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Multiresolution View-Dependent Splat Based
Volume Rendering of Large Irregular Data

JeremyMeredith
�

LawrenceLivermoreNationalLaboratory
Kwan-LiuMa

�
Universityof California,Davis

Abstract

We present techniquesfor multiresolution approximation and
hardware-assistedsplatbasedrenderingto achieve interactive vol-
ume visualizationof large irregular data sets. We examine two
methodsof generatingmultiple resolutionsof irregular volumet-
ric gridsanda datastructuresupportingthesplattingapproachfor
volume rendering. Thesetechniquesare implementedin combi-
nation with a view-dependenterror basedresolutionselectionto
maintain accuracy at both low and high zoom levels. In addi-
tion, the error tolerancemay be adjustedat run time to obtain
thedesiredbalancebetweenhigh frameratesandaccuraterender-
ing. Along with aneffective way to computegradientsfor lighting,
we offer anintegratedsolutionfor interactive volumerenderingof
irregular-meshor meshlessdata,andwedemonstrateour technique
onunstructured-griddatasetsfrom aerodynamicflow simulations.
Keywords: Hardware-assistedrendering, irregular-grid data,
lighting, multiresolutionrepresentation,splatting,volumerender-
ing.

1 Introduction

Scientiststodaymake useof parallelcomputersconsistingof hun-
dredsto thousandsof processorsto conductlargescalesimulations.
They increasinglyuseirregularcomputationalmeshesto betteral-
locatecomputingresourcesfor greateraccuracy. Visualizationof
largescaledatafrom thesesimulationspresentsa numberof chal-
lenges,especiallyvolume visualizationwhich requiresrendering
the contentsof every cell in the dataset. Thereare many solu-
tions to tackling this problemon regulargrids,whereconnectivity
is simple,cell sizeis constant,partitioningfor parallelcomputation
is straightforward, and the datalendsitself well to a hierarchical
representation.However, noneof theseassumptionscarryover to
irregular datasets,and novel approachesmust be constructedto
dealwith thecomplexity.

We considerirregular datato be thoseon eithernon-rectilinear
grids or a collectionof scattereddatapoints. Several novel algo-
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rithm designshave beendevelopedfor softwarerenderingof irreg-
ular data[3, 5, 6, 7, 12, 23], amongwhich [23] canhandlemulti-
ple intersectinggrids commonlyfound in CFD datasets,and [3]
demonstratedhigh renderingefficiency. To make possibleinter-
active renderingof very large scaledata,Ma andCrockett devel-
opeda highly scalabledistributed-memoryparallel algorithm for
unstructured-griddata[12].

Tospeeduprenderingwith graphicshardware,Shirley andTuch-
man introducedthe ProjectedTetrahedra(PT) algorithm which
converts tetrahedralcells into sets of overlapping triangles that
can be efficiently renderedby polygon graphicshardware [18].
More works followed to improve the accuracy of the PT algo-
rithm [19, 24]. Recently, Rottger, Kraus andErtl have extended
thePT algorithmby employing 2-d and3-d hardwaretexturemap-
ping [17]. Otherhardware-assistedalgorithmsinclude the incre-
mentalslicing approachby Yagel,et al. [26], the multiresolution
slicingapproachby Kreylos,Ma andHamann[8], andthetwo-pass
approachby WestermannandErtl which reducesthecostof depth
sortingpolyhedra[21].

A few other unique approachesworth mentioning are the
stochasticresamplingtechniquepresentedby Mao for usingsplat-
ting [15], the integratedtetrahedralmeshcompressionandrender-
ing techniquedemonstratedby Yang,Mitra andChiueh[27], and
theout-of-corestrategy proposedby FariasandSilva for rendering
dataof arbitrarysizes[4].

The aforementionedtechniqueshave addressedmany different
aspectsof the irregular datavisualizationproblem. In this paper,
we describethe designandexperimentalresultsof a multiresolu-
tion, hardware-assistedapproach.We presentdifferenttechniques
for implementingmultiresolutionapproximationof irregular data,
coupledwith ahardware-assistedsplattingapproach,to achieve in-
teractivevisualizationandexplorationof largescaledata.Thecon-
nectivity of theoriginaldatasetis discardedandthefinal represen-
tationfor eachlevel of themultiresolutiondatasetis a point cloud.
Thedatasetis thenstoredwithin anoctreedatastructure,with each
leaf nodein thetreecontainingapproximatelythesamenumberof
datapoints.

The renderingphaseinvolves traversingthe octreestructurein
view dependentorder. At eachnodein the traversal,the approxi-
mateerroris calculatedfor eachof theresolutionscontainedwithin
thatsubtree.This informationis thenusedto determinewhetherto
stopandrendertheselectedresolution,or to descendto thechildren
andfind theappropriateresolutionfor eachchild of thenode.

While hardware-assistedrenderinghelpsusachieve thedesired
interactivity, the resultingimagequality, asshown in subsequent
sections,seemscloseto thoseof the previously publishedresults
usingsoftwarerendering.In fact,becauseof theability to explore
the dataat different resolutionsand at high interactivity, we are
oftenableto derive strikingly powerful transferfunctionsto reveal
importantfeaturesin thedataset. Our approachto multiresolution
renderingmaybeappliedto almostany large-scaleirregular-grid or
meshlessdatadueto its simplicity andflexibility . In addition,we
show how gradientvaluesmaybereasonablyapproximatedfor the



resultingpoint data,andhow moreinformative visualizationsmay
beproducedwith gradient-basedshading.

Therestof thepaperis organizedasfollows. Section2 contains
thediscussionof themultiresolutionapproximationmethods.Sec-
tion 3 addressesthedatastructureandtechniquesusedfor rendering
the data. Section4 containsresultsof thesetechniquesregarding
imagequality andperformance,andSection5 concludesour study
andsuggestsdirectionsfor futureresearch.

2 Multiresolution Representations

In its mostbasicsense,a multiresolutiondatasetis a sequenceof
datasets,including the original full resolutiondataand a series
of successively lower resolutionapproximationsof theoriginal. A
mipmapof texturesis a commonexampleof this: it is a sequence
of textures,eachonehalf thesizein eachdimensionof theprevious
texturein thehierarchy[25].

A commonapproachto generatinga multiresolutionrepresenta-
tion of a datasetis to analyzetheerrorof thevariableoneis inter-
estedin. For areaswherethereis little or no changein the value
of thevariable,moreinformationcanbediscarded.This keepsthe
mostinformationat theareaswhereit mattersmostandthusmin-
imizesthe error. Oneexampleof this techniqueis wavelet based
compression.Thedetrimentto usingthis techniqueis directly due
to thebenefit:thelowerresolutiondatasetsweregeneratedbecause
of thevaluesof a singlevariable.If onewantsto changevariables,
oneneedsto regeneratethemultiresolutionapproximations.

It may be that a multiresolutionrepresentationcould be gener-
atedbasedupontheerroracrossall valuesin theoriginal dataset,
but in generaltheerrorof onevariablemaynotcorrespondto theer-
ror of anothervariable.We have thebenefitwith unstructureddata
thatthedatapointsthemselvesarenot evenly distributed.A higher
concentrationof pointsin anareaof spaceimplicitly indicatesthe
areawheremorepointsshouldgo in a lower resolutionapproxima-
tion. Insteadof a data-basedmultiresolutionscheme,therefore,we
generatedtheapproximationsfrom geometry-basedschemes.

Previous works on multiresolutionrepresentationshave largely
beenfocusedon simplification of surfacemeshesor regular vol-
umedata.Studyof irregularvolumedataproblemshasbeenrather
sparse.LeuteneggerandMa [11] proposedamultiresolutionframe-
work for interactivevisualizationof largeunstructured-griddatabut
the focusof thestudywason the underlyingexternalmemoryor-
ganizationusingan R-tree. Trotts, et al. presenteda tetrahedral
collapsealgorithmbaseon a local errorcontrollingcriterionbut it
wasdesignedfor tetrahedralizedrectilinear-grid data[20]. Cignoni,
et al. useda Delaunayrefinementstrategy that is ableto generate
finerresolutionsfor non-convex complexes[2]. Morerecently, they
alsodevelopedasystematic,accurateerrormeasuremechanismfor
simplifying irregularvolumedatabasedon edgecollapse[1], and
this techniquealsoensuresthegeometricor topologicalcorrectness
of thesimplifieddata.Ourproposedmethodswill work onall mesh
types,or evenscattereddatawith noconnectivity at all.

2.1 Maximum Independent Set Method

In our study, the first methodusedwasbaseduponthe maximum
independentsetof thepreviousresolution’svertices.Themaximum
independentset(MIS) over a graphG ��� V � E � is the largestsub-
setV 	 of theoriginal verticesthatarenot connectedby anedgein
E. Generationof theMIS is anNP-completeproblem,but heuris-
tics exist to quickly generatea maximalindependentset,whereno
vertex can be addedto V 	 and still have the verticesdisjoint by
E. The methodwe usedinvolved taking the lowestdegreevertex
in V , addingit to V 	 , removing that vertex andits neighbors,and
repeatingfor all of V . The connectivity for V 	 is thengenerated
usinga Delaunaytetrahedralizationsothatfurtherresolutionsmay

begenerated.Sincetheedgesbetweenverticestendto occurwith
thesamedistributionastheverticesthemselves,thismeansthatthe
coarserresolutionwill haveaspatialdistributionsimilar to thefiner
resolution.

2.2 Direct Octree Method

The secondmethodwe usedwasderived directly from the octree
structurewe usedto storethe points. To begin, assumethat the
datapointsarestoredin the leaf nodesin an octree,andthateach
leaf nodecontainsroughlythesamenumberof points.To generate
a coarserresolutiondataset,we take exactly onepoint from each
leaf nodebaseduponsomedistribution criteria. In this case,our
criterionis to choosethedatapointclosestto thecenterof theoctree
node,with thejustificationthat it will allow for a slight smoothing
of thedistribution of points.Sincetheoctreestructurewascreated
explicitly so that therewill be more leaf nodesin areasof higher
point concentration,the next resolutionwill be generatedwith a
similardistribution. Notethatthis requiresthateachoctreenodebe
permittedto hold at leasteight datapoints,otherwiseprogresson
generatingcoarserresolutionswill quickly halt.

3 Rendering

3.1 Splat Based Rendering

Splatting[22] canbe a reasonablyaccurateapproximationof the
volumerenderingintegral. Its chiefbenefit,however, is its efficient
useof desktopgraphicshardware. With two-dimensionaltextur-
ing not only commonplacebut free in termsof rasterizationtime
onmodernhardware,rectilineargridscanbequickly renderedwith
a singlepolygonper voxel anda singleGaussiankernel filter for
all renderings.Applying this techniqueto unstructureddatais not
straightforward,though,sincetheappropriatekernelfor anunstruc-
turedcell is noteasyto calculate.

We have chosento work aroundthis problemby usinga simple
datastructureitself supportive of calculatingthekernel. The data
structureis essentiallyanoctreewith roughly thesamenumberof
datapointsstoredat eachleaf node,andno connectivity informa-
tion is storedfor thedatapoints.

To createthis structure,we first choosesomenumberN desig-
natingthe maximumnumberof datapointsthat may be storedin
any node. We startby creatinga boundingbox with equallength
sidesaroundtheoriginaldatasetandmakingthistherootof theoc-
tree.Recursively, then,for any nodein theoctreecontainingmore
thanN points,we subdivide thatnodeinto eightoctantsandmove
thepointscontainedin thegivennodeinto its appropriatechildren.
Theselectionof thevalueof N is discussedin Section3.4.

Oncethis structureis in place,the determinationof the kernel
becomesmorestraightforward. For any givenviewing parameters,
wecancalculatetheprojectedsizeof any octreenodeonthescreen.
Sincewe know how many pointswill be renderedwithin that oc-
tant,we candivide thescreenareaamongthedatapointsto calcu-
latetheapproximatekernelsize.For example,let thereben points
in anoctantandlet s betheprojectedone-dimensionalsizeof that
octant. We know that thereare roughly 3



n pointsalongeachof

thethreedimensionsof thatoctant.Theaveragedistancebetween
splatsis then(s � 3



n), andwe usethis valuefor thesizeof thesplat

kernel.
It follows thatthecalculationfor theaveragez-distancebetween

splatsin view spaceis identical. This numberthennot only deter-
minesthe splatsize,but it is usedto calculateopacity; the alpha
valueof eachsplatis basedon the integral over this distanceof its
correspondingdensityin thetransferfunction.

We have thusperformeda singlecalculationfor eachoctantto
determinesplatsizeandalphavaluefor every point in the octant.



Figure1: Setupfor thegradientcalculation.

This is a minimal amountof computationto determinethesepa-
rametersfor thedatapoints,especiallysince 3



n canbestoredin a

lookup tablebecauseof the small rangeof n. It alsopreventsthe
large storageoverheadassociatedwith saving kernel information
for everydatapoint.

Finally, given thesplatsizeandalphavalue,we draw eachdata
point in theoctantwith onesquarepolygonandusethesameGaus-
siankernelasa texturemapin thealphachannelfor all points. A
sharpdropoff in alphaat theedgesof thesplatkernelwill resultin
lessfuzzinessin thefinal images,but it will not helpsmoothover
theapproximationswe madeto generateour lower resolutiondata.
Thesplatshapeis discussedfurtherin Section3.4.

3.2 Gradient Calculation

Thegradientof a variableis commonlyusedto apply lighting cal-
culationsto the surfacesin volumerenderings.This canenhance
picturequality andgive theviewer impressionsof detailandshape
whichwould nototherwisebeapparent.

Weusedtheoriginal topologyof theunstructureddatasetto cal-
culatethe gradient. If one is working with a datasetwhich was
originally a point cloud, the Delaunaytetrahedralizationcould be
usedto createtheconnectivity.

Ma, Van Rosendale,andVermeer[14] suggestedcomputinga
divergencetheoremsurfaceintegral at eachvertex to approximate
the gradienton unstructureddata. The approachwe take, which
is simpler to implementand more accurate,is as follows. For a
variablev overwhichweneedthegradient,weperformaweighted
averageof one-sideddifferenceestimatesof the partial derivative
of v.

Figure1 shows a representationof thegradientcalculation.The
left diagramis asliceof themeshthroughthepointof interest(p0),
andtheright diagramis p0 with oneof thesurroundingcells.Each
point p0 with valuev0 for which we needto calculatethe gradi-
entis in generalsurroundedby somenumberof cellscell1 through
celln. For eachof thesecells, we calculatethe centroidandaver-
agedatavaluefor theouterfaceof celli with respectto p0. Let the
centroidof that facebe pi andthe averagevaluebe vi. If we let�
Ni be the normal in the directionof (pi 
 p0), thenthe onesided
differenceestimatefor ∂v � ∂

�
N is � vi 
 v0 ����� pi 
 p0 � . We want to

providemoreweightto theestimatefor thosecellswith greatervol-
ume,andwe alsowant to provide moreweight to thoseestimates
for which

�
Ni is in thedirectionof thegradientcomponentwe wish

to calculate.Therefore,if we let the � Nx � i be thescalarX compo-
nentof

�
Nx, thentheformulato calculatethevalueof thegradientin

thedirectionof X is:

gradx � 1
Wx

∑cells
vi � v0�
pi � p0

����� Nx � i ����� Nx � i ��� volumei

where Wx � ∑cells ��� Nx � i ��� volumei

Figure2: The contourlines are over the variableof interest,the
shadeshows the gradientmagnitude(dark=high,light=low), and
thevectors(line segments)show thegradientdirection.

Thecalculationsfor theothercomponentsarederivedsimilarly,
and the gradient is then simply <gradx,grady,gradz>. Figure 2
shows an exampleof the resultsof this calculationon a 2-d slice
of a datasetfrom a simultionof air flow aroundanairplanewing.
Theblackcontourlinesin this figureareover thevariableof inter-
est,theshadeis determinedby themagnitudeof thegradient,and
the white vectorplot shows the directionof the gradient. As ex-
pected,thegradientmagnitudeis greatestwherethecontourlines
areclosesttogetherandthevariableis thuschangingquickly. Also
asexpected,thegradientdirection(asshown by thescatteredwhite
lines) is perpendicularto the black contour lines and thus to the
changein thevariable’s magnitude.

Figure3 shows exampleswith andwithout useof this gradient
calculationfor shading.The lighting calculationis a simpleambi-
entanddiffusemodelwith thelight sourcelocatedat theviewpoint.
As shown, thelit oneconveys thestructureof theflow muchbetter.
Seealsofigure6 on thecolorplate.

3.3 View Dependent Optimization

To this point, we have discussedhow to generatemultiple resolu-
tionsof thesameunstructureddataset,how to storethedata,how
to determinethescreenspaceeachdatapoint influences,andhow
to renderthedata;we have not discussedhow to actuallyperform
themultiresolutionrendering.Thesimplestapproachwould be to
allow theuserto choosea resolution,to accesstheoctreestructure
containingthat resolution,and to renderusing that single octree
structure.It is possibleto dobetter. LaurandHanrahan[10] usedan
octreehierarchyto provide a view-dependentrenderingframework
for regulargrids.LaMar, Hamann,andJoy [9] createda texturehi-
erarchyandperformedview-dependentviewing of regularvolume
data.

We alsotake a view-dependentapproachto optimizerendering
and viewing. In the preprocessingstep,we combinethe octrees
containingeachresolutioninto a singleoctree. This implies that
all the datais no longersimply at the leaf nodesbut alsoin many
interior nodesfor resolutionscoarserthantheoriginal. In addition,



Figure3: For eachpairof images,theimageontheleft is unshaded,
andtheright oneis lit usingthecalculatedgradient.It is clearthat
thelit onesprovidemoreinformationabouttheflow field.

ateachnode,westorefor eachresolutionhow many datapointsare
containedwithin this nodeor its children.

In the renderingphasewe usethis combineddatastructureand
that small bit of additionalinformation. At eachnode,we startat
thecoarsestresolutionavailable,andsearchtoward thehigherde-
tail resolutions.For eachresolution,sincewe know thesizeof this
octreenodeandthenumberof datapointswithin it or its children,
we candetermineasusualthe approximatesplatsizefor the data
points. We choosethefirst resolutionwhich producesa splatsize
below a tolerancesetby theuser. (This toleranceis specificallythe
maximumpercentageof linear screenspacewhich any onesplat
maycover. For example,if the toleranceis 10% for a 1000x1000
window, thenno splatmay exceed100x100pixels.) If thechosen
resolutionis storedin the currentnode,we stopthe traversaland
render. Otherwise,we descendto the childrenandrecursively re-
peattheprocess.This techniqueallows theuserto specifyanerror
tolerancein units of screenspace,a parameterwhich makesintu-
itivesense.

Note that during the traversalof the octree,we may cull those
nodeswhich lie behindtheviewer or areoffscreen.Also notethat
we canarbitrarily renderany of the resolutionsat any point in the
traversalof the tree. This is a direct consequenceof discarding
theconnectivity informationandinsteadcalculatingthekernelsize
from theinformationaboutthedatastructure.

3.4 Rendering Issues

Above, it wasmentionedthat the boundingbox musthave equal
lengthsides;in otherwords,it mustbea cube.Thereasonfor this
is simple. If the boundingbox werenot a cube,eachnodein the
octree,andthusthe kernel for eachdatapoint, would alsohave a
non-1:1:1aspectratio. Whenrendering,it is far simplerto assume
that theprojectedareaof eachnodehasanequalwidth andheight
andthat it canbe approximatedwith a circular Gaussiansplat. If
thenodeshadvaryingshapes,eithera largeamountof calculation
mustbedoneto correctlyprojectthekernelsof thedatapoints,or a
largelookuptableof splatshapescouldbecreatedbeforehand.

Whenusingasplatbasedapproach,renderingmustproceedback
to front for theoveroperatorto work asintended.Theoctreenodes
are visited back to front, so the rendereddatapoints are almost
completelydrawn in correctorderjust by this traversal.For anor-
thographicprojection,theorderof treetraversalcanbecalculated
once,but for aperspectiveprojection,it mustberecalculatedateach
node. Furthermore,we have multiple datapointsto renderwithin
eachnode,sothesedatapointsshouldbesortedfor eachnodeprior
to rendering.This couldbedoneasa quicksortfor every nodeand
view parameters,or the datapointscould be pre-sortedalongthe
threemajoraxesto provide a fastapproximationat theexpenseof
datasize. Thespeeddecreasedueto sortingclearlydependsupon
the numberof pointsper node,but it is significantfor almostany
quantity. However, thedifferencebetweensortingandnot sorting
atall is nearlyimpossibleto see.Thereareseveralreasonsfor this.
Low opacitiesarecommonlyusedin volumerenderingto capture
more information from the interior of the volume. Thereshould
alsobea low numberof datapointswithin eachoctreenode,speci-
fiedby achoiceof asmallerN. In addition,sincewehavediscarded
the original geometry, by necessitythe remainingvisual features
mustbe composedof a slightly larger numberof similarly valued
datapoints. Sincethe imagesarenearlyindistinguishablewith or
without sorting, this makes a good casefor skipping the sorting
(within octreenodes)for at leastpreviewing purposes.

Thisbringsupthequestionof choosingN, themaximumnumber
of pointswithin anoctreenode.A goodchoiceis importantbecause
the selectionoccursduring preprocessingandcannotbe changed
later. Notethat thesmallerN is, thedeepertheresultinghierarchy
andthusthelargerthememoryfootprint for thesameoriginal data



Figure 4: Choiceof N for a constanttransferfunction. The left
imagewasrenderedwith N � 25, theright with N � 5.

set. However, thereareimportantrendingissuesto helpguidethe
choiceof N. Figure4 shows an imagewith N � 25 andan image
with N � 5. With a higherN, pointsaretoo likely to becomeun-
evenly distributedwithin octreenodesandthey commonlyreceive
too large an estimatedkernel size. This hashappenedin the im-
agewith N � 25, wherea high concentrationof datapointsin the
centerof this dataset is visible from a distanceas a setof large
splats.However, thesmallerN is, themorelikely theoctreestruc-
ture will have emptynodeswherethereshouldbe none. Take an
exampleof N � 1 andan octantwith two datapoints: the octant
mustsubdivide into eightchildren,six of which mustby definition
beempty. For this example,onecanassertthatmostof thespace
shouldbe coveredby thekernelsfor thesedatapoints,not empty.
Theimagewith N � 5 looksmuchmoreevenlydistributedthanthe
imagewhereN � 25,but it appearsa bit "splotchy"in places- this
is thesignof N beingtoo small.For theremainderof thefiguresin
this paper, we have chosento usethesmallestN allowableby the
directoctreemultiresolutionmethod:N � 8. Thisnumbermakesa
goodcompromisebetweentheextremes,andit appearsto remaina
goodchoiceindependentof datasetsizeanddatapoint geometric
distribution.

4 Results

4.1 Comparison of Multiresolution Generation Tech-
niques

Thereareseveral major differencesbetweenthe MIS methodand
the direct octreemethod. First, the generationof the MIS was
slow due to the complexity of Delaunaytetrahedralizationcode.
For a 100,000pointdataset(correspondingto 500,000tetrahedra),
generatingthemultiresolutionapproximationthroughtheMIS ap-
proachtook a few minuteson a singleprocessorof anSGI Origin
2000. By contrast,the simplicity of coding an O � n � logn � algo-
rithm for the direct octreeapproachallowed the generationof the
multiresolutiondatato occurin only a few seconds.

Additionally, thedatasizereductionat eachstepis about 1
6 for

theMIS methodand 1
3 for theoctreemethod.This meansthereare

morelevelsof resolutionfor theoctreemethod.This is bothgood
andbad; it meansthe total datasizeis 120%for the MIS method
and150%for theoctreemethod,but thereareabouttwiceasmany
resolutionsto choosefrom for thedirectoctreemethod.Thiscould
reduce"popping"artifactsbecauseresolutionswill changelesssud-
denly.

Figure 7 on the color plate shows a comparisonof both tech-
niquesat similar resolutions,with gradientshadingdisabled.The
first imageshows the MIS techniqueat 15% of the original data
setsize, the secondshows the octreemethodat 10% of the orig-
inal dataset size, and the third shows the imagerenderedat the

Figure 5: Framesper second(top) and numberof visible points
(bottom)for varyingtolerancesusingthesameview parametersfor
a100,000pointdataset.

full resolution.Therearea few noteworthy differencesin Figure7.
A subjective comparisonof thetwo techniquesmight indicatethat
theoctreemethodlookscloserto theoriginal, eventhoughtheoc-
tree imagecontainsonly two-thirds the amountof datashown in
theMIS image. A moreobjective comparisonwould indicatethat
despitethespeedandsimplicity of theoctreemultiresolutiontech-
nique,it producespicturesof at leastsimilar quality for the same
datasizeastheMIS technique.

4.2 View-Dependent Results

Figure8 on thecolor plateshows a seriesof imageswith thesame
view parametersandtransferfunction. In eachsuccessive image,
we increasethetolerance,wherethegiventoleranceis specifiedin
termsof the minimum allowablepercentageof screenareathat a
given splatmay occupy after projection. This is the actiona user
would performto achieve a fasterpreview at theexpenseof accu-
racy. This is also,however, similarto whatwouldhappenif theuser
heldthetoleranceconstantandzoomedout,sothatthesamepoints
wouldoccupy a smallerregionon thescreen.

Notethatthedetailonly beginsto noticablydegradeat the10%
level, but therenderingspeedhasjumpeddrasticallyby then,from
2 to 15 FPS.The imageat 20% toleranceis a still a reasonable
approximationif theuserdesired30 FPS,but by definition, it also
depictswhat the imagewould look like at the 1% toleranceif it
occupied 1

400th thescreenarea.
Figure9 onthecolorplateshowsimagesfrom amuchlargerdata

setwhich containsover 18 million tetrahedralcells. Thefirst two
imagesshow our techniqueat 5% and1% tolerance.Thethird im-
agewasrenderedusinga softwarecell-projectionvolumerenderer.
Comparedto thefirst two imagesin Figure9, this imageis sharper
andrevealssomefine featuresin the data. We shouldbe able to
improvesplattingimagesby following thetechniquessuggestedby



Mueller, Möller, andCrawfis [16].
In [13], this large datasetwas renderedin approximatelyfive

secondsusing128CrayT3E processors.In contrast,the first two
imagesgeneratedwith our techniquewererenderedin 0.2seconds
and1 second,respectively, on a singleprocessorcomputer. This
shows thepower of our technique,asit renderstheimagesin sim-
ilar timesto a massively parallelmethod,preservesmostof thein-
formation found in the higherfidelity image,andrequiresonly a
singleprocessoron a commondesktopworkstation.By increasing
thetolerance,smoothframeratesareachievableevenon a dataset
of this size.

5 Conclusions

We have describeda methodof performinga multiresolutionap-
proximationof irregular data,andfor organizing,processing,and
renderingthis dataat interactive frameratesno matterwhatview-
point theuserchooses.Sincethedepthof the treetraversalvaries
with only thelogarithmof thedatasizeandtherenderingspeedis
dependenton renderedsize,not original datasize, this technique
shouldscalewell to very large datasetswith the only restriction
beingavailablememory.

This implies, however, that this techniquecould be combined
with out-of-coreorparallelrenderingto renderevenlargerdatasets.
Our multiresolutionapproachresultsin data organizationwhich
particularly facilitatesout-of-coreprocessing.For example,since
eachcoarserresolutionis asubsetof theprevious,thearrayof data
pointscansimply be reorganizedsuchthat the coarsestresolution
is first andtheadditionalpointsneededto generateeachsuccessive
resolutionfollow in order. Weneedonly storeindicesinto thisarray
in theoctree,andwhenviewing coarseresolutionsmostof thedata
canremainon disk. This enhancementcouldprove our technique
truly scalableto massive datasets.

In addition,differentstructuringof thedatacouldprovide more
accurateresults.For example,a k-d treecouldprovidea morecon-
sistentsubdivision of thepoint cloudthantheoctree,andasuitable
view-dependentvariationof the splatshapewould thenprovide a
moreaccuraterendering.
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Figure6: For bothpairsof images,theimageon theleft is unshaded,andtheright oneis lit usingthecalculatedgradient.

Figure7: Left: MIS approximationat 15% of original datasize. Center:Octreeapproximationat 10% of original. Right: Original, full
resolutiondataset.

Figure8: Imagesshowing increasingtoleranceatsamezoomlevel. This replicatestheeffectof zoomingoutwith aconstanttolerance.From
left to right, tolerancesare1%,5%,10%,20%.

Figure9: Imagesshowing an18 million cell dataset.Theleft imagewasgeneratedwith tolerancesof 5% (0.2seconds),thecenterat 0.5%
(2 seconds),andtheright imagewasgeneratedusinga cell-projectionvolumerenderer.




