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Abstract 

Transport  of  protons  and  water  through  water-filled,  phase-separated  cation-exchange

membranes occurs through a network of interconnected nanoscale hydrophilic aqueous domains.

This paper uses numerical simulations and theory to explore the role of the mesoscale network

on water, proton, and electrokinetic transport in perfluorinated sulfonic-acid (PFSA) membranes,

pertinent to electrochemical energy-conversion devices. Concentrated-solution theory describes

microscale transport. Network simulations model mesoscale effects and ascertain macroscopic

properties.  An  experimentally  consistent  3D  Voronoi  network  topology  characterizes  the

interconnected channels in the membrane. Measured water, proton, and electrokinetic transport

properties  from  literature  validate  calculations  of  macroscopic  properties  from  network

simulations  and from effective-medium theory.  The  results  demonstrate  that  the  hydrophilic

domain size affects the various microscale, domain-level transport modes dissimilarly, resulting

in different distributions of microscale coefficients for each mode of transport. As a result, the

network mediates transport of species non-uniformly with dissimilar calculated tortuosities for

water, proton, and electrokinetic transport coefficients (i.e., 4.7, 3.0 and 6.1, respectively, at a

water content of 8 H2O per polymer charge equivalent). The dominant water transport pathways

across the membrane are different than those taken by the proton cation. Finally, the distribution

of transport properties across the network induces local electrokinetic flows that couple water

and proton transport; specifically, local electrokinetic transport induces water chemical potential

gradients that decrease macroscopic conductivity by up to a factor of 3. Macroscopic proton,

water,  and electrokinetic  transport  coefficients  depend on the  collective  microscale  transport

properties of all modes of transport and their distribution across the hydrophilic domain network.
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Introduction

Water-swollen, phase-separated ion-exchange membranes are vital to numerous energy-

conversion devices, including fuel cells, electrolyzer, and water-purification technologies.1–4 For

these  technologies,  the  quintessential  membrane  chemistries  are  perfluorinated-sulfonic-acids

(PFSAs)  (such  as  Nafion).2 Improving  the  performance  of  energy-conversion  technologies

requires optimizing membrane properties either by altered membrane chemistry or by operating

in  conditions  that  bypass  limitations  of  current  chemistries.5–8 Both  strategies  rely  on  a

sophisticated understanding of the molecular underpinnings of membrane properties and how

they scale to macroscopic observables.5–8

Research on PFSA membranes often seeks physical bases for the measured values of

transport  properties,  such as  conductivity  and water  permeability,  in  terms  of  the  molecular

interactions among species.1,2,9–20 To this end, a microscale description of transport in a single

representative (e.g., average) water-filled domain accounting for molecular interactions provides

a  transport  property  L ¿ (superscript  *  denotes  a  microscale  property).19,21–26 The  microscale

transport  property  is  then  upscaled  to  compare  with  measured  macroscopic  properties  by

considering  (1)  that  L¿ describes  transport  in  a  water-filled  domain  (interstitial  properties),

whereas  the  membrane  as  a  whole  contains  a  water  volume  fraction  ϕ  with  the  polymeric

component of the membrane remaining inert to aqueous transport, thereby making its measured

properties an average over water-filled and polymer regions (superficial properties), and (2) that
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transport  occurs  across  a  network  of  connected  channels  forming  meandering  pathways

characterized  by  a  single  tortuosity  τ .23 Classically,  these  two  factors  scale  the  microscale

property L¿ to a macroscopic, measurable property L according to23,27

L=
ϕ
τ L¿ 1

where τ  is the membrane water-domain tortuosity.

In  principle,  tortuosity  characterizes  the  transport  path  length  and  depends  on  the

topology of the material (i.e., how the various sized domains connect) and the distribution of

domain  transport  properties.23,28 Tortuosity  quantifies  how the  mesoscale—a lengthscale  over

which  nano-domains  are  connected  and  distributed—influences  macroscopic  properties.  In

practice,  τ  is often an adjustable parameter.23 Equation  1 is the so-called capillary model for

transport and is widely used to understand transport in membranes and porous media.12,14,18,22–

25,27,29 It is, however, not well recognized that tortuosity also varies with the particular transport

property under consideration.23 For example, water does not necessarily take the same pathways

across the membrane as protons do.30 This work studies the application of the capillary model

and the  nature  of  τ  and,  consequently,  the mesoscale in  PFSAs in which  proton and water

transport occur simultaneously.

Phase-separated, water-filled proton-exchange membranes present complications for the

capillary model because the presence of water and a mobile cation gives rise to multiple modes

of transport.1,2,18,31 Proton electrochemical-potential gradients,  ∇ μ+¿ ¿,  generate an ion flux, N+¿¿,

(e.g.,  an  electric  field  generates  current).  Likewise,  water  chemical-potential  gradients,  ∇ μ0,

induce a water  flux,  N 0, (i.e.,  water  diffusion or  permeation).  Because  the (electro)chemical

potential  depends on pressure,  a pressure gradient  also drives mass transport.32 Additionally,
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transport driving forces are coupled by electrokinetic phenomena such that ion electrochemical-

potential  gradients  initiate  a  water  flux  (i.e.,  electroosmosis)  and  water  chemical-potential

gradients initiate an ion flux (i.e., streaming current).6,33 See Table 6 in Ref  2.

Transport  in  such  systems  is  mathematically  described  by  non-equilibrium

thermodynamics  of  concentrated  solutions.  For  a  system consisting  of  protons,  water,  and a

membrane (with fixed anionic charges and no aqueous-phase free anions), the governing flux

equations are27,33,34

N+¿=−L++¿∇ μ+¿−L+0∇ μ0¿¿
¿ 2

and

N 0=−L0+¿∇ μ+¿−L00 ∇ μ0¿
¿ 3

where  L00 is the transport coefficient relating a flux of water to its chemical-potential gradient

(proportional to water permeance), L++¿¿ is the transport coefficient relating a flux of protons to

its  electrochemical-potential  gradient  (proportional  to  ionic  conductivity),  and  L+0 is  the

electrokinetic  transport  coefficient  relating  the  flux  of  protons  to  a  water  chemical-potential

gradient (it should be noted that  in some literature21,35 the transport coefficient  L ij is written as

c i c j Lij). This different formulation is convenient when relating to Stefan-Maxwell concentrated-

solution formalism Onsager’s reciprocal relationship dictates that L+0=L0+¿¿.34,35 In networks of

inter-connected  channels,  the  presence  of  coupling between transport  modes makes  effective

transport  properties  challenging  to  rationalize  in  terms  of  microscale  properties  and  simple

upscaling.19 This paper explores how the capillary model  represents these multiple  modes of

transport in proton-exchange membranes.
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We build on previous literature on the effect of transport couplings in network structures

transporting gas and electrokinetic phenomena in porous media.36,37 We explore these coupling

relationships  in  the  context  of  water-filled,  phase-separated,  cation-exchange  membranes,

expanding on prior network simulations of this material38–42 and experimental investigations.9,20

In particular, we study PFSAs because they are an essential component of energy-conversion

applications and are widely characterized experimentally, allowing for model validation.2

PFSAs are nanophase separated with water-filled domains exhibiting sizes on the order of

nanometers.1,2,43 The hydrophilic channels of PFSA membranes contain water and cations with

negatively charged sulfonate (SO3
) groups imbedded in the channel walls that consist of the

hydrophobic units of the polymer.1,2,43 This study considers Nafion PFSA membranes exchanged

with protons. The equivalent weight (EW) of the membrane is the average mass of polymer per

mole of sulfonate groups. For the Nafion membrane in this study, EW is 1020 g mol-1 (based on

manufacture-reported  titration  and  lower  than  the  nominal  1100  g  mol-1 cited  in  some

literature).2,44 The water content of the membrane is quantified by λ, the molecules of water per

sulfonate group and spans from ~0 when fully dried to ~22 when fully hydrated in liquid water,

with  the  water  activity  of  the  environment  controlling  the  average  hydration  level  of  the

material.2 The sizes of the hydrophilic domains or “channels” is widely distributed.2,43,45,46 PFSA

materials  are  unlike  classic  porous media  in  that,  in  the  dry  state,  the  hydrophilic  channels

collapse  and  are  not  filled  with  gas  or  vapor.2 The  concept  of  the  approach  and  inherent

multiscale architecture are shown in Figure 1. 

This paper is outlined as follows. First, we illustrate a pedagogical model of transport to

show why transport  coupling  fundamentally  alters  the  nature  of  tortuosity.  We then turn  to
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realistic models of PFSAs by outlining a microscale description for the transport coefficients L ij
¿

in a single water-filled domain of a PFSA membrane as a function of water content and domain

size  (see  Figure  1).  The  microscale  model  provides  the  transport  coefficients  of  individual

segments  of  the  mesoscale-network  simulations  of  PFSA  membranes  using  a  physically

consistent network topology (represented by a 3D Voronoi tessellation, as shown in Figure 1).

Domain-size  distributions  informed  by structural  characterization.  Network nodes  exhibit  no

transport resistance. Effective-medium theory rationalizes the findings of these simulations.  The

network simulations and effective-medium theory predict the macroscopic transport properties

L ij.  Measured transport properties  from literature validate the model  predictions.  Finally,  we

examine the implications of our work and the nature of the capillary model and tortuosity in

PFSA materials.
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Figure  1.  Multiscale  structure  of  transport  in  the  PFSA membrane  going  from  locally  flat  channels  to
arranged multiscale network where the water domains are represented as the line interconnections in a 3-D
Voronoi tessellation) to macroscale observables. 

Results and Discussion

Pedagogical model

To illustrate the effect of domain-size distribution and transport coupling, consider the

tortuosity of a simple network consisting of two channels  a and b connected in series with the

same cross-sectional area and length with different transport properties  L¿a and  L¿b for either

water or protons. (We consider realistic networks with a branching topology in the next section.)

Without  transport  coupling,  Section  A  in  the  Supporting  Information  (SI)  shows  that  the

tortuosity of this network is
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τ=
ϕ L¿

L =
( L¿

)
2

L¿ a L¿ b

4

where L is the effective transport property of the network and L¿ is the arithmetic mean of L¿a

and  L¿b. Tortuosity is unity when the transport properties of the segments are equal and  τ >1

when transport properties are unequal. Equation  4 shows that if two modes of transport have

different distributions of transport properties, the tortuosity of each mode is also different.

Now  consider  the  role  of  transport  coupling.  For  the  same  network  with  different

conductive transport properties L++¿
¿ a

¿ and L++¿
¿b

¿ with arithmetic mean L++¿
¿
¿ and uniform water

and  electrokinetic  transport  coefficients  L00
¿  and  L0+¿

¿
¿ respectively,  the  proton  transport-

coefficient (conductivity) tortuosity is, as section A in SI shows,

τ
++¿=ϕ

L++¿
¿

L++¿=¿ ¿¿¿
¿¿

5

Equation 5 reduces to Equation  when there is no transport coupling (L0+¿
¿
=0¿). Like the case of

uncoupled transport (Equation 4), in coupled transport τ ++¿=1¿ when the transport channels have

the same transport properties. However, when channels do not have the same proton transport

coefficient, transport coefficients for water transport and electrokinetics influence the tortuosity

of the proton transport coefficient. This phenomenon arises because the difference between L++¿
¿ a

¿

and  L++¿
¿b

¿ induces  an  electrokinetic  water  chemical-potential  gradient  that  drives  additional

proton flux. Even when there is no net water chemical-potential difference across both segments,

there is a chemical-potential difference across the individual segment. It is, therefore, impossible

to describe completely the effective ionic transport coefficient of this system without accounting

for  the  water  transport  and electrokinetic  properties.  This  is  allowed because  for  a  network

consisting  of  two perfectly  uniform channels  in  parallel,  transport  coupling  does  not  impact

tortuosity because there are no induced internal gradients. As such, transport coupling’s influence
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on  tortuosity  requires  in-series  transport,  which  is  the  case  for  most  real-world  network

topologies including PFSA membranes. Surprisingly, in the limiting case that the water transport

coefficient is zero, L00
¿
=0, the tortuosity for proton transport is unity no matter the value of the

proton transport  coefficients.  This  result  is  starkly different  than  that  of  uncoupled  transport

(Equation 4). The simple model of two channels in series illustrates that coupling between water

and ion transport mediates macroscopic transport properties at the mesoscale. The remainder of

this paper explores this phenomenon when considering actual membrane systems that contain

numerous connected channels  with a heterogeneous size distribution  and realistic  microscale

transport coefficients.

Microscale Transport Description 

Microscale  transport  properties  L ij
¿  are  calculated  by  accounting  for  binary  frictional

interactions between cations, water, and the membrane using the Stefan-Maxwell formalism.21,35

As outlined in prior work,21 in a cation-exchange membrane with polymer (denoted  M ), water

(denoted  0),  and  a  proton  (denoted  +¿),  nonequilibrium  thermodynamics  dictates  that  the

(electro)chemical-potential  gradient  drives  mass  transport.  According  to  the  Gibbs-Duhem

relation,  only  two  of  these  three  electrochemical  potential  are  independent.35 In  the  Stefan-

Maxwell  formalism,  the  isothermal  driving  force  is  balanced  by  frictional  drag  interactions

between species  i and  j and is  proportional to their difference in species velocities,  v i
¿ and  v j

¿,

multiplied by a friction coefficient K ij
¿  21,33

c+¿
¿ ∇ μ

+¿=K +0
¿
¿ ¿

¿

c0
¿ ∇ μ0=K 0+¿

¿
¿ ¿

6
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where  c i
¿ is the concentration of species  i. The assumption of local equilibrium underlies this

formalism. As such, there is no superscript ¿ on the (electro)chemical potentials because they are

the  same at  the  microscale  and macroscale.  The  membrane  provides  the  reference  velocity,

v M
¿
=0, because the membrane is typically fixed (relative to the laboratory frame of reference).

Equations   and   emerge after  solving Equations   for  v0
¿  and  v+¿

¿
¿ and by noting that  flux is

proportional  to  the  species  velocity  (N i
¿
=ci

¿ vi
¿).  To  specify  K ij

¿ ,  we use  the  microcontinuum

model, described previously,21 with the modifications detailed in  section B of the SI. A brief

summary is included here. 

Charge  transport  in  acidic  solutions  occurs,  in  part,  through protons  transporting  via

hopping along hydrogen-bond networks (i.e. the Grotthuss mechanism).1,2,8,47–53 The molecular

nature of this  transport  in PFSA membranes  and water more generally  has been extensively

studied but remains controversial.2,8,47–53 This paper does not address this topic explicitly, rather

we treat water/cation friction coefficients as equivalent to those of a bulk-aqueous-electrolyte at

an equivalent proton concentration. The short-range water/cation interactions justify the implicit

assumption that the channel walls do not materially alter interactions between mobile species in

solution.51 Literature shows that proton/water friction in bulk solution exhibits low friction at

high  water  contents  (i.e.,  high diffusion coefficient  at  low proton concentrations)  but  a  high

friction coefficient at low water contents (low diffusion coefficient at high proton concentrations),

as Figure S2 in SI shows.1,54,55 The strong dependence on water content is due to a transition from

protons transporting via hopping to vehicular transport at low water contents as water becomes

bound up in proton’s solvation shell and disrupts hydrogen bonding networks.1,55
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A  classic  electrokinetic  treatment  specifies  the  water/membrane  and  mobile

cation/membrane  friction  coefficients.21 Specifically,  the  Navier-Stokes  equation  describes  an

aqueous solution flowing through charged channels with no-slip boundary conditions.21,35 Our

model  uses  the  linearized  Poisson-Boltzmann  equation  to  specify  the  distribution  of  cations

throughout the channel.21,35 The solution to this system of equations provides the interspecies

friction coefficients as a function of membrane water content, λ, and domain size. 

Chemical-reaction  equilibrium  specifies  the  fraction  of  protons  immobilized  due  to

desolvation and pairing with the fixed, anionic sulfonate groups as a function of water content.

The ion-pairing  equilibrium constant  is  obtained  by fitting  the calculated  fraction  of  cations

paired with sulfonate groups to ab-initio molecular-dynamics simulations of PFSAs (see Figure

S1).56 

In  quantifying  water/membrane  and mobile  cation/membrane  friction,  the  hydrophilic

PFSA domains are considered locally flat with appended sulfonate groups distributed along the

domain/polymer interface.43 For a flat-channel geometry, the channel height of a single domain

H ¿ is a function of water content  λ and the local channel interfacial area per sulfonate charge

ASO3

¿

H ¿
=

V́ 0 λ
N A ASO3

¿

7

where the volume of cations is negligible, V́ 0 is the partial molar volume of water (approximated

as equal to the molar volume of pure water), and N A is Avogadro’s number. The mean average

height  of all  the channels in the membrane is  H ave.  Small-angle X-ray scattering (SAXS) of

Nafion under different hydration conditions provides the mean channel height as a function of
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water  content.  The  linear  relationship  between  H ave and  water  content,  λ,  from Equation  7

specifies the surface area per sulfonate group as ASO3

ave  (for Nafion, ASO3

ave  = 0.23 nm2).2 We consider

the sulfonate groups arrayed on a square-lattice at the hydrophilic/hydrophobic domain interface,

giving a spacing between sulfonate groups as l SO3

¿
=√ ASO3

¿ . The distance between sulfonate groups

of the average-height-domain is denoted l SO3

ave  (because the mean and square-root functions are not

permutable, the mean of l SO3

¿  is not equivalent to l SO3

ave ). 

Molecular-scale variations in the equivalent  weight and the semi-crystalized nature of

PFSAs  create  a  wide  distribution  of  sulfonate  groups  spacing,  l SO3

¿ .2,43,45,46 A  result  of  this

polydispersity is that a PFSA membrane contains a wide distribution in channel heights.

Figure  2 shows  calculated  (a)  microscale  proton  transport  coefficient  L++¿
¿
¿,  (b)

electrokinetic transport coefficient L0+ ¿
¿
¿, (c) and water transport coefficient L00

¿ , as a function of

water content λ and the ratio of channel height to average channel height H ¿
/H ave (see section B

in  SI  for  calculation  details).  Up to  moderate  water  contents  ( λ ~  10),  the  proton transport

coefficient  L++¿
¿
¿ increases  with  water  content  as  the  protons  solvate,  encounter  less

hydrodynamic  resistance  with  the  channel  walls,  and increasingly  transport  via  the  hopping

mechanism.  At high water  contents,  increasing  membrane  water  content  dilutes  protons  and

reduces its transport coefficient. 

For small channels (small  H ¿
/H ave), increasing channel height decreases hydrodynamic

resistance with the walls, thereby increasing the cation transport coefficient L++¿
¿
¿. However, the

dependence of L++¿
¿
¿ on H ¿ reverses for thick channels. At high H ¿

/H ave, the cations are confined

to the walls  due to electrostatic  attraction to the closely packed sulfonate groups. Increasing
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channel height further confines protons near to the walls, increasing hydrodynamic resistance

and decreasing proton transport. 

Figure  2.  Microscale  channel  transport  coefficients  for  (a)  proton  transport  L++¿
¿
¿,  (b)  electrokinetic

transport L0+ ¿
¿
¿ and (c) water transport L00

¿  as a function of water content λ for different channel heights
relative to the average height, H ¿

/H ave. Section B in SI details the calculations.

Hydrodynamic interactions with the channel walls govern the electrokinetic transport 
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coefficient L0+¿
¿
¿ and the water transport coefficient L00

¿ . As water content and channel height 
increase, the electrokinetic and water transport coefficients increase monotonically.

Upscaling and the Macroscopic Transport Description

An important finding from Figure 2 is that the values of  L ij
¿ transport coefficients have

different dependences on different domain sizes at the same water content. As we show later, this

finding leads to different tortuosities and different pathways for water and protons to traverse the

membrane.  The following subsections  first  discuss the  distribution of  channel  heights  in the

membrane.  Then,  we  outline  Voronoi  tessellation  resistor-network  simulations,  where  each

segment is parameterized by the microscale model, to determine effective, macroscale transport

properties. Effective-medium theory provides a mean-field approach to generalize the findings of

simulations.

Microscale Channel-Size Distribution

The wide distribution of channel  heights as seen in  Figure 2 creates a distribution of

transport properties. The thickest channels of a membrane for a fixed water content correspond to

channels  with  sulfonate  groups packed to their  distance  of  closest  approach  on the  top  and

bottom domain walls,  l SO3

¿
=l SO3

DCA. The distance of closest approach between sulfonate groups is

0.4 nm,57 but  because sulfonate groups are present  on both the top and bottom walls  of the

domain  there  are  twice  as  many sulfonate  groups  per  interfacial  area  making  l SO3

DCA half  this

distance, or 0.2 nm. To calculate the domain-size distribution, we quantify the probability that a

domain has a given spacing between sulfonate groups beyond the distance of closest approach

l SO3

¿
−l SO3

DCA with58
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PDF ( lSO3

¿ −lSO3

DCA
)=

1

(
l SO3

¿
−l SO3

DCA

1 [m ] )σ l S O3
√2 π

exp(−[ ln(
l SO3

¿
−lSO3

DCA

1 [m ] )−μl SO 3]
2

2 σ lS O3

2 )
8

where PDF  is a log-normal probability distribution function of l SO3

¿
−l SO3

DCA in units of meters, and

σ l S O3
 and μl S O3

 are parameters of the distribution. We choose the log-normal distribution because

polymer  chain  lengths  are known to follow this  distribution.59 The factor  of  1  m makes the

argument of Equation  8 non-dimensional. Equations  7 and  8 and the microscale properties in

Section  B  in  SI provide  the  distribution  of  domain  sizes  and  transport  properties.  These

distributions parameterize the network simulations that are discussed in the next section. We fit

the network simulations of macroscopic proton, water,  and electrokinetic  transport properties

with measured values by adjusting σ l S O3
, with a resultant best-fit value of 1.52. Integration of the

product of Equation 8 and  1/ (l SO3

¿

)
2 specifies the mean of inverse area per sulfate group, 1/ ASO3

ave .58

To ensure that the distribution of  l SO3

¿  with a given σ l S O3
 is consistent the experimental  ASO3

ave , we

numerically solve for μl S O3
 (= 21.36) using Brent’s method60 so that the mean of 1/ (l SO3

¿

)
2 is equal

to the SAXS measurements of 1/ ASO3

ave .2 

Figure 3a shows the calculated PDF of channel height PDF (H ¿
) for λ=20 using random

variants of l SO3

¿  sampled using Equation 8 and from calculation of height using Equation 7. The

probability distribution extracted from transmission electron microscopy (TEM) of a hydrated

Nafion film (λ 20)  provides  comparison.45,46 The model-fit and TEM distribution are similar

although differences exist.  The proposed model-fit distribution is wider and slowly decreases

with increasing H ¿ whereas the distribution from TEM is narrower and peaks around 0.75 nm. 

16



Figure  3.  Probability-distribution  function  of  channel  heights  from  (a)  transmission  electron
microscopy45,46 and from using 20,000 random variants  of  l SO3

¿  sampled in Equation  8 and calculating
channel height in Equation 7 each at λ=20 and (b) the probability-distribution function of proton, water,
and  electrokinetic  transport  coefficients  corresponding  to  the  channel-size  distribution  as  detailed  in
Section B of SI. Insert in (a) shows random variants of l SO3

¿  normalized to l S O3

ave  sampled from Equation 8.

Three  limitations  of  TEM  analysis  and  sample  preparation  help  rationalize  the

discrepancies between the model-fit and TEM distributions for small channels sizes. First, TEM

does  not  capture  very  small  channels  because  they  are  below  the  limit  of  experimental

detectability (0.224 nm).45 Second, to identify the interface between hydrophilic and hydrophobic

channels and to reduce noise, a 3-voxel median filter was applied to the TEM image.46  The de-
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noising process means that some small channels (up to 3-voxel across a dimension, or 0.672 nm)

do not appear in the TEM distribution. These small channels consist of sulfonate groups that are

partially buried in the hydrophobic matrix and allow only a small amount of water or ions to

move through them as shown by recent S-edge SAXS.61,62 Further, a wide distribution of l SO3

¿  is

consistent with the measured wide distribution of EWs for the same membrane chemistry due to

batch-to-batch  variability63 (see  Figure  3a  inset  showing  probability  distribution  function  of

l SO3

¿
/ lSO3

ave  where the spacing between sulfonate groups scales with the local EW of membrane

surrounding the channel). Finally, TEM requires 100-nm thick cast-thin films, whereas the model

distribution is fit to experiments of bulk membranes that have undergone various pretreatment or

processing conditions.2,45 As a result, the model distribution contains large channels that could

have resulted from sample preparation of the membranes that was not present in the thin-film

TEM sample. 

Figure  3b  shows  the  probability  distribution  of  the  proton,  water,  and  electrokinetic

transport  coefficients  at  λ=20 shown in  Figure 2 using the distribution  in  Figure 3a.  Water

transport  properties  vary by an order of  magnitude with channel  height,  whereas  the proton

transport coefficient is relatively independent of channel height (Figure 2). As a result, the water

and  electrokinetic  transport  coefficients  have  a  wide  distribution,  but  the  proton  transport

coefficient distribution is narrow. Each transport property has a different distribution because

they depend differently on channel size (see Figure 2).

Resistor-Network Simulations

A  3D  network  of  interconnected  channels  simulates  the  PFSA-membrane  effective

transport properties. Segments of the network represent water-filled channels and zero-volume
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nodes represent connections between channels. We use a Voronoi tessellation to represent the

topology  of  PFSA membranes,  where  tessellation  edges  represent  water-filled  domains  (see

Figure S3). A Voronoi tessellation is a realistic representation of the PFSA microstructure, with a

coordination  number  of  3  (average  number  of  segments  connected  to  a  node)  and with  slit

channels anisotropically oriented locally but, on average, isotropic as depicted  in  Figure 1.2,46

Section  C  in  SI  details  network  construction  that  gives  nS segments  connecting  nN nodes

distributed across a 3D cube of dimensions Λnet. 

The walls of each channel have a sulfonate spacing  l SO3

¿  sampled from the probability

distribution in Equation 8, giving each channel a height at a specific water content (see Equation

7) with corresponding proton, water, and electrokinetic transport properties, as  Figure 2 shows

(see Section B in SI for calculation details).  Let  Qi
α , β be the net molar flow rate of water or

protons into each node α from connecting node β.  At steady state, the net (scalar) flow into or

out of each non-boundary node α, from all connecting nodes β is zero, or

−∑
β

Qi
α , β

=0 9

where the molar flow is the product of the interstitial molar flux and the cross-sectional area of 

the segment (i.e. product of channel height H α , β and width, W α , β), 

Qi
α , β

=N i
α , β H α , βW α , β . 10

The width of each channel is set equal to W ave.

The interstitial flux through a segment connecting nodes α from β, N i
α , β, obeys the flux 

Equations 2 and 3 written for each segment

N+¿
α , β

=−L
++¿α ,β Δα ,β μ+¿

Λα ,β −L
+ 0
α ,β Δα ,β μ0

Λα ,β ¿¿
¿ 11

and
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N 0
α, β

=−L
0+¿

α , β Δα , β μ+¿

Λα ,β−L00
α ,β Δα , β μ0

Λα ,β ¿¿

12

where L ij
α , β is the transport coefficient L ij

¿  of the segment connecting α and β, Λα , β is the length of

the channel parallel to the direction of transport, and  Δα , β μi is the change of electrochemical

potential of protons or  chemical potential of water from node β to α, Δα , β μi=μi
α
−μi

β. Equations

11 and  12 assume that transport coefficient  L ij
α , β is independent of  μi between nodes  α and  β.

This is a good assumption if Δα , β μi is small. Application of a small (electro)chemical-potential

change across the network satisfies this requirement. Said alternatively, macroscopic gradients

necessarily cause small microscale water-content changes. 

To specify the effective network transport coefficients  (i.e.,  the macroscopic transport

properties), the algorithm sets the (electro)chemical potential of the nodes on the left boundary (

x=0) as the zero reference (i.e,  μi=0) for both species. On the right boundary nodes, a small

potential drop relative to the left boundary, Δnet μi is set for both species in turn. As Section D in

SI  details, solution of Equation  9 for each internal node (i.e. non-boundary node) along with

Equations 11 and 12 for each segment specifies the water and proton flow through the nodes and

segments. We treat the water content as constant across the membrane, corresponding to a small

Δnet μi.  Therefore,  L ij
¿ is  independent  of  Δnet μi,  and  Qi

¿ is  linear  with  Δnet μi. If  the change in

chemical potential is small across the representative elementary volume of the system (shown

subsequently to have dimensions of ~60 nm), concentration-dependent transport properties will

change negligibly and there will be a linear relationship between flux and driving force at this

scale. For example, a 10 µm thick membrane equilibrated with liquid water on one side and dry

air on the other side will only have a 0.13 change in λ over 60 nm (using water content from Ref
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2),  yielding  negligible  transport  properties  changes  across  this  distance.  Overall  nonlinear

behavior for the transport phenomena is still witnessed at the aggregated macroscopic level.

Figure 4 shows calculated flows of protons (a)-(c) and induced water (electrokinetic flow)

(d)-(f) under a proton electrochemical-potential difference across the network and water flow (g)-

(i)  with a water  chemical-potential  drop. Each line is  a  network channel  with line thickness

scaled proportionally to its height. Circle sizes scale proportionally to the species flow through

the channel (see Equation 10).  Panels (a), (d), and (g) show flows at low membrane hydration,

panels (b), (e), and (h) are at moderate hydration, and panels (g), (f), and (i) illustrate fluxes at

high hydration. To make qualitative inferences possible, visualizations in  Figure 4 are in 2D,

whereas  network  simulations  are 3D for  reporting  quantitative  properties  and comparison to

experimental data.
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Figure  4.  Network simulation flows of (a)-(c)  protons and (d)-(f)  water (electrokinetic)  under a proton
electrochemical-potential difference, and (g)-(i) with a water chemical-potential drop. Lines are network
channels scaled proportionally with the channel height. Circled areas are scaled proportional to species
flow.  (a), (d), and (g) show flows at a λ=3.4, (b), (e), and (h) are at λ=8.1, and (g), (f), and (i) illustrate
fluxes at λ=15. Note the induced-flow loop (e).

Figure 4 demonstrates that  flows increase with increasing water content  for the same

Δnet μi as the channels expand and transport properties generally  increase.  However, for each

membrane water content different modes of transport take considerably different pathways across

the  membrane.  Due to  the narrow distribution  of  proton transport  properties  (see  Figure 3),
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protons transport across most segments. Conversely, as Figure 4 reveals, water and electrokinetic

transport properties are widely distributed giving a strong preference for some pathways over

others. 

All else being equal, species transport pathways favor channels with large heights. As

Figure 4 shows, however, this criterion is insufficient to predict high flows through a network.

Specifically,  transport through a channel also depends on the (electro)chemical-potential  drop

across it that, in turn, is a function of the collective transport properties of nearby channels. The

distribution of transport properties induces local (electro)chemical-potential gradients. Figure S4

in SI shows calculated proton electrochemical-potential (a) and water chemical potential (b) of

each node under a proton electrochemical-potential difference across the network (see Section D

in SI) as a function of position at λ=15. The proton electrochemical potential declines across the

network but does not decrease uniformly between the left and right sides of the network. Even

with no macroscopic water chemical-potential drop (i.e., Δnet μ0=0), the distribution of transport

properties  generates  local  water  chemical-potential  gradients.  Local  gradients  induce

electrokinetic flow loops that pump flow in circles, as  Figure 4e notes, and which have been

observed in saturated porous media under electric fields.36 

To understand how mesoscale flows dictate macroscopic properties, we sum the flows

passing  through the  network and normalize  by  the  total  cross-sectional  area  of  the  network

(including both hydrophilic and hydrophobic phase-separated areas) to specify the macroscopic

(superficial) fluxes in the network of species i, N i
net (see Section D in SI for details). Macroscopic

effective network transport coefficients are related to network fluxes, length of the network Λnet,

and applied potential. When Δnet μ0=0,
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L++¿
net

=−N
+¿

net W net

Δ net μ+¿¿
¿
¿ 13

and

L
0+ ¿

net
=−N 0

net W net

Δnet μ+¿ ¿
¿

14

and when Δnet μ+¿=0¿

L00
net

=−N 0
net W net

Δnet μ0
.

15

Network simulations obey Onsager’s reciprocal relations such that L0+ ¿=L+0¿.

The  transport  coefficients  L ij are  rarely  measured  directly  experimentally.5,33 Rather,

experiments characterize slightly different sets of transport properties that are measurable under

well-defined conditions. Under an applied electric field with constant water chemical potential,

the  conductivity  κ  and  electroosmotic  coefficient  ξ  characterize  ion  and  water  transport,

respectively.5,6,33 The  water  transport  coefficient  α characterizes  water  transport  across  a

membrane due to a water chemical-potential gradient in the absence of current. These transport

coefficients relate to the L ij coefficients according to33

κ=L++¿ F2 ,¿

ξ=
L0+¿

L++¿ ,¿ ¿

and

α=L00−
L0+¿

2

L++¿ .¿ ¿

16

We followed Weber and Newman6 to convert water-tracer diffusion coefficients measurements

(i.e. from pulse-field-gradient nuclear magnetic resonance) to α and the procedure by Delacourt

and Newman64 to convert water-permeance measurements to α.
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Figure  5 shows  network-calculated  transport  properties  (dashed  line)  and  measured

transport  properties  (symbols)  of  macroscopic  (a)  conductivity  κ  65–75,  (b)  electroosmotic

coefficient ξ  5,69,76–79, and (c) water transport coefficient α 9,71,80–85 as a function of water content λ.

Calculations are the average of 5 randomly seeded 3D-network simulations with a characteristic

system size, Λnet, of 80 nm and from Equations 13 through 16 to obtain the transport coefficients.

As we show later, an 80 nm network is sufficiently large for calculated transport properties of the

network to correspond to macroscopic properties. We adjusted the sulfonate spacing distribution

parameter σ SO3 to fit these data sets, as noted above.

The Voronoi  network simulations  of  conductivity  agree  with  experiments  up to  high

water contents (λ 17). Macroscale conductivity increases monotonically with water content in

contrast to domain-scale proton transport that displays non-monotonic behavior (see Figure 2).

The  difference  in  microscale  and  macroscale  behavior  arises  from:  (1)  the  definition  of

superficial macroscale transport that makes it scale with water volume fraction (see Equation ),

and  (2)  increasing  water  content  decreases  the  tortuosity  of  proton  transport  across  the

membrane, thereby increasing conductivity.86

The electrokinetic  transport coefficient,  ξ ,  increases monotonically  with water content

because higher water content increases  L0+ ¿¿ faster than it does  L++¿¿.  Figure 5 shows that  ξ

evidences a decreased slope at a water content of about 6. This regime change occurs because

proton hopping increases at these water contents (see Figure 2B), making the increase of proton

transport with water content greater than the increase of electrokinetic water transport with water

content (i.e., d L++¿/dλ>d L0+¿/dλ¿ ¿). Our network simulations agree with experiments ξ  over the entire

range of hydration levels.
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The water transport coefficient α increases monotonically with water content as expected

from the microscale-transport coefficients in  Figure 2. Again, network simulations agree with

water transport coefficients measured by pulse-field gradient nuclear magnetic residence and by

hydraulic flow measurements.

Comparison to Effective-Medium Theory

For PFSA membranes, network simulations reveal that protons and water take different pathways

across the membrane and that  the distribution of channel  transport  coefficients  induces  local

(electro)chemical-potential  gradients.  Effective  medium  theory  (EMT)  generalizes  network

simulations.87 EMT,  developed  by  Kirkpatrick,  calculates  effective  transport  coefficients  of

transport  networks.87 The  theory  considers  a  single  segment  with  transport  property  L ij
¿

interacting with an “effective medium” network with each segment having a transport property

L ij
EMT . For a network entirely consisting of segments with transport properties L ij

EMT , an external

field (i.e., an (electro)chemical-potential gradient) causes a uniform (electro)chemical-potential

drop between parallel  cross sections of the network normal to the direction of transport.  The

presence of L ij
¿  causes an additional local field that decays over a large region of the network. For

L ij
EMT  to  represent  accurately  an  actual  network  containing  a  distribution  of  segments  with

different transport properties L ij
¿ , EMT requires that the internal fields induced by the presence of

each segment sum to zero.  

We adapt the method of Bonilla  and Bhatia for multicomponent  EMT, as detailed in

Section  E in SI and in  Ref  88.  EMT accounts  for  the  local  proton electrochemical-potential

gradients caused by variations in L++¿
¿
¿ and the local water chemical-potential gradients induced
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by  variations  in  L00
¿ .  Multicomponent  EMT  also  incorporates  how  electrokinetic  coupling

between  water  and protons  transport  link  variations  of  L+0
¿  and  L00

¿  to  induced local  proton

electrochemical-potential gradients.

Solid lines in Figure 5 show (a) conductivity, (b) electroosmotic coefficient, and (c) water

transport  coefficient  calculated  using  EMT  (see  Section  E  in  SI).  EMT  shows  very  good

agreement  for  conductivity  and  good  agreement  for  electrokinetic  and  water  transport

coefficients. The slight disagreement between network simulations and EMT arises because we

neglect the distribution of domain lengths when performing the EMT integration.

The success of multicomponent EMT in this case suggests a useful upscaling method for

other  microscale  theories  of membrane transport  without  requiring computationally  intensive

network simulations. However, EMT describes systems sufficiently large that the locally induced

fields average out. As such, EMT cannot describe phenomena, such as induced-flow loops, that

occur over shorter length scales for which locally induced fields cannot be averaged.
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Figure 5. Experimental (symbols) and calculated (lines) (a) macroscopic conductivity κ  (data from Refs 65–

75), (b) electroosmotic coefficient ξ  (data from Refs 5,69,76–79. Black dashed line are an inferred measurement
give in Ref.  5), and (c) water transport coefficient  α (data from Refs  9,71,80–85) from network simulations
(dashed blue lines) and effective medium theory using Equation S20 in SI (solid blue lines) and measured
coefficients from literature (symbols) as a function of water content λ for systems at temperatures between
22-30°C. Inserts show same plots on a log10 y-axis scale. Open symbols are from data sets characterizing
pretreated membranes and filled symbols are from data sets of membranes without pretreatment.
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Effect of the Mesoscale on Transport

Tortuosity quantifies the impact of the mesoscale on transport. According to Equation 1,

tortuosity is the ratio the effective macroscopic properties from the network simulations (see

Figure  5) to  the  microscale  transport  properties  of  a  representative  channel  with an  average

height  H ave (see  Figure 2).  Figure 6a shows the tortuosity  τ ij of transport coefficient  L ij as a

function of water content. The tortuosity of each transport property is strikingly different. The

tortuosity of proton transport decreases with water content, the tortuosity of water transport is

constant for different water contents, and the tortuosity of electrokinetic transport increases with

water content. For λ>3, the tortuosity of proton transport is smallest, then water transport, and is

largest for electrokinetic transport. The network visualization in Figure 4 corroborates this result:

proton flux is more homogeneous with increasing water content, whereas electrokinetic fluxes

are more widely distributed at higher hydration. 

To understand the role of electrokinetic coupling on tortuosity, dashed lines in Figure 6a

show the tortuosity of water and proton transport predicted from the network simulations with no

electrokinetic  coupling,  i.e.,  with  L0+¿
¿
=0¿.  When  electrokinetic  coupling  is  present,  locally

induced water chemical potential gradients increase the path length of proton transport through

the membrane. As a result, in the absence of electrokinetic coupling, proton transport tortuosity

decreases. Upon setting L00
¿
=0, simulations reveal an even lower proton-transport tortuosity, as

the dot-dashed line in  Figure 6a shows. These results demonstrate that macroscopic transport

coefficients are partially a function of the collective microscale proton, water, and electrokinetic

transport properties and their domain distributions.  
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Figure 6. Tortuosity from network simulations at 80 nm and microscale theory (a) using Equation 1 for
proton τ ++¿¿, water τ 00, and electro kinetic τ 0+¿¿ transport coefficients and (b) correlation coefficient (1 =
total  linear  correlation)  between  ion/water,  ion/electrokinetic,  and  water/electrokinetic  flows  through
segments in the 80-nm network simulations as a function of water content, λ. Dashed and dot-dashed lines
in (a) show simulated network proton tortuosity, τ ++¿¿, for L0+¿

¿
=0¿ and for L0+¿

¿
=0¿, respectively.  

Figure 4 and Figure 6a clearly confirm that tortuosity, a crude measure of the mesoscale

length  of  transport  pathways,  is  different  for  each  transport  mode.  To  quantify  the  overlap

between transport pathways of different transport modes, we calculate the correlation coefficient

between  water,  proton,  and  electrokinetic  flows  through  domain  segments  in  the  network
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simulations.58 A  correlation  coefficient  of  unity  corresponds  to  complete  positive  linear

correlation between flows of different transport modes (i.e.,  transport takes place in the same

network segments).  The coefficient  is zero if there is no linear correlation between fluxes of

different  transport  modes.  Figure  6b  plots  the  correlation  coefficient  of  proton/water  fluxes,

proton/electrokinetic fluxes, and water/electrokinetic fluxes as a function of water content. The

calculated correlation coefficients quantify what Figure 4 shows qualitatively, namely, water and

electrokinetic flows transport through similar channels, but these channels are rather different

from those taken for proton transport. Here again, these results arise from the different transport-

property distributions.

Network simulations confirm the EMT description of “local” (electro)chemical-potential

gradients developed because of the distribution of segment transport properties (see  Figure 4).

Local gradients influence the transport pathways and, in turn, affect the macroscopic transport

coefficients. EMT does not quantify the distance over which gradients are important. To quantify

this length scale, Figure 7 plots effective transport properties predicted from network simulation

L++¿
net

¿ (circles),  L0+¿
net

¿ (triangles), and L00
net (squares) as a function of the characteristic network

size at λ=8.1. Each point results from a network simulation with a different seed (i.e. different

Voronoi tessellations  and different  random samplings  of the segment sulfonate spacing from

Equation 8). All transport properties are normalized to those simulated with 80-nm networks. All

systems are periodic in the direction perpendicular to transport.
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Figure 7. Network-simulated transport coefficients L++¿
net

¿ (circles),  L0+¿
net

¿ (triangles), and L00
net (squares)

as a function of the network dimension at  λ=8.1. Each point represents a random seeding. Transport
properties are normalized by the mean of those simulated with 80-nm networks.

For  small  system  sizes,  different  network  realizations  predict  drastically  different  transport

properties.  Properties  with a  wider  distribution of microscale  transport  properties  (water  and

electrokinetic  transport)  vary  more  between  different  network  configurations  of  the  same

network  size.  The  representative  volume  element  is  the  system  size  above  which  transport

coefficients do not change and is, therefore, large enough to behave as a macroscopic system. For

this system, the representative volume element has a characteristic dimension of around 60 nm.

Variations in channel transport coefficients, L ij
¿, induce local (electro)chemical gradients on this

scale. 

For  proton,  water,  and  electrokinetic  transport  in  PFSAs,  length  scales  between  the

microscale (~1 nm hydrophilic domains) and the macroscale (characterizable by a representative
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elementary  volume  that  has  dimensions  of  60  nm  in  this  case)  constitute  the  intermediate

mesoscale. The lower and upper bounds of this length scale depend upon the size distribution of

domains and upon the type of phenomena. For example, the representative elementary volume

for mechanical properties or gas transport in PFSAs may be considerably different. 

The  representative  volume  in  Figure  7 is  much  larger  than  the  size  most  molecular

simulations  can  achieve  given  the  computation  cost  of  simulating  large  systems  (<  10  nm

dimension cubes).47,48,57 This limitation could explain some of the differences between properties

simulated  with  molecular  dynamics  and  experiment.  Moreover,  the  representative  volume

corresponds to the size below which PFSA thin films experimentally exhibit anomalous transport

properties  relative  to  a  bulk  system.2,66,89,90 Previous  literature  attributes  this  behavior  to

confinement of the polymer to the length scale of its persistence length.2,66,89,90 The results in

Figure 7 show that anomalous thin-film transport behavior also take place on the same length

scale as locally induced transport gradients.

Conclusions

This paper explores the nature of mesoscale transport in PFSA membranes including the

role of electrokinetic coupling. We use a microscale concentrated-solution theory to calculate

water, proton, and electrokinetic transport properties of single water-filled hydrophilic channels

in PFSA membranes as a function of channel height and water content. The microscale model

parameterizes resistor-network simulations with a realistic domain size distribution and Voronoi-

network topologies that ascertain macroscopic transport coefficients. Using the variance of the

domain-size  distribution  as  the  single  adjustable  parameter,  we  accurately  predict  measured

membrane  water,  proton,  and  electrokinetic-transport  properties.  We  use  effective-medium
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theory to rationalize how domain-scale variations of size and corresponding transport properties

interact over the entire network to produce macroscopic properties.

Network simulations  interpreted  by  effective  medium theory  reveal  that  channel  size

impacts microscale properties of proton, water, and electrokinetic transport and with different

functionality. Because there is a distribution of water-filled channel sizes in PFSA membranes,

the corresponding distribution of microscale transport properties is different for each mode of

transport, which impacts the aggregated macroscopic observables. Consequently, the transport

pathways that water and protons travel through the membrane are not the same. Moreover, the

distribution  of  properties  induces  local  gradients  of  water  chemical  potential  (and  proton

electrochemical  potential)  that  act  on  proton  (and  water)  transport  through  electrokinetic

coupling.  As  a  result,  mesoscale  effects,  as  characterized  by  the  transport  coefficient  of

tortuosity,  lead to starkly different behavior for different types of transport.  These effects are

relatively  long  range  and  can  create  system-size-dependent  behavior  for  experiments  and

simulations at the identified representative-elementary size of about 60 nm.

The methodology presented in this paper can be easily extended to modeling transport in

other water-filled, ion-conductive membrane systems, such those with multiple cations and anion

exchange membranes. To model systems with a different mobile ion, the only changes would be

to the microscale transport properties and membrane channel properties (e.g., the mean channel

size). To treat systems with multiple mobile ionic species, the model would also need to include

ion-ion transport coefficients. The presence of multiple ions may introduce additional mesoscale

effects such as how these species partition between small and large channels and the resulting

impact on macroscale transport properties.21,91 
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Supporting Information

Supporting  information  contains  appendixes  with  derivations  of  the  pedagogical  model,  the

calculation of microscale transport coefficients, algorithm of network generation and solutions,

and effective medium theory.
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