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ABSTRACT OF THE DISSERTATION 

 

Molecular mechanisms by which Mycobacterium leprae survives in human macrophages 

 

by 

 

Manali Dhirendra Mehta 

Doctor of Philosophy in Microbiology, Immunology, and Molecular Genetics 

University of California, Los Angeles, 2016 

Professor Robert L. Modlin, Chair 

 

Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is a powerful 

model to study the human immune response because the clinical manifestations of disease 

present as a spectrum correlating with the level of immune response to the pathogen.  

Research investigating mechanisms of host defense and M. leprae-induced suppression of 

antimicrobial pathways continues to provide insight into which immune pathways are essential 

for containment of mycobacterial infections.  Here, we utilized three bioinformatics approaches 

to identify mechanisms of modulation of host immune responses by mycobacteria and gain a 

clearer understanding of disease pathogenesis and potential targets of mitigation, including: i) 

integration of microRNA and mRNA gene expression profiling of disseminated lepromatous 

leprosy (L-lep) versus self-containing tuberculoid leprosy (T-lep) lesions to identify microRNAs 

capable of downregulating antimicrobial peptide production, ii) overlap of highly expressed 
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receptors on IL-15-derived M1 and IL-10-derived M2 macrophages (MΦ) with known drivers of 

MΦ polarization to discern ligands capable of reeducating MΦ phenotype and function, and iii) 

comparison of transcriptome profiles of M. leprae-infected monocyte-derived MΦ and leprosy 

skin lesions to identify candidate genes contributing to suppression of host immune responses 

and bacterial survival.   

We provide evidence illustrating the ability of M. leprae to induce specific microRNAs and 

host genes to alter host immune responses.  M. leprae, but not M. tuberculosis, can induce 

upregulation of microRNA-21, which then targets and downregulates antimicrobial peptide 

production and mycobacterial killing.  Differential cytokine expression coupled with the presence 

of mycobacterial ligands can alter MΦ polarization correlating to a change in phagocytic function 

and expression of antimicrobial genes.  Lastly, M. leprae can induce expression of the 

autophagy regulator NUPR1, which is more highly expressed in L-lep lesions.  As more data are 

gathered on (i) the functional consequences of host genes regulated during mycobacterial 

infections on the immune response and ii) how these genes are regulated by the pathogens, it 

may provide an opportunity for directed therapeutic intervention. 
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Introduction  
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Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is the leading 

cause of permanent physical disability among communicable diseases1.  Infection occurs 

primarily in the skin and peripheral nerves2 and can result in physical deformities and peripheral 

neuropathy characterized by a sensory deficit.  At the time of diagnosis, up to 60% of patients 

have already sustained irreversible peripheral nerve damage3.4.5 and are at risk for sequelae 

long after the disease has been cured, increasing the need for early detection and treatment.   

With the application of Multidrug Therapy (MDT) consisting of dapsone, rifampicin, and 

clofazimin in 1981, there is now a 98% cure rate of leprosy3,6.  Still, there is evidence of relapse 

and the mode and effect of MDT on transmission of leprosy7-10 is unclear.  With the lack of data 

regarding transmission and the social stigma surrounding leprosy-induced disfigurements 

resulting in hesitation in seeking diagnosis and treatment, the number of cases has plateaued 

since 2005.  Currently, there are close to 200,000 new cases per year11.  Fortunately, although 

the negative connotations associated with leprosy has led to infected patients being ostracized 

from their homes, there has been a huge outgrowth of leprosy centers around the world aimed 

in treating and rehabilitating those with leprosy. 

 

Learning from Leprosy: 

With the lack of progress in elimination of the global incidence of leprosy, research on 

the host defense against M. leprae and disease pathogenesis continues to provide insight into 

which immune pathways are essential for containment of mycobacterial infections.  Leprosy is a 

powerful model to study the human immune response because it presents as a spectrum where 

the clinical manifestations correlate with the level of immune response to the pathogen 

contributing to host defense or pathogenesis (Figure 1)12.  At the ends of the spectrum are the 

tuberculoid (T-lep) and lepromatous (L-lep) forms, in which the infection presents as self-limited 
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or disseminated granulomatous lesions in the skin, respectively.  Comparisons of T-lep versus 

L-lep skin lesions have yielded significant insight regarding the adaptive and innate immune 

responses essential in protection against M. leprae infection.  Skin lesions from T-lep patients 

exhibit an immune response characterized by a Type II interferon (IFN) profile13, Th1 cytokines 

such as IL-15, and macrophages (MΦ) programmed to express the vitamin D-mediated 

antimicrobial pathway14 and to induce autophagy upon immune stimulation15.  In contrast, L-lep 

lesions are typified by a Type I IFN profile13, Th2 cytokines such as IL-10, and an accumulation 

of MΦ programmed to express enhanced phagocytic activity but lacking expression of 

antimicrobial factors14. 

 

Type II vs Type I Interferon: 

The differential expression of Type II vs. Type I IFNs at the site of disease in leprosy is 

thought to be contribute to development of the T-lep and L-lep clinical forms, respectively13, 

where the level of severity of mycobacterial disease closely correlates with the level of 

responsiveness to Type II interferon, IFN-γ16,17.  IFN-γ, a known inducer of macrophage 

activation and antimicrobial pathways, activates a heterodimeric IFN-γ receptor (IFNGR) 

composed of two chains, IFNGR1 and IFNGR2.  Accordingly, IFNGR-deficient mice are more 

susceptible to mycobacterial infection.  Genetic studies investigating patients with mutations 

limiting expression or functionality of either receptor chain reveal poorer prognosis with 

mycobacterial disease19-31, highlighting the nonredundant role of IFN-γ in protection against 

mycobacterial infection.  In T-lep, cells of both the adaptive (Th1) and innate (Natural Killer) 

immune system secrete IFN-γ32, which can then activate neighboring MΦ to mount an 

appropriate response to intracellular pathogens.  In vitro, IFN-γ can promote mycobacterial 

killing in human monocytes or MΦ via multiple mechanisms, including induction of: i) the vitamin 

D antimicrobial pathway33 and ii) autophagy15.  
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In contrast, the gene expression profile of L-lep skin lesions exhibits an IFN-β, or Type I 

IFN, profile13, which signals through a distinct receptor complex IFNAR composed of IFNAR1 

and IFNAR2.  While IFNGR-deficient mice are more susceptible to mycobacterial infection, 

IFNAR-deficient mice are more resistant to infection, suggesting that Type I IFN can antagonize 

IFN-γ responses34,35.  Indeed, IFN-β can downregulate expression of IFNGR and downstream 

immune pathways including the vitamin D antimicrobial pathway14 and antigen presentation36-39.  

IFN-β induces the M2-polarizing cytokine IL-10, which can suppress the conversion of vitamin D 

to its active form by suppressing Cyp27B1 expression.  This inhibition ultimately leads to an 

inability to induce production of antimicrobial peptides CAMP and DEFB4 and enhanced 

bacterial viability13. 

 

M1 versus M2 MΦ: 

In addition to type II and type I interferons, T-lep and L-lep lesions also contain MΦ of 

distinct phenotype and function and differential expression of IL-15 and IL-1040,41, cytokines 

known to regulate macrophage function.  T-lep lesions contain macrophages that are well-

differentiated and contain little to no bacteria.  Reflective of IL-15-derived M1 MΦ, these MΦ are 

CD209+CD163lo and express components of the vitamin D antimicrobial pathway capable of 

mycobacterial killing14.  In contrast, MΦ prominent in L-lep lesions are CD209+CD163hi, 

resembling IL-10-derived M2 MΦ.  They express higher levels of scavenger receptors and show 

enhanced phagocytic function but lack expression of the antimicrobial pathway to promote 

bacterial clearance.  Consistently, these MΦ have a large mycobacterial load and are ill-

defined42. 
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Host Defense: 

Vitamin D antimicrobial pathway: 

Induction of the vitamin D-dependent antimicrobial pathway can be achieved following 

activation of the adaptive or innate immune responses.  In adaptive immunity, Th1 cells produce 

IFN-γ, which can activates MΦ by signaling through the IFNGR.  In innate immunity, detection 

of M. leprae is mediated, in part, by the pattern recognition receptor heterodimer, Toll-like 

receptor 2 and 1 (TLR2/1)43.  Stimulation with either IFN-γ or TLR2/1L on monocytes results in 

induction of the vitamin D receptor (VDR) and CYP27B1 in an IL-15-dependent manner44,45. The 

CYP27B1 gene product (CYP27b1), a cytochrome P450 hydroxylase, is responsible for the 

conversion of the circulating prohormone form of vitamin D (25-hydroxyvitamin D3, 25D) into its 

active hormone form (1,25α-dihydroxyvitamin D, 1,25D).  If the extracellular concentration of 

25D is sufficient, CYP27b1 will convert 25D into 1,25D, resulting in activation of the VDR and 

expression of antimicrobial peptides cathelicidin (CAMP) and human beta defensin-2 

(DEFB4)46.  Convergence of IL-1β signaling and vitamin D transcriptional activation is required 

for the TLR-induced expression of DEFB446.  Triggering of TLR2/1 was found to modulate IL-1β 

activity and increase the cell’s responsiveness to IL-1β by simultaneously i) inducing IL-1β 

secretion, ii) increasing expression of cell surface IL-1 receptor 1 (IL-1R1), and iii) decreasing 

the baseline secretion of IL-1 receptor antagonist (IL-1RA). 

 

Autophagy: 

During optimal growth conditions, mTOR, or mammalian target of rapamycin, suppresses 

autophagy.  In times of stress or nutrient deficiency, however, the cell undergoes the process of 

autophagy to break down cytoplasmic contents for the regeneration of amino acids and energy 

sources to permit cell survival68.  Autophagy is generally subcategorized into three categories: 
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macroautophagy, microautophagy, and chaperone-mediated autophagy.  Macroautophagy, or 

more generally termed autophagy, is the most common and initiates with the formation of a 

double membrane-containing phagophore.  Portions of the cytosol containing aged or damage 

organelles and proteins are incorporated into the phagophore as the membrane elongates.  

During this time, LC3 is recruited to the phagophore where it stays until the phagophore fuses 

with the autolysosome and is degraded along with the rest of its contents69,70.  Although 

autophagy most commonly occurs through macroautophagy, it can also occur via invagination 

of the lysosomal membrane (microautophagy)71 or selective targeting of proteins to the 

lysosome (chaperone-mediated autophagy)72.73. 

Infection with intracellular bacteria can resemble nutrient-deficient states within the MΦ due 

to bacterial hijacking of host iron and metabolic intermediates required for bacterial persistence.  

As such, phagocytic cells can employ autophagy as a host defense mechanism to eliminate 

intracellular infections74-77.  Indeed, autophagy is critical for mounting an effective immune 

response to mycobacterial infection78-80.  After phagocytosis, mycobacteria suppress 

phagolysosomal fusion and acidification81,82, but induction of autophagy can overcome this 

suppression and deliver mycobacteria to antimicrobial peptide-containing autolysosomes83.  

Stimulation with IFN-γ33,84,85, recognition of mycobacterial lipid MDP86, or nutrient sensing such 

as vitamin D can induce autophagy during mycobacterial infection.   

 

Mechanisms of immune evasion: 

microRNA-21: 

MicroRNAs are small noncoding RNAs about 22 nucleotides in length that post-

transcriptionally regulate the amount of mRNA in the cell.  Encoded in the genome within 

intergenic or exonic regions or derived from introns of other genes47,48, microRNAs are initially 
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transcribed by RNA polymerase II or III in the form of a long primary miRNA transcripts49-51 and 

processed by the enzyme Drosha into smaller pre-miRNA containing a hairpin structure52-55 prior 

to nuclear export56-58.  Once in the cytoplasm, pre-miRNAs undergo a final processing step by 

Dicer RNase to produce mature miRNAs59.60 that can then be loaded onto the RNA-induced 

silencing complex (RISC).  With their 7mer or 8mer seed sequence, microRNAs can bind to 3’ 

untranslated regions (UTR) of complementary mRNAs and sterically inhibit translation or target 

the mRNA for degradation61.   

The first microRNA, lin-4, was discovered in the early 1990s62.  Since then, the number 

of microRNAs has grown to include over 1800 microRNAs estimated to regulate about 30% of 

the human transcriptome.  Several microRNAs have been implicated in human pathologies 

including cancer, autoimmune diseases, and microbial infections63.  An increasing amount of 

evidence also supports a role for microRNAs in regulation of host responses to mycobacterial 

infection64.  Initially described as an oncogenic microRNA, microRNA-21 (miR-21) has been 

extensively studied in the context of host immunity.  miR-21 is upregulated after activation of the 

myeloid precursor monocyte, during differentiation into macrophages, neutrophils, and immature 

dendritic cells, and after stimulation by immune regulators such as lipopolysaccharide65 and 

TGF-β66.  While the functions of miR-21 are complex and still being studied, several reports 

have provided evidence suggesting an anti-inflammatory role for miR-21.  miR-21 can inhibit the 

expression of IL-12p35, a subunit of a major Th1 driving cytokine67, and indirectly enhance the 

production of IL-10, a major Th2 driving cytokine65. 

 

NUPR1: 

NUPR1, also known as p8 and Com1, was initially discovered in 1997 when it was found to 

be more highly expressed during acute pancreatitis87.  It is conserved in mammals, 
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Drosophila88, Xaenopus96, and C. elegans but shares little homology to other proteins of known 

function97.  Despite this lack of sequence similarity, NUPR1 shares several biochemical 

properties with high-mobility group proteins in the HMG-I/Y subfamily97 including a high 

isoelectric point and high percentage of proline and glycine amino acids.   

Predictions into the structure of NUPR1 protein have indicated the presence of a basic 

Helix-Loop-Helix motif characteristic of transcription factors.  Accordingly, NUPR1 has is 

reported to bind DNA upon phosphorylation by protein kinase A.  In addition to a seven-fold 

increase in DNA binding97, phosphorylated NUPR1 exhibits increased secondary structure and 

stability.  

Since the discovery of NUPR1, several studies have elucidated basic properties of NUPR1.  

The open reading frame is comprised of three exons alternatively spliced into two NUPR1 

transcripts encoding an 82 and 100 amino acid peptide, It is important to note, however, that the 

majority of the literature that exists to date is representative of only the smaller isoform.  

Interestingly, though NUPR1 is small in size, it contains a nuclear localization sequence and 

requires active transport to enter the nucleus, suggesting NUPR1 has binding partners prior to 

entry into the nucleus.  Induction of NUPR1 occurs after cellular stresses such as hypoxia or 

starvation88, as well as after stimulation with demyelinating agents89, cell cycle arrest90, TGF-β91, 

TNF-α92,93, glucose94, and 1,25D395.   

The lack of paralog in yeast enabled a yeast two-hybrid screen to identify binding partners of 

NUPR1 including MSL-198.  NUPR1 can alter transcriptional profiles by inhibiting the histone 

acetylase activity of MSL-1.  Several other binding partners are known, revealing a role of 

NUPR1 in multiple pathways including autophagy99-102, apoptosis103,104, demyelination89, and 

transcriptional regulation98,105-107.  Studies investigating the role of NUPR1 in autophagy, 

however, have yielded conflicting results.  In two studies, NUPR1 inhibited autophagy through 

downregulation of autophagy inducer BNIP399 or correlation with AURKA expression100. In 
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contrast, NUPR1 can also promote the induction of autophagy by upregulation of mTOR 

inhibitor TRB3101 or long non-coding RNA expression from TGFB2 that serves as a microRNA 

sponge for microRNAs that inhibit autophagy102.  NUPR1 plays a role in regulation of cell cycle; 

however, it still remains to be determined whether NUPR1 plays a role in microbial infections. 

 



FIGURE 1: The spectrum of leprosy

Figure 1: The spectrum of leprosy

Characteristics of the innate and adaptive immune responses in either end of the leprosy 
spectrum.
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MicroRNA-21 targets the vitamin D-dependent  

antimicrobial pathway in leprosy 
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Interactions between the host immune response and the invading 
pathogen at the site of disease are crucial to the outcome of the infec-
tion. Leprosy, caused by the intracellular bacterium M. leprae, pro-
vides an extraordinary model for studying host-pathogen interactions 
in humans because the disease presents as a spectrum in which the 
clinical manifestations correlate with the level of immune response to 
the pathogen1. This allows for the investigation of the factors that con-
tribute to the balance between host defense, persistence and patho-
genesis at the site of disease in humans. At one end of the spectrum, 
in T-lep, the infection is self-limited, and skin lesions are typified 
by an adaptive immune response characterized by T helper type 1 
(TH1) cytokines2,3 and an innate immune response characterized by 
macrophages programmed to express the vitamin D–mediated anti-
microbial pathway4. At the other end of the spectrum, in L-lep, the 
infection is disseminated with lesions typified by an adaptive immune 
response characterized by TH2 cytokines2,3 and an innate immune 
response characterized by macrophages programmed to express a 
phagocytic activity4. To gain insight into the mechanisms that regu-
late host defense versus persistence in human infectious disease, we 
investigated miRNA expression in leprosy skin lesions.

RESULTS
Gene and miRNA profile in leprosy
The mRNA and miRNA expression profiles in skin lesions were deter-
mined in biopsy specimens from six individuals with T-lep and five 
individuals with L-lep collected at the time of diagnosis and classi-
fied according to the clinical and histopathological criteria of Ridley1 
(Supplementary Fig. 1). Unsupervised hierarchal clustering analy-
sis of the mRNA profiles revealed two major groups in which the 
L-lep and T-lep samples were segregated (Supplementary Fig. 2).  
In contrast, hierarchal clustering analysis of the miRNA profiles
performed on the same samples indicated two major miRNA pat-
terns, with each group containing a mixture of both L-lep and T-lep 
samples (Supplementary Fig. 2). These results indicate that the
principal component of the measured miRNA expression patterns in 
leprosy did not differentiate the lesion types.

To identify lesion-specific differences, we used a supervised 
approach. Differentially expressed miRNAs between the two clini-
cal groups were identified by ranking miRNAs probes according to 
statistical significance (t test) and limited to sequences present in the 
miRBase database (version 14). There was a fivefold higher number 
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Los Angeles, California, USA. 10California NanoSystems Institute, University of California–Los Angeles, Los Angeles, California, USA. Correspondence should be 
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MicroRNA-21 targets the vitamin D–dependent 
antimicrobial pathway in leprosy
Philip T Liu1,2, Matthew Wheelwright2, Rosane Teles2, Evangelia Komisopoulou3,4, Kristina Edfeldt2,  
Benjamin Ferguson2, Manali D Mehta5, Aria Vazirnia5, Thomas H Rea6, Euzenir N Sarno7,  
Thomas G Graeber3,4,8–10 & Robert L Modlin2,5

Leprosy provides a model to investigate mechanisms of immune regulation in humans, given that the disease forms a spectrum 
of clinical presentations that correlate with host immune responses. Here we identified 13 miRNAs that were differentially 
expressed in the lesions of subjects with progressive lepromatous (L-lep) versus the self-limited tuberculoid (T-lep) disease. 
Bioinformatic analysis revealed a significant enrichment of L-lep–specific miRNAs that preferentially target key immune 
genes downregulated in L-lep versus T-lep lesions. The most differentially expressed miRNA in L-lep lesions, hsa-mir-21, 
was upregulated in Mycobacterium leprae–infected monocytes. By directly downregulating Toll-like receptor 2/1 heterodimer 
(TLR2/1)-induced CYP27B1 and IL1B expression as well as indirectly upregulating interleukin-10 (IL-10), hsa-mir-21  
inhibited expression of the genes encoding two vitamin D–dependent antimicrobial peptides, CAMP and DEFB4A. Conversely, 
knockdown of hsa-mir-21 in M. leprae–infected monocytes enhanced expression of CAMP and DEFB4A and restored  
TLR2/1-mediated antimicrobial activity against M. leprae. Therefore, the ability of M. leprae to upregulate hsa-mir-21 targets 
multiple genes associated with the immunologically localized disease form, providing an effective mechanism to escape from  
the vitamin D–dependent antimicrobial pathway.
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of differentially expressed miRNAs in the L-lep samples (16 probes 
representing 13 annotated miRNA species) versus the T-lep samples 
(three probes representing two unique miRNA species) (Fig. 1a). 
To compare the magnitude of differential expression between these 
miRNA species, we compared the un-normalized intensity values of 
the probes. The difference in intensity of the hsa-mir-21 probe was 
the greatest among the miRNA species differentially upregulated in 
L-lep versus T-lep lesions (Fig. 1b).

Targeting of immune genes by leprosy-specific miRNAs
Because the differentially expressed miRNA species were predomi-
nantly enriched in L-lep lesions, we hypothesized that regulation 
of miRNA expression at the site of the progressive disease inhibits 
expression of genes involved in host defense against the pathogen. 
We tested this hypothesis by integrating a prediction algorithm for 
miRNA binding sites in the 3  untranslated regions (3  UTRs) of 
mRNA species within curated sets of host immune response signature 
genes known to be differentially expressed in leprosy lesions, includ-
ing TH1- versus TH2-related genes as well as the genes of the vitamin D  

pathway (Supplementary Note). All miRNA species represented 
on the microarray platform were ranked by their ‘targeting prefer-
ence score’, calculated as the difference in frequency for targeting of 
the T-lep compared to L-lep signature genes (Supplementary Fig. 3  
and Supplementary Note). We next evaluated the enrichment of 
leprosy-disease-type–specific miRNA species by the Kolmogorov-
Smirnov–based permutation test. On the basis of this analysis, we 
found the L-lep–specific miRNA species to be significantly associated 
with the miRNAs most strongly predicted to preferentially target T-
lep signature genes (P = 0.049; Fig. 1c). Thus, L-lep–specific miRNAs 
may be a mechanism for the M. leprae–induced downregulation of 
T-lep host immune response signature genes in L-lep lesions.

In relation to the local immune response, the L-lep–specific set of 
miRNA species were predicted to have binding sites in the 3  UTRs 
of TH1-related signature genes, known to be differentially expressed 
in T-lep versus L-lep lesions, with an average targeting frequency of 
11.5%. In contrast, the L-lep–specific set of miRNAs species showed 
a significantly (P = 0.0003) lower targeting frequency for TH2-related 
genes, known to be differentially expressed in L-lep versus T-lep 
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lesions, with an average targeting frequency of 1.3% (Fig. 1d). Notably, 
multiple L-lep–specific miRNA species targeted two key genes in the 
vitamin D–dependent antimicrobial pathway, encoding cytochrome 
P450, family 27, subfamily B, polypeptide 1 (CYP27B1) and IL-1  
(IL1B), but not the genes encoding the antimicrobial peptides induced 
by this pathway, cathelicidin (LL-37, encoded by CAMP) and defensin 

4A (DEFB4A)5,6 (Fig. 1e). Taken together, these results indicate that 
the L-lep–specific miRNAs target and potentially downregulate host 
defense genes in leprosy.

Regulation of hsa-mir-21 in leprosy
We verified the tissue expression of the most differentially expressed 
miRNA, hsa-mir-21, in L-lep lesions by real-time PCR (qPCR) and 
fluorescent in situ hybridization (FISH) in additional leprosy tis-
sue sections. By qPCR, hsa-mir-21 levels were significantly higher 
(3.5-fold, P = 0.01) in 10 L-lep versus 11 T-lep lesions (Fig. 2a). An 
unrelated miRNA, hsa-let-7c, that was not differentially expressed 
in disease lesions by microarray analysis, was expressed at similar 
levels between the L-lep and T-lep lesions (Fig. 2b). Although the skin 
biopsies are composed predominately of granulomas in the dermis, we 
could not rule out that the differential expression of hsa-mir-21 came 

from nonimmune cells. Therefore, using FISH we determined that the 
frequency of hsa-mir-21–positive cells in the granulomatous regions 
was 25-fold higher in the L-lep lesions versus the T-lep lesions (98% 
versus 4% of nucleated cells, P = 0.001) (Fig. 2c). In the L-lep lesions, 
the hsa-mir-21–positive cells were located within the granulomas, in 
the same microanatomic locations as M. leprae (Fig. 2d). It was not 
possible to determine the frequency of cells expressing hsa-mir-21 
and containing M. leprae, as these are found in distinct subcellu-
lar compartments: microRNAs are located in the cytoplasm and the 
pathogen resides within phagosomes. We used a scrambled probe as 
a negative control to demonstrate the absence of nonspecific binding 
in either lesion type (Supplementary Fig. 4a), and a positive control 
probe for the U6 noncoding small nuclear RNA showed equivalent 
RNA integrity (Supplementary Fig. 4b). Taken together, these three 
approaches, microarray, qPCR and FISH, provide evidence for the 
differential expression of hsa-mir-21 in L-lep versus T-lep lesions.

Given that we identified both M. leprae and hsa-mir-21 in the 
granulomas, we hypothesized that M. leprae induced hsa-mir-21 
expression in monocytes and macrophages, the predominant cell 
type in a granuloma and the primary cell type infected by M. leprae. 
We infected human peripheral blood monocytes with live M. leprae 
at different multiplicities of infection (MOIs) for 18 and 40 h and  
measured hsa-mir-21 levels by qPCR. We efficiently infected mono-
cytes with M. leprae (Supplementary Fig. 5), which triggered an 
upregulation of hsa-mir-21 in a dose-dependent and time-responsive 
manner, with a 4.1-fold change (P = 0.005) at 18 h and 7.6-fold change 
(P = 0.00003) at 40 h, both at an MOI of 10 (Fig. 3a). In contrast,  
M. leprae infection of monocytes did not result in detectable upregulation 
of hsa-let-7c (Fig. 3b).

To explore the mechanism by which M. leprae infection induces 
hsa-mir-21, we compared the ability of several key cell wall biomol-
ecules to trigger hsa-mir-21 expression. Treatment of monocytes 
with phenolic glycolipid-I (PGL-I) induced a 2.9-fold increase in hsa- 
mir-21 expression, whereas the M. leprae lipoarabinomman (LAM) 
and lipomannan (LM), as well as a synthetic triacylated lipopeptide 
(a TLR2/1 ligand, TLR2/1L), did not significantly induce hsa-
mir-21 (Fig. 3c). Together, these data indicate that hsa-mir-21 is 
present at the site of disease in leprosy, is associated with the pro-
gressive and disseminated form (L-lep) of the disease, is specifically 
induced in monocytes by M. leprae infection and is triggered by an  
M. leprae–specific glycolipid, PGL-I. It is therefore likely that
M. leprae infection of macrophages induces the upregulation of
hsa-mir-21 at the site of infection.
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Regulation of the vitamin D pathway by hsa-mir-21
It was noteworthy that of all the L-lep–specific miRNAs, only hsa-mir-21  
had the potential to target both IL1B and CYP27B1 (Fig. 1e), which 
are both required for TLR-induced, vitamin D–dependent expression 
of CAMP and DEFB4A5,6. We investigated the ability of hsa-mir-21 to 
regulate the expression of these antimicrobial genes by transfecting pri-
mary human monocytes with either the mature hsa-mir-21 oligomer or 
a nontargeting control oligomer, followed by activation with TLR2/1L. 
To determine the transfection efficiency of the miRNA oligomers into 
primary monocytes, we used a fluorescently tagged nontargeting con-
trol oligomer, which showed that 71% (P = 0.002) of the monocytes 
were miRNA positive (Supplementary Fig. 6). As a control for target-
ing specificity, we determined that overexpression of hsa-mir-21 down-
regulated interferon- –induced IL12A mRNA, a previously described 
direct target7 (Supplementary Fig. 7). The presence of hsa-mir-21  
during TLR2/1L activation of monocytes resulted in the downregulation 
of IL1B mRNA by 24% (P = 0.006, representative experiment in Fig. 4a 
and averaged in Fig. 4b). Despite the absence of predicted hsa-mir-21 
target sites in the 3  UTR of IL10, transfection of hsa-mir-21 enhanced 
TLR2/1-induced IL10 mRNA levels by 110% (P = 0.035, Fig. 4a,c), 
consistent with studies in mouse cells8. In contrast, IL6 mRNA, another 
cytokine without hsa-mir-21 target sequences, was not affected (Fig. 4a,c).  
TLR2/1-induced IL-1  secretion was reduced by 45% (P = 0.003), IL-10 
release was enhanced by 85% (P = 0.001) and IL-6 levels did not change 
(representative experiment in Supplementary Fig. 8 and averaged 
in Fig. 4c). Therefore, the effects of hsa-mir-21 on TLR2/1-induced 
cytokine mRNAs and secreted proteins were consistent.

Transfection of hsa-mir-21 also resulted in a 34% decrease in 
TLR-induced expression of CYP27B1 mRNA (P = 0.008, Fig. 4a,b).  

Given that hsa-mir-21 downregulated TLR2/1-induced IL-1  and 
CYP27B1 mRNA expression, we examined the effect of hsa-mir-21 
on TLR2/1-induced antimicrobial peptide gene expression. Notably, 
TLR2/1 induction of CAMP and DEFB4A mRNAs was significantly 
inhibited by transfection of hsa-mir-21, by 73% (P = 0.005) and 60%  
(P = 0.006), respectively (Fig. 4a,b). Given that hsa-mir-21 upregulated 
IL-10, we investigated the effect of recombinant IL-10 on TLR2/1-
induced gene expression. The addition of rIL-10 inhibited TLR2/1-
induced mRNA expression of CAMP by 26% and DEFB4A by 35%, 
whereas the inhibition of IL12B was 76% (Supplementary Fig. 9a,b). 
Therefore, hsa-mir-21–mediated enhancement of IL-10 induction may 
partially contribute to the inhibition of antimicrobial gene expression.

We assessed whether hsa-mir-21 directly binds the TLR2/1-
induced, vitamin D–dependent antimicrobial pathway genes with a 
3  UTR reporter assay. hsa-mir-21 directly bound the 3  UTRs of both 
CYP27B1 and IL1B but did not bind the 3  UTRs of either CAMP or 
DEFB4A (Fig. 4d, Supplementary Fig. 10 and Supplementary Note). 
These data indicate that hsa-mir-21 inhibits TLR2/1-mediated CAMP 
and DEFB4A expression directly by regulating key epigenetic targets 
including CYP27B1 and IL1B and indirectly through induction of the 
immunomodulatory cytokine IL-10.

Role of hsa-mir-21 in the response to infection
Given the ability of hsa-mir-21 to downregulate key genes in the 
TLR2/1-induced antimicrobial pathway, and the observation that  
M. leprae induces hsa-mir-21 in monocytes, we investigated whether hsa-
mir-21 contributes to inhibition of the innate immune response during  
M. leprae infection. We transfected monocytes with an hsa-mir-21– 
specific antisense oligomer (anti–mir-21), infected the transfected
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Figure 4 The ability of hsa-mir-21 to regulate the innate immune response in human monocytes. Primary human monocytes were transfected with the 

mature hsa-mir-21 (mir-21) oligomer or a nontargeting control (mir-neg) then treated with TLR2/1L for 18 h and 24 h. (a) Gene expression of IL1B 

at 18 h, IL10 at 24 h, IL6 at 16 h, CYP27B1 at 16 h, CAMP at 24 h and DEFB4A at 24 h, as evaluated by qPCR. Data shown are representative 

experiments from more than five individual donors. (b) Change in gene expression comparing mir-21– to mir-neg–transfected cells after TLR2/1L 

simulation. Data are average percentage change mir-21 versus mir-neg  s.e.m., n = 3–11. (c) Change in cytokine protein levels in culture supernatants 

comparing mir-21– to mir-neg–transfected cells after TLR2/1L stimulation. Data are average percentage change mir-21 versus mir-neg  s.e.m.,  

n = 4–6. Representative experiment is shown in Supplementary Figure 6. (d) Change in luciferase activity of cells co-transfected with a 3  UTR 

luciferase reporter construct (IL1B, CYP27B1, CAMP or DEFB4A) and either mir-21 or mir-neg. Data are mean percentage change of each individual  

3  UTR construct comparing mir-21 versus mir-neg  s.e.m., n = 4–6. Representative experiment is shown in Supplementary Figure 8.
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monocytes with live M. leprae9 for 18 h and then measured mRNA 
expression. The presence of anti–mir-21 (versus a control oligomer 
(anti–mir-neg), followed by M. leprae infection, resulted in a significant 
reduction of hsa-mir-21 levels by 70% (P = 0.00002, Supplementary 
Fig. 11a,c). Consistent with the hsa-mir-21 overexpression experiment, 
anti–mir-21 enhanced IL12A mRNA expression in the M. leprae– 
infected monocytes (P = 0.006, Supplementary Fig. 11b,c).

Relevant to the vitamin D–dependent innate immune pathway, 
anti–mir-21 increased IL1B mRNA expression in the M. leprae–
infected monocytes by 118% (P = 0.047, Fig. 5a,b). In contrast, IL10 
mRNA was downregulated by 34% (P = 0.045), and there was no sig-
nificant change in IL6 mRNA levels (Fig. 5a,b). Notably, knockdown 
of hsa-mir-21 resulted in a significant increase in mRNA levels of 
CYP27B1 (59%, P = 0.014), CAMP (100%, P = 0.0006) and DEFB4A 
(227%, P = 0.014) (Fig. 5a,b). These results provide evidence that 
monocytes and macrophages can detect M. leprae infection and trig-
ger the vitamin D–dependent antimicrobial pathway; however, this 
response is inhibited by the pathogen’s upregulation of hsa-mir-21.

Effects of hsa-mir-21 on innate antimicrobial activity
We investigated the role of hsa-mir-21 in regulating the TLR2/1-
induced macrophage antimicrobial activity by overexpressing  

hsa-mir-21 during Mycobacterium tuberculosis infection. For these 
experiments, we used the avirulent M. tuberculosis H37Ra strain, as it 
does not contain a PGL-I homolog and failed to induce expression of 
hsa-mir-21 in monocytes upon infection (Supplementary Fig. 12a), 
despite induction of IL6 mRNA in the same cells (Supplementary 
Fig. 12b). We transfected monocytes with hsa-mir-21 or a control 
oligomer, infected them with M. tuberculosis H37Ra overnight,  
subsequently treated them with TLR2/1L for 3 d and assessed bac-
terial viability by qPCR according to the ratio of 16S RNA to the 
IS6110 genomic repeat element DNA10. TLR2/1L induced an anti-
microbial activity against M. tuberculosis in monocytes transfected 
with a control oligomer (Fig. 6a), at a level consistent with previous 
studies using the standard colony-forming unit assay (Supplementary 
Note)6. However, overexpression of hsa-mir-21 blocked the antimi-
crobial response and resulted in an increase in M. tuberculosis viability 
in TLR2/1L-activated cells (Fig. 6a). Also, in unstimulated cells, hsa-
mir-21 increased bacterial viability. Overall, M. tuberculosis viability 
in TLR2/1L-treated as compared to control monocytes was signifi-
cantly higher in the presence of hsa-mir-21 (P = 0.01, Fig. 6b).

To address the role of M. leprae–induced hsa-mir-21 in regulation 
of TLR2/1-induced antimicrobial activity, monocytes were transfected 
with anti–mir-21 or anti–mir-neg, then infected with live M. leprae. 
The transfected and infected cells were treated with the TLR2/1L for 
3 d and antimicrobial activity assessed by qPCR by measuring the 
ratio of 16S RNA to RLEP DNA10. In anti–mir-neg transfected cells, 
TLR2/1-activation increased bacterial viability, consistent with previ-
ous findings indicating enhanced M. tuberculosis growth in TLR2/1-
stimulated cells in the absence of CAMP and DEFB4A6. Strikingly, in 
anti–mir-21 transfected monocytes, TLR2/1-activation resulted in 
decreased bacterial viability (Fig. 6c). The anti–mir-21 oligomer had 
no effect on M. leprae viability in unstimulated monocytes (Fig. 6c).  
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Figure 5 Role of hsa-mir-21 expression during M. leprae infection. 
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hsa-mir-21 (anti–mir-21) oligomer or a nonspecific control (anti–mir-

neg) then infected with live M. leprae at an MOI of 10 for 18 h. Gene 
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evaluated by qPCR. (a) Representative experiments from more than four 

individual donors. (b) Change in gene expression comparing anti–mir-21– 

to anti–mir-neg–transfected cells following M. leprae infection for 18 h.  

Data are average percentage change anti–mir-21 versus anti–mir-neg  
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Figure 6 Role of hsa-mir-21 in TLR2/1-

mediated antimicrobial activity. Primary human 

monocytes were transfected with the mature 

hsa-mir-21 (mir-21) oligomer or a nontargeting 

control (mir-neg) and then infected with live  

M. tuberculosis H37Ra at an MOI of 0.5 for  

18 h. The monocytes were then treated with 

TLR2/1L (10 g ml−1) for 3 d. Levels of 16S 

rRNA and IS6110 DNA were assessed by 

qPCR. (a) The ratio of 16S rRNA to IS6110 

DNA levels as a representative experiment from 

three donors. (b) Fold change in M. tuberculosis
viability comparing TLR2/1L- versus medium-

treated monocytes. Data are the mean fold 

change  s.e.m., n = 3. Primary human 

monocytes were transfected with the antagomir 

against hsa-mir-21 (anti–mir-21) oligomer or a nonspecific control (anti–mir-neg) and then infected with live M. leprae at an MOI of 10 for 18 h. The

monocytes were then treated with the TLR2/1L (10 g ml−1) for 3 d. Levels of 16S rRNA and RLEP DNA were assessed by qPCR. (c) Data are the ratio

of 16S rRNA to RLEP DNA levels as a representative experiment from five donors. (d) Fold change in M. leprae viability comparing TLR2/1L– versus

medium-treated monocytes. Data are the mean fold change  s.e.m., n = 5.
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In five donors tested, M. leprae viability in TLR2/1-stimulated cells 
was significantly lower in the presence of anti–mir-21 (P = 0.02,  
Fig. 6d). Together, the data from these infection experiments demon-
strate the biologic relevance of hsa-mir-21 in innate host defense: 
the expression of hsa-mir-21 is sufficient to block TLR2/1-induced 
antimicrobial responses and the silencing of hsa-mir-21 induction 
restores TLR2/1-mediated antimicrobial activity.

DISCUSSION
Host-pathogen interactions determine the outcome of the immune 
response to microbial infection. Our data provide evidence that the 
human pathogen M. leprae regulates the miRNA profile at the site of 
infection in humans with leprosy and interferes with the host antimi-
crobial response. We used a unique bioinformatic strategy, combin-
ing an enrichment analysis of leprosy-disease-type–specific miRNA 
species ranked by 3  UTR mRNA targeting preference and evalu-
ated by the Kolmogorov-Smirnov-based permutation test. Together, 
these analyses led to the identification of hsa-mir-21 as differentially 
expressed in the progressive L-lep form of leprosy, with the potential 
to target genes in the vitamin D antimicrobial pathway. Infection of 
human monocytes with live M. leprae, or treatment with the myco-
bacterial virulence factor PGL-I, induced expression of hsa-mir-21. 
Next, we showed that hsa-mir-21 functionally downregulates the 
TLR2/1-induced vitamin D antimicrobial pathway by directly tar-
geting CYP27B1 and IL1B and indirectly inducing IL-10, all leading 
to the inhibition of the antimicrobial peptides CAMP and DEFB4A. 
Silencing of hsa-mir-21 during M. leprae infection led to the enhanced 
expression of vitamin D pathway genes. Finally, introduction of hsa-
mir-21 into monocytes was sufficient to block TLR2/1-induced 
antimicrobial activity against M. tuberculosis, and the silencing of 
hsa-mir-21 induction restored TLR2/1-mediated antimicrobial activ-
ity against M. leprae. Therefore, these data identify an evasion strategy 
in which a microbial pathogen regulates the host miRNA profile at the 
site of infection to inhibit the antimicrobial response.

Although M. leprae was the first human pathogen discovered11, it 
still cannot be grown in the laboratory, providing a major obstacle 
to investigation of the immunology of leprosy. To our knowledge, it 
has not been possible to demonstrate immune-mediated antimicro-
bial activity against M. leprae in primary human cells12. A previous 
comparison of antimicrobial responses in mouse and human macro-
phages demonstrated that the combination of lipopolysaccharide and 
interferon-  reduced the viability of intracellular M. leprae in mouse 
but not human macrophages12. Here we successfully demonstrate that 
immune activation of M. leprae–infected human monocytes decreases 
bacterial viability, finding that TLR2/1 activation induced a fourfold 
reduction in M. leprae viability only when hsa-mir-21 was silenced. 
In addition, overexpression of hsa-mir-21 blocked the TLR2/1-
induced antimicrobial activity against M. tuberculosis, resulting in 
a fivefold increase in bacterial viability. Taken together, these data 
indicate the biological relevance of hsa-mir-21 in the host antimi-
crobial response.

We gained insight into the mechanism by which M. leprae induces 
a specific miRNA immune regulatory profile at the site of infection 
by finding that hsa-mir-21 was induced in monocytes after M. leprae 
infection or by treatment with M. leprae–derived PGL-I. Previously, 
PGL-I has been shown to inhibit monocyte responses13,14, as well 
as associate with mycobacterial virulence15. Further studies are 
needed to elucidate the mechanism of induction and functional role 
of those miRNAs differentially expressed in L-lep lesions. Given that 
the degree of genetic diversity in M. leprae clinical isolates is not as 

broad as compared with other human pathogens16, it is not likely 
that species subtypes differentially induce single miRNAs, as has 
been shown for Francisella tularensis17. To complement the study of 
miRNA profiles in disease lesions as shown here, additional insight 
can be obtained by profiling the miRNAs induced by a pathogen in 
an isolated cell type18. It should be possible to learn whether the abil-
ity of a pathogen to induce a single miRNA or set of miRNA species 
that targets and inhibits host immune responses provides a poten-
tial virulence mechanism that contributes to the pathogenesis of  
infectious disease19.

Our data demonstrate that a single miRNA species, by both directly 
and indirectly regulating immune modulatory genes, can affect the 
downstream effectors of an innate immune–triggered antimicro-
bial pathway. Specifically, hsa-mir-21 inhibited TLR2/1-induced 
CYP27B1 and IL1B gene expression and enhanced IL-10 expression, 
thereby preventing upregulation of the CAMP and DEFB4 mRNAs, 
which encode antimicrobial peptides. These factors are all key to 
the outcome of the vitamin D antimicrobial pathway: (i) CYP27b1 
converts vitamin D from an inactive to active state, leading to anti-
microbial activity, (ii) IL-1  is required for DEFB4 induction and  
(iii) IL-10 is known to inhibit TLR-induced responses20. Consequently,
hsa-mir-21 inhibits the innate immune response by its distinct gene 
regulatory activities: the indirect upregulation of an immunosup-
pressive cytokine and direct targeting of epigenetic components
required for the TLR-induced, vitamin D–dependent antimicrobial 
pathway5,6. Consistent with this model, the genes directly targeted by
hsa-mir-21, CYP27B1 and IL1B, are downregulated in L-lep versus
T-lep lesions2,4. Although the relationship between expression of
miRNAs and gene targets in disease lesions is correlative, the dem-
onstration that hsa-mir-21 is induced in human primary monocytes 
18 h after M. leprae infection and its effect on the TLR-induced
antimicrobial response suggest a role in disease pathogenesis. Our 
investigation of the effect of a single miRNA in leprosy provides a 
framework for analyzing the set of miRNAs that are differentially
expressed at the site of disease to determine their cumulative role 
in regulating the host immune response, including autophagy and 
antimicrobial pathways.

The ability of anti–mir-21 to enhance the vitamin D–dependent 
antimicrobial pathway provides a potential therapeutic strategy to 
intervene in human infectious disease. In leprosy, the vitamin D anti-
microbial pathway may contribute to disease outcome, on the basis 
of the preferential expression of antimicrobial pathway genes in the 
T-lep versus L-lep form4, the correlation of the vitamin D receptor
single-nucleotide polymorphism in humans with L-lep21 and the
reported successful use of vitamin D as a therapeutic adjuvant in the 
treatment of leprosy22. Potentially, the combination of vitamin D sup-
plementation with targeted miRNA therapy could provide an optimal 
treatment approach to leprosy and other chronic infectious diseases 
in which the cellular immune response is dysregulated. This type of 
approach may be particularly worth exploring in the clinical setting of 
drug-resistant pathogens, including multi-drug-resistant, extremely 
drug-resistant and totally drug-resistant tuberculosis, in which anti-
microbial therapy is losing its effectiveness. Finally, our findings may 
be relevant to other diseases, including infectious23,24, autoimmune25

and neoplastic26,27 diseases in which vitamin D sufficiency has been
shown to be required for optimal host immunity.

METHODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturemedicine/.
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Accession codes. Accession numbers for genes, miRNAs, mRNA 
arrays and miRNA arrays are provided in Supplementary Table 1.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Statistical analyses. Percentage change due to miRNA or antagomir was ana-
lyzed against no change with an unpaired Student’s t test. Gene or miRNA induc-
tion studies were analyzed with an unpaired Student’s t test against the medium 
control of each experiment. L-lep–specific miRNA targeting of TH1- and 
TH2- related genes was analyzed with an unpaired Student’s t test. The miRNA 
targeting preference was determined with the Kolmogorov-Smirnov–based  
permutation analysis as noted in the Supplementary Note. Error bars represent 
the s.e.m. between individual donor values.

Leprosy biopsy specimens. The acquisition of all specimens was approved 
by the Medical Investigational Review Board 1 (MIRB1) of the University of 
California–Los Angeles; more details can be found in the Supplementary 
Methods. Scalpel or punch skin biopsy specimens were obtained after informed 
consent from individuals with tuberculoid leprosy and individuals with lepro-
matous leprosy at the time of diagnosis; therefore, all samples are representative 
of untreated disease.

Microarray analysis. For gene and miRNA expression profiling, the RNA 
from skin biopsy specimens was processed and analyzed by the University of 
California–Los Angeles Clinical Microarray Core Facility using the Affymetrix 
U133 Genechip and Asuragen using the Discovarray platform, respectively. 
Additional details pertaining hierarchical clustering, cluster dendrograms and 
heat maps are included in the Supplementary Methods.

In situ hybridization. Leprosy skin biopsy specimens were snap frozen and 
sectioned to a thickness of 10 m and then mounted onto a glass slide. The 
protocol has been previously described28 and adapted for current use. Briefly, 
biotinylated hsa-mir-21–specific, U6–specific and nonspecific control probes 
were purchased (Exiqon) and hybridized to the tissue at 0.1 pg l−1 for 1–4 h, 
followed by incubation with Streptavidin–horseradish peroxidase. Then, the 
sections were incubated with the TSA Plus Fluorescein System (PerkinElmer) 
according to the manufacturer’s instructions. A coverslip was sealed to the slides 
with ProLong Gold with DAPI (Invitrogen), left to dry at 4 °C in the dark over-
night and imaged using a Leica FLIM confocal microscope (Leica).

Live Mycobacterium leprae. Live and viable M. leprae bacteria were gener-
ously donated by J.L. Krahenbuhl. Additional information is included in the 
Supplementary Methods.

Quantitative PCR. For miRNA analysis, qPCR was performed using the TaqMan 
MicroRNA Cells-to-CT kit in conjunction with the TaqMan MicroRNA Assay 
for hsa-mir-21 (Applied Biosystems) or the NCODE miRNA cDNA Synthesis 
and qPCR Kit (Invitrogen) according to the manufacturers’ recommended  

conditions. For mRNA studies, total RNA was isolated from monocytes by 
TRIzol (Invitrogen), and cDNA libraries were made using the iScript cDNA syn-
thesis kit (BioRAD). qPCR reactions were carried out using the iQ SYBR Green 
qPCR Master Mix (BioRAD) according to the manufacturer’s recommended 
conditions. The primer sequences for 36B4, CAMP, DEFB4A and CYP27B1 were 
previously published5,6; other primer sequences and calculations are included 
in the Supplementary Methods.

Transfection of monocytes. Monocytes were enriched from peripheral blood 
mononuclear cells using a Percoll (GE Healthcare) gradient as previously described6 
and then transfected with either the mature miRNA or the antagomir oligomers 
using the Amaxa Nucleofector system with the Human Monocyte Nucleofector 
transfection kit (Lonza) according to the manufacturer’s recommended protocol. 
Additional details are included in the Supplementary Methods.

miRNA direct targeting analysis. MiRNA-targeting plasmids were prepared 
with endotoxin-free conditions using the Qiagen Endofree Maxi Kit (Qiagen) 
according to the manufacturer’s recommended protocols. The constructs were co-
transfected into HEK293 cells (ATCC) with either hsa-mir-21 mature oligomer 
or a nontargeting control oligomer with the Amaxa Nucleofector Transfection 
Cell Line V kit (Lonza) according to the manufacturer’s optimized protocol. 
After transfection, the cells were rested for 2 h and then washed to replace the 
medium. The transfected cells were then incubated 37 °C for 16 h, and luciferase 
activity was measured using the Dual Glo-Luciferase Assay System (Promega) 
according to the manufacturer’s recommended protocols. The miRNA effect is 
calculated as a ratio of the firefly to Renilla luciferase activities.

Antimicrobial assays. To assess M. leprae and M. tuberculosis H37Ra viabil-
ity from infected macrophages, we adapted the previously described real-time 
PCR–based method for the assessment of bacterial viability, which com-
pares 16S RNA levels to levels of a genomic DNA as a predictor of bacterial 
viability (Supplementary Note)10. Experimental details are included in the 
Supplementary Methods. The 16S and bacterial DNA values were calculated 
using the CT analysis, with the bacterial DNA value serving as the housekeep-
ing gene. The M. leprae 16S and M. leprae repetitive genomic element primers 
used were as previously described10; other primer sequences are included in the 
Supplementary Methods.

Additional methods. Detailed methodology is described in the Supplementary 
Methods.

28. Silahtaroglu, A.N. et al. Detection of microRNAs in frozen tissue sections by

fluorescence in situ hybridization using locked nucleic acid probes and tyramide

signal amplification. Nat. Protoc. 2, 2520–2528 (2007).
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Supplemental Figure 1 

Supplemental Figure 1. Histology of leprosy skin biopsy specimens.  Representative 
hematoxylin and eosin (H&E) stain for L-lep and T-lep skin biopsy specimens used for 
microarray and qPCR analysis.   
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Supplemental Figure 2 

Supplemental Figure 2. mRNA and miRNA expression profile in leprosy skin biopsy 
specimens. Hierarchical clustering analysis of (a) mRNA and (b) miRNA microarrays performed 
on total RNA extracted from six T-lep and five L-lep skin biopsy specimens.   
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Supplemental Figure 3 

Supplemental Figure 3. Schematic of targeting enrichment analysis.   
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Supplemental Figure 4 

Supplemental Figure 4. In situ hybridization for detection of miRNA in leprosy skin biopsy 
specimens.  Representative experiments of L-lep and T-lep skin biopsy specimens labeled with 
either the (a) scrambled negative control or (b) positive control oligo for the U6 non-coding small 
nuclear RNA (U6) using fluorescent in situ hybridization detected by confocal microscopy.  Data 
is representative of three individual donors.
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Supplemental Figure 5 

Supplemental Figure 5. M. leprae infection efficiency of primary human monocytes.  Primary 
human monocytes were infected with PKH26-labeled live M. leprae at an MOI of one, five and 
ten for 18 h, and then co-labeled with a monoclonal antibody specific for CD14.  Data shown is 
(a) representative of four individual donors, and (b) mean CD14 and M. leprae double positive
cells ± SEM, n = 4.
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Supplemental Figure 6 

Supplemental Figure 6. Primary human monocyte transfection efficiency.  Primary human 
monocytes were transfected with a Cy5-labeled non-targeting control miRNA oligo (mir-glo) or 
an unlabeled control oligo (mir-neg).  Following transfection, the total mir-glo level in the 
transfected monocytes was evaluated using flow cytometry.  Data shown is (a) representative of 
five donors, and (b) mean percent mir-glo positive cells ± SEM, n = 5. 
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Supplemental Figure 7 

Supplemental Figure 7. Effects of hsa-mir-21 overexpression on the innate immune response.  
IL12A mRNA induction by IFN-  following transfection of a non-targeting control oligo (mir-neg) 
or hsa-mir-21 mature oligo (mir-21) into primary human monocytes detected by qPCR.  Data 
shown is representative experiment (left panel) and a summary of all experiments, shown as 
mean percent change (right panel) ± SEM, n = 5.   
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Supplemental Figure 8 

Supplemental Figure 8. Effects of hsa-mir-21 overexpression on the innate immune triggered 
cytokine response.  IL-1 , IL-10 and IL-6 levels in the culture supernatants of mir-neg or mir-21
transfected cells followed by TLR2/1L stimulation as detected by CBA.  Data shown is 
representative experiment of four to five independent donors.  
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Supplemental Figure 9 

Supplemental Figure 9. Effect of exogenous IL-10 on TLR-induced antimicrobial expression.  
Expression levels by qPCR of CAMP, DEFB4A and IL12B in primary human monocytes treated 
with either recombinant IL-10, TLR2/1L or both.  IL12B is a positive control for IL-10 mediated 
TLR2/1 inhibition.  Data shown is (a) representative experiment and a (b) summary of all 
experiments, shown as mean percent change ± SEM in TLR2/1L stimulated cells ( vs IL-10), 
n = 3. 
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Supplemental Figure 10 

Supplemental Figure 10. Direct 3’UTR binding analysis.  Luciferase activity normalized to the 
internal Renilla luciferase control activity of HEK-293 cells transfected with reporter constructs 
for the 3’UTR of IL1B, CYP27B1, CAMP or DEFB4A, with either mir-neg or mir-21 
simultaneously.  Data shown is representative of four to six independent experiments.   
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Supplemental Figure 11 

Supplemental Figure 11. Knockdown of hsa-mir-21 expression during M. leprae infection.  
Expression levels by qPCR of (a) hsa-mir-21 and (b) IL12A mRNA in primary human monocytes 
transfected with either a control anatgomir ( mir-neg) or an antagomir specific for hsa-mir-21 
( mir-21) followed by infection with M. leprae infection at MOI of ten.  Data shown is (a-b)
representative experiment and a (c) summary of all experiments, shown as mean percent 
change ( mir-neg vs mir-21) ± SEM, n = 5-7.  
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Supplemental Figure 12

Supplemental Figure 12. Regulation of hsa-mir-21 by M. tuberculosis.  Primary human 
monocytes were infected with M. tuberculosis H37Ra at MOI of 0.1, 0.5 and one for 18 h and 
the level of (a) hsa-mir-21 and (b) IL6 mRNA was assessed by qPCR.  Data shown is the mean 
fold change vs. MOI 0 ± SEM, n = 4-5.   
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SUPPLEMENTAL TABLE 
ACCESSION NUMBERS 

Gene NCBI Accession

CAMP NM_004345

DEFB4A NM_004942

CYP27B1 NM_000785

IL1B NM_000576

IL6 NM_000600

IL10 NM_000572

IL12A NM_000882

IL12B NM_002187

36B4 NM_001002

miRNA miRBase Accession

hsa-mir-21 MI0000077

hsa-let-7c MI0000064

mRNA Array (GEO Title) GEO Accession

T-lep1 (BT1) GSM443590

T-lep2 (BT6) GSM443591

T-lep3 (BT10) GSM443678

T-lep4 (BT3) GSM443592

T-lep5 (BT4) GSM443622

T-lep6 (BT7) GSM443625

L-lep1 (LL1) GSM443583
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L-lep2 (LL4) GSM443586

L-lep4 (LL3) GSM443585

L-lep5 (LL7) GSM443588

L-lep6 (LL9) GSM443589

miRNA Array GEO Acession

T-lep1 GSM821609

T-lep2 GSM821610

T-lep3 GSM821611

T-lep4 GSM821612

T-lep5 GSM821613

T-lep6 GSM821614

L-lep1 GSM821604

L-lep2 GSM821605

L-lep4 GSM821606

L-lep5 GSM821607

L-lep6 GSM821608

Study GSE33192
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SUPPLEMENTAL NOTE 

Leprosy specific gene sets 

L-lep specific gene list: interleukin 4 (IL4) 1-3, interleukin 5 (IL5) 1, 3, leukocyte immunoglobulin-

like receptor, subfamily A (with TM domain), member 2 (LILRA2) 4, tumor necrosis factor 

(ligand) superfamily, member 13b (TNFSF13B) 4, transforming growth factor, beta 1 (TGFB1) 5,

interleukin 10 (IL10) 1, 3, CD163 molecule (CD163) 6, peroxisome proliferator-activated receptor 

gamma (PPARG) 7, apolipoprotein E (APOE) 7, CD36 molecule (thrombospondin receptor) 

(CD36) 6, macrophage scavenger receptor 1 (MSR1) 6, 7, macrophage receptor with collagenous 

structure (MARCO) 6, 7, chemokine (C-X-C motif) ligand 16 (CXCL16) 6, oxidized low density 

lipoprotein (lectin-like) receptor 1 (OLR1) 6, scavenger receptor class B, member 1 (SCARB1) 6,

CD68 molecule (CD68) 6. 

T-lep specific gene list: interleukin 12A (IL12A) 8, interleukin 12B (IL12B) 8, interleukin 7 (IL7) 9,

interleukin 18 (IL18) 10, signaling lymphocytic activation molecule family member 1 (SLAMF1) 4, 

11, CD1b molecule (CD1B) 12, 13, colony stimulating factor 2 (granulocyte-macrophage) (CSF2) 3,

colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage) (CSF2RA) 13, 

14, CD40 molecule, TNF receptor superfamily member 5 (CD40) 15, CD40 ligand (CD40L) 15,

interferon, gamma (IFNG) 1, 2, interleukin 15 (IL15) 2, interleukin 2 receptor, beta (IL2RB) 16,

interleukin 2 receptor, gamma (IL2RG) 16, interleukin 1, beta (IL1B) 3, interleukin 1 receptor, type

I (IL1R1) 4, cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) 6, vitamin D 

(1,25- dihydroxyvitamin D3) receptor (VDR) 6, cytochrome P450, family 24, subfamily A, 

polypeptide 1 (CYP24A1) 6, granulysin (GNLY) 17. 

Targeting preference score 
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The potential ability of the 468 annotated miRNA species represented on the microarray 

platform to target the 3’UTRs of the genes in the leprosy specific gene sets (defined above) 

were analyzed using the online database TargetScanHuman 18. Given that the two leprosy 

specific gene sets have different numbers of genes, the targeting frequency of each individual 

miRNA species was calculated for the two sets of genes differentially expressed in T-lep and 

L-lep lesions.  All miRNA species were ranked based on their ‘targeting preference score’, the

degree of differential targeting of T-Lep versus L-lep signature genes (Supplemental Fig. 2).  

All miRNA species were rank ordered based on their targeting frequency score.  This yielded 

three principal categories within the ranked list: i) preferentially targeting T-lep genes 

(preference score > 0), ii) no targeting preference (preference score = 0), and iii) preferentially 

targeting L-lep genes (preference score < 0).   

The statistical significance of leprosy specific miRNA species enrichment was 

determined by ‘Kolmogorov-Smirnov (KS)-based permutation analysis.  Ranked lists annotated 

with the presence or absence of differential expression were scanned using all possible rank 

thresholds for the point of maximal enrichment as defined by the maximal KS distance.  

Permutation analysis was then performed by randomly reassigning the targeting preference 

scores used for ranking.  The fraction of permutation cases resulting in a maximal KS distance 

greater than or equal to the observed maximum value was then defined as the permutation-

based frequency of random occurrence, i.e. the permutation-based p-value.  This procedure is 

analogous to the permutation approach used in Gene Set Enrichment Analysis (GSEA) 19.  

Using this analysis the L-lep specific miRNA species were significantly enriched within the group 

of miRNA with a preference score greater than zero (Fig. 1c).  In contrast the two T-lep specific 

miRNA species showed no statistical enrichment due to the lack of statistical power. 

Direct 3’UTR binding 
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In order to ascertain if hsa-mir-21 directly regulated the expression of the key 

antimicrobial genes, the ability of hsa-mir-21 to bind the three prime untranslated region (3’UTR) 

of these genes was assessed.  Constructs containing the firefly luciferase gene with the 3’UTR 

of the gene of interest driven by the CMV promoter were co-transfected with a non-targeting 

oligo or hsa-mir-21 into HEK-293 cells.  Following transfection, the resulting firefly luciferase 

activity was measured, and normalized to activity of the internal Renilla luciferase control on the 

plasmids.  Presence of hsa-mir-21 resulted in the downregulation of luciferase activity in cells 

transfected with the IL1B and CYP27B1 3’UTR constructs.  In contrast, hsa-mir-21 had no effect 

on the luciferase activity in cell transfected with the CAMP and DEFB4A 3’UTR constructs 

(Representative Experiment, Supplemental Fig. 8).  In these assays, hsa-mir-21

downregulated luciferase activity by 14% (P = 0.02) in the IL1B 3’UTR and 21% (P = 0.04) in 

the CYP27B1 constructs (Fig. 4d).  These data indicate that hsa-mir-21 directly regulates two 

key components of the vitamin D antimicrobial pathway, IL1B and CYP27B1, leading to 

downstream inhibition of antimicrobial peptide gene expression.

PCR-based bacterial viability 

This PCR-based assay is a powerful tool for the investigation of M. leprae biology as 

well as other mycobacterial pathogens both in vivo and in vitro.  Although M. leprae can also be 

assessed using radiorespiromtery and BacLight, these approaches were not feasible here as 

the cell yield after transfection was limiting.  However, as demonstrated by Martinez et al., the 

PCR-based assay is comparable to both radiorespirometry and BacLight in its ability to 

determine M. leprae viability 20. In addition to M. leprae, similar PCR based methods have been 

used to assess the viability in vitro of M. tuberculosis 21 as well as M. avium 22. Levels of 

M. tuberculosis 16S RNA and IS6110 have been previously explored as a measurement of

M. tuberculosis viability in sputum samples in vivo following chemotherapy treatment in patients

23. In this study, the authors found that in patient’s sputum, M. tuberculosis 16S RNA levels
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rapidly declined upon initiation of antimicrobial therapy, whereas IS6110 DNA levels remained 

constant, which mirrors the expected results of an in vitro viability assay for M. tuberculosis.

In our previous studies of siRNA transfected monocytes stimulated with TLR2/1L, 

examining antimicrobial effects against H37Ra, we demonstrated a significant (P = 0.05) 

TLR2/1L-induced antimicrobial activity of 14.5% ± 1.3 by the CFU assay 24. These results are 

comparable to the data shown in this manuscript using the real time PCR method, where we 

demonstrate a significant (P = 0.02) TLR2/1L-induced antimicrobial activity against H37Ra in 

mir-neg transfected monocytes of 18.0% ± 0.08. Given the similarities between the nontargeting 

siRNA control used in the previous study and the mir-neg non-targeting control used here (both 

21 nucleotides long, double stranded RNA oligos), we feel that these results demonstrate that 

the real time PCR assay is comparable to the CFU assay. 
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SUPPLEMENTAL METHODS 

Reagents 

Mature miRNA oligos and antagomir oligos were purchased (Applied Biosystems), resuspended 

in sterile DEPC-treated water at 20 M, stored in aliquots at 80°C, and used at 2.5 l per 

reaction.  TLR2/1L is a synthetic 19kDa M. tuberculosis derived lipopeptide used at 10 g/ml 

(EMC Microcollections).  Recombinant IFN-  (BD Bioscience) and IL-10 (R&D Systems) were 

purchased and both used at 10ng/ml.  Biotinylated LNA probes used for fluorescent in situ 

hybridization were purchased (Exiqon, Woburn, MA) and stored in small aliquots at -20°C.  

Strep-avidin horse radish peroxidase (SA-HRP, Thermo Fisher) was resuspended in DEPC-

treated water at 1mg/ml, then stored in small aliquots at -20°C and diluted 1:2000 before use.  

miRNA Target Clones containing the 3’UTR of IL1B, CYP27B1, CAMP and DEFB4 were 

purchased (Genecopoeia).  HEK293 cells were purchased, and maintained according to the 

manufacturer’s recommended conditions (ATCC).  Human CD14 specific monoclonal antibody 

conjugated with APC was purchased and used as recommended by the manufacturer (BD 

Pharmingen).

Primer sequences 

The following primers were designed: IL6 Forward 5’-GAC CCA ACC ACA AAT GCC A-3’, IL6

Reverse 5’-CAT GTC CTG CAG CCA CTG G-3’, IL1B Forward 5’-GCT TAT GTG CAC GAT 

GCA CC-3’, IL1B Reverse 5’-GAG GCC CAA GGC CAC AG-3’, IL12A Forward 5’-AGT GGA 

GGC CTG TTT ACC ATT GGA-3’, IL12A Reverse 5’-AGG CCA GGC AAC TCC CAT TAG TTA-

3’, IL10 Forward 5’-GAG AAC CAA GAC CCA GAC ATC AAG-3’, IL10 Reverse 5’-CAT TGT 

CAT GTA GGC TTC TAT GTA GTT G-3’, hsa-mir-21 5’-CGG TAG CTT ATC AGA CTG ATG 

TTG A-3’, and hsa-let-7c 5’-CGC TGA GGT AGT AGG TTG TAT GGT T-3’.  For M. tuberculosis
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H37Ra, the IS6110 genomic element was used and the primer sequences are as follows: 16S 

Forward 5’-GGT GCG AGC GTT GTC CGG AA-3’, 16S Reverse 5’- CGC CCG CAC GCT CAC

AGT TA-3’, IS6110 Forward 5’-GGA AGC TCC TAT GAC AAT GCA CTA G-3’, and IS6110 

Reverse 5’-TCT TGT ATA GGC CGT TGA TCG TCT-3’.

Leprosy biopsy specimens 

We have established a library of skin biopsy specimens collected from new untreated patients at 

the time of diagnosis from the Hansen’s Disease Clinic at Los Angeles Country and University 

of Southern California Medical Center as well as the Leprosy Clinic at the Oswaldo Cruz 

Foundation in Brazil presenting between 2005-2010.  The diagnosis and classification of 

patients was established by means of clinical and histopathological criteria of Ridley and Jopling 

25. T-lep patients were classified as borderline tuberculoid (BT) and L-lep patients classified as

lepromatous (LL).  For the microarray, qPCR and FISH studies presented here, skin biopsy 

specimens from T-lep and L-lep patients were randomly selected from the library, representing 

a total of 20 individual T-lep patients and 23 individual L-lep patients.  Specimens were 

embedded in OCT medium, snap-frozen in liquid nitrogen and stored at -80°C until sectioning.  

Tissue sections were either mounted on slides for in situ hybridization or processed for RNA 

isolation. 

Microarray analysis

Total RNA was isolated from six lepromatous and six tuberculoid leprosy lesions as previously 

described 13.  Data obtained from the miRNA analysis indicated that one lepromatous sample 

was to be excluded from further analysis due to low RNA quality.  For the hierarchical clustering, 

the individual probe expression patterns were compared using a centered Pearson correlation 

coefficient.  Cluster dendrograms were generated using the Cluster and TreeView software 
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programs from the Eisen Lab at http://rana.lbl.gov/ 26.  For heatmap-based visualization, 

expression values were mean subtracted with the sum of squares set equal to one 26. 

Live M. leprae

M. leprae is grown in the footpad of nu/nu mice, harvested and treated with NaOH to remove

mouse tissue, and the bacteria viability is assessed by determining the rate of palmitic acid 

oxidation, bacterial membrane integrity, and growth in the mouse footpad 27. A portion of the M.

leprae is then incubated with the fluorescent dye: PKH26. The NaOH treated M. leprae preps 

are shipped overnight at on ice, which was determined to have minimal impact on the bacteria 

viability.   

Isolation and infection of monocytes 

The collection and analysis of peripheral blood cells from healthy blood donors was approved by 

the committees on investigations involving human subjects of the University of California, Los 

Angeles, and all donors provided written informed consent.  Mononuclear cells were isolated 

from peripheral blood of healthy donors using Ficoll-Paque as previously described 28.  

Monocytes were purified by plastic adherence for two hours in RPMI 1640 (Invitrogen) 

supplemented with 1% fetal calf serum (Omega Scientific).  Non-adherent cells were removed 

via vigorous washing and cultured in RPMI supplemented with antibiotics and 10% fetal calf 

serum, or 10% vitamin D-sufficient (100 nM) human serum for antimicrobial peptide gene 

expression studies or M. leprae infection studies.  For M. leprae infection studies, monocytes 

were infected with single cell suspensions of M. leprae at a MOI of one, five, and ten then 

cultured at 33 °C for 18 or 40 h.  Using PKH26-labled M. leprae, the infection efficiency of CD14 

positive monocytes was determined using flow cytometry (Supplemental Fig. 11a), as 

previously described 24.  An average of 73%, 84% and 86% of monocytes in culture were 

M. leprae positive at a MOI of one, five, and ten, respectively (Supplemental Fig. 11b).  At MOI
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of ten, each infected cell contained an average of 2.1 ± 0.4 bacteria (average of three individual 

donors).  Unless indicated, all experiments involving live M. leprae were conducted with a MOI 

of ten. For M. tuberculosis infection studies, monocytes were infected with single cell 

suspensions of M. tuberculosis H37Ra at a MOI of 0.1, 0.5 and one, and then cultured at 37 °C 

for 18 h, or with an MOI of 0.5 for transfected cells, as we previously described 24.  An MOI of 

0.5 was optimized based on infectivity and viability of the transfected monocytes. 

Quantitative PCR 

For mRNA studies, the data was analyzed using the CT method as previously described 28

using 36B4 as the normalizer.  The results are then calculated as a fold change to control 

treated cells.  For miRNA studies, four different “normalizing” short RNA sequences were tested 

over several donors and experiments; however, none demonstrated sufficient stability for use as 

a qPCR normalizer, which corroborates published data 29.  Therefore, the samples were 

normalized to the same input cell number prior to applying the Cells-to-CT or NCODE kits, and 

analyzed using the CT method.  The results are then calculated as a fold change to control 

cells. 

Transfection of monocytes 

Transfection efficiency was evaluated using the Cy5-labeled non-targeting miRNA oligo (mir-

glo).  Primary monocytes were transfected with mir-glo or an unlabeled control oligo (mir-neg), 

and mir-glo positive cells were assessed by flow cytometry (Supplemental Fig. 12a).  In five 

independent experiments, the average number of mir-glo positive cells was 71% ± 6% (P =

0.002, Supplemental Fig. 12b).  Following transfection, the cells were allowed to recover for 

two hours in the provided transfection medium, then washed and plated in RPMI and 10% FCS, 

or 10% pooled human vitamin D sufficient serum for the cathelicidin and DEFB4 studies.  The 
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cells transfected with the mature miRNA oligos were then stimulated with TLR2/1L (10 g ml-1)

incubated for either 18 or 24 hours.  The antagomir transfected cells were infected with live 

M. leprae (MOI 10) as above and incubated for 18 to 24 h.  Total RNA was harvested following

the incubation and quantitative PCR was performed. 

Cytometric bead array 

Supernatants from the transfected and stimulated monocytes were harvested at 18 and 24 h.  

IL-1 , IL-10 and IL-6 cytokine levels in the supernatants were assessed using Cytometric Bead 

Array Flex Set (BD Biosciences) according to the manufacturer’s recommended protocols.  The 

beads were visualized using a BD FACSCalibur (BD Biosciences) and analyzed with Flowjo 

Software (Tree Star).

Antimicrobial assays 

Monocytes were first transfected as indicated, and infected overnight with an MOI of ten for M. 

leprae, and an MOI of 0.5 with M. tuberculosis H37Ra, then counted and viability assessed 

using trypan blue exclusion.  Higher MOIs of H37Ra were toxic to the transfected monocytes.  

The infected cells were cultured in equal amounts of viable cells for all conditions tested, 

followed by stimulation with the TLR2/1L or medium for three days as indicated above.  

Following the incubation, the cells are harvested and divided.  Half of the cells were lysed by 

boiling at 100 °C for 5 min then snap freezing at -80 °C, and total RNA was isolated from the 

remaining half using Trizol as detailed above, followed by RNA cleanup and on column DNAse 

digestion using RNeasy Miniprep Kit (Qiagen).  cDNA was synthesized from the total RNA as 

described above.  The bacterial 16S rRNA, and genomic element DNA levels were then 

assessed using real time PCR as detailed above from the cDNA and cellular lysate, 

respectively.  In order to normalize for the total monocytes present in the culture, 36B4 was also 
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evaluated, which were capable of amplifying the human genomic DNA.  Comparison of the 

bacterial DNA to the mammalian 36B4 levels was used to monitor infectivity between all the 

conditions in the assay as well as PCR quality.  
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Abstract: 

Macrophage (M) polarization is triggered during the innate immune response to defend 

against microbial pathogens, but can also contribute to disease pathogenesis, providing an 

strong incentive to identify mechanisms to drive M plasticity.  In studying M differentiation in 

leprosy, we found that IL-15 derived M1 M have enhanced antimicrobial activity against 

intracellular mycobacteria, whereas IL-10 derived M2 M have enhanced scavenger receptor 

expression, promoting phagocytosis, but lacking antimicrobial activity against intracellular 

bacteria.  Examination of plasticity of M1 and M2 M led to the finding that addition of IL-10 to 

M1 M induced M2-like M, but IL-15 had little effect on M2 M.  We determined the set of 

immune receptors that are present on M2 Mand known to drive M1 M polarization, 

elucidating two candidates for inducing plasticity of M2 M, Toll-like receptor 1 (TLR1) and 
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interferon-gamma receptor 1 (IFNGR1).  Stimulation of M2 Mwith TLR2/1 ligand or IFN-

alone was not sufficient to completely change the M2 Mphenotype or function; however, co-

addition led to skewing towards the M1 M phenotype.  These reeducated M1-like 

Mexhibited a decrease in phagocytic capabilities and recovery of the vitamin D dependent 

induction of antimicrobial peptide production as compared to M2 Mmaintained in polarizing 

conditions.  Although TLR2/1L stimulation alone was not sufficient to reeducate M2 M, 

stimulation in concert with anti-IL-10 neutralizing antibody led to polarization to M1-like 

Mphenotype and function.  Together, our data demonstrate an approach to induce M 

plasticity that provides the potential for reeducating Mfunction in human infectious disease to 

promote host defense and modify pathogenesis.   
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Introduction: 

Playing a crucial role in host defense against microbial pathogens108, macrophage (M) 

activation states and plasticity of macrophage polarization is being increasingly studied.  Mare 

characterized by a diversity of activation states109,110 but are broadly grouped into two categories 

based on their phenotypic and functional profiles: i) classically activated M1 Mproduced by 

IFN-+ LPS stimulation111 and ii) alternatively activated M2 M, which are further 

subcategorized into M2a, M2b, and M2c M induced by stimulation of IL-4 or IL-13, immune 

complexes, and IL-10 or TGF-b, respectively112,113.  Since the discovery of phagocytes in 1884, 

immunologists have generally linked two key functions of the innate immune response, 

phagocytosis and antimicrobial responses, as being co-regulated for optimal host defense.  

Previously, however, we discovered that the innate immune response, by selectively stimulating 

with cytokines IL-10 or IL-15, differentially activates M phagocytic and antimicrobial 

responses, respectively14.  The phenotype and phagocytic programs of IL-10- and IL-15-derived 

M (M2 and M1 M) closely resemble those identified in the skin lesions of two distinct types of 

leprosy, lepromatous (L-lep) and tuberculoid (T-lep) leprosy, respectively.  M2 Mshow 

enhanced phagocytic capabilities but are unable to initiate the vitamin D dependent 

antimicrobial response against mycobacteria.  The lack of antimicrobial activity in conjunction 

with enhanced phagocytosis of a lipid energy source for mycobacteria is thought to lead to 

disease progression.  In contrast, M1 Minduce expression of 25-hydroxylase enzyme, 

CYP27b1, in response to mycobacterial cell wall ligand (TLR2/1L), which converts inactive 

vitamin D (25D) into its active form 1,25D and leads to the production of antimicrobial peptides 

cathelicidin and beta-defensin 2 that are required for killing of mycobacteria44,45.  In leprosy, 

some patients are able to convert from the lepromatous to tuberculoid form of the disease and 

vice versa, known as reversal reactions (RR), suggesting plasticity of Mpolarization during 

disease progression.  In fact, M have shown some plasticity in vivo and in vitro after treatment 
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with various cytokines to reeducate M1 and M2 M.  Here we investigate mechanisms of 

reeducation of M polarization of IL-10 and IL-15 M in an effort to understand plasticity of 

Mpolarization in mycobacterial infection that may prove useful for therapeutic intervention of 

M-mediated disease.   

 

Results: 

IL-10 is sufficient to reprogram M1 M, but IL-15 is not sufficient to reprogram M2 M 

To investigate whether established M1 Mand M2 Mphenotypes are reversible, 

adherent peripheral blood mononuclear cells were first differentiated with IL-15 or IL-10 for three 

days to generate CD209+CD163- M1 M or CD209+CD163+ M2 M as previously described14. 

At day three, M2 M show CD163 expression in 58% of CD209+ cells in contrast to M1 M, 

which have CD163 expression on only 6% of CD209+ cells (Figure 1A).  Differentiated Mwere 

immunomagnetically sorted for CD209+ to achieve greater than 95% purity and then stimulated 

with IL-10 or IL-15 for an additional three days to determine if their phenotype can be 

reprogrammed.  After the additional three days of treatment, M1 M in the presence of IL-15 

retained their CD209+CD163- phenotype (Figure 1B). Treatment of M1 M with the M2 

polarizing cytokine IL-10 significantly increased the percentage of CD163+ cells from 0% to 

63.7% at day six (Figure 1C), indicating IL-10 is sufficient to reprogram M1 M.  Conversely, 

M2 M in the presence of IL-10 retained their CD209+CD163+ phenotype.  IL-15 treatment, 

however, was not sufficient to reprogram M2 M, as treatment of M2 M with IL-15 resulted in 

an incomplete decrease in percentage of CD163 positive cells from 91% to 67% at day six.  

 

Differential expression of M receptors suggests ligands to alter M2 Mphenotype  

It’s been previously noted that the expression level of receptors may affect Mresponse 

to ligands114.  Thus, we hypothesized that the M receptor repertoire can change to induce 
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receptors which can be triggered to alter M phenotype.  Using previously published 

transcriptional signatures of adherent human peripheral blood mononuclear cells stimulated with 

IL-10 or IL-15, or time zero unstimulated cells14, we compiled expression data for receptors 

known to be involved in driving Mpolarization (Figure 2A). Concordant with Figure 1, M1 

Mexpress IL-10 receptor genes IL10RA and IL10RB, thereby making them susceptible to the 

effects of IL-10 treatment.  M2 M, on the other hand, express decreased levels of IL-15 

receptor complex genes IL15RA, IL2RB, and IL2RG, which may explain why IL-15 treatment 

was only partially able to reprogram M2 M.  Assessment of cell surface markers on M2 M 

revealed heightened expression of other receptors known to drive M1 Mpolarization, including 

many of the Toll-like receptor (TLR) family and interferon gamma receptor 1 (IFNGR1).  Of 

these, TLR1 and IFNGR1 are known to be protective against mycobacterial infection and were 

significantly more highly expressed in L-lep versus T-lep lesions.  Cell surface expression of 

inflammatory receptors TLR1 and IFNGR1, but not IFNGR2, was confirmed to be more highly 

expressed on M2 M at day three as compared to M1 M or freshly isolated monocytes by flow 

cytometry (Figure 2B). 

 

 

TLR2/1L+ IFN-stimulation is sufficient to reprogram M2 M 

Due to the prominent expression of TLR1 and IFNGR1 on M2 M, we speculated that 

activation of IFN- receptor or TLR1 may be sufficient to fully reprogram M2 to M1-like M.  To 

test whether stimulation of these receptors would lead to a complete change in the IL-10 

phenotype, CD209+ IL-10 M were purified and stimulated with TLR2/1L, IFN- or TLR2/1L and 

IFN- in combination, in addition to IL-10 or IL-15 for comparison, for three additional days.  At 

day six, only the stimulation with TLR2/1L and IFN- in combination led to a complete decrease 

in CD163 surface expression to 17.5% as compared to IL-10 stimulated M2 M at 84.4% 
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(Figure 2C).  TLR2/1L, IFN-, and IL-15 stimulations only showed a moderate decrease in 

percentage of CD163+ cells to 46.3%, 61.2%, and 66.9%, respectively.  The effect on 

percentage of CD163+ cells could not be enhanced by stimulating with increasing 

concentrations of IFN- (Supplementary Figure 1). 

 

TLR2/1L-induced secretion of IL-10 counteracts suppression of CD163 expression 

TLR activation is reported to be a key driver of M1 polarization, however stimulation with 

TLR2/1L failed to potently decrease CD163 expression.  This incomplete repolarization may be 

due to an increase in IL-10 secretion as TLR2/1L treatment of human monocytes is reported to 

induce high levels of IL-10115, which may counteract any decrease in CD163 expression.  To 

identify factors which may antagonize the IL-10 induced program, an upstream analysis was 

performed by Ingenuity Pathways Analysis (Figure 3A).  IFN-γ was identified as the most 

significant repressor of the IL-10-induced program with p-value 3.9 x 10-34, suggesting that the 

ability of TLR2/1L+ IFN-γ to reverse M2 Mpolarization is at least in part due to IFN-γ-mediated 

suppression of TLR2/1L-induced IL-10 secretion.  To investigate whether IFN-γ can suppress 

the levels of IL-10 protein induction, M2 M were stimulated with TLR2/1L or TLR2/1L in 

combination with IFN- for 24h, and IL-10 protein secretion was measured by ELISA.  Similar to 

previously published data, stimulation with TLR2/1L alone induced secretion of 130±52pg/ml IL-

10 protein (Figure 3B).  Co-stimulation with IFN-γ repressed TLR2/1L-induced secretion of IL-10 

by 52% to 63±18pg/ml.   M2 M were also stimulated with TLR2/1L for three days in the 

presence of αIL-10 neutralizing antibody or isotype control to determine if TLR2/1L-induced 

secretion of IL-10 prevented a complete decrease of CD163 expression.  Stimulation in the 

presence of neutralizing antibody led to a complete down-regulation of CD163 expression to 

15.3% positive cells versus 41.1% CD163+ cells in the isotype control, thus confirming that 
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TLR2/1L-induced IL-10 secretion prevented a decrease in CD163 expression and complete 

Mreprogramming.  

 

Reeducation of M2 Mto M1-like Mleads to a loss of phagocytic function 

In addition to CD163 surface expression, M2 M are characterized by enhanced 

phagocytic function and an increase in uptake of oxidized lipoprotein as compared to M1 M14.  

To determine whether the change in Mphenotype also led to a change in Mfunction, M2 M 

were cultured with stimuli as in Figure 2c and assayed for DiI-labeled oxLDL uptake via flow 

cytometry.  Simultaneous stimulation of TLR2/1L and IFN- led to the highest decrease in 

oxLDL uptake, to 120 mean florescence intensity (MFI) from 455 MFI with IL-10 treatment 

(Figure 4A).  TLR2/1L stimulation showed no significant decrease in oxLDL uptake, whereas 

IFN- (245 MFI) or IL-15 (265 MFI) showed an intermediate decrease.  To determine whether 

this effect on oxLDL uptake was due to a fluctuation in receptor expression, we assessed the 

surface expression of CD36, a scavenger receptor highly induced by IL-10 and the major 

receptor for oxLDL. Surface CD36 expression was measured by flow cytometry after M2 

Mwere reeducated by TLR2/1L or IFN-, alone or in combination, or IL-10, and normalized to 

MFI oxLDL uptake.  Figure 4B shows the surface expression of CD36 is most decreased in 

costimulation of TLR2/1L and IFN- while either stimulation alone did not have a statistically 

significant effect. 

 

 

 



55 
 

Reprogramming of M2 M to M1-like M correlates with an induction of antimicrobial 

activity 

TLR2/1L or IFN- treatment of adherent monocytes can trigger activation of the vitamin 

D pathway, in which upregulation of 25 hydroxylase enzyme CYP27b1 leads to the conversion 

of intracellular inactive 25-hydroxyvitamin D (25D) to active 1,25-hydroxyvitamin D (125D)44,33 

{Liu 2008, Fabri 2011, Kristina paper}.  1,25D production and subsequent VDR activation leads 

to the production of antimicrobial peptides cathelicidin (CAMP) and human beta defensin 2 

(DEFB4) which can directly kill mycobacteria such as leprosy and tuberculosis bacilli.  While IL-

10 M are phagocytic and can take up many mycobacteria bacilli, they lack CYP27b1 

expression and fail to metabolize 25D to 1,25D to induce antimicrobial peptide production, thus 

rendering them appealing hosts for mycobacteria to take up residence14.  Given that TLR2/1L 

and IFN-γ treatment can reverse polarization of M2 M, we investigated whether treatment 

could also enhance M1 Mfunction such as induction of the antimicrobial pathway.  M2 

Mwere stimulated with TLR2/1L+IFN-, IL-10 or media alone for 24h to evaluate if these 

stimulations could induce expression of CYP27b1 enzyme.  TLR2/1L+IFN- showed an 

induction of 11-fold over media alone, while IL-10 stimulation did not have a significant 

difference (Figure 5A).  In addition, stimulation of reprogrammed M2 Min the presence of 

exogenous 25D3 for 24h suggested that the CYP27b1 enzyme is active and can convert 

inactive 25D3 to its active form leading to antimicrobial peptide production (unpublished data).  

Results show that M2 M stimulated with TLR2/1L + IFN- were able to induce expression of 

CAMP and DEFB4, while TLR2/1L alone did not significantly induce either antimicrobial peptide 

(Figure 5B).  In summary, TLR2/1L + IFN-γ treatment is able to reeducate M2 M into M1-like 

M by decreasing CD163 expression, suppressing scavenger receptor expression and 

phagocytic function, and inducing Cyp27b1 expression to enable antimicrobial peptide 

production. 
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Discussion:  

The induction of M activation and polarization allows alteration of phenotype and function 

to mount an antimicrobial response but can also result in pathologic consequences.  M 

plasticity and reeducation allows for optimization of the immune response to appropriately 

respond to microbial infection.  Here, we show that stimulation with IL-15 induced and 

maintained M1 M polarization, but the addition of IL-10 induced reeducation to M2-like M 

with enhanced phagocytic function.  In contrast, IL-10 treatment induced and maintained M2 

M polarization; however, IL-15 was not sufficient to trigger plasticity.  Analysis of M1 and M2 

M receptor expression led to the discovery that co-addition of IFN-γ and TLR2/1L, but not 

either one alone, to M2 M induced conversion to M1-like M, with upregulation of key 

components of the antimicrobial pathway.  The regulation of M plasticity allows flexibility in the 

innate immune response in defending the host against microbial pathogens.  

M2 Mplay a critical role in the initial response to tissue injury, clearing the site of tissue 

destruction of cellular debris and apoptotic cells, as well as eliminating invading pathogens, to 

allow for tissue repair and regeneration116.  Uncontrolled production of inflammatory mediators 

by M1 M coupled with a deficient population of anti-inflammatory M2 M can subsequently 

lead to persistent injury.  Thus, the ability to reeducate M1 M to M2 M can prove beneficial 

in cases of unresolved tissue injury and other pathologies driven by M1 M.  Here we show that 

IL-10 treatment could not only maintain M2 Mpolarization, but it could also reeducate M1 

Mto become more M2-like.  One of the beneficial effects of IL-10 during inflammation was 

recently demonstrated by Jiang et al, showing that IL-10 treatment during particle challenge 

could lessen the harmful effects of inflammation on bone mineral density during joint 

replacement wear117.  Other M2 M-switching compounds such as pomegranate juice 

polyphenols, which have been reported to have anti-inflammatory properties in immune-
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mediated diseases such as rheumatoid arthritis, LPS- or UVB-induced inflammation, or 

atherosclerotic vessel inflammation, also induce expression of IL-10, although the role of IL-10 

has not been investigated118.  Further exploration into reeducation of M1 M and the effects of 

IL-10 treatment during inflammation are needed to ascertain the ability of IL-10 to promote 

Mswitching and aid in inhibition of disease progression. 

In the context of intracellular infections, M2 Mare not protective and promote disease 

pathogenesis, whereas M1 M can induce antimicrobial responses and clear the pathogen.  

Several studies have highlighted the ability of intracellular pathogens to promote M2 

Mpolarization and even reeducate M1 M to M2-like Mto enhance bacterial survival119, 

demonstrating the importance of appropriate Mpolarization to mount an effective immune 

response to infection.  Additionally, reeducation to M1 M has also displayed antitumor 

effects120,121, further substantiating the need to identify mechanisms of M2 to M1 M switching.  

Here we show that while IL-15 is insufficient to reverse polarization of differentiated M2M due 

to a downregulation of IL-15 receptor expression, treatment with IFN-γ + TLR2/1L was able to 

reeducate M2 M, decrease phagocytic function, and induce expression of antimicrobial genes 

such as CYP27b1, CAMP, and DEFB4.  Thus, M2 to M1 Mswitching can be a powerful tool in 

initiating host defense against intracellular pathogens.  Further exploration into mechanisms of 

M2 Mreeducation is needed for development of therapeutics for intracellular pathogens and 

tumor development. 

With the characterization of M cell types and their relative protective roles in tissue injury, 

infection, and tumor development, recent efforts have delved into the application of M-based 

cell therapies as a means to alter Mpolarization to mount appropriate responses122.  Here we 

propose another mechanism to alter Mfunction, with the identification of ligands capable of 

M reeducation. 
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Materials and Methods: 

 

Reagents: 

IL-10 (R&D Systems) and IL-15 (graciously provided by Dr. Thomas Waldmann) were used for 

macrophage differentiation.  Antibodies for cell surface staining are as follows: CD163 (BD 

PharMingen), CD209 (BD PharMingen), CD36 (BD PharMingen), TLR1 (EBioscience), IFNGR1 

(R&D), IFNGR2 (R&D), and isotypes (Thermofisher).  Synthetic 19kDa lipoprotein derived from 

mycobacteria (EMC Microcollections) and recombinant human IFN-γ (BD Biosciences) were 

used for macrophage reeducation.  Anti-IL-10 (Invitrogen) and IgG1 isotype control (BioLegend) 

were used for neutralization studies. 

 

Macrophage Differentiation and Reeducation: 

Peripheral blood was acquired from healthy donors with informed consent (UCLA Institutional 

Review Board #125.15.0-f).  As previously described, adherent monocytes were isolated44 and 

differentiated14 into M1 or M2 macrophages using 50ng/ml IL-15 or 10ng/ml IL-10, respectively.  

After 3 days of differentiation, cells were deadhered and viable cells were counted by Trypan 

blue counterstain.  Macrophages were allocated for labeling of cell surface markers CD209 and 

CD163 as previously described14 and purification using CD209+ beads (Miltenyi Biotec) 

according to manufacturer’s protocol.  CD209+ macrophages were then stimulated for an 

additional three days with the following ligands alone or in combination: 50ng/ml IL-15, 10ng/ml 

IL-10, TLR2/1L (10ug/ml), IFN-γ (1.25ng/ml), and assessed for reeducation by cell surface 

labeling of CD209 and CD163. 
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IL-10 Secretion and Neutralization Studies:  

IL-10 MΦ were treated with TLR2/1L alone or in combination with IFN-γ for 24h and 

supernatants were assayed for IL-10 protein levels by ELISA.  For IL-10 neutralization studies, 

IL-10 MΦ were incubated with αIL-10 blocking antibody or isotype control prior to TLR2/1L 

treatment for 24h.  Cells were then labeled for CD163 cell surface expression as previously 

described14. 

 

Endocytosis Assays: 

Reeducated IL-10 MΦ were incubated for 4h at 37⁰C with Dil(1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate)-labeled CuSO4-oxidized low-density lipoprotein 

(Intracel) and assayed for uptake as previously described14.  Some macrophages were also 

labeled with CD36 antibody and mean fluorescence intensity was acquired by flow cytometry 

according to established methods14. 

 

Real-Time Quantitative PCR: 

IL-10 MΦ were stimulated with IL-10, TLR2/1L+IFN-γ, or TLR2/1L for 24h and mRNA 

expression of CYP27b1, CAMP, or DEFB4 were assayed as previously described14.   
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Figure 1: IL-10 is sufficient to reprogram M1 MΦ, but IL-15 is not sufficient to 

reprogram M2 MΦ

(A) Adherent PBMC were stimulated with IL-15 (above) or IL-10 (below) for three days and 

then labeled with antibodies to cell surface markers CD163 and CD209.

(B) IL-15-derived M1 MΦ (above) and IL-10-derived M2 MΦ (below) were washed and 

treated with either IL-15 or IL-10 for an additional three days (above) and labeled with 

antibodies to cell surface markers CD163 and CD209 at day 6.

(C) Quantification of percentage of CD63+ cells from (B).

Flow diagrams are representative of n=3 and depicted as mean florescence intensity (MFI) 

subtracted from background (DMFI) for each antibody. *p<0.05

C.
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SUPPLEMENTARY FIGURE 1: Increasing concentrations of IFN-γ did not further 

decrease percentage of CD163+ cells

Figure S1: Increasing concentrations of IFN-γ did not further decrease percentage of 

CD163+ cells

IL-10-derived M2 MΦ were washed and treated with either IL-10 or IFN-γ at the 

concentrations indicated for an additional three days (above) and labeled with antibodies to 

cell surface markers CD163 and CD209 at day 6.

Flow diagrams are representative of n=3 and depicted as mean florescence intensity (MFI) 

subtracted from background (DMFI) for each antibody

61



FIGURE 2: Differential expression of MF receptors suggest ligands to change MΦ 

phenotype
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Figure 2.  Differential MF receptors suggest ligands to change macrophage 

phenotype

(A) Heat map displaying receptor expression data from previously published transcriptional 

signatures of adherent human peripheral blood mononuclear cells stimulated with IL-10 or 

IL-15, or time zero unstimulated cells.  Each row represents one gene and each column 

represents a sample taken at the time point indicated.  Red indicates higher expression and 

green depicts lower expression.

(B) Adherent PBMC stimulated with IL-10 or IL15 for three days or freshly isolated 

monocytes were labeled with specific antibodies to TLR1, IFNGR1, or IFNGR2. Receptor 

expression is quantified as mean florescence intensity (MFI) subtracted from background 

(DMFI) for each antibody. n=3

(C) IL-10-derived M2 MΦ were treated with the ligand indicated for an additional three days 

and labeled with antibodies to cell surface markers CD163 and CD209 at day 6.  Flow 

diagrams (above) are representative of n=3 and percentage of CD163+ cells were quantified 

(below).
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FIGURE 3: TLR2/1L-induced secretion of IL-10 prevents change in MΦ phenotype by 

TLR2/1L
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Figure 3: TLR2/1L-induced secretion of IL-10 prevents change in MΦ phenotype by 

TLR2/1L

(A) Top potential upstream regulators of the IL-10 induced gene program as determined by 

Ingenuity Pathways Analysis 

(B) Quantification of IL-10 secretion after stimulation of IL-10-derived M2 MΦ with TLR2/1L, 

IFN-γ, or combination of TLR2/1L+IFN-γ for 24h.

(C) IL-10-derived M2 MΦ were incubated with aIL-10 blocking antibody or isotype control and 

then stimulated with TLR2/1L for 24h.  Cells were then labeled with antibody to CD163 and 

percentage of CD163+ cells was assessed by flow cytometry.

Experiments are representative of n=3, *p<0.05, **p<0.01
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*

Figure 4: Reprogramming of M2 to M1-like MΦ correlates with a loss of phagocytic 

function

(A) IL-10-derived M2 MΦ were treated with the ligand indicated for an additional three days 

and then assayed for DiI-labeled oxLDL uptake via flow cytometry.  Uptake was determined 

by MFI.

(B) IL-10-derived M2 MΦ were treated with the ligand indicated for an additional three days 

and then labeled with specific antibody to cell surface marker CD36.  CD36 MFI is pictured 

as a histogram (left) and quantified (right). 

Experiments are representative of n=3, *p<0.05
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B.

FIGURE 5: Reprogramming of M2 to M1-like MΦ correlates with an induction of 

antimicrobial activity
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Figure 5: Reprogramming of M2 to M1-like MΦ correlates with an induction of 

antimicrobial activity

IL-10-derived M2 MΦ were stimulated with the ligand indicated for 24h and assayed for 

CYP27b1 (A), CATH (B), or DEFB4 (C) expression by qPCR. mRNA levels were normalized 

to h36b4 levels and fold change was determined as compared to media controls.  

Experiments are representative of n=3.
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CHAPTER 4: 

 

Elucidating M. leprae-induced gene programs  

that enhance bacterial survival   
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Introduction: 

The induction of antimicrobial pathways in infected macrophages is a crucial part of the 

innate immune response to eliminate an invading pathogen.  At the same time, however, the 

pathogen evades these host defense mechanisms by inhibiting innate immunity.  Leprosy, 

caused by Mycobacterium leprae, provides an excellent model to study human pathways of host 

defense as well as mechanisms by which an intracellular pathogen escapes antimicrobial 

responses and establishes chronic infection.  The disease presents as a clinical spectrum, with 

the two poles mirroring the immune response to infection12.  At one end of the spectrum, 

tuberculoid leprosy (T-lep) represents a self-contained form of disease, with patient lesions 

characterized by production of the Type II interferon, IFN-, and activated macrophages with the 

capacity to kill intracellular mycobacteria40,13,14.  At the other end of the spectrum, lepromatous 

leprosy (L-lep) represents the disseminated form of the disease, characterized by the production 

of Type I interferon and accumulation of macrophages displaying scavenger receptors13,14.  

These macrophages, although highly phagocytic, do not express genes encoding antimicrobial 

responses, thereby contributing to bacterial persistence.   

The ability of activated macrophages to eliminate intracellular mycobacteria involves the 

induction of antimicrobial mediators.  In mouse macrophages, the generation of nitric oxide is 

essential to kill M. tuberculosis.  In human macrophages, activation leads to the induction of 

both vitamin D dependent and independent antimicrobial responses44.  Activation of the vitamin 

D dependent pathway results in the production of the antimicrobial peptides cathelicidin and 

defensin beta 2.  Many of these antimicrobial responses involve the induction of autophagy, 

which overcomes the ability of mycobacteria to block phagolysosomal fusion81,82 and deliver the 

antimicrobial effector molecules to the compartment in which the pathogen resides.   

There are several mechanisms by which intracellular mycobacteria evade innate 

immunity.  One such pathway involves the ability of mycobacteria to induce Type I IFN123,13 to 

block antimicrobial responses including the IL-10 dependent inhibition of induction of 
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antimicrobial peptides.  To further explore how mycobacteria evade the innate immune 

response, we measured the gene expression profile induced by infection of macrophages with 

M. leprae with relevance to the human disease leprosy.    

 

Results: 

RNA Sequencing of M. leprae-infected MDM reveals an enrichment for a leprosy gene 

signature 

To investigate the effect of M. leprae on the immune response in human macrophages, 

we performed RNA sequencing (RNASeq) on in vitro infected cells.  CD14+ monocytes were 

isolated from healthy human donors and cultured with M-CSF for five days to allow 

differentiation into macrophages (Supplementary Figure 1).  Monocyte-derived macrophages 

(MDM) were then infected with M. leprae at a multiplicity of infection (MOI) of 10 with greater 

than 85% cells infected and RNA was harvested at 1, 2, 24, 48 hours and sequenced.  Initially 

we studied a single donor, with the goal to validate our data with a second RNASeq experiment 

and subsequently by PCR and immunohistochemistry.  A heat map illustrating hierarchical 

clustering of DESeq normalized counts depicts a cluster of genes expressed prior to and 1h and 

2h after infection that are repressed at 24h and 48h (Figure 1A).  In addition, a cluster of genes 

was more highly expressed after 24 and 48h.  The M. leprae-induced gene signature was thus 

defined as those genes induced >1.5-fold at 24h or 48h post-infection. 

To link the M. leprae-induced gene signature in human macrophages with gene 

expression in leprosy, we overlapped the M. leprae-induced genes with the gene expression 

profiles of leprosy skin lesions14.  The top 500 genes most highly induced by M. leprae in MDM 

by fold change significantly correlated with genes more highly expressed in L-lep versus T-lep 

lesions, with an overlap of 62 genes, 3.6-fold greater than expected (Supplementary Figure 3).  

Gene Set Enrichment Analysis (GSEA) analysis of Hallmarks of the genes that overlap between 
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M. leprae infected MDM and L-lep lesions indicated a significant enrichment for ‘Interferon 

Gamma Response (p-value 3.44x10-15),’ ‘Interferon Alpha Response’ (p-value 9.65x10-13), and 

‘mTORC1 Signaling’ (p-value 8.81x10-9) signatures (Figure 1C), all pathways that play an 

important role in mycobacterial infection.   

 

RNASeq of M. leprae-infected MDM reveals an enrichment for Type I IFN signature 

Given that Type I and Type II interferons signal through a common signaling molecule, 

we utilized an integrative bioinformatics approach to examine the relative contribution of Type I 

and Type II interferons in the M. leprae-induced gene signature.  The M. leprae-induced gene 

signature was overlapped with curated IFN-β- and IFN-γ-specific gene expression profiles 

derived from RNASeq data from stimulated MDM (unpublished data), 71 genes were identified 

in common with the IFN-β-specific dataset, two-fold higher than expected with a signed log10 p-

value of eight (Figure 1D).  In contrast, there were only two genes in common with the IFN-γ-

specific dataset, suggesting that the interferon signature was most likely solely due to an 

induction of Type I interferon.  Taken together, the M. leprae-induced gene signature was 

enriched for Type I interferon genes characteristic of L-lep lesion gene profiles.  

 

Transcriptome analysis highlights a significant cluster of genes enriched for autophagy 

To gain a better understanding of the effect of M. leprae infection on host gene 

expression, we first performed a weighted correlation network analysis (WGCNA) to identify 

clusters of similarly coexpressed genes.  WGCNA is a widely used bioinformatics tool for 

simplifying large datasets into modules of correlated genes with similar function.  Significant 

modules can be analyzed separately or in contrast to each other to identify potential phenotypic 

or functional differences in gene expression that can ultimately be correlated with disease.  
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Based on the similar hierarchical clustering of 1h and 2h, as well as 24h and 48h, WGCNA was 

performed on single and combinations of time points post-infection.  Analysis reduced the gene 

expression profile into 29 modules each comprised of 34 to 2795 genes, of which multiple 

modules were significant (p<0.05, correlation>0.9) (Figure 2A).  The most highly significant 

module, ‘MEgreenyellow’, was composed of 1627 genes and enriched within the 24h+48h 

vector with p-value 6x10-04.  Correlation scores of genes within the ‘MEgreenyellow’ module 

show a high module membership and significance between genes (Supplementary Figure 4).   

Ingenuity IPA Core analysis of this module yielded gene ontology (GO) terms relevant to 

infection including ‘Interferon Signaling’ (-log(p-value) 7.83) and ‘autophagy’ (-log(p-value) 2.98), 

consistent with that seen in the overlap with L-lep lesions (Figure 2B).  Depiction of 

‘MEgreenyellow’ genes with a potential role in autophagy derived from siRNA screens124 led to 

the discovery of a highly expressed autophagy regulator during M. leprae infection as well as in 

lepromatous leprosy: NUPR1 (Figure 2C).  The top gene, NUPR1, was induced 46-fold in M. 

leprae-infected MDM and expressed 2.7-fold higher in L-lep versus T-lep.  

Given the potentially interesting role of NUPR1 in autophagy, we decided to focus on 

NUPR1 and investigate its induction during infection.  RNASeq revealed NUPR1 as one of the 

most highly induced genes during M. leprae infection of macrophages, increasing 46-fold after 

48h (Figure 3A).  This was validated in a subsequent RNASeq performed by collaborators 

(unpublished data, Supplementary Figure 2B) as well as by qPCR of M. leprae-infected MDM 

(Figure 3A).  M. leprae induced NUPR1 17-fold at 24h and 67-fold at 48h post-infection.  In 

summary, these data identify NUPR1 as a key gene induced in M. leprae-infected MDM, 

differentially expressed in L-lep versus T-lep lesions, and connected in a network to genes 

involved in autophagy. 
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M. leprae-mediated induction of NUPR1 is dependent on Type I IFN signaling 

NUPR1 was one of the most highly upregulated genes within the ‘MEgreenyellow’ 

module, which was also enriched for Type I IFN signaling.  Mining the RNASeq data used in 

Figure 1 of IFN-β- and IFN-γ-stimulated MDM, we found that NUPR1 was highly induced by 

IFN-β, increasing 553-fold, but only modestly induced by IFN-γ, 10.4-fold (Figure 3B).  qPCR for 

NUPR1 after 24h interferon treatment confirmed this strong induction by IFN-β at 24h.  A dose 

titration of IFN-β revealed a dependency of NUPR1 on IFN-β, where NUPR1 expression 

increased with increasing concentrations of IFN-β (Figure 3C).  

To establish whether M. leprae-mediated induction of NUPR1 in MDM occurred through 

Type I IFN signaling, we incubated MDM with a blocking antibody to the Type I IFN receptor 

prior to infection.  Antibodies to IFN-β cytokine have proven unsuccessful in fully eliminating 

Type I interferon signaling; however, several reports have shown dampening of signaling when 

using blocking antibody to one of the receptor chains, IFN-aR1.  Incubation of MDM with 

αIFNAR antibody, but not Isotype antibody, prior to infection led to a drastic decrease in NUPR1 

expression (Figure 3D), from 3.7-fold to 0.5-fold, thereby confirming NUPR1 is at least partially 

induced during infection through activation of Type I IFN signaling.  Blocking of Type I IFN 

signaling was confirmed using IFN-β stimulation (Supplementary Figure 5). 

 

NUPR1 protein is more highly expressed in L-lep lesions 

The enrichment of NUPR1 mRNA in L-lep versus T-lep lesions as determined by 

microarray was 2.7-fold, with probe intensities of 8626.1 versus 3160.86, p<0.0114 (Figure 4A).  

This was confirmed by qPCR, showing 5.6-fold higher NUPR1 expression in L-lep samples.  To 

determine whether the message was turned into protein, we analyzed NUPR1 protein levels in 

lesional tissue by immunoperoxidase staining.  Concordantly, more NUPR1 protein was seen in 
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L-lep versus T-lep lesions as well (Figure 4B).  Using the online software Immunoratio125, we 

quantified  the overlap of NUPR1 immunoperoxidase staining with hematoxylin-stained nuclei as 

shown in Figure 4C, which shows a significant difference of NUPR1 protein levels of 75% cells 

in L-lep tissue versus 45% of cells in T-lep tissue (p<0.05).   

 

Discussion: 

Although the innate immune system attempts to mount an antimicrobial response to 

destroy intracellular pathogens such as mycobacteria, microbes have developed mechanisms to 

block antimicrobial activity and evade clearance.  To address the question of how mycobacteria 

can alter the host immune response to promote its own survival, we measured the gene 

expression profile of MDM infected with a high MOI of M. leprae.  Hierarchical clustering 

identified M. leprae-induced genes, which by bioinformatics analysis were found to be enriched 

for genes differentially expressed in L-lep vs. T-lep lesions and induced by Type I IFN.  Further 

analysis revealed a gene network linked to autophagy containing NUPR1, which was highly 

expressed in L-lep lesions and induced by Type I IFN.  Given that NUPR1 can block 

autophagy99,100, which is required for a macrophage antimicrobial activity, these data provide 

one mechanism by which M. leprae evades the host immune response.   

 We identified NUPR1 as a potential gene involved in the pathogenesis of the disease 

leprosy using an integrated bioinformatics approach.  NUPR1 was found to be induced: i) at 24 

and 48h in M. leprae infected MDM, ii) in an autophagy-enriched gene module, 

‘MEgreenyellow’, identified by WGCNA in the M. leprae infected MDM, iii) in L-lep vs. T-lep 

lesions; and, iv) in type I IFN treated MDM.  Informatics analysis linked NUPR1 to an “mTORC1 

signaling” pathway in the overlap of the M. leprae-induced gene signature and genes highly 

expressed in L-lep lesions induced genes as well as in a curated list of autophagy regulators in 

the ‘MEgreenyellow’ module.  The ability to integrate gene expression data from in vitro infected 
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cells with gene expression profiles derived from the site of infection provides a powerful tool to 

identify relevant mechanisms of host defense and immune evasion.  

NUPR1 was linked to autophagy based on a curated list of autophagy regulators derived 

from published siRNA screens, pathway analysis algorithms and text mining of the literature124; 

however, the literature investigating the role of NUPR1 in autophagy is conflicting.  NUPR1 has 

been reported to play both positive and negative roles in autophagy by regulating expression of 

autophagy inducer BNIP3 (negative)99, correlating with AURKA expression (negative)100, 

upregulating the mTOR inhibitor TRB3 (positive)101 or altering expression of long non-coding 

RNA from TGFB2 that serves as a microRNA sponge for autophagy-regulating microRNAs 

(positive)102.  Preliminary analysis of gene expression of BNIP3, AURKA, and TRB3 suggest a 

negative role for NUPR1 during M. leprae infection, but further studies are needed to determine 

the function of NUPR1 in infection and whether it plays a role in i) autophagy, ii) subsequent 

bacterial viability, and iii) the ability of MΦ to present antigen to other cells. 

Exploration into the mechanism of NUPR1 upregulation by M. leprae revealed NUPR1 

induction to be dependent on type I IFN signaling.  The differential expression of Type II vs. 

Type I IFNs at the site of disease in leprosy is thought to contribute to development of the T-lep 

and L-lep clinical forms, respectively14, where the level of severity of mycobacterial disease 

closely correlates with the level of responsiveness to Type II interferon, IFN-γ.  Previous studies 

have shown that IFN-β, a type I IFN, is induced following in vitro infection of monocytes and 

downregulates IFN-γ-induced antimicrobial activity in an IL-10-dependent manner14.  Here we 

provide a possible mechanism by which IFN-β may be able to downregulate other IFN-γ-

mediated antimicrobial activities such as autophagy via induction of NUPR1. 

Immunohistochemistry analysis of NUPR1 expression in leprosy skin biopsies revealed 

NUPR1 mRNA is more highly expressed in L-lep versus T-lep lesions.  This is mirrored in 

protein expression as well, where NUPR1 immunostaining in L-lep lesions revealed higher 

NUPR1 protein colocalization with hematoxylin nuclear staining.  Intriguingly, although NUPR1 
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is a transcription factor and should be found in the nucleus, protein was found in both the 

nucleus and the cytosol in L-lep lesions.  This is similar to previous studies investigating NUPR1 

localization in pancreatic126 and thyroid cancers127.  Comparison of NUPR1 expression in thyroid 

carcinomas showed a correlation between higher NUPR1 cytosolic localization and more 

malignant papillary carcinomas of larger size or containing poorly differentiated lesions127.  The 

reason for high cytoplasmic NUPR1 expression is still unclear and whether NUPR1 may have a 

function in the cytosol is yet to be determined.  It may be interesting to see if NUPR1 can 

function in the binding and sequestering of other proteins from the nucleus.  Further exploration 

needs to be done to address NUPR1 function correlating to NUPR1 localization within the cell. 

While there appears to be multiple mechanisms by which macrophages can kill 

intracellular pathogens, mycobacteria have established methods by which to evade these host 

immune defenses.  In vitro, M. leprae stimulates production of IFN-β, which not only induces the 

L-lep cytokine IL-10, but which also blocks components of the vitamin D-dependent 

antimicrobial pathway and suppresses production of antimicrobial peptides14.  Here, we 

performed RNA sequencing on M. leprae-infected macrophages and found evidence suggesting 

M. leprae can also induce the expression of genes involved in regulation of autophagy, such as 

NUPR1, to modify the host immune response and evade bacterial killing.  M. leprae induces 

NUPR1 in a type I IFN-dependent manner, suggesting a novel mechanism by which IFN-β may 

suppress other IFN-γ-mediated antimicrobial responses. 
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Materials and Methods 

Antibodies and Cytokines 

M-CSF (R&D Systems) was used for macrophage differentiation. IFN-β, recombinant human 

IFN-γ (BD Biosciences) were used for macrophage stimulations at the concentrations indicated. 

Antibodies used were as follows: Neutralization experiments: anti-IFNAR antibody (PBL Assay 

Science) and corresponding Isotype Antibody mIgG2a, k (BioLegend); Immunoperoxidase 

Staining: NUPR1 (Abbexa), corresponding Isotype antibody mIgG2b, and Biotinylated Goat anti-

mouse IgG2b, Immunofluorescence: anti-LC3, IgG1, and Goat anti-mouse IgG1 Alexa488.  For 

neutralization studies, MDM were incubated with anti-IFNAR1 blocking antibody or Isotype 

control prior to stimulation with M. leprae or IFN-β.   

 

Macrophage Differentiation 

Peripheral blood was acquired from healthy donors with informed consent (UCLA Institutional 

Review Board #125.15.0-f). CD14+ monocytes were isolated from peripheral blood using a 

Ficoll-hypaque (GE Healthcare) density gradient and subsequent CD14+ positive selection as 

previously described128.  CD14+ cells were then cultured for 5 days in RPMI 1640 supplemented 

with 10% FCS (Omega Scientific) and 50 ng/ml M-CSF to generate MDM. 

 

RNASeq Library Preparation 

1.5 million MDM were infected with Mycobacterium leprae at a multiplicity of infection (MOI) of 

10 in RPMI 1640 + 10% FCS. Cells were lysed at varying time points (0h, 1h, 2h, 24h, 48h) 

post-infection using RLT Buffer supplemented with 1% B-mercaptoethanol. Samples were bead 

beated as previously described.  Total RNA was then isolated using RNeasy columns according 



 

77 
 

to manufacturer’s protocol and quantified by RiboQuantitation and Qubit (UCLA Core).  RNA 

integrity number of all conditions were determined by Bioanalyzer to be >8. Depletion of 

ribosomal RNA and library preparation was performed using Ribozero Gold Epidemiology 

(EpiBio) and TruSeq Sample Preparation Kit (Illumina) as per manufacturer’s protocols. Final 

libraries were reassessed for quality (Qubit and Bioanalyzer), multiplexed at two samples per 

lane, and sequenced on HiSeq 2000 sequencer (Illumina) with 50bp single-end reads. 

 

Bioinformatics analysis 

Sequenced reads were demultiplexed, aligned to the human reference genome hg19 (UCSC), 

and converted to DESeq normalized counts as previously described128.  Hierarchical clustering 

was performed on normalized counts using Cluster 3.0 and graphically represented by 

TreeView.  Weight Gene Network Correlation Analysis (WGCNA) was performed as previously 

described128.  

 

Real-time Quantitative PCR 

Total RNA was obtained using TRIzol reagent (Invitrogen) and converted to cDNA using Iscript 

(BioRad) as previously described44. Quantitative PCR was performed using KAPA Sybr (KAPA 

Biosystems) and normalized to housekeeping gene h36b4. Arbitrary units were calculated using 

the 2-(ΔΔCt) method. NUPR1 primer set was obtained from Quantitect. Primer for h36b4 is as 

previously described44. 
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Leprosy biopsy specimens and immunoperoxidase labeling 

Leprosy skin biopsy specimens were collected and processed as previously described128.  Skin 

biopsies were cut into cryosections 4um in diameter and incubated with normal goat serum 

followed by staining with anti-NUPR1, anti-CD3, or isotype control.  Sections were subsequently 

incubated with biotinylated goat anti-mouse IgG, ABC Elite system, and AEC Peroxidase 

Substrate Kit (Vector Laboratories) and counterstained with hematoxylin prior to mounting in 

crystal mounting medium (Biomeda).  NUPR1 and CD3 staining was visualized and quantified 

using ImmunoRatio125. 

 

Live M. leprae  

Live M. leprae was graciously provided to us by Dr. James L. Krahenbuhl of the National 

Hansen's Disease Programs, Health Resources Service Administration, Baton Rouge, LA.  

There, M. leprae was grown in nude mice footpad and treated with NaOH as previously 

described. 

 



FIGURE 1: M. leprae-infected MDM induce a prominent type I IFN signature

A. B. 

C. 

0

10

20

30

40

50

60

70

80

IFNB IFNG

N
u

m
b

e
r 

o
f 

g
e

n
e
s

IFN-β IFN-γ

-3

-1

1

3

IFNB IFNG

F
o

ld
 e

n
ri

c
h

m
e
n

t 
(o

b
s

e
rv

e
d

/e
x
p

e
c
te

d
)

IFN-β IFN-γ

0

2

4

6

8

10

IFNB IFNG

S
ig

n
e

d
 l
o

g
1

0
 

e
n

ri
c
h

m
e
n

t 
p

v
a
lu

e

IFN-β IFN-γ

h
0

h
1

h
2

h
2

4

h
4

8

Gene Set Name
# Genes in 

Gene Set (K)

# Genes 

in Overlap 

(k)

k/K p-value

Interferon_Gamma_Response 200 12 0.06 5.90E-17

Interferon_Alpha_Response 97 10 0.1031 1.07E-16

TNFa_Signaling_via_NFkB 200 6 0.03 3.16E-07

Hypoxia 200 4 0.02 1.59E-04

Xenobiotic_Metabolism 200 4 0.02 1.59E-04

UV_Response_Up 158 3 0.019 1.30E-03

Apoptosis 161 3 0.0186 1.37E-03

Reactive_Oxygen_Species_Path

way
49 2 0.0408 2.02E-03

MTORC1_Signaling 200 3 0.015 2.54E-03

IL6_JAK_STAT3_Signaling 87 2 0.023 6.22E-03

Androgen_Response 101 2 0.0198 8.30E-03

mLEP

MDMs

IFN-β-

specific

IFN-γ-specific

613

2 0

90

71

*

670

0

Top 500 

genes

L-lep vs. 

T-lep

T-lep vs. L-lep

2104

42* 59

2306

62*385

1

79



Figure 1: mLEP-infected MDMs reveals enrichment of lepromatous leprosy genes 

and a prominent Type I IFN signature

(A) Unsupervised single linkage hierarchical clustering of normalized DESeq counts 

obtained from RNA Sequencing of M. leprae-infected MDM at an MOI of 10.  Each 

row corresponds to a gene and each column represents time post-infection as 

indicated. Red denotes higher expression whereas green indicates lower expression.

(B) Venn diagram depicting top 500 M. leprae-induced genes at 24 and 48h overlapped 

with genes more highly expressed in lepromatous (L-lep) and tuberculoid (T-lep) 

leprosy lesions (above).  Significant genes determined as those with FC>1.5 in 

comparison to other lesion form with p<.05. Gene Set Enrichment Analysis displaying 

Hallmark pathways significantly enriched in 62* genes (below). * Denotes significant 

enrichment over expected as determined by hypergeometric means. 

(C) Overlap of M. leprae-induced gene signature with IFN-β- and IFN-γ-specific genes 

(FC>1.5, p<.05, >3 FC versus other stimulation). Hypergeometric enrichment 

analysis shown as FC enrichment (observed/expected) with dotted line indicating 

greater than (positive) or less than (negative) expected.  Significant of enrichment 

depicted as signed log10 enrichment p-value with dotted line indicating significance 

(signed log10 pvalue = 1.3).
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SUPPLEMENTAL FIGURE 1: RNA Sequencing of M. leprae-infected MDM

Human monocyte

M-CSF

5 days

MDM

Infect with

M. leprae at MOI 10

MDM

A.

Harvest in RLT buffer 

at 0, 1, 2, 24, and 48h 

post-infection

Bead Beat, ribosomal 

RNA Depletion, 

Library Preparation

RNA Sequencing 

multiplexing two 

samples per lane

B.

C.

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

1.E+08

1.E+08

1.E+08

0h 1h 2h 24h 48h

Total Reads per sample

Figure S1: RNA Sequencing of M. leprae-infected MDM

(A) Diagram of experimental design.

(B) MDM were infected with PKH-labeled M. leprae at an 

MOI of 10 and uptake was assessed via flow cytometry 

(left) and confocal microscopy (right).

(C) Total RNA sequencing reads obtained per sample.
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SUPPLEMENTAL FIGURE 2: Validation of RNA sequencing results
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Figure S2: Validation of RNA sequencing results

(A) Assessment of the effect of rRNA-depletion (x-axis) versus poly-A selection (y-axis) on 

RNA sequencing data obtained on technical replicates of M. leprae-infected MDM taken 

at 24h (left) and 48h (right) post-infection. Trend line and R correlation score are as 

indicated.  Data are representative of n=1.

(B) Comparison of NUPR1 FC obtained from Modlin RNA sequencing (left; n=1) versus 

Smale RNA Sequencing (right; n=4).
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SUPPLEMENTAL FIGURE 3: Top 500 M. leprae-induced genes are enriched for L-lep 
and T-lep signatures

Figure S3: Top 500 M. leprae-induced genes are enriched for L-lep and T-lep 

signatures

(A) Hypergeometric enrichment analysis of overlap of M. leprae-induced gene signature 

with genes more highly expressed in L-lep and T-lep lesions (induced >1.5, p-

value<.05, >3 fold change versus other stimulation). Hypergeometric enrichment 

analysis shown as FC enrichment (observed/expected) with dotted line indicating 

greater than expected.  Significant of enrichment depicted as signed log10 enrichment 

p-value with dotted line indicating significance (signed log10 pvalue = 1.3).
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FIGURE 2: M. leprae-induced genes cluster into a significant WGCNA module enriched 
for autophagy genes

T-lep (FC) L-lep (FC)

WGCNA B. 

Ingenuity Canonical Pathways
-log(p-

value)
Ratio

Interferon Signaling 7.83E+00 4.17E-01

phagosome maturation 6.74E+00 2.25E-01

Antigen Presentation Pathway 6.72E+00 3.78E-01

Activation of IRF by Cytosolic Pattern 

Recognition Receptors
5.72E+00 2.74E-01

Death Receptor Signaling 5.49E+00 2.28E-01

Role of RIG1-like Receptors in Antiviral 

Innate Immunity
5.02E+00 3.02E-01

UVA-Induced MAPK Signaling 4.66E+00 2.16E-01

NRF2-mediated Oxidative Stress 

Response
4.15E+00 1.61E-01

Prolactin Signaling 4.11E+00 2.19E-01

Retinoic acid Mediated Apoptosis 

Signaling
3.89E+00 2.30E-01

Reelin Signaling in Neurons 3.68E+00 2.03E-01

FLT3 Signaling in Hematopoietic 

Progenitor Cells
3.49E+00 2.03E-01

Oncostatin M Signaling 3.17E+00 2.65E-01

Polyamine Regulation in Colon Cancer 3.09E+00 3.18E-01

autophagy 2.98E+00 2.50E-01

Type I Diabetes Mellitus Signaling 2.89E+00 1.64E-01

CNTF Signaling 2.86E+00 2.12E-01

Protein Ubiquitination Pathway 2.84E+00 1.29E-01

Cdc42 Signaling 2.82E+00 1.44E-01

PDGF Signaling 2.81E+00 1.82E-01
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FIGURE 2: M. leprae-induced genes cluster into a significant WGCNA module enriched 

for autophagy genes

A) Heat map depicting correlation of infection conditions (x-axis) with WGCNA modules (y-

axis), with red representing an enrichment and green a deenrichment of module genes.  

Correlation score (top) and corresponding p-value (bottom) denoted on each square.

B) Top canonical pathways enriched in MEgreenyellow module as determined by 

Ingenuity IPA analysis. Rows highlighted in yellow represent pathways also enriched in 

L-lep versus T-lep lesions.

C) Autophagy regulator genes in MEgreenyellow module denoting differential expression 

in leprosy lesions (x-axis) versus induction in M. leprae-infected MDM (y-axis).

D) Graphical representation of gene connections of autophagy regulators as determined 

by VisANT analysis of Megreenyellow module
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SUPPLEMENTAL FIGURE 4: Correlation scores of WGCNA module MEgreenyellow

FIGURE S4: Correlation scores of WGCNA module MEgreenyellow

A) p-value of each gene’s correlation to other genes within the module (module membership) versus 

significance of each gene within the h24_h48 cluster.

A. 
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FIGURE 3: M. leprae induction of NUPR1 is dependent on Type I IFN signaling
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Figure 3: M. leprae-mediated induction of NUPR1 is dependent on Type I IFN 

signaling

(A) Fold change of NUPR1 normalized DESeq counts as compared to time 0 obtained 

from RNASeq of M. leprae-infected MDMs (n=1). Experimental replicates assessed 

via qPCR for NUPR1 mRNA normalized to housekeeping gene h36b4 are 

representative of n=9.

(B) Fold change of NUPR1 normalized DESeq counts obtained from RNASeq of IFN-b 

(conc.) or IFN-g (conc.)-stimulated MDM as compared to media controls at each time 

point (n=5). qPCR replicates assessed for NUPR1 24h post-treatment normalized to 

housekeeping gene h36b4 are representative of n=3.

(C) NUPR1 FC after 24h treatment with increasing concentrations of IFN-b: +: 2.7u/ml, 

++: 27.7u/ml, +++: 92.3u/ml, ++++: 277u/ml

(D) MDM infected with M. leprae after pre-incubation with aIFNAR blocking antibody or 

IgG2a Isotype control and assessed for NUPR1 FC at 24h or 48h (n=4).

p<.05 (*), p<.001 (**), qPCR experiments are representative of at least three experiments
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SUPPLEMENTAL FIGURE 5: Validation of αIFNAR antibody
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Figure S5: Validation of αIFNAR antibody

(A) MDM stimulated with increasing concentrations of IFN-β (+++: 92.3u/ml, ++++: 277u/ml) 

after pre-incubation with αIFNAR blocking antibody or IgG2a Isotype control and 

assessed for NUPR1 FC at 24h (n=3).

p<.05 (*), p<.001 (**)
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FIGURE 4: NUPR1 protein is more highly expressed in lepromatous leprosy lesions
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Figure 4: NUPR1 is more highly expressed in lepromatous leprosy lesions

(A) NUPR1 intensity values from microarray analysis of L-lep (n=6) and T-lep (n=5) leprosy 

lesions and relative NUPR1 arbitrary units on corresponding cDNA.

(B) Immunoperoxidase staining of L-lep and T-lep lesions tissue for NUPR1, CD3, or IgG2b 

Isotype control (20X with 40X insert). Pictures shown are representative of n=4.

(C) Immunoratio analysis quantifying NUPR1 immunoperoxidase staining (DAB) versus 

hematoxylin nuclear area of leprosy lesion tissue.
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SUPPLEMENTAL FIGURE 6: Model Hypothesis
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Figure S6: Model Hypothesis

(A) Graphical representation of data.  NUPR1 is more 

highly expressed in L-lep versus T-lep lesions and 

is induced in MDM after M. leprae infection in a type 

I IFN-dependent manner.
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CHAPTER 5: 

 

Conclusions and Final Remarks   
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This dissertation address the ability of mycobacteria or mycobacterial products to modulate 

host immune responses in order to gain a clearer understanding of disease pathogenesis. 

Activated macrophages employ multiple mechanisms of antimicrobial activity to eliminate 

invading intracellular pathogens including the induction of antimicrobial peptide production, 

autophagolysosomal fusion, and delivery of antimicrobial peptides to the autophagosome.  

Mycobacterial infection, however, can stimulate the production of type I IFN and subsequent IL-

10 expression to subvert type II IFN-mediated host immune responses, reeducation of M1 MΦ, 

and enabling of bacterial persistence.  Through transcriptome analysis of gene expression 

profiles at the site of disease in leprosy, IL-10 and IL-15-derived M2 and M1 M, and in vitro M. 

leprae-infected or IFN-stimulated MDM, we were able to identify multiple methods by which 

Mycobacteria can alter M phenotype, gene expression, and function that can play a role in 

outcome of infection. 

It was previously shown that disseminated L-lep lesions display differential expression of 

cytokines and macrophage activation states in comparison to self-limiting T-lep lesions, 

mirroring the immune response to infection.  Gene expression profiling of microRNAs expressed 

in L-lep versus T-lep lesions cross-referenced with mRNA targeting algorithms identified 

microRNA-21 (miR-21) as being highly expressed in L-lep lesions and a potential regulator of 

the vitamin D antimicrobial pathway.  M. leprae-mediated induction of miR-21 suppressed 

expression of antimicrobial gene CYP27b1 and production of downstream antimicrobial 

peptides cathelicidin and defensin-beta 2, contributing to the inhibition of mycobacterial killing.  

Intriguingly, investigation into the mechanism of miR-21 induction led to the discovery that miR-

21 is induced by the mycobacterial cell wall component phenolic glycolipid-1 (PGL-1), which is 

expressed in M. leprae but not other mycobacteria, providing an explanation for how M. leprae, 

but not M. tuberculosis, is able to escape vitamin D-dependent antimicrobial activity.  Here we 

provide evidence illustrating the ability of a specific microRNA, miR-21, induced during infection 

to modify the host immune response and influence the outcome of infection. 

Several other microRNAs were more expressed in L-lep versus T-lep lesions and could 

potentially target components of the vitamin D pathway or Th1-related genes during infection.  

Among these are microRNAs differentially expressed in other mycobacterial infections and with 

known functions modifying the host immune response, including miR-146a and miR-29c.  miR-
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146a, induced following M. leprae infection of monocytes (unpublished data), is predicted to 

target CYP27b1, the enzyme responsible for conversion of vitamin D to its active form.  miR-

146a is also induced following M. bovis BCG infection of mice but is significantly lower in the 

peripheral blood mononuclear cells (PBMCs) of tuberculosis patients compared to healthy 

controls129, suggesting a role in control of chronic inflammation. Through targeting the TLR 

signaling cascade, miR-146a130 may dampen the uncontrolled inflammation that leads to tissue 

damage, a major cause of pulmonary morbidity and mortality in tuberculosis131, significantly 

impacting the outcome of infection and disease pathogenesis.  In addition, microRNA single 

nucleotide polymorphism (SNP) analysis has revealed a correlation between a miR-146a SNP 

(rs2910164) and increased pulmonary tuberculosis susceptibility in certain populations132, 

further highlighting the protective role of miR-146a in containment of uncontrolled host immune 

responses during mycobacterial infection.  Contrary to miR-146a, infection of mice with M. 

bovis BCG results in decreased expression of miR-29 in T-cells, which targets and down 

regulates the critical Th1 cytokine IFN-γ133.  Ablation of miR-29 in mice renders them more 

resistant to both M. bovis BCG and M. tuberculosis infections, suggesting that induction of miR-

29 in T-cells during infection is a facilitator of bacterial virulence.  Further studies are needed to 

decipher the role of these and other microRNAs in the context of leprosy disease. 

In addition to differential expression of microRNAs, L-lep and T-lep lesions are composed of 

MΦ with differing activation states.  Our lab previously demonstrated that L-lep MΦ are 

CD209+CD163hi, similar to that seen in IL-10-derived MΦ, which exhibit enhanced phagocytic 

function and a decrease in antimicrobial gene expression.  In contrast, T-lep MΦ are 

CD209+CD163lo, similar to IL-15-derived MΦ which are activated to express antimicrobial genes 

but exhibit a decrease in phagocytic capabilities.  In the present study, we investigated whether 

MΦ polarization was reversible and identified mechanisms of reeducation of Mby stimulation 

with cytokines and mycobacterial ligands.  Treatment with IL-10 induced and maintained M2 MΦ 

polarization as well as reeducated M1 MΦ to M2-like MΦ with an increase in phagocytic 

function.  In contrast, IL-15 treatment of M2 MΦ was not sufficient to fully reprogram M2 MΦ; 

instead M2 MΦ required co-stimulation with TLR2/1L + IFN-γ to convert to M1 MΦ with an 

upregulation of antimicrobial gene expression.  How this plays a role in leprosy during infection 

and whether this is occurring during reversal reactions still remains to be determined. 
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Gene expression profiles at the site of disease in leprosy integrated with transcriptome 

analysis of in vitro infected cells provides a means to identify genes important for bacterial 

survival during mycobacterial infection.  Hierarchical clustering of gene expression profiles of M. 

leprae-infected MDM identified a cluster of genes upregulated after infection that were enriched 

for a leprosy gene signature and type I IFN-specific gene signature.  WGCNA analysis led to the 

identification of a highly significant module, ‘MEgreenyellow’, enriched for the autophagy 

pathway.  Expression of autophagy regulators in leprosy skin lesions and M. leprae-infected 

MDM identified a strong upregulation of the novel gene NUPR1, which to date has not been 

shown to play a role in bacterial infections.  M. leprae induces NUPR1 in a type I IFN-dependent 

manner, suggesting M. leprae can stimulate type I IFN production and regulate autophagy 

through NUPR1.  Further studies are still needed to tease out the role of NUPR1 during 

mycobacterial infection, including its effect on autophagy, antigen presentation, and bacterial 

viability.  Of note, multiple significant WGCNA modules deenriched in M. leprae-infected 

macrophages showed an enrichment for genes within the antigen presentation pathway. 

The work presented in this dissertation provides evidence that Mycobacterium leprae 

infection can alter host immune responses to influence the outcome of infection.  Although the 

chapters are distinct, it is interesting to note commonalities between them.  IFN-β is now known 

to upregulate miR-21 expression in a STAT3- and NFkB-dependent manner in various cancer 

cell lines134, providing a potential mechanism by which M. leprae can induce miR-21 and IFN-β 

can induce IL-10.  Thus, the effect of IFN-β and miR-21 on the vitamin D pathway may occur 

through a linear pathway (M. leprae  IFN-β  miR-21  IL-10), culminating in a decrease of 

CYP27b1, an inability to convert vitamin D to its active form, and inhibition of antimicrobial 

peptide production. 

The role of NUPR1 in mycobacterial infection may mirror miR-21.  Similar to miR-21, 

NUPR1 is induced by IFN-β and contains NFkB binding motifs within its promoter.  NUPR1 is 

not, however, induced by IL-10 (data not shown), indicating either NUPR1 is upstream of IL-10 

or induced in parallel.  Interestingly, NUPR1 is stabilized the same protein that is required for 

IFN-β-mediated induction of IL-10, glycogen synthase kinase 3 beta (GSK3b), and has been 

reported to influence the methylation status of VDR.  Further investigation into where NUPR1 

falls in this pathway and whether NUPR1 plays a role in the expression of IL-10 and 
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components within the vitamin D pathway would be of great interest to study in the context of 

mycobacterial disease.  In addition, whether NUPR1 exhibits positive feedback on IFN-β 

signaling could be of interest due to biochemical similarities of NUPR1 to HMG-I:Y proteins 

which comprise part of the IFN-β enhanceosome complex. 

The response to M. leprae and IFN-β may also be dependent on the activation state of the 

host MΦ.  IL-10 MΦ display higher basal miR-21 expression than IL-15 MΦ (unpublished data).  

In addition, IL-10 MΦ induce much greater amounts of NUPR1 in response to M. leprae and 

IFN-β in comparison to IL-15 MΦ.  These distinct responses to M. leprae can be explained by 

the disparities in phagocytic function and bacterial loads.  How IL-10 and IL-15 MΦ can 

differentially respond to IFN-β is still unclear. 

In summary, the work presented in this dissertation provides evidence that Mycobacterium 

leprae infection can upregulate specific genes capable of modifying host immune responses.  

More studies investigating whether other microRNAs and mRNAs differentially expressed during 

infection favor or target the immune response when the host cell and M. leprae are engaged 

could give further insight in determining the outcome of the infection. As more data are gathered 

on (i) the functional consequences of microRNA regulation during mycobacterial infections, (ii) 

methods of MΦ reeducation to facilitate effective immune responses and iii) mechanisms of 

immune evasion through upregulation of inappropriate host genes, they may provide an 

opportunity for directed therapeutic intervention. 
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