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Abstract

Existing imaging genetics studies have been mostly limited in scope by using imaging-

derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-

supervised deep representation learning, we propose a new approach, image-based

genome-wide association study (iGWAS), for identifying genetic factors associated with

phenotypes discovered from medical images using contrastive learning. Using retinal fun-

dus photos, our model extracts a 128-dimensional vector representing features of the retina

as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we

generated phenotypes from 130,329 images of 65,629 British White participants in the UK

Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-

wide significance (p<5×10−8 and intersection of hits from left and right eyes). We also did

GWAS on the retina color, the average color of the center region of the retinal fundus pho-

tos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw

image phenotype. Our results establish the feasibility of this new framework of genomic

study based on self-supervised phenotyping of medical images.

Author summary

Imaging genetics is a research field focused on understanding how genetic variations

influence observable traits or diseases that can be visualized through medical imaging.

Previous studies in imaging genetics have mostly relied on traits identified by human

experts. In this study, we used a self-supervised contrastive learning algorithm that auto-

matically identifies features in fundus images that are unique to each individual yet consis-

tent between their left and right eyes. These features are represented as a set of 128
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numbers that can quantitatively describe the characteristics of each individual’s fundus

images without human labeling bias. We then conducted genome wide association studies

(GWAS) to explore the associations between these features and genetic variations using

paired fundus images and genetic data from the UK Biobank. Our findings indicate that

these features are linked to genetic signals associated with eye measurements, eye diseases,

pigmentation, and vessel development. Additionally, we found that GWAS of this set of

features identified new genetic signals not detected in GWAS only using retina color.

These results establish the feasibility of this self-supervised phenotyping approach for

imaging genetics studies.

Introduction

Although genome-wide association studies (GWAS) have successfully identified thousands of

genetic associations, most existing GWAS are based on a set of predefined phenotypes. While

these phenotypes encode valuable biomedical knowledge, they are also biased by current clini-

cal practice and epidemiological studies. In addition, as the granularity of phenotype code is

often limited, it is often not sufficient to capture the complexity of human physiology and

pathology in their entirety. Therefore, deriving new phenotypes beyond expert curation would

enable the discovery of new genetic associations.

Medical imaging is a rich resource for phenotype discovery. Through rapid technological

advancements, modern medical imaging offers unprecedented details about a patient’s

physiological condition and can be a high-content phenotyping modality. Most existing

imaging GWASs have leveraged imaging-derived phenotypes (IDPs) [1–3]. These IDPs

were typically designed by imaging experts and generated by special-purpose image process-

ing pipelines. Recently, machine learning, especially supervised deep learning (DL), is used

to automatically generate IDPs [4–6]. These methods were trained by learning from data

labeled by experts and identified new loci in GWAS [1,2,7]. However, although supervised

DL can vastly improve the efficiency of image labeling, it fails to provide phenotypes beyond

those defined by experts. In addition, although these phenotypes are derived for medical

practice, clinical decision processes, and natural-language-based reporting, they often do

not comprehensively capture the imaging content. There are limitations to the amount of

information a human eye can extract from images. Many meaningful imaging features,

some of which might be used implicitly by physicians, may not be verbalized in medical

reports. In addition, there may be physiologically informative features that are present in

the image but are completely missed or ignored by readers. For example, Google’s DL algo-

rithm extracted novel features from retinal images, such as age, gender, and smoking status,

that are not readily apparent to expert human graders [8]. Following studies identified fea-

tures such as refractive error and anemia from retinal images [9,10]. These results suggest

that additional information beyond human curation may be encoded within imaging data,

and new methods are needed to extract such information.

Here, we have designed a new framework of genome-wide genotype-phenotype association

study by performing self-supervised image-based genome-wide association studies (iGWAS).

For phenotype discovery, instead of supervised learning that relies on labels from expert anno-

tations, self-supervised deep learning is applied to an image to capture its intrinsic contents

[11–14]. Endophenotypes generated by the deep learning model are then subjected to GWAS

to identify associated genomic loci.
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We tested this new approach using human fundus images by deriving endophenotypes

from the raw color fundus images, which likely capture the overall content of the image. We

constructed a contrastive loss function over an Inception V3 architecture to learn a representa-

tion that captures the intrinsic retinal features of individuals. Our neural network outputs 128

endophenotypes representing the input image. After training on 40,000 images from Eye-

PACS, our model generated phenotypes from 130,329 images of 65,629 British White partici-

pants in the UK Biobank. We then conducted GWAS analyses on the fundus image

endophenotypes.

Results

Overall iGWAS framework

The core component of iGWAS is a phenotyping (encoder) neural network that generates

endophenotypes, which are in turn associated with genotypes by GWAS (an example of

iGWAS for retinal images is shown in Fig 1). Distinct from traditional phenotypes labeled by

experts or by AI trained via supervised learning, iGWAS’s encoder network is trained by self-

supervised learning to discover new phenotypes. We thus named it as Self-Supervised Pheno-

typer (SSuPer). Popular self-supervised learning losses, such as contrastive losses [11,13,15]

and reconstruction losses [16], are used to extract coherent and biologically relevant features

Fig 1. iGWAS of endophenotypes from retinal fundus images. (a) Using raw fundus images in EyePACS, we

developed phenotyper neural networks that optimize contrastive losses; (b) Using the trained phenotypers, we

generated 128 endophenotypes for each fundus image in the UK Biobank vision cohort and do GWAS on these

endophenotypes to identified independent loci. The fundus photo in this figure is from Häggström M. “Medical gallery

of Mikael Häggström 2014”. WikiJournal of Medicine. 2014;1(2). DOI:10.15347/wjm/2014.008. Licensed under Public

Domain.

https://doi.org/10.1371/journal.pgen.1011273.g001
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of individuals. We used a contrastive loss to learn features that are consistent between the

images from the same person. The resulting “embedding vector,” the output of the encoder, is

treated as “endophenotypes” for downstream GWAS analysis.

The iGWAS approach is executed in two phases: the model development phase and the

GWAS phase. In the model development phase, a “phenotype development set” is used to

train the embedding network. The phenotype development set is a collection of images from

individuals, whose genotype data are not needed. The result of the model development phase

is a trained neural network model, SSuPer, that can transform an input image into a set of self-

supervised image-derived phenotypes (SS-IDPs). In the GWAS phase, the trained SSuPer

from the model development phase is used to generate SS-IDPs for images from the “GWAS

set,” a dataset containing both images and genotypes of a different cohort of individuals. The

SS-IDPs are then tested for association with genome-wide markers.

Overall data analysis strategy for generating endophenotypes from fundus

images

In this study, we designed and implemented the iGWAS approach to encode retinal features

from fundus images. For the phenotype development set, we used data from EyePACS, a large

public collection of 88,702 fundus images (see Methods: dataset extraction). After quality

control (see Methods: Image quality control), 40,000 top quality images were used (S1

Table). For the GWAS set, we used fundus images and genotype data of 65,629 British White

UK Biobank participants. Although the demographics of the EyePACS and UK Biobank

cohorts do not match exactly, we reasoned that some characteristics of their fundus images

should be similar, so we expect the features learned from EyePACS can be generalized to UK

Biobank.

First, the EyePACS fundus images are directly fed into the encoder neural network to gen-

erate raw image endophenotypes. A convolutional neural network (CNN) based on the Incep-

tion [17] architecture is used because it is proven to deliver good results for modeling images.

We found some of the endophenotypes strongly correlated with the color in image derived

endophenotypes. Therefore, to account for the “retinal color,” defined as the average intensi-

ties of the red, blue, and green channels of the central patch of the fundus image, were consid-

ered as additional phenotypes in subsequent analysis (see Methods). While the definition of

retinal color may not fully account for change in illumination, texture of the retinal pigment

epithelium, retinal lesions, and optic disk, it captures coarse-grained information of the retinal

background. We conducted GWAS analyses for the three sets of phenotypes: 128 raw image

endophenotypes and 3 retina colors (RGB channels). To aid in interpretation of the endophe-

notypes, we conducted univariate and correlation analyses among endophenotypes and

between endophenotypes and relevant eye phenotypes. The overall pipeline is shown in S1

Fig.

Design of encoder network that captures coherent features of fundus

images from the same person

To generate an embedding vector that represents the inherent biological features of an individ-

ual, we leverage a self-supervised metric learning approach that was described in ArcFace [18],

a widely adopted algorithm that is used to extract features for developing human face recogni-

tion methods, with some technical modifications detailed in methods (see Methods: Embed-

ding neural network). Inception v3, which has been demonstrated to be capable of capturing

complex information within fundus images, was used as a backbone architecture for the metric

learning [19]. The output of our embedding network was designed to be a 128-dimensional
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vector, based on previous work showing that 128-dimensional vectors are sufficient to repre-

sent complex datasets [20,21]. Our ArcFace loss function is a contrastive loss that first projects

the embedding vector to the unit sphere and then optimizes the contrast between the embed-

dings from the eyes of the same person and the embeddings from different people by minimiz-

ing the angular distance between the embeddings of left and right retinas from the same

individual while keeping the embeddings from different individuals at least some margins

apart (Fig 2). We reasoned that if the trained model manages to capture real biologically rele-

vant features, embeddings between an individual’s left and right fundus images should be

more similar than those from different individuals, previous work also showed that genetic

relatedness can be estimated from pairs of fundus images [22]. Details of model design and

training are described in the Methods: Embedding neural network.

Training of encoder networks

For 88,724 images from EyePACS, 54,992 passed our quality filter network (quality

score > 0.5) (see Methods). 40,000 top quality images (quality score> 0.95) were selected as

we reasoned that this balance point of sample size and sample quality is sufficient for training

the main SSuPer network. The characteristics of the EyePACS dataset are shown in S1 Table.

To verify the performance of the SSuPer embedding network, we compared the matched

pairs (left and right eye of the same person) and random pairs (Fig 2B). As expected, there is a

clear separation in the distribution of cosine distance between matched pairs and random

pairs (see S2 Table for quantification). The matched pairs are more similar in EyePACS than

that in UK Biobank’s, indicating some level of domain shift. Although less than that of Eye-

PACS, the separation of matched and random pairs was clearly observed in UK Biobank, indi-

cating that the embedding models are transferable and indeed capture the intrinsic features of

the fundus images. Therefore, we decided to directly apply the embedding networks trained

using EyePACS to the UK Biobank data without fine-tuning. Of note, we observed a weak

Fig 2. Contrastive loss for deriving phenotypes coherent across images from the same person. (a) Contrastive loss is designed to map images from the same

person to be closer while keeping images from different persons apart. The top fundus photo pair is from Häggström M. “Medical gallery of Mikael Häggström

2014”. WikiJournal of Medicine. 2014;1(2). DOI:10.15347/wjm/2014.008. Licensed under Public Domain. The bottom fundus photo pair is adapted from

Chalam KV, Chamchikh J, Gasparian S. “Optics and utility of low-cost smartphone-based portable digital fundus camera system for screening of retinal

diseases”. Diagnostics. 2022 Jun 20;12(6):1499, licensed under CC BY 4.0. Available at: https://www.mdpi.com/diagnostics/diagnostics-12-01499/article_

deploy/html/images/diagnostics-12-01499-g005.png. (Accessed: 2024-04-03). (b) The trained endophenotype vectors for fundus image embedding of the same

persons reflect the design of contrastive learning in both the training set (EyePACS) and the test sets (UKBB). The distributions of the matched pairs (images

from the same person) and the random pairs are separated. The distributions were estimated using Scott’s kernel with an additional multiplicative factor of 0.5

to smooth the curve.

https://doi.org/10.1371/journal.pgen.1011273.g002
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cone effect that the cosine similarity between any pair of embeddings is centered around 0.2,

which is a general phenomenon for deep neural networks [23].

Descriptive analysis of endophenotypes in UK Biobank fundus photos

We conducted our analysis using 65,629 British White participants from the UK Biobank who

had available fundus images (see Methods: Dataset extraction). For each participant, we

chose the first image for each eye, resulting in 130,329 images. Basic demographic description

of this dataset is shown in S3 Table. Retina colors were also extracted as phenotypes. The cen-

tral patch of the image (the fovea region) was used because it has more pigment and of low ves-

sel density, providing a cleaner estimate of the retinal color (see Methods: Extracting retina

color and color GWAS).

Univariate distributions of the endophenotypes generated by our embedding networks is

shown in S2 Fig. We found that most endophenotypes have unimodal bell-shaped distribu-

tions. Meanwhile, examining their pairwise correlations showed that endophenotypes have

strong internal correlations (Fig 3).

iGWAS: GWAS of endophenotypes

To identify genetic factors associated with endophenotypes, GWAS was performed for each of

the 128 dimensions from all 130,329 images using linear mixed models as implemented by

BOLT-LMM [24], adjusted by age, sex, and ancestral principal components (PCs) (see

Fig 3. Absolute correlations among 128 image-derived endophenotypes. Some correlations are observed by

hierarchical clustering.

https://doi.org/10.1371/journal.pgen.1011273.g003
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Methods: Endophenotype GWAS). Analyses were conducted separately for the left and right

retinal images. Their results were not meta-analyzed because the endophenotypes of the two

eyes may be correlated due to training. Instead, we pooled the results from the two eyes and

took the intersection of the significant hits, and only the more significant p-value between the

two eyes was reported. Since the endophenotypes were derived without the direct use of any

genetic information, we expected there to be minimal genomic inflation for the GWAS.

Indeed, we observed that the genomic inflation factor was well-controlled (λGC�1) (S3 Fig),

though some endophenotypes had slightly higher (1.099) inflation factors, indicating potential

polygenic genetic architecture.

We identified 2,150 SNP-endophenotype pairwise association signals from 113 SNPs (S4

and S5 Tables) showing genome-wide significance (p-value<5×10−8) (Fig 4). These SNPs

were clustered into 14 independent loci (Table 1) (see Methods: Endophenotype GWAS).

The mean and standard deviation of the heritability from LD score regression (S4 Fig and

S6 Table) of the image endophenotype is 0.04 and 0.05 (t-test p-value = 1.8×10−37).

We queried the GWAS Catalog for the 14 loci (Methods: Querying GWAS Catalog, S7

Table) and found most of them are associated with eye measures, eye diseases, pigmentation

and conditions such as diabetes or cardiovascular diseases. The association with the diseases

might be explained by the effects these conditions have on the retina, diabetes, for instance, is

a known risk factor for diabetic retinopathy, and retinal vessel abnormalities can be indicative

of hypertension and increased risk of cardiac events [25]. Three of the 14 loci showed no previ-

ous genetic association with these categories, yet they are assigned to the genes DCT, PDE6G
and EPHB4, which are related to pigmentation, eye diseases or vessels. DCT plays a role in mel-

anin production in the retina and hence eye color related [26]. PDE6G encodes the gamma

subunit of cGMP-phosphodiesterase and is associated with diseases such as night blindness

and retinitis pigmentosa [27]. EPHB4 is essential in vessel development [28] and modulation

of Ephb4 activity in the mouse retina was found to alter retinal neovascularization [29,30].

Genes at other loci, such as HERC2/OCA2, TYRP1 and APBA2 [31,32], are also related to

Fig 4. Aggregated Manhattan plots of 128 image endophenotypes. The two horizontal lines indicate significance levels set for individual GWAS (p = 5 × 10−8) and all

phenotypes (p = 5 × 10−8/128). The red peaks are the image endophenotype associated loci that satisfy selection criteria defined in Methods: Endophenotype GWAS.

Full SNP-endophenotype association table for these peaks is available at S5 Table.

https://doi.org/10.1371/journal.pgen.1011273.g004

PLOS GENETICS iGWAS: Image-based genome-wide association of self-supervised deep phenotyping of retina fundus images

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011273 May 10, 2024 7 / 18

https://doi.org/10.1371/journal.pgen.1011273.g004
https://doi.org/10.1371/journal.pgen.1011273


pigmentation and eye color, while FLT1’s role as a negative regulator of VEGF highlights its

importance in retinal vessel development [33]. Eye diseases such as glaucoma, diabetic reti-

nopathy and age-related macular degeneration also appear to be associated with the loci in our

GWAS Catalog queries (S7 Table), suggesting a potential link between the learned endophe-

notypes and the eye diseases.

GWAS of retina color

Pigmentation of the human body, such as hair, skin, and iris, is strongly influenced by genetics.

As the color of the human retina is influenced by factors such as the level of pigmentation of

retinal pigment epithelium (RPE) and choroid blood vessels, we tested if genomic loci associ-

ated with retina color can be identified through genome association study of fundus images

(Methods: Extracting retina color and color GWAS). While association of iris color has been

conducted [34], no direct association studies of retinal color using fundus images have been

conducted. In our study, significant genome-wide association (p<5×10−8, and intersection

between hits from fundus images of left and right) was obtained for a total of 175 SNPs (S8

Table and S5 Fig) from 34 independent loci (S9 Table).

We found 13 out of the 34 retina color loci overlapped with previously reported GWAS loci

for “hair color”[35], “eye color”[36], and “skin pigmentation”[36] in the GWAS Catalog (S9

Table and S6 Fig, see S9 Table for details), supporting the validity our approach. Interestingly,

many genes from unique loci identified in this study can be linked to pigmentation pathways

(S9 Table). For example, mutations in FGFR3 lead to familial acanthosis nigricans, which

results in skin pigmentation abnormalities [37]. In addition to pigmentation, it is interesting

to note that 6 of the 34 loci overlap with loci previously reported to be associated with macular

thickness (S9 Table), including DCDC1, TPCN2, NCAM1, HERC2, PDE6G, and WNT7B.

Genetic correlation analyses of endophenotypes

To further interpret these endophenotypes, we correlated them with other traits that are

related to retinal phenotypes. We conducted genetic correlation using summary statistics as

Table 1. 14 loci significantly associated with raw image endophenotypes. BP is in GRCh37 coordinate. The raw_PVAL column contains the most significant p-value

(min P) of the image endophenotype GWAS among all endophenotypes at each locus. Non-significant p-values are omitted. The color_PVAL contains the most significant

p-value of the retina color GWAS among 3 color channels, and left empty if not significant. Candidate genes for each locus were annotated based on their distance from

the leading SNPs and annotated function.

SNP CHR BP REF=ALT ALTFREQ raw PVAL color PVAL GENE
rs17713396 2 227; 201 C=T 0:349497 3:10E� 14 8:40E� 09 SH3YL1

rs16891982 5 33; 951; 693 G=C 0:022837 2:20E� 48 8:20E� 38 SLC45A2

rs12203592 6 396; 321 C=T 0:204664 7:00E� 55 IRF4

rs117756744 7 100; 277; 212 G=A 0:021396 4:10E� 14 EPHB4

rs1408799 9 12; 672; 097 C=T 0:308287 1:40E� 12 TYRP1

rs72928978 11 68; 831; 364 G=A 0:109878 1:10E� 20 6:00E� 18 TPCN2

rs1847134 11 89; 005; 253 A=C 0:334505 2:10E� 40 TYR
rs12428170 13 29; 171; 890 G=A 0:158271 2:40E� 09 4:20E� 25 FLT1

rs9561576 13 95; 157; 722 C=T 0:313216 1:60E� 17 DCT
rs12896399 14 92; 773; 663 G=T 0:453193 8:60E� 15 1:20E� 23 SLC24A1

rs1129038 15 28; 356; 859 T=C 0:215305 0 0 HERC2

rs116388828 15 29; 045; 316 C=A 0:433252 8:80E� 13 PDCD6IPP2

rs12912104 15 29; 332; 198 G=A 0:251294 2:30E� 10 APBA2

rs8908 17 79; 617; 871 A=G 0:378218 2:60E� 10 7:20E� 18 PDE6G

https://doi.org/10.1371/journal.pgen.1011273.t001
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they are easier to access and are suggested to be a good surrogate for phenotypic correlation

[38,39]. We included traits that either have GWAS hits near the endophenotype GWAS loci

(within 250 kb) or are known to be related to retinal or corneal disorders, and whose genetic

summary statistics for UK Biobank data are available (see Methods: Genetic correlation).

Corneal phenotypes (H15-H22 Disorders of sclera, cornea, iris and ciliary body and H18

Other disorders of cornea from GeneAtlas [40]) were included because they may affect refrac-

tive error, which can have a detectable effect on the fundus images. We found that many endo-

phenotypes are genetically correlated with skin/hair pigmentation and retinal color after

Bonferroni correction (corresponds to p-value threshold of 0.05/128). Other nominally signifi-

cant genetically correlated pairs (not significant after Bonferroni correction) include correla-

tions between endophenotypes and cardiovascular disease, diabetes, lung function and blood

pressure (S10 Table).

We also correlated (phenotypically and genetically) the endophenotypes with fundus back-

ground color and found that they are strongly correlated. (S10 Table).

Discussion

Our work is one of the first proof-of-concept studies of a self-supervised learning-based phe-

notype discovery method for imaging GWAS. With no expert supervision, our method was

able to extract endophenotypes and identify genes relevant to the retina, including retina col-

ors, retinal vessel development, and eye diseases such as glaucoma, diabetic retinopathy and

age-related macular degeneration.

While there have been previous imaging GWAS on DL-based phenotyping, they either

used expert-defined phenotypes [1,41] or clustering of dense representational vectors into sub-

types. We directly use the dense vectors, which contain more information than the subtype

cluster labels, as phenotypes. There are a handful of studies that use final or intermediate layers

of the neural network as phenotypes, but these networks were trained in a supervised fashion

using external labels (e.g., age [42] or eye diseases [43]) or via transfer learning [44]. Of note,

there is another contrastive learning approach, ContIG, for phenotyping the retina fundus

images by maximizing cross-modality matching between the image part and the genetic part

of the same individuals [45]. iGWAS does not require data sets with both images and genetic

data to train the encoder, and may have a wider range of applicability.

Other architectures or unsupervised learning algorithms are also possible options. Auto-

encoder and its variants are generally a good choice for representation learning. However, the

auto-encoder would try to capture all variations of the data but is practically challenging to

align fundus images to remove irrelevant variations such as rotation or translation because the

vessels can assume flexible shapes (Some models aim to learn disentangled latent representa-

tion, but studies [46] have shown that their performances are not reliable). We chose contras-

tive learning over auto-encoder because we thought it was important to learn a representation

that is insensitive to some perturbations (random rotations and two eye differences) but focus

more on patterns that are common to both eyes and hopefully be more heritable. In fact, in

another work [47] of ours, we used auto-encoder to learn representations of the brain MRI

imaging data because brain MRI can be well registered to remove scaling, rotation and

translation.

In our study, each subject serves as a distinct class. Therefore, we have opted for Arcface-

like methods which facilitate contrastive learning across batches by maintaining a template

representation for each class. These methods also promote inter-class separation by introduc-

ing a margin on top of the cross-entropy loss. This approach is advantageous for our purposes

over current state-of-the-art methods such as BYOL or SimCLR, which typically necessitate
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large batch sizes that might not align with our computational budget. The Arcface-like loss has

shown superior performance in the recent Kaggle challenges for representation learning

[48,49].

Our iGWAS framework is flexible and can be adapted and extended in various ways in the

future. To study retinal vasculature embedding, we can first have a segmentation step that gen-

erates vessel masks, and then subsequently derive the vasculature embeddings from these pre-

dicted vessel mask images. To capture other information in fundus images, such as the

morphology of the optic disc, hemorrhages, exudates, or the pigmentation level, alternative

preprocessing/segmentation steps may be applied, or this process can be completely skipped.

Also, while the pair of eyes of an individual are natural “biological replicates” for our ArcFace-

like approach, our approach may be extended to images without replicates, via current

approaches for contrastive learning [13]. Furthermore, to inject labels to make more specific

phenotypes, one can use a hybrid approach that minimizes both supervised and self-supervised

losses.

While we prioritize the proof-of-concept, there is room for further methodological

improvements. For example, it is not completely optimized to use the 128-dimensional vec-

tor as phenotypes. Moreover, the phenotyping model were trained in different datasets

then directly deployed to the UK Biobank data so there may exist some distribution shift

that we didn’t account for. We chose not to do domain adaptation on the UK Biobank data

set to avoid false association signals due to information leaking. Addressing the distribu-

tion shift may improve the separation of endophenotype distances between matched and

random pairs in the UK Biobank. In addition, lack of clear image interpretation of our

endophenotype derived from self-supervised learning might be a major limitation. To

probe the semantics of the learned embeddings, a common approach is to use the saliency

methods such as smooth-grad [50] to find the important part of the input that affect the

embedding or visualize a coarse-grained activation map using approaches such as class

activation map [51]. Another approach would be pairing the encoding model with a decod-

ing model that can reconstruct the image from the learned embeddings, with such a decod-

ing model, we can perturb the embeddings and look at the changes in the reconstructed

images to gain insights into the model’s features. Recognizing the lack of interpretability,

future work is needed to engage image interpretation methods to identify relevant image

features. Moreover, our retina color GWAS uses RGB color, which may be susceptible to

change in illumination. Defining retina color in other color spaces may further improve

the detection power. Furthermore, we observed that certain loci found by retina color are

not detected by the deep learning-based method. It might be that the average intensity

around the fovea region may not be the most effective feature for distinguishing between

subjects and recognizing the left and right eyes of the same person, and neural networks

with contrastive learning tend to neglect unessential features during the training [52].

Further research is needed to find different tasks that could enable the capture of more

genetic signals.

Our self-supervised learning method can be applied to other medical imaging domains to

aid gene discovery. While retina images of two eyes of a person are natural “monozygotic

twins”, up to a flip, that share a same genetic profile, this approach is applicable to other image

modalities that have similar symmetry, e.g., kidney, skeletal, or even brain hemispheres. More-

over, this approach is applicable to images with repeated measures.

We explored retinal colors in this work. Retinal color may affect the recent GWAS

[7,41,53,54] on AI-based automatic extracted phenotypes from fundus images including optic

nerve head morphology, retinal vessel measurements which also identified the HERC2/OCA2
locus as the strongest hit. In addition, as in any association study, genetic loci identified in our
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study could be due to secondary effects of other hidden confounding factors. For example, eye

conditions such as refractive error could affect the appearance of the fundus image. In addi-

tion, other factors such as retinal background texture were not considered. More sophisticated

representation learning with disentanglement may be used to control for these correlations

[55,56]. Therefore, to establish causality relationship between the gene loci with the phenotype,

further investigation, such as follow up functional experiments presented in our study, is

essential.

While this work is not focusing on retinal vessels, some genes relevant to vessel develop-

ment showed up in our GWAS hit list. This is because retinal vessels are prominent features of

the fundus images. Retinal vessels are very relevant to eye diseases such as diabetic retinopathy

and age-related macular degeneration and are often the focus of imaging genetics studies.

However, if the goal is to study retinal vessels, some image processing that enriches the signal

to noise ratio of vessels might be needed. This will be an interesting direction for future

research.

In sum, the benefit of self-supervised-learning-derived phenotypes is that no external train-

ing labels are required. This frees up the burden of complicated and expensive labeling and

makes our approach applicable to any large collection of images. As we leverage big datasets to

improve our understanding of diseases, self-supervised methods are needed to efficiently

extract meaningful information from medical images. We predict that iGWAS as a general

phenotype discovery approach will be a fruitful research avenue.

Methods

Ethics statement

Our analysis was approved by University of Texas Health Science Center at Houston commit-

tee for the protection of human subjects under No. HSC-SBMI-22-0744. UK Biobank has

secured written informed consent from the participants in the use of their data for approved

research projects. UK Biobank data was accessed via approved project 24247.

Data set extraction

The DRIMDB dataset [57], was downloaded on 2018/11/26 from https://www.researchgate.

net/publication/282641760_DRIMDB_Diabetic_Retinopathy_Images_Database_Database_

for_Quality_Testing_of_Retinal_Images. We used it as part of the training set to train the

quality control network as it contains images with quality labels. It contains 69 bad quality fun-

dus images and 125 good quality fundus images.

The EyePACS dataset (accessed in 2018/11/02) was downloaded from Kaggle.com. It con-

tains fundus images from both healthy subjects and subjects with different grades of diabetic

retinopathy. 35,126 Kaggle training set images and 53,576 Kaggle test set images were com-

bined. The demographic characteristics including age, sex, and ethnicity of individual images

were undisclosed.

The UK Biobank data was accessed via approved project 24247. We conducted our analysis

on over 65,629 British White (self-reported white British (field: 21000) and genetically identi-

fied as Caucasian (field: 22006)) participants from the UK Biobank who had fundus images

available (field: 21015 and 21016). For each participant, we chose the first image for each eye,

resulting in 130,329 images. Genetic data as genotyped by Applied Biosystems UK BiLEVE

Axiom Array (field: 22438) and imputed (field: 22828) [58] were downloaded. The fundus

images in the UK Biobank data were taken using the TOPCON 3D OCT 1000 Mk2 alongside

with the optical coherence tomography (OCT) imaging data. The data were collected in two

phases: the initial assessment visit (2006–2010) at which participants were recruited and
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consent given and the first repeat assessment visit (2012–13). The size of each fundus image is

1536x2048 pixels.

Image quality control

We trained a neural network to automatically assess the quality of the fundus images. Since

the DRIMDB does not contain enough labelled images, we manually labeled 1,000 fundus

images of good and bad quality from the EyePACS dataset and combined them with the

DRIMDB dataset as the training set. An Inception v3 network [17] pretrained on ImageNet

was downloaded and fine-tuned to classify qualities of different samples with early stopping.

The quality assessment network outputs a score between 0 (bad) and 1 (good) to indicate

the quality of the image, and it was trained using cross entropy loss. An image was defined

as good quality if the output quality score of the network from that image was greater than

0.5.

The performance of the quality assessment network was validated on a subset of UK Bio-

bank fundus images taken from white British subjects with diabetes mellitus (n = 7,683). A

previously validated procedure was used to determine DM status based on self-reported DM

diagnosis, use of DM medications and presence of DM complications [59]. We also used

HbA1c > 6.5% as a criterion for identifying DM. Two ophthalmologists were asked to grade

the image for the stage of diabetic retinopathy and determine if an image is of bad quality. A

fundus image in this subset was classified as bad quality if both graders agreed that the quality

of the image is poor. Comparing with this ground truth, the quality assessment network

reached an AUC ROC of 92.14%. At 0.5 threshold, the positive predictive value was 0.9832, the

negative predictive value was 0.4916, the sensitivity was 0.7155, and the specificity was 0.9574.

Embedding neural network

The raw fundus images were fed to a network that uses the Inception v3 [17] backbone to pro-

duce a 128-dimensional embedding vector. The final fully connected layer of the Inception v3

network was replaced to produce a 128-dimensional vector. We adopted an approach similar

to ArcFace [18]: Each subject is assigned a template embedding and the network is trained to

minimize the angle between embeddings of different photos of a subject and his/her template

while maintaining a margin between embeddings of a specific photo and templates of different

subjects. Specifically, our loss function is: L ¼ 1

N

PN
i¼1

log es cosðyiþmÞ

es cosðyiþmÞþ
PN

i¼1;i6¼j
es cosyj

where N is the number of samples, θj is the angle between the output of the network and the

template of the jth sample, m is the margin, and s is the inverse temperature scaling factor. In

our study, m is set to be 30 and s is set to be 0.5, which are the best performing hyperpara-

meters on multiple face recognition datasets.

The embedding network was trained using 40,000 images from the EyePACS database

(https://www.eyepacs.com/). The quality control network was used to score each image, and

the top-ranked 40,000 images were taken. The right eye images were flipped for preprocessing,

and random rotations were applied to add robustness. The training-testing split was 80/20. We

also trained the embedding network with an additional task of classifying the grade of diabetic

retinopathy. The weight ratio of these two tasks was 10 to 1. The network was trained using

Adam optimizer [60] with a learning rate of 1×10−4 for 500 epochs on RTX 2080Ti and A100,

and the model with the lowest test set loss was selected. Source code is available at https://

github.com/ZhiGroup/iGWAS.
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Endophenotype GWAS

The genome-wide scans for UK Biobank were conducted over 658,720 SNPs that were directly

genotyped by UK Biobank Axiom Array (field: 22438). To control for confounding factors due

to ethnicity, we only included individuals of British white ethnicity (self-reported white British

(field: 21000) and genetically identified as Caucasian (field: 22006)). The sample size was

65,629. We used all 130,329 images from this cohort without applying image quality control.

The GWAS was performed with BOLT- LMM (Version 2.3.4) [24] on all 128 dimensions of

the embedding vector using the linear mixed model association method (BOLT_LMM_INF)

with age, sex, and the first 10 ancestral principal components as covariates. In total, we con-

ducted 256 GWAS, one for each of the 128 endophenotypes from one eye. As a result, each

variant had 256 p-values, 128 for the left and 128 for the right fundus images. A variant was

selected if the minimum of the left 128 p-values and the minimum of the right 128 p-values

both passed a threshold of 5×10−8. For each individual endophenotype for the left eyes, we

used the typical 5x10-8 p-value threshold for GWAS, which incorporates a Bonferroni correc-

tion to adjust for the order of 1x106 SNPs. We use the right eyes GWAS as replication and we

also used the same 5x10-8 cutoff. In practice, we achieve this by running GWAS on either eyes

and require that the association p-value for both eyes pass 5x10-8. Effectively, we were looking

at the larger p-value of both eyes and comparing it to 5x10-8. This is a more conservative

approach than a single phenotype GWAS. These selected variants from both eyes and all endo-

phenotypes were then merged into independent loci if they are in linkage disequilibrium

(r2>0.2) or within 250 kb from each other, a typical practice of the field [61,62].

Extracting retina color and color GWAS

The traits of retina color were created as follows. The size of each UK Biobank fundus image is

1536x2048 pixels. Right eye fundus images were first flipped before cropping. The center patch

of size 400x400 pixels around the fovea region, [600:1000, 800:1200], was cropped, and the

average intensities of each of 3 channels (red, green, and blue) in this patch were taken as the

quantitative traits. Since the fundus images of UK Biobank are mostly aligned as they are taken

with unified protocol, the patches at the same location were comparable. In addition, the

GWAS analyses were done on the same cohorts and using the same pipeline as in the endophe-

notype GWAS.

Heritability and Genetic correlation

The heritability and genetic correlations were estimated using LDSC software (v1.0.1, 63).

1000 Genome European reference panel was used to calculate the heritability. We then selected

several traits (S10 Table) to probe the endophenotypes and counted the number of GWAS

loci that overlapped with traits from the GWAS Catalog (S6 Fig). The selection criteria were:

(1) The previous GWAS hits of the trait fall within any iGWAS loci more than twice or the

traits are related to retinal or corneal disorders, and (2) The summary statistics of the trait are

available from either https://alkesgroup.broadinstitute.org/UKBB/UKBB_409K/ or http://

geneatlas.roslin.ed.ac.uk. To our knowledge, these are the only publicly available summary sta-

tistics computed by linear mixed models.

Querying GWAS Catalog

For each independent locus, the range from the first to the last significant SNP was first trans-

formed using LiftOver, then a range query was performed with the range plus 250 kb flanking

regions on the GWAS Catalog database to identify previous associations (S7 Table).
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Supporting information

S1 Fig. The overall pipeline of the study.

(TIF)

S2 Fig. Univariate distribution of 128 endophenotypes derived from fundus images.

(TIF)

S3 Fig. Genomic inflation factors of each dimension of SSuPER endophenotypes from fun-

dus images.

(TIF)

S4 Fig. Scatter plot for the heritabilities of image endophenotypes directly estimated by

the LD score regression.

(TIF)

S5 Fig. Fundus background color Manhattan plot.

(TIF)

S6 Fig. Venn diagram of the number of overlapping loci between fundus background color

and other traits.

(TIF)

S1 Table. Descriptive Summary of diabetic retinopathy levels of the first 40000 fundus

images of the EyePACS dataset, ranked by the image quality.

(XLSX)

S2 Table. Jensen-Shannon Distances and Jaccard Indices (intersection over union) between

cosine similarity distribution of random and paired samples.

(XLSX)

S3 Table. Descriptive Summary of demographic factors of the UK Biobank cohort, includ-

ing white British with retina fundus images.

(XLSX)

S4 Table. List of 113 SNPs associated with any of the 128 endophenotypes derived from

the raw images of both eyes.

(XLSX)

S5 Table. SNP-endophenotype pairs showing significant associations with both left and

right eyes.

(XLSX)

S6 Table. Heritability of the raw image endophenotype.

(XLSX)

S7 Table. GWAS Catalog query result for each locus.

(XLSX)

S8 Table. List of 175 SNPs associated with retina color of both eyes.

(XLSX)

S9 Table. List of 34 loci associated with retina colors of both eyes.

(XLSX)

S10 Table. Genetic correlation between raw image endophenotypes and other traits.

(XLSX)
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14. Grill J-B, Strub F, Altché F, Tallec C, Richemond PH, Buchatskaya E, et al. Bootstrap your own latent: A

new approach to self-supervised Learning. arXiv [cs.LG]. 2020. Available: http://arxiv.org/abs/2006.

07733

15. Tian Y, Krishnan D, Isola P. Contrastive Multiview Coding. arXiv [cs.CV]. 2019. Available: http://arxiv.

org/abs/1906.05849

16. Kramer MA. Nonlinear principal component analysis using autoassociative neural networks. AIChE J.

1991; 37: 233–243.

17. Szegedy C, Liu W, Jia Y, Sermanet, Reed S, Anguelov D, et al. Going deeper with convolutions. 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2015. pp. 1–9.

18. Deng J, Guo J, Yang J, Xue N, Kotsia I, Zafeiriou S. ArcFace: Additive Angular Margin Loss for Deep

Face Recognition. IEEE Trans Pattern Anal Mach Intell. 2022; 44: 5962–5979. https://doi.org/10.1109/

TPAMI.2021.3087709 PMID: 34106845

19. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for com-

puter vision. Proceedings of the IEEE conference on computer vision and pattern recognition.

2016. pp. 2818–2826.

20. Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering.

Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. pp. 815–823.

21. Oh Song H, Xiang, Jegelka S, Savarese S. Deep metric learning via lifted structured feature embed-

ding. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 4004–

4012.

22. Arun N, Singh P, Wang J, Segre AV, Wiggs JL, Cole B, et al. Automated detection of genetic related-

ness from fundus photographs using Convolutional Siamese Neural Networks. Invest Ophthalmol Vis

Sci. 2021; 62: 1034–1034.

23. Liang W, Zhang Y, Kwon Y, Yeung S, Zou J. Mind the gap: Understanding the modality gap in multi-

modal contrastive representation learning. Koyejo S Mohamed S, Agarwal A, Belgrave D, Cho K, Oh A,

editors. arXiv [cs.CL]. 2022. pp. 17612–17625. Available: https://proceedings.neurips.cc/paper_files/

paper/2022/file/702f4db7543a7432431df588d57bc7c9-Paper-Conference.pdf
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