UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Role of Expertise in the Development of Display-Based Problem Solving Strategies

Permalink
https://escholarship.org/uc/item/4745c05h

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Author
Davies, Simon P.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/4745c05h
https://escholarship.org
http://www.cdlib.org/

The Role of Expertise in the Development of Display-Based
Problem Solving Strategies

Simon P. Davies
Department of Psychology,
Nottingham University,
University Park. Nottingham, NG7 2RD, UK
spd@ uk.ac.nottingham.psych

Abstract

This paper reports two experiments which explore the
relationship between working memory and the
development of expertise. Consideration is given to the
role played by external memory sources and display-
based problem solving in computer programming tasks.
Evidence is presented which suggests that expertise in
programming is dependent upon the development of
strategies for effectively utilising external displays. In
this context, it appears that novices rely extensively
upon working memory to generate as much of a solution
as possible before transferring it to an external source. In
contrast, experts make extensive use of an external
display as an information repository. These results are
discussed in terms of a framework which emphasises the
role of display-based problem solving and its
contribution to strategy development.

Introduction

A pervasive finding of recent research into the cognitive
aspects of programming is that code is not generated in a
linear fashion - i.e., in a strct first-to-last order (Davies,
1991; Rist, 1989). Rather, many deviations are made
from linear development, where programmers leave gaps
in the emerging program to be filled in later. Green et al
(1987) have proposed a model to account for this
finding. Their Parsing/Gnisrap model introduces a
working memory component into the analysis of coding
behaviour which forces the model to use an external
medium (eg the VDU screen) when program fr 1gments are
completed or when working memory is overivaded. This
means that programmers will frequently need to refer
back to generated fragments in order to recreate the
original plan structure of the program which may have
only been partially implemented in code. The parsing
element of the model describes this process, while
gnisrap (the reverse of parsing) describes the generative
process.

Davies has looked at the nature of the nonlinearities
in program generation for programmers of different skill
levels. One finding to emerge from this work was that
experts perform a greater number of between-plan jumps

797

than novices and that novices tend to perform more
within-plan jumps - that is, adopt a linear generation
strategy. This might seem anomalous, since if we assume
that the re-parsing of a generated output involves some
cognitive cost, then one might expect the development
of programming skill to be partly dependent upon a
programmer's ability to generate as much of the program
internally before writing it to an external source, thus
reducing the need to re-parse. However, the opposite
appears to be the case. The results of Davies (1991)
suggest that skilled programmers make much use of
external memory sources (i.e., a VDU screen) while
novices tend to rely upon the use of internal memory to
develop as much of the solution as possible before
transferring it to external memory.

One question that arises is the extent to which
expertise in programming and other complex skills can
be explained by recourse to an extended working memory
model as opposed to a model which places emphasis
upon the role of externalised memory structures and
display-based comprehension? The following
experiments attempt to address this issue directly. The
first experiment considers the role of working memory in
the determination of strategy for novice and expert
programmers. The second experiment looks at the effects
upon certain error forms of restricting the kinds of
manipulations programmers can make within an
environment.

Experimental Studies

In the first experiment, subjects carried out a simple
articulatory suppression task while engaged in a program
generation activity. If working memory limitations
cause programmers to make use of an external medium, as
suggested by Green et al, then the act of loading working
memory through a concurrent task should give rise to an
increase in nonlinearities, since subjects would have to
engage more fully in the parsing/gnisrap cycle in order
to make use of the external display.

The second experiment looks at the way in which
restricting the use of an external medium affects
performance. Here, if programmers are not able to correct
already generated code at later stages in the coding

process, then this should have some effect upon their
performance. In this experiment, subjects created a
program using a full-screen editor that provided no
opportunity for the revision of existing text. The use of
such an editor clearly places a significant load upon a
subjects working memory capacity since they will be
required to internally generate as much of the program as
possible before externalising it. By placing emphasis
upon the use of working memory it should be possible to
induce error prone behaviour which parallels that evident
when working memory is loaded in other ways, for
instance via articulatory suppression.

We might expect a detriment in expert performance
when the device used to create the program is restricted in
such a way as to make retrospecuve changes impossible.
This is based upon the assumption that experts make
greater use of external sources to record partial code
fragments which are then later elaborated. Conversely, it
has been suggested that novices will tend to rely more
upon generating as much of the program internally
before writing it to an external source. It is clear that
these strategic differences will be supported to a greater
or a lesser extent by the device used to create the
program. Hence, for expert programmers, it might be
suggested that restricting the device will cause them to
revert to a novice strategy, since they will then be unable
to use the external display in the normal way.

Establishing support for this hypothesis would have
a number of implications. Firstly, it would suggest that
the development of expertise may not be based simply
upon the acquisition of knowledge about a given domain.
If this were the case, we would expect experts to perform
better than novices regardless of the constrainis imposed
by the task environment. Secondly, it would indicate that
increased working memory availability does not
necessarily lead to better performance. Moreover, if
working memory availability is correlated with
expertise, then experts should perform better that
novices in situations where they must rely upon internal
sources. If this is not the case, then we might question
the status of working memory in theories dealing with
the development of complex skills. An alternative
explanation is that experts have developed particular
strategies for dealing with task complexity that involve
close interaction with external information repositories
in order to record partial solution fragments as they are
generated. If novices have failed to develop such
strategies, then it is unlikely that their performance
would be affected significantly by restricting the task
environment.

This analysis can be extended by classifying the
errors in the programs generated by subjects. A scheme
devised by Gilmore and Green (1988) suggests four main
categories of error:

1 Surface level errors caused mainly by typing and
syntactic slips: (e.g. confusion between < and >, missing
or misplaced quotes etc).

2 - Control-Flow errors: (e.g. missing or spurious else
statements, split loops etc).

798

3 - Plan-Structure errors: Including, guard test on wrong
vanable, update wrong variable etc.

4 - Interacuon errors: A class of errors occurring at the
point where structures of different types interact: (e.g. a
missing ‘Read’ in the main loop, initialisations within
the main loop).

Clearly some of these errors will be knowledge-based
(specifically, plan-structure errors) while others will be
dependent upon working memory limitations. For
example, both control-flow and interaction errors, since
they depend upon establishing referential links and
dependencies between code structures, are likely to be
affected by working memory constraints. In terms of the
first experiment, we might expect both control-flow and
interaction errors lo predominate in novice solutions
where working memory availability is reduced. In the
case of experts, it is argued that the interactions between
code structures will be evaluated in the context of an
external memory source. That is, by re-parsing existing
code fragments in order to reconcile them with the code
the programmer is currently working on. Thus, that the
act of loading working memory should not affect the
occurrence of these types of error.

In the case of the second experiment, we would
expect the converse. If experts are not able to use the
external display in the manner predicted, then it might be
hypothesised that interaction and control-flow errors
will predominate in the condition where use of the device
is restricted. It might also be predicted that this
experimental manipulation will not affect the occurrence
of plan-structure errors since these are hypothesised to be
knowledge-based rather than strategy-based.

Experiment 1. Effects of articulatory
suppression on strategy and errors

Method

Subjecrs: Twenty subjects participated in this
experiment. One group of ten subjects consisted of
professional programmers. All the subjects in this group
used Pascal on a daily basis and all had substantial
training in the use of this language. Members of this
group were classified as experts. A second group
consisted of second year undergraduate students, all of
whom had been formally instructed in Pascal syntax and
language use during the first year of their course.
Members of this group were classified as novices.

Procedure and Design: Subjects were asked to carry
out a simple articulatory suppression task which
involved repeating a string of five random digits. At the
same time. subjects were requested to generate a simple
pascal program that could read a series of input values,
calculate a running total, output an average value and
stop given a specific terminating condition. This
specification was derived from Johnson and Soloway
(1985) and was chosen because it has formed the basis of

evident for the novice group. In the case of the expert
group the same comparison proved not to be significant.

Error classification analysis: In the case of
experts, there is a fairly even distribution of error types
across the two experimental conditions. [ndeed, further
statistical analysis revealed no signmificant differences
between error types both within and between condilions
(multiple t-tests). In the case of the novice group, the
distribution of error types 1s less straightforward. In the
non-suppression condition, novices produced a
significantly greater number of plan errors in
comparison lo the other categomnes (t-test). Moreover,
the only significant difference between the novice and
experts groups in this condition was the number of plan
errors produced by the novice group (t-test). In the
second condition, the distribution of errors across
classification types for expert subjects was again fairly
even. No significant differences between any of the error
classifications were evident. For the novice group,
significantly more control-flow and interaction errors
were evident in comparison to the other two error
classifications (t-test). Moreover, for the novice
group,the number of plan errors occurring in the second
condition was significantly less than in the first
condition (t-test).

Discussion: This experiment shows that expert
performance in programming tasks is not significantly
affected by articulatory suppression. Hence, for experts
the number of errors produced is not significantly
different comparing the suppression condition to the
non-suppression condition. Moreover, it appears that
strategy is similarly unaffected. Hence, the prevalence of
between-plan jumps 1n the non-suppression condition
for the expert group is not diminished in the suppression
condition. Similarly, the occurrence of within-plan
jumps does not differ significantly in the two
experimental conditions.

Conversely,the novice group produced significantly
more errors in the suppression condition when compared
to the non-suppression condition. In addition, the nature
of the coding strategy that they adopt is also affected. In
particular, it appears that novice programmers revert
from a linear generation strategy characterised by the
prevalence of within-plan jumps, to a strategy more
characteristic of experts. That is, 1o a strategy which
reflects a greater number of between-plan jumps.

Earlier it was stated that expert programmers appear
to rely much more extensively than novices upon the use
of external sources to record partial code fragments and
that the act of loading working memory or of otherwise
reducing its availability would not affect this process. It
was suggested that experts will tend engage in very
closely linked cycles of planning, subsequent code
generation and evaluation. Since it is posited that this
process relies little upon the programmer’'s working
memory capacity it is reasonable to expect that
articulatory suppression would not affect the nature of
performance in the context of this task. The results of

799

this experiment provide support for this view. Further
support for this view is evident in the error data. In the
non-suppression condition, novice subjects are clearly
more error prone. This finding is not unexpected.
However, in the suppression condition, the error rate for
the expert group changes little from this base line
whereas the novice error rate more than doubles. This
may indicate that when working memory is loaded
novices must externalise information and that this
constitutes a strategy which they find unnatural, thus
leading to an increased error rate.

A more detailed analysis of these errors reveals a
change in the nature of errors for novice subjects between
the two experimental conditions. In the non-suppression
condition, the novice group make a greater number of
plan errors, suggesting knowledge-based difficulties.
Conversely, in the suppression condition a greater
proportion of control-flow and interaction errors are
evident. In terms of the present analysis, the
preponderance of control-flow and interaction errors may
reflect problems keeping track of the interdependencies
between elements in the emerging program. When
working memory availability is reduced it appears that
novices experience some difficulty with these
interdependencies. Unlike experts, it appears that
novices cannot use the external display as an aid to
memory to its full extent.

An alternative explanation for these findings is that
experts simply have an extended working memory
capacity. Such an account would presumably have no
difficulty predicting the results of the experiment
reported above. In order to assess the cogency of this
alternative explanation, the second experiment reported
in this paper adopts a different approach for exploring
the relationship between working memory and the
development of programming skill. In particular, if
experts, for whatever reason, are able to extend their
effective working memory capacity or increase its
availability in other ways then restricting the task
environment should not significantly affect their
performance.

Experiment 2. Effects of restricting the task

environment

The second experiment is complementary to the first.
Whereas the first experiment attempted to reduce the
subjects’ available working memory capacity, this
experiment has been designed to encourage subjects to
rely upon working memory. Hence, if experts have an
extended working memory capacity they should
demonstrate performance equitable to that displayed in
the first experiment. Moreover, if the extended capacity
notion is correct, then experts should out perform
novices even in the situation where the task environment
is severely restricted as in this second experiment.

many empirical studies. Hence, the resulting programs
could easily analysed for errors and plan structures.

Subjects were allowed to study the specification for §
mins. and were then asked to generate a program
corresponding to this specification while engaged in the
concurrent suppression task. The subjects were given 15
mins. to complete this task, lyping their solutions onto
a familiar text editor. Subjects’ keystrokes were recorded
for further analysis. This analysis provided an indication
of the temporal sequence in which programs were
generated. Three independent raters were asked to analyse
all the resulting program transcnpts for the presence of
common plan structures (Soloway and Ehrlich, 1984) and
for errors (using the classification described above).
Within and between-plan jumps were defined as follows:
Within-plan jumps were classified as movements
between a particular line of the program text to another
line which formed part of the same plan structure.
Between-plan jumps were defined as movements from the
current line to lines within different plan structures (see
Davies, 1991). These protocols applied only to
situations where the jump was followed by an ediung
action. The experiment was a two-factor design, with the
following independent variables: 1. Articulatory
suppression/No suppression and 2. Level of expertise
(Novice/Expert).There were two dependent variables: 1.
The number of Between/Within-plan jumps and 2. Errors
remaining in the final program.

Results

Plan-jumps: Figure 1 shows the number of within and
between-plan jumps performed by novice and expert
programmers in the two experimental conditions.
Analysis revealed main effects of suppression (F) 79 =

8.47, p<0.01) and expertise (F; 79 = 12.56. p<0.01)

on jump-type and a more complex interaction between
suppression and expertise (F| 54 = 4.73, p<0.05). A

number of post-hoc comparisons were carried out using
the Newman-Keules test with an adopted significance
level of p<0.01. This procedure indicated that experts
produced significantly more between plan jumps than
novices in the non-suppression condition. Conversely,
novices produced a greater number of within plan-jumps
in this condition. In the case of the suppression
condition, there were no significant differences.

Errors: Figure 2 shows the total mean number of errors
remaining in the programs on task completion for
novice and expert subjects in the two experimental
conditions. Analysis revealed a main effect of expertise
(F1.36 = 9.37, p<0.01) and suppression (F, 35 = 4.54,

p<0.05) and an interaction between these two factors
(F1,36 = 15.89, p<0.01). Once again a number of post-
hoc comparisons were carried out using the Newman-
Keules test with an adopted significance level of p<0.01.
This indicated a significant difference in error rates in the
both experimental conditions when comparing the
novice and expert groups. In addition, a significant
difference between error rates across conditions was

Mean number of errors

2 129 *—® NOVICE GROUP

g 04 ¢ - ¢ EXPERT GROUP

2

& g

3 6

=

£ v

= ~$

0’3—- ------- - RO OR R OWM R OEWOE®E W ®mOmom - -

a R revessde=sevmoae -9

5.

5 4

-

& 24

[+1]

-

2 T =
CONDITION 1 CONDITION 2
(No Suppression) (Suppression)

Figure 1 Within and Between-Plan jumps by
novices and experts during the first experiment

g (14.5)
NOVICE GROUP
10—
= EXPERT GROUP (4)
‘3) --------- ammw == -9
I 1
CONDITION 1 b .

(No Suppression) (Suppression)

Figure 2 Mean number of errors in experiment 1
for novice and expert subjects

EXPERT GROUP
(15)
L
15 -| ot
5 NOVICE GROUP e
2 101
3
£ 5
2
et
=
1 I
CONDITION 1 CONDITION 2
(Non Restricted) (Restricted)

Figure 3 Mean number of errors in experiment 2
for novice and expert subjects

Method

Subjects, Procedure and Design: The same
subjects took part in this experiment, with the order of
participation randomised. Subjects were asked to produce
a program corresponding to a brief specification which
involved processing simple bank transactions. Here, the
nature of the task environment formed the basis for the
two experimental conditions. In one condition, subjects
used a familiar full-screen text editor. In the second
condition subjects used a modified version of the same
editor,which allowed only restricted cursor movement.
That is, from the top of the screen to the bottom. and
only between adjacent lines. Once a subject had generated
a line and pressed the return key, they were unable to then
return to that line to perform other editing operations.
The editor did however allow edits to the current line
being generated. Subjects were informed about the basic
modifications to the editor. and were asked to attempt to
generate a program from the specification and were asked
to check each line of their program before pressing the
return key, in order to determine whether they were
satisfied with their response. 15 mins were allowed for
this task. This experiment was a two-factor design with
the following independent variables:Environment
(restricted/ unrestricted) and Level of expertise
(Novice/Expert).

Results

Errors: The results of this experiment are shown in
figure 3. These data were analysed using a two-way
analysis of variance with the following factors;
Environment (restricted or unrestricted) and Level of
expertise (Novice/Expert) This analysis revealed a main
effect of Environment (Fl.36 = 5.74, p<0.05). a main

effect of Level of expertise (F| 35 = 4.21, p<0.05) and
an interaction between these two factors (F| 34 = 9.76.

p<0.01). Post-hoc comparisons were carried out using
the Newman-Keules test with a significance level of
p<0.01. This analysis revealed a significant difference
between the number of errors produced by novices and
experts in condition 1.

Error classification: The resulting program
transcripts were analysed according to the classification
scheme described previously. In the case of experts,
analysis revealed no significant differences between error
types within this condition (t-tests). [n the case of the
novice group, the distribution of error types in the first
condition suggests a greater proportion of plan errors in
comparison to the other categones (l-test). In the second
condition, the distribution of errors across classification
types for expert subjects was more complicated. This
showed a greater proportion of control-flow and
interaction errors compared to the other classifications
(t-tests). In addition, experts produced significantly more
control-flow and interaclion errors in comparison to the
first condition.

801

Discussion: These results provide a striking
demonstration of the effects of restricting a task
environment. We have argued that experts rely to a great
extent upon using the external display to record
fragments of code that are then further elaborated at
subsequent points during the generation process. This led
1o the hypothesis that if programmers were unable to
return to previously generated fragments then they would
be forced into a situation where they would have to rely
extensively upon working memory. However, it appears
that while novices are seemingly unaffected by changes
1o the task environment, experts not only perform worse
than novices but also produce the kinds of errors that are
indicative of an inability to internally construct links
and dependencies between code structures. These results
reveal that experts produce more errors than novices in
the restricted task environment. Moreover, experts
produce a significantly greater number of control-flow
and interaction errors in this second condition.

It was suggested previously that the first experiment
that the results might be interpreted as indicating that
experts have an extended working memory capacity.
However, if this is the case then the results of this second
experiment would appear to be rather anomalous. If we
assume that experts have an extended working memory
capacity in comparison to novices, then we might expect
that situations which cause experts to rely upon working
memory would not give rise to such an extensive
decriment in performance. Moreover, in terms of this
view there appears to be no reasonable explanation as to
why experts produce many more control-flow and
interaction errors in comparison to novices.

A more cogent explanation for these findings might
simply involve suggesting that experts rely upon
external sources and are not able to efficiently revert to a
strategy that demands extensive reliance upon working
memory. This would account for both sets of
experimental findings. In the first experiment a reduction
in working memory availability did not affect expert
performance. This could clearly be accounted for in two
ways. On the one hand, it could be argued that experts
simply have an extended working memory capacity.
Conversely, we might claim that experts rely
extensively upon external sources and find it difficult to
adopt other alternative strategies. However, the second
experiment appears to suggest that the first of these
explanations is incorrect. In particular, if experts have
an extended working memory capacity then we would
expect them to perform better than novices in situations
where a reliance upon working memory is necessitated.
This appears not to be the case.

Another finding relating to this data was that in the
restricted environment condition the expert group
produced fewer surface and plan errors. An explanation
for this may be that, in the restricted environment
condition, the normally automatic aspects of
programming skill are disrupted. This may lead the
programmer to attend to the knowledge-based
components of programming skill leading to a reduction
in surface and plan-based errors. There is evidence in the

literature which suggests that so called 'skill' and
‘knowledge-based' errors are to some extent disassociable
(Reason, 1979).

Conclusions

These experiments have a number of implications.
Firstly, it appears that experts rely upon external sources
to record code fragments as these are generated and then
return later, in terms of the temporal sequence of program
generation, to further elaborate these fragments. It has
been suggested that a major determinant of expertise in
programming may be related to the adoption or the
development of strategies that facilitate the efficient use
of external sources. The externalisation of information
clearly has a high cost in terms of the reparsing or
recomprehension of generated code that is implied.
Hence, it might seem counter intuitive to suggest that
problem solvers will tend to rely upon this kind of
strategy rather than upon a strategy which involves the
more extensive use of working memory. However, this
explanation i1s consonant with existing work which has
implicated display-based recognition skills in
theoretical analyses of complex problem solving
(Larkin, 1989). The contribution of these analyses has
been important, but they have neglected to consider the
relationship between display use and expertise and the
consequent effect that this may have upon the nature of
problem solving strategies.

The work reported here poses implications for the
way in which we might attempt to explain the occurrence
and distribution of error types. In particular. it is clear
that a certain classes of error can be attributed to working
memory limitations and that such errors are not
distributed at random. In terms of the error classification
employed here, it appears that interaction and control
flow errors predominate in situations where working
memory availability is reduced. Previous work
(Anderson. 1989) suggests that errors arising from
working memory failures will occur at random. However,
the results of the studies presented here suggest that
working memory related errors may have a more
systematic distribution, and that the type of errors one
might expect to occur may (o some exient be
predictable.

It also appears that the nature of display-based
problem solving in programming may be highly
dependent upon features of the programming language
considered. Green (1991) suggests that some
programming languages are “viscous” in that they are
highly resistant to local change. Hence, adding a line to
a Basic program may involve renumbering lines such
that the correct control flow i1s maintained. In terms of
the present analysis. less viscous languages will provide
better support for the kind of incremental problem-
solving processes that are proposed.

Such language features are important in the present
context, since they will clearly affect the incremental
nature of code generation and comprehension/
recomprehension. This analysis extends existing work
by suggesting ways in which language features and

802

strategy may interact with features of the task
environment to give rise to particular forms of
behaviour. Such effects would not be taken into account
by display-based views, since the salience of particular
features of the display remains undifferentiated.
Moreover, existing accounts of display-based problem
solving give no consideration to the effects of the kinds
of information manipulation that are possible in
different display spaces.

Summary

While this paper has indicated the importance of display-
based performance in programming, it has also suggested
two primary limitations of this general approach.
Firstly, existing accounts of display-based problem
solving ignore the apparent relationship between
expertise and the development of strategies for utilising
display-based information. Secondly, such accounts fail
to consider the possibility that different forms of
display-based information will be differentially salient
in the context of a given task. Further developments of
display-based accounts of problem solving will need to
address these issues if they are to provide a coherent
description of human performance in the context of
complex tasks.

References

Anderson, J. R. 1989. The analogical origins of errors in
problem solving. In D. Klahr and K. Kotovsky (Eds.),
Complex information processing: The impact of Herbert
A. Simon. LEA, Hillsdale, NJ.

Davies, S. P. 1991. The role of notation and knowledge
representation in the determination of programming
strategy: A framework for integrating models of
programming behaviour. Cognitive Science, 15, 547
572.

Gilmore, D. J. and Green, T. R. G. 1988. Programming
plans and programming expertise. Quarterly Journal of
Experimental Psychology, 40A (3), 423 - 442,

Green, T. R. G. 1991. Describing information artefacts
with cognitive dimensions and structure maps. In D.
Diaper and N. Hammond, Eds., People & Computers 6,
Cambridge University Press.

Green, T. R. G. Bellamy, R. K. E. and Parker, J. M. 1987.
Parsing and gnisrap: a model of device use, Proc.
INTERACT'87, H. J. Bullinger and B. Shackel (Eds.),
Elsevier Science Publishers.

Johnson, W. L. and Soloway, E. 1985. PROUST:
Knowledge-based program understanding. /EEE Trans. on
Software Engineering, SE-11, 3, 423 - 442,

Larkin, J. H., 1989. Display-based problem solving. In
D. Klahr and K. Kotovsky, Eds, Complex Information
Processing; The impact of Herbert A. Simon.

Rist, R. S. 1989. Schema creation in programming.
Cognitive Science, 13, 389 - 414,

Soloway, E. and Ehrlich, K. 1984. Empirical studies of
programming knowledge. IEEE Trans. SE, SE - 10 (5),
595 -609.

	cogsci_1992_797-802

