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Abstract

Gaussian graphical models (GGMs) are a popular form of network model in which nodes 

represent features in multivariate normal data and edges reflect conditional dependencies between 

these features. GGM estimation is an active area of research. Currently available tools for GGM 

estimation require investigators to make several choices regarding algorithms, scoring criteria, 

and tuning parameters. An estimated GGM may be highly sensitive to these choices, and the 

accuracy of each method can vary based on structural characteristics of the network such as 

topology, degree distribution, and density. Because these characteristics are a priori unknown, it 

is not straightforward to establish universal guidelines for choosing a GGM estimation method. 

We address this problem by introducing SpiderLearner, an ensemble method that constructs 

a consensus network from multiple estimated GGMs. Given a set of candidate methods, 

SpiderLearner estimates the optimal convex combination of results from each method using a 

likelihood-based loss function. K-fold cross-validation is applied in this process, reducing the 

risk of overfitting. In simulations, SpiderLearner performs better than or comparably to the 

best candidate methods according to a variety of metrics, including relative Frobenius norm 

and out-of-sample likelihood. We apply SpiderLearner to publicly available ovarian cancer gene 

expression data including 2013 participants from 13 diverse studies, demonstrating our tool’s 

potential to identify biomarkers of complex disease. SpiderLearner is implemented as flexible, 

extensible, open-source code in the R package ensembleGGM at https://github.com/katehoffshutta/

ensembleGGM.
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1 ∣ INTRODUCTION

Gaussian graphical models (GGMs) provide a modeling framework for network-based 

analyses of multivariate normal data. A GGM is an undirected graph in which nodes 

correspond to variables and weighted edges correspond to the magnitude of the partial 

correlation between pairs of variables, that is, their correlation conditional on all of the 

other variables in the network.1 In a GGM, the absence of an edge between nodes 

corresponds to zero partial correlation; if the data are indeed multivariate normal, this is 

equivalent to conditional independence between the two nodes, given the other nodes in the 

network. Under the assumption of multivariate normality, it can be shown that the pairwise 

partial correlations are functions of the corresponding elements of the precision (inverse 

covariance) matrix.2 Thus, estimating a GGM is equivalent to estimating the corresponding 

precision matrix using the sampled multivariate normal data.

Precision matrix estimation is typically straightforward when the sample size n is much 

larger than the number of predictors p; in this setting, a maximum likelihood estimate 

can be found simply by inverting the sample covariance matrix. When n is close to or 

less than p or when variables are highly correlated, however, this inverse is undefined or 

numerically unstable. A popular approach for GGM estimation in these settings is to apply 

the graphical lasso, which estimates a sparse precision matrix by optimizing a penalized log 

likelihood function.3-5 Several existing open-source software resources implement versions 

of the graphical lasso, including methods for selecting the tuning parameter λ. For example, 

the glasso R package implements the original graphical lasso algorithm developed in 2008 

by Friedman et al,3 augmented by computational advances developed in 2011 by Witten et 

al.6 The huge R package incorporates the graphical lasso algorithm with several different 

options for scoring criteria.7 The hub graphical lasso is an extension to the graphical lasso 

designed to better estimate networks with hub structure.8 Approaches exist outside of the 

graphical lasso as well; for example, Cai et al (2011) present CLIME (A Constrained 

ℓ1 Minimization Approach to Sparse Precision Matrix Estimation), which is based on 

estimating a sparse precision matrix subject to a constraint on the difference between the 

product of the sample covariance matrix with the estimated precision matrix and the identity 

matrix.9 The bootnet R package includes a broad range of different network estimation 

methods, several of which are for GGM estimation, in a framework for bootstrap estimation 

of network accuracy.10 For a detailed review of Gaussian graphical model theory and 

estimation, we refer the reader to Shutta et al (2022).11

Clearly, there is no shortage of options for estimating a GGM; this is both a blessing 

and a curse. Estimating a GGM using these packages requires several decisions with 

regard to tuning parameter selection, choice of scoring criteria for model selection, and 

selection of hyperparameters for these scoring criteria. The estimated GGM may be highly 
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sensitive to these choices, making it difficult to compare GGMs across studies and assess 

reproducibility.12-14 Because it is impossible to know a priori which approach is best for a 

given problem, researcher bias toward use of a particular “favorite method” can have a large 

impact on the estimation and interpretation of a GGM.

Ensemble methods are a broad class of statistical approaches which follow the general 

principle of combining several different candidate models to generate a single ensemble 

model.15,16 One such method is the Super Learner approach of van der Laan et al.17 

Super Learner uses an internal cross-validation scheme to estimate a convex combination of 

candidate algorithms (“learners”) that minimizes a user-defined loss function. Large-sample 

properties of the Super Learner are established by comparison to the expected loss (i.e., risk) 

of an oracle model, which is the best model among all possible convex combinations given 

the true data generating process. Under mild conditions on the loss function and the set of 

candidate learners, the performance of the Super Learner ensemble model is asymptotically 

equivalent to that of the oracle model in the sense of risk minimization.17-19

Here we develop SpiderLearner, a network estimation tool that applies the Super Learner 

approach to GGM estimation by optimizing a likelihood-based loss function via cross-

validation. Our approach improves GGM estimation by circumventing the complicated 

decision-making burden described above. SpiderLearner considers a library of candidate 

GGM estimation methods and constructs the optimal convex combination of their results, 

eliminating the need for the researcher to make arbitrary decisions in the estimation process. 

To the best of our knowledge, we are the first to propose, evaluate, and apply a loss-based 

ensemble learning method for GGM estimation. In particular, our novel approach applies a 

data-driven loss function to create an ensemble from candidate precision matrix estimators, 

integrating a cross-validation scheme to honestly evaluate performance and construct the 

optimal convex combination according to that loss function. SpiderLearner is implemented 

in a user-friendly R package. We used this package to evaluate the performance of 

SpiderLearner rigorously under a range of network settings, including four topologies, 

two densities, and four different dimensionalities (n ∕ p ratios). Under a variety of metrics, 

including out-of-sample likelihood, SpiderLearner outperforms each of the candidates as 

well as a naive “simple mean” ensemble giving equal weight to each candidate. We 

demonstrate that SpiderLearner can discover meaningful biological insights in complex 

multivariate data by presenting an illustrative application to 13 publicly-available gene 

expression datasets.20,21

The remainder of this manuscript is organized as follows. In Section 2, we propose our novel 

approach to GGM estimation, including a tailored loss function and cross-validation scheme 

for combining candidate GGM learners. In Section 3, we describe our simulation studies, 

error metrics, and results. In Section 4, we present the ovarian cancer data application. We 

conclude with a brief discussion of alternative approaches, limitations, and areas of future 

work.
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2 ∣ MODEL FORMULATION

Let X ∼ Np(0, Σ) be a centered p-dimensional multivariate normal random variable, with 

precision matrix Θ = Σ−1. Under the multivariate Gaussian assumption, a particularly 

useful relationship holds between the precision matrix Θ = Σ−1 and the matrix of partial 

correlations, {ρXi, Xj ∣ X−i, − j}1 ≤ i ≤ p; 1 ≤ j ≤ p.
2 Let θij represent the i, jtℎ element of Θ; it can be shown 

that

ρXi, Xj ∣ X−i, − j = − θij

θiiθjj

(1)

Equation (1) shows that estimating a GGM of partial correlations is equivalent to estimating 

the precision matrix Θ. A common approach to this estimation problem in cases where the 

maximum likelihood estimate (MLE) is not well-defined or where sparsity is desired for 

the sake of interpretability is the graphical lasso (glasso).3-5 The glasso estimates a sparse 

precision matrix by optimizing the penalized log likelihood function:

ℓ(Θ) = log det Θ − trace(SΘ) − λ‖Θ‖1

(2)

Here S is the sample covariance matrix and λ > 0 is a tuning parameter, with higher values 

of λ leading to sparser estimates of Θ.

As described in the Introduction, several open-source software resources are available to 

estimate GGMs using the approach in Equation (2) (e.g., Zhao et al.,7 Epskamp et al.10) or 

other methods (e.g., Cai et al.9). Here, based on the Super Learner framework of van der 

Laan et al.,17 we present an ensemble approach that estimates a GGM by finding the optimal 

convex combination of a set of candidate GGM estimates obtained from tools such as these. 

The foundations for a Super Learner-type method are (i) the specification of a library of 

candidate algorithms, (ii) the specifation of a loss function, and (iii) the implemention of a 

cross-validation scheme to determine the optimal convex combination of the candidates.22 

We introduce the foundations of our method similarly, but focus first on (ii) and (iii). We 

address (i) when describing our simulation study design; in brief, we considered several 

methods based on the graphical lasso with different tuning parameter selection criteria, the 

MLE, and CLIME.9

To develop the loss function for SpiderLearner, we begin by supposing that we have a library 

of M different candidate methods for estimating GGMs. We use K-fold cross-validation to 

estimate a weighted combination of these M estimates, in the spirit of the Super Learner 

approach.17 First, we partition the data X into K folds of approximately equal size ∼ n ∕ K. 

We next apply the precision matrix estimator K times for each of the M methods; each time, 

data from the ktℎ fold is withheld (k = 1, … , K) as the test set while the remaining (K − 1)
of the folds serve as the training set. Let Xk be the ktℎ fold of the dataset X, X−k be the 
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remainder of the dataset X with the ktℎ fold withheld and let Θm
( − k)

 be the precision matrix 

estimate for method m trained on X−k. For the ktℎ fold, we define the estimator ΘSL
( − k), which 

is a function of weights α = (α1, … , αM), as:

ΘSL
( − k)(α) = α1Θ1

( − k) + α2Θ2
( − k) + ⋯ + αMΘM

( − k); ∑
m = 1

M
αm = 1; αm ≥ 0

(3)

For simplicity of notation, we denote ΘSL
( − k)(α) as ΘSL

( − k) below, keeping in mind that the 

dependence on α is implied throughout.

Let nk be the number of observations in the kth fold and let Xk
(i) be the itℎ observation in 

fold k. We define the loss in the fold k as Qk(α), the negative average log likelihood of ΘSL
( − k)

evaluated on the withheld data Xk:

Qk(α) = − 1
2 log ΘSL

( − k) + 1
2nk

∑
i = 1

nk
(Xk

(i))TΘSL
( − k)Xk

(i)

(4)

Note that minimizing the negative average log likelihood for Qk(α) is equivalent to 

maximizing the total likelihood. Equation (4) is based on the the average rather than total 

log likelihood for numerical stability in optimization, and we use the negative log likelihood 

rather than the positive so that the problem is framed in the context of minimum loss as in 

Super Learner.17

We use these foundations to develop a loss function in terms of the coefficients 

α = α1, … , αM. Let Q(α) be the average loss across K folds:

Q(α) = 1
K ∑

k = 1

K
Qk(α)

(5)

The K-fold cross-validated coefficient estimator α is the value of α that minimizes Equation 

(5), subject to the constraints of the convex combination:

α = argminα: ∑m = 1
M αm = 1; αm ≥ 0

1
K ∑

k = 1

K
− 1

2 log( ∣ ΘSL
( − k) ∣ ) + 1

2nk
∑

i = 1

nk
(Xk

(i))TΘSL
( − k)Xk

(i)

(6)

Standard constrained optimization algorithms such as those implemented in the solnp 

function from the R package Rsolnp23 can be used to find the coefficients α that solve 
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Equation (6). Once these coefficients have been found, we complete the process by running 

the original M candidate methods again using the full dataset X, obtaining estimates 

Θ1, … , ΘM. We then use these estimates to construct the SpiderLearner estimate of the 

precision matrix as:

ΘSL = ∑
m = 1

M
αmΘm

(7)

A diagram of this workflow for M = 4 estimation methods and K = 5 cross-validation folds 

is shown in Figure 1. The choice of K may depend on a variety of factors including sample 

size and number of variables (i.e., dimensionality of the problem); in practice, K = 5 and 

K = 10 have demonstrated generally good balance in the bias-variance tradeoff.24 We discuss 

the choice of K further in the Supporting Information (Supporting Appendix 4).

The large-sample properties of Super Learner derived by van der Laan et al.17 require a 

bounded loss function. Our loss function Q(α) (Equation 5) is not bounded; therefore, it 

is not clear if the large-sample oracle results of van der Laan et al.17 apply with the log 

likelihood-based loss function evaluated on multivariate normal data. Polley et al.18 note 

that oracle results also hold for certain types of unbounded loss functions as described in 

van der Vaart et al.;25 however, it is not straightforward to formally show that Q(α) meets 

the necessary criteria (Supporting Appendix 1). We note this as an area for future work, 

while observing that in practice the log likelihood is often used as a loss function for Super 

Learner estimation (e.g., Petersen et al.,26 Balzer et al.27), and that the log likelihood loss 

is provided as part of the standard implementation of the SuperLearner R package.28 We 

additionally explored a transformation of the log likelihood loss that permits the application 

of the oracle results of van der Laan et al.17 We observed similar performance between 

the original and transformed loss functions in a simulation setting (Supporting Appendix 

1). Finally, we note that the SpiderLearner estimator produces a positive definite precision 

matrix if each of the candidate methods produces a positive definite precision matrix; this 

point is discussed further in Supporting Appendix 2.

3 ∣ SIMULATION

3.1 ∣ Design of simulation study

To assess the performance of the SpiderLearner algorithm, we conducted several simulation 

studies with varying dimensionality (Table 1A). The dimension of a GGM is typically 

described in terms of the number of samples n and the number of variables p included 

in the model. Importantly, p is not the number of parameters in the model; the precision 

matrix corresponding to the GGM has q = p ∗ (p − 1) ∕ 2 + p unique entries that need to be 

estimated. Dimensionality thus quickly becomes a major factor in estimation even if a GGM 

does not include very many predictors.
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We explored four different network topologies in our simulations: random, small world, 

scale-free, and hub-and-spoke. Each topology has unique characteristics that may be relevant 

for biological data. Topologies are discussed in detail in Supporting Appendix 3. We explore 

each topology for different edge densities, where the edge density of a graph is defined 

as the number of edges divided by p(p − 1) ∕ 2, the number of possible edges on p nodes. 

For each of the four topologies, we simulated networks with two different density levels 

(low density: approximately 6% dense, and high density: approximately 20% dense). A 

visualization of the simulated networks is shown in Supporting Figure 3. Topologies and 

densities considered are shown in Table 1B.

The simulation workflow, shown in Figure 2, consisted of (i) designing gold-standard 

networks corresponding to each topology and density, (ii) assigning edge weights to the 

network based on an observed distribution of partial correlations from a real biological 

dataset and converting the associated weighted adjacency matrices to valid precision 

matrices, (iii) sampling multivariate normal data based on the precision matrices from 

(ii), (iv) using various methods, including our proposed ensemble method, to estimate the 

original network from the sampled data, and (v) comparing the estimated network to the 

original gold standard used to generate the data. In step (i), the igraph R package29 was 

used to simulate gold-standard networks (Table 1B). In step (ii), we created a realistic 

edge weight distribution by using metabolomics data from the CATHeterization GENetics 

(CATHGEN) biorepository as a starting point.30 The CATHGEN biorepository consists 

of data from a prospectively-collected clinical study of ~ 10,000 participants undergoing 

cardiac catheterization with scheduled annual followup at Duke University Hospital; further 

details of the study population have previously been published.30 Details on how we used 

these data to assign edge weights are provided in the Supporting Information (Supporting 

Appendix 3). In step (iii), to sample network data from the gold-standard networks, we 

inverted each gold standard precision matrix Θ to find the corresponding covariance matrix 

Σ, then simulated a sample of size n by drawing X1, … , Xn ∼ MV N(0, Σ). In step (iv), 

we estimated precision matrices from this sample in three ways: (i) by applying each of 

9 candidate methods individually (ii) by using a simple mean ensemble model in which 

each candidate is weighted equally, and (iii) by using SpiderLearner (Figure 2). In step 

(v), we compared estimated precision matrices to the original, data-generating gold-standard 

precision matrices in order to assess performance.

The 9 candidate methods are shown in Figure 2. The graphical lasso is the foundation 

of Candidate Methods 1, 2, 3, 6, and 7. These methods use the huge and huge.select 

functions from the R package huge with the glasso method, which corresponds to the 

original graphical lasso.3,6,7 The difference between these methods is the choice of scoring 

criterion used to select the tuning parameter (λ in Equation 2). The first criterion is the 

extended Bayesian information criterion (eBIC), which optimizes a BIC-type quantity tuned 

by a hyperparameter γ, where γ = 0 corresponds to a standard BIC measure and γ = 0.5 is 

a typical default value for graphical modeling.12,31 In the huge.select function, γ can be 

adjusted using the ebic.gamma argument. Candidate Methods 1 and 2 apply this criterion 

with ebic.gamma = 0 and ebic.gamma = 0.5, respectively. Candidate Method 3 applies 

a criterion called the rotation information criterion (RIC), which is based on a permutation 
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strategy that generates a null distribution for comparison.7,12 Candidate Methods 6 and 

7 use a criterion called the stability approach to regularization selection (StARS), which 

is a subsampling approach.12,32 One of several hyperparameters that can be selected 

using StARS is a threshold β that relates to the amount of variability tolerated across 

subsamples.32 In the huge.select function, β can be adjusted using the stars.thres 

argument. Candidate Method 6 applies the StARS criterion with stars.thres = 0.05 

and Candidate Method 7 applies it it with stars.thres = 0.1. Candidate Method 4 

is the hub graphical lasso, which is an extension of the original graphical lasso that 

can effectively model hub structures in networks and is implemented in the hglasso R 

package.8 Candidate Method 5 is the MLE, that is, the inverse of the sample covariance 

as computed with the cov function in base R. Candidate Methods 8 and 9 are similar to 

Candidate Methods 1 and 2; they also use the original graphical lasso along with an eBIC 

scoring criterion, but are implemented in the qgraph R package.33 A difference between 

the qgraph implementation and the huge implementation is in the default range of tuning 

parameters λ considered. Let λ∗ be the smallest value of λ that creates an empty graph; huge 

uses a logarithmic sequence of ten candidate λ values between 0.1λ∗ and λ∗, while qgraph 

uses a larger logarithmic sequence of length 100 between 0.01λ∗ and λ∗.7,33 While Candidate 

Method 5, the MLE, is typically well-defined in Simulations A-C (barring multicollinearity), 

it is not in Simulation D, where n < p. Therefore, Simulation D excludes Candidate Method 

5.

We limited our investigation to these 9 candidates because they are common approaches11 

that are computationally efficient. We remind the reader that our goal in this work is 

to demonstrate the improved performance of SpiderLearner over a set of candidates, not 

to evaluate the individual performance of all candidates. However, as demonstrated in 

Supporting Appendix 5, SpiderLearner can easily accommodate other methods, such as 

CLIME. We also note that as a benchmark for SpiderLearner, we calculated a simple mean 

model as the average of the nine candidate methods, giving equal weight of 1/9 to each 

candidate.

We used several different metrics to compare estimated precision matrices to the gold 

standards and assess performance. Let Θ be an estimate of the true p × p precision matrix 

Θ, and let θ ij and θij represent the corresponding elements of each. We define the error 

matrix Δ as Θ − Θ, and refer to its i, jtℎ element as δij. Although the true precision matrix is 

symmetric, the estimated matrix may not be; a notable example of possible asymmetry is in 

the graphical lasso algorithm.34 Therefore, we considered every element of the error matrix 

Δ rather than just upper or lower triangular components.

One area of interest is to assess error in the estimated edge weights (partial correlations) in 

the GGM. Because these edge weights follow directly from the estimated precision matrix, 

we begin by focusing our efforts on quantifying error in the precision matrix itself. The first 

metric is based on the size of Δ as assessed by the Frobenius norm:
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‖Δ‖F = ∑
i = 1

p
∑

j = 1

p
δij

2

(8)

To obtain a quantity that can be compared across topologies, we scale ‖Δ‖F by the Frobenius 

norm of the true precision matrix, ‖Θ‖F, defining the relative Frobenius norm (RFN) as

RFN = ‖Δ‖F
‖Θ‖F

(9)

We are interested in the generalizability of SpiderLearner to independent datasets. For this 

purpose, we assessed the out-of-sample log likelihood of each estimated precision matrix 

on a new, independent sample of the same size generated from the same gold-standard 

precision matrix.

We also considered a number of additional diagnostics including element-wise bias, 

mean squared error (MSE), overall sensitivity and specificity, and the matrix RV 
coefficient, a matrix analogue of a correlation coefficient implemented in the R package 

MatrixCorrelation.35,36 Details are provided in Supporting Appendix 3.

3.2 ∣ Results of simulation study

We conducted 100 iterations for each of the eight network topologies in each of Simulations 

A-D. Primary results for Simulation A (the lowest p ∕ n ratio) and Simulation D (the highest 

p ∕ n ratio) are presented here; additional results for Simulations A and D and full results 

for Simulation B and Simulation C are presented in the Supporting Information (Supporting 

Appendix 3; Supporting Figures 6-9).

In Simulation A, the sample size is much larger than number of features and parameters 

estimated (n > > p, q). The average ensemble weights estimated by SpiderLearner over the 

100 iterations in this setting are shown in Table 2A. SpiderLearner selected at least three 

different methods to have nonzero weights for each topology, demonstrating that combining 

multiple candidate algorithms is indeed important from a likelihood-based loss perspective. 

For every topology, qgraph-ebic-0 and the inverse sample covariance (ie, MLE) were 

included in the combination, although the weights varied broadly by topology, with 

qgraph-ebic-0 weights ranging from 0.03 for the low-density hub-and-spoke topology to 

0.4 for the low-density scale-free topology and the MLE weights ranging from 0.25 for the 

low-density scale-free graph topology to 0.59 for the high-density random graph topology. 

The hglasso was included in seven out of eight topologies (excluding the low-density 

scale-free topology), again with broadly varying weights (0.10–0.63). The glasso-ebic-0 

was selected for minor contributions in the low-density scale-free case (0.34) and the 

high-density scale-free case (0.07). The glasso-ebic-0.5 also contributed slightly in the 
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high-density scale-free case (0.07). The glasso-ric,glasso-stars-0.05, glasso-

stars-0.1, and qgraph-ebic-0.5 methods were weighted zero for all cases.

The average value of the RFN in Simulation A is shown in Figure 3. The performance of 

each candidate method varied widely according to this metric, emphasizing the importance 

of our ensemble approach. SpiderLearner performed better than the individual candidates 

and better than the simple mean ensemble model across all settings considered. The 

performance as assessed by out-of-sample log likelihood is shown in Figure 3. Again, 

SpiderLearner performed well relative to each of the candidates and the simple mean of the 

candidates. Performance as assessed by bias, MSE, sensitivity and specificity, and matrix RV 

coefficient are shown in the Supporting Information (Supporting Figures 4 and 5, Supporting 

Tables 2 and 3). Generally, SpiderLearner is comparable or better than other methods in 

terms of these measures; a detailed analysis is presented in Supporting Appendix 3.

In Simulation D, the sample size is lower than the number of features, which is much lower 

than the number of parameters estimated (n < < p, q). The average value of the ensemble 

weights estimated by SpiderLearner in this setting are shown in Table 2B. SpiderLearner 

selected at least four of the candidate methods in every case. Interestingly, glasso-

stars-0.05 and glasso-stars-0.1 both contributed to the ensemble in all eight cases 

in Simulation D, but they were not selected in any case in Simulation A. Similarly, the hub 

graphical lasso was a highly-weighted candidate in most cases in Simulation A, but not 

in Simulation D. These observations are further evidence of the importance of considering 

multiple methods when estimating a GGM; the performance (in the log-likelihood sense) 

of estimates from different methods varies broadly based on the characteristics of the true 

underlying network.

The average value of the RFN in Simulation D is shown in Figure 3. SpiderLearner 

performed comparably to the qgraph-ebic-0 candidate method and qgraph-ebic-0.5, 

two methods which were highly weighted in the ensemble (Table 2b). The out-of-sample 

log likelihood performance is shown in Figure 3. SpiderLearner again performed well when 

compared to the remainder of the methods. The hub graphical lasso had notably lower 

out-of-sample log likelihood than the other candidates, suggesting overfitting in this setting. 

Performance as assessed by bias, MSE, sensitivity and specificity, and matrix RV coefficient 

are shown in the Supporting Information (Supporting Figures 10 and 11 and Supporting 

Tables 10 and 11). Generally, SpiderLearner again performed comparably to or better than 

the other candidates. In this setting, SpiderLearner was more sensitive but less specific than 

other methods (Supporting Tables 10 and 11). A detailed analysis is presented in Supporting 

Appendix 3.4.

Results for Simulations B and C led to similar conclusions as above. In particular, as 

the p ∕ n ratio increased, we consistently observed that the SpiderLearner model resisted 

overfitting. In contrast, some other approaches, in particular the MLE, tended to overfit 

the data, resulting in strong in-sample performance but weaker out-of-sample performance 

(Supporting Figures 6-9). We attribute this advantage of SpiderLearner to the use of K-fold 

cross-validation and the incorporation of multiple candidate learners.
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We also expanded our library of candidate estimators beyond the graphical lasso and MLE 

candidates to explore performance with CLIME.9 As shown in Supporting Appendix 5, 

CLIME is a strong candidate learner that outperforms other candidates for low p ∕ n ratios. 

However, as dimensionality increases, the performance of CLIME weakens relative to the 

other candidates and SpiderLearner. These results provide further evidence towards our 

motivation for developing SpiderLearner: the best choice of GGM estimation method varies 

broadly depending on the features of the true network, and ensembling a library of candidate 

methods gives the SpiderLearner algorithm the strengths of each algorithm without having 

to choose just one method a priori.

A note on the MLE as the precision matrix estimator: In simulation settings A,B, 

and C, the sample size n is larger than the number of predictors p in the model, meaning 

that the sample covariance matrix is non-singular, except in the case of multicollinearity. 

The sample covariance matrix is the MLE for the population covariance matrix, and 

because inversion of a non-singular matrix is a continuous function, the inverted sample 

covariance matrix is the MLE for the population precision matrix.37,38 It is notable, then, 

that the likelihood-based SpiderLearner model gives weight to models other than the MLE, 

and that other individual regularized algorithms perform better than the MLE according 

to the relative Frobenius norm, matrix RV coefficient, and out-of-sample likelihood. We 

hypothesized that this phenomenon was related to the sparsity of the underlying network. 

To investigate, we ran the SpiderLearner algorithm on an Erdös-Renyí random graph with 

a variety of densities (0.05, 0.1, 0.25, 0.5, 0.75, 1) with 30 iterations for each density. As 

hypothesized, the weight of the MLE in the ensemble model increases with the density of 

the graph, as shown in Supporting Figure 12. These results suggest that even though the 

ensemble loss function does not incorporate a shrinkage penalty, it is still advantageous from 

the likelihood-based perspective to shrink estimates of small precision matrix entries to zero 

in the case where the population precision matrix is sparse. The takeaway is that shrinkage 

methods can improve out-of-sample performance even in low-dimensional cases, which is 

consistent with results observed in the original LASSO publication.39

3.2.1 ∣ Practical questions in applying SpiderLearner—Finally, we refer the 

reader to the Supporting Information for detailed simulations that we have conducted 

regarding three practical questions in this methodology: (i) how to select K in the K-fold 

cross-validation (Supporting Appendix 4), (ii) how to select the library of candidates 

(Supporting Appendix 5), and (iii) the stability of Rsolnp in estimating the coefficients 

α and the overall ensemble model (Supporting Appendix 6). Code for all simulations is 

available at https://github.com/katehoffshutta/SpiderLearnerWorkflow.

4 ∣ APPLICATION

We applied SpiderLearner to analyze 13 ovarian cancer gene expression datasets from 

the curatedOvarianData collection of Ganzfried et al.21 One of these datasets (N = 260
participants) was used to estimate a precision matrix using SpiderLearner; twelve other 

diverse investigations including a total of 1753 participants were used as independent 
validation datasets to evaluate SpiderLearner’s performance, as measured by the likelihood 
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of the observed data evaluated at the estimated precision matrix. All data are publicly 

available through the R package curatedOvarianData via Bioconductor.21

The training dataset (“Yoshihara dataset”) consists of 260 late-stage ovarian cancer patients 

with gene expression data for 20106 genes, obtained via microarray experiments by 

Yoshihara et al.20 Characteristics of this dataset have been previously described.20 Briefly, 

participants with advanced stage high-grade serous ovarian cancer who underwent debulking 

surgery followed by chemotherapy were followed for up to ten years. Basic characteristics 

and references to original publications for all 13 datasets are shown in Table 3.

Yoshihara et al20 present a 126-gene signature of high-risk ovarian cancer based on overall 

survival, defined as time from primary surgery to death due to ovarian cancer. 111 of these 

126 genes were available across all 13 datasets; in this application, we constructed a GGM 

on these 111 genes. To do so, we applied SpiderLearner using K = 10 folds for model 

training and a library of the nine candidate GGM estimation methods described in Figure 2. 

The weights selected by SpiderLearner were 0.67 for hglasso, 0.19 for glasso-ebic-0, 

0.08 for qgraph-ebic-0, 0.07 for the MLE, and zero for the remainder of the candidate 

algorithms.

We evaluated the out-of-sample performance of SpiderLearner and of each candidate 

algorithm in two ways. First, we used 10-fold internal cross-validation on the training 

dataset. We partitioned the Yoshihara dataset into ten folds, each of which was withheld 

in turn; a precision matrix was estimated on the remaining 9 folds and its likelihood 

evaluated on the withheld data. Boxplots of the cross-validated out-of-sample log likelihood 

for SpiderLearner and each of the nine individual GGM estimation methods are shown in 

Figure 4a. SpiderLearner performs better than, or comparably to, the best candidate models 

in its library according to this criterion.

Second, we used the 12 independent validation datasets to demonstrate the ability of 

SpiderLearner to outperform competitors across a diverse set of test data that includes 

multiple platforms, different patient characteristics, and varying severity of disease (Table 

3). The precision matrices trained in the Yoshihara dataset by SpiderLearner and by each of 

the 9 candidate methods were applied to all 12 validation datasets in turn, with performance 

measured by evaluating the value of the log likelihood at the estimated precision matrix. 

Boxplots of the relative performance of each model in the 12 independent validation datasets 

are shown in Figure 4B,C. Performance is measured in terms of percent difference in log 

likelihood relative to the best performing model of the 9 candidates and SpiderLearner. 

Again, SpiderLearner performs better than, or comparably to, the best candidates.

Importantly, the fact that SpiderLearner does not substantially outperform the best candidate 

algorithms is not an argument against its utility. Indeed, this is exactly what SpiderLearner is 

designed to do: from a set of input candidate algorithms, it can demonstrably select the best 

in a data-driven fashion. For example, in this ovarian cancer dataset, the hub graphical lasso 

performs quite well; however, our simulation studies showed that in some cases it is prone 

to overfitting (see results for Simulation D, Figure 3). SpiderLearner is able to distinguish 
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between these situations, weighting the hub graphical lasso heavily in this application but 

assigning little weight in Simulation D (Table 2B).

Biological interpretation of the GGM:

Having assessed the statistical performance of SpiderLearner, we next turn to a biological 

interpretation of the estimated network. Networks are often interpreted in terms of 

communities, which are clusters of nodes that are highly connected to each other and 

weakly connected to the remainder of the graph.40 Community detection is a useful way 

to identify meaningful patterns in graphical models. Earlier work in bipartite networks 

of single nucleotide polymorphisms (SNPs) and genes has demonstrated that hubs within 

communities (“local hubs”) are enriched for disease-associated SNPs.40 We hypothesized 

that local hubs in GGM communities might also be key players in the functional processes 

reflected by a network, inspiring us to investigate these genes in the SpiderLearner-estimated 

ovarian cancer GGM.

We began by using the cluster_fast_greedy community detection algorithm as 

implemented in the igraph R package29,41 to detect communities in the SpiderLearner-

estimated network from the Yoshihara dataset. Next, we identified local hubs, defined as the 

gene in each community with the highest hub score, by applying the hub_score function of 

the igraph R package to the adjacency matrix of each community.29,42

Figure 4d shows the community structure and local hubs of the network. Six genes were 

identified as local hubs: N4BP2L2, NCKAP1L, PARVA, RAD17, RCOR3, and RPS21. 

Notably, all six of these genes have important biological function. Previous literature 

links their expression levels to processes such as cell proliferation and immune system 

function, with implications for studying the development, progression, and treatment of 

cancer. N4BP2L2 encodes a protein known as NEDD4 Binding Protein 2 Like 2.43 There 

is evidence that N4BP2L2 is involved in neutrophil deficiency (neutropenia), participating 

in transcriptional regulation of a neutrophil production pathway.43 NCKAP1L has recently 

been identified as a novel tumor microenvironment-related biomarker in luminal breast 

cancer, but has not been previously studied extensively in relation to ovarian cancer.44 

Deficiency in NCKAP1L has been reported to be associated with a novel syndrome 

involving immune system dysregulation in humans, and loss-of-function experiments in 

zebrafish models showed reduced NCKAP1L expression was associated with diminished 

neutrophil response to the site of tail fin injury.45 PARVA is an oncogene that has been 

implicated in breast cancer, colorectal cancer, lung adenocarcinoma, and melanoma.46 

Alpha-parvin, the protein encoded by PARVA, forms a complex with integrin-linked kinase 

(ILK) and particularly interesting new Cys-His protein 1 (PINCH-1) that is an integral 

component of cell survival and is related to cell shape modulation, cell motility, and cell 

spreading.47,48 RAD17 encodes a protein that is related to checkpoint signaling in the cell 

cycle; RAD17 expression is oscillatory, and engineered stabilization of RAD17 results in 

disrupted checkpoint signalling and consequent diminished re-entry into the cell cycle.49 

RCOR3 encodes a protein called CoREST/REST corepressor 3 which is a paralog of 

RCOR1, a protein which works together with lysine-specific demethylase 1 (LSD1) in 

epigenetic regulation of cell fates.50 Upadhyay et al (2014) demonstrate that RCOR3 is 
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recruited to target genes by LSD1 along with a protein called growth factor independent 1B 

transcriptional repressor (GFI1B), decreasing histone demethylation and thus de-repressing 

target gene expression. It has been shown that LSD1 represses tumor suppressor gene 

expression in oncogenesis; increases in RCOR3 expression could attenuate this contribution 

to oncogenesis.50 RPS21 encodes a ribosomal protein that has been implicated as a 

diagnostic and prognostic biomarker for prostate cancer; in vitro studies of RPS21 along 

with another ribosomal protein (RPL22L1) showed that diminished expression of RPS21/

RPL22L1 via shRNA knockdown results in decreased cell proliferation, migration, and 

invasion and increased apoptosis in prostate cancer cells.51 More recently, RPS21 has also 

been shown to play a similar role in osteosarcoma via MAPK signaling.52 Differential 

expression of RPS21 has also been reported as part of a larger study on MHC class 1 

proteins involved in cisplatin resistance in human ovarian cancer cells.53

The importance of each of these genes and their downstream products suggests that GGMs 

estimated by SpiderLearner can be used in practice to provide additional insights into 

existing literature as well as to identify targets of interest for future study.

5 ∣ DISCUSSION

In this work, we propose and evaluate a novel method for Gaussian graphical model 

(GGM) estimation: SpiderLearner, an ensemble method that builds a convex combination 

of precision matrix estimates from a library of candidate estimation methods. In a wide 

variety of simulation settings, SpiderLearner consistently performed comparably to or better 

than each of the candidate methods according to a variety of metrics including the relative 

Frobenius norm of the difference between the estimated and true matrices and the out-of-

sample likelihood. Importantly, some of the individual candidate methods performed quite 

poorly; since common practice a priori is to simply choose one of the candidate methods 

at will, our ensemble method provides a considerable advantage for practical use. This 

is apparent in our application to ovarian cancer data, where SpiderLearner outperforms 

candidate methods in both internal cross-validation and external validation on independent 

datasets and is able to identify genes with biological relevance in cancer.

The superior performance of SpiderLearner is no coincidence; there are a number of features 

in the design of our method that contribute to its success. Under mild conditions, loss-based 

ensemble models such as SpiderLearner enjoy desirable large sample properties, including 

comparable performance to an oracle estimator.17,25 Incorporating K-fold cross-validation 

in SpiderLearner reduces the risk of overfitting, an especially important point in biological 

applications where generalizability to external datasets is paramount. The data-driven nature 

of the SpiderLearner model selection process reduces the potential for human bias to 

interfere with honest network estimation. A researcher might inadvertently choose one of 

the many existing GGM estimation methods based on limited awareness of options, ease of 

implementation, a “favorite method” from previous use, or a method that produces desirable 

results for a publication. By developing a likelihood-based loss function tailored to this 

problem setting and applying it in SpiderLearner, we provide an alternative approach that 

circumvents these issues.
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New methods for GGM estimation are being continually developed and assessed. For 

example, Lartigue et al.54 conducted an extensive simulation study on GGM estimation 

for high-dimensional data with small sample sizes and presented a composite procedure 

that uses a likelihood criterion to select a GGM. Methods such as these that are 

specific to particular research settings are areas for further development. An advantage of 

SpiderLearner is that such methods, when developed, can be included as candidate models in 

the ensemble library.

Ongoing advances have been proposed to improve the applicability and reproducibility 

of network estimation methods. Steinley et al.55 propose a Monte Carlo-based method 

for generating confidence intervals for network statistics, allowing a researcher to assess 

whether a network property such as edge presence or node centrality differs from that 

expected by random chance. Epskamp et al. (2018)10 present a bootstrap-based approach 

which allows researchers to investigate the variability of an estimated network. Epskamp 

et al. (2020)56 develop a network meta-analysis framework that permits integration of 

estimated networks across multiple studies. Again, each of these methods relies on the 

use of an initial estimation algorithm, remaining sensitive to the many choices that the 

researcher must make during the estimation process. Consequently, coupling advances such 

as these with SpiderLearner would contribute substantially to improved reproducibility and 

generalizability in GGM estimation and is an important area of future work.

One alternative to ensemble GGM estimation is to apply bootstrap resampling to estimate 

a collection of precision matrices which are then averaged to create an overall estimate. 

Variants of this concept have been proposed by, for example, Meinshausen and Bühlmann 

(2010),57 Li et al. (2013),58 and Cai et al. (2016).59 A variation of this approach applied to 

differential network analysis can be found in Chen et al. (2022).60 While both this bootstrap-

based approach and SpiderLearner construct a precision matrix as a linear combination 

of candidate estimates, the two methods are fundamentally different in several key ways. 

First, the precision matrices comprising the SpiderLearner ensemble are each estimated 

with different candidate learners, whereas the bootstrap-based ensemble applies a single 

candidate learner. The bootstrap-based ensemble thus remains subject to the limitation that 

the user needs to pick a single GGM estimation method and that results are highly sensitive 

to this choice, as discussed in the Introduction. Second, a key tenet of SpiderLearner 

is the use of K-fold cross-validation to reduce overfitting. The bootstrap-based ensemble 

uses a simple average of bootstrap estimates constructed by resampling the entire dataset, 

increasing the risk of overfitting because no independent assessment of performance is used 

in model selection. Third, SpiderLearner uses loss-based learning to identify the optimal 

weights for each candidate precision matrix in the ensemble, whereas the bootstrap-based 

ensemble is a simple mean in which each bootstrapped precision matrix is equally weighted. 

Empirical comparison of SpiderLearner with this alternative bootstrap-based approach did, 

in fact, indicate superior performance by SpiderLearner (Supporting Appendix 7).

In a recent publication, Isvoranu and Epskamp reported the results of a comprehensive 

simulation study using 13 different GGM estimation methods, 60 different network 

measures, and a range of true network configurations similar to networks expected in 

psychology.14 Isvoranu and Epskamp conclude that the research question should guide the 
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selection of estimation method, and provide practical guidance on this process. This work, 

while comprehensive, differs from ours in that the endpoint is still the choice of a single 

estimation method rather than an ensemble, and that the researcher must choose based on 

research questions and intuition. In contrast, SpiderLearner uses a data-driven loss-based 

learning principle to circumvent this choice. A promising area of future work would be to 

extend SpiderLearner by adding new loss functions that could optimize the ensemble with 

respect to the different network measures described in Isvoranu and Epskamp.14

One limitation of our approach is computational cost; for K-fold cross validation with 

M candidate models, the time cost of estimating the ensemble model is about M(K + 1)
times the cost of estimating just one candidate model. Moreover, the number of model 

parameters to be estimated by each candidate model grows quadratically with the number of 

predictors included in the network, meaning that the computational cost of the ensemble 

model can quickly become substantial for larger predictor sets (Supporting Table 1). 

Because model fitting in each fold is independent, parallelization is a good solution to this 

problem when multiple cores are available. To address this limitation, we have implemented 

parallel processing in our R package. It is also worth nothing that in our experience, the 

majority of computing time is dedicated to estimating the candidates, and that the computing 

time involved in estimating the convex combination is trivial in comparison. We therefore 

recommend that users wishing to reduce computing time exercise care when selecting the 

candidate algorithms; for example, the runtime of CLIME was prohibitive of its inclusion in 

our high-dimensional Setting D (n = 60, p = 100; Supporting Appendix 5).

A second limitation is that our objective function (Equation 6) may not yield a unique 

solution. Concretely, this could occur if two candidates estimate the same precision matrix 

and, thus, have the same cross-validated risk. In Supporting Appendix 6, we explore the 

stability of the estimated weights α as well as the overall ensemble when using the Rsolnp 

solver, and do not find excessive variability in either case. To allow the user to assess the 

stability of the numeric solver, the SpiderLearner code includes an option to set a seed for 

the random fold selection so that users can easily bootstrap their own dataset and assess 

variability. The SpiderLearner code is also designed such that the control parameters for the 

Rsolnp::solnp function can be applied as input. In this way, the user can tune key aspects 

of the optimization such as the number of iterations, step size, and tolerance.

A third limitation lies in the rigidity of the convex combination of precision matrices. 

The same coefficient is applied to every element of each precision matrix in the current 

ensemble model formulation. A more flexible extension could address this limitation by 

partitioning matrices into regions determined to be similar across methods (eg, the row and 

column corresponding to a hub node), fitting a convex combination within each partition, 

and combining these results to yield the ensemble precision matrix; this is an area of future 

work.

The past decade has shown numerous advances in GGM estimation, but the burden has 

still been left on the researcher to determine the specifics of the estimation process. 

SpiderLearner removes this barrier, enabling researchers to easily construct a likelihood-

based optimal combination from a library of candidate methods.
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Our simulation studies demonstrate that SpiderLearner outperforms existing approaches, 

both in terms of accuracy of matrix estimation and out-of-sample likelihood. When applied 

to ovarian cancer gene expression data, SpiderLearner had better out-of-sample likelihood in 

internal cross-validation and external validation against 12 independent datasets. Key genes 

in the SpiderLearner-estimated network have been previously linked to important biological 

functions related to cancer development and progression, highlighting the practical relevance 

of this ensemble method. SpiderLearner is available in the R package ensembleGGM 

at https://github.com/katehoffshutta/ensembleGGM, and the code for the simulation and 

application are available at https://github.com/katehoffshutta/SpiderLearnerWorkflow.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(A) Data are partitioned into five folds. Each fold is left out from the model fitting process 

in turn. (B) Every candidate model is fit on the training data in each fold. This generates 

an (M = 4) × (K = 5) array of estimated matrices Θm
( − k) :m = 1, … , 4; k = 1, … , 5. (C) For 

each held-out dataset k and coefficient set α = (α1, … , α4), ΘSL
( − k) is calculated from the 

estimates in (B). The likelihood of the estimator given the held-out data is then calculated 

as a function of the unknown α = (α1, … , α4). (D) The process is repeated across all K = 5
folds and averaged to yield our loss function. (E) The loss function is minimized to yield 

the optimal coefficients α, subject to the constraints of the convex combination. (F) The 

M = 4 methods are used to fit Θ1, … , Θ4 on the whole dataset. (G) The final SpiderLearner 

estimator ΘSL is calculated as the convex combination of the coefficients selected in (E) with 

the models fit in (F).

Shutta et al. Page 21

Stat Med. Author manuscript; available in PMC 2025 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Simulation study workflow. In (i) we design gold-standard networks. In (ii), we assign 

edge weights to the gold standards by sampling from the distribution of partial correlations 

observed in the CATHGEN dataset and convert the corresponding adjacency matrices to 

precision matrices. In (iii), we sample multivariate normal data based on the precision 

matrices from (ii). In (iv), we estimate the networks from the sampled data. In (v), we 

compare the estimated network to the gold standard.
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FIGURE 3. 
Simulation A and D results comparing SpiderLearner to the simple mean model and to the 

eight candidate algorithms in the library. The variable p represents the number of nodes 

in the network, while q represents the number of parameters to be fit. Relative Frobenius 

norm results demonstrate the ability of the algorithm to accurately estimate the precision 

matrix entries; lower is better. Out-of-sample log likelihood shows that the estimated 

precision matrix is not overfit by the SpiderLearner; higher is better. Results show that 

the SpiderLearner ensemble model is able to outperform or match the performance of every 

other candidate included in the model and exceed the performance of a simple mean of the 

candidates.

Shutta et al. Page 23

Stat Med. Author manuscript; available in PMC 2025 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
(A) Performance of SpiderLearner and candidate methods in internal 10-fold cross-

validation, measured in terms of out-of-sample log likelihood. (B,C) Performance of 

SpiderLearner and candidate methods on 12 independent validation datasets from the 

curatedOvarianData R package. Performance of each candidate algorithm is measured 

in terms of percent difference in log likelihood relative to the best performing model for 

that dataset; for example, a y-axis value of −10 means a model had a 10% lower log 

likelihood than the best model for that particular dataset. (D) SpiderLearner GGM on 

111 genes associated with high-risk ovarian cancer. Node color corresponds to community 

membership. Large, labeled nodes indicate the six “local hubs”: genes with the highest hub 

score within each community.
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TABLE 1

Details of the simulation study designed to evaluate the practical performance of SpiderLearner across a range 

of network dimensions and topologies. (A) Simulation study dimensionality. n represents the sample size; p, 

the number of predictors in the network; q, the number of parameters that need to be estimated in the model; 

.9 ∗ n ∕ q: the sample size-to-parameter ratio in each training set in the 10-fold cross-validation. (B) Gold-

standard networks were constructed using a variety of functions from the igraph package. Graph density is a 

function of the parameters used in each function as well as the number of predictors in the graph, and cannot 

be exactly specified. Parameters used in this study were chosen to achieve approximately 6% dense graphs in 

the low-density cases and 20% dense graphs in the high-density cases.

(A)

Simulation n p q . 9 ∗ n ∕ q
A 10,000 50 1275 7.06

B 1600 50 1275 1.13

C 100 50 1275 0.07

D 60 100 5050 0.01

(B)

Topology Density igraph Function Simulated
density (Simulations A,B,C)

Simulated
density (Simulation D)

Random Low sample_gnp 0.053 0.061

Random High sample_gnp 0.219 0.194

Small world Low sample_smallworld 0.082 0.061

Small world High sample_smallworld 0.204 0.202

Scale-free Low sample_pa 0.079 0.059

Scale-free High sample_pa 0.192 0.191

Hub-and-spoke Low sample_pa 0.079 0.059

Hub-and-spoke High sample_pa 0.192 0.191
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TABLE 2

Average weight for each method as selected by SpiderLearner in N = 100 simulations.

(A) Simulation A

Topology
glasso–
ebic–0

glasso–
ebic–0.5

glasso–
ric hglasso mle

glasso–
stars–0.05

glasso–
stars–0.1

qgraph–
ebic–0

qgraph–
ebic–0.5

Random low 0 0 0 0.57 0.28 0 0 0.15 0

Random high 0 0 0 0.33 0.59 0 0 0.08 0

Small world low 0 0 0 0.46 0.39 0 0 0.15 0

Small world high 0 0 0 0.19 0.55 0 0 0.25 0

Scale-free low 0.34 0 0 0 0.25 0 0 0.4 0

Scale-free high 0.07 0.07 0 0.1 0.51 0 0 0.24 0

Hub-and-spoke low 0 0 0 0.63 0.34 0 0 0.03 0

Hub-and-spoke high 0 0 0 0.37 0.57 0 0 0.06 0

(B) Simulation D

Topology
glasso–
ebic–0

glasso–
ebic–0.5 glasso–ric hglasso

glasso–
stars–0.05

glasso–
stars–0.1

qgraph–
ebic–0

qgraph–
ebic–0.5

Random low 0 0 0 0.03 0.08 0.24 0.63 0.01

Random high 0 0 0 0.07 0.12 0.62 0.2 0

Small world low 0.02 0.02 0.02 0.02 0.04 0.06 0.4 0.44

Small world high 0 0 0 0.08 0.23 0.6 0.08 0

Scale-free low 0 0 0 0.03 0.08 0.22 0.67 0

Scale-free high 0 0 0 0.09 0.15 0.75 0.01 0

Hub-and-spoke low 0 0 0 0.03 0.05 0.22 0.62 0.08

Hub-and-spoke high 0 0 0 0.1 0.18 0.72 0.01 0
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TABLE 3

Basic characteristics and references for the 13 ovarian cancer datasets used in the SpiderLearner application. 

The Yoshihara dataset is GSE32062.GPL6480.

Dataset Platform ID N
Age: Mean(SD)
missing

Tumor stage
(% < 4) missing

Summary stage
(% Late) missing

Summary grade
high (%) missing

GSE32062.GPL648020 hgug4112a 260 — 78 100 50

GSE1387661 OperonHumanV3 157 57.95(12.39) — 100 54 13

GSE1476462 hgu133a 80 — 98 89 68

GSE1726063 hgug4112a 110 — 85 100 39

GSE1852064 hgu133plus2 63 — 100 10 84 10 84 10

GSE19829.GPL57065 hgu133plus2 28 — — — —

GSE2671266 hgu133a 195 61.54(11.86) 13 80 13 95 10 95 10

GSE3016167 hgu133plus2 58 62.57(10.61) 91 100 57 4

GSE3206320 hgug4112a 40 — 78 100 42

GSE989168 hgu133plus2 285 59.62(10.59) 3 92 3 84 3 57 6

PMID1729006069 hgu133a 117 — 85 1 98 1 49 3

PMID1931847670 hgu133a 42 61.46(10.61) 1 76 1 93 1 57 1

TCGA71 hthgu133a 578 59.7(11.56) 10 85 15 90 15 83 23
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