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Abstract 

Recent experiments have shown the importance of statistical 
learning in infant language acquisition. Computational 
models of such learning, however, often take the form of 
corpus analyses and are thus difficult to connect to empirical 
data. We report a cross-situational learning experiment which 
demonstrates robust individual differences in learning 
between infants. We then present a novel generative model of 
cross-situational learning combining two competing processes 
– habituation and association. The model’s parameters are set 
to best reproduce each infant’s individual looking behavior 
from trial-to-trial in training and testing. We then isolate each 
infant’s word-referent learning function to explain the 
variance found in preferential looking tests. 

Keywords: statistical learning; computational modeling; 
cognitive development; language acquisition 

Introduction 

Language acquisition should be hard but young children 

nonetheless move from babbling to complex sentences in a 

remarkably short time. One might thus expect the 

underlying language learning mechanism to also be 

complex, involving constraints and biases (Markman, 1990) 

and sophisticated inferences (Xu & Tenenbaum, 2007). 

However, even if the final mechanism is complex, it must 

begin with something simple – language learners develop. 

By understanding the tools available to very young learners, 

we may develop insight into how more complex 

mechanisms are created and how they might be understood 

as products of simpler mechanisms. 

One candidate for a simple mechanism is the 

accumulation of associations between words and objects in 

a child’s ambient environment (Hollich, Hirsh-Pasek, & 

Golinkoff, 2000, Smith, 2000). If the co-occurrence 

structure of the world is informative, such that words 

frequently occur with the objects they label, a child who can 

attend to this information could find a wedge into learning 

the more complicated structural aspects of her language 

(Landau, Smith, & Jones, 1988). 

Recently, Smith and Yu (2008) have provided evidence of 

just such a sensitivity in 12 and 14-month-old infants. In the 

cross-situational learning paradigm, infants are exposed to a 

series of individually ambiguous learning trials containing 

multiple words and objects. While each trial contains 

several potential mappings, some of which are spurious, a 

child who can attend to the overall co-occurrence structure 

can unambiguously determine the correct mappings. 

Attempts to understand the mechanism underlying this 

competence, however, have been aimed primarily at the 

abstract computational level. Computational models have 

taken the form of corpus analyses (Fazly, Alishahi, & 

Stevenson, in press, Frank, Goodman, & Tenenbaum, 2009, 

Yu, 2008) and thus have resisted direct comparison to 

empirical data. To understand the mechanisms available to 

budding language learners, however, models must account 

for and explain the behavior of young infants. 

Because preferential looking is the primary measure of 

learning in studies of preverbal infants, it is this looking 

data that computational model must explain. Yu and Smith 

(in press) took a first step towards this goal. Using an 

associative model, they found that the number of words for 

which an individual infant showed preferential looking 

behavior was predictable from that infant’s own eye 

movement in training. This might seem to fit an associative 

learning mechanism: one learns to associate words to the 

objects at which one is looking when one hears the words. 

However, Yu and Smith were unable to predict which word-

referent mappings were learned. If associative learning is 

the relevant mechanism, something is still missing. 

We propose to take two more steps towards understanding 

the mechanism supporting cross-situational learning. First, 

whereas Yu and Smith’s model was descriptive – using 

patterns in training behavior to predict test behavior – we 

present a generative model of eye movements. That is, we 

construct a model which produces eye-movement behavior 

matching that of infants during training, and then show that 

the same model accounts for the test data. Second, we 

predict not only how many word-referent mappings each 

infant learned, but also which ones. This modeling is done at 

the individual infant level, allowing us to explain behavior 

as it unfolds trial-by-trial throughout training and testing. 

To motivate our model, we first present results from a 

cross-situational learning experiment with 15-month-old 

infants. Analysis of preferential looking test results shows 

robust individual differences among infants, underscoring 

the importance of understanding cross-situational learning at 

a process level. We then construct a model that generates 

fixations through the competition of two well-known 

processes that organize infant behavior and learning – 

association (Smith, 2000) and habituation (Hunter & Ames, 

1988. Model parameters are fit to best account for each 

individual infant’s looking behavior over the course of the 

experiment, and then inferences about learning are drawn 

from these parameter fits. 
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Experiment 

Method 

Infants were exposed to a cross-situational word learning 

task (Smith & Yu, 2008; Yu & Smith, in press). Each child 

viewed a series of trials pairing two novel objects with one 

novel label. While the correspondence between words and 

objects on an individual trial was ambiguous, cross-trial co-

occurrence statistics between words and objects indicated 

the correct pairings. After 60 training trials, preferential 

looking tests were used to determine whether infants had 

learned the correct pairings.  

 

Participants. Twenty-five 15-month-old infants (14 

females, M = 14 mos, 23 days, range: 13;22 to 16;4) 

composed the final sample. Twelve additional infants were 

excluded due to fussiness (N=11) or experimental error 

(N=1). 

 

Stimuli. Six pseudoword labels were recorded by a female 

native English speaker in isolation and presented to infants 

over loudspeakers. Six novel two-dimensional objects, each 

a unique bright color, were presented to infants two at a 

time on a 47” by 60” white screen. All stimuli were 

constructed to be comparable to those used in previous 

cross-situational learning experiments (Smith & Yu, 2008, 

Yu & Smith, in press). 

 

Procedure. Infants sat on their mother’s laps 3.5 feet away 

from a large white projection screen. Direction of gaze was 

recorded by a Tobi X60 eye-tracker as well as a camera 

directed at the child’s eyes. Parents were instructed to shut 

their eyes during the course of the experiment so as not to 

influence infant behavior. 

Training consisted of 60 2-second long training slides. 

Each slide presented two objects, one on each side of the 

screen, and was accompanied by one of the recorded labels. 

A slide’s label was presented 700ms after the objects’ 

onsets. On each slide, one of the objects was the label’s 

correct referent and one was a foil. This correspondence was 

uncorrelated with spatial location, but could be determined 

from cross-trial co-occurrence statistics: each label occurred 

10 times with its correct referent and only 2 times with each 

of the other objects. Training trials were interspersed with 

presentations of Sesame Street characters intended to 

maintain infant attention. Total training lasted 

approximately 4 minutes. 

Following training, infants were exposed to 6 testing 

trials, each 8 seconds long. Test trials began with 

approximately 1 second of silence, followed by six 

repetitions of a label – each separated by 1 second. Two 

objects were visible for the entire 8 seconds – the label’s 

correct referent and a distractor object. Each of the 6 labels 

was tested once, and each object appeared equally often as a 

target and a distractor. Figure 1 illustrates the time course of 

training and testing with sample trials. 

 
Figure 1: The time course of training (above) and testing 

(below) trials. Infants saw two objects and heard a label 

produced either once (training) or 6 times (test). The first 1 

second window of each was silent; every subsequent 

window contained an auditory label. 

 

Data. Gaze position was recorded via eye-tracker at a rate 

of 50Hz. Because of movement or looking away during the 

experiment, there were some discontinuities in automatic 

gaze recording. On average, 57.8% of each infant’s gaze 

points were recorded. Naïve coders blind to the contents of 

each slide coded each of the remaining frames for direction 

of gaze (left, right, away/unknown). After hand-coding, 

74.5% of all gaze points were mapped to a screen position 

where one of the objects appears. 

Results and Discussion 

Infants looking times to target and distractor objects on each 

of the 12 preferential looking test trials were submitted to a 

2 (Target/Distractor) x 6 (Word) x 25 (Subject) mixed 

ANOVA. The analysis revealed no main effects, but showed 

a highly significant interaction between Target/Distractor 

and Subject (F = 3.66, p < .001, η
2
 = .1). Individual infants 

thus showed reliably different looking patterns at test: some 

looked reliably longer at targets than distractors; others 

looked reliably longer at distractors than targets (Figure 2). 

This is consistent with previous work on slow vs. fast 

habituators (Cashon & Cohen, 2000, Schöner & Thelen, 

2006). 

Why should there be reliable individual differences? It is 

well known that the function that maps learning onto 

looking is nonmonotonic – it switches directions (Hunter & 

Ames, 1988 – Figure 3). This complicates the interpretation 

of looking behavior, with some investigators of word 

learning behavior suggesting that increased looking to the 

target indicates learning (e.g. Golinkoff, Hirsh-Pasek, 

Cauley, & Gordon, 1987) whereas others interpret increased 

looking to the distractor as evidence of learning via 

violation of expectation (e.g. Stager & Werker, 1997). 
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Figure 2: A plot of mean(std err) preferential looking to 

target for each infant. Values greater than .5 indicate an 

average preference for the target; those less than .5 indicate 

preference for the distractor. 

 

The above analysis indicates that individual infants show 

reliable looking patterns when tested for their preference to 

look to or away from a label’s referent. However, since 

individual infants show different patterns, it is unclear how 

to interpret their behavior. For which infants should we infer 

learning? In the following computational modeling effort, 

we propose to show that an unambiguous answer can be 

found through model selection. If we are explicit about the 

mechanisms which combine to generate looking behavior, 

we can ask if a learning mechanism is necessary to explain 

individual infants’ looking behavior at test.  

Computational Model 

Throughout the experiment, infants were exposed to a series 

of slides presenting two objects along with an auditory label 

word. Infants responded to these stimuli - at any point in 

time - by fixating one of the two objects on the screen. Our 

goal was to derive a generative model for each infant that 

produced fixation patterns that best approximated his or her 

own generated fixations. 

Because of the structure of the training and testing trials, 

we divided the time course of fixations into a series of 1 

second bins (Figure 1). Proportion of looking to each of the 

two on-screen objects was calculated in each such window, 

and model was fit to this data. 

Conceptually, the model is simple. Let us suppose that 

fixation patterns within a given window are generated by the 

combination of two processes: habituation to each of the 

objects on the screen, and association between each of the 

objects and the label being heard. Let us also suppose that 

each of these processes is a function of looking time to the 

input. However, because we do not know the true form of 

these functions (although see Schöner & Thelen, 2006), we 

approximate them with arbitrary degree polynomials. These 

polynomial approximations allow us to make inferences 

about the shape of the functions without making claims 

about their exact form. 

We use each infant’s individual training data to infer the 

habituation and association functions which best account 

for that infant’s behavior. Because one cannot learn what 

one does not see, habituation and association are functions 

of gaze duration rather than occurrence frequency. We thus 

produce an explicit linking function from learning to looking 

at test, and this function is used to infer what each child 

learned from her looking behavior in training. Doing so 

allows us to move beyond preferential looking as a measure 

of learning, and to make deeper and more specific 

conclusions about the mechanisms supporting cross-

situational learning in real time. 

Data 

In the experiment, infants were exposed to 60 training trials 

followed by six test trials. The label for each 2s trial was 

heard 700ms into the trial. Adding 367ms to the label’s 

onset to account for processing time (Swingley & Aslin, 

2000) results in two ~1s windows (Figure 1, top). In the first 

window, we assume that fixations are being driven by the 

objects (habituation) only, and in the second we assume that 

fixations are driven both by the objects (habituation) and the 

co-occurring word (association).  

Test trials had a similar structure (Figure 1, bottom). Each 

began with a short period of silence, followed by the onset 

of a label which was then repeated 5 more times at 1 second 

intervals. We divide each testing trial into 7 1s windows: 1 

in which fixations are driven only by the objects, and 6 in 

which fixations are driven by both objects and the label. The 

natural logarithm of the odds of looking at each of the on-

screen objects was computed in each window, and these are 

the data to which the model was fit. Log odds is similar to 

proportion of looking, but has nicer mathematical properties 

for this particular analysis (see also, Barr, 2008). Any 

windows in which there was no fixation data for an infant 

were left out of that infant’s dataset. 

 

 
 

Figure 3: A schematic of the infant looking preference 

function reproduced from Hunter and Ames (1988). 

Because the function is nonmonotonic – direction of 

preference changes in opposite directions across time – 

looking time data resists straightforward interpretation. 
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Model Description 

In a given window, each of the two objects had an activation 

level as described below. Odds of looking to each of the 

objects were computed using the ratio form of the Luce 

choice axiom (Luce, 1959). We additionally adjust the odds 

ratio in two ways. 

Because saccades are controlled by a vision system 

subject to physical constraints, and because we model looks 

in 1 second windows, the current window depends on the 

location of the eye in the last window. For this reason, as an 

approximation, we modify  by a parameter p 

times the odds of looking in the previous window to the 

object in O’s current location. Further, infants are known to 

display preferences for one side of the screen over another. 

For this reason, we build in a constant term b which models 

each infant’s potential preference for the left or right side of 

the screen.  

Thus, on trial t, if objects O1 and O2 are present,   

 

 
 

Silent Window. In a window in which no label is present, 

activation is driven by an infant’s habituation to each of the 

objects present. Habituation to an object was approximated 

by an arbitrary degree polynomial function habit evaluated 

on the cumulative looking time to that object so far in the 

experiment. Estimation of the parameters of this function for 

each infant will be described below.  

 

 
 

Label Window. For windows in which a label was heard, 

we assume that activation is also driven by the association 

between each object and the label W. For these windows,  

 

 

 

Association and Habituation. Each infant’s individual 

habituation and association functions were approximated by 

arbitrary degree polynomial functions. For each infant, all 

possible orders 0 to 2 were tried for each function, with the 

optimal parameters fit as described below. The final order of 

each function was chosen using AIC to be the most 

parsimonious fits for the infants looking behavior.  

 

Formally, if to is cumulative looking time to an object, and 

to|w is cumulative looking time to an object in the presence 

of a word,  

 

 
Thus, one infant might have a quadratic habituation 

function (Nh = 2) and a linear association function (Na = 1), 

while for another infant the best model may have been a 

linear habituation (Nh = 1) function and no association 

function (0 degree) at all. 

Model Fitting 

In order to determine the best approximation to each infant’s 

individual learning functions, we constructed all 9 possible 

combinations of orders 0 to 2 for both association and 

habituation functions. The optimal parameters for each 

function were selected to best account for the infant’s 

fixation data. Subsequently, model selection using AIC was 

performed for each infant by selecting from these models 

the one which also gave the best account of the individual 

infant’s testing eye fixations without overfitting. 

Results and Discussion 

On average, the best generative model for each infant 

predicts a significant (r = .307, p < .001) proportion of the 

variance of looking. In comparison, a null model, which 

includes only a side bias (b) and inertia (p) term for each 

infant picks up a significantly small proportion of the 

variance (rg = .307, rn = .203, t = 2.68, p = .01).  

Figure 4: Log odds looking to the left side of the screen for one infant across both training and testing. Positive log odds 

indicate a preference for the left. Black dashed lines separate every 10 training trials and the black solid line indicates the start 

of testing. Infant behavior is the blue line with solid markers, model behavior is the red line with asterisk markers. 
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This indicates that habituation and association account for a 

significant proportion of each infant’s looking behavior, 

both in training and testing. Further, functions which are 

appropriate for describing training can also describe test 

behavior. An example of the model’s fit to one infant is 

shown in Figure 4 above. 

Now that we have found the best model which accounts 

for each infant’s looking behavior, we can determine which 

infants are likely to have learned word-referent mappings. 

Preferential looking behavior, while a good measure of 

learning at a group level, can be quite difficult to interpret at 

the individual level (Aslin, 2007; Houston-Price, Nakai, 

2004; Hunter & Ames, 1988). There are several reasons for 

this. First, as mentioned above, the function which links 

learning to looking is nonmonotonic, and different infants 

learn at different rates. Hence whether preference for target 

or distractor should indicate learning in an individual infant 

is unclear. Second, as we have explicitly modeled, there are 

two principled reasons to move one’s eyes in this task – in 

response to the objects on the screen (habituation), and in 

response to the relationship between objects and words 

(association). If we are interested in word-object mapping, 

then movement resulting from the first process adds noise to 

our measurement. Because both processes were modeled 

explicitly, however, we can probe association directly. 

For each infant, model selection was used to determine 

which order polynomial best matched his or her association 

and habituation functions. If the optimal order of association 

for an infant was nonzero, then we can infer that the infant 

learned associations between words and objects. Thus, 

another way to measure whether an infant learned word-

object associations is to ask about the order of that infant’s 

association function. Of the 25 participants, 11 were best 

described as being driven by an associative process (Na > 0). 

We can then look at what these association functions predict 

in the infant’s test behavior.  

 

 
Figure 5: Distribution of association and habituation orders 

which best account for each infant. The scale on the right 

ranks infants from strongest preference for distractor 

(bottom) to strongest preference for target (top). Association 

order is correlated with strength of absolute preference. 

 
Figure 6: Theoretical association functions for each infant 

plotted over the course of 30 seconds of co-occurrence. The 

scale on the right ranks each infant by the strength of their 

preference for target or distractor. Throughout the entire 30 

seconds, there is a significant correlation between the 

strength of the preference and the strength of the theoretical 

association function. 

 

Figure 5 shows the distribution of association and 

habituation orders of the polynomial functions which best 

accounted for each individual infant’s looking behavior. 

Points representing individual infants are color-coded by the 

strength of their preference for target(green) or 

distractor(blue). Analysis shows that the order of an infant’s 

association function is strongly correlated with the strength 

of that infant’s absolute mean preference in the 6 

preferential looking trials (r = .55, p < .01). That is, the 

stronger an infant’s preference at test (either for target or 

distractor), the higher the order of the association function 

that best described his or her data.  

Second, because we have explicitly determined the 

polynomial function which best describes each infant’s 

association learning, we can examine these functions in 

isolation. Figure 6 shows the association function for each 

infant plotted over 30 1 second exposures to a hypothetical 

word and object. We can compare the ordering of these 

functions – rank them in the order of their value after each 

window – and compare this to the mean preference for the 

target exhibited by each infant over the 6 test trials. The 

correlation between ordering and mean preference is 

significant at the .05 level over the entire course of the 

comparison, and peaks at four seconds (r4 = .771, p < .001). 

This finding indicates that these theoretical learning 

functions are in deeply linked to preferential looking 

performance at test. The functions thus allow us to predict 

which infants will show familiarity preferences at test, and 

which infants will show novelty preferences. The two 

figures also reinforce the fundamental importance of 

understanding individual differences if we are to understand 

statistical learning. The 25 individual infants displayed the 

entire gamut of possible learning functions, and these 

functions fit sensibly to their looking performance at test. 
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General Discussion 

Learning word-referent associations in cross-situational 

experiments, and in the world, must depend on moment-to-

moment behavior of individual infants – what is looked at 

and when – and the co-occurrence of objects seen and words 

heard. Looking behavior, in turn, depends on previous 

experience in multiple ways and through multiple 

mechanisms. Two of these fundamental mechanisms are 

habituation and association. Repeated experience with an 

object increases the tendency to look away, but repeated 

experience with the object in a word’s context increases the 

tendency to look towards the object in its presence. 

The present analyses show what can be gained by 

attempting to understand the dynamic processes that 

underlie the behaviors used as indices of learning. 

Constructing trial-by-trial models of individual infants 

looking behavior in word-referent learning yields two major 

benefits. First, since looking behaviors themselves are 

commonly used as indices of learning, it allows us greater 

certainty in inferring learning in infants. Second, because 

we can track individual infants across the course of learning, 

it gives us a deeper theoretical understanding of how the 

mechanisms underlying this learning.  

This work thus makes both specific and general 

contributions. First, the generative model of eye movements 

in cross-situational learning explains individual infant 

behavior in both training and testing. Second, we have 

delineated the interacting effects of two competing 

processes which produce infant eye fixations – habituation 

and association – and showed how they can be analyzed 

independently. Third, our experiment and model 

demonstrate the possibility of understanding cross-

situational learning at the individual infant level, of making 

sense of the different ways in which different infants learn. 

Finally, we have demonstrated a novel methodology for 

analyzing infant learning tasks. In addition to the insight 

gained from preferential looking analysis, this work shows a 

promising role for model selection and the construction of 

explicit functions linking learning to looking.  
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