Data Combination”. Data were from sequencing data 

combination of 15 libraries from the serum 6057_5. The column “Total volume of serum involved” 

gives the summations of the serum input volumes of libraries of which the sequencing data were 

combined. Difference between two adjacent cells in this column is the serum input volume of the 

library that would be combined to achieve the bigger volume. The column “Number of genes detected” 

gives the numbers of genes identified in the corresponding combined sequencing data set. Contribution 

to number of genes detected made by combining each library is the difference between the consecutive 

numbers in the column. 
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Figure.5 Effect of Serum Input Volume on Library Complexity (2010_4). Effect of serum input 

volume on library complexity with results from the 8 libraries constructed from serum 2010_4. 

Figure.6 Effect of Serum Input Volume on Library Complexity (2010_4, 6004_9 and 6057_5). 

Effect of serum input volume on library complexity with results from 4, 6 and 9 libraries constructed 

from 3ul or 7ul input of serums 2010_4, 6004_9 and 6057_5 respectively. Blue, green and gray bars are 

numbers of genes detected from libraries constructed from 3ul or 7ul serum 2010_4, 6004_9 and 

6057_5 input respectively. 
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3. Optimization of Library Construction Efficiency 

     During the construction of in total 163 libraries, different numbers of libraries 

could be constructed at the same time within one experimental batch, and construction 

could be conducted with or without robot automation (epMotion). These two concepts 

will be mentioned as “batch status” and “automation status” in the rest of the report. 

     There were in total three different batch and automation statuses applied to 

prepare libraries: 8 libraries per batch without epMotion, 8 libraries per batch with 

epMotion and 96 libraries per batch with epMotion. Average times spent to construct one 

library were 2.29, 1.5 and 0.42 hours for the three circumstances respectively. In terms of 

percentage, 28% and 18.3% of the time spent per library construction under the first 

circumstance was spend under the second and third (Table.3). It is obvious that larger 

batch and automation both increased library construction efficiency  

     Efficiency is thus optimized by applying large scale automated library 

preparation, in this case, constructing 96 libraries in a batch with epMotion, which is the 

upper limit of epMotion capacity at this stage. 

Batch Status 
Automation 

Status 

Average Time Spent per Library 

(hours) 

8 Libraries per 

Batch 

w/o epMotion 2.29 

w/ epMotion 1.5 

96 Libraries 

per Batch 
w/ epMotion 0.42 

Table. 3 Effect of Batch and Automation Status on Library Construction Efficiency. “Batch 

Status” is how many libraries were constructed at the same time with in one batch of experiment. 

“Automation Status” shows whether epMotion was used to prepared libraries. “Average Time Spent per 

Sample (hours)” is the calculated amount of time required to construct one library under specific 

circumstance summarized in the first two columns. 
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III. Diversity of Detected Genes in Serum 

1. Overall Diversity of Detected Genes in Serum 

     How many different categories of genes can be detected in only micro-liter level 

of serum? The question was investigated with the three most well studied serums from 

three different patients covering both recurrence and non-recurrence statuses. The serums 

were 2010_4, 6004_9 and 6057_6, the first two serums were from two recurrence 

patients and the last one was from a non-recurrence patient. 9, 15 and 15 libraries 

constructed with each of the serums were studied with method “sequencing data 

combination” respectively, the same method mentioned in the previous section 

“Development of Ultra-Low Starting Volume Cell-free RNA Library Construction and 

Sequencing Technology” (Table.2). 

     A large diversity of genes was observed in high consistency over all three serums, 

regardless of patient recurrence status: the in total 50606, 50949 and 50544 genes 

detected respectively in serum 2010_4, 6004_9 and 6057_9 fell in the same 42 out of 44 

human gene categories (ENSEMBL gene annotation (HG38)). These categories included, 

most importantly, protein-coding genes, lincRNA, miRNA and snRNA, etc., which were 

crucial for basic functions and regulations. With sequencing data of all 9, 15 and 15 

libraries combined: 95% of all protein coding genes, 92% of all lincRNA, 41% of all 

miRNA and 67% of all snRNA were detected in serum 2010_4; 95% of all protein 

coding genes, 93% of all lincRNA, 42% of all miRNA and 65% of all snRNA were 

detected in serum 6004_9; 94% of all protein coding genes, 93% of all lincRNA, 41% of 

all miRNA and 63% of all snRNA were detected in serum 6057_5 (see Table.4 for 

numbers). 
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     To summarize, large and consistent gene diversity was observed over all three 

serums. Genes were detected in the same 42 out of all 44 human gene categories in all 

three serums covering both recurrence and non-recurrence statuses. Important categories 

such as protein coding genes, lincRNA, miRNA and snRNA were studied as examples. 

Almost all protein coding genes (>94%) and lincRNA (>92%), around 41% of all 

miRNA and 65% of all snRNA (ENSEMBL gene annotation (HG38)) could be detected 

in equivalently 45ul of serum 2010_4 and 61ul of the other two serums. High consistency 

of gene diversity was observed among three serums, though they covered recurrence and 

non-recurrence statuses. 

Serum 
Protein-coding Gene (19826) lincRNA (7668) miRNA (4198) snRNA (1905) 

Number Percent Number Percent Number Percent Number Percent 

2010_4 18769 95% 7073 92% 1708 41% 1268 67% 

6004_9 18784 95% 7116 93% 1781 42% 1236 65% 

6057_5 18716 94% 7096 93% 1718 41% 1197 63% 

 

 

2. Discovery of Tissue-Specific Genes in Serum 

    In human serum, is it possible to detect tissue specific genes, especially those 

specific to tissues where biopsy sampling is difficult or even impossible? “Yes” to the 

answer may potentially reveal a huge advantage of serum on patient compliance and 

sampling feasibility over biopsy of those specific tissues. Three tissues where biopsy 

sampling was difficult or impossible were selected as examples: brain, bone marrow and 

Table.4 Numbers of Genes Detected in Important Gene Categories. Numbers of genes detected in 

each of the following gene categories: protein-coding gene, lincRNA, miRNA and snRNA. ENSEMBL 

gene annotation (HG38) was used as reference genome. Patient 2010 and patient 6004 are recurrence 

patient and patient 6057 is non-recurrence patient. Total numbers of genes were in the brackets after the 

name of each gene category. 
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peripheral nervous system (PNS). With the example tissues, the question was addressed 

by firstly combining sequencing data of all 9, 15 and 15 libraries from serums 2010_4, 

6004_9 and 6057_5 respectively, then mapping the data to ENSEMBL gene annotation 

(HG38) and lastly matching the results with TiGER (http://bioinfo.wilmer.jhu.edu/tiger/) 

tissue-specific gene expression profile for genes specific to example tissues. 

    Among all 176, 192 and 78 tissue specific genes for brain, bone marrow and PNS, 

176, 191 and 78 genes were detected respectively in serum 2010_4 with 46ul serum 

volume involved in sequencing data combination. Numbers of genes detected were 175, 

191 and 78 respectively in serum 6004_9 and 176, 189 and 78 respectively in serum 

6057_5 (Table.5). TPMs of genes specific to these three tissues were mostly larger than 

4, detailed distributions were shown in Figure.8 for each sample. 

     Success in detecting genes specific to important tissues and organs revealed the 

potential of serum as an alternative biopsy for diagnosis and prognosis of diseases related 

to specific tissues or organs. 

 
Brain Specific Bone Marrow Specific PNS Specific 

All in Data Base 176 192 78 

2010_4 176 191 78 

6004_9 175 191 78 

6057_5 176 189 78 
 

 

 

Table.5 Numbers of Tissue Specific Genes Detected for Example Tissues/Organs. Total numbers of 

tissue specific genes for the three tissues/organs (brain, bone marrow and peripheral nervous system 

(PNS) in TiGER are shown in the first row. Numbers of tissue specific genes detected for the three 

tissues/organs in three serums are shown in the other three rows. 
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Figure.8 Tissue Specific Genes Detected and Their Gene Expression Levels. Tissue specific genes 

detected and their gene expression (TPM) levels in brain, bone marrow and peripheral nervous system 

(PNS) in three different serums: 2010_4 (upper), 6004_9 (middle), 6057_5 (lower), based on combined 

sequencing data of all 9, 15 and 15 libraries respectively. Different tissues are in titles of each 

histogram, x-axis is gene expression level in logarithm (log2TPM), and y-axis is the number of genes 

with their expression level falling in the range indicated on x-axis. 
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IV. Application of the Technology on Breast Cancer Recurrence 

     Finally, how is the performance of the developed technology in terms of disease 

prognosis? We applied the technology to the case of breast cancer recurrence to answer 

the question. With RNA-Seq library construction details optimized with the conditions 

mentioned above, 96 libraries from 96 serums of both recurrence and non-recurrence 

patients were built in one single batch with 7ul serum input. Sequencing was conducted 

on the platform HiSeq4000 with custom R1 sequencing primer using two out of eight 

lanes on a flow cell. Qualities and complexity of the libraries were firstly examined. 

Principle component analysis (PCA) was conducted on all genes for dominant difference 

between recurrence and non-recurrence patient populations. Three methods were then 

applied to identify populations of potential recurrence biomarkers, and their ability 

separating recurrence and non-recurrence patient populations were also demonstrated. 

Lastly a classifier was built accordingly for recurrence risk assessment. 

1. Sample Description 

     96 serum samples were carefully selected to achieve the consistency of sampling 

time. Patient selection was firstly conducted, followed by serum selection from the 

selected patients. Patients were selected into the study only when such two serums for the 

patient existed: one collected between 30 days before and 60 days after chemotherapy 

ends, inclusive (Range 1) and the other collected more than 60 days after chemotherapy 

ends, exclusive (Range 2). With the rule above, 9 recurrence and 33 non-recurrence 

patients were identified (Figure.9). Then, all serums collected in Range 1 and Range 2 

were selected for recurrence patients, and only one serum collected in Range1 and one 

collected earliest in Range 2 were selected for non-recurrence patients. Numbers of 
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serums selected above were 24 and 66 respectively. 6 more serums with collection dates 

slightly out of ranges were also included into the study, these were serums 6027_2, 

6039_2, 2056_2 and 2056_4, 6049_1 and 6049_4 (63, 49 and 49 days before and 204 

days after, 149 days before and 241 days after chemotherapy ends respectively). In 

summary, in the total of 96 serums selected, there were 28 serums from 10 recurrence 

patients with 2-4 serums per patient, and 68 serums from 34 non-recurrence patients with 

2 serums per patient. List of all 96 serums is shown in Table.6, with red and black 

indicates their being selected from recurrence and non-recurrence patients respectively. 

2. A Glance at Sequencing Result: Qualities, Complexity and PCA 

     Sequencing, mapping qualities and library complexity were firstly examined with 

sequencing results of the 96 libraries. Good in these three aspects was indicated by 

7666371 ± 962851 (around 736 million for 96 samples in total) sample total read counts, 

83.97% ± 2.53% uniquely mapped percentage and 27257 ± 6613 genes detected 

(TPM>1) respectively (Table.6). Mapping and gene detection were conducted with 

ENSEMBL gene annotation (HG38). PCA were then conducted on 96 libraries with all 

60675 genes (ENSEMBL gene annotation (HG38)) to identify the existence of dominant 

differences between recurrence and non-recurrence populations and the non-obvious 

separation of the populations indicates their absence (Figure.10), namely, there’s no 

obvious difference between recurrence and non-recurrence patients’ serums in terms of 

gene expression. 
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Figure.9 The 9 Recurrence and the 33 Non-recurrence Patients Identified by the Rule. The 9 

recurrence (upper) and the 33 non-recurrence (lower) patients identified by the rule. Dates of events 

(such as serum sampling) are shown on x-axis with the day chemotherapy ends being Day 0, negative 

values mean the event is before chemotherapy end and positive values means after. Each horizontal line 

represents a patient with the corresponding PatientID on y-axis. Blue squares on each horizontal line 

denote serum sampling events of the specific patient with the dates on x-axis, gray crosses denote starts 

of chemotherapy of the specific patient and orange stars denote cancer recurrence.  

In the upper plot, PatientID of the nine patients (i.e. nine horizontal lines) were shown explicitly to the 

left of the plot, and follow-up numbers of each serum sample were also shown explicitly to the left of 

each blue square in the format of e.g. fu3 (representing the third follow-up). Due to space limit, these 

were not shown for the 33 non-recurrence patients. Details could be found in non-recurrence section of 

Table.6 (in black color). PatientIDs are 2002-6002 from top to bottom, with 6049 skipped, and follow-

up numbers are the corresponding numbers in the table. 
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Figure.9 The 9 Recurrence and the 33 Non-recurrence Patients Identified by the Rule 

(Continued). The 9 recurrence (upper) and the 33 non-recurrence (lower) patients identified by the 

rule. Dates of events such as serum sampling are shown on x-axis with the day chemotherapy ends 

being Day 0, negative values mean the event is before chemotherapy end and positive values means 

after. Each horizontal line represents a patient with the corresponding PatientID on y-axis. Blue squares 

on each horizontal line denote serum sampling events of the specific patient with the dates on x-axis, 

gray crosses denote starts of chemotherapy of the specific patient and orange stars denote cancer 

recurrence. 

In the upper plot, PatientID of the nine patients (i.e. nine horizontal lines) were shown explicitly to the 

left of the plot, and follow-up numbers of each serum sample were also shown explicitly to the left of 

each blue square in the format of e.g. fu3 (representing the third follow-up). Due to space limit, these 

were not shown for the 33 non-recurrence patients. Details could be found in non-recurrence section of 

Table.6 (those in black color). PatientIDs are 2002-6002 from top to bottom, with 6049 skipped, and 

follow-up numbers are the corresponding numbers in the table. 



26 

 

 

Serum 
Sample Total Read 

Counts 

Uniquely Mapped 

Percentage 

Number of Genes 

Detected (TPM>1) 

2006_2 7293272 82.88% 30416 

2006_3 7870895 82.92% 24107 

2010_3 6622312 84.87% 26608 

2010_4 8248171 85.37% 32072 

2011_2 9233397 85.80% 27425 

2011_3 7156841 85.80% 29720 

2011_5 7344237 83.32% 30418 

2011_10 8130653 84.35% 24800 

2018_2 8374268 87.15% 24085 

2018_3 7637570 85.16% 29435 

2018_4 7110637 82.77% 25272 

2018_5 6848186 85.05% 27550 

2056_2 7093422 84.26% 25821 

2056_4 6609194 83.60% 37714 

6023_3 7105263 86.89% 29322 

6023_4 8346173 84.26% 19070 

6027_2 9045224 82.20% 18095 

6027_3 8330933 83.87% 31390 

6027_4 7620354 85.44% 33337 

6027_5 7365425 84.48% 34499 

6039_2 7023051 84.80% 33066 

6039_3 5636176 84.33% 21682 

6039_5 7389168 83.45% 24183 

6045_3 8827999 86.48% 26709 

6045_4 7799765 85.40% 33002 

6045_6 8161797 84.26% 31291 

6060_3 7786528 85.96% 30928 

6060_4 11070218 86.23% 31219 

Table.6 Information of the 96 Serums Selected. Recurrence serums are marked in red and non-

recurrence serums are marked in black. IDs in “Serum” identify the serums with a 4-digit PatientID and 

a 1-2 digit follow up (fu) number. “Sample Total Read Counts” gives total read counts for each library. 

“Uniquely Mapped Percentage” gives the percentages of reads could be uniquely mapped to human 

genome in sample total read counts. “Number of Genes Detected (TPM>1)” shows the numbers of 

genes detected (ENSEMBL gene annotation (HG38)) in the libraries (TPM>1).   
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Serum 
Sample Total Read 

Counts 

Uniquely Mapped 

Percentage 

Number of Genes 

Detected (TPM>1) 

2002_2 9025676 84.20% 20757 

2002_3 8148798 85.17% 20978 

2003_2 9183238 86.14% 30010 

2003_3 8961017 85.65% 24133 

2005_2 7377949 84.21% 18879 

2005_3 6490139 80.58% 14867 

2014_3 6536128 84.36% 21559 

2014_5 6532672 76.46% 16863 

2023_2 8296427 85.84% 27102 

2023_5 6965863 84.49% 33694 

2024_2 7283528 85.52% 33302 

2024_4 8761199 83.18% 21410 

2028_2 7288621 75.50% 31026 

2028_3 7764460 83.72% 24892 

2031_2 6968233 79.16% 11462 

2031_3 7802809 82.60% 22478 

2038_2 7804645 85.22% 27067 

2038_4 6103776 80.29% 32121 

2039_3 7986157 85.07% 24251 

2039_4 5873688 82.87% 34075 

2041_2 7578732 85.50% 24612 

2041_3 9298701 82.88% 17323 

 

 

 

 

 

 

Table.6 Information of the 96 Serums Selected (Continued). Recurrence serums are marked in red 

and non-recurrence serums are marked in black. IDs in “Serum” identify the serums with a 4-digit 

PatientID and a 1-2 digit follow up (fu) number. “Sample Total Read Counts” gives total read counts 

for each library. “Uniquely Mapped Percentage” gives the percentages of reads could be uniquely 

mapped to human genome in sample total read counts. “Number of Genes Detected (TPM>1)” shows 

the numbers of genes detected (ENSEMBL gene annotation (HG38)) in the libraries (TPM>1). 
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Serum 
Sample Total Read 

Counts 

Uniquely Mapped 

Percentage 

Number of Genes 

Detected (TPM>1) 

2048_2 7846486 82.78% 39066 

2048_4 7677529 85.27% 24690 

2060_2 7935080 84.29% 39942 

2060_3 6392908 82.84% 37473 

2065_2 6047318 77.38% 35686 

2065_3 6628185 85.48% 31037 

2074_2 8561951 84.77% 19936 

2074_7 6459683 82.57% 37380 

2075_2 10165886 84.72% 39152 

2075_3 7355997 87.18% 30162 

2091_2 7570788 84.30% 38126 

2091_5 7458148 86.38% 29498 

2097_2 7857570 86.46% 33617 

2097_3 7322319 84.11% 25116 

6017_2 7772216 80.35% 20170 

6017_3 6514249 81.30% 16769 

6019_2 6820883 83.94% 26882 

 

 

 

 

 

 

 

Table.6 Information of the 96 Serums Selected (Continued). Recurrence serums are marked in red 

and non-recurrence serums are marked in black. IDs in “Serum” identify the serums with a 4-digit 

PatientID and a 1-2 digit follow up (fu) number. “Sample Total Read Counts” gives total read counts 

for each library. “Uniquely Mapped Percentage” gives the percentages of reads could be uniquely 

mapped to human genome in sample total read counts. “Number of Genes Detected (TPM>1)” shows 

the numbers of genes detected (ENSEMBL gene annotation (HG38)) in the libraries (TPM>1). 
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Serum 
Sample Total Read 

Counts 

Uniquely Mapped 

Percentage 

Number of Genes 

Detected (TPM>1) 

6019_3 8798580 87.02% 30726 

6021_2 9586903 86.03% 26323 

6021_3 8328434 85.52% 29370 

6022_3 7002006 75.28% 11197 

6022_4 6274345 82.80% 26914 

6025_3 8048885 86.34% 16943 

6025_4 6955775 79.11% 13748 

6028_2 8047948 85.21% 29231 

6028_3 7215702 84.07% 28572 

6034_2 9147154 86.38% 40194 

6034_3 7820560 86.28% 29264 

6035_2 5791185 82.92% 31090 

6035_3 6715321 85.20% 25802 

6038_2 8401167 85.07% 30782 

6038_5 7116876 84.96% 26596 

6040_2 8724735 85.44% 39442 

6040_3 7672233 86.85% 26331 

 

 

 

 

 

 

Table.6 Information of the 96 Serums Selected (Continued). Recurrence serums are marked in red 

and non-recurrence serums are marked in black. IDs in “Serum” identify the serums with a 4-digit 

PatientID and a 1-2 digit follow up (fu) number. “Sample Total Read Counts” gives total read counts 

for each library. “Uniquely Mapped Percentage” gives the percentages of reads could be uniquely 

mapped to human genome in sample total read counts. “Number of Genes Detected (TPM>1)” shows 

the numbers of genes detected (ENSEMBL gene annotation (HG38)) in the libraries (TPM>1). 
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Serum 
Sample Total 

Read Counts 

Uniquely Mapped 

Percentage 

Number of Genes 

Detected (TPM>1) 

6043_3 8491263 85.49% 36208 

6043_4 7630757 80.26% 20857 

6044_3 8203775 85.22% 29522 

6044_4 8505871 83.53% 18207 

6049_1 7315306 82.26% 25571 

6049_4 8340748 86.18% 31046 

6056_2 6335158 84.46% 32438 

6056_3 6891717 82.84% 23884 

6057_3 8429401 86.70% 27594 

6057_5 7649365 84.60% 21241 

6062_3 7646966 75.65% 14702 

6062_4 7382725 85.75% 22098 

 

 

 

 

 

 

 

 

 

 

 

Table.6 Information of the 96 Serums Selected (Continued). Recurrence serums are marked in red 

and non-recurrence serums are marked in black. IDs in “Serum” identify the serums with a 4-digit 

PatientID and a 1-2 digit follow up (fu) number. “Sample Total Read Counts” gives total read counts 

for each library. “Uniquely Mapped Percentage” gives the percentages of reads could be uniquely 

mapped to human genome in sample total read counts. “Number of Genes Detected (TPM>1)” shows 

the numbers of genes detected (ENSEMBL gene annotation (HG38)) in the libraries (TPM>1). 



31 

 

3. Populations of Potential Breast Cancer Recurrence Biomarker and Its Separation of 

Recurrence and Non-Recurrence Patients 

     Is there any gene or sets of genes we detected in serum could be used to separate 

recurrence and non-recurrence patient population? We identify them (will be mentioned 

as “populations of potential biomarkers”) with various of methods and then demonstrated 

their performance separating recurrence and non-recurrence patients using PCA. 

     Three criteria were used to identify populations of potential biomarkers: 

differentially expressed genes between recurrence and non-recurrence patients’ serums 

distinguished by DESeq in R with default parameters; genes showed significant 

difference between the two patient populations from analysis of variance on ranked TPM; 

genes, between the two patient populations, showed significantly different pattern of 

expression changes along time. For convenience, genes in the three populations will be 

mentioned as “differentially expressed genes”, “ANOVA select genes” and “follow-up 

change genes”, and the three criteria will be mentioned as “differential expression”, 

“ANOVA selection” and “follow-up change” respectively. Details of the follow-up 

change criteria will be mentioned in “Method”. Sequencing data used in the first two 

methods were from all 96 libraries and data used in the last method were from two 

portions: 86 libraries constructed from two serums from 9 and 34 recurrence and non-

recurrence patients, one collected in Range 1 and the other one collected earliest possible 

in Range 2, as well as 2 libraries constructed from 2056_2 and 2056_4 which were 

slightly out of the ranges. PCAs were then conducted on sequencing data from all 96 

libraries with the populations of potential biomarkers identified using the first two criteria 
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and on data from 88 libraries with the population identified using “follow-up change” 

criteria. 

     There were 465 differentially expressed genes with p-value < 0.05, including 62 

protein coding genes (protein-coding genes listed in Appendix Table.A4). Among the 

465 genes, 353 genes showed lower expression and 112 genes showed higher expression 

levels in recurrence patients. 601 ANOVA select genes were identified with p-value < 

0.01, among which 200 genes were protein-coding genes (protein-coding genes shown 

below in Table.7), including some reported by others related to breast cancer prognosis, 

such as TUBG1, SNAT1, AURKC and CYP2D6 [21-24]. The method follow-up change 

gave differential scores between 26 and -24, indicating a strong trend of the gene being 

over-expressed in recurrence patients and under-expressed in non-recurrence patients and 

the opposite respectively. There were 1259 genes with differential scores larger than 14 

or smaller than -13 where the p-value is lower than 1.6510-7, among which 752 genes 

were protein-coding genes. Clear and obvious separation of recurrence and non-

recurrence patients was observed in PCAs with all three populations of potential 

biomarkers. (Figure.10 and Appendix Figure.A1) 

     To summarize, three populations of potential breast cancer recurrence biomarkers 

were generated by three methods respectively. There were 465 “differentially expressed 

genes”, 601 “ANOVA select genes” and 1259 “follow-up change genes” among which 

62, 200 and 752 protein-coding genes were included. Patient separation regarding to 

recurrence status were clear and obvious on PCAs with all three gene populations. 
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Gene Name Gene Name Gene Name Gene Name Gene Name 

ANKRD65 NAT10 CMYA5 HERC1 WDR83 

PRAMEF5 VPS37C LEAP2 WDR61 CYP4F22 

HSPB7 LRRC10B ZMAT2 DET1 RAB8A 

RCC2 OTUB1 EFCAB9 C16orf91 ZNF792 

MINOS1-NBL1 BAD ID4 PKMYT1 TBCB 

ECE1 ESRRA BTN2A1 PPP4C EID2B 

MDS2 MRPL49 FKBPL CBFB FBL 

TSSK3 B4GAT1 KCTD20 KIAA0895L B9D2 

YRDC UCP3 TBC1D22B MVD GRIK5 

FAM159A NARS2 GUCA1A TUBB3 IRGC 

LRRC42 GRM5 AKIRIN2 SERPINF2 DACT3 

SSBP3 EXPH5 KLHL32 OR3A2 KLK8 

GADD45A MPZL3 SMPDL3A SPATA22 AURKC 

PRMT6 PVRL1 TAAR5 P2RX5 GUCD1 

SRGAP2B BLID IFNGR1 SAT2 ASPHD2 

NBPF11 AP000866.1 CCDC28A KRBA2 ENTHD1 

BOLA1 IDI1 RAET1L TOP3A RP5-1042K10.14 

S100A5 UBE2D1 MRPL18 LGALS9C TOB2 

SDCCAG8 SEC24C SP8 PIP4K2B CYP2D6 

C2orf50 SNCG ZNRF2 KAT2A DENND6B 

SFXN5 KLLN EPDR1 TUBG1 NXF2B 

TXNDC9 ACTA2 C7orf57 SMG8 AMOT 

DPP10 PDCD4 GUSB POLG2 TMEM257 

POTEI LRP6 DNAJC30 NAT9 AF131216.1 

NIF3L1 PFDN5 WBSCR27 ITGB4 CNOT7 

VIL1 HOXC5 CCL26 SPHK1 PSD3 

Table.7 A List of Protein-coding Genes Identified by the Method “ANOVA Selection”. A list of 

protein-coding genes identified by applying ANOVA selection method with p-value lower than 0.01 on 

sequencing data from all 96 samples. 
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Gene Name Gene Name Gene Name Gene Name Gene Name 

RNF25 PDE1B AGFG2 MGAT5B PLEKHA2 

PSMD1 NABP2 LRCH4 DEFB132 OTUD6B 

AQP12B DEPDC4 GNB2 FOXA2 CTHRC1 

SRGAP3 IL17D TRPV6 PXMP4 MED30 

TBC1D5 ATP8A2 TAS2R39 PTPRT PTPRD 

THRB DCLK1 GIMAP2 TNNC2 LURAP1L 

SLC25A38 ARL11 ABCF2 ZSWIM1 APTX 

TRMT10C KCTD12 ATXN3L SNAI1 IPPK 

ZXDC CLN5 SYAP1 GPX4 ALG2 

SLITRK3 GRK1 PHEX STK11 LCN10 

CAMK2N2 NFATC4 DCAF8L1 GADD45B PTDSS2 

FRAS1 SLC10A1 PAGE5 ZNF77 OR52M1 

ANXA5 RP5-1021I20.4 SLC7A3 SH3GL1 TMEM41B 

PAIP1 STARD9 FAM46D CLPP DEPDC7 

 

 

 

 

 

 

 

 

 

Table.7 A List of Protein-coding Genes Identified by the Method “ANOVA Selection” 

(Continued). A list of protein-coding genes identified by applying ANOVA selection method with p-

value lower than 0.01 on sequencing data from all 96 samples. 
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4. Risk Assessment of Breast Cancer Recurrence 

     Eventually, here comes the question: Is it possible to for people to assess the risk 

of breast cancer recurrence from microliter level of serum? To answer to question, we 

built a classifier based on random forest with the input being TPM of potential 

biomarkers identified by ANOVA selection. 40 out of 96 samples (20 from each of 

recurrence and non-recurrence populations) were randomly selected as training set, and 

the rest served as testing set. Receiver operating characteristic (ROC) curve and relative 

costs curve (RCC) were plotted to evaluate its performance. Repeated random sub-

sampling validation was then carried out for 1000 times with exactly the same classifier 

building and training details mentioned above to examine repeatability and reliability. 

Figure.10 Principle Component Analysis Results with All Genes or the Potential Biomarker 

Population Identified by the Method “ANOVA Selection”. PCA for All 96 Libraries Constructed 

from Different Serums with All 60675 human genes (ENSEMBL gene annotation (HG38)) (Left), or 

population of 601 potential biomarkers identified by ANOVA (Right). “R” and red dots denote 

recurrence patients’ serums, “N” and green dots denote non-recurrence patients’ serums. Clear and 

obvious separation could be observed on the right but not the left. 
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     Out of the 56 serum samples in testing set, the classifier, built as described above 

based on random forest, identified all 8 recurrence patients’ serums correctly, while 

labeled 9 out of 48 non-recurrence patients’ serum as recurrence patients’. True positive 

rate (TPR) and false positive rate (FPR) were thus calculated to be 100% and 18.75% 

(Table.8). In ROC plot, area under curve (AUC) was 0.992, with AUC =1 for perfect 

tests. The ROC curve also went extremely close to the left and top of the ROC space, 

indicating the good quality of the classifier. In RCC plot, area above curve (AAC) was 

0.335 and the value meant misclassification cost is reasonable. In a word, ROC and RCC 

curves both indicated relatively good performance of the classifier (Figure.11). Results of 

the 1000 repeated random sub-sampling validation were presented as shown in the scatter 

plot and histogram (Figure.12). TPR and FPR of the 1000 classifiers are 87.86%  

11.88% and 11.06%  9.73% respectively. All the classifiers showed reasonable 

sensitivity and specificity. 

     In summary, a classifier was successfully built for breast cancer recurrence risk 

assessment with the population of potential breast cancer recurrence marker identified by 

“AVONA selection”. The true positive rate was 87.86%  11.88% and false positive rate 

was 11.06%  9.73%. 
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       Actual  

Prediction 
Recurrence 

Non-

recurrence 

Predicted 

Total 

Recurrence 8 9 17 

Non-recurrence 0 39 39 

Actual Total 8 48 56 

Table.8 Prediction Details of the Classifier. A total of 40 out of 96 samples (20 from each of 

recurrence and non-recurrence populations) were randomly selected as training set, with the rest 56 

samples being test set. Prediction results of the 56 samples in testing sets were shown here. All 

recurrence patients in testing set were identified correctly, while 9 out of 48 non-recurrence patients’ 

serums were identified as recurrence patients’. 

Figure.11 ROC and RCC Curves of the Classifier. The curves were generated by the same classifier 

mentioned in Table.8. ROC curve: as can be seen, x-axis is FPR and y-axis is TPR, representing 

sensitivity and 1-specificity respectively. RCC curve: x-axis is Log2(C) where C is the relative cost of 

false negative over false positive, y-axis is the misclassification cost at each value of C over naive 

misclassification cost. 
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Figure.12 TPR and FPR for 1000 Times Repeated Random Sub-Sampling. Each dot in the plot on 

the right represents the performance of one classifier out of the total of 1000 classifiers built during 

repeated random sub-sampling validation. Exact same performance may occur among the 1000 

classifiers, and darker red color indicates more classifiers with that performance. A more intuitive plot 

of performance distribution of the 1000 classifiers is shown on the left with 8 bins on each axis. TPR 

and FPR of the 1000 classifiers were 87.86%  11.88% and 11.06%   9.73% respectively. 
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Methods 

I. Serum Preparation and Identification 

     Serums samples in this study were provided by Dr. H. Irene Su from Moores 

Cancer Center. Patients enrolled in the study were requested to visit the hospital around 

every 6 months. Standardized procedures were taken for serum preparation. At each of 

their enrollment and follow up visits, 10 ml whole blood specimen was drawn into serum 

separator tube, no anticoagulants were added during collection. With no disturbance 

allowed, 15-30 minutes were waited for the blood to clot at room temperature. 10-minute 

1000-2000 X g refrigerated centrifugation was then carried out, and liquid supernatant, 

which is serum, was transferred to clean polypropylene tubes with a Pasteur pipette. 1ml 

aliquots were made and were stored at -80C. The entire workflow was finished within 

the same day to avoid potential degradation of compositions in serum. 

     Serums were identified with codes (IDs) in the format of “PatientID_fu”. 

“PatientID” were unique 4-digit numbers each assigned to a patient. “fu” were 1-2-digit 

numbers representing at which follow-up visit were serums collected, the smaller the 

number was, the earlier the collection happened. 

 

II. Cell-free RNA Extraction and Characterization 

     RNA was extracted from various volumes of serums with the following four 

kits/methods, following the protocols. Kits/methods were listed below with details: 
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 1. TRIzol LS Reagent (Invitrogen, Cat# 10296010): This reagent uses phenol-

chloroform (1:4 v/v ratio) to extract RNA from specifically liquid samples. 40ul volume 

of Cell-free RNA was extracted from 1ml serum following manufacturer’s protocol.  

2. exoRNeasy Serum/Plasma Midi Kit (QIAGEN, Cat# 77044): This kit extracts 

cell-free RNA by firstly isolating exosomal vesicle with membrane-based affinity binding 

column, then extracting RNA from eluted vesicles with a combination of QIAzol, which 

is a phenol-chloroform reagent, and silica-based membrane column purification 

technology. 14ul volume of RNA was extracted from 1ml serum following 

manufacturer’s protocol. 

3. Plasma/Serum RNA Purification Kit (NORGEN Biotek, Cat# 56100), followed 

by RNase-Free DNase I set (QIAGEN, Cat# 79254) and RNeasy MinElute Cleanup Kit 

(QIAGEN, Cat# 74204): Plasma/Serum RNA Purification Kit uses two columns feature 

spin column chromatography in series for cell-free RNA extraction. The first handles 

large volume input and the second conducts concentration. 50ul volume of RNA was 

extracted from 1ml serum following manufacturer’s protocol (with no optional on 

column DNase I digestion). In liquid DNase I treatment was then conducted with RNase-

Free DNase I set and RNeasy MinElute Cleanup Kit following manufacturer’s protocols. 

14ul volume of purified RNA were harvested from 14ul out of the 50ul extracted RNA 

above.  

4. QIAzol Method [11]: The method extracts cell-free RNA with phenol-chloroform 

reagent QIAzol. 20ul volume of cell-free RNA was extracted according to the instruction 

in literature from 200ul serum, DNase I treatment mentioned in the literature was not 

conducted. As reported by the literature, the method successfully extracted cell-free RNA 
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from human saliva with high yield, and due to similarity between human saliva and 

serum, the method was also used here to extract cell-free RNA from serum. 

     For convenience, the four methods above will be mentioned as “TRIzol LS”, 

“exoRNeasy”, “NORGEN w/ DNase” and “QIAzol Method” respectively. Bioanalyzer 

RNA Pico 6000 (Agilent, Cat# 5067-1513) runs were then conducted for quantification 

and size distribution. At least one well on each Bioanalyzer chip was loaded with 1ul 

ultrapure water (ThermoFisher, Cat# 10977023) as negative control. 

 

III. Library Construction 

     Major compositions of serum and cell after lysis buffer treatment are similar to 

the extent that they both consisted of mostly broken lipid bilayer vesicles, proteins and 

nucleic acids. Based on this similarity and the goal of low serum input volume, we 

applied the Switching Mechanism At the 5’ end of RNA Template (SMART) Sequencing 

(SMART-Seq) [10], which was originally used for RNA library construction with cell 

input, to construct full-length RNA libraries from serum. General procedures of library 

construction are shown below, most of the steps were believed could be conducted by a 

commercially available kit Ovation® SoLo RNA-Seq System (NuGEN, Cat# 0500). 

     Starting with 3-15ul unprocessed serum in the tube, ultrapure water was added to 

those tubes with less than 7ul serum to achieve a total volume of 7ul. 5ul cell lysis buffer 

(NuGEN, Cat# 0500, User Guide.V.A) was then added to break up exosomes and 

dissociate protein-nucleic acid complexes, the mixture was thoroughly mixed with pipette 

for best breaking and dissociation efficiency. Next, potential genomic DNA 

contamination was removed by HL-dsDNase (NuGEN, Cat# 0500, User Guide.V.A). 
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First strand cDNA was synthesized and fragmented followed by second strand synthesis 

(NuGEN, Cat# 0500, User Guide.V.A, B, E, F). Afterwards, barcoded adaptors were 

ligated to cDNA molecules in each library for PCR amplification and sequencing 

multiplexing (NuGEN, Cat# 0500, User Guide.V.G-I). After 18 rounds PCR 

amplification (NuGEN, Cat# 0500, User Guide.V.L), rRNA depletion was performed 

(NuGEN, Cat# 0500, User Guide.V.M-N). Library construction was finally completed 

with another 8 rounds of PCR amplification for signal enrichment (NuGEN, Cat# 0500, 

User Guide.V.O-P), and was ready for downstream process. [12] 

 

IV. Sequencing, De-multiplexing and Mapping 

     Before sequencing was performed, libraries were subject to Bioanalyzer quality 

check with High Sensitivity DNA Kit (Agilent, Cat# 6057-4626) in terms of size, purity 

and concentration. Sequencing was then conducted with MiniSeq (Illumina) or HiSeq 

4000 (Illumina). Sequencing with MiniSeq was performed according to manufacturer’s 

protocol using MiniSeq High Output Reagent Kit (75-cycle) (Illumina, Cat# FC-420-

1001). Single-end sequencing with 75 read-1 cycles and 8 index-1 cycles was performed 

and each sequencing pool consisted of 8 different libraries. HiSeq 4000 sequencing run 

was completed with the service provided by Institute of Genomic Medicine (IGM) 

Genomics Center, UCSD, in general, bridge amplification on cBot first and then 

sequencing-by-synthesis on 2 out of 8 lanes of HiSeq 4000 flow cell. Single-end 

sequencing with 50 read-1 cycles and 16 index-1 cycles were conducted and the pool 

consisted of 96 different libraries. Unless otherwise specified, sequencing was performed 

on MiniSeq with parameters mentioned above or by default if not mention. Besides, 
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“custom R1 sequencing primer” (NuGEN, Cat# 0500-S02225) could also be used to 

replace illumina standard sequencing primer comes with the sequencing reagent kit or 

cartridge (Figure.13, [12]). Unless otherwise specified, custom R1 sequencing primer was 

loaded according to the protocol “MiniSeq System Custom Primers Guide” and “HiSeq 

System Custom Primers Guide” for sequencing. 

     Sequencing data from MiniSeq runs were automatically de-multiplexed with 

Basespace (Illumina, basespace.illumina.com) and sequencing data from HiSeq were 

manually de-multiplexed with the first 8 of the 16 index-1 reads using the tool fastq-

multx [13]. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was 

used for quality control. The data was then mapped to ENSEMBL gene annotation 

(HG38) [14] with the mapping software STAR [15]. Read counts of each gene were 

given by the software HTSeq-count [16]. Transcripts per million (TPM)values were 

calculated for each gene for expression levels. Tissue specific genes based on expressed 

sequence tags (mentioned as “tissue specific genes” for short) were extracted from the 

database TiGER (http://bioinfo.wilmer.jhu.edu/tiger/). 

 

V. Using Illumina Standard Sequencing Primer in Section “Optimization with 

Addition of Custom R1 Sequencing Primer” 

     Illumina standard sequencing primer (Figure.13, [2]) was used only when 

generating the “without custom R1 sequencing primer” results in section “Optimization 

with Addition of Custom R1 Sequencing Primer”. The primer is integrated in sequencing 

reagent kit (Illumina, Cat# FC-420-1001). To summarize, results of “without custom R1 

sequencing primer” in section “Optimization with Addition of Custom R1 Sequencing 
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Primer” was generated by sequencing constructed libraries on MiniSeq (Illumina) using 

MiniSeq High Output Reagent Kit (75-cycle) (Illumina, Cat# FC-420-1001) with 

illumina standard sequencing primer integrated in the reagent kit. Single-end sequencing 

with 75 read-1 cycles and 8 index-1 cycles was carried out and each sequencing pool 

consisted of 8 different libraries. 

 

 

 

Figure.13 Target Base-pairing Regions of Illumina Standard Sequencing Primer and Custom R1 

Sequencing Primer. Target base-pairing regions of illumina standard sequencing primer (dark blue) 

and custom R1 primer (light blue). As can be seen, the process of library construction added the same 

short designated sequence (red) between adaptors and sequences reverse transcribed from RNA. The 

difference between sequencing with illumina standard sequencing primer and with custom R1 primer is 

that this designated region will be sequenced with the former primer, causing drops in cluster number 

and cluster passing filter rate but will not be sequenced with the latter one. 
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VI. Statistical Analysis and Classification 

1. Differential Expressed Genes Analysis 

     Differential expressed genes were identified using DESeq package in R [17]. The 

input was read counts data for all 60675 human genes (ENSEMBL gene annotation 

(HG38)) of all 96 samples, the output was p-value for each gene being differentially 

expressed between recurrence and non-recurrence groups. After this, we extracted the 

genes with a p-value lower than 0.05 as differential expressed genes. 

 

2. Analysis of Variance 

     Analysis of variance were carried out using function “aov” and the model in eq. 1 

in R [18]. The input was gene TPM for all the 60675 human genes (ENSEMBL gene 

annotation (HG38)) of all 96 samples and the output was p-value for each gene being 

significant in one-way analysis of variance. Then, genes with a p-value lower than 0.01 

were extracted as differential expressed genes. 

ANOVA model: 

𝐸𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜀𝑖𝑗 

where Eij is the observed value of the jth gene of group i (in our study, group set is 

recurrence and non-recurrence group), μ is the combined population mean, αi is the fixed 

deviation of the mean of group i from mean μ, and εij is a random deviation of the jth 

gene of group i from μ + αi. 

Corresponding computational model: 

SStotal = n ∗ (Ei − E̅)2 
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SSbg = nR ∗ (ER
̅̅̅̅ − E̅)2 + nN ∗ (EN

̅̅̅̅ − E̅)2 

SSwg = SStotal − SSbg 

F =

SSbg

dfbg

SSwg

dfwg

 

eq. 1 

where SStotal is the sum of squares for the gene expression in all the samples, SSbg is the 

between groups sum of squares, SSwg is the within groups sum of squares, n is the 

number of total samples, whereas nR is the number of samples from group R (recurrence 

group), nN is the number of samples from group N (non-recurrence group), while Ei is 

the gene expression level for the ith sample, E̅ is the average gene expression level across 

all the samples, ER
̅̅̅̅  and EN

̅̅̅̅  are the average gene expression level in group R and N 

respectively, and F is the F-score used for F-test, d𝑓bg and dfwg are the degree of freedom 

for between group and within group respectively. 

 

3. Follow-up Change Analysis 

     Follow-up change analysis used the change of expression from the first follow-up 

to the second follow-up (two eligible follow-ups were selected for each patient as 

described before) as input to calculate a score “s”, defined below, (ranges from -44 to 44) 

for each gene. The score indicates the different expression change trend between 

recurrence patient and non-recurrence patient. 

s = (rup − rdown) − (nup − ndown) 
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where s is the differential score, rup and  rdown are frequency that expression level of the 

specific gene was observed going up or down with time in recurrence patient population, 

nup and ndown are frequency that expression level of the gene was observed going up or 

down with time in non-recurrence patient population. 

     As an example, in the table below (Table.9), 10 serums are collected from 5 

patients’ (2 recurrence patients and 3 non-recurrence), and the 1st follow-up is before the 

2nd follow-up in terms of collecting date. For Gene 1 in recurrence patients, 2 of 2 are 

observed to go up with time, 0 of them is observed to go down, while in non-recurrence 

patients, 1 of 3 is observed to go up and 2 of them are observed to go down.  Thus, in this 

case, rup = 2, rdown = 0, nup = 1 and  ndown = 2, while we get the final score s = 3. 

(Table.9) 

     The score s therefore represents how expression level of a gene would change 

with time (i.e. increase or decrease) in recurrence or non-recurrence scenarios. A larger s 

for a gene indicates a stronger trend of it being over-expressed in recurrence patients and 

under-expressed in non-recurrence patients, and a smaller s means the opposite. 

 

 

 

 

 

      

Patient status R R N N N 

fu 1st fu 2nd fu 1st fu 2nd fu 1st fu 2nd fu 1st fu 2nd fu 1st fu 2nd fu 

Gene 1 (TPM) 0.0 5.4 0.1 7.5 1.3 1.2 2.4 1.1 1.0 1.5 

Table.9 Gene 1 TPM Information in Example Patients. As an example to show the calculation of 

score s, there are 5 patients (2 recurrence and 3 non-recurrence), from each of whom, 2 serums are 

collected (marked as 1st and 2nd fu in the second line) and Gene 1’s TPM is measured in all the serums 

as shown in the third line. 
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4. Principal Component Analysis 

     Principal component analysis (PCA) was conducted using function “prcomp” in 

R, with the input of log of TPM for each gene. 

 

5. Classification Model 

     A classifier was built using R package “randomForest” [19]. When building the 

classifiers, each time 40 samples were randomly selected as training set (20 recurrence 

samples and 20 non-recurrence samples to balance the training procedure), and the rest 

were left as testing set. The default parameters were used (ntree=500 and cutoff=0.5) 

during training process. Repeated random sub-sampling validation was performed by 

repeatedly re-sample the training set 1000 times with the same classifier building and 

training details above. 
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Discussion 

 With the reported around 3%-23% chance of local recurrence rate [20], risk 

assessment and prognosis biomarker of recurrence is desired by the field. With various of 

advantages such as easy accessibility and high information density etc., the importance of 

cell-free RNA in serum is now being more and more emphasized in prognosis and 

diagnosis of cancer as well as other diseases. However, development of the field was to a 

large extent impeded by the large serum volume required to extract and purify RNA, 

which was the first step of now commonly used RNA-Seq technology. We developed a 

novel technology being able to construct RNA-Seq library from only microliters of 

unprocessed serum in large scale and then applied it to breast cancer recurrence case for 

its ability to separate recurrence and non-recurrence patients and assess recurrence risk. 

The study could benefit not only academia but also the society with both understandings 

of recurrence and the technology itself as a potential clinical application. 

 In this study, cell-free RNA sequencing libraries were firstly constructed directly 

from microliters of unprocessed human serums. Diversity of genes in serum was then 

observed. Afterwards, with sequencing data of libraries constructed with 96 serum 

samples from 10 recurrence and 34 non-recurrence patients, populations of potential 

biomarkers were identified with various statistical analysis tools, most importantly 

ANOVA. Finally, risk assessment of breast cancer recurrence was performed with the 96 

serums using a Random Forest classifier with ANOVA-identified population of 

biomarker as feature. Almost all human genes were detected in serum, their huge 

diversity in terms of mainly gene categories was also observed. Existence of some genes 
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and categories in serum was previously reported [24], yet existence of others was not, this 

was expected due to the novelty of the technology: Libraries here were constructed 

directly from unprocessed serum, while currently the most commonly used RNA-Seq 

library construction method is based on the input of purified RNA instead of unprocessed 

biopsy itself, loss of low expressed information during RNA purification step would 

potentially case the discrepancy above. Various of genes were identified as potential 

biomarkers, including some of those previously reported by the literature [21-24]. 

Random forest classifiers built identified breast cancer recurrence with a true positive rate 

of 87.86%  11.88% and false positive rate of 11.06%  9.73%. 

When compared to the “traditional” “first RNA purification from large volume of 

sample then library construction” method commonly used now, our technology provided 

much more complete coverage of human genes. In addition, application of the technology 

on breast cancer recurrence case further revealed its potential in clinical applications. In 

addition, there are also some directions worth more efforts. With the basic principle being 

breaking exosome and ribonucleoprotein complexes to expose cell-free RNA to library 

construction enzymes, the technology is not specific to the type of liquid biopsy. It is 

believed that this low starting volume cell-free RNA sequencing technology could be 

performed on other liquid biopsy providing chemical composition, especially the 

mechanism of cell-free RNA existence and protection, is the same with serum. Besides, 

the result that almost all human genes could be found in serum also indicates potential 

applications of the technology on diagnosis and prognosis for other diseases. Expansion 

on liquid biopsy type and disease type thus should be carried out to fully release its 

potential.  
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 However, limitations also exist in the study. Risk assessment of breast cancer 

recurrence in this report was still based on classifiers where the features were defined by 

applying statistical analysis tool on the same 96 serums used for training and testing. 

Though what mentioned above is a common practice when study size is limited, this 

would to some extent affect the accuracy of classifiers, a stricter rule of feature selection 

is to define features of the classifiers with only the samples used for training. Inclusion of 

more patients/serums as well as deeper analysis of the data were needed for better 

biomarker analysis and recurrence risk assessment. What’s more, with limited time, most 

of the library construct procedures were conducted with the kit Ovation® SoLo RNA-Seq 

System (NuGEN, Cat# 0500), more effort should be spent to further validate the work 

with other enzymes and reagents from the market.  

 To summarize, a technology being able to construct RNA-Seq libraries directly 

from microliters of unprocessed serum was developed. The technology was then applied 

to breast cancer recurrence case for its performance and potential in real life clinical 

problems. Plenty of human genes among lots of categories could be found in serum, 

including tissue specific genes. Based on sequencing data generated with developed 

technology, potential recurrence biomarker populations were identified, recurrence and 

non-recurrence patients were successfully separated, risk assessment of breast cancer 

recurrence was also conducted. 
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Conclusion 

 A technology was successfully developed to construct cell-free RNA sequencing 

libraries from only microliters of unprocessed serum, its application on breast cancer 

recurrence also demonstrated the potential on separating recurrence and non-recurrence 

breast cancer patients and recurrence risk assessment. Library construction method was 

firstly optimized for sequencing, mapping quality, gene complexity and automation. 

Large diversity of genes in serum were then surveyed and described in terms of their 

categories and tissue specificity. Finally, three populations of potential breast cancer 

recurrence biomarkers were identified with statistical analysis tools and risk assessment 

of breast cancer recurrence was successfully conducted with a random forest classifier. 

Though limitations such as possible overfitting caused by relatively small study size do 

exist, the technology developed here could greatly benefit both academia and clinic 

fields. Increase of the study size, deeper investigation of the potential biomarkers and 

classifiers were needed, and more work should also be pursued to fully exploit its 

potential on various liquid biopsy and diseases. 
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Appendix 

 

 

Serum 

Sample 

Serum 

Input 

Volume 

(ul) 

Sample Total Read Counts 
Uniquely Mapped 

Percentage 
N = 

Average SD Average SD 

2010_4 
3 4424293.50 7170.50 80.30% 0.0027 2 

7 4812662.50 337278.50 87.99% 0.0073 2 

6004_9 
3 4756960.25 343721.22 81.87% 0.0103 4 

7 5548050.50 1028693.50 87.13% 0.0086 2 

6057_5 
3 3989951.60 323523.02 71.70% 0.1212 5 

7 4929965.50 382189.14 85.98% 0.0084 4 

 

 

 

Table.A1 Averages and Standard Deviations Calculated to Analyze the Effect of Increasing 

Serum Input Volume on Sequencing and Mapping Qualities. “Serum Sample” shows the serum 

sample with the format of “PatientID_fu”. “Serum Input Volume (ul)” shows volume of serum input to 

construct the library. “Sample total Reads Counts” tab indicates data below were calculated from 

sample total read counts values and same for “Uniquely Mapped Percentage” tab. “Average” and “SD” 

under each of the two tabs give averages and standard deviations calculated in each condition. “N =” 

shows the number of samples used to calculate “Average” and “SD”. For example, the very first row 

means there were two libraries constructed with 3ul input of serum 2010_4, and their average sample 

total read counts was 4424293.5 with SD being 7170.5, and their average uniquely mapped percentage 

being 80.30% with SD being 0.0027 (or 0.27%). 
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Serum 

Sample 

With Custom 

Primer 

Average of Sample Total 

Read Counts 
SD N = 

6004_9 
Y 4756960.25 343721.22 4 

N 2366266.50 270566.63 6 

6057_5 
Y 3989951.60 323523.02 5 

N 2359712.50 333421.14 6 

 

Serum 

Sample 

With Custom 

Primer 

Average of Uniquely 

Mapped Percentage 
SD N = 

6004_9 
Y 81.87% 0.0103 4 

N 73.73% 0.1115 6 

6057_5 
Y 71.70% 0.1212 5 

N 74.16% 0.0484 6 

 

 

 

 

 

 

Tabel.A2 Averages and Standard Deviations Calculated to Analyze the Effect of Custom R1 

Sequencing Primer on Sequencing and Mapping Qualities. Upper, a): Averages and standard 

deviations calculated for analysis of custom primer effect on sequencing quality. “Serum Sample” 

shows the serum sample with the format of “PatientID_fu”. “Y” and “N” means “Yes”/ “With” and 

“No”/ “Without” respectively in the column “With Custom Primer”. “Average of Sample Total Read 

Counts” and “SD” are averages and standard deviations calculated from sample total read counts in 

each condition. “N =” shows the number of samples used to calculate “Average of Sample Total Read 

Counts” and “SD”. 

Lower, b) Averages and standard deviations calculated for analysis of custom primer effect on mapping 

quality. Table content same with that in a), except “Average of Sample Total Read Counts” and “SD” 

are replaced with “Average of Uniquely Mapped Percentage” and “SD”. These numbers are averages 

and standard deviations of uniquely mapped percentage calculated from uniquely mapped percentage in 

each condition. 
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Serum 

Sample 

Serum Input Volume 

(ul) 

Average of Number of Genes 

Detected 
SD 

N 

= 

2010_4 
3 20788.00 538.00 2 

7 33915.00 1438.00 2 

6004_9 
3 20040.75 2499.80 4 

7 31875.00 2541.00 2 

6057_5 
3 15419.00 2583.95 5 

7 32056.75 2487.41 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabel.A3 Averages and Standard Deviations Calculated to Analyze the Effect of Increasing 

Serum Input Volume on Library Complexity. Library complexity was represented by number of 

genes detected. “Serum Sample” shows the serum sample with the format of “PatientID_fu”. “Serum 

Input Volume (ul)” shows volume of serum input to construct the library. “Average of Number of 

Genes Detected” and “SD” are averages of number of genes detected (TPM>1) and the corresponding 

standard deviations calculated in each condition. “N =” shows the number of samples used to calculate 

“Average” and “SD”. For example, the very first row means there were two libraries constructed with 

3ul input of serum 2010_4, and their average number of genes detected was 20788 with SD being 538. 
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Gene 

Name 

Gene 

Name 

Gene 

Name 

Gene 

Name 

Gene 

Name 

Gene 

Name 

Gene 

Name 

B4GALT2 C1orf53 HSPB3 RAET1L TUT1 RPL36AL UCKL1 

KLF18 DIRC1 HIGD2A MRPL32 C11orf86 C14orf169 PEX11G 

BEST4 CRYGD RAB24 SPDYE5 LHPP DET1 GEMIN7 

MAGOH CDHR4 OR2Y1 AF131216.1 TAS2R20 FA2H APOL1 

LRRC42 STX19 HIST1H4D FAM86B1 YEATS4 TXNDC17 DNAL4 

WLS GAP43 HLA-A FABP9 
RP11-

310K10.1 
KRBA2 NPTXR 

FAM72D CHST13 FKBPL CNTNAP3B OR5AU1 KAT2A CYP2D6 

S100A5 ZDHHC19 CCDC167 FBP2 OR4E2 NNAT KRTAP13-1 

TMEM79 UGT2A2 TREML1 INPP5E CMA1 DOK5  

 

 

 

 

 

 

 

 

 

 

 

 

Table.A4 A List of Protein-coding Genes Identified by the Method “Differential Expression”. A 

list of protein-coding gene identified by applying differential expression method with p-value lower 

than 0.05 on sequencing data from all 96 samples. 
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Figure.A1 Principle Component Analysis Results for All Serum Samples/Patients Using Different 

Potential Biomarker Populations as Features. Left: PCA for all 96 libraries constructed from 

different serums with population of 465 potential biomarkers identified by differential expression 

method. Right: PCA of 44 patients (10 recurrence and 34 non-recurrence) using 88 libraries constructed 

as input with population of 1259 potential biomarkers identified by follow-up change method. “R” and 

red dots are recurrence patients and serums, “N” and green dots are non-recurrence patients and serums. 

Clear and obvious separation could be observed in both results. 




