
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Identification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand 
That Drives Th22 Differentiation

Permalink
https://escholarship.org/uc/item/472365t0

Author
Lowe, Margaret

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/472365t0
https://escholarship.org
http://www.cdlib.org/


Msssifesi^ sa£^$$gta^ M|tjstt-i j 



 !!"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Copyright (2013) 

by 

Margaret Lowe 

 

 
 
 



 !!!"

ACKNOWLEDGEMENTS 

 My thesis advisor, Mike McCune, deserves so many thanks for pushing me forward, 

mentoring me, and allowing me to thrive in his lab. I have learned so much from him, both in 

terms of being a scientist and being a better person. Thank you, also, to all of Gradical. Chris, 

Liz, Ivan, Avantika, Yelena—I don’t know what I would be doing without you all, and I don’t 

want to find out. Thank you to my PSPG mentors, teachers, colleagues, and friends, for helping 

me find my place in a new city. To my parents—if there were ever proof of the value of telling 

your child she can be anything she wants, this is it. Thank you for letting me loose on the world. 

Thank you to my faithful companion, Pearl, for teaching me to not be afraid of being bitten. To 

Miguel, thank you for loving me and supporting me at the most difficult of times. And also for 

driving me to the lab on weekends. Last of all, to my grandma, Coby Wise. I love you and I miss 

you. You are the toughest person I have ever known, and you are my inspiration.  

 
 
 
 
 
 

 

 

 

 

 

 

 

 
 



 !#"

CONTRIBUTIONS OF CO-AUTHORS TO THE PRESENTED WORK 

 
 A revised version of Chapters II through IV is in submission as “Identification of 

Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives Th22 

Differentiation” at PLoS One. The co-authors on this publication are Jeff E. Mold1, Bittoo 

Kanwar1,2, Yong Huang3, Alexander Louie3, Michael P. Pollastri4, Cuihua Wang4, Guatam Patel4, 

Diana G. Franks5, Jennifer Schlezinger6, David H. Sherr6, Allen E. Silverstone7, and Mark E. 

Hahn5. Joseph M. McCune1 supervised the work. 

  
1From the Division of Experimental Medicine, Department of Medicine, University of 
California, San Francisco, CA 94110, USA. 
2Division of Gastroenterology, Department of Pediatrics, University of California, San 
Francisco, CA 94110, USA. 
3Drug Studies Unit, Department of Bioengineering and Therapeutic Sciences, University 
of California, San Francisco, CA 94808, USA 
4Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 
02115, USA 
5Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, 
USA 
6Department of Environmental Health, School of Public Health, Boston University, 
Boston, MA 02118, USA 
7Department of Microbiology & Immunology, SUNY Upstate Medical University, 
Syracuse, NY 13210, USA. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 #"

Identification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor 

Ligand That Drives Th22 Differentiation 

 

Margaret Lowe 

ABSTRACT 

 

The aryl hydrocarbon receptor (AHR) is a cytosolic transcription factor that recognizes 

and induces metabolic enzymes in response to a wide variety of xenobiotics. However, more 

recently the AHR has been proven critical in a diverse array of biological processes, including 

organ development, circadian rhythm, and immune response. In particular, AHR activation has 

been shown to affect T cell differentiation for both inflammatory T cells that produce IL-17 

(Th17) and IL-22 as well as regulatory T cells (Treg) involved in tolerance. Given that the 

balance between inflammatory and immunoregulatory T cells has been implicated in 

pathological processes in contexts such as HIV infection and autoimmunity, understanding the 

role AHR and its ligands play in immune cell diffentiation is critical. While environmental AHR 

ligands can alter T cell differentiation, endogenous ligands are likely to be more relevant in host 

immune responses. We investigated downstream metabolites of tryptophan as potential AHR 

ligands because (1) tryptophan metabolites have been implicated in regulating the balance 

between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives 

of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the 

AHR and to alter T cell differentiation. We report that the tryptophan metabolite, cinnabarinic 

acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells 

producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan 

metabolites and define stimulation conditions that lead to CA production from immune cells. Our 
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findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR 

agonist with potentially broad biological functions. 
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CHAPTER I: INTRODUCTION 

Activation of the aryl hydrocarbon receptor (AHR) within the immune compartment can 

dictate numerous, diverse immune responses in a ligand-specific manner. Given that such 

responses can range from immunosuppressive to immunostimulatory, understanding which 

ligands are available during a local immune response becomes critical to predicting the outcome 

of such a response. Interestingly, numerous tryptophan derivatives and metabolites have been 

identified as AHR ligands, and tryptophan metabolism is also tightly regulated in the context of 

immune activation. Given that induction of tryptophan metabolism is also associated with poorer 

outcomes in HIV infection, identifying the immunological effects tryptophan metabolites exert 

through AHR activation may allow for a better understanding of the immune response to HIV 

infection. 

 

Part A: The aryl hydrocarbon receptor and immune response 

 

The transcriptional activity of the AHR 

The AHR is a cytosolic transcription factor that was initially identified as a xenobiotic 

sensor, upregulating metabolic enzymes in response to foreign compounds such as 2,3,7,8-

tetracholrodibenzo-p-dioxin (TCDD)  (1). Upon binding to a ligand, the AHR dissociates from 

its cytosolic binding partner, Hsp90, and enters the nucleus. There, it associates with the AHR 

nuclear translocator (ARNT) and binds to characteristic nucleotide sequences, referred to as 

dioxin-response elements (DREs), within the promoter of responsive genes  (2). Such genes 

include metabolic enzymes cytochrome P450 1A1 (CYP1A1), CYP1A2, NQO1, and ALDH3A1  

(3). However, AHR-driven gene transcription can occur independently of binding to consensus 
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DREs and recruitment of ARNT  (4), and there is considerable cross-talk with other cell 

signaling pathways  (3), making complete characterization of AHR functional activity difficult. 

In addition to the effect of AHR on metabolic genes, additional AHR gene batteries affecting 

diverse pathways including cell cycle regulation, cardiovascular function, calcium regulation, 

and immune response have been described  (5,6).  

Though AHR orthologs exist within most vertebrates as well as some non-vertebrate 

species, sequence identity and ligand responsiveness can be highly divergent even between 

closely related species  (7). Indeed, the initial discovery of the AHR was facilitated by 

polymorphisms existing between strains of inbred mice: C57BL/6 mice showed increased 

hydroxylase activity in response to dioxin while DBA/2J mice did not  (8). Interestingly, the 

selectivity of AHR for ligand in humans may be more similar to the allele expressed in DBA/2J 

mice  (9). Therefore, when considering translation to human biology, care must be taken in 

results obtained from mouse models. Fortunately, within human populations, only 

polymorphisms within the AHR with relatively minor effects on drug metabolism and response 

have been described to date  (10,11).  

 

Ligand specific effects of AHR activation 

 The ligands that can bind to and activate the AHR are highly structurally diverse. Planar, 

hydrophobic compounds structurally similar to TCDD, as well as nonplanar, polar compounds 

have been shown to have AHR-dependent effects on gene transcription. Not only may diverse 

ligands activate the AHR, they may do so with highly differential outcomes. Characterization of 

the immediate transcriptional effects of multiple AHR ligands has revealed that the majority of 

responses are not shared between ligands  (12). The mechanism of this transcriptional diversity is 
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still being investigated. Some groups have described changes in preference of the AHR for 

different promoter response elements by specific ligands  (13). However, when Degroot et al. 

characterized the DNA sequences bound by AHR when activated by six structurally diverse 

ligands, little to no diversity in promoter response element recognition was found among the 

ligands tested  (14), indicating some additional mechanism must account for the differential 

effects seen in this group of ligands.  Differential recruitment of co-activators by different AHR 

ligands has additionally been observed  (15). Additionally, effects of AHR activation can vary 

between cell types  (16), making comparisons between studies within different systems 

challenging. Therefore, the end result of AHR activation by a particular ligand may prove 

difficult to predict. 

 

Endogenous ligands of the AHR 

 Though xenobiotic compounds have important effects on AHR activity, studies in AHR 

knockout mice have revealed roles of AHR activation in development and initiated interest in 

endogenous ligands for the AHR  (17). Though independently generated AHR knockout lines 

have exhibited some distinctive phenotypes, universally observed effects include a reduction in 

liver size, abnormal liver development, reduced body size as neonates, and lower constitutive 

expression of certain metabolic enzymes such as Cyp1a2  (18). More recently, a requirement of 

AHR expression for certain immune development and response pathways has been described. 

AHR-/- mice are greatly diminished in their capacity to produce IL-22  (19), and AHR expression 

is critical for the development of certain gastrointestinal immune structures  (20,21). Though 

some of the ligands responsible for this development are diet-derived  (21), removal of such 
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compounds does not affect all AHR-dependent immune cell subsets  (20). Therefore, the ligands 

responsible for AHR-driven immune development still demand investigation. 

 Numerous compounds have been described as endogenous activators of the AHR  (22). 

Some, such as 2-(1!H-indole-3!-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), have 

been detected in tissue isolates, though the biosynthetic pathway for this compound remains 

undescribed  (23). Others, such as 6-formylindolo[3,2-b]carbazole (FICZ), are potentially formed 

as a result of oxidative processes; UV irradiation of tryptophan may catalyze FICZ formation 

within the skin, though its effects may extend throughout the body  (24,25). More recently, 

kynurenic acid and L-kynurenine, metabolites derived directly downstream of tryptophan, have 

been shown to activate the AHR  (26,27). Due to the large number of products that may interact 

with the AHR, many of which are tryptophan-derived, the overall control of AHR-related 

activity may stem from the sum of several ligands instead of one sole regulator. 

 

Regulation of AHR expression and response within the immune compartment 

As previously mentioned, since the initial characterization of the AHR, multiple roles for 

this transcription factor in immune development and response have been identified  (28). AHR 

expression within the immune compartment is highly regulated from the first stages of immune 

cell differentiation. Hematopoietic stem cells express AHR, and AHR signaling regulates their 

homeostatic proliferation and differentiation  (29,30). Dendritic cells, monocytes, and 

macrophages also can respond to AHR ligands; AHR activation has been shown to alter 

monocyte-derived macrophage and dendritic cell maturation  (31,32). However, the response to 

AHR activation in different immune cell subsets is not identical; the AHR-dependent gene 

battery has little overlap between dendritic cells and T cells  (6).  
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Within CD4+ T cells, AHR expression is tightly controlled through development. In naïve 

cells, AHR expression is low; activation, particularly with the addition of Th17 polarizing 

cytokines such as IL-6 and TGF!, upregulates AHR expression  (19,33). More recently, AHR 

up-regulation under Th17 driving conditions has been ascribed to action of the transcription 

factor, Ikaros, through alterations in methylation at the AHR promoter  (34). Th17 driving 

conditions are not solely responsible for AHR expression changes following naïve CD4 T cell 

activation. Treg driving conditions also lead to AHR up-regulation, as does IL-27, an 

immunosuppressive Tr1-driving cytokine  (35,36). Given that AHR expression may occur in 

both inflammatory and immunoregulatory states, it is not surprising that AHR ligands have 

important effects on T effector cell differentiation. 

 

Effects of AHR activation on T cell differentiation 

 Both xenobiotic and endogenous AHR ligands have been shown to affect the immune 

response, though often through highly distinct, ligand-specific mechanisms. In particular, 

differentiation of T cells into inflammatory Th17/Th22 cells or immunosuppressive regulatory T 

cells (Treg) may both be influenced by AHR activation (see Table 1).  

 TCDD was one of the first AHR ligands reported to induce differentiation of T cells into 

Tregs in vitro and in vivo  (37). Initially, it was postulated that Tregs might be less sensitive to 

the apoptotic effects of TCDD and would accordingly expand in a preferential manner due to the 

indirect effects of TCDD toxicity. However, data revealing that AHR-/- mouse-derived T cells 

are less effective at differentiating into Tregs in vitro and evidence of epigenetic modification of 

the Foxp3 promoter by TCDD both lend credence to a direct effect of TCDD, and potentially 

other AHR ligands, on Treg differentiation  (33,38). Therefore it is not surprising that other AHR 
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ligands, including L-kynurenine, ITE, 3,3'-diindolylmethane, and indole-3-carbinol also promote 

Treg differentiation through AHR activation  (27,39,40). 

 While many AHR ligands induce immunosuppression, partially through increasing Treg 

differentiation, others have an alternate effect on immune function. Th17 cells are inflammatory 

effector T cells that secrete cytokines such as IL-17, IL-22, IL-21, and IL-23 in order to promote 

activation and recruitment of other immune cells, including neutrophils, to sites of inflammation  

(41). Notably, the tryptophan photoproduct, FICZ, has been shown to increase Th17 

differentiation both in vitro as well as in vivo in mouse models of multiple sclerosis and colitis  

(19,42). Interestingly, the increase in Th17 cells in the multiple sclerosis model resulted in 

greater pathology, while in the context of colitis they were beneficial, suggesting pathological 

outcome of AHR activation also depends upon the greater context of the inflammatory disease in 

question. Other AHR agonists that increase Th17 differentiation include indoxyl 3-sulfate and !-

naphthoflavone  (43,44). 

 Though traditionally characterized as a Th17 related cytokine, IL-22 is sometimes 

expressed independently of IL-17 within CD4+ T cells as well as within innate cell subsets such 

as innate lymphoid cells (ILCs) (reviewed in  (45)). The mechanism of AHR-driven IL-22 

production appears to be due to ROR"t-facilitated recognition of DREs in the Il22 promoter  

(46). AHR activation does not necessitate that IL-17 and IL-22 are co-produced. Some ligands, 

such as microbiome-derived indole-3-aldehyde, appear to have a stronger effect on IL-22 

production than on IL-17 production  (47). Other AHR ligands appear to increase IL-22 while 

having neutral or suppressive effects upon IL-17. The small molecule VAF347 increases IL-22 

through AHR activation without IL-17 induction  (48). Additional studies have also reported 

induction of Tregs by VAF347  (49). The functional effects of VAF347 may therefore be more 



 +"

similar to TCDD than to FICZ; a case report of TCDD exposure in a human patient also 

demonstrated expansion of IL-22 producing T cells in vivo  (50). 

 It is important to note that the effects of certain AHR ligands on T cell differentiation 

may be driven additionally by effects on innate immune cells. Treatment with ITE was protective 

for mice in a multiple sclerosis model through generation of immunosuppressive dendritic cells 

that expanded Tregs in vivo  (39). VAF347 not only directly increased IL-22 production in naïve 

T cells, but also programmed monocyte-derived dendritic cells to polarize naïve T cells towards 

IL-22 production  (48). Notably, the immunosuppressive effects of VAF347 in an allograft 

tolerance model was also mediated by AHR-dependent effects on both dendritic cells and T cells  

(49). It will be interesting to determine whether additional ligands with known immunological 

effects have similar functional activity in other compartments of the immune system. 

  

Part B: Indoleamine 2,3 dioxygenase (IDO) and immune response 

 Several known AHR ligands are tryptophan derivatives (such as the photoproduct FICZ) 

or tryptophan metabolites (i.e. kynurenic acid and L-kynurenine) produced downstream of the 

interferon-induced tryptophan metabolic enzyme indoleamine 2,3-dioxygenase (IDO). IDO 

activation has long been known to be important in regulating inflammatory immune responses in 

multiple diverse contexts. Thus, understanding the biology of the tryptophan metabolic pathway 

is critical for dissecting the roles of these AHR metabolites in immune function. 

 

Regulation of IDO expression and activity 

 In humans, three enzymes are capable of catalyzing the irreversible, rate-limiting 

conversion of the non-essential amino acid tryptophan into N-formyl kynurenine: indoleamine 
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2,3-dioxygenase 1 (IDO1), IDO2, and tryptophan 2,3-dioxygenase (TDO)  (51). In general, TDO 

has been described as a constitutive regulator of tryptophan concentrations in peripheral blood 

and is expressed primarily in the liver, while IDO1 expression appears to regulate tryptophan 

metabolism locally within tissues in response to inflammatory stimuli  (52). IDO1 expression 

and activity have been observed within the eye, the placenta, the kidney, within astrocytes and 

microglia in the CNS, as well within antigen-presenting cells including macrophages and 

dendritic cells  (53-58). An enzyme closely related to IDO1, IDO2, is less completely 

characterized. IDO1 and IDO2 appear to be expressed in similar organs, such as the kidney, but 

within distinct cell types within tissues  (59).  

IDO1 expression is induced by inflammatory signals provided by stimuli including 

interferon-gamma (IFN!) or lipopolysaccharide (LPS), but through independent pathways  (60). 

IDO2 expression does not appear to be similarly affected by interferon signaling: IFN! deficient 

mice maintain IDO2 expression, and IDO2 is not induced during malaria infection  (59). 

Interestingly, AHR agonists are also capable of increasing both IDO1 and IDO2 expression 

within bone marrow-derived dendritic cells  (27,61). However, IDO expression does not always 

parallel functional activity. For instance, though both IDO1 and IDO2 mRNA and protein may 

be induced in B cells, consumption of tryptophan under such conditions was not observed  (62). 

Even within monocyte-derived macrophages and dendritic cells, which are both known to be 

capable of functional IDO1 expression, induction of mRNA and detection of protein did not 

necessarily lead to metabolism of tryptophan  (63-65). Potentially, this may be due to either 

failure of the cells to transport extracellular tryptophan for catabolism or additional mechanisms 

modulating IDO translation and activity. Some post-transcriptional and post-translational 
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regulatory mechanisms for IDO1 that have been observed in vitro include inhibition by nitric 

oxide and, separately, TGF"  (66,67).  

Given the relative paucity of information on IDO2 and because much work relating to 

tryptophan metabolism was conducted before its identification, the rest of this discussion will use 

the term “IDO” to describe in general the metabolism of tryptophan to kynurenine occurring 

within immune cells, which is assumed to be mostly mediated by IDO1. 

 

Effects of tryptophan deficiency through IDO induction on the immune response 

IDO induction within the immune compartment was initially understood to be a 

protective antimicrobial mechanism through its capability to affect local tryptophan 

concentrations  (56). Monocytes, exposed to stimuli such as IFN-" or lipopolysaccharide (LPS), 

are able to remove tryptophan from the microenvironment through upregulation of IDO. 

Bacteria, dependent upon exogenous tryptophan for proliferation, are unable to compensate for 

this loss. However, local depletion of tryptophan does not only suppress proliferation of bacteria, 

but also the proliferation of cells of the immune system, such as T cells. IDO activity was first 

found to be immunosuppressive within the context of maternal-fetal tolerance  (68). Inhibition or 

genetic deletion of IDO led to immune rejection of an allogeneic fetus. This immunosuppressive 

effect of IDO was solely ascribed to depletion of tryptophan from the microenvironment of 

proliferating immune cells, which resulted in activation of a sensor of amino acid deficiency in 

lymphocytes  (69). 

 

Effects of metabolites downstream of IDO on the immune response 
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However, further research found that IDO could exert immunosuppressive effects beyond 

those caused by tryptophan depletion. Terness et al. showed that metabolites generated 

downstream of IDO are capable of affecting the immune response through cytotoxic effects that 

inhibit proliferation in vitro  (70), while Jasperson et al. demonstrated that administration of a 

mixture of kynurenine metabolites prevents immunorejection in a graft-versus-host disease 

(GVHD) model  (71). Platten et al. likewise reported that such metabolites were capable of 

treating an autoimmune model of multiple sclerosis  (72). 

While kynurenine metabolites were initially characterized as generally 

immunosuppressive and often administered in combination within disease models, individual 

metabolites appear to have unique effects. Thus, L-kynurenine (L-KYN) has been shown to 

activate the AHR and to induce differentiation of T cells into regulatory T cells (Treg)  (27). 3-

hydroxyathranilic acid (3-HAA), likewise, has been shown to increase Tregs, and has also been 

shown to suppress IL-17 production  (73,74). Kynurenic acid (KYA) has also been shown to 

activate the AHR, yet it increases IL-6 production and has not been shown to have an effect on 

Tregs  (26). The diverse effects of these tryptophan metabolites makes understanding the sum 

effect of IDO induction difficult.  

 

Regulation of metabolism downstream of IDO within the immune compartment 

The tryptophan metabolic pathway (see Figure 1) downstream of IDO branches 

extensively, and the degree to which other metabolic enzymes are regulated in the immune 

compartment remains incompletely understood. Within primary human macrophages and 

monocyte-derived cell lines, many enzymes (including kynurenine 3-hydroxylase, kynureninase, 

and kynurenine aminotransferase) are expressed and functional at baseline and are not affected 
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by IFN-" stimulation  (75,76). Interestingly, while cells derived from non-immune tissues (i.e., 

lung and brain) are capable of kynurenic acid formation, kynurenine 3-hydroxylase, 

kynureninase, or 3-hydroxyanthranilate 3,4 dioxygenase activity have only been observed in 

immune tissues, indicating that these metabolic pathways may be of particular immunological 

importance. Though most of these enzymes are poorly characterized within the T cell 

compartment, one report has shown Th17 cells to preferentially express kynurenine 

monoxygenase, which appears to have an inhibitory effect on IL-17 production potentially 

through regulating metabolites downstream of IDO  (77). Establishing the activity of tryptophan 

metabolic enzymes in specific cell subsets during the immune response will help to predict the 

influence of tryptophan metabolites. 

 

Part C: The relationship between HIV infection and IDO expression 

 

Targets for Therapeutic Agents in HIV Infection 

Infection with HIV in humans and SIV in non-human primates leads to numerous 

immunological changes in response to viral presence. Certain species of non-human primates, 

such as African green monkeys and sootey mangabeys, do not develop pathology such as loss in 

CD4+ T cells, despite sustained viral loads. Conversely, rhesus and pigtail macaques develop a 

clinical disease that is similar to that which occurs in the majority of people infected with HIV, 

namely a long-term loss in CD4 counts coupled with a progressive rise in viral load  (78). 

Though most HIV-infected patients, without treatment, will progress to end-stage AIDS, 

the clinical progression of these patients exists on a spectrum. Some patients infected with HIV 

will control virus without therapy, while others will progress much more rapidly, in spite of 
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adequate treatment  (79). Some potential genetic causes for such diversity in response, such as 

protective or deleterious HLA alleles, have been identified; aggressive, early treatment regimens 

consisting of Highly Active Anti -Retroviral Therapy (HAART) have also been demonstrated to 

lead to better prognosis long-term. 

However, the differences between HIV-infected patients who progress and those who do 

not remain incompletely understood; in parallel, the differences between pathogenic and non-

pathogenic monkey models of SIV infection are not fully grasped. Identifying such differences 

would potentially identify novel targets for treating the immunological deficits that develop 

following HIV infection. 

 

HIV and tryptophan metabolism 

Decreases in serum tryptophan concentration in HIV-infected patients have been noted as 

early as 1990  (80). Fuchs et al. later correlated this degradation of tryptophan with increased 

serum IFN-" in HIV-infected patients  (81). This link between IFN-" and tryptophan degradation 

led to the hypothesis that interferon-driven induction of IDO was responsible for these 

observations. Though induction of IDO during the course of HIV infection was implied by these 

findings, direct evidence of this was not demonstrated until ten years later. Grant et al. infected 

human monocyte-derived macrophages (MDM) in vitro, finding that certain strains of HIV 

transiently induced both IDO protein expression and activity  (82). Direct evidence of IDO 

induction in HIV-infected patients did not arrive until Boasso et al. demonstrated increased IDO 

mRNA in patients versus non-infected controls  (83). Conversely to what had been previously 

hypothesized, Boasso et al. showed that blocking interferon in vitro did not abrogate IDO up-

regulation, indicating HIV is able to induce IDO through some other mechanism.  
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The relationship between IDO expression and HIV appears to be bi-directional. The 

presence of virus is directly responsible for IDO induction and, as expected, adequate treatment 

of HIV and viral suppression restores to some degree the normal ratio of tryptophan to 

kynurenine in the serum  (84). However, inhibition of IDO also appears to have some effect on 

HIV; in a pathogenic SIV monkey model, monkeys treated with anti-retroviral therapy (ART) 

and with an IDO inhibitor had lower viral loads than monkeys treated with ART alone  (85).  

Interestingly, induction of IDO in the context of HIV and SIV infection does not follow a 

uniform pathway. In both non-pathogenic and pathogenic acute SIV infection models, IDO is 

induced. However, following acute infection, non-pathogenic monkey models show reduced 

IDO expression, in contrast to pathogenic monkey models in which IDO expression is sustained  

(86,87). Given that IDO expression and activity are correlated with viral load  (88), it is not 

surprising that humans infected with HIV who sustain higher CD4 counts have lower mRNA 

expression of IDO as compared to noncontrollers  (89). Finally, IDO activity, as measured by the 

ratio of kynurenine to tryptophan (K/T ratio), is predictive of loss of CD4 cells in progressive 

HIV infection  (73). Therefore, understanding the biology of tryptophan metabolism in the 

context of the immune response to HIV could provide additional targets for therapy as well as 

better explain why patients experience different outcomes following HIV infection.  

 

HIV and T cell differentiation 

 Given that chronic viral infection results from the failure of the adaptive immune system 

to adequately clear virus, the immunological changes induced by HIV upon the T cell 

compartment are of considerable interest. Observations in both tissues and peripheral blood, in 

acute and chronic infection, and in human patients as well as SIV model systems have revealed 
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sustained immune activation to be a predictor of progression to AIDS (reviewed in  (90)). 

Multiple studies have been conducted to understand the stimuli that continue to influence 

immune activation, even when virus is absent in the peripheral blood. 

Early events during infection appear to set the stage for such a chronic inflammatory 

state. One contributing factor may be inflammatory signals from impaired gastrointestinal barrier 

function. Prior to widespread availability of HAART, gastrointestinal pathology, including 

changes in gastrointestinal permeability, was frequently noted in HIV-infected patients  (91,92). 

These detrimental changes begin early during the course of infection  (93,94). A depletion of 

CD4+ T cells from gut-associated lymphoid tissue (GALT) has been noted during the first 

months of infection and precedes the loss of peripheral blood CD4+ T cells  (93,95,96). This loss 

is not always restored by administration of HAART, despite adequate recovery of peripheral 

blood CD4 counts. However, early administration of HAART may in some cases allow for 

eventual complete recovery of CD4s in the GALT  (97). Like the peripheral blood, immune cells 

in the GALT also develop increased markers of immune activation  (98,99). PD-1+CD38+ CD4+ 

and CD8+ T cells were both significantly increased in frequency in the GALT and in the 

peripheral blood in HIV non-controllers versus seronegative controls  (98). Similar 

gastrointestinal dysfunction was found in SIV pathogenic models  (95,100). As in human 

patients, mucosal CD4+ T cells were restored by early ART  (101), and changes in immune 

activation markers have also been noted  (102). 

Multiple groups have noted that the loss of CD4 T cells from the gut mucosa corresponds 

to an alteration in the subsets of immune cells that are present  (87,103,104). Changes in the 

frequency of immunosuppressive Tregs versus IL-17 and IL-22 producing Th17 and Th22 cells 

could potentially have a large impact on systemic immune responses through their modulation of 
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the gut mucosal barrier. Observations relating to these subsets in the context of HIV and SIV and 

their correlated impact on gut and peripheral immunity are described in further detail below. 

Treg. Despite an overall loss of CD4+ T cells in the peripheral blood and tissues during 

the course of HIV infection, a relative expansion of Tregs has been observed in both the 

peripheral blood and tissues in multiple studies. Untreated HIV-infected patients and SIV 

infected monkeys both exhibit increases in Treg accumulation in tissue, which corresponds to 

higher IDO expression; this accumulation of Tregs was corrected after administration of HAART  

(98,105,106). However, not all studies have resulted in identical findings; Mozos et al. observed 

increased Tregs in the peripheral blood with unchanged FOXP3 protein expression in lymphoid 

tissue  (107). The relatively lower and more heterogeneous viral loads within that cohort could 

explain such a discrepancy; indeed, patients able to control HIV viremia without therapy have 

also exhibited lower Treg frequencies  (108,109). Finally, greater sensitivity to Treg-mediated 

suppression may in some cases compensate for reduction in Treg numbers  (110).  

The means by which Tregs may influence HIV disease progression are still being 

investigated. Though Tregs are capable of being infected by HIV and are therefore a potential 

reservoir for virus  (111), they are not preferentially infected above other CD4 cell subsets  

(112). Putative Tregs (identified as CD4+CD25+ cells) from patients infected with HIV are 

capable of suppressing HIV-specific T cell responses, leading to the hypothesis that an expansion 

of tolerogenic Tregs allows for viral persistence  (113-115). Additionally, Tregs expanded in the 

context of HIV may suppress IL-2 production of activated T cells, which has been previously 

shown to inhibit HIV-specific T cell responses  (116,117). 

The mechanism of this expansion of Tregs following HIV infection is incompletely 

described. Altered methylation patterns within the gut mucosa that correlated with increased 
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FOXP3 expression have been observed in cells from infected patients  (118). HIV itself appears 

to have a direct effect on the suppressive function and survival of Tregs  (119). Finally, changes 

in tryptophan metabolism caused by induction of IDO may influence Treg differentiation in the 

context of HIV  (73,120). In particular, the tryptophan metabolite, 3-HAA, was found to expand 

Tregs in vitro; interestingly, it did so while concurrently suppressing IL-17 production, which 

also plays a critical role in the context of HIV. 

IL-17. An expansion of Tregs is not the sole change in T cell subsets that has been 

observed during HIV infection. The depletion in CD4+ T cells in the gut mucosa is reflected by a 

relatively greater loss of Th17 cells that serve as key regulators of mucosal immune homeostasis, 

a loss that correlates with markers of immune proliferation in the periphery  (121,122). Similar to 

what has been observed in human patients, reductions in Th17 cells in the gut mucosa have also 

been observed in SIV models  (87). This reduction may have an effect on disease progression, as 

viral load appears to be negatively correlated with Th17 frequency in both humans and monkey 

models  (123,124).  

This alteration of Th17 cells within the gut mucosa is thought to lead to ineffective 

regulation of the gut microbiota. Not only are Th17 cells important in mediating pro-

inflammatory responses to defend against pathogens, they may also gain the capacity within the 

intestine to limit their own inflammatory effects, allowing for resolution of inflammation  (125). 

Up-regulation of IL-17 within the lamina propria in response to Salmonella infection has been 

shown to be blunted in SIV infection; greater bacterial dissemination within these monkeys as 

well as in Salmonella infected IL17ra-/- mice was also observed  (126). Additionally, markers of 

microbial product translocation and damage to the gastrointestinal epithelium have also been 

found in the context of SIV models and HIV infection  (102,127). Lacking the capability of 
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protecting the gastrointestinal barrier following a loss of Th17 cells, HIV-infected patients may 

be exposed to a greater burden of inflammatory stimuli. 

Given that Th17 cells and Tregs exert opposing effects on the immune response, several 

groups have begun to look at the ratio of Th17 to Tregs within HIV and SIV models  

(73,87,128). The Th17 to Treg ratio in both the peripheral blood and gastrointestinal mucosa is 

correlated with markers of immune activation in HIV; Chevalier et al. additionally found it to be 

predictive of CD8 T cell activation six months later  (128). Likewise, in monkey models, the 

relative proportion of inflammatory Th17 cells to immunosuppressive Tregs within peripheral 

blood, lymph nodes, and colon following SIV infection also correlates to markers of proliferation  

(87). Therefore, it is important to consider changes in multiple T cell subsets when evaluating 

disease progression and the likelihood of pathological outcomes. 

IL-22. Though interleukin-22 (IL-22) was initially characterized as a Th17-type cytokine, 

it can be produced by both T cells and innate lymphoid cells in the absence of IL-17  (129). IL-

22 signals through the IL-22 receptor complex, composed of IL-22R1 and IL-22R2, to promote 

cell survival and proliferation. IL-22 receptors are expressed on epithelial, endothelial, and 

pancreatic stromal cells, amongst other cell types; however, no hematopoetic cells have been 

shown to be responsive to IL-22. IL-22 is particularly critical at epithelial barriers such as the gut 

mucosa, stimulating the secretion of antimicrobial peptides  (45). In an otherwise healthy 

organism, loss of IL-22 does not appear to be overtly detrimental. However, in inflammatory 

settings, lack of IL-22 leads to increased weight loss in mouse models of inflammatory bowel 

disease due to inability of the epithelium to repair damage  (130). Therefore, understanding the 

changes in IL-22 production occurring in the gastrointestinal tract in the context of HIV could 

prove important. 
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Given that the gut mucosa is weakened during chronic HIV infection, it is not surprising 

that IL-22 production in the lamina propria is decreased in pathogenic SIV models as well as 

within human patients. Klatt et al. found that in rhesus macaques (RMs) infected with SIV, CD4+ 

T cells as well as innate cells producing IL-22 were lost from the lamina propria, a deficit that 

correlated with markers of loss of gut mucosal barrier integrity. IL-22, produced by both T cells 

and innate cells, was also diminished following HIV infection and returned following viral 

suppression  (131). It will be important to look at the entire picture of IL-17 production, IL-22 

production, and Treg suppression in both the gastrointestinal tract and the periphery in future 

studies of HIV. 

 

Conclusion 

 Given the evidence that IDO induction occurs and is sustained following infection with 

HIV and that IDO induction leads to downstream metabolites that can influence T cell 

differentiation in ways that parallel the changes observed in the context of HIV, it is likely that 

IDO-derived metabolites play a role in the outcome of HIV infection. AHR activation can lead to 

the generation of T cell subsets that block effective immune responses against HIV (e.g., Tregs) 

as well as those that can serve to prevent or even reverse HIV-mediated pathology (e.g., Th17 

and Th22 cells). Given the plethora of AHR ligands that are or that resemble metabolites of 

tryptophan, identification of a metabolite downstream of IDO that leads to IL-22 and IL-17 

production without expanding regulatory T cells could allow for novel targets for HIV 

therapeutics.
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CHAPTER II: THE EFFECTS OF THE TRYPTOPHAN METABOLITE 

CINNABARINIC ACID ON T CELL DIFFERENTIATION 

 

Abstract 

 The effects of tryptophan metabolites 3-hydroxykynurenine (3-HKA), 3-

hydroxyanthranilic acid (3-HAA), picolinic acid (PA), and quinolinic acid (QA) on IL-22 

production were profiled. Although 3-HAA dramatically increased IL-22 production in CD4+ T 

cells in an AHR-dependent manner, it was not found to bind or activate the AHR. The 

dimerization product, CA, was shown to increase IL-22 production more effectively in human 

naïve T cells. The effects of CA on IL-22, IL-17, and IFN! production and Treg differentiation 

were profiled in both human and mouse naïve T cells. CA-mediated induction of IL-22 was 

conserved between both humans and mice, while differential effects were observed in IL-17 and 

IFN! production. 

 

Introduction 

 Numerous tryptophan metabolites downstream of indoleamine 2,3 dioxygenase (IDO) 

have been shown to have an effect on immune response. These metabolites, which belong to a 

family known as kynurenines, act in part through their effects on T cell differentiation. Mixtures 

of kynurenine metabolites have been shown to be immunosuppressive in contexts such as graft 

versus host disease and a mouse model of multiple sclerosis  (70,72). More recently, L-

kynurenine has been described as an AHR agonist that induces differentiation of naïve T cells 

into Tregs  (27). Considering the importance of IDO induction in numerous settings of disease, 

including HIV, understanding the immunological effects of kynurenine metabolites is critical. 
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We have previously shown that 3-HAA, one metabolite in the kynurenine family, suppresses IL-

17 production while inducing Treg differentiation  (73), effects that mirrors changes in immune 

cell subsets observed during the course of SIV and HIV infection in vivo. 

Treg and Th17 cells share similar developmental pathways and may arise from a 

common progenitor  (137). Differentiation into a Treg or Th17 cell may be governed by the 

presence of inflammatory cytokines  (138), retinoic acid  (139), and/or activation of the AHR  

(19,37). The AHR is a cytosolic transcription factor that is involved in many biological 

processes, including development, cellular differentiation and proliferation, xenobiotic 

metabolism, and the immune response  (37). To date, the best-studied AHR ligands are 

halogenated and polycyclic aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD)  (2). Only a few candidate endogenous ligands have been identified, many of which are 

tryptophan derivatives such as 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl 

ester (ITE), tryptamine, indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), L-kynurenine, and 

kynurenic acid  (2,26,27,140). The highly conserved nature of the AHR signaling pathway has 

prompted the search for additional natural ligands that can be directly linked to physiological 

functions and established as true endogenous ligands.  

Although the AHR was initially proposed to affect Treg and Th17 development, a Th17-

associated cytokine, IL-22, is even more specifically dependent upon AHR activation  (19). Ahr-

/- mice retain the ability to generate some Th17 cells but are compromised in terms of IL-22 

production  (19). Human T cell differentiation also exhibits distinct requirements for the AHR: 

activation of the AHR in stimulated human T cells was found to inhibit Th17 differentiation and 

to promote the differentiation of CD4+ T cells that produce IL-22 (Th22). Finally, though certain 

AHR agonists preferentially stimulate IL-17 production over Treg differentiation or vice versa, 
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many of these ligands concurrently drive IL-22  (19,35,48). For instance, FICZ stimulates 

production of both IL-17 and IL-22 while having a suppressive effect on Treg differentiation  

(37). In contrast, TCDD induces Treg differentiation and IL-22 production while having no 

effect on IL-17  (35). Thus, regulation of IL-22 production by AHR agonists is not predictable by 

their effects on other cell subsets. We therefore investigated the effects of tryptophan metabolites 

3-HKA, 3-HAA, PA, and QA on IL-22 production on IL-22 production and identified a 

byproduct of 3-HAA, CA, with potent effects on IL-22. 

 

Materials and Methods 

 

Chemicals and mice. Cinnabarinic acid was synthesized utilizing a single-step reaction 

sequence. A suspension of 1 g 2-amino-3-hydroxybenzoic acid (1 g, 6.53 mmol) in 250 mL of 

methanol was stirred at 25 °C for 15 min. Diacetoxyiodobenzene  (4.31 g, 13.39  mmol) was 

added to the reaction mixture in portions. The color of the reaction mixture gradually changed 

from pale yellow-pink to red. Stirring was continued for 12 h at room temperature. The fine red 

precipitate was collected by filtration and washed with methanol, affording 0.58 g of 

cinnabarinic acid (29.6 % yield). 1HNMR (400 MHz, d6-DMSO) " 9.71 (s, 1H), 8.78 (s, 1H), 

7.93 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.59 (dd, overlapped, 1H), 6.59 (s, 1H). 

13CNMR (100.4 MHz, d6-DMSO) " 178.1, 169.1, 166.3, 152.5, 150.5, 147.6, 142.4, 129.0, 

128.8, 127.9, 126.2, 120.2, 104.9, 92.7. LCMS found 301.2, [M+H]+. The purity of CA was 

96.9% as measured by LC/MS with UV detection; FICZ was not present as determined by single 

ion monitoring of the MS spectrum. FICZ was synthesized as described previously  (141). 4-

fluoro-3-hydroxyanthranilic acid (4-F-3-HAA) was synthesized by Drs. Bill Todd and Barry 



 !%"

Carpenter  (142) and provided by Robert Schwarcz. 3-Hydroxyanthranilic acid (3-HAA) 

(>99.6% purity), quinolinic acid (QA), picolinic acid (PA), 3-hydroxykynurenine (3-HKA) were 

purchased from Sigma. All chemicals were of the highest purity commercially available—

typically #98%. The AHR antagonist, CH-223191 (2-methyl-2H-pyrazole-3-carboxylic acid (2-

methyl-4-o-tolylazo-phenyl)-amide)  (143), was purchased from CalBiochem. TCDD was 

purchased from Ultra Scientific. 1-(1-propynyl)pyrene (1-PP) was the generous gift of Cornelis 

Elferink (Univ. of Texas Medical Branch, Galveston, TX). C57BL/6 mice were purchased from 

Jackson Laboratory. Mice were housed under specific pathogen free conditions at San Francisco 

General Hospital and were fed standard chow. Mouse experiments were performed in 

compliance with the University of California, San Francisco Institutional Animal Care and Use 

Committee guidelines. 

 

In vitro human cell culture. Heparinized blood from healthy volunteers was collected under 

protocols approved by the University of California, San Francisco Committee on Human 

Research. Subjects gave written informed consent in accordance with the Declaration of 

Helsinki. For assays involving total PBMCs, 3x105 cells obtained by ficoll-hypaque density 

gradient centrifugation were plated with 5x104 irradiated allogeneic cells in a 96 well U-bottom 

plate in 200 µL RPMI with 10% FBS. Cells were stimulated with plate-bound anti-CD3 (0.5 

µg/mL in PBS, BD, SP34) and soluble anti-CD28 (0.5 µg/mL, BD) in the presence of tryptophan 

metabolite or DMSO control. Metabolites and inhibitors were replenished on day 2 or 3.  

 For naïve CD4+ T cell sorting, human PBMCs from adult donors or from cord blood were 

stained with anti-CD3-Alexa700 (BD), anti-CD4-ECD (Invitrogen), anti-CD8-PeCy5.5 

(Invitrogen), anti-CD45RA-FITC (BD), anti-CD95-APC (BD), anti-CD25-PE (BD), anti-CCR7-
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PeCy7 (BD), and anti-CD27-APCCy7 (eBioscience). Naïve CD4+ T cells were sort-purified as 

CD3+CD4+CD8- CD45RA+CCR7+CD95-CD25-CD27+. 1x105 cells were plated with 5-10x104 

irradiated allogeneic stimulators in 200 µL XVIVO-20 serum free media (Lonza) in 96 well U-

bottom plates. Cells were incubated with CA or DMSO under polarizing conditions with plate-

bound 0.5 µg/mL anti-CD3 (SP34) and 0.5 µg/mL soluble anti-CD28, 10 ng/mL IL-21 

(eBioscience), IL-1!, IL-23, 10 µg/mL anti-IFN", and 5 µg/mL anti-IL-4 and anti-IL12 blocking 

antibodies (R&D). Cord blood samples were instead stimulated with CD3/CD28 Dynabeads 

(Invitrogen) and additionally incubated with TGF-! (R&D). Cytokines, blocking antibodies, and 

metabolite were added again on days 2 and 4.  

The optimal day for restimulation was determined to be day 5 or 6; cells were re-

stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin in the presence of brefeldin 

A (BFA) and stained for cytokine production Cells were stained extracellularly with anti-CD4-

ECD and anti-CD8-PeCy5.5, and Aqua viability dye (Invitrogen), and fixed and permeabilized 

(BD Cytofix/Cytoperm). Samples were stained intracellularly with anti-CD3-Alexa700 or anti-

CD3-APC-Cy7 (BD) to detect internalized CD3 on activated cells, as well as anti-IL-17-

AlexaFluor647 (eBioscience), anti-IL-22-PE (R&D), and anti-IFN"-PB (eBioscience) antibodies. 

All events were acquired on an LSRII (BD) and analyzed with FlowJo v7-9.3.2 (Treestar). CD4+ 

cells were gated as live, CD3+, CD4+CD8- lymphocytes. At least 10,000 CD4+ events were 

analyzed per sample. 

  

Human regulatory T cell differentiation. Naïve CD4+ T cells were sorted as described above. 

2x105 naïve T cells were incubated in a 96 well U-bottom plate in 200 µL XVIVO-20 media and 

stimulated with CD3/CD28 Dynabeads (Invitrogen) in the presence of CA or DMSO vehicle 
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control. Some cells were additionally treated with TGF-! (R&D). Cells were re-fed by removing 

100 µL of media and adding 100 µL of 2x metabolite/TGF-! on days 2 and 4. Cells were stained 

on day 6 with Aqua viability dye, anti-CD3-APCCy7, anti-CD4-ECD, anti-CD8-PeCy5.5, and 

anti-CD25-PeCy7, and then were fixed and permeabilized with the Foxp3/Transcription Factor 

Staining Buffer Set (eBioscience) and stained intranuclearly with anti-Foxp3-APC or PE 

(eBioscience, clone PCH101). 

 

Human Treg suppressor assay. Tregs were generated as described above, in the presence of 

CA (10 µM) or DMSO. On day 6 of culture, Dynabeads were removed, and viable cells were 

quantified following propidium iodide staining on the Accuri C6 (BD). Autologous PBMCs were 

isolated and labeled with 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester (CFSE), and 

100,000 PBMCs were plated in a 96-well U bottom plate in XVIVO-20 with varying ratios of 

Tregs. Cells were stimulated with plate-bound 0.5 µg/mL anti-CD3 (HIT3a) and 0.5 µg/mL 

soluble anti-CD28 for four days and then stained with anti-CD3, anti-CD4, and anti-CD8.  

 

In vitro mouse cell culture. Naïve CD4+ T cells were sort-purified from mouse splenocytes 

following depletion of non-CD4+ T cells with the MACS CD4+ T cell Isolation Kit II (Miltenyi). 

Cells were stained with anti-CD3-PB (BD), anti-CD4-PE (BD), anti-CD62L-PeCy7 (BD), anti-

CD25-APCCy7 (eBioscience), and anti-CD45Rb (BD), and sorted as CD3+CD4+CD25-

CD62L+CD45Rbbright. Cells were stimulated with 4 µL anti-CD3/CD28 Dynalbeads/well 

(Invitrogen), 10 ng/mL IL-1! (Peprotech), 20 ng/mL IL-6 (Peprotech), 10 ng/mL TGF-! (R&D), 

and 10 µg/mL anti-IFN" and anti-IL-12/23 (UCSF Hybridoma Core) in 200 µL XVIVO-20 

media. CA in varying concentrations was added to individual wells; an equivalent volume of 
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vehicle (DMSO) was added to control wells. On day 2, cells were transferred to a 48-well plate. 

Cytokines, blocking antibodies, and metabolites, enzymes, or inhibitors were added at 2X 

concentration on days 2 and 4. 

Cells were re-stimulated on day 5 (a day determined to be optimal in pilot experiments), 

with PMA/ionomycin in the presence of BFA for 4-6 hours and stained for cytokine production. 

Cells were stained extracellularly with anti-CD4-QDot 605 (Invitrogen) and anti-CD8-PeCy5.5 

or anti-CD8-PB (Caltag), Aqua viability dye, and intracellularly with anti-CD3-PB or anti-CD3-

PeCy5 (BD), anti-IL-22-PE (eBioscience), anti-IL-17-APC (BD), and anti-IFN"-APCCy7 (BD). 

RNA was collected following restimulation with PMA and ionomycin for 5 hours in RLT 

lysis buffer. RNA was purified with Qiagen RNeasy columns. RNA input was standardized per 

experiment by Nanodrop before cDNA transcription reactions (Omniscript). Taqman primers for 

Il22 (Mm00444241_m1) and Hprt1 (Mm00446968_m1) were used to quantify cDNA transcript 

in reactions with Taqman Universal PCR master mix. Reactions were run in a StepOnePlus 

analyzer. 

  

Mouse regulatory T cell differentiation. Naïve CD4+ T cells were sorted from mouse 

splenocytes as described above. 2x105 cells were stimulated with 4 µL/well CD3/CD28 

Dynabeads in 96 well U bottom plates in 200 µL XVIVO-20 media in the presence of CA or 

DMSO vehicle control. TGF-! was added to some wells. On days 2 and 4, 100 µL of media were 

removed, and 100 µL of 2X cytokine/metabolite were re-added. On day 5, Dynabeads were 

removed magnetically and cells were stained for flow analysis. Cells were stained with anti-

CD4-QDot 605, anti-CD8-PeCy5.5, Aqua viability dye, anti-CD3-PB, and anti-CD25-APCCy7 
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(BD). Cells were fixed and permeabilized with the Foxp3/Transcription Factor Staining Buffer 

Set (eBioscience) and stained intranuclearly with anti-Foxp3-PE (eBioscience). 

 

Statistical analysis. Statistical tests used to analyze data are denoted individually within figure 

legends (GraphPad Prism v.4.0c). P values < 0.05 (following corrections for multiple 

comparisons) were considered statistically significant. 

 

Results 

 

3-Hydroxyanthranilic acid (3-HAA) increases the frequency of IL-22-expressing CD4+ T cells in 

vitro 

Human PBMCs were stimulated with antibodies against CD3 and CD28 in vitro in the 

presence of different tryptophan metabolites, including 3-hydroxykynurenine (3-HKA), 3-

hydroxyanthranilic acid (3-HAA), picolinic acid (PA), and quinolinic acid (QA). 3-HKA and 3-

HAA, but not the downstream metabolites PA or QA, were able to promote IL-22 production in 

stimulated CD4+ T cells (Fig. 1A). Though donors differed in the frequency of IL-22+ cells 

detected following 3-HAA exposure, 3-HAA was able to promote a 2-fold or greater expansion 

of IL-22-producing cells in each (Fig. 1B). Statistically significant expansion of these cells was 

seen beginning at 25 µM 3-HAA (Fig. 1B, aggregate donors). Within PBMC cultures stimulated 

in the presence of 3-HAA, upregulation of IL-22 was only seen in CD4+ T cells (Fig. 1C) and not 

in CD8+ T cells (Fig. 1D). These IL22+ CD4+ T cells frequently co-expressed IFN! but not IL-

17A, consistent with the phenotype of Th22 cells identified in humans (Fig. 1C)  (144). 3-HAA 

suppressed IL-17 production within CD4+ T cells, as has been previously reported  (73). 
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3-HKA and 3-HAA are not AHR ligands but may be precursors to an AHR ligand 

To determine whether the expansion of IL-22-producing cells within this population was 

AHR-dependent, we stimulated human PBMCs in the presence or absence of a potent AHR 

antagonist (CH-223191) and observed that CH-223191 abolished the increase in IL-22 

production caused by 3-HAA (Fig. 2, A and B). The above studies identified 3-HAA, and, to a 

lesser extent, 3-HKA, as potential ligands of the AHR. The ability of these metabolites as well as 

that of PA to bind the AHR was assayed using a well-established assay that measures the ability 

of compounds to displace [3H]TCDD from full-length human AHR protein expressed in vitro. 

Modest binding of 3-HAA and PA was evident, but only at very high concentrations (1000 µM, 

Fig. 2C). While it is possible that 3-HAA was acting through the AHR to induce IL-22 

production, we suspected that other metabolic byproducts of 3-HAA might be responsible for IL-

22 production in our in vitro assays. 

 

Inhibition of 3-HAA metabolism increases IL-22 production 

Because neither PA nor QA, the primary metabolites downstream of 3-HAA, was found 

to have any impact on IL-22 production, we thought it unlikely that either was an AHR ligand. 

The enzyme upstream of PA and QA, 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), is also 

expressed by monocytes and macrophages, the same cell populations that express IDO under 

inflammatory conditions  (145). To determine whether downstream intermediates of 3-HAA 

generated through HAAO were acting as AHR ligands, the specific inhibitor, 4-F-3-HAA, was 

used to block HAAO activity (Fig. 2, D and E). Contrary to our expectations, HAAO inhibition 

within stimulated PBMC cultures did not block the ability of 3-HAA to up-regulate IL-22 
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production; rather, at higher concentrations of 3-HAA, HAAO inhibition increased IL-22 

production (Fig. 2E). This suggested that either 3-HAA was a weak AHR ligand or that an 

alternative pathway of 3-HAA metabolism might give rise to an AHR ligand.  

 

Identification of CA as a metabolite downstream of 3-HAA capable of inducing IL-22 

3-HAA is susceptible to oxidation, resulting in the formation of CA through 3-HAA 

dimerization, both in solution  (146) and in cell culture  (141). As a tricyclic aromatic compound, 

the structural features of CA resemble those of some AHR ligands. Additionally, CA has potent 

effects on thymocyte maturation  (141), similar to those observed in cultured thymocytes treated 

with the AHR agonist, TCDD  (147). Assays described in Chapter III describe further the 

capacity of CA to bind and interact with the AHR. 

Treatment of adult human PBMCs with CA resulted in up-regulation of IL-22, but not 

IL-17, within human CD4+ T cells in a dose-dependent manner (Fig. 3A). To determine whether 

CA was acting on T cells directly, adult human and mouse naïve CD4+ T cells were sort-purified 

and incubated with tryptophan metabolites under polarizing conditions (see Methods for details). 

In the presence of 25 µM CA, human naïve CD4+ T cells upregulated the production of IL-22 

and IFN-! to a greater extent than those incubated with an equivalent concentration of 3-HAA 

(Fig. 3B). Like 3-HAA, CA had suppressive effects on IL-17 when cells were stimulated under 

conditions favoring both IL-22 and IL-17 production (Fig. 3C). CA treatment of mouse naïve 

CD4+ T cells also resulted in significant expansion of IL-22+ cells as well as a trend towards an 

expansion of IL-17 producing cells, unlike that seen in humans (Fig. 3D and 3E). Also in 

contrast to human cells, no expansion of IFN!-producing cells was observed within mouse naïve 

cell cultures (Fig. 3F).  
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Given the role of the AHR in regulating Treg differentiation  (37), we additionally tested 

whether CA was able to affect the differentiation of Tregs as measured by expression of FOXP3 

and functional activity. An expansion of FOXP3+ cells was seen in human naïve CD4+ T cells 

stimulated in the presence of CA (Fig. 4A). However, T cells exposed to CA were not more 

suppressive than DMSO treated cells, despite the greater abundance of FOXP3+ cells (Fig. 4B). 

Unlike in human cells, incubation of mouse naïve cells with CA suppressed generation of Foxp3+ 

cells (Fig. 4C). Nevertheless, the lack of suppressive activity in human cells treated with CA 

indicates that this phenotypic difference between species may not result in a change in function.  

 

Discussion 

CA is a tryptophan metabolite capable of driving IL-22 production in both mouse and 

human naïve CD4+ T cells. In contrast to its conserved effects between humans and mice 

regarding IL-22 production, it differentially affects IL-17 in mouse and human cells. CA appears 

to increase IL-17 production in mouse cells while having neutral to suppressive effects on IL-17 

in human cells. Likewise, the effects of CA on IFN! production was also discordant between 

humans and mice, with CA having no effect on mouse T cells but driving more IFN! in humans 

cells. Finally, CA did not productively increase Treg differentiation in vitro in either mouse or 

human cells.  

Though 3-HKA and 3-HAA also had the ability to increase IL-22 production, the effects 

of CA were much more potent. Furthermore, unlike 3-HKA and 3-HAA, CA is capable of 

interacting with the AHR (see Chapter III for further details). It is interesting to note that, like 

CA’s effects in human cells, at least one AHR ligand has also demonstrated the capacity to 

increase IFN! in vitro  (148), and the human Th22 subset is also known to co-express IFN!  
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(144). Though differential effects were seen between human and mouse T cells treated with CA, 

the divergence of the AHR, particularly in terms of the ligand-binding domain, between mice 

and humans may explain some of these outcomes  (9).  

Chapters III and IV will expand upon this initial identification of CA as a mediator of IL-

22 production. Analysis of its interaction with the AHR, a comparison of CA to other tryptophan 

metabolites that interact with the AHR, and assessment of the capability of CA to be produced 

by immune cells will help clarify its role in T cell differentiation. Understanding how immune 

response may be affected by metabolites downstream of IDO, an enzyme induced by 

inflammatory stimuli, is critical to anticipating the outcome and developing treatment strategies 

for immunopathological events such as those associated with HIV infection. 
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Figures 

 

Figure 1. 3-HKA and 3-HAA promote IL-22 expression in stimulated human CD4+ T cells. 

(A) Flow cytometric analysis of CD4+ T cells following stimulation of human PBMCs in the 

presence of 100 µM 3-HKA, 3-HAA, PA, or QA for six days. Data represent at least three 

independent experiments. (B) Flow cytometric analysis of CD4+ T cells from individual and 

aggregate donors following stimulation of PBMCs in the presence of increasing concentrations 

of 3-HAA (µM) for six days. Individual donor data are pooled from at least three independent 

experiments. Error bars indicate SD. Fold change in IL-22 expression versus vehicle control is 

statistically different from 1 (Wilcoxon signed rank test; *, p=0.0312; **, p=0.0078; N=8 

donors). (C) Cytokine production for live CD3+CD4+CD8- T cells from human PBMC cultures 

that were stimulated with anti-CD3 and anti-CD28 antibodies and allogeneic APCs for six days 
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with DMSO or 50 $M 3-HAA. Panel (right) depicts fold-changes in 9 donors relative to DMSO. 

*, p<0.05 indicates data analyzed by Wilcoxon signed rank test is statistically different than 1. 

(D) Cytokine production for live CD3+CD8+CD4- T cells in PBMC cultures, stimulated as above 

with DMSO or 3-HAA (50 µM). Data are representative of three experiments.  

 

 

 

Figure 2. IL-22 production stimulated by HAA requires AHR activation, but HAA does not 

bind or activate the AHR. (A) Flow cytometric analysis of CD4+ T cells following stimulation 

of human PBMCs in the presence of 3-HAA +/- the AHR antagonist, CH-223191. Data are 

representative of at least three independent experiments. (B) Comparison of IL-22 production in 

CD4+ T cells following stimulation of human PBMCs in the presence of DMSO, 3-HKA (50 

µM), or 3-HAA (50 µM), with or without an AHR antagonist, N=6. P values were calculated by 
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Mann-Whitney. Error bars indicate SD. (C) Displacement of [3H]TCDD from the human AHR in 

the presence of 3-HAA or PA. Data for 100 µM concentrations were from 2-4 experiments; data 

for 1000 µM concentrations were from one or two experiments. (D) Metabolic pathways 

downstream of 3-HAA catalyzed by the enzyme, 3-hydroxyanthranilate 3,4-dioxygenase 

(HAAO), including intermediates upstream of PA and QA. (E) Flow cytometric analysis of 

CD4+ T cells in human PBMCs stimulated in the presence of varying concentrations of 3-HAA 

(50 µM or 100 µM) with or without the HAAO inhibitor, 4-F-3-HAA (50 µM). Data are 

representative of three experiments.  
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Figure 3. CA increases the differentiation of IL-22+ human and mouse CD4+ T cells in vitro. 

(A) Flow cytometric analysis of CD4+ T cells from human PBMCs stimulated in the presence of 
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DMSO or increasing doses of CA (left). Fold change in IL-22 production in CD4+ T cells from 

human PBMCs from multiple donors stimulated in the presence of CA versus DMSO control 

(right panel). Data were analyzed by Wilcoxon signed rank test for significant deviation from a 

theoretical median of 1.000. *p<0.05. (B) Flow cytometric analysis of sorted naïve human CD4+ 

T cells stimulated under polarizing conditions (with IL-21, IL-1!, IL-23, anti-IFN", anti-IL-4 

and anti-IL12) with DMSO, 3-HAA (25 µM), or CA (25 µM). Data on IL-22 and IFN" 

production from three independent experiments are shown in the panel on the right. Error bars 

are SD. (C) Flow cytometric analysis of sorted naïve human CD4+ T cells from cord blood 

stimulated under polarizing conditions (with TGF!, IL-21, IL-1!, IL-23, anti-IFN", and anti-IL-

4) in the presence of DMSO or CA. (D) Flow cytometric analysis of IL-17 and IL-22 production 

in sorted naïve mouse CD4+ T cells from C57BL/6 mice stimulated under polarizing conditions 

(with IL-1!, IL-6, TGF-!, anti-IFN", and anti-IL12/23) in the presence of DMSO or CA (35 

µM). (E) Flow cytometric data (top panel) from six independent experiments in C57BL/6 mice 

were analyzed by Kruskal-Wallis ANOVA and Dunn’s Multiple Comparison test. *, p<0.05. **, 

p<0.01. DMSO controls for the 25 and 35 µM CA experiments are shown separately. (F) Flow 

cytometric analysis of IFN-" production in sorted naïve wild-type mouse CD4+ T cells stimulated 

under polarizing conditions (as in panel D) in the presence of DMSO or CA. Data are from seven 

independent experiments (right) were analyzed by Friedman ANOVA; no statistically significant 

differences were found. 



 #)"

 

Figure 4. CA decreases FoxP3 expression in mouse cells and does not induce functional 

Tregs in human cells. 

(A) Flow cytometric analysis of FOXP3 staining following stimulation of sorted naïve human 

CD4+ T cells in the presence of DMSO or CA without addition of TGF-!. Quantification of 

%FOXP3+CD25+ T cells of CD4+ cells from at least seven donors per condition in four 

independent experiments (right panel) with or without 5 ng/mL TGF-!. Data were analyzed by 
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two-way ANOVA and Bonferroni post-tests. *, p<0.05. **, p<0.01. Error bars are SD. (B) Flow 

cytometric analysis of CFSE-labeled responder CD8+ T cells incubated with autologous Tregs 

generated in the presence of CA or DMSO control. Data are representative of three independent 

experiments. (C) Flow cytometric analysis of Foxp3 expression in sorted naïve wild-type mouse 

CD4+ T cells stimulated with increasing concentrations of TGF!. Quantification of 

%Foxp3+CD25+ T cells of CD4+ cells from four independent experiments is shown in the panel 

on the right. Error bars are SD.  

 

 

CHAPTER III: THE ABILITY OF THE TRYPTOPHAN METABOLITE 

CINNABARINIC ACID TO BIND AND ACTIVATE THE AHR 

 
Abstract 

 Given that several tryptophan metabolites and derivatives are AHR agonists, further 

characterizing the interactions of kynurenine family metabolites with the AHR is highly relevant. 

The tryptophan metabolites CA, 3-3-HAA, 3-HKA, PA, and QA were interrogated for their 

ability to activate or inhibit activation of an AHR reporter construct. CA was found to induce the 

AHR-mediated transcription and was further determined to bind to the AHR and to modestly 

induce AHR-responsive gene Cyp1a1. Finally, the induction of IL-22 mediated by CA was 

determined to be dependent on AHR activation. 

 

Introduction 

 The tryptophan metabolite, CA, is capable of increasing IL-22 production in human and 

mouse naïve CD4+ T cells, an activity that is characteristically influenced by AHR activation  
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(19). While the tryptophan metabolite 3-HAA did not bind to the AHR (see Chapter II, Fig. 2C), 

it was necessary to directly test the ability of CA to bind and to activate the AHR. Multiple 

assays are useful for determining whether a compound has the ability to bind the AHR and 

facilitate its activation of gene transcription. Displacement of other known AHR ligands from 

AHR may demonstrate binding, while electromobility shift assays (EMSA) may measure ability 

of the ligand-AHR complex to recognize DNA  (149). Effective activation of the AHR can also 

be demonstrated by AHR-responsive reporter cell lines or transcription of known AHR-

responsive genes  (150). Importantly, different AHR ligands may demonstrate activation of 

differential batteries of genes  (151), and some AHR-mediated responses are independent of 

binding to DNA  (152) and do not necessarily lead to induction of traditional AHR-responsive 

gene products  (153). The mechanisms by which the latter “selective AHR modulators” 

(SAhrMs) work is still an area of active debate and investigation. 

 Due to the high variability of ligand structure and observed activities on gene 

transcription, it has recently been hypothesized that the induction of AHR-responsive genes by 

certain ligands is not due to a direct effect on the AHR but rather alteration of the metabolism of 

another AHR ligand, such as the tryptophan photoproduct FICZ  (154). Wincent et al. observed 

that inhibitors of CYP1A-mediated metabolism were frequently able to induce CYP1A-mediated 

metabolism. While one hypothesis would be that the compounds themselves are AHR ligands, 

another possibility is that they affect metabolism of an AHR ligand such as FICZ. Given that the 

induction of CYP1A by many of these ligands is diminished in media reconstituted with 

crystallized tryptophan (which should thus lack FICZ), the authors concluded that inhibition of 

FICZ metabolism by these ligands boosted FICZ intracellularly, leading to a readout of AHR 

activation. Thus, assessing direct binding of CA for the AHR as well as testing the effects of CA 
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on CYP1A-mediated metabolism is important to characterize fully the means by which it is 

affecting IL-22 production. 

 

Materials and Methods 

Chemicals and mice. The origins for most chemicals and mice are as described in Chapter II. 

Additionally, FICZ was synthesized as described previously  (155). #-Naphthoflavone (#-NP) 

was purchased from Sigma. 1-(1-Propynyl)pyrene (1-PP) was the generous gift of Cornelis 

Elferink (Univ. of Texas Medical Branch, Galveston, TX). Ahr-/- mice on a B6 background were 

derived from the line created by Schmidt et al  (156). Mice were housed under specific pathogen 

free conditions at San Francisco General Hospital and were fed standard chow. Mouse 

experiments were performed in compliance with the University of California, San Francisco 

Institutional Animal Care and Use Committee guidelines. 

 

In vitro AHR competitive-binding assay. Assays were performed as in Chapter II. 

 

AHR reporter assay. Mouse H1G1.1c3 cells (courtesy of Dr. M. Denison, UC Davis) were 

prepared as described previously  (150), except that 6x104 cells were added to each well of a 96-

well, black-sided plate in 200 µl of selective medium and incubated at 37°C for 24 hours. The 

medium was replaced with 100 µl of non-selective medium prior to compound application. A 

TCDD standard curve plate was prepared by adding vehicle (DMSO, 0.5%) or TCDD (10-14-10-

9M), with each concentration added to 8 wells. For agonist experiments, vehicle or test 

compound was added at a single concentration in each column, excluding two untreated 

columns. For antagonism experiments, compound application was immediately followed by 
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dosing with either vehicle or TCDD (10-10M). The plates were incubated at 33°C for 24 hours 

and EGFP fluorescence was read with a fluorometric plate reader (Synergy2, Biotek 

Instruments). Excitation and emission wavelengths were 485 nm (20 nm bandwidth) and 530 nm 

(25nm bandwidth). Untreated well fluorescence was subtracted from experimental well 

fluorescence. Data were averaged from eight replicate wells. The gain was adjusted between 

experiments so that wells exposed to 10-10M TCDD wells produced 15,000 RFUs per well; 

subsequent plates in the experiment were analyzed with that gain setting.  

The specificity of the fluorescence measured in the H1G1 cells treated with CA, HAA, 

and tryptamine was determined by concurrently treating Hepa-1 cells (the parent line of the 

H1G1 cell line) with CA, HAA and tryptamine at the same concentrations. Treatment, 

incubation, and analysis were carried out as above. Fluorescence measured in Hepa-1 cells was 

subtracted from the fluorescence measured in H1G1 cells treated with the same concentration of 

CA, HAA, or tryptamine to correct for background fluorescence. 

 

Cyp1a1 induction. Zebrafish embryos [TL strain; 48 or 72 hours post fertilization (hpf)] were 

exposed to CA (100 µM) or DMSO for 6 hours. Following exposure, three replicate groups of 20 

embryos from each treatment group were frozen in liquid nitrogen. In one experiment, 72-hpf 

embryos exposed for 6 hr to CA or DMSO were subsequently held in clean water and sampled at 

96 hpf. Total RNA was isolated from frozen embryos using RNA STAT-60 (Tel-Test B, Inc.). 

cDNA was synthesized from 2 µg of total RNA using Omniscript reverse transcriptase (Qiagen). 

Real-time RT-PCR for cyp1a and !-actin was performed using the iQ SYBR Green Supermix 

(Bio-Rad) in an iCycler iQ Real-Time PCR Detection System (Bio-Rad), as described previously  

(157). Fold induction of cyp1a by CA was calculated using the  $$CT method  (158). 
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Human PBMCs were isolated by ficoll hypaque density gradient centrifugation and 

plated in 48-well plates at a density between 0.5-2 x 106 cells per well in 1 mL of RPMI. Cells 

were stimulated with 1 µg/mL PHA in the presence of tryptophan metabolite or DMSO for 8-20 

hours and harvested in RLT lysis buffer. RNA was purified with Qiagen RNeasy columns. RNA 

input was standardized per experiment by Nanodrop before cDNA transcription reactions 

(Omniscript). Taqman primers for CYP1A1 (Hs00153120_m1) and HPRT1 (Hs99999909_m1) 

were used to quantify cDNA transcript in reactions with Taqman Universal PCR master mix. 

Reactions were run in a StepOnePlus analyzer. 

 Mouse lymphocytes were isolated from brachial, axillary, and inguinal lymph nodes, and 

were then plated in 96 well plates at a density of 1x106 cells/well in 200 µL of RPMI, cultured 

for 4 hours, and lysed in RLT lysis buffer. RNA isolation and RT-PCR was handled as with 

human cells, except with Taqman mouse Cyp1a1 (Mm00487217_m1) and Hprt1 

(Mm00446968_m1) primers. 

 

CYP1A1 inhibition. 1Human CYP1A1 + P450 Reductase Supersomes (1.8 pmol) (BD) were 

used per reaction in the luminescent-based P450-Glo CYP1A1 Assay (Promega). Briefly, 

CYP1A1 Supersomes, luciferin-CEE substrate, and test compound were equilibrated in white 

opaque 96-well plates (Pierce) for 10 minutes at 37ºC per kit protocol. NADPH Regenerating 

Solution (Promega) was added, and reactions were terminated after 15 minutes at 37ºC by 

addition of luciferase detection reagent. Luminescence was read with the SpectraMax M2 

microplate reader using SoftMax Pro software (Molecular Devices) and averaged over 6-8 reads 

per well.  
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Results 

 

AHR agonism and antagonism by tryptophan metabolites 

We first measured AHR activation and antagonism by tryptophan metabolites 3-HKA, 3-

HAA, PA, and QA within a reporter cell line expressing AHR responsive elements upstream of a 

GFP reporter (Fig. 1, A and B). None of the metabolites tested either activated the AHR or 

inhibited TCDD-mediated AHR activation within the concentrations tested. While a slight 

increase in AHR activity measured by fluorescence was found during more extensive dose-

response testing using 3-HAA as an agonist (Fig. 1C), this failed to reach significance. In 

contrast, CA induced GFP expression in the AHR reporter cell line, with significant increases 

occurring at 50 µM (Fig. 1D) Furthermore, CA also bound to in vitro-expressed human AHR, as 

measured by displacement of [3H]TCDD at much lower concentrations than those required for 3-

HAA and 3-HKA (Fig. 1E). 

 

Inhibition of CYP1A1 mediated metabolism by CA 

 Next, CA was tested for its ability to induce the well-known AHR responsive gene, 

CYP1A1, and its orthologs in vivo and in vitro. In zebrafish embryos, a model vertebrate in vivo 

system, Cyp1a was strongly induced after 6 hours of exposure to CA (Fig. 2A, upper panel); this 

effect was lost 18 hours after washout of CA (Fig. 2A, lower panel). The degree of induction 

(25- to 50- fold) was comparable to that produced by FICZ under similar experimental 

conditions (~30-fold)  (159). CA also caused statistically significant induction of Cyp1a1 in 

mouse lymphocytes in vitro (Fig. 2B). No Cyp1a1 induction was detected in lymphocytes 

derived from Ahr-/- mice (Fig. 2B), demonstrating that CA was acting through the AHR. Human 



 $&"

PBMCs also exhibited a statistically significant, although modest, induction of CYP1A1 (Fig. 

2C).  

Given that some AHR ligands with weaker effects on CYP1A1 induction have been 

reported to induce AHR-responsive genes indirectly by inhibiting the CYP1A1-mediated 

metabolism of FICZ  (154), CA was tested for its effects on CYP1A1 metabolic activity. CA was 

incubated with CYP1A1-loaded microsomes and a CYP1A1 substrate. Dose-dependent 

inhibition of CYP1A1 metabolism was seen with CA; however, this inhibition was much less 

than that caused by the known CYP1A1 inhibitors %-napthoflavone and 1-(1-propynyl)pyrene 

(1-PP) (Fig. 3A). 1-PP in particular has been shown to activate the AHR indirectly through 

inhibition of CYP1A1-dependent metabolism of an endogenous AHR ligand  (160). Thus, 1-PP 

was tested in mouse naïve cell cultures to determine whether Cyp1a1 inhibition could induce IL-

22 in this system. Importantly, concentrations of 1-PP capable of completely inhibiting Cyp1a1 

were unable to induce IL-22, providing evidence that induction of IL-22 by CA is not the result 

of Cyp1a1 inhibition (Fig. 3B). CA in the presence of 1-PP retained its ability to induce IL-22, 

showing that 1-PP does not affect the ability of the cells to respond to CA. Therefore, it seems 

unlikely that CA is exerting its effects by altering FICZ metabolism. 

 Finally, the dependence of CA upon the AHR to induce IL-22 in vitro was tested directly. 

Mouse naïve T cells from Ahr-/- mice exposed to CA under polarizing conditions failed to 

induce IL-22 (Fig. 4A). Given that Ahr-/- mouse cells could be impacted by developmental 

differences that could block IL-22 production, an AHR antagonist was also used on wild-type 

C56BL/6 mouse cells in the presence of CA. Like the Ahr-/- mouse cells, cells exposed to an 

AHR antagonist also failed to produce IL-22 in the presence of CA (Fig. 4B). Finally, the ability 
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of the AHR antagonist to block CA-driven activation of the AHR-responsive reporter cell line 

was verified (Fig. 4C). Cells treated with the AHR antagonist were also unable to respond to CA. 

 

Discussion 

The increase in IL-22 production mediated by CA is most likely due to its role as an 

AHR ligand. The conclusion that CA is acting via AHR is supported by several lines of 

evidence, including CA displacement of [3H]TCDD from the human AHR, induction of Cyp1a in 

zebrafish embryos in vivo and in human and mouse lymphocytes, AHR-dependent reporter gene 

induction in H1G1 cells, loss of effects in cells from Ahr-/- mice, and the ability of an AHR 

antagonist to block the stimulation of IL-22 production by CA in cells from wild-type mice. 

However, the effects of CA upon CYP1A1 induction in humans and mice were rather modest, 

allowing for the possibility that another mechanism exists for the effect of CA on IL-22.  

Other characterized AHR agonists have effects that appear to be dependent upon 

presence of a second AHR ligand  (154). These agonists appear to work indirectly through 

inhibition of that ligand’s metabolism. The possibility that CA could be acting through CYP1A1 

inhibition was tested directly by studying the effects of known CYP1A1 inhibitor, 1-PP. 

Addition of this compound to cell cultures did not lead to production of IL-22, implying that CA-

mediated CYP1A1 inhibition would be insufficient to cause the changes in T cell differentiation 

observed. Furthermore, most agonists characterized to work through metabolic inhibition do not 

bind well to the AHR  (154). Thus, the aggregate evidence from AHR binding studies, reporter 

gene assays, modest induction of CYP1A1, and inhibition of CA-stimulated IL-22 production by 

an AHR antagonist all point to a role for the AHR in mediating the effects of CA on IL-22.  
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Figures 

 

Figure 1. CA activates reporter constructs while other tryptophan metabolites do not. 

 (A) Fluorescence of the AHR-reporter construct following incubation of transfected cells with 

3-HAA, 3-HKA, PA, or QA. Tryptamine and FICZ are positive controls. (B) Inhibition of 

TCDD (10-10-M)-induced activation of the AHR reporter construct. CH-223191 is a positive 

control. *, p<0.05 (ANOVA, Scheffe’s). Error bars are SD. (C) Fluorescence of an AHR-

responsive reporter construct measured after incubation of a stably transfected murine hepatoma 

cell line in the presence of increasing concentrations of 3-HAA. TCDD (5x10-11M) is a positive 
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control. Error bars are SD. N=6. (D) Fluorescence [measured in relative fluorescence units 

(RFUs)] of the AHR-responsive reporter construct in cells incubated with varying concentrations 

of 3-HAA or CA. Tryptamine was a positive control. *, p<0.05 (ANOVA, Scheffe’s). Error bars 

represent SD. (E) [3H]TCDD displacement from in vitro translated human AHR protein by 

incubation with varying concentrations of CA compared to 3-HKA. Data are representative of 

four (CA) or two (3-HKA) independent experiments.  

 

 

Figure 2. CA induces Cyp1a orthologs in zebrafish, humans, and mice. 

(A) Induction of cyp1a in vivo as measured by qRT-PCR. Zebrafish embryos at 48 or 72 hours 

post fertilization (hpf) were exposed to CA (100 µM) for 6 hours, and either sampled 

immediately (54 or 78 hpf; top panel) or placed in clean water and sampled at 96 hpf (24 hours 

after beginning of exposure; bottom panel). Cyp1a mRNA was normalized to !-actin and to the 

average DMSO value. (DMSO values for 78 and 96-hpf embryos were similar). Values represent 

fold-change in CA-treated versus DMSO-treated embryos; each panel represents an experiment 
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sampling three replicate groups of twenty embryos per group. (B) Induction of Cyp1a1 in wild-

type or Ahr-/- mouse total lymphocytes incubated with CA (50 µM) in RPMI for 4 hours. 

Cyp1a1 was measured by qRT-PCR and normalized to Hprt. Error bars represent SD. P values 

were calculated with the Mann-Whitney test for lymphocyte cultures from three individual mice. 

(C) Induction of CYP1A1 PHA-stimulated human total PBMCs after 12-20 hours of incubation 

with CA (50 µM) in RPMI. CYP1A1 was measured by qRT-PCR and normalized to HPRT. Data 

shown are pooled experiments from six individual donors. Error bars are SD. P values were 

calculated with the Mann-Whitney test. 

 

 

Figure 3. Inhibition of FICZ metabolism does not affect IL-22 production. 

(A) Inhibition of CYP1A1 activity measured by luminescence of CYP1A1-driven metabolism of 

luciferin-CEE. Background readings in the absence of CYP1A1 supersomes are subtracted and 

luminescence is shown as a percentage of the CYP1A1 only control. Test compound 

concentrations are in µM. #-NP and 1-PP are positive controls. Values are averaged from three 

replicate wells. Data are representative of three independent experiments. (B) Flow cytometric 

analysis of mouse naïve CD4+ T cells stimulated under polarizing conditions (as described in 
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Chapter II) in the presence of the Cyp1a1 inhibitor, 1-PP. Data are from three independent 

experiments are graphed (right). 

 

 

Figure 4. Experiments in Ahr-/- mice and addition of an AHR antagonist abrogates the 

effects of CA in vitro. (A) Flow cytometric analysis of IL-17 and IL-22 production in sorted 

naïve mouse CD4+ T cells from Ahr-/- mice stimulated under polarizing conditions (with IL-1!, 

IL-6, TGF-!, anti-IFN", and anti-IL12/23) in the presence of DMSO or CA (35 µM). (B) Flow 

cytometric analysis of IL-17 and IL-22 production in C57BL/6 mouse naïve CD4+ T cells 

stimulated under polarizing conditions in the presence of DMSO or CA, with or without the 
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AHR antagonist CH-223191 (10 µM). Data are representative of three independent experiments. 

(C) Fluorescence of an AHR-responsive reporter construct measured following incubation of 

H1G1.1c3 cells with DMSO control, CA (200 µM), 3-HAA (200 µM), or the positive control 

FICZ (100 nM), with or without the AHR antagonist CH-223191 (50 µM). *, p<0.01. **, 

p<0.001. ***, p<0.0001. (2-way ANOVA, Bonferroni’s post-test). Error bars are SD. 

 

 

CHAPTER IV: A COMPARISON OF CINNABARINIC ACID TO OTHER 

TRYPTOPHAN METABOLITES THAT ACTIVATE THE AHR 

 

Abstract 

 Other tryptophan metabolites and photoproducts have been shown to affect cytokine 

production and T cell differentiation. CA was compared to kynurenic acid (KYA) and L-

kynurenine (L-KYN) and was found to be more effective at increasing IL-22 production within 

naïve CD4+ T cells. Surprisingly, CA was much less effective than these metabolites at 

increasing Cyp1a1 transcription in vitro. A dose response curve measuring CA-induced IL-22 

production was created and compared to concentrations produced by immune cells stimulated in 

vitro.  

 

Introduction 

 As discussed in Chapters II and III, CA is a tryptophan metabolite capable of binding and 

activating the AHR and increasing IL-22 production in CD4+ T cells. Other tryptophan 

metabolites, L-kynurenine (L-KYN) and kynurenic acid (KYA), have also been shown to 



 %#"

activate the AHR and to have effects on cell differentiation or cytokine production. Additionally, 

the tryptophan photoproduct FICZ has been shown to increase IL-22 production in CD4+ T cells 

through AHR activation and may play a role in endogenous immunostimulatory processes 

through formation in the skin  (19,25). Therefore, understanding (a) how CA compares to other 

kynurenine metabolites that are AHR ligands and (b) how CA compares to known inducers of 

IL-22 is critical to understand its relevance in T cell differentiation in vivo. 

L-KYN has been shown to induce Treg differentiation in mouse CD4+ T cells stimulated 

in vitro at concentrations around 50 µM  (27). Endogenous plasma concentrations of L-KYN 

range from 0.7 to 3 µM, but in the context of HIV infection concentrations can reach 5 µM  

(73,120,161). Conversely, KYA synergized with IL1& to induce IL-6 in a human cell line at 

concentrations as low as 100 nM  (26). However, KYA concentrations in the periphery of 

healthy donors is much lower than L-KYN, ranging from 6 to 54 nM  (161). Plasma 

concentrations of KYA have not been documented during HIV infection, but KYA in the 

cerebrospinal fluid of HIV-infected patients is elevated versus controls, implicating that similar 

changes in concentration may occur systemically during HIV  (162).  

Given that many of the effects of these metabolites may be exerted locally, assessing 

their concentrations within tissue is also important. A thorough documentation of these 

metabolites in a rat model of renal insufficiency revealed that increases in plasma concentrations 

were mirrored by increases in tissues, though whole tissue concentrations were on the order of 

pmol/mg tissue, which is difficult to equate to concentrations used in vitro   (163). Though 

concentrations of these metabolites in the peripheral blood are below those which induce 

changes in cytokine production or T cell differentiation in vitro, it must be emphasized that local 

concentrations of these metabolites may be effectively higher, much as cytokine production may 
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be concentrated at immunological synapses  (164).  Additionally, in vitro assays may be 

complicated by reductions in bioavailability to cells caused by binding to serum proteins  (165). 

Relating effective concentrations in vitro to endogenous immunological effects will be a critical 

and challenging area of future research. 

While relating effective in vitro concentrations of KYA and L-KYN to in vivo effects has 

proven to be difficult, so to has it been hard to analyze the biological role of the tryptophan 

photoproduct, FICZ. Produced readily upon ultraviolet irradiation of cell culture media, FICZ 

has been shown to have a critical role in cell culture assays, potently increasing IL-22 and IL-17 

production in vitro  (19,166). At concentrations of 250 nM, FICZ has been reported to induce IL-

22, and its activity on other AHR-responsive genes such as Cyp1a1 has been reported in the 

picomolar range  (166). However, the effects of FICZ in vitro are limited by its self-induced 

metabolism  (167). Furthermore, FICZ has not yet been detected endogenously, though the 

presence of sulfated products of FICZ metabolism in the urine implies that endogenous 

formation of FICZ is feasible  (25). 

Endogenous CA has only recently been detected in rat tissues including the lung, liver, 

spleen, and kidney at relatively low concentrations ranging from 7 to 60 pg/mg tissue  (168). 

Administration of LPS increased CA in both the spleen and kidney as well as in the brain, where 

in normal rats it was below the limits of detection. While endogenous concentrations of CA are 

less understood, CA production in vitro is better studied. Multiple enzymes are capable of 

converting 3-HAA into CA, including catalase, superoxide dismutase, the fungal enzyme 

laccase, and its human ortholog, ceruloplasmin  (146,169). Additionally, CA may be formed 

non-enzymatically under oxidative conditions  (170), as may occur in the context of 

inflammatory responses  (171). Interestingly, thymocytes incubated with 300 µM 3-HAA in vitro 
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formed 30 µM of CA after 6 hours of culture, indicating that cell mediated synthesis of CA is 

feasible  (141). 

To better understand the relevance of CA endogenously, the effect of CA on Cyp1a1 

induction was compared to L-KYN and KYA. Next, the ability of CA to affect IL-17 and IL-22 

production was compared to tryptophan metabolites, L-KYN, KYA, and FICZ. Then, the ability 

of immune cells to produce CA following stimulation with cytokines and TLR agonists known to 

induce IDO and generate kynurenine metabolites was tested. Finally, the concentrations of CA 

obtained from immune cells were compared to concentrations effective at altering IL-22 

production in vitro. 

 

Materials and Methods 

 

Chemicals and mice. Chemicals and mice were obtained as described in Chapters II and III. 

Additionally, kynurenic acid (KYA), L-kynurenine (L-KYN), and laccase (from T. versicolor) 

were purchased from Sigma. For some experiments, laccase was heat killed by incubation at 

95˚C for five minutes. 

 

In vitro human cell culture. Naïve human T cell assays were performed as in Chapter II. 

 

In vitro mouse cell culture. Naïve mouse T cell assays were performed as in Chapter II. 

 

Cyp1a1 induction. Assays were performed as described in Chapter III. 
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CA detection. Human PBMCs were plated at a concentration of 2.5-5x106 cells/well in 200 µL 

of RPMI. Cells were left unstimulated or incubated with 50 µg/mL LPS, 10 ng/mL PMA, 100 

ng/mL IFN", or 1-5 µg/mL concanavalin A (conA) for 16 hours. Supernatants were frozen for 

detection of CA by LC/MS/MS. 

 

Sort depletion. Human PBMCs were stained with anti-CD14-QDot605 (Invitrogen), anti-

HLADR-PECy7 (BD), anti-CD3-Alexa700 (BD), and anti-CD16-PB (BD). Cells designated as 

all cells were sorted as singlets; cells designated as CD3 depleted were sorted as singlet CD3- 

events. Cells designated as CD14 depleted were sorted by combining singlet CD3+ cell gate with 

the CD3-CD14- cell gate into one sort stream. Supernatants were collected from cells stimulated 

with IFN!, as described under “CA detection.” 

 

LC/MS/MS. CA was measured by liquid chromatography-tandem mass spectrometry 

(LC/MS/MS). Samples (20 µl) were mixed with 100 µl of internal standard, piroxicam (100 

ng/ml) in acetonitrile, vortexed for 1 min, and centrifuged at 3000 rpm for 10 min. The 

supernatant was transferred to an autosampler vial and 8 µl was injected onto the LC/MS/MS 

system. The standard curve was generated by serial diluting CA standard solution in water. The 

mass detector was an API 5000 triple quadrapole (Applied Biosystems), equipped with a Turbo 

Ion Spray source. The system was set in positive ionization mode. The ion spray voltage was 

5500 V and the source temperature was 600°C. The values for CAD, CUR, GS1, and GS2 were 

6, 15, 55, and 75, respectively. The multiple reaction monitor was set at 301.1 – 265.0 m/z for 

CA and 332.0 – 94.9 m/z for piroxicam. A Shimadzu system was used for the HPLC, consisting 

of a pump, solvent degasser, autosampler and column oven, which was set to 30°C. The mobile 
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phase, consisting of 40% acetonitrile, 0.1% trifluoroacetic acid containing 5 mM ammonium 

acetate, was pumped through a Synergi Polar RP (4.6 x 75 mm, 4 µm particle size) column with 

a flow rate of 1.0 ml/min. Data were acquired and processed by Analyst 1.5.1 software. 

 The limit of quantification (LOQ) and limit of detection (LOD) for CA were 7.81 ng/ml 

and 3 ng/ml, respectively. The tryptophan, L-KYN, and 3-HAA levels were measured in API-

5000 with a similar method as reported before  (73). CA values below LOQ were treated as ' 

LOQ for statistical analysis  (172).  

 

Results 

First, the ability of CA to induce transcription of the AHR-responsive gene, Cyp1a1, was 

compared to other tryptophan metabolites, KYA and L-KYN, which have recently been 

identified as AHR agonists  (26,140). In both mouse (Fig. 1A) and human (Fig. 1B) 

lymphocytes, CA induced Cyp1a1 but was less effective than these other tryptophan metabolites. 

Next, KYA and L-KYN were compared to CA in mouse naïve T cells at concentrations where 

they were more effective than CA at inducing Cyp1a1 (Fig. 2, A and B). However, CA was 

much more effective at increasing IL-22 production in these cells; neither KYA nor L-KYN was 

able to increase significantly IL-22 or IL-17 production. Given that KYA is more effective at 

activating the AHR in human cells as compared to mouse cells  (26), CA was also compared to 

these metabolites in naïve T cells isolated from human cord blood (Fig. 2C). Likewise, CA 

proved effective at increasing IL-22 production while the other metabolites did not under the 

conditions and concentrations tested. Finally, CA was directly compared to FICZ in mouse naïve 

cell cultures (Fig. 2D). Although FICZ did induce some IL-22 production, IL-22 production was 

not greater than that caused by CA, even when FICZ was titrated to 10 µM (Fig. 2E). 
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Generation of CA from immune cells 

We next sought to determine whether immune cells are capable of producing CA. To 

date, CA has only been identified within human cell cultures in which 3-HAA has been 

exogenously added  (141). However, the formation of CA in vivo in rats injected with LPS has 

recently been described  (168). We accordingly asked whether human PBMCs are capable of 

generating CA when stimulated with LPS or other immunostimulatory compounds. After culture 

for 16 hours, CA at concentrations up to ~1 µM appeared in the cell culture supernatants of cells 

stimulated with LPS, IFN", or concanavalin A, yet remained low or below the LOQ in 

unstimulated (NS) control wells (Fig. 3, A and B). Production of CA was correlated with both 

the endogenous 3-HAA concentration in the supernatant (Fig. 3C) and with the supernatant 

kynurenine/tryptophan ratio (Fig. 3D), the latter of which is indicative of IDO-driven tryptophan 

metabolism  (73). To our knowledge, this is the first characterization of CA secretion from 

human cells in vitro. Next, we asked whether certain cell populations were critical to CA 

production. Removal of CD14+ cells from the cultures abrogated CA production, while removal 

of CD3+ cells did not cause a significant difference (Fig. 3E). Of note, the process of sort-

purifying cells stimulated CA production at baseline, which was also prevented in CD14+ 

depleted samples. 

We next asked whether concentrations of CA produced in the supernatant of these assays 

would be effective at increasing IL-22 production. Human naïve T cells were differentiated in 

the presence of decreasing doses of CA. Concentrations as low as 1 µM were found to 

significantly increase IL-22 production (Fig. 3F). Finally, we tested whether conditions likely to 

lead to CA generation could affect IL-22 production in vitro. The fungal enzyme, laccase, has 
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been described as capable of catalyzing the formation of CA from 3-HAA  (169). When laccase 

alone was introduced into mouse naïve CD4+ T cell cultures under polarizing conditions, IL-22 

production was doubled, possibly from formation of CA or a related dimerization product from 

tryptophan metabolites in the media (Fig. 3G). Laccase that had been heat killed was unable to 

increase IL-22 production, demonstrating a requirement for its enzymatic activity. 

 

Discussion 

We have directly compared the ability of CA to induce IL-22 to that of other reported 

tryptophan-derived AHR agonists (e.g., FICZ, L-KYN and KYA)  (19,140,173). Amongst the 

metabolites downstream of IDO (L-KYN and KYA), the ability of CA to increase IL-22 

production from naïve T cells is comparable to that observed with the tryptophan photoproduct, 

FICZ (Fig. 2D). Neither L-KYN nor KYA increased IL-22 production as effectively as CA in 

mouse or human T cells under the tested concentrations and conditions, despite the ability of 

these two compounds to much more effectively induce CYP1A1, an AHR-responsive gene, in 

human and mouse lymphocytes. CA may be a selective AHR modulator (SAhRM)  (2), more 

potently inducing IL-22 than CYP1A1. Indeed, several AHR ligands that bind the AHR and elicit 

AHR-dependent effects, but are weak inducers of CYP1A1, have been described previously  

(174-177). The actions of such SAhRMs can be cell- and species-specific  (2,178), and SAhRMs 

with selective immunomodulatory activity (although not involving IL-22) have been reported 

previously  (153). The molecular mechanism by which AHR activation leads to enhanced IL-22 

expression is not yet well understood, but it appears to involve interaction of AHR with ROR!t 

at the Il22 gene  (46). Whether this mechanism involves direct DNA binding by the CA-activated 
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AHR or a DNA-binding-independent mechanism (such as tethering to DNA-bound ROR!t)  

(152) remains to be investigated.  

In addition to demonstrating that CA is an AHR agonist that promotes IL-22 production, 

we show that CA can be produced by stimulated human PBMCs, in the absence of exogenous 3-

HAA. Potential enzymatic modulators that can regulate the generation of CA from 3-HAA 

would predictably affect the resolution of inflammation. Such enzymes include ceruloplasmin  

(169), superoxide dismutase  (146), catalase  (146), and the fungal virulence factor, laccase  

(169). It is interesting to note that ceruloplasmin recently has been shown to be protective in 

mouse models of inflammatory bowel disease, where IL-22 has also been shown to be protective  

(179). CA also might be generated through non-enzymatic reactions favored under oxidizing 

conditions  (170), such as those found in the context of inflammatory responses. For instance, 

neutrophils, which produce reactive oxygen species (ROS) in an antimicrobial oxidative burst, 

also express high levels of IDO in the setting of fungal infections  (171). In such cells, co-

expression of IDO and enzymes involved in generating ROS might skew the tryptophan 

metabolic pathways towards the generation of CA over PA or QA. It is important to note CA is 

effective at driving IL-22 production only at the upper limit of secreted concentrations detected 

in our assays (~1 µM) (Figs. 3B, 3F). However, the ability of CA to be generated intracellularly 

at the site of an inflammatory immune response may allow for relatively high effective 

concentrations to be achieved locally. Future study will be required to understand the roles of 

IDO-derived metabolites in mediating immune responses within tissues. 
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Figures

 

Figure 1. CA is less effective at inducing Cyp1a1 transcript when compared to KYA and L-

KYN. Induction of mouse Cyp1a1 (A) and human CYP1A1 (B) measured by qRT-PCR relative 

to Hprt or HPRT. Mouse lymphocytes (A) and PHA-stimulated human PBMCs (B) were 

incubated with CA, KYA, L-KYN. Values are pooled from at least three independent 

experiments and represent fold-change compared to DMSO control. Metabolite concentrations 

are in µM. Error bars represent SD. 
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Figure 2. CA increases IL-22 and IL-17 production more efficiently than other tryptophan 

metabolites. (A) Flow cytometric analysis of mouse naïve CD4+ T cells for IL-22 (left, white 

bars) and IL-17 (right, gray bars) production following stimulation under polarizing conditions 

(with IL-1!, IL-6, TGF-!, anti-IFN", and anti-IL12/23) in the presence of DMSO, CA, L-KYN, 

or KYA. Data are from six independent experiments. Metabolite concentrations are in µM. Data 

from individual experiments are depicted by separate data points and were analyzed by analyzed 

by Kruskal-Wallis ANOVA and Dunn’s Multiple Comparison test. *, p<0.05. (B) qRT-PCR data 

were analyzed from mouse naïve CD4+ T cells stimulated under polarizing conditions for the 

expression of Il22 transcripts measured relative to Hprt. Data are pooled from at least three 

independent experiments per sample; metabolite concentrations are in µM. (C) Flow cytometric 

analysis of naïve CD4+ T cells isolated from human cord blood and stimulated under polarizing 

conditions (with IL-1!, IL-6, IL-23, TGF-! , anti-IFN", and anti-IL4) in the presence of DMSO, 

CA, L-KYN, or KYA, with concentrations noted in µM. Data from six independent experiments 

with nine (10 µM) or five (25 µM) individual donors were analyzed by one-way ANOVA 

(Kruskal-Wallis) and Dunn’s Multiple Comparisons Test. **, P<0.01. (D) Flow cytometric 

analysis of mouse naïve CD4+ T cells stimulated under polarizing conditions in the presence of 

DMSO, CA, or FICZ. Data from six independent experiments were analyzed by the Friedman 

test and Dunn’s Multiple Comparison test. *, p<0.05. Error bars represent SD. (E) Flow 

cytometric analysis of mouse naïve CD4+ T cells stimulated under polarizing conditions in the 

presence of equimolar concentrations of DMSO, CA, or FICZ. Data are representative of three 

independent experiments. 
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Figure 3. CA is generated by human PBMCs stimulated in vitro. (A) Detection of CA by 

LC/MS/MS in supernatants of human PBMCs stimulated with LPS (50 µg/mL). The left 

chromatogram is representative of LPS-treated samples, and the right represents a CA standard 

peak. (B) Measurement of CA in supernatants of human PBMCs cultured with LPS (50 µg/mL), 

IFN" (100 ng/mL), or conA (1µg/mL) for 16 hours versus non-stimulated (NS) controls. Data 

points represent individual treated wells from human donors. The dashed line represents the limit 

of quantification (LOQ = 7.81 ng/mL) of CA. Data points below LOQ were treated as ' LOQ, 

while data points below the limit of detection (LOD = 3 ng/mL) were treated as zero. Data from 
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different stimulation conditions were compared by one-way ANOVA (Kruskal-Wallis, Dunn’s 

Multiple Comparison). *P<0.001, **P<0.01 versus non-stimulated wells. (C) Correlation of the 

CA concentration in supernatants of human PBMCs with the concentration of 3-HAA 

(Spearman’s rank correlation). Each data point represents an individual sample treated +/- LPS, 

LPS/PMA, IFN", or conA. Samples with CA below LOQ were assigned a value of ' LOQ. (D) 

Correlation of CA secretion in supernatants of human PBMCs with the ratio of 

kynurenine/tryptophan in the supernatant (Spearman’s rank correlation). (E) Measurement of CA 

in supernatants of sort-depleted human PBMCs cultured with or without IFN" (100 ng/mL) for 

16 hours. Data were analyzed by Kruskal-Wallis ANOVA with Dunn’s Multiple Comparison 

test. *, p<0.05. (F) Flow cytometric analysis of cord blood naïve CD4+ T cells stimulated under 

polarizing conditions in the presence of decreasing concentrations of CA. Data from four 

experiments were analyzed by repeated measures ANOVA and Dunnett’s Multiple Comparisons 

Test. *, p<0.05. (G) Incubation of sorted naïve mouse CD4+ T cells with DMSO, the fungal 

enzyme laccase, or heat-killed laccase under polarizing conditions (as in panels A, B). Data 

pooled from four independent experiments were analyzed by one-way ANOVA (Kruskal-Wallis 

with Dunn’s Multiple Comparison Test). * p<0.05. Error bars are SD. 

 

 

CHAPTER V: CONCLUSIONS AND FUTURE DIRECTIONS 

 

In summary, we have identified CA as an endogenous tryptophan metabolite generated 

downstream of IDO induction that is capable of increasing IL-22 production through AHR 

activation. In addition to its effects on IL-22, we have also shown it to have differential effects 
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on IL-17 between humans and mice, increasing IL-17 in mice only. Finally, CA exhibited no 

effective induction of suppressive Tregs in vitro in either species.  We have shown that CA is 

capable of binding and activating the AHR, and that the effects of CA upon IL-22 production are 

inhibited by an AHR antagonist. We have compared CA to other IDO-derived tryptophan 

metabolites and find that it is a weaker inducer of certain AHR-responsive genes, such as 

CYP1A1, but even more effectively increases IL-22 production. Finally, we show that CA may 

be produced by human immune cells and that the concentrations produced in vitro are in the 

range of those required to induce IL-22 in vitro. 

Given the above, it will be of great interest to further understand the regulation of CA 

formation and metabolism, and its role in AHR-mediated immune regulation. While both 

endogenous enzymes as well as more spontaneous oxidative processes have been described to 

lead to CA formation, which mechanism is most critical in either health or disease remains to be 

described. Future research identifying potential inducers or inhibitors of CA formation will allow 

for a greater understanding of how CA may impact immune responses in vitro and in vivo. While 

generating a model organism incapable of producing CA may prove difficult due to the number 

of potential enzymatic modulators, studying formation of IL-22 in mice deficient in enzymes 

such as ceruloplasmin or catalase may reveal a role for enzymatic formation of an AHR ligand 

such as CA.  

The effects of CA on immune cell differentiation appear to be unique from other 

tryptophan-derived metabolites such as L-KYN and 3-HAA, which preferentially expand Tregs. 

We have shown previously that tryptophan catabolism can result in a loss of Th17 cells in the 

context of HIV disease through generation of 3-HAA  (73). We hypothesize that this loss, 

particularly within the gut mucosa, allows for ongoing inflammation due to continued microbial 
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translocation. Conversion of 3-HAA into CA could reverse the effects of 3-HAA within immune 

cells, thereby restoring Th17 and Th22 cells in the context of increased IDO activity. This would 

allow for the resolution of the inflammatory signaling cascade by strengthening the mucosal 

barrier, thus stopping a vicious cycle that might otherwise drive disease progression  (73). 

Although IL-22 was initially linked to IL-17 as a pro-inflammatory cytokine, recent evidence 

suggests that it plays an independent immunoregulatory role in the context of non-hematopoietic 

cells, maintaining epithelial cell homeostasis in the mucosal tissues  (129,130,180). If so, the 

pathways that lead to the generation of CA may operate in tandem with the immunosuppressive 

mechanisms linked to tryptophan metabolism to generate a population of Th22 cells that plays a 

specific role in tissue repair following inflammation  (129). These findings prompt future 

investigation into the potential roles that CA may play in numerous biological settings in which 

the AHR is involved. 

The number of AHR ligands that have been identified to play a role in immunological 

development and response has expanded greatly in recent years. Environmentally generated 

ligands for the AHR have been recently shown to affect homeostasis between the immune 

system and commensal microflora in the gut mucosa  (21), and commensal microflora 

themselves have been proven capable of producing AHR agonists that affect the immune 

response  (47). AHR activation was found to be critical for maintenance of local intraepithelial 

lymphocyte subsets that in turn regulate the homeostasis of and prevent bacterial dissemination 

across the mucosal epithelium. Additional immune cell types, including innate lymphoid cells 

producing IL-22 (ILC22) in the gut have also been shown to be AHR-dependent  (181). 

Identifying the source of these ligands is critical for understanding and affecting AHR-dependent 

immune responses. In some of these cases, AHR activation was induced by exogenous ligands; 



 &'"

for gastrointestinal immunity, the presumptive AHR ligands were dietary, whereas tryptophan 

photoproducts such as FICZ may be generated by UV exposure of the skin. By contrast, removal 

of dietary AHR ligands had no effect on the function of ILC22s  (21), suggesting that another 

source of AHR agonists must exist. While the gastrointestinal microbiota is an appealing 

candidate  (47), given the wide breadth of tissues and cell types regulated by AHR activation at 

multiple stages in development, it is likely that multiple, independently generated AHR agonists, 

including CA, work in separate compartments to regulate AHR-dependent processes globally.  
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Pubtlrhlng Agrrenent
It ls the pollcy of tlu Unlvtslty to encouragc thc dlstrlbutlon of all thescs,
dlssenailons, and nunustlpts, Coptcs of all UCSF tlvscs, dlsscrtatlons, and
manuscrlpts will bc routcd to ttlc ltbrary vlatlu Gradrcte Dlvision.Thc library will
mak all thcses, dlsserrarlons, ad nunustlpts accesslblc to the publlc and wlll
prcscrnc these to tllr best of thelr abllltlcs, in ptpetulty.

Phasc sign thcfollovhtg sta/rrlmnt:
I hcrcby grqnt pcrmisslon to the Grduatc Dlvlslon of thc Unlvcrslty of Callfonfia, Sarrt
Franclsco to relcasc coplcs of ny tlcslc, dlssttatlon, or nuruscrlpt to thc Campw
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