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Abstract 

Diagnostic expert systems constructed using traditional knowledge-engineering 
techniques identify malfunctioning components using rules that associate symptoms 
with diagnoses. Model-based diagnosis (MBD) systems use models of devices to find 
faults given observations of abnormal behavior. These approaches to diagnosis are 
complementary. We consider hybrid diagnosis systems that include both associational 
and model-based diagnostic components. We present results on explanation-based 
learning (EBL) methods aimed at improving the performance of hybrid diagnostic 
problem solvers. We describe two architectures called STATIC and EBL(p). STATIC 
pre-compiles models into associations, and at run-time the diagnostic system is purely 
associational. In EBL(p), the run-time diagnosis system is a hybrid: learned associa­
tional rules are preferred but the MBD component is activated whenever the perfor­
mance falls below a threshold p. We present results of empirical studies comparing 
MBD without learning versus STATIC and EBL(p). The main conclusions are as 
follows. STATIC is superior when it is feasible but it is not feasible for large devices. 
EBL(p) can speed-up MBD and scale-up to larger devices in situations where perfect 
accuracy is not required. 





1 Introduction 

Diagnostic expert systems constructed using traditional knowledge-engineering techniques 
identify malfunctioning components using rules that associate symptoms with diagnoses 
(Feigenbaum, 1979). Model-based diagnosis (MBD) systems use models of devices to 
find faults given observations of abnormal behavior (Davis & Hamscher, 1988). These 
approaches to diagnosis are complementary. The associational approach takes advantage 
of human expert's empirical knowledge of the behavior of faulty devices in practice. MBD 
takes advantage of models of devices that can be generated during design, circumventing 
the knowledge engineering process and eliminating the need for a human who is an expert 
at diagnosing the device. MBD systems can cope with novel and multiple-faults but at 
a computational price. MBD is combinatorially explosive, while associational systems are 
relatively efficient. We consider hybrid diagnosis systems that include both associational 
and model-based components in this paper. 

A principal shortcoming of existing diagnosis systems is that they learn nothing from 
any given task. Upon facing the same task a second time, they will incur the same com­
putational expenses as were incurred the first time. We describe several architectures that 
integrate learning with associational and model-based diagnosis. The architectures take 
advantage of the strengths of both diagnosis methods while attempting to avoid the weak­
nesses. In these architectures, diagnostic associations are preferred because they tend to 
be more efficient but model-based reasoning is available, e.g., for multiple faults. We use 
explanation-based learning (EBL) (DeJong & Mooney, 1986; Mitchell, Keller & Kedar­
Cabelli, 1986), to transform knowledge contained in device models into associational rules. 

The structure of the paper is as follows. Section 2 states the MBD task and describes 
the performance element. Section 3 describes how EBL can be integrated with MBD and 
presents two learning architectures, STATIC and EBL(p). Section 4 provides a detailed 
description of the results of computational experiments evaluating the learning methods. 
Section 5 provides discussions of the results. Section 6 points out related works. Section 7 
gives general conclusions. 

2 Model-Based Diagnosis 

The MBD system is based on the theory of diagnosis given by Reiter (1987) and emulates 
the GDE system of de Kleer and Williams (1987). Diagnosis, as shown in figure 1, is a 
3-step process: 
Prediction by propagating observations of premise variables through all constraints 

Conflict recognition by determining all (minimal) assumptions responsible for discrepancies between 
predictions and observations 

Candidate Generation by finding all minimal set covers of the collection of conflicts 
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Premises 
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Value inference 

Conflict Recognition 
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Candidate Generatio 
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Candidates 

Figure 1. Model-Based Diagnosis 

2.1 Prediction 

The prediction task involves making inferences about the overall behavior of the device 
based on the assumption that the various components are behaving normally. These infer­
ences are defeasible. 

Prediction is performed as a value inference constraint propagation process, triggered 
by the values of observed variables (called premises). An example of a premise is a value 
assignment for the input and output variables of a device. In diagnosis, the input assign­
ment corresponds to some test vector and the output assignment corresponds to observed 
outputs. The prediction process is described as follows (see table 1). We record for each 
inference an assumption and a dependency label. Only new value inferences with minimal 
assumptions are recorded. This is done by checking whether the value inference is sub­
sumed by a previous one (step 2(a)iii). If not, then we assert it and retract all previous 
inferences subsumed by the current inference (step 2(a)iiiB). To see the need for this step, 
consider the case where the first time the value inference is made the label is non-minimal. 

The following two examples show the predictions derived by the procedure Propagate 
for the outputs of two simple circuits. The predictions are represented as Horn clauses 
whose conditions are conjunctions of the ab literals. The condition for a clause represents 
the minimal assumptions under which the prediction is valid. They are the same as ATMS 
labels (de Kleer & Williams, 1987). 
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Table 1. The Prediction Algorithm Propagate 
Given: Premises. 
Initialize: Value inferences as premises with empty assumption and dependency labels. 

1. Change+- false 

2. For each value inference rule X--+ Y do: 

(a) For each tuple of X whose dependencies do not include Y do: 

i. Determine value inference for Y 
ii. Propagate the assumptions and dependencies of X to determine Y's labels 

iii. If the value inference is not subsumed by previous inferences then do: 

A. Assert the current inference 
B. Retract existing inferences subsumed by the current inference 

C. Change+-- true 

3. If Change then go to 2. 

Example 2.1 Consider the polybox circuit depicted in figure 2 with the input-output 
(I/ 0) premises: 

A = 3, B = 2, C = 2, D = 3, E = 3, F = 10, G = 12 (1) 

In this circuit, Ml, M2 and M3 are multipliers, while Al, and A2 are adders. The predic­
tion process asserts the following clauses for the outputs: 

•ab(Ml) /\ •ab(M2) /\ •ab(Al) 

•ab(M2) /\ •ab(M3)•ab(A2) 

•ab(Ml) /\ •ab(M3) /\ •ab(Al)•ab(A2) 

•ab(Ml) /\ •ab(M3) /\ •ab(Al)•ab(A2) 

--+ 

--+ 

--+ 

--+ 

. F= 12 

G=l2 

F= 12 

G= 10 

(2) 
(3) 
(4) 
(5) 

Here, ab(.) is the abnormality predicate, after Reiter (1987). Eqn. 2 says that under the 
assumption that none of the components Ml, M2, and Al are abnormal, the output F is 
predicted to be 12. Note that constraint propagation goes forward and backward. Eqs. 4 & 
5 result from propagating the output value backward through the adder constraint. Note 
also that the 1/0 premises are absent in the conditions of the predictions. The predictions 
are all made in the context of those premises. 
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Figure 2. The Polybox Circuit 
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Figure 3. A Full Adder 

Example 2.2 Consider the 1-bit adder circuit in figure 3, with the input-output: 

Xl = 0, Yl = 0, CO= 0, Sl = 1, Cl= 0 

The prediction process asserts the following clauses for the outputs: 

•ab(Xarl) A •ab(Xor2) ---+ Sl = 0 

•ab(Andl) A •ab(And2) A •ab(Orl) ---+ Cl = 0 

2.2 Conflict recognition 

(6) 

(7) 
(8) 

Conflict recognition consists in identifying sets of default normality assumptions that lead 
to predictions that are inconsistent with the observations. Conflict recognition is performed 
by comparing predictions with premise assignments. If there is a discrepancy, then the 
support set of the prediction inference is declared as a conflict set. 
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Example 2.3 The polybox circuit with inputs and outputs as given in Example 2.1 results 
in two conflicts: 

ab(Ml) V ab(M2) V ab(Al) 
ab(Ml) V ab(M3) V ab(Al) V ab(A2) 

(9) 
(10) 

Example 2.4 The 1-bit adder with inputs and outputs as given in Example 2.2 results in 
one conflict set: 

ab(Xorl) V ab(Xor2) (11) 

2.3 Candidate generation 

Candidate generation consists in determining minimal sets of abnormality assumptions 
whose conjunction covers (accounts for) all known conflicts. This amounts to saying that if 
ab(Cl)/\ab(C2) is a candidate then the suspension of the normal constraint for components 
Cl and C2 removes all conflicts (i.e., restores consistency). A candidate set is minimal if 
it does not include a subset that is also a candidate. 

For the candidate generation step we implemented an HS-Tree algorithm, based on 
Reiter (1987). In our implementation, we do not consider two of Reiter's heuristics: 1) the 
"reusing node labels" heuristic, and 2) the tree-pruning heuristic 3-iii .1 In our case the 
reuse heuristic is not needed since we determine the entire collection of conflict sets prior 
to determining the hitting sets. The reason for not pruning is that the implementation is 
simpler without it. Our algorithm may generate a larger tree than necessary, but we are 
guaranteed not to miss any minimal hitting set. 

Example 2.5 The polybox circuit with the two conflicts of example 2.3 results in four 
minimal candidates: 

ab( Ml) 

ab( Al) 

ab(M2) /\ ab(M3) 

ab(M2) /\ ab(A2) 

(12) 

(13) 

(14) 
(15) 

Example 2.6 The 1-bit adder with the one conflict of example 2.4 results in two minimal 
candidates: 

ab(Xorl) 

ab(Xor2) 

(16) 
(17) 

1 An unintentional interaction between the tree-pruning heuristics was responsible for a flaw in Reiter's 
algorithm, subsequently corrected by Greiner, Smith & Wilkerson (1989). 
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3 Explanation-Based Learning 

Explanation-Based Learning (EBL) is one proposal to speed-up MBD, by accumulating 
problem-solving experience and using past experience on new problems. Experience is rep­
resented using rules of the form, Situatian--+ Canclusian; whenever faced with Situatian, 
then jump directly to Canclusian. We now consider in detail how EBL can impact on the 
various phases of the diagnosis task. 

3.1 Prediction 

The procedure Propagate, table 1, must be applied by MBD for every new problem, even 
if a problem has been seen before. The main intuition for applying EBL to the prediction 
phase is as follows. While making value inferences, the inference rules themselves are also 
propagated and unified to form what we call p-rules. A p-rule has the form: P /\.A/\.C--+ V, 
where P, andA are premise and assumption tuples, and V is a variable whose predicted 
value may depend on P via condition C. The p-rules may then replace the propagation 
procedure performed by Propagate. This has the following benefits: 

1. The problem of finding predictions becomes backtrack-free. 2 

2. Inferences are no longer made for internal variables. 

Learning p-rules is a way of allowing the "reuse" of search efforts on previous diagnosis 
problems.3 The predictions made on previous problems may not have been useful for those 
problems in terms of dicovering conflict sets. But the cached p-rules may be useful for new 
problems. See example 3.2 below. 

The application of EBL to the prediction phase is performed by the procedure EBL­
Propagate. See table 2. The following are examples of applying that procedure. 

Example 3.1 Consider the polybox example 2.1. The procedure EHL-Propagate compiles 
the following p-rules for the output variable F, 

•ab(Ml) /\. •ab(M2) /\. •ab(Al)/\. 

A = a/\. B = b /\. C = c /\. D = d --+ F = a* c + b * d (18) 
•ab(Ml) /\. •ab(M3) /\. •ab(Al) /\. •ab(A2)/\. 

A= a/\. C = c /\. E = e /\. G = g--+ F =a* c + (g - c * e) (19) 

Similar rules are compiled for G. 

2This reduces the search for inference chains and subsumption testing between labels. 
3The search effort is exponential in the number of components in the worst case. This is due to the 

fact that predictions must be made for all possible environments (sets of assumptions). 
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Example 3.2 Consider the adder example 2.2. The procedure EEL-Propagate compiles 
the following p-rules for the output variables, 

•ab(Xorl) !\ •ab(X or2)!\ 

Xl = xl !\ Yl = yl !\CO= d) !\ s = (xl EB yl EB d)) -+ Sl = sl (20) 

•ab(Xorl) !\ •ab(Andl) !\ •ab(And2) !\ •ab(Orl)!\ 

Xl = 0 !\ Yl = 0-+ Cl = 0 (21) 

•ab( Andl) !\ •ab( And2) !\ •ab( Or 1) !\ 
Xl = 0 !\CO = 0 -+ Cl = 0 (22) 

•ab(Andl) !\ •ab(And2) !\ •ab(Orl)!\ 

Yl = 0 !\ CO = 0 -+ Cl = 0 (23) 

For the given premise instance, either of the p-rules 22 or 23 is all that is needed for 
prediction. They both have the same assumption label, and that label subsumes that of 
rule 21. If we substitute for the premises, rules 21 & 22 will degenerate to prediction 8 of 
example 2.2. Although redundant for the given premises, rules 21 & 22 may be irredundant 
for other instances. For example, if the premise was: {Xl = 0, Yl = 1, CO = O}, then 
rules 21 & 23 are not applicable, but rule 22 is. 

When EEL-Propagate is made to cover not only the given example of value assignments 
to the premise variables, but also all other possible assignments, the procedure becomes 
what we call STATIC-Propagate. In EHL-Propagate we require that the learnt p-rules be 
consistent with the given premise instance (table 2, step 2(a)iv). STATIC-Propagate is 
the same as EHL-Propagate, except that step 2(a)iv is replaced by general satisfiability, 
instead of satisfiability for a given premise instance. The rules compiled by STATIC are to 
apply to all possible instantiations of the premise set, rather than to only a generalization 
of an initially given one as in EHL-Propagate. See table 3. 

Example 3.3 For the polybox circuit, applying STATIC-Propagate produces the same 
p-rules as in example 3.1. 

Example 3.4 For the 1-bit adder circuit, STATIC-Propagate compiles the following p­
rules in addition to those compiled by EHL-Propagate (example 3.2), 

•ab(Andl) !\ •ab(Xor2) A •ab(And2) A •ab(Orl)!\ 

Xl = 0 A CO = d) A Sl = sl A sl = (0 EB d)) -+ Cl = 0 (24) 

•ab(Andl) A •ab(Xor2) A •ab(And2) !\ •ab(Orl)!\ 

Yl = 0 !\CO = d) !\ Sl = sl A sl = (0 EB d)) -+ Cl = 0 (25) 

•ab(Andl) !\ •ab(Orl)!\ 
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Table 2. EBL-Propagate, a "Learning While Doing'' Prediction Algorithm 
Input: Premise variables and their value assignments. 
Output: All p-rules applicable to generalization of the premise assignments. 
Initialization: For each premise variable assert a p-rule:P AAAC - V, where assumption 
A and condition Care nil and prediction V has the same value (generalized) as that of the 
premise P 
Description: 

1. Change+-- false 

2. For each value inference rule R: X - Y do: 

(a) For each tuple of X whose p-rules' dependencies do not include Y do: 

i. Merge the premises for the p-rules of X. Let the result be Px. 
ii. Merge constraint relations for the p-rules of X in terms of premise Px. 

iii. Unify the merged constraint relation with R to determine a relation Cx 
betweeen Px and Y 

iv. Verify that Cx A Px is satisfiable for the given value assignments of the 
premise variables 

v. Propagate the assumptions and dependencies of X to determine labels for 
Y. Let the assumption label be Ax 

vi. If the p-rule: Px A Ax A Cx - Y is not subsumed by a prior rule then do: 

A. Assert the current rule 

B. Retract existing rules subsumed by the current one 

C. Change+-- true 

3. If Change then go to 2. 

Table 3. STATIC-Propagate, a "Learning in Advance" Prediction Algorithm 

Input: Premise variables. 
Output: All p-rules covering every possible instantiation of premise variables from their 
domain. 
Description: Follow every step in EBL-Propagate except for step 2(a)iv. Instead of that 
step do: Verify that Cx A Px is satisfiable for some instantiation of premise variables from 
their domain 
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Table 4. A Conflict Set Generation Algorithm: GET-CONFLICTS 
Input: Set of p-rules and a Premise. 
Output: Collection of all minimal conflicts. 
Description: 

1. Sort the p-rules in increasing order of their assumption set cardinality. 

2. Begin with the first p-rule. 

3. If the rule's condition holds and the rule's prediction conflicts with a premise then 
declare the rule's assumption as a conflict set and remove all remaining rules whose 
supports are subsumed by the current rule 

4. If there is a next rule then go to 3 else return all conflict sets 

Xl = 1 A Yl = 1 __. Cl = 1 

•ab(Xorl)•ab(And2) A •ab(Orl)A 

Xl = xl A Yl = yl, CO= 1A1 = (xl E9 yl) __.Cl = 1 

•ab(Xor2)•ab(And2) A •ab(Orl)A 

CO = 1 A Sl = 0 __. Cl = 1 

(26) 

(27) 

(28) 

The reason the above rules are not compiled by EEL-Propagate is that their conditions are 
incompatible with the given instance of input-output values. In general, the p-rules learnt 
by EEL-Propagate depend on the particular premise instance. In general, EEL-Propagate 
requires multiple examples to learn all the p-rules that are learnt by STATIC-Propagate. 
For the polybox circuit, one example will suffice to learn all prediction rules. This is so 
because the constraints are independent of special instantiations of the premise set. For 
logic circuits, multiple examples are required. 

3. 2 Conflict Recognition 

The procedure to determine the conflict sets is shown in table 4. As shown in example 3.2, 
the p-rules may include pairs of rules that are applicable in a given premise instance but one 
rule's assumption is subsumed by the other. For conflict recognition we are only interested 
in minimal conflicts. Non-minimal conflicts must be discarded. Step 3 in GET-CONFLICT 
(table 4) eliminates p-rules that could lead to non-minimal conflicts. 
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Table 5. A Candidate Generation Algorithm: ALL-DIAG 
Input: Collection of minimal conflict sets. 
Output: All minimal hit sets. 
Description: 

1. If the present collection of conflict sets has been seen and ad-rule already exists then 
return the associated collection of hit sets 

2. Else, do: 

(a) Apply HS-Tree to the collection of conflict sets 

(b) Record and index new conflict sets 

(c) Assert ad-rule associating conflict indices with hit sets 

( d) Return hit sets 

3.3 Candidate Generation 

For the candidate generation phase of the diagnostic process, the learning component 
caches associational rules between collections of conflict sets and collections of minimal set 
covers (hit sets). Each time a new conflict set appears, a counter is incremented and the 
value of that counter is assigned as an index for that conflict. A collection of conflict sets 
will be indexed as the ordered set of its conflict set indexes. That indexing will eliminate 
search when retrieving the applicable d-rule. The procedure, ALL-DIAG, to determine all 
diagnoses is given in table 5. 

3.4 Learning Architectures 

We consider two learning architectures: EBL(p) and STATIC. They both integrate EBL 
with MBD and associative diagnosis. STATIC compiles in advance all p-rules, while 
EBL(p) compiles those rules while performing the diagnostic task. The candidate gen­
eration procedure in both systems is identical. Rules called cl-rules are compiled by both 
systems at diagnosis time, associating conflict sets with minimal candidates. The following 
sections describe the two architectures in detail. 

3.4.1 STATIC 

A block diagram of STATIC is shown in fig. 4. The function of STATIC is to generates 
diagnostic hypotheses consistent with the input observations. STATIC performs that task 
in terms of two sub-tasks: 1. conflict recognition, and 2. candidate generation. Conflict 

10 



Observations Conflict sets 
GET-CONFLICT ALL-DIAG 

Cached p-rule Cached d-rule 

STATIC-Propagat~ 

/ "' Model Premise Variables 

Figure 4. The STATIC Learning Architecture for Diagnosis 

recognition is performed by the procedure GET-CONFLICTS. Candidate generation is 
performed by the procedure ALL-DIAG. All possible predictions are compiled in advance 
by the procedure STATIC-Propagate, in terms of the device model and the variables des­
ignated as observable (premise variables). STATIC-Propagate creates a cache of p-rules 
that is to be used by GET-CONFLICTS. Note the dashed line between STATIC-Propagate 
and the cache, indicating that the compilation is done in advance prior to the diagnostic 
task. Note also that the device model is not subsequently used by SATIC. Compilation 
of cl-rules by ALL-DIAG is performed at diagnosis time. Note that as more cl-rules are 
compiled, STATIC will operate entirely as an associative system. 

3.4.2 EBL(p) 

A block diagram of EBL(p) is shown in fig. 5. Like STATIC, the function of EBL(p) is 
to generate diagnostic hypotheses consistent with the input observations. Unlike STATIC, 
EBL(p) compiles the p-rules at diagnosis time. In EBL(p), the p-rules compilation is done 
by the procedure EBL-Propagate, using the device model and the observations. EBL­
Propagate is turned on and off by a performance evaluation unit, EVAL-PERF, as shown 
in fig. 5. EVAL-PERF does its evaluation task by averaging satisfaction indices received on 
previous problem-solving. The satisfaction index may be a binary variable: 0 if hypotheses 
are satisfactory and 1 otherwise. Satisfaction is input by an external unit that could be the 
human trouble-shooter, or a model-based reasoning system that run in parallel as a training 
system. EVAL-PERF outputs a binary signal to activate or de-activate EBL-Propagate. 
That signal is determined by comparing the average satisfaction with a threshold, p. EBL-

11 



0 bservations Hypotheses 
EEL-Propagate GET-CONFLICTS ALL-DIAG ----

Model Cached p-rules 

--------- EVAL-PE 

t Satisfaction 
Index 

Cached d-rules 

Figure 5. The EEL(p) Learning Architecture for Diagnosis 

Propagate remains inactive as long as the average satisfaction is greater than the threshold; 
otherwise it is active. 

If the activation signal is off, EEL(p) carries out its diagnostic task as if it were STATIC. 
That is, EEL(p) assumes that its p-rules are sufficient to generate all minimal conflicts. 
If EEL-Propagate was not activated on a sufficient number of examples, the generated 
hypotheses could be unsatisfactory. If unsatisfactory hypotheses persist then the activation 
of EBL-Propagate will occur and continue until average satisfaction again reaches the 
threshold. Notice that when EBL-Propagate is activated the generated hypotheses are 
identical to those of a model-based system. The difference from a model-based system is 
that caching of p:..rules takes place so that prediction can be performed associatively on 
future problems. Table 6 gives a procedural description of EEL(p). 

3.4.3 Why Hypotheses Evaluation for EBL(p) is Required 

In standard EBL one learns a sufficient characterization of a concept by generalizing an 
example instance using a given theory. A problem arises in applying standard EBL to 
MBD as formulated by Reiter (1987). MED requires the knowledge of all conflict sets. If 
we miss some minimal conflict sets then the minimal diagnoses may be incorrect, leading 
to overgeneral diagnoses. 

EBL can be used to learn the predictions as associations with subsets of the premises 
and the assumptions. This provides sufficient conditions for the prediction but not the 
necessary conditions needed in MBD. One way of overcoming this difficulty is to use 
constraint-suspension and the model to check diagnoses proposed by learned rules. An 
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Input: Observations. 
Output: Hypotheses. 

Table 6. Procedural Description of EBL(p) 

Initialization: {Sat is the average satisfaction} 
Activate +- Yes, Problem +- 0, Sat +- 0. 
Description: 

1. If Sat > p then Activate +- No 

2. If Activate= Yes then apply EEL-Propagate 

3. Apply GET-CONFLICTS 

4. Apply ALL-DIAG 

5. Problem = Problem + 1 

6. {Index is the satisfaction index for output hypotheses} 
Sat= Sat+ (Index - Sat)/ Problem 

example follows. 
Consider the 1-bit full adder shown in figure 3. Given the assignments [1,1,1) for the 

inputs: [Xl, Yl, CO], and [0,0) for the outputs: [Cl, Sl], the prediction rules (p-rules) 
learnt for the outputs are as follows: 

•ab(Xorl) /\ •ab(Xor2)/\ 

Xl = xl /\ Yl = yl /\ CO = cO /\ s = (xl EB yl EB cO) -+ Sl = sl (29) 

•ab(Andl) /\ •ab(Orl) /\ Xl = 1 /\ Yl = 1 -+Cl = 1 (30) 

•ab(Xor2) /\ •ab(And2) /\ •ab(Orl) /\ Sl = 0 /\CO= 1 -+Cl= 1 (31) 

Consider the subsequent example where the input is [0,1,1) and the output [0,0). Obviously 
rules 29 and 30 both apply, making predictions for both outputs. This is not a complete 
set of prediction rules, since the following p-rule is applicable to the example, and provides 
a new assumption label. 

•ab(Xorl)•ab(~nd2) /\ •ab(Orl)/\ 

Xl = xl /\ Yl = yl, CO= 1/\1 = (xl EB yl)-+ Cl= 1 (32) 

The missing rule 32 causes the conflict set { •ab(Xorl), •ab(And2), •ab(Orl)} to be missed 
so the diagnosis proposed by the learned rules (29- 31) is too general. 

13 



XN YN CN-1 

A-N 

CN SN 

--, 

I 
I 
L 

X2 Y2 Cl 

A-2 

S2 

Figure 6. N-Bit Adder 

4 Empirical Results 

Xl Yl CO 

A-1 

Sl 

We have carried out an empirical study to compare the performance of STATIC, EBL(p) 
and MBD. We studied the performance on the polybox (figure 2) and the N-bit parallel 
adder (figure 6). Diagnostic problems are generated using a fault simulator module. The 
number of faults for each problem ranges between 1 and 3 with higher probability assigned 
for single faults. The locations of faults cover the various components at random. For 
the N-adder, a faulty component is simulated by complementing its normal output. For 
the polybox, a fault for a multiplier is simulated by subtracting 1 from its normal output, 
and an adder by adding 1 to its normal output. The input values are independently and 
randomly generated from their allowed value set. The value set for the N-adder is [0,1]; 
while for the polybox we chose [2,3]. The fault simulator produces the output corresponding 
to the assigned faults and inputs. A diagnostic problem consists of a set of input and output 
values (called premises) and a set of actual faults. For each device, an experiment consists 
of feeding 10 series of 100 problems simultaneously to both systems with and without 
learning. We monitor the values of interesting parameters (such as the cumulative time) 
versus the number of problems in each series. We then compute the average value and the 
standard deviation of those parameters versus the number of problems. 

4.1 STATIC 

The parameters studied are the cumulative number of cl-rules, and the cumulative time. 
The p-rules are learnt once per experiment, before feeding the diagnostic problems. During 
actual diagnosis the model is never used. The cumulative time for STATIC includes the 
initial compilation time. The minimal candidates produced by STATIC and MBD are 
verified to be the same for every problem. 
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4.1.1 Polybox 

The number of d-rules (figure 7) rises sharply for the first few problems, and then levels 
off as the number of problems increases. After 50 problems all four d-rules are learnt. The 
cumulative time for MBD and STATIC rises almost linearly with the number of problems. 
The slope of STATIC is dramatically flatter than that of MBD (approx. 3%). See figure 8. 
This indicates that the matching cost is negligible compared to the time it takes to search 
the model for all value inferences and to compute the hit sets. 

4.1.2 1-bit Adder 

The number of d-rules (figure 9) increases steadily with the number of problems. The 
increase is more appreciable for the first 50 problems than for the last 50. (The increase 
of the d-rules is an indication of the effectiveness of the fault generator in spanning the 
space of diagnostic hypotheses.) The cumulative time for MBD and STATIC rises almost 
linearly with the number of problems. The slope of STATIC is dramatically flatter than 
that of MBD (approx. 6%). See figure 10. 
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Figure 12. 2-Bit Adder-Cumulative Time for STATIC Versus MBD (±10%) 

4.1.3 2-bit Adder 

The number of d;..rules (figure 11) increases steadily with the number of problems. The 
cumulative time for MBD and STATIC rises almost linearly with the number of problems. 
The slope of STATIC is about 25% of MBD. See fig. 12. The initial offset of STATIC, 
due to the initial compilation time, produces a relatively significant impact in comparison 
with the l~bit adder (figure 10). STATIC produces a performance speed-up in comparison 
with MBD after diagnosing a few problems. The number of problems corresponds to the 
intersection point between the STATIC and MBD cpu-time curves. The cross-over point 
occurs at about 10 problems. See fig 12. 

4.1.4 3-bit Adder 

The number of cl-rules (figure 13) increases steadily with the number of problems. The 
rate of the increase is even more uniform than it is for the 2-bit adder. This is due to 
the random nature of the fault generator and the size of the circuit, making it more likely 
to see a new collection of conflicts for every problem. The cumulative time for MBD and 
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Figure 16. Polybox-Cumulative Time for EBL(p) Versus MBD (±3%) 

STATIC rises almost linearly with the number of problems. The slope of STATIC is now a 
significant 75% of MBD. See figure 14. The time to compile the p-rules for STATIC offsets 
its initial cumulative time appreciably. STATIC does not produce a performance speed-up 
in comparison with MBD over the range of 100 problems. The cross-over point to obtain 
speed-up appears to be about 300 problems. 

4.2 EBL(p) 

The parameters studied are the cumulative number of p-rules, d-rules, the performance 
(ratio of correctly diagnosed problems), and the cumulative time. The p-rules are learnt 
only when learning is switched on, otherwise conflict set recognition is based solely on 
previously acquired rules. Notice that learning is switched off when performance exceeds 
the threshold p, else it is switched on. The d-rules are continually learnt, just as in STATIC. 
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Figure 18. 1-Bit Adder-Cumulative Number of D-Rules for EBL(p) (±7%) 

4.2.1 Polybox 

The threshold pis set to 0.9. All the p-rules (20 of them) are learnt from the first example. 
So EBL(p) never turns learning on following the first example. The d-rules soon converges 
to 4, which are all the rules to be learnt. See figure 15. The performance remains constant 
at 1.0 throughout. The cumulative time of MBD and EBL(0.9) grows linearly with the 
actual number of problems, but the slope of EBL(0.9) is only a mere 3% of that of MBD. 
This is identical to the results obtained from STATIC. 

4.2.2 1-bit Adder 

The number of p-rules rises sharply following few examples (first 10) to a steady state value. 
The entire set of p-rules that can be learnt is 26. See figure 17. The number of d-rules rises 
with a higher rate at the beginning and then with a lower rate later on. The number of d­
rules approaches 11 on average toward the end of a 100 problem series. See figure 18. The 
shallowness of the increase of the p- and cl-rules with the increase of number of problems 
gives a good indication of the effectiveness of learning, since rules are often reused. The 
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Figure 22. 2-Bit Adder-Cumulative Number of D-rules for EBL(p) (±10%) 

performance curve shows a sharp dip at the beginning, where performance falls below the 
0.9 threshold, then it rises steadily due to the effect of learning. Performance reaches 
the threshold value on its way up after about 10 problems. From then on, performance 
remains above the threshold, and consequently no learning is needed. See figure 19. The 
cumulative time rises almost linearly for MBD, but displays a "knee effect" for EBL(0.9). 
See figure 20. 

4.2.3 2-bit Adder 

Almost all the p-rules are learnt after the first 10 to 20 problems. The number of p-rules 
then remains constant around 120 rules. (There are 137 rules that can be learnt.) See 
figure 21. The number of cl-rules rises with a higher rate at the beginning and then with 
a lower rate later on. The number of cl-rules reaches 35 on average toward the end of a 
100 problem series. See figure 22. The effectiveness of cl-rules learning is almost 65% as 
measured by the percentage of rules reused. The performance curve shows a sharp dip at 
the beginning, where performance falls below the 0.9 threshold, then it rises steadily due 
to the effect of learning. Performance reaches the threshold value on its way up after about 
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Figure 23. 2-Bit Adder-Performance (±2%) 
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Figure 26: 3-Bit Adder-Cumulative Number of D-Rules for EBL(0.9) (±10%) and 
EBL(0.6) (±13%) 

10 problems. Except for some rippling around the threshold for the range up to about 20 
problems, the performance remains above the threshold and no learning is needed. See 
figure 23. The cumulative time rises almost linearly for MBD, but displays a "knee effect" 
for EBL(0.9). See figure 24. The knee position is located at the point where learning ends, 
and associative diagnosis takes over. 

4.2.4 3-bit Adder 

Here we experimented with two thresholds, 0.6 and 0.9. The higher the threshold the 
more p- and cl-rules will be acquired. EBL(p) will learn only enough rules to meet the 
requirement that the average performance remains above the threshold. 

Figure 25 shows the number of p-rules learnt by EBL(p ). As the threshold drops from 
0.9 to 0.6, the number of rules drops on average by almost 50%. Notice that EBL(0.9) 
learns approximately half of the total number of p-rules (918) which would have been learnt 
by EBL(l). This means that approximately 50 % of the p-rules contributes to 90% of the 
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performance. The number of cl-rules grows almost linearly with the number of problems. 
EBL(0.9) learns on average 3 cl-rules every 5 problems, while EBL(0.6) learns 2 cl-rules 
every 5 problems. This means that EBL(0.6)'s abstraction of the diagnostic space is less 
detailed than that of EBL(0.9). In other words, classification of the diagnosis space for 
EBL(0.6) is at a coarser level than that for EBL(0.9). 

For EBL(0.9), the performance curve shows a sharp dip at the beginning, where per­
formance falls below the 0.9 threshold, then it rises steadily due to the effect of learning. 
On average, EBL(0.6) performance remains above the threshold and learning after the first 
problem is rarely invoked. See figure 27. For EBL(0.9), the cumulative time rises steeply 
for the first 20 problems. This is the range where learning is most frequent. For later 
problems the average time taken by the associative mode varies rather widely. Due to the 
large number of rules, p-rule matching costs are comparable to model-based prediction. 
See figure 28. However in most problems the rate of time increase is much flatter than 
MBD. For EBL(0.6), speed-up effects are evident compared to MBD. See figure 28. 

5 Discussion 

5.1 STATIC 

For the purpose of analysis let us introduce the following notations. Let Cmbd be the average 
cost per problem for MBD. Let Cass be the average cost per problem for the associational 
problem solver of STATIC. This is only the dynamic cost due to matching and HS-Tree. 
The preprocessing cost incurred by STATIC for compiling the p-rules is denoted by Cst· 
Based on the empirical results, we can fairly represent the cumulative (average) cost versus 
the number of problems for STATIC and MBD by linear relations, as depicted in figure 29 . 

. The cost of solving N problems by MBD is: Cmbd x N. The cost of solving N problems by 
STATIC is Cst +Cass x N. The cross-over point N* is the number of problems for which 
the cumulative time of STATIC and MBD is the same. That is~ 

N* = r Cst 1 
( Cmbd - Cass) 

Based on the empirical results, we can make the following observation. As the number 
of components increases, two things happen: 

1. Cst increases (exponentially), and 

2. Cass increases as a result (also exponentially). 

Table 7 provides numerical values for those parameters for the N-bit adder for increasing 
N. The results lead us to the following conclusion. STATIC achieves net speedup over 
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Table 7. STATIC Versus MBD for N-bit Adder 

N Cat Cass Cmbd N* 
1 3 0.09 2.05 2 
2 36 0.44 5.17 8 
3 2145 4.68 11.86 299 

MBD when precomputation is included only for small devices. As the number of compo­
nents increases, STATIC becomes worse than MBD because the size of the p-rules grows 
exponentially. As a consequence, conflict set recognition using the p-rules becomes more 
costly. This is in part due to the non-minimality problem pointed out in section 3.2. In 
addition, the space required to store the rules grows exponentially. 

One further observation with respect to the empirical results of section 4.1 is the fol­
lowing. The rate of increase of d-rules with number of problems tends to increase as the 
number of components increases. For example, compare figs. 13,11 and 9. This can be 
attributed to the random nature of the fault generator, making it more likely to see new 
collections of conflicts for new problems as the number of components increases. This also 
indicates that the learning of d-rules does not pay off very much on the 3-bit adder over 
the range of 100 problems. Almost 60 rules are learnt in that range, meaning that savings 
only occurred over 40 problems (in the sense that no new rules were required). 
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5.2 EBL(p) 

For small size circuits (up to 10 components) the conflict set recognition is the most 
expensive subtask in MBD. As the size of the circuit increases, the candidate generation 
subtask becomes as or even more expensive. If the problems have faults that are randomly 
distributed and uncorrelated, then the likelihood that a d-rule is going to be useful for 
the next problem decreases as the number of components increases. This is so because the 
number of conflict sets (and hence their possible combinations) increases exponentially with 
the number of components. This is confirmed by our results. See figures 18, 22, and 26. 
This implies that the use of d-rules will be effective only after a large set of problems. 
This means that eventually we will have to cache all possible d-rules. If the probability of 
invoking those rules is uniformly distributed, then it seems that we have not gained very 
much. Indeed we would only have traded space for time. Compiled d-rules will occupy an 
exponential space, but they can be applied in constant time. The HS-tree algorithm does 
not use exponential space but it may require exponential computation. 

The above indicates a utility problem in learning for MBD. Learning may provide 
speed-up only if the rules have high likelihood of being applicable, and irredundant. Note 
that if the faults that occur in practice cover all possible minimal candidates, and we are 
required to be complete (i.e., no erroneous diagnoses can be tolerated) then the best we 
can do is to learn all possible p-rules (and d-rules). This will degenerate to STATIC, and 
no overall speed-up effect will be obtained except on small devices. 

EBL(p) is biased to learning p-rules that are necessary to meet bounds on performance. 
The threshold p reduces the number of p-rules that need to be learnt. As p decreases the 
number of p-rules decreases, and as a result also the number of d-rules. See figures 25, 26. 
Note that a diagnosis is considered to be satisfactory if it either consists of the same 
collection of minimal candidates as are produced by MBD, or else it includes the actual 
fault. EBL(p) is capable of providing speed-up provided that p is sufficiently small. 

Further observations regarding the empirical results in section 4.2 are as follows: 

1. For the N-bit adder, the knee effect for EBL(p) (figs. 20, 24,& 28) can be explained as 
follows. Initially, MBD and EBL are "on," thus the time per problem is comparable 
to MBD. As soon as the learning phase ends (the knee point), the slope changes 
and the cpu time curve gets flatter due to the speed up provided by the associative 
operating mode. 

2. For EBL(0.6) on the 3-bit adder, speed-up effects are evident compared to MBD. 
See figure 28. The reasons are: 1) the number of rules is much less than that of 
EBL(0.9)- thus reducing matching effort and space requirement; 2) learning is rarely 
invoked so there are no steep rises for the initial problems as in the case of EBL(0.9). 
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6 Related Work 

Preliminary versions of the results reported here appeared in abridged form in two confer­
ence papers (Fattah & O'Rorke, 1991a; Fattah & O'Rorke, 1992). In Fattah & O'Rorke 
(1991a), the diagnosis system used constraint suspension testing to double check diagnoses. 
The system learned immediately from new constraint violations that occurred during the 
checking. But as the size of the device increased, the cost of constraint suspension testing 
quickly overcame the benefits of EBL. 

Discussions with Oren Etzioni of his work on an alternative to EBL "learning while 
doing" for planning (Etzioni, 1990) led us to consider the merits of "learning in advance" 
for diagnosis. When the associational rules were all learned in advance and the system 
operated in associational mode at run time, substantial speed-up occurred on the small 
circuits we initially studied. Unfortunately, more recent studies of panuneterized devices 
(reported in the present paper) indicate that learning in advance is infeasible for large 
devices. 

In (Fattah & O'Rorke, 1992), we allowed the EBL system to make errors as long as the 
percentage remained below a pre-assigned threshold. Instead of testing proposed diagnoses 
against the model, this diagnosis system tests against reality (or an external "teacher"). 
Results of the present paper include averages, over ten experimental runs, of important 
measurements of this method's performance. , 

Other works that have explored the use of EBL for MBD include (Resnick, 1989; 
Zercher, 1988; Koseki, 1989), but these works are limited to single-fault diagnosis. Interest 
in the proposal of embedding compilation in problem-solving environments has been more 
evident in recent works. See de Kleer (1990), El Fattah and O'Rorke (1991c, 1991b), 
Friedrich, Gottlob & Nejdl (1990). But results on the empirical evaluation of EBL for 
MBD have been meager and sketchy. 

6.1 Knowledge Compilation 

Davis (1987) has argued strongly against efforts to compile causal models into associational 
rules. According to him, turning a model into a set of rules is 

misguided, if rule is taken to mean conditional statement, because form alone 
is not the source of speed. 

We agree with Davis that form alone is not the source of speed. EBL has been demonstrated 
to provide speedup in numerous problem solving situations, e.g., (O'Rorke, 1989). But 
there are factors that diminish the improvement offered by EBL. For example, the utility 
problem (Minton, 1988); If too many useless rules are learned, EBL may degrade problem 
solving performance instead of improving it. 
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We consider the question of whether to turn knowledge associated with models into 
rules using EBL to be an empirical question. Our results indicate that, for sufficiently 
small devices, it makes sense to convert the entire model into rules. See the results in 
section 4.1 on STATIC. As the number of components increases this approach becomes 
less feasible, but it still makes sense if we are willing to invest substantial computation up 
front, prior to fault diagnosis, and quick response at diagnosis time is important, and a large 
memory is available at diagnosis time. In addition, in situations where diagnostic tools 
are mass produced, the initial computations can be amortized over problems encountered 
by each tool. In this case, one can divide the preprocessing cost Cst in figure 29 by the 
number of diagnostic systems produced. 

According to Davis (1987), turning a model into a set of rules is 

impossible, if rule is taken to mean empirical association and the causal model 
is strictly deterministic, because empirical information is (by definition) avail-
able only from observing nature. ' 

We believe it is possible to use knowledge from first principles and from observing actual 
occurrences of faults to compile empirical associations. This seems to be what humans do 
to become experts. We claim that EBL(p) automates the acquisition of some empirical 
associations since it is driven by observations of actual faults. 

It is our view that the controversy around knowledge compilation is an indication that 
many issues are not yet understood. See Goel (1991). We think that more empirical 
studies are needed to form useful theories about the utility of knowledge transformations 
in specific task areas such as diagnosis. 

6.2 Clause Management Systems 

In Reiter and de Kleer (1987), a problem-solving environment consists of a domain de­
pendent reasoner and a domain independent Clause Management System (CMS). The 
reasoner can query the CMS about the set of minimal support clauses for a given propo­
sitional clause. The set of minimal supports for a query can be computed trivially from 
the set of prime implicates of the CMS database. Two approaches are proposed: the inter­
preted versus the compiled. This is somewhat similar to MBD versus STATIC. The issue 
of interpreted versus compiled in the reasoner-CMS architecture is discussed in Kean and 
Tsiknis (1990), who claim that the compiled approach is "more suitable for CMS in both 
question-answering and explanation-based problem solving environments." 

6.3 Utility of Diagnosis 

Provan and Poole (1991) define diagnosis as a logical formula such that "all of the models 
of the formula are use equivalent." A diagnosis that is overgeneral in accordance with 
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Reiter's definition of minimal diagnosis (Reiter, 1987) could be use-equivalent if it contains 
the actual fault-thus leading to the right action. We adopted this definition of correct 
diagnosis in our empirical study of EBL(p). Notice that insisting on having identical 
collections of minimal candidates to qualify diagnosis as correct will only increase the 
learning effort and the rules that need to be cached. Also, our notion of approximate 
diagnosis may be regarded as a definition of class equivalence, except that our notion is 
empirically-based. 

6.4 Focusing Diagnosis 

A "focused" MBD system was introduced by de Kleer (1991), based on the idea of focusing 
the reasoning on "what will ultimately be the most probable diagnosis." The distinction 
between us and de Kleer is that while he recomputes for each problem predictions that 
focus on the most probable candidates, we cache all p-rules. Like de Kleer's, our approach 
is also a means of limiting the predictions that need to be made. But our approach could 
benefit from probabilistic focusing and we view this as an important topic for future work. 

6.5 Quality of Learning 

Van de Velde (1988) discusses three criteria to evaluate the quality of learning problem 
solving associations: correctness, effectiveness, and level of abstraction. In general, the 
higher the correctness the lower the effectiveness and the level of abstraction. These criteria 
determine the bias of the learning system. According to Van de Velde, the bias will 
be dictated by three characteristics of the learning situation: criticality, diversity, and 
background knowledge: 

(1) Learning in non-divers environments may be biased towards effective asso­
ciations, (2) Learning in critical environments must be biased toward correct 
associations, (3) with background knowledge, learning may be biased towards 
abstract associations. 

Our EBL(p) system for MBD is formulated to strike a balance between the first two biases. 
The third bias is an integral part of our EBL/MBD framework. 

7 Conclusions 

We described two general approaches integrating EBL with model-based and associative 
diagnosis. The first approach is a form of "learning in advance." Learning occurs in a 
training phase prior to diagnosis of examples of faults. 1he second approach is a form of 
"learning while doing." Learning takes place as faults are diagnosed. In both approaches, 
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rules called p-rules associate observations and assumptions with predictions and cl-rules 
associate conflict-sets with minimal diagnoses. In the first approach, implemented in a 
system called STATIC, all p-rules are compiled in advance. In the second approach, im­
plemented in a system called EBL(p), the p-rules are compiled at diagnosis time. D-rules 
are compiled at diagnosis time in both approaches. 

STATIC avoids a problem with the straightforward application of EBL to diagnosis. 
The obvious approach to integrating EBL and diagnostic hybrids is to transform the results 
of model-based diagnosis into associations between observations, constraint violations, and 
diagnoses. But if EBL is used to learn p-rules and cl-rules while doing MBD, the resulting 
rules can suggest incorrect diagnoses. If too few examples have been observed, the system 
may not have encountered relevant constraint violations. As a result, the rules may suggest 
diagnoses that are too general, missing faulty components. This problem can be solved 
by doing constraint suspension testing of the diagnoses suggested by the rules and by 
learning when this leads to unforseen constraint violations. Unfortunately, this form of 
"doublechecking'' is prohibitively expensive. Its cost overwhelms the speedup provided by 
EBL on large devices. 

STATIC solves this problem by eliminating the need to double check proposed diag­
noses. It also eliminates the need for diagnostic examples altogether, since it considers all 
possible constraint violations in advance. STATIC analyzes the model and compiles it into 
abstract constraints between inputs and outputs. 

EBL(p) allows for. relaxation of the requirement that the diagnostic system perform 
with perfect accuracy. It assumes that existing associational rules are applicable to new 
situations, analyzing and learning only when this assumption leads to unacceptable errors. 
When too many errors have been made, EBL is activated and new rules are acquired 
until the diagnostic accuracy rises above the given threshold percentage p. Constraint 
suspension testing is not performed. Instead an external agent is charged with the task of 
verifying that the proposed diagnoses are correct. If not, then an error is counted against 
the diagnosis system, lowering its running accuracy score. 

We presented results of computational experiments on the polybox and on digital logic 
devices with increasing number of components. The experiments were carried out for 
independent randomly distributed faults spanning all components. We allowed multiple 
faults of up to three components. 

The experimental results show that STATIC is subject to the exponential growth as­
sociated with MBD. As the size of the device grows, STATIC incurs a large time cost in 
advance of diagnosis and a large space cost at diagnosis time. The results show that if costs 
are measured purely in terms of cpu-time (without regard for such variables as the utility 
of correct diagnoses) the number of problems that must be diagnosed before the cross-over 
point where STATIC intersects MBD soon becomes large. With more powerful computers 
and more massive memories becoming available, this approach may be warranted for impor­
tant diagnosis problems. When feasible, STATIC is the preferred alternative at diagnosis 
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time since it is essentially an extremely fast lookup operation. 
EBL(p) provides speed-up over MBD provided that the required accuracy is not too 

high. EBL(p) alternates between a relatively high cost per problem (incurred when MBD 
and learning are turned off) and a low cost per problem (incurred by the associational 
rules). The lower cost dominates the higher cost, so that EBL(p) outperforms MBD after 
a number of examples. The lower the required accuracy, the sooner this crossover point 
occurs. This method is preferable in situations where we are willing to tolerate some errors. 
In realistic situations, observed faults will tend to form clusters in the space of possible 
faults. EBL(p) takes advantage of this fact to improve efficiency while making acceptable 
sacrifices in accuracy. 
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