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ABSTRACT OF THE THESIS

Two Faces are Better Than One -
Face Recognition in Group Photographs

by

Ohil Krishnamurthy Manyam

Master of Science in Computer Science

University of California, San Diego, 2011

Professor David Kriegman, Chair

Given an image containing more than one individual, face recognition sys-

tems so far have assumed statistical independence between each detected face

when making a recognition decision. Contrary to this, for face recognition in un-

constrained and natural settings, we show that there is potential for an increase in

recognition accuracy by identifying people in groups. We propose models based on

conditional and joint probabilities for handling recognition of pairs of individuals.

These models are subsequently evaluated on two datasets - one from a television

show and another, a personal photo album. In addition to using various state-of-

the-art attribute based features, we design new descriptors of our own that can

capture naturally occurring color and height correlations in group images. We

ix



report recognition accuracy achieved by our relative models and compare this to

existing models that assume statistical independence. We examine issues related

to data scarcity when building relative models and propose techniques to combine

group recognition decisions with statistical independence decisions to overcome

these issues. Although improvements in accuracy over baseline techniques are

modest for our implementation, we show that there is indeed potential in relative

face recognition by using color and height based descriptors in conjunction with

our relative models.
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Chapter 1

Introduction to Face Recognition

Recognizing people in photographs comes rather naturally to humans. Ma-

chines on the other hand have to be taught - first to detect or localize a human face

within a photograph, and then to actually recognize that person. Both these tasks

have been researched extensively over the past few years. For face detection, sev-

eral techniques exist [1], but perhaps the most popular approach among them all

is the one by Viola and Jones [2]. This technique involves evaluating simple Haar

wavelet based features at various scales and positions on an image. An integral

image is used to speed up the computation of these features - even achieving real-

time speeds for moderately sized images. The features are finally fed to a classifier

cascade trained using AdaBoost. Face detectors are getting increasingly better at

localizing faces even in the presence of variations due to lighting, pose, or image

resolution.

Face recognition is the process of identifying a person from his or her image.

Such a system is typically trained with a large number of characteristic images for

every person that the system is designed to recognize. Using these images, a

recognition model can be built that is either generative or discriminative. In a

generative approach, the system builds a mathematical model corresponding to

each person’s facial appearance with the goal of describing the entire face image

in detail. A discriminative approach on the other hand places greater importance

on specific traits that help in discriminating people, rather than describing each

individual. With either approach, the actual recognition task usually starts with a

1
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face detector segmenting a specific region containing a face from an input image.

This region is then fed to the face recognizer which tries to find a person whose

trained model best describes the input region. The identity of such a person is

finally assigned to the detected face region.

Various techniques have been proposed in literature to fulfill the task of

building a model for each person. Historically, Eigenfaces [3] and Fisherfaces [4]

have been used extensively. With improvements in image capture technology,

3D face models have been receiving increasing attention [5]. Considerable effort

has gone into making recognition systems invariant to pose [6] and illumination

changes [7], although a reliable system that can handle all such variations remains

elusive.

Among existing systems, very high recognition accuracies (≈ 100%) are

common [8] when subjects are photographed over short timespans, in well lit en-

vironments, with known lighting color and directions, limited face pose variations

and easily subtracted backgrounds. As one might expect, relatively simple tech-

niques such as pixel-to-pixel comparisons also work well in this case owing to the

many constraints. In practice, such a situation can occur in controlled environ-

ments with cooperative users. For example, a face recognition system that controls

entry into a secure facility. A user in this case, can be expected to face the cam-

era from an appropriate distance and maintain a frontal pose until he or she is

identified.

There are many real life applications where the previously mentioned con-

straints are too narrow and strict. Personal photo albums for instance - where

individuals may be photographed in a natural setting with a wide variety of pose,

lighting, expression and image quality. With the advent of social networking sites

such as Facebook, millions of such images are even uploaded daily. Automatic

annotation of faces in photographs is a valuable tool for sites such as Facebook as

well as photo album managing software like Google’s Picasa, Apple’s iPhoto or Mi-

crosoft’s Windows Live Photo Gallery. A major hurdle to accurate face recognition

in personal photo albums is the lack of constraints on input images.
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1.1 Unconstrained Face Recognition

Of late, there has been an increased interest in relatively unconstrained face

recognition problems. Databases such as Labeled Faces in the Wild (LFW) [9]

and PubFig [10] for example, present images of celebrities for face recognition.

These images are obtained from an image search on the internet - and so have

very few image constraints. In addition, since the image acquisition is spread

over long periods of time, there may even be changes in the physical appearance

of a face. Unsurprisingly, many techniques that worked well for the constrained

face recognition case perform rather poorly here. However, techniques have been

proposed to deal specifically with this problem.

Guillaumin et.al [11] uses metric learning techniques including a logistic

discriminant based approach and a nearest neighbor approach to perform face

verification on the LFW dataset. They experiment with features based on Lo-

cal Binary Patterns (LBP) and the Scale Invariant Feature Transform (SIFT).

Cao et al. [12] demonstrate a descriptor that employs a learning-based encoding

scheme on data extracted from image patches around fiducial points. Kumar et

al. [10] proposed an attribute based framework wherein each individual is assigned

a collection of scores from various attribute classifiers. In this work, we use the

same attribute framework to generate feature vectors describing each candidate

in our dataset. We use these feature vectors to build a discriminative model for

recognition.

1.2 Relative Model for Face Recognition

Face recognition systems to date, despite using different techniques to gen-

erate descriptive feature vectors, end up building models that describe each indi-

vidual separately and independently. Techniques that consider cues from regions

outside the face box tend to model context [13–16] to help in recognition. These

cues include clothing color and body feature descriptors still computed per-person.

Beyond contextual cues, techniques that use metadata in the form of connectiv-

ity graphs from social networks were reported in [17, 18]. Gallagher et al. [19, 20]
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developed models that correlated the position and height of multiple people in

photographs to their age, gender and social relationship. Here too, metadata was

modeled.

Figure 1.1: Collection of frames containing multiple individuals from the televi-
sion show Buffy the Vampire Slayer

In this work, we approach the problem of recognizing faces in group pho-

tographs at a more grass-root level instead of modeling metadata. We explore

various visual similarities and conditions that people share in a group photograph.

Several such similarities can be seen in Figure 1.1. Due to a common light source,

the direction of shadows cast are all the same and can possibly be ignored. Mea-

sured skin tones of different people can be directly compared within an image with-

out worrying about lighting normalization or color correction. The same height

relationships (taller-shorter) between people can be observed in multiple images.

Also, the direction of gaze and pose of individuals in an image are highly correlated

- everyone is staring at a common point of interest.

To exploit such similarities, we build relative models for pairs of individuals

from automatically computed descriptors based purely on the visual image. Our

system produces recognition decisions for pairs of individuals at once. To the best
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of our knowledge, this is the first attempt at building such relative recognition

models. Our approach represents a major departure from existing methods that

use visual cues to recognize each person independently of the others. Techniques

that work with social group data do so at a post-processing stage after candidate

identification labels have already been generated per-person. In addition to recog-

nizing people in pairs, unlike other techniques mentioned, our system models image

characteristics rather than metadata. Thus, it is feasible to add-on our technique

as a module to existing face recognition systems, providing an improvement in

recognition rates for group photographs. Although we focus on recognizing pairs

of individuals, the essential ideas we present can be used with larger groups.

Following this introductory chapter, Chapter 2 details our framework for

generating feature vectors based on attributes. We also describe additional color

and height based descriptors. In Chapter 3 we introduce the datasets that we

use for our experiments. Chapter 4 explores naturally occurring commonalities

in group photographs, presents our experiment framework and reports results for

baseline experiments. In Chapter 5, we propose relative recognition models that

handle pairs of individuals and also report accuracy results for the same. We

explore techniques to fuse decisions from one of our relative models and the baseline

model in Chapter 6. We conclude in Chapter 7 and hint at possible future work

in Chapter 8.



Chapter 2

Features Vectors to Describe a

Face

One of the first steps in any recognition task is to build a feature vector for

each input that is able to capture characteristic traits which have high discrimina-

tive power. It is generally observed that more discriminative features lead to high

recognition accuracy even with simple classifiers. In the spirit of this observation

coupled with our intention to work with natural group photographs, we use fea-

tures that have been shown to work well in an unconstrained setting. In addition,

we include a few new descriptors of our own.

2.1 Attribute Features

Kumar et al. [10] introduced a novel approach to face verification using

attribute detectors. As defined by them, attributes are describable aspects of visual

appearance such as gender, race, age and hair color. Attributes are formulated

such that they are either present or absent in an image. Thus, Male is used as an

attribute, but not Gender. To automatically detect the presence of these attributes,

Support Vector Machines (SVMs) employing an RBF kernel were used. The SVMs

were trained with images over a wide range of conditions to make them invariant

to pose, lighting, expression etc while still detecting specific attributes. In their

work, Kumar et al. used outputs from each of 65 attribute detectors as a feature

6
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vector to describe every individual. Such feature vectors from two individuals was

fed to another SVM to obtain a face verification decision with 85.29% accuracy.

For our work using personal photo albums, the face recognition process

needs to work with rather unconstrained inputs. Variations in pose, expression,

lighting and image quality are common. Due to the demonstrated discriminative

power of the attribute framework, we employ this as one set of features for our

experiments. While we use attributes for face recognition, it may be noted that

in case of Kumar et al. face verification was performed. Further, in our case,

although the attribute detecting SVM outputs are intended as binary decisions,

the raw values returned are retained and used as an indication of the degree of

presence or absence of an attribute. SVMs in general are trained for maximum

margin separation, and the raw output is a distance metric from the input point to

the separating hyperplane. For example, when a male attribute detector trained

to output +1 for male and −1 for female returns 0.9 as its output, this is seen

as an indication that the male attribute is substantially dominant in the image

being tested - i.e. the image is on the male side of the male-female separating

SVM hyperplane and is far away from this hyperplane. Similarly, a decision value

of −0.2 by the same male detector indicates a weak female attribute (closer to the

hyperplane).

Table 2.1 presents a list of all 73 attributes used in this work. It may

be noted that some attributes are highly discriminative between people (Asian,

Brown Eyes) while others are not (Smiling, Outdoor). The weakly discriminative

attributes are still important as they capture a general quality associated with a

person. For instance, a person who tends to smile heavily in photographs would

have a consistently high value for his/her Smiling attribute. Similarly a person

who often wears a tie may have a high average value for his/her Wearing Necktie

attribute. Values for all these attributes were computed by an online web-service

maintained at Columbia University, New York. Although we used the attribute

generator system as a black-box, the basic steps involved face detection, fiducial

point detection, face alignment based on the fiducial points, followed finally by

attribute detection.
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Table 2.1: A list of 73 attributes that we use

5 o’ Clock Shadow Flash Posed Photo
Arched Eyebrows Flushed Face Receding Hairline

Asian Frowning Rosy Cheeks
Attractive Man Fully Visible Forehead Round Face

Attractive Woman Goatee Round Jaw
Baby Gray Hair Senior

Bags Under Eyes Harsh Lighting Shiny Skin
Bald Heavy Makeup Sideburns

Bangs High Cheekbones Smiling
Big Lips Indian Soft Lighting
Big Nose Male Square Face

Black Middle Aged Straight Hair
Black Hair Mouth Closed Strong Nose-Mouth Lines
Blond Hair Mouth Slightly Open Sunglasses

Blurry Mouth Wide Open Teeth Not Visible
Brown Eyes Mustache Wavy Hair
Brown Hair Narrow Eyes Wearing Earrings

Bushy Eyebrows No Beard Wearing Hat
Child No Eyewear Wearing Lipstick

Chubby Obstructed Forehead Wearing Necklace
Color Photo Outdoor Wearing Necktie
Curly Hair Oval Face White

Double Chin Pale Skin Youth
Eyeglasses Partially Visible Forehead
Eyes Open Pointy Nose
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2.2 Color and Height Based Features

Variations in color and lighting have long been considered a hindrance to

accurate face recognition [21]. Many systems completely throw away color infor-

mation by working purely with grayscale images. Such systems usually have a

pre-processing stage where color and lighting intensity variations are normalized

before being discarded. On the other hand, there have been many attempts which

show improvements in accuracy when color is leveraged for recognition [22–24].

Despite this advantage, systems continue to ignore color information because of

sufficient discriminative traits available in grayscale normalized images. For exam-

ple, a system may be able to learn the shape of a face and positions of various parts

such as eyes, nose and mouth within a face box. With good quality images, these

alone may be sufficient for accurate recognition. But with low resolution images,

color may very well become an important cue [25]. To illustrate this better, we

carry out a preliminary test of our own.

2.2.1 A Preliminary Color Experiment

When a device (such as a camera) is used to capture an image of an object,

it is well known that the image is influenced by the intensity, color and direction

of incident light, the color and shape of the object and the spectral response of

the image capturing device. To better understand the interplay of these param-

eters with respect to face recognition, we use a physics-based face database from

The University of Oulu, Finland [26]. The database consists of 125 individuals

photographed in a single session, with frontal pose, a fixed neutral expression and

under four different lighting conditions - incandescent CIE illuminant A (Planck-

ian 2856K), horizon daylight (Planckian 2300K), fluorescent TL84 (F11 4000K)

and D65 (Daylight 6500K) 1. Although the same camera was used throughout the

database, it was white balanced to match all four lighting conditions for each for

each incident lighting - thereby producing 16 images per person. Figure 2.1 shows

the 16 images captured for one person. Images along the diagonal were captured

1These are respectively abbreviated as a, h, t and d in Figures 2.1 and 2.2
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with the camera white balanced for the respective illumination. A drastic change

in visual appearance can be seen across images. As expected, a simplistic face

recognition experiment using 16× 16 pixels downsampled versions of these images

while retaining each of the three - red, green and blue - color channels is not very

accurate. Using only images where the camera calibration and incident lighting

matched (images along the diagonal in Figure 2.1), face recognition accuracy is in

the 90% range. For example, training on images with incident light and camera

calibration h and testing on images with incident light and camera calibration t

provides 90.4% accuracy. But when the training and testing images do not have the

same camera calibration and incident lighting, accuracies vary from 88.8% (train:

camera h, light t ; test: camera a, light t) to as low as 8.8% (train: camera h, light

a; test: camera t, light h). This trend persisted with a few other color spaces as

well 2.

To avoid similar drastic fluctuations in accuracy, color and lighting normal-

ization techniques have been used as a pre-processing stage in many face recogni-

tion systems. Figure 2.2 was produced by first converting each color image from

Figure 2.1 into a grayscale version. A popular equation I = 0.2989R+ 0.5870G+

0.1140B was used where I represents the intensity of a grayscale pixel and R,

G and B represent the red, green and blue channel values of the color pixel re-

spectively. This equation is used for instance by the NTSC television standard

for computing the luminance component. Following the conversion to grayscale,

histogram equalization was applied. Histogram equalization is a contrast adjust-

ment technique which spreads an input image’s grayscale histogram uniformly over

the entire grayscale range. As can be seen, the face images in Figure 2.2 appear

remarkably similar. Indeed, this translates to an increased accuracy (≈ 99%) fol-

lowing the same recognition framework as before where a downsampled version of

each image is used as its feature vector. The normalization is so helpful that high

accuracy can be achieved irrespective of the imaging conditions for the training

and test images. Effectively, changes in camera calliberation, color and intensity

of lighting have all been nullified through this transformation.

2This experiment is meant to illustrate a possible detrimental effect due to the inclusion of
color based features. It is not intended to be rigorous.
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Figure 2.1: Original images for an individual from the Oulu physics-based face
database [26]

When compared to their color versions, the histogram equalized grayscale

images certainly provide better recognition accuracy. But it should be noted that

various other factors within this dataset influence this increase in accuracy. Images

for each individual were captured over a short timespan. In addition, there is very

little pose variation per person. A fixed color background and uniform image reso-

lution and quality are other factors that help maintain a high recognition accuracy

for the grayscale versions. Since our goal is to work in the unconstrained face

recognition setting, most of these factors will not remain constant across images
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Figure 2.2: Grayscale histogram equalized images for an individual from the Oulu
physics-based face database

in our case. In such a situation, color may very well be an important indicator.

Figure 2.3 illustrates this point - while skin color can be a useful feature in color

images, this information is almost completely lost in the normalized version.

2.2.2 Introducing New Descriptors

In addition to the attribute features mentioned, we introduce a few new

descriptors of our own. These descriptors are based on color and height of an indi-

vidual corresponding to a detected face box. Our reason for introducing these new
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Figure 2.3: Color and histogram equalized images of two individuals in the Oulu
physics-based face database

descriptors are two fold. First, considering that our recognition experiment is in a

tough unconstrained setting, we hope to harness any extra information that color

or height can provide. In addition, color and height measurements for face images

of individuals are highly correlated when they occur in the same group photograph.

For example, if two individuals are both seen in multiple photographs, their skin

tones would be correlated across photographs due to common light sources and

imagining conditions. We hope that our relative recognition models are able to

learn these correlations and provide a boost in accuracy.

Color Descriptors

To capture characteristic color traits, we introduce four new descriptors

corresponding to four regions within the rectangular boundary of a detected face.

As mentioned previously, one stage in the attribute generation pipeline is fiducial

point detection. This produces six fiducial points corresponding to the corners of



14

each eye and corners of the mouth. With this, we define four regions from which we

extract color descriptors. Two regions correspond to rectangular areas around each

eye. One region corresponds to a similar rectangular area enclosing the mouth.

Each rectangular region contains two fiducial points, and the region itself is defined

to have a width that is 115% of the distance between the two fiducial points and a

height that is one half of this width. We define one final region as the convex hull

enclosing all six fiducial points 3. Figure 2.4 shows fiducial points detected on an

image followed by regions that are used for the generation of our new color based

feature vectors. It may be noted that additional regions can be defined in a similar

way when more fiducial points are available - for instance around the forehead.

Figure 2.4: Fiducial points detected (left), eyes and mouth regions (center) and
convex hull of fiducial points (right)

For generating color descriptors from each region defined above, we ex-

perimented with four color spaces (RGB, YCbCr, HSV and L*a*b*), seeking a

single three component descriptor for each region. We considered mean as well

as median descriptors where each color channel’s mean (or median) is computed

independently - resulting in a final three component feature per region. Cross

validation revealed the HSV (Hue Saturation Value) median descriptors to be the

best among those considered. Specifically, for the HSV (Hue Saturation Value)

color space, while the saturation and value components vary linearly, the hue com-

3Initial experiments using the entire face box instead of the convex hull resulted in slightly
lower cross validation accuracy. We conjecture that this is due to extraneous background colors
showing up in the rectangular bounding box around the face.
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ponent varies in an angular fashion. Red - which is predominant in skin color and

consequently in all of our descriptor regions - occurs at 0◦ hue. Sometimes, this

causes measured hue values to lie around 360◦. In the interest of avoiding such

jumps in measurements and to maintain a continuous variation in all our feature

vector components, we enforce a hue shift of 180◦. It was this hue-shifted HSV

median descriptor that was found to perform best and so is chosen as the color

descriptor for all four regions surrounding fiducial points on a face.

Figure 2.5: Computing height descriptors h1 and h2 for two people in a group
photograph

Height Descriptor

Similar to color, the height of a person can also be a good relative descriptor.

Due to variations in camera position and ground level, the height of a person as
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estimated from a photograph may experience drastic fluctuations. Consequently,

height may be a very weak descriptor when recognizing people in a group photo-

graph with the statistical independence assumption between people. On the other

hand, the face box of a taller person is more likely to be found higher up in a

photograph than that of a shorter person. While it is true that this relationship

can easily get disturbed (say when the shorter person wears high-heeled shoes), a

probabilistic model can be expected to learn a relative height distribution.

Thus, in addition to the color descriptors, we introduce one final descriptor

corresponding to the height of a person as seen in an image. The distance in pixels

between the center of a detected face box and the base of the image is representative

of a person’s height. To account for people closer to the camera appearing larger

and taller, we take a ratio of the distance of the face box from the base of the

image to the size (height) of the face box itself. This ratio is treated as a height

based descriptor. Figure 2.5 illustrates this. It may be noted that in cases where

all individuals photographed are at the same distance from the camera, the size

of their individual face boxes will almost be the same. Consequently, the distance

between the face box and the base of the image can provide a rough idea of their

relative heights.

Thus, 73 attribute features combined with 12 color based descriptors and

1 height descriptor together form an 86 dimensional feature vector for our future

experiments.



Chapter 3

Datasets

Due to the popular implicit assumption that a detected face is independent

of other detected faces in the same image, most face recognition datasets do not

have images containing multiple individuals. In carefully controlled datasets, since

the lighting, background and other imaging parameters are constant across pho-

tographs containing a single person, in theory, it is possible to simply assume that

photographs of two different individuals belong to the same group shot. Although

this can be used to generate a synthetic dataset, it would be incompatible with

our basic premise of trying to learn true correlations between feature components

that arise in group photographs due to similarities in lighting, pose, expression,

etc. Consequently, we use two other datasets - one from a television show and

another from a personal photo album.

3.1 The Buffy Dataset

First used by Everingham et al. [27], the Buffy dataset consists of frames

extracted from two episodes (Season 5, Episodes 2 and 5) of the popular television

series Buffy the Vampire Slayer. Each image frame contains manual annotations

corresponding to automatically detected face boxes. Everingham et al. used this

dataset to test their automatic character naming system for TV shows. Their

system used features computed around fiducial points in a face image, clothing

color based descriptors, visual speaker identification and even included speaker

17
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information from subtitles. Around 69% accuracy was reported for recognizing

all detected face images in both episodes, while accuracy was around 80% when

labelling 80% of the data which had high recognition confidence.

In our case, after retaining characters that occur in group shots in both

episodes, our working set consists of eight individuals. Each automatically de-

tected face box for the eight retained characters was passed through the attribute

generation pipeline described in Section 2.1, followed by the computation of new

descriptors from Section 2.2.2. We use data from one full episode (Episode 2) for

training and the other episode (Episode 5) for testing. We identify two subsets

of feature data for each episode. The first, which we call group-data, consists of

features computed for retained characters from group shots alone. By group shots,

we mean images that contain more than one character from our working set. The

other subset consists of features computed for each individual from all occurrences

of the individual in an episode (not just group shots). We call this all-data and it

includes features that are part of group-data. Figures 3.1 and 3.2 show the number

of samples available for each individual in group-data and all-data for the train and

test episode respectively. Tables 3.1 and 3.2 summarize the total number of frames

containing each pair of individuals in the train and test episodes respectively. It

may be noted that a frame that contains images of more than two individuals will

be counted multiple times in Tables 3.1 and 3.2. For example, if a frame captures

P1, P2 and P3, then this frame can provide samples for the pairs (P1, P2), (P2, P3)

and (P3, P1) and thus will be counted three times in such tables.

By design, our relative models will only be able to work on group-data. On

the other hand, existing techniques that we implement as baselines can be trained

on all-data from the training episode. Factoring these existing techniques, for a

fair comparison, we use all-data for training our baseline models and group-data

for training our relative models but test both models on group-data from the test

episode.

There are several features of the Buffy dataset that need to noted. Since

the dataset is derived from a television show, factors such as makeup and artis-

tic camera effects are common. A large fraction of the show is shot at night (as
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Figure 3.1: Number of samples available per individual from group shots and all
shots in the training episode of the Buffy dataset

Table 3.1: Distribution of frames containing each pair of individuals in the train-
ing episode of the Buffy dataset. E.g. Person 1 and Person 3 occur together in an
image 13 times whereas Person 1 and Person 5 are never seen together.

P1 P2 P3 P4 P5 P6 P7 P8

0 13 0 0 0 0 165 P1

597 205 36 347 696 12 P2

36 21 0 31 442 P3

0 0 80 0 P4

0 0 0 P5

0 3 P6

0 P7

P8

expected for a show about vampires!) and so artificial directional lighting is ex-

tensively used. Since the frames are extracted from a video, a small amount of

motion blur is present. In addition, frames capture a snapshot of various character

activities and movements (such as talking, walking or even fighting) and in some

sense, represent a wider variety of poses and expressions than what one would

encounter in other datasets, including personal photo albums.
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Figure 3.2: Number of samples available per individual from group shots and all
shots in the test episode of the Buffy dataset

Table 3.2: Distribution of frames containing each pair of individuals in the test
episode of the Buffy dataset

P1 P2 P3 P4 P5 P6 P7 P8

0 0 278 0 0 282 49 P1

159 269 91 2 264 184 P2

0 653 21 0 0 P3

0 0 220 0 P4

0 0 0 P5

54 0 P6

39 P7

P8

3.2 A Personal Photo Album

One of the main arguments supporting the relative recognition model is

to exploit commonalities in various imaging factors that arise naturally in group

photographs. Since we were unable to find any popular labeled datasets that

satisfy this requirement, we use one of our own personal photo albums. The

dataset consists of approximately 1700 pictures captured on seven different days
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spread over a three month period. Four different digital cameras were used. The

dataset contains a mix of images captured in bright daylight, moderate indoor

lighting and camera flash. Most images have individuals posing for the camera

and hence contain frontal shots. This is unlike the Buffy dataset where actors are

usually instructed not to look at the camera. Automatically detected face boxes

were manually annotated to obtain 116 unique individuals. Figure 3.3 shows a

distribution of the number of images available per person in the entire dataset.

Figure 3.3: Number of images available per individual in the personal photo
album dataset

We randomly select 70% of the images for training and use the rest for

testing. It may be noted that the entire image file is considered as part of the

training or testing process, irrespective of the actual number of individuals in the

image. In order to build good relative models, each with an appreciable amount

of data, we restrict all our future experiments to two sets of people. The first is

a set of individuals that occur in at least 80 training images. This constitutes 6

individuals (P1 to P6). The second set consists of individuals that occur in at least
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65 training images. This consists of 12 individuals (P1 to P12). Figure 3.4 lists the

number of group-data and all-data images for each of the 12 individuals. Unlike

the Buffy dataset, most photographs in this dataset are group shots. Table 3.3

shows the number of group shots for each pair of individuals. One may notice that

this table is not sparse like Tables 3.1 and 3.2 for the Buffy dataset.

Although the second set is meant to contain a larger number of people

and pairs than the first set, the number of training instances available is low for

individuals P7 to P12 and pairs involving them. With less data and more pairwise

classes, we expect the performance of our relative model to deteriorate for the 12

person dataset and hence use this set to observe and understand the reduction in

accuracy.

Figure 3.4: Number of samples available per retained individual from group shots
and all shots in the personal photo album dataset
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Table 3.3: Distribution of frames containing each pair of individuals in the per-
sonal photo album dataset

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

47 40 56 51 52 57 43 24 40 37 42 P1

53 60 45 37 44 29 53 35 38 49 P2

52 48 41 38 29 40 40 43 41 P3

47 38 31 24 39 34 33 27 P4

45 36 27 26 34 36 36 P5

44 28 16 27 32 32 P6

42 22 31 38 38 P7

23 27 31 35 P8

25 20 25 P9

31 30 P10

45 P11

P12



Chapter 4

First Steps . . .

Face recognition systems to date treat each detected face in a photograph in-

dependent of all other faces in the process of making a recognition decision. While

this seems appropriate for photographs containing only one individual, for group

photographs containing at least two individuals, there may be valuable information

in other individuals’ face image which can lead to a positive improvement in over-

all recognition accuracy. Instead, when presented with two face boxes and their

corresponding feature vectors ~x1 and ~x2, a regular model (henceforth termed the

baseline model) computes a recognition probability for the pair of people (Pa, Pb)

using

P (Pa, Pb | ~x1, ~x2) = P (Pa | ~x1) P (Pb | ~x2) (4.1)

i.e. the probability of feature vector ~x1 belonging to person Pa is completely

independent of feature ~x2 belonging to person Pb although ~x1 and ~x2 are derived

from the same image 1. Is this independence assumption warranted? If not, how

can we model the dependency? As a first step in answering this question and to

transcend the independence assumption, we look at factors that are common to

multiple individuals in a group photograph.

1P (Pa | ~x1) is a posterior probability and is not measured directly. Recognition models for
each individual provide P (~x1 | Pa). Assuming equal base probability P (Pa) = P (Pb) ∀a, b and
ignoring P (~x1), P (~x1 | Pa) is used in place of P (Pa | ~x1) since it maintains the same relative
order across individuals

24
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4.1 Common Conditions in a Group Photograph

Consider Figure 4.1 which is a group photograph of six individuals. One

can readily notice various similarities between the many faces. Due to a fixed

light source (in this case, the sun), shadows are consistently towards the left of the

photograph. All faces share the same light source color and illumination strength.

Since each person is almost equally distant from the camera, the size of detected

face boxes will be similar. All individuals are standing on the same ground plane

and the location of their detected face boxes will be indicative of their heights in

real life. As can be expected in personal photographs, there is a strong correlation

in the direction of gaze (or pose) of individuals. People are usually seen either

posing for the camera or gazing at a common point of interest. Further, most

individuals would have the same expression (smiling, laughing, neutral, etc.). More

subtle traits are effects introduced by the camera - color balance, spectral response,

exposure setting, noise and even motion blur will all be similar for every face in a

group photograph.

As an example of where these commonalities can be used, consider the

following scenario. In an unconstrained recognition setting, when an input face

box is very different from the training examples, recognition rates may not be

good. This can be attributed to the fact that during training, raw values of feature

components are learned. In the testing stage, these raw values may be very different

- for example, under bright illumination and heavy shadow, an intensity based

feature or even a texture based feature for a particular person will produce a vastly

different response than what was seen for the same individual during training.

On the other hand, one can expect a relative feature to perform better. Such a

feature would describe the relative variation between two individuals for the same

characteristic trait. For example, a skin color based relative feature would learn

that Person 1 has a darker skin tone than Person 2. So, even if the measured skin

tones of Person 1 and Person 2 are very different under bright illumination, the

fact that Person 1 has a darker skin tone will remain true.

Correspondingly, for features that are less dependent on color - such as the

mustache attribute - factors inherent to the imaging process can produce a similar
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Figure 4.1: Sample group photograph from the personal photo album dataset

effect. For example, assume Person 3 has a strong mustache attribute, stronger

than that for Person 4 in training images. In case of a blurry or low resolution

test image, the mustache attribute generator will have decreased confidence in its

decision about Person 3. Therefore, the mustache attribute value for Person 3 may

not be numerically as high as the value seen during training2. In the test image,

Person 4 would also have a blurry or low resolution face box and consequently low

confidence in his/her attribute value. But one can expect the relative order of the

attribute values to remain the same - i.e. mustache attribute value for Person 3

although numerically low, will still be higher than that for Person 4. It is this

relative information that we hope to capture.

In addition to higher-lower comparisons, one can also attempt to learn

2Since attributes are decision values from SVMs, low confidence would translate to an output
value closer to 0 when trained with +1 and −1 as labels
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raw values for feature components as usual. For instance, one can learn that

person 5’s frowning attribute is around 0.9 and the same attribute for person 6 is

around −0.4. In addition to this, a relative model would also learn how these two

values vary when person 5 and person 6 occur together in an image. Higher-lower

characteristics can be implicitly learned. Maybe person 5 finds person 6 annoying,

but person 6 is blissfully unaware of these feelings! A good relative model would

even be able to capture such subtle correlations.

In an attempt to build these relative models, we first consider the distribu-

tion of data in any normal dataset. As a starting point, we restrict ourselves to

building models that can capture relative information for each pair of individuals

in a dataset.

4.2 There is Always Less Group Data!

For the sake of this discussion, consider our training dataset to be a per-

sonal photo album comprised of P individuals 1, 2, · · · , P . Consequently, there

would be P (P − 1)/2 pairs of people. Let np denote the number of photographs in

which person p occurs. A regular face recognition system, building an individual

independent model for each person, would be able to use all np images to build a

model for person p. On the other hand, a relative face recognition system would

have significantly lesser data for each of its classes encompassing a pair of individ-

uals. Our decision rule in trying to identify a pair P1 and P2 from their feature

vectors ~x1 and ~x2 is essentially

〈P1, P2〉 = arg max
〈Pa,Pb〉, a6=b

P (Pa, Pb | ~x1, ~x2) (4.2)

where Pa and Pb range over all P individuals.

Although there are P (P−1)/2 pairs of individuals, for a recognition system

the order of people within a pair matters. For example, it is necessary to know

that face box 1 corresponds to person x and face box 2 corresponds to person y.

(x, y) in this case is an ordered pair. Thus, instead of P (P − 1)/2 classes, one has
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to deal with P (P −1) classes3. On an average, this implies np/(P −1) images exist

per class. There may be many relative classes with very few or no images at all.

All of this translates to the fact that each relative model will almost always have

less data to train with than the individual independent models. In the limiting

case with a large number of images, although each relative model has access to less

data than each independent model, this may no longer be a practical issue.

Drawing an analogy to our group-data and all-data qualifiers from Chapter

3, group-data may at best be the same as all-data if all images are group shots.

Group-data for an individual is a collection of all instances where the individual

appears with at least one other person. For each relative model containing this

individual and an other person, a part of the group-data containing the same two

people can be used. Thus, each relative model will have access to part of the

group-data while the baseline model will have access to all-data.

With this analysis complete, we now formulate a framework for our exper-

iments. This framework is used to evaluate both baseline and relative models.

4.3 Experiment Framework

In order to enable easy comparison of accuracy values we formulate our

baseline experiments on the same lines as those for our relative models. Specifically,

our relative models will be built to recognize a pair of individuals at once. If a

picture contains n individuals, then n(n − 1) ordered pairs are possible. Each of

these is treated as a separate recognition problem. Hence, our baseline model is

also presented with a pair of individuals in each trial. Since the baseline model

involves an independence assumption between detected faces in the same picture,

the model effectively produces two separate recognition decisions for this input pair

of individuals. Mathematically, the baseline model is presented with two feature

vectors ~x1 and ~x2 from two face boxes and tasked with computing P (Pa, Pb | ~x1, ~x2).
3The model for class (x, y) may be highly correlated with that for (y, x). It may be possible

to build one only one model - say for (x, y) - and permute the input feature vector instead to
mimic the other model. Nonetheless, the system should be capable of treating (x, y) and (y, x)
as two separate classes and it is this distinction that we wish to highlight.
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It does so using equation 4.1 by generating two separate probability estimates

P (Pa | ~x1) and P (Pb | ~x2).
As mentioned in Chapter 3, we present results on two datasets. For the

Buffy dataset, all-data represents significantly more samples than group-data.

While our relative models are forced to use group-data, the baseline models can be

trained with all-data. To mimic existing recognition systems, we train our baseline

models on all-data. At the same time, we also report results on baseline models

trained using group-data so that one may better appreciate the change in accu-

racy offered by our relative models due to their design rather than lesser training

data. In addition, when recognizing a particular pair of individuals, if no training

samples of that pair were encountered previously, we simply omit all occurrences

of this pair during testing.

In the personal photo album dataset, unlike the Buffy dataset, nearly all

images are group shots with very few containing only one individual. Preliminary

experiments failed to show a significant difference in accuracy between baseline

models trained using group-data and all-data. For improved clarity, we present

results using baseline models only trained on all-data and drop the all-data qualifier

for this dataset. Further, as mentioned in Section 3.2 we present two sets of

experiments on the personal photo album dataset - one consisting of 6 individuals

and another 12 individuals.

For both the baseline, as well as our relative models, accuracy is computed

on a per-person basis - i.e if a model recognizes one person correctly, but makes

a mistake with the other, this is counted as 1 correct recognition and 1 wrong

recognition for computing the net accuracy. In effect, the baseline models, although

trained with more data, are presented with exactly the same test samples as our

relative models. Thus, one can directly compare accuracy numbers generated by

these models.

For all future experiments, we present results using three feature vectors -

the first uses only attribute features (Section 2.1), the second only the new color

and height based descriptors (Section 2.2.2), while the third uses both.
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4.4 Nearest Neighbor Model

Our first baseline experiment involves building a nearest neighbor model

using each individual’s feature vectors. The model is simply a collection of all

feature vectors seen during training along with the corresponding person label.

In testing, when presented with a test feature vector, the model searches for the

nearest training vector using the euclidean distance metric. The identify of this

nearest vector is then assigned to the test vector. Table 4.1 presents accuracy

results.

Table 4.1: Nearest neighbor baseline accuracy (in percentage)

Buffy Photo Album
All-Data Group-Data 6 people 12 people

Attributes 50.79 45.45 85.96 81.06
Attributes + new descriptors 51.18 45.92 83.00 78.66

New descriptors only 33.36 30.53 26.10 20.28

From the table, we see that models trained using all-data for the Buffy

dataset indeed perform better than those trained on group-data. This increase is

expected due to all-data containing more samples than group-data. Also, for the

personal photo album, the 12 people subset has lower accuracy than the 6 people

subset. Due to an increase in the number of classes, the larger subset is expected

to be harder by choice. One may also see that our new color and height based

descriptors perform rather poorly on their own. Although better than random

chance, they are no match for the attribute based features. This is expected since

the 13 new descriptors were designed to be complementary to the 73 attribute

features and not meant to work on their own. For the Buffy dataset, including

the new descriptors along with attributes causes a slight increase in accuracy.

One explanation for this phenomenon is that characters in the show use carefully

planned makeup and lighting that make them appear the same across episodes.

Consequently, our color based descriptors are able to learn this and perform well.

On the other hand, there is a decrease in accuracy when the new descriptors

are included with attributes for our personal photo album dataset. Since the

new descriptors are largely based on characteristics that change drastically across
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images - such a decrease in accuracy may be expected. We hope to exploit the

information encoded in the new descriptors through our relative models later on.

4.5 Baseline Gaussian Model

An alternative to using nearest neighbor classification is to model the class

conditional density directly. One such model is a Gaussian represented as

P (Pa | ~x1) = N (µa,Σa) (4.3)

where µa is the average feature vector for Pa and Σa is the covariance for these

vectors - both computed from training examples. While we are able to estimate

a full (86 × 86) covariance matrix for the Buffy dataset in the all-data case, we

are unable to do so for other datasets which are relatively smaller in size. These

include Buffy group-data and the photo album dataset. We believe that our photo

album dataset is representative of the size of normal photo albums which in turn

are moderately sized. Hence, this problem may persist in practice. Instead of

the full covariance matrix in these cases, we learn a diagonal covariance matrix

- effectively learning each feature component as an independent one-dimensional

Gaussian. Results from this experiment can be found in Table 4.2.

Table 4.2: Gaussian baseline accuracy (in percentage)

Buffy Photo Album
All-Data Group-Data 6 people 12 people

Attributes only 56.18 46.11 87.43 79.86
Attributes + new descriptors 53.30 43.17 86.69 79.64

New descriptors only 32.15 13.16 29.06 13.02

Except for the 12 people photo album, the Gaussian model outperforms

the nearest neighbor model using attributes or attributes in combination with

new descriptors. In all 4 data partitions here, introducing our new descriptors

consistently drops recognition accuracy when compared to just using attribute

features.



Chapter 5

Building Relative Models

Our main goal in this work is to build relative face recognition models that

can benefit from naturally occurring commonalities in the face images of two or

more individuals from the same group photograph. Towards this objective, we

defined additional color and height based descriptors that can encode common

traits as part of our feature vector. We now explore various techniques of building

relative recognition models to harness this encoded information. In general, one

can build two types of probabilistic models - a conditional model and a joint model.

5.1 Building a Conditional Model

In light of the data scarcity issue (Section 4.2), one would like to retain

the more reliable individual independent model, but still add on the usefulness

of a relative model. One way to do this is to formulate the relative model as a

conditional probability model. Let the feature vectors corresponding to face boxes

1 and 2 be ~x1 and ~x2 respectively. The recognition framework for identifying two

people Pa and Pb would be

P (Pa, Pb | ~x1, ~x2) = P (Pa | ~x1) P (Pb | ~x1, ~x2, Pa) (5.1)

= P (Pb | ~x2) P (Pa | ~x2, ~x1, Pb) (5.2)

Note that equation 5.1 and equation 5.2 although mathematically the same,

may produce different results. Various ad hoc techniques can be used to combine

32
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the two estimates, including an arithmetic mean or a geometric mean.

Any suitable model can be used to estimate P (Pa | ~x1) or P (Pb | ~x2)
e.g. the Gaussian model described in Section 4.5. Unfortunately the conditional

probabilities P (Pa | ~x2, ~x1, Pb) and P (Pb | ~x1, ~x2, Pa) are both very hard to estimate

owing to the fact that both ~x1 as well as ~x2 are real valued vectors and that training

data is already scarce. Hence, it is tough to obtain even an approximate estimate

which can be used for testing.

5.2 Binary Relative Conditional Model

To bypass this problem with real valued vectors, we make a simplifying

assumption and define the conditional in terms of a relative binary feature vector.

For two input feature vectors ~xa and ~xb from two face boxes in the same image, let

~Cab denote the relative binary feature vector of ~xb with respect to ~xa defined as

Ci
ab =

{
1 if xia ≥ xib

0 if xia < xib
(5.3)

where i ranges from 1 to the total number of dimensions D of feature vectors ~xa

or ~xb.

The training phase involves learning the probability of feature component

i being greater for person a when compared to the same feature component for

person b. This training uses images where person a and person b occur in the same

photograph. Mathematically, setting z1 = count(xia ≥ xib) and z0 = count(xia < xib)

P (Ci
ab = 1) =

z1
z0 + z1

(5.4)

P (Ci
ab = 0) =

z0
z0 + z1

(5.5)

The drawback of such a counting estimate is that the probability P (Ci
ab)

can be perfectly zero if every pair of feature components compared bear the same

relationship. In practice, while a low probability value is acceptable, a perfect zero

can cause instability in decisions. Moreover, the zero probability can be seen as a

byproduct of having to work with limited data. As a quick-fix to this problem, we
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disturb each probability estimate P (Ci
ab) by a small amount using

P (Ci
ab) = P (Ci

ab) +
sign(0.5− P (Ci

ab))

z0 + z1 + 1
(5.6)

This changes the probability by a fraction 1/(z0 + z1 + 1) in such a way that

values less than 0.5 are increased and values greater than 0.5 are decreased -

moving both away from zero and one respectively. Intuitively, for each probability

estimate P (Ci
ab) we assume one additional data point that belongs to the category

with lower probability. While this technique successfully eliminates perfect zero

probabilities, it does so in a controlled manner. If the probability estimates already

counted a large number of data points, disturbing with one additional point will

not make much difference. On the other hand, when estimates are based on very

few samples, confidence on these estimates are also low. In such cases, adding one

additional point may effect a substantial but warranted change towards probability

0.5.

The conditional probability for the testing phase can now be approximated

in terms of this new metric as

P (Pb | ~x1, ~x2, Pa) ≈
i=D∏
i=1

P (Ci
ab = Ci

12) (5.7)

This involves assuming individual components of the relative binary feature vector

are independent of each other. The value for P (Pa | ~x2, ~x1, Pb) can be computed

similarly.

Intuitively, the learning phase in equations 5.4 and 5.5 learn the probability

that a particular feature component is numerically higher for one person when

compared to another. For example, if person a is male and person b female, then the

male attribute for person a will usually be higher than the male attribute for person

b. Due to various factors, this inequality may not always hold, but one would expect

the probability P (Cmale
ab = 1) to be close to 1. Correspondingly, P (Cmale

ab = 0)

would be close to 0. In case an attribute is chosen where the two individuals being

compared have nearly similar values, then both these probabilities would be close

to 0.5.

It may be noted that the above conditional approximation is used along with

the individual independent models following equations 5.1 or 5.1 or both. For our



35

experiments, the baseline estimate is provided by Gaussians described in Section

4.5. From our previous experiment, we know the baseline Gaussian using attributes

alone performs best and so, it is this model that we use. As shown in equations 5.1

and 5.2, we compute two estimates of the same quantity P (Pa, Pb | ~x1, ~x2) using

baseline models for Pa and Pb. We combine these two estimates using ad hoc fusion

techniques such as arithmetic mean and geometric mean. It is important to note

that the actual raw values of feature components are completely ignored by the

binary conditional approximation model. Results for this technique are presented

in Table 5.1.

A first glance at this table reveals the geometric mean fusion to be better

than arithmetic mean fusion. Although this is not true for the Buffy dataset when

using our new descriptors alone, the difference between these accuracies is small

compared to the overall boost from the baseline. We also notice that the geometric

mean fusion consistently provides higher accuracy than the baseline technique. The

increase is rather modest around 0.4% for the 6 people photo album and 2.5% for

the 12 people photo album. For the Buffy dataset, it is 8%.

Thus, we see an increase in accuracy when using baseline models trained

on attribute data and binary conditional models trained on our new descriptors.

Although the new descriptors are rather weak as baseline feature vectors, using

them in the conditional model does help. This shows the presence of valuable

information in color and height based descriptors that have long been ignored in

mainstream face recognition. An interesting observation is that attributes along

with the new descriptors do not work as well in the conditional model. Attribute

values are generated by SVMs, and although we consider the raw SVM output to

be an indication of the degree of presence or absence of an attribute, the SVM

is optimized for a different purpose - namely maximum margin separation. We

conjecture that this is the reason for poor performance of the conditional model

when using both attributes and our new descriptors.

As a slightly more rigorous demonstration of the accuracy increase pro-

vided by the conditional model, we perform another experiment. A baseline model

is trained with a random subset of attribute features. The number of attributes
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per subset is varied from zero to all available attributes. For each attribute subset,

a baseline recognition experiment is performed as detailed previously. Correspond-

ingly, with each baseline model thus trained, a binary conditional model trained on

all of our new height and color descriptors is used to provide a relative decision. It

may be noted that the baseline model uses a different number of attributes on each

trial, while the binary conditional model always uses all of our new descriptors.

The entire experiment is repeated 30 times and results from each run are averaged.

Figure 5.1 shows the output from this experiment for the Buffy dataset. Figure

5.2 shows results for the personal photo album with 6 people. As can be seen in

both figures, the conditional model using our new descriptors consistently provides

higher recognition accuracy than an existing baseline model. While the difference

in accuracy using a low number of attribute features is rather high, as the number

of attributes increase, the improvement provided by color descriptors diminishes as

expected. Nonetheless, even when all available attributes are used, the conditional

model still outperforms the baseline model. Specifically for the Buffy dataset, our

conditional model (using 13 color/height descriptor components) along with two or

three attribute components provides higher accuracy than baseline models using

all 75 attributes.

5.3 Building a Joint Model

Although it performs well, our binary approximation of the conditional

model completely ignores the raw value of feature components - instead looking

only at the relative higher-lower relationship between the two components. While

still working in the realm of a relative model, a joint probability model can learn

raw feature values for two individuals’ face regions as well as a correlation between

them for each feature component. As a first step, we build a nearest neighbor

model to encode joint information. For each joint model presented here, group-

data is used to train the model for both the Buffy dataset and the personal photo

album.
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Figure 5.1: Variation in accuracy with number of attributes used for baseline and
conditional models on the Buffy dataset

5.4 Nearest Neighbor Joint Model

Along the same lines as our baseline nearest neighbor model (Section 4.4),

we build a nearest neighbor model to learn the joint information between the

detected face box of two different individuals. The two feature vectors extracted

from each face box are simply concatenated together resulting in one long feature

vector which is then fed to the model. In training, the model simply retains all

such concatenated vectors for each ordered pair of individuals. Thus, with P

individuals, we learn P (P − 1) pairwise classes. With ~x1 and ~x2 as the feature

vectors extracted from each face box, if the class (Pa, Pb) is trained with (~x1, ~x2),

then the class (Pb, Pa) is trained with (~x2, ~x1). For example, when training with

just the 73 attributes, (~x1, ~x2) is a 2 × 73 = 146 element vector. For testing,

when presented with a new concatenated feature vector, the model simply finds

the nearest feature vector in its training set using a euclidean distance metric. If

this nearest feature vector belongs to model (Pc, Pd), then the first detected face

box is assigned Pc and the second Pd. Results from this experiment are shown in

Table 5.2.
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Figure 5.2: Variation in accuracy with number of attributes used for baseline and
conditional models on the 6 people photo album dataset

Table 5.2: Nearest neighbor joint model accuracy (in percentage)

Buffy
Photo Album

6 people 12 people
Attributes only 40.82 80.78 74.70

Attributes + new descriptors 40.85 78.07 70.73
New descriptors only 38.76 34.72 20.88

Compared to our nearest neighbor baseline models from Table 4.1, we notice

a decrease in accuracy in all cases except when using our new descriptors on their

own. For the Buffy dataset, one would have to compare these numbers to the Buffy

group-data baseline models that have access to the same training examples. On an

average, when using attributes alone or in combination with the new descriptors,

accuracy on the Buffy dataset and the 6 people photo album decreases 5%, while

the 12 people photo album experiences a decrease of 6% − 8%. Before proposing

an explanation for the decrease in accuracy when using attributes and the increase

when using our new descriptors alone, we also build a Gaussian joint Model.
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5.5 Gaussian Joint Model

Considering that for baseline experiments, the Gaussian model performed

better than the nearest neighbor model, here too, we try to learn a single Gaussian

for each pair of people. The input vector for such a model would again simply be

(~x1, ~x2) a concatenated version of feature vectors for two individuals (Pa, Pb). As

before, we would have to learn P (P − 1) pairwise models for P individuals in

the dataset. Unfortunately, due to data scarcity, it was observed that the full

covariance matrix for the pairwise Gaussian is inaccurate (a similar effect was

described in Section 4.5 when working with group-data for both Buffy and photo

album dataset). This is reflected in the very low recognition rates and a singular

covariance matrix.

It is important to note that this is indeed a very real problem especially

when working with joint models using personal photo albums as datasets. For

example, although a photo album may contain around 1000 images, even with 10

people there are 45 unordered pairs. Each of our feature vectors for one face box

consists of 86 components. The Gaussians are trained on two such feature vectors

concatenated together - totaling 172 components. For a non-singular estimate

of the full covariance matrix, at least 172 good photographs need to be present

for every pair of individuals - which is quite rare. While it is true that group

photographs containing a large fraction of the 10 people would help in satisfying

this requirement, it is often seen that in case of personal photo albums, the chances

of finding multiple group shots containing a large number of individuals are often

low. Even if this occurs, in many cases the photographs are highly correlated

themselves (taken a few seconds apart) and usually carry redundant information

which does not help in building a good estimate for the full covariance matrix.

To circumvent this pitfall, we take a closer look at our joint model. Assum-

ing independence between feature vector components for an individual, we only

seek to learn correlations between the same feature component for every pair of

people. This is similar in spirit to our approximate conditional models that only

compare corresponding feature components. Thus, we propose a simpler joint

Gaussian model which learns multiple 2 dimensional Gaussians for each feature
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component, for each pair of individuals. Mathematically,

P (Pa, Pb | ~x1, ~x2) =
i=D∏
i=1

N (~µab
i ,Σ

ab
i ) (5.8)

where D is again the total number of feature vector components, ~µab
i is the 2 di-

mensional mean for the concatenated vectors [xia x
i
b] seen during training, Σab

i is the

2×2 full covariance matrix for the same vectors and N (~µab
i ,Σ

ab
i ) is the single Gaus-

sian learned for feature component i for the pair of individuals Pa and Pb. Thus,

with a dataset consisting of P people, we would learn DP (P − 1) 2-dimensional

Gaussians.

A minor issue when combining multiple low probability values as a product

is one of floating point underflow. To mitigate this, we work in the log probability

space wherever possible. i.e.

logP (Pa, Pb | ~x1, ~x2) =
i=D∑
i=1

N (~µab
i ,Σ

ab
i ) (5.9)

Results for this experiment can be found in Table 5.3.

Table 5.3: Gaussian joint model accuracy (in percentage)

Buffy
Photo Album

6 people 12 people
Attributes only 51.21 85.22 79.26

Attributes + new descriptors 49.81 84.97 78.44
New descriptors only 36.88 43.84 25.52

Comparing this to the accuracy Table 4.2 we make a few observations.

When using attributes alone or in combination with our new descriptors, net accu-

racy for all datasets drop when compared to corresponding baseline versions. For

the Buffy dataset (compared to baseline all-data), there is a 3% − 5% decrease,

and for the photo album, a 1% − 2% decrease. On the other hand, when our

new descriptors are used without attributes, accuracy increases by 12%− 14% for

all datasets. For the Buffy dataset (compared to baseline group-data) and the

12 person photo album, this is double the previous accuracy. Although the base

accuracy is numerically low, we consider the substantial change in accuracy as a
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strong indication that our joint model is able to exploit relative data encoded in

our new descriptors.

To further understand the performance boost provided by our new descrip-

tors in a joint setting, we compare the accuracy of a baseline model and a joint

model both trained with just one of our new descriptors. Figure 5.3 shows results

for this experiment on the Buffy dataset. Figure 5.4 shows similar results on the 6

people personal photo album. In all cases, the height based descriptor is a single

number, whereas the other color descriptors each consist of 3 components - medi-

ans of hue, saturation and value computed for specific regions. In line with our

previous observation, while the overall accuracy of each descriptor is numerically

low, every descriptor provides a boost in accuracy when used in a joint Gaussian

model.

Figure 5.3: Comparison of accuracies provided by baseline and joint models using
our new descriptors on the Buffy dataset

Analyzing these results, we hypothesize that the reduced amount of data

available per joint model is indeed detrimental to recognition accuracy. In addition,

as noted in Section 4.2, this detrimental effect due to data scarcity will persist in

any moderately sized database. Nonetheless, there is an appreciable increase in
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Figure 5.4: Comparison of accuracies provided by baseline and joint models using
our new descriptors on the 6 people photo album

accuracy using our new descriptors alone. Also, each joint model, despite having

access to few training examples, has performance that is comparable to well trained

baseline techniques. Due to both these factors, we continue to explore techniques

in the next chapter that can boost baseline recognition accuracy using our joint

model.



Chapter 6

Baseline-Joint Fusion Techniques

For a particular pair of individuals, the joint model is trained only using

images that contain both individuals. It is common for each individual from this

pair to appear in many other photographs - alone or with others. Unfortunately,

by its very design, the joint model is unable to utilize this data while making

a decision for the particular pair of individuals considered. But when it comes

to leveraging common traits in group photographs by using our new color and

height based descriptors, joint models seem promising - sometimes even doubling

the accuracy of baseline techniques.

Ideally, one would like to combine the baseline and the joint models. The

baseline with its relatively ample training data can provide a good per-person

estimate. The joint can provide improvements in case of group photographs by

leveraging color and height descriptors. In fact this is exactly what the conditional

model is able to do following basic laws of probability. On the other hand, strict

mathematical relations that combine the joint and baseline models for making

decisions are not straightforward. Mathematically, given feature vectors ~x1 and ~x2

from two face boxes in the same image, our goal is to compute P (Pa, Pb | ~x1, ~x2).
By its very design, the joint model directly outputs this probability estimate. The

baseline model computes the same quantity as P (Pa | ~x1) P (Pb | ~x2). Both of these

represent the same quantity but under different independence assumptions, and so

it is unclear how to properly combine the joint and baseline models. Consequently,

we propose a few new techniques of our own to fuse the probability outputs from

44
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the baseline and joint models.

For all these experiments, we use the Gaussian model as our baseline and

train it on attribute features alone. As seen in Table 4.2, the highest accuracy was

obtained when working with such a setup. Also, by restricting our baseline to a

state-of-the-art feature set, we allow for our fusion techniques to be easily extended

to existing systems that ignore color and height based descriptors.

6.1 Arithmetic and Geometric Means

Borrowing our previous notation, while the joint model explicitly computes

P (Pa, Pb | ~x1, ~x2), the baseline model simply assumes that P (Pa, Pb | ~x1, ~x2) =

P (Pa | ~x1) P (Pb | ~x2). Treating these as two estimates of the same quantity, we

simply take their arithmetic mean and use this new quantity for decision making.

Table 6.1 shows results obtained using this technique. As mentioned, the baseline

technique is trained on attributes alone whereas the joint model uses the three sets

of features indicated. Also included are results obtained by taking the geometric

mean of the two quantities instead. Estimates from the joint and baseline models

were separately scaled to lie in [0, 1] before applying either technique. To do so,

estimates for all joint models were divided by the highest probability value among

them. A similar approach was used for normalizing the baseline model estimates.

One can make various observations from the table. Joint models built on

attributes in conjunction with our new descriptors are able to outperform baseline

models even with ad hoc geometric mean fusion. But there doesn’t seem to be

a consensus on one method that consistently performs well across all datasets.

For example, Geometric mean with attributes alone (for both baseline and joint

models) provides the highest accuracy for the Buffy dataset and the 12 people

photo album, but not the 6 people dataset. Before reading further into these

numbers, we present one final experiment involving a more structured approach to

fusing the joint and baseline decisions.
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6.2 Confidence Gating Technique

Since a simple technique like the geometric mean is able to provide an

increase in recognition accuracy, we explore more structured approaches hoping to

get a further boost by combing the joint and baseline decisions. Here, we present a

technique based on confidence thresholds. Given a pair of face boxes to recognize,

the attribute trained baseline model is used to obtain two probability estimates

for all individuals corresponding to each of the face boxes. For each face box,

we define a confidence metric as the ratio of the highest probability to the next

highest probability in the list of probabilities across all individuals for this face box.

Intuitively, a high value for this confidence metric would imply that the system

is not confused and is relatively sure that the face box belongs to one particular

individual. On the other hand, a low value for this confidence metric implies that

the system thinks at least two individuals are almost equally likely candidates for

this face box. The overall technique can be described using algorithm 6.1. P1

and P2 are the final recognition labels that our algorithm assigns corresponding to

feature vectors ~x1 and ~x2 respectively.

In summary, the algorithm above uses the baseline probability for recogni-

tion if it has high confidence. If one of the two probabilities among the pair has

low confidence, then the joint probability is used after fixing an identity using the

other more confident probability estimate. In case both baseline estimates have

insufficient confidence, then recognition is based purely on the joint estimate.

The confidence threshold is selected after a linear sweep performed through

3-fold cross-validation on our training set. Results for this experiment are pre-

sented in Table 6.2. To demonstrate the usefulness of our confidence metric, we

use the same confidence threshold and run a control experiment that computes

the accuracy of only those baseline test-pairs for which we have high confidence

in both individuals. When compared to the regular baseline experiments, these

experiments showed an increase in accuracy of 4% − 8%. This indicates that our

confidence metric while not perfect, can identify baseline recognition pairs that are

more likely to be correct and use the joint model for others.

From the table, we see that for the personal photo album dataset with 6 and
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Algorithm 6.1 Confidence Gating

1: Let the dataset contain P individuals 1, 2, . . . , P

2: Compute baselines P (Pa = i | ~x1) and P (Pb = i | ~x2) for i = 1, 2, . . . P

3: Compute joint P (Pa = i, Pb = j | ~x1, ~x2) for i, j = 1, 2, . . . , P ; i 6= j

4: Ca ← Confidence metric for P (Pa | ~x1)
5: Cb ← Confidence metric for P (Pb | ~x2)
6: Ct ← Confidence threshold

7: case Ca ≥ Ct AND Cb ≥ Ct

8: P1 ← arg maxi P (Pa = i | ~x1)
9: P2 ← arg maxj P (Pb = j | ~x2)

10: case Ca ≥ Ct AND Cb < Ct

11: P1 ← arg maxi P (Pa = i | ~x1)
12: P2 ← arg maxj P (Pa = P1, Pb = j | ~x1, ~x2)
13: case Ca < Ct AND Cb ≥ Ct

14: P2 ← arg maxj P (Pb = j | ~x2)
15: P1 ← arg maxi P (Pa = i, Pb = P2 | ~x1, ~x2)
16: case Ca < Ct AND Cb < Ct

17: (P1, P2)← arg max(i,j) P (Pa = i, Pb = j | ~x1, ~x2)

12 people, joint models trained on attributes and our new descriptors provide the

best improvement over baseline accuracy. Thus, our joint models are successfully

able to extract additional correlations from attributes and our new color and height

based descriptors. Further, our confidence gating technique is able to effectively

combine the joint and baseline decisions into a final better decision. On the Buffy

dataset, the best joint model uses only attributes. As mentioned previously, even

when working with attributes, the joint model can learn implicit correlations that

arise due to common lighting, camera response, etc.

6.3 Summary of Results

Table 6.3 presents a consolidated view of the best accuracies attained and

corresponding features used for each of the baseline, conditional and joint models.
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When baseline models are used along with the conditional and joint models, they

are trained using the best performing feature for independent recognition - which

happens to be attributes alone.

Table 6.3: Summary of accuracy using various techniques (in percentage)

Model Accuracy
Features used

Attributes New Descriptors

Buffy
Baseline 56.18 X

Conditional 64.63 X
Fused joint 57.21 X

Photo Album Baseline 87.43 X
(6 people) Conditional 87.80 X

Fused joint 88.42 X X
Photo Album Baseline 79.86 X

(12 people) Conditional 82.33 X
Fused joint 81.66 X X



Chapter 7

Conclusions

Face recognition systems have always built models for each individual in

isolation. When presented with a group photograph, such systems assume statisti-

cal independence between detected faces. We observe various naturally occurring

commonalities between face regions in the same image - all of which seem to in-

validate this assumption. These commonalities include lighting, ground planes,

direction of shadow and gaze etc. We take a first step in transcending the inde-

pendence assumption and encode the commonalities using a few new color and

height based descriptors of our own. The variations that our descriptors capture

have largely been considered hindrances to face recognition and completely ignored

by many systems. In addition to the new descriptors, due to the unconstrained

nature of natural images, we also use state-of-the-art attribute based features.

We propose two models that recognize pairs of individuals at once from

a group shot. The first conditional probability model is based on higher-lower

comparisons of feature components and it uses probability outputs from existing

baseline techniques during its decision making. This makes it feasible to be added

on as a module in existing systems - providing a boost in recognition accuracy in

case of group shots. The second model that we build captures joint probability

information and models correlation across the same feature components for two

people.

Evaluating performance, we see that our new descriptors generally cause a

decrease in recognition accuracy when combined with attribute features used in a
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baseline model. Thus, simple existing systems that assume statistical independence

between faces are unable to use the new color and height information. On the other

hand, the conditional probability model is able to exploit information in the new

descriptors and consistently produces a boost in recognition accuracy. Although

the joint probability model encounters an increase in accuracy when using the new

descriptors, it takes a hit due to data scarcity - which causes the overall accuracy to

be less than baseline techniques. We believe that with increasingly cheap storage

and image capture technologies, a day may not be far when the data scarcity

problem disappears. But for the time being, we show that fusing the joint decision

with baseline decisions using a confidence gating technique can be effective.



Chapter 8

Future Work

Future work in this direction can be geared towards a few broad areas.

First, it may be possible to formulate additional descriptors that can bring out

various similar traits that occur naturally in group photographs. On a tangential

note, such descriptors need not be restricted to the face region alone. It may be

possible to generate clothing and body descriptors in a similar fashion.

Another avenue is to make the relative models better. Data from group

photographs is usually scarce and so better techniques that squeeze more infor-

mation from existing data may be warranted. While we consider simple nearest

neighbor and Gaussian models, one may attain higher accuracies using multi-class

discriminative classifiers. Also, it may be possible to combine joint estimate with

the baseline in better ways.

Attacking the problem of data scarcity head-on would include building sys-

tems that can learn from a single training image for each individual or a single

image for a group of individuals.

It may be possible to infer relative information by transitivity. For example,

although two people may never be seen together in group shots, if each of them

has been photographed with a common third person, then it may be possible to

transitively infer relationships between feature components of these two people.

As an extension to this, it may be possible to use transitivity relations through

multiple individuals - although one would expect such inferred relations to get

worse with longer transitive chains.
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Finally, while we deal with pairs of people, it may be possible to use esti-

mates from all pairs in an image to form an overall recognition decision for each

person. Also, instead of pairwise models, models describing three of more indi-

viduals may be possible. Our initial calculations show an exponential increase in

the complexity of this problem with increasing group sizes. But perhaps a simpler

consensus strategy is possible.
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