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Abstract

Advances in Computational Methods for Water-Wave Problems

by

Mohamed Hariri Nokob

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Ronald W. Yeung, Chair

We developed three different techniques to enhance the computational methods used for
time-harmonic linear water-wave theory. The first makes use of hypersingular boundary
integral equations to model thin solid bodies in a wave field. The method developed allows
for numerical treatment of the problem in its original hypersingular form using higher-order
Overhauser elements without the need for regularization. We then use the method to study
the case of a thin bottom-touching barrier in waves with particular interest in the effect of
the harbor mouth (opening) over its hydrodynamic characteristics. Our results shed light
on the drastic changes that occur in the presence of the opening and its size. We also point
to the discovery of particular opening widths that allow for zero total loads on the harbor
at particular frequencies.

The second part still deals with hypersingular boundary integral equations but in the
context of thin arbitrarily shaped plates. A Galerkin approach is used to treat the high-
order singularity and results are used to fill some gaps in the literature of the values of
added mass for these plates, particularly those plates with openings or holes.

The third numerical method we present allows for the efficient treatment of general linear
water-wave problems with multiple arbitrarily shaped bodies and arbitrarily shaped seabed
geometry when the number of unknowns in the problem N is large. The problem domain
is divided into an internal region that is modeled using a simple-source boundary integral
equation allowing for arbitrarily shaped body and bottom geometry and an outer domain
that is assumed free of solid bodies and of uniform water depth. The two domain solutions
are then matched to complete the solution. The major contribution in this present topic is
introducing the ”fast-multipole method” to the solution procedure and therefore changing the
complexity of the problem from O(N3) (or O(N2) if an iterative solver is used) to O(N) for
large values of N . The memory requirements scale linearly with N as well. This methodology
is needed when the number of solid bodies is large or when very large floating structures with
complex shapes are needed. It is also necessary when the bottom topography for a particular
problem varies considerably. We use the computational code developed to study the effects
of variable bottom topography over two case examples of multiple floating bodies. The first
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case is a set of 4 truncated floating vertical cylinders over a bottom protrusion, for which
results indicate that variations in bottom topography cause slight to medium level changes
on the wave loads on the floating bodies. The second case is applied to a configuration of 16
floating cylinders (with N ∼ 150, 000) and the effects of the variable ocean floor are again
considered. Wave elevation details of this complex geometry is shown for illustration.
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Chapter 1

Introduction

The analysis of interaction of water waves with floating or fixed bodies is very important in
practice. All modern design of maritime structures is driven by the ever more sophisticated
analysis of how those structures will act in the oceanic environment and especially what
kind of loads are to be expected as the waves act on those structures. It has therefore
became more imperative over the years to have better tools to analyze those interactions.
The availability of computers played an important role to shift attention towards numerical
methods and triggered enthusiasm among the practitioners to test how reliable those new
tools at hand can be. In addition, the introduction of new types of ocean structures such
as farms of wave energy converters or very large floating structures brought forward some
new challenges and required new methods of analysis for which previous experience was
insufficient. To that end, the development of numerical and computational methods used in
the maritime industry is not only desirable but also a necessity to meet those new challenges.
We hope, through this work, to be able to serve the maritime community in advancing the
understanding and practice of the design of ocean structures.

In what follows, consider a three dimensional coordinate system xyz with the z-axis
pointing upwards (to the free surface for example).

1.1 Water Wave Theory

Water waves are in general nonlinear, slightly viscous and turbulent. These characteriza-
tions are particularly important for overturning and breaking waves. They differ from other
fluid flows by the presence of a free surface. They represent a special case of two phase
flows in which one phase (the air) causes negligible stresses and its pressure is assumed
constant in space. The time varying position of the free surface is still part of the solution
though. Accordingly, the general motion of ocean waves without turbulence is governed by
the Navier-Stokes equations for a homogeneous fluid in addition to no-slip conditions on
solid boundaries SB, and kinematic and stress free conditions on the free surface SF (see [1]
or [2] for a detailed introduction):
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1.1. Water Wave Theory

∂−→u
∂t

+−→u .∇−→u = −∇p
ρ

+−→g + ν∇2−→u , (1.1)

∇.−→u = 0, (1.2)

−pI + µ[∇−→u + (∇−→u )T ] = −patmI, (on SF ) (1.3)

∂η

∂t
= −→u .∇(z − η), (on SF ) (1.4)

−→u = −→uB, (on SB). (1.5)

Here surface tension is ignored as it is not usually important for marine applications. We
made use of the definitions −→u for the fluid velocity vector, t for time, p and patm for pressure
and atmospheric pressure respectively, ρ for density, ν and µ for the kinematic and dynamic
viscosity respectively, η(x, y) is the free surface height, −→uB is any solid body velocity, −→g =
[0, 0, g] is the gravitational acceleration vector and I is the identity matrix. In general, these
equations need to be solved for the velocities, fluid pressure and free surface elevation for a
complete solution of the water wave flow. This is difficult in practice if the exact equations
are to be solved although significant progress has been achieved [3]. The methods used
differ mainly in how they track the free surface including the use of fixed [4] and moving
[5] grid methods. The additional assumption of an irrotational fluid (justified by Kelvin’s
circulation theorem [6] which states that an ideal fluid initially irrotational will remain as so
in the presence of conservative body forces), leads to a more simplified potential flow model,
yet still nonlinear. Very good numerical methods have been developed to solve for this type
of model [7].

1.1.1 Linear Water Waves

When the wave amplitude is sufficiently small compared to the wavelength and water depth,
the equations that govern the motion of the fluid can be linearized without much loss of
accuracy. If we define the velocity potential Φ such that −→u = ∇Φ, the governing equations
can be reduced to the more practical linear potential flow model:

∇2Φ = 0, (1.6)

∂Φ

∂t
+ gη = 0, (on SF ) (1.7)

∂η

∂t
− ∂Φ

∂z
= 0, (on SF ) (1.8)

∂Φ

∂n
= −→uB.−→n , (on SB). (1.9)

Now for most practical situations, it is usually sufficient to consider time harmonic waves.
This shifts the solution to the simpler frequency domain, drops the time dependency, and can

2



1.2. The Boundary Integral Equation Solution

consequently be used to simulate more complicated scenarios in the time domain. Accord-

ingly, let Φ = φ(x, y, z)e−iωt and −→u =
−→
U e−iωt for some angular frequency ω. This further

reduces the problem at hand to:

∇2φj = 0, (1.10)

−ω2φj + g
∂φj

∂z
= 0, (on SF ) (1.11)

ηj = −ωφj

g
, (onSF ) (1.12)

∂φj

∂n
=

−→
Uj .

−→n , (on SB). (1.13)

√
r

(

∂

r
− iκ0

)

φj = 0. (on SR) (1.14)

The last condition 1.14 is needed to insure a unique solution for the time harmonic problem
dictating outgoing waves and is taken over the surface SR defined by r → ∞. κ0 = 2π/λ is
the wavenumber associated with wavelength λ. The subscript j is used to refer to the mode
of motion with j = 1, 2, 3, 4, 5, 6 referring to surge, sway, heave, roll, pitch and yaw modes,
respectively. This decomposition of the general problem to these sub-problems is possible
because of linearity.

In the case where solid bodies are static and an incident wave approaches the bodies, it
is then more convenient to solve for the potential correction term φ7 defined as φ = φ0 + φ7

where φ is the total potential and φ0 is the incident wave potential. The previous set of
equations (1.10-1.14) then apply directly to φ7 with the exception of 1.13 which is modified
to:

∂φ7

∂n
= −∂φ0

∂n
, (on SB). (1.15)

For the case when the water depth h is constant (at least far away from any bodies in the
water), the incident wave potential φ0 is given in [8]:

φ0 = −η0ω
κ0

cosh(κ0(z + h))

cosh(κ0h)
eiκ0r cos(θ−α), (1.16)

for some given wave direction α (relative to the x-axis) and wave amplitude η0.

1.2 The Boundary Integral Equation Solution

Traditionally, the boundary integral formulation has been the favored solution approach to
the linear water-wave problem. The fact that the velocity potential in any part of the domain
could be represented exactly by values defined over the boundary surface is very appealing
in practice as the problem dimension is reduced by one and the number of required solution
unknowns is significantly reduced. The boundary element method is the term used for the
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numerical procedure used to approximate the solution. Only the boundary is discretized
into some form of triangulation and the problem unknowns (usually the potential or its
derivatives) are then fitted into some chosen general shape functions. The parameters of the
shape functions become the only unknowns of the problem to solve for. The convergence
accuracy of the solution then depends on the order of the shape functions and triangula-
tion used with higher order functions providing higher accuracy and added implementation
complexity. Finally, either a collocation or Galerkin type schemes are used to form a full
system of equations and solve for the unknowns. Since the kernel functions for boundary
integral methods are singular and usually difficult to integrate, the collocation scheme is
usually preferred in practice as it requires far less computational effort to form the system of
equations. This is unlike the more popular finite element methods where Galerkin methods
dominate because of their ease of integration and the resulting symmetric systems of equa-
tions obtained (see [9] for a review and comparison).

For potential flow problems governed by equations (1.10-1.14), the boundary integral
formulation is obtained from Green’s second identity:

4πφj(P ) =

∫

S

(

φj(Q)
∂G(P,Q)

∂nQ

−G(P,Q)
∂φj(Q)

nQ

)

dSQ. (1.17)

Integration is taken over S = SB ∩ SF ∩ SR the full boundary of the fluid. Here G is the
chosen appropriate Green function for the problem and is singular in general. The classical
reference for free-surface Green functions is [1].

By the least, G must satisfy the governing equation (1.10) except when P coincides with
Q. This equation provides a means to obtain the potential at some point P in the fluid
domain from a knowledge of the potential and its derivative at all the boundary points Q.
To solve for the potential over the surface, point P is made to approach Q very carefully so
that when they coincide, a new equation is obtained:

2πφj(P ) =

∫

S

(

φj(Q)
∂G(P,Q)

∂nQ

−G(P,Q)
∂φj(Q)

nQ

)

dSQ. (1.18)

This equation is solved for the surface potential which is then used in (1.17).
The most commonly used Green function for the linear water-wave problem is the wave

Green function that automatically satisfies the free surface and radiation conditions and,
therefore, no integration over the respective boundaries is necessary. In addition, the ocean
bottom boundary condition is also satisfied when the water depth is finite constant or infinite.
For example, for the case of an ocean floor with constant finite water depth h, the Green
function is given by:

G(P,Q) =
1

√

R2 + (z − ζ)2
+

1
√

R2 + (2h+ z + ζ)2

+ 2

∫

∞

0

(k + κ0) cosh(k(z + h)) cosh(k(ζ + h))

k sinh(kh)− κ0 cosh(kh)
e−khJ0(kR)dk. (1.19)
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This function satisfies the free-surface condition, the finite water depth condition as well as
the radiation condition exactly. It follows that the integration in equation (1.17) need to be
carried over floating bodies in the problem only as the rest of the integrals over the bottom,
free-surface or radiation boundary drop out. Here R is the distance between P and Q in the
horizontal plane, and z and ζ are the corresponding vertical coordinates. J0 is the zeroth-
order Bessel function. The direct integration in (1.19) is costly in practice and alternative
methods are more suitable. An approximate procedure to find G was given by Newman [10]
using interpolation for parts of the space when P is close to Q and using John’s equivalent
series [11] otherwise.

1.2.1 On Hypersingular Boundary-Integral Equations

Of particular relevance to this work are hypersingular boundary-integral equations which
are integral equations that admit hypersingular kernels. These usually appear when one
attempts to take the derivative under the integral of a singular kernel typically encountered
in the water-wave problem. A one-dimensional two-sided singular integral is of the form:

∫ b

a

f(t)

(t− t0)
ndt, (t0 ∈]a, b[). (1.20)

The integral is considered singular if n ≥ 1 and hypersingular when n > 1. In these cases, a
regularization of some sort is necessary for the integral to exist. For example, when n = 1,
the integral is interpreted in the sense of the Cauchy Principle Value, and when n = 2, the
finite part of the integral is kept (Hadamard Regularization) as follows:

∫ b

a

f(t)

(t− t0)
2dt = lim

ǫ→0

(
∫ t0−ǫ

a

f(t)

(t− t0)
2dt+

∫ b

t0+ǫ

f(t)

(t− t0)
2dt−

2f(t0)

ǫ

)

, (1.21)

where the last term represents the unbounded part and is subtracted to obtain the finite
part. Note that f(t) ∈ C0,α and f(t) ∈ C1,α for n = 1 and n = 2 respectively, where Cm,α

referes to the class of Holder continuous functions smooth to the order m and 0 < α ≤ 1
[12]. Regularization is also necessary when t0 = a or t0 = b. The integral is then interpreted
as a one-sided finite part integral regularized as follows:

∫ t0

a

f(t)

t− t0
dt = lim

ǫ→0

(
∫ t0−ǫ

a

f(t)

t− t0
dt+ f(t0) ln ǫ

)

, (1.22)

∫ b

t0

f(t)

t− t0
dt = lim

ǫ→0

(
∫ b

t0+ǫ

f(t)

t− t0
dt− f(t0) ln ǫ

)

, (1.23)

∫ t0

a

f(t)

(t− t0)
2dt = lim

ǫ→0

(
∫ t0−ǫ

a

f(t)

(t− t0)
2dt−

f(t0)

ǫ

)

, (1.24)

∫ b

t0

f(t)

(t− t0)
2dt = lim

ǫ→0

(
∫ b

t0+ǫ

f(t)

(t− t0)
2dt−

f(t0)

ǫ

)

. (1.25)
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Notice that the two-sided integrals can be obtained by adding the corresponding one-sided
ones after regularization. This will be an important observation later on when these integrals
are carried over individual panels and the result summed up over all panels. It is also
essential to note that the integrals (1.22) and (1.23) do not allow for a simple change of
variable because of the logarithmic terms used for regularization [13].

Now when the volume of a solid body shrinks so that the body is merely an infinitely thin
sheet, the surface integral in equation (1.17) is carried over the opposite sides of the body
(S+ and S−). These are essentially the same with opposite normal vectors (n+ = −n−). It
follows from equation (1.13) that the second term on the right side of (1.17) drops out. The
potential in the other term is replaced by [φj] ≡ φ+

j − φ−

j and integration is carried over one
side only. The resulting equation (when a free-surface Green function is used) is:

4πφj(P ) =

∫

S+

(

[φj(Q)]
∂G(P,Q)

∂nQ

)

dSQ. (1.26)

Finally, taking the normal derivative and carrying it under the integral sign (this is justified
from the work in [13]) results in:

4π
∂φj(P )

∂nP

=

∫

S+

(

[φj(Q)]
∂2G(P,Q)

∂nP∂nQ

)

dSQ. (1.27)

The boundary condition (1.13) is then used on the left side of the equation and the potential
jump [φj] is considered the unknown to be solved for. The second derivative in this equation,
however, results in a hypersingular kernel for the surface integral.

1.3 On The Fast Multipole Method

A second aspect of this thesis is that we will make use of the Fast Multipole Method (FMM)
in order to reduce the computational complexity of the numerical solution for the linear
free-surface wave problem to O(N) where N is the number of unknowns to solve for. The
method was originally developed to speed up the interactions in the n-body problem (see
[14] and [15]). It was later widely accepted as a means to accelerate the matrix vector mul-
tiplications required by the iterative solvers for the boundary element method (see [16] for a
review) used in the various scientific disciplines. Particular examples relevent to the marine
field include [17] for the discrete element method, [18] for ship flows, [19] for ship hulls and
[20] for airfoils.

The basic idea behind the FMM and other similar methods is that the interaction effect
of far away particles could be grouped together and applied collectively on individual target
particles. A hierarchical scheme such as an Octree is used to group close particles together
in cells. Interactions between the particles are then replaced by interactions between cells.
For the FMM for example, each cell is assigned an interaction list of cells for which the
interaction effects are approximated by multipole expansions. Interactions between adjacent
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cells, however, are still treated in a regular direct manner. In addition, cells that are deter-
mined to be far from a particular target (not in the interaction or adjacent list of cells) need
not be accounted for directly as their effects will be carried over from the parent cell of the
target cell. This set of rules is what makes the FMM unique and truly O(N) in complexity
compared to other methods. We will discuss this in more detail in chapter 3.

The FMM can be applied to a variety of problems that can be solved using the boundary
element method. It is relevant to our work as it applies to the numerical solution of (1.18).
The choice of Green’s function matters in this case to the application of the FMM as it is
important to pertain the necessary multipole expansion for a particular Green function. A
function such as that in (1.19) has more complicated multipoles than the simple Rankine
source and is more computationally expensive to evaluate (see [9]). However, as we discussed
earlier, the Rankine source by itself is not sufficient to deal with the complicated boundary
conditions in (1.11) and (1.14). That is why we turned to hybrid matching numerical meth-
ods to solve this problem. The idea is that the fluid domain is divided into a simple external
domain for which the solution is modeled in a general manner (eigenfunction expansions are
used here), and an internal domain for which the solution is modeled using a simple source
boundary integral equation. Since the only Green function used in this case is the Rankine
source, a simpler version of the FMM can be applied leading to a more efficient algorithm.

1.4 Dissertation Outline

This dissertation consists of three main parts. The first, presented in chapter 2, will go into
the details of the treatment of the hypersingular representation of the solution to the linear
water-wave problem with thin bodies at high orders of approximation. Particular emphasis
is then placed over the effect of harbor openings on the hydrodynamic loads over the harbor.

The second part, presented in chapter 3, will extend the treatment of hypersingular
integral equation to three dimensional space dealing with flat plates of arbitrary shapes.
The methods used here will be very different than the first part.

The third part of the dissertation (chapter 4) will introduce the Fast Multipole treatment
of the numerical procedure to the general linear water-wave problem with floating bodies.
The efficiency of the proposed method will be quantified and then the method is used to
simulate the complex effects of variable bottom topography over a group of floating bodies.

Finally, we will end with a conclusion that will summarize the work presented here as
well as discuss possible extensions in the future. Note that each chapter is independent from
the rest and is self contained for the most part.
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Chapter 2

Diffraction and Radiation Loads on Open Cylinders of

Thin and Arbitrary Shapes

The contents of this chapter have been published by the author and are mostly taken from
[21] with some additional content from [22]. In order to conform with the conventions used
in those references, the coordinate system will be taken such that the y-axis is pointing
upwards perpendicular to the free surface.

2.1 Introduction

In his 1970 paper, Garrett [23] presented a solution to the diffraction problem of a bottomless
harbor that is circumferentially closed. He argued that any realistic model of a real floating
harbor must include the effects of the harbor shape, thickness and opening (harbor mouth),
but the shape would not cause any qualitative differences and the thickness had negligible
effects. He construed that“The effect of the harbour entrance is less obvious”. In this work,
we will attempt to shed some light on exactly this last point. We will tackle the problem nu-
merically using a boundary integral approach and try to understand of the results obtained.

The proposal to build a floating harbor or intermediate transport station close to the
Brazilian coast [24] as well as the emerging Portunus project, which proposes to construct
floating harbors off the US coasts [25], require an understanding of the consequences of
having an open-shaped body in the ocean because the harbor will inevitably need to be an
open body. Furthermore, the desire to design more cost effective ocean structures motivates
engineers to examine unconventional designs of these structures. One instant suggestion is
to use open columns to support platforms and other facilities. This requires a thorough
understanding of the changes that occur when these columns are opened. Typically, these
problems are three dimensional and computationally expensive. The computational effort is
significantly reduced by assuming that the bodies have zero thickness.

Hence, the study of a wave field interacting with such thin structures is worthwhile as
these often appear in designs. Stiffeners, plates and shells are important examples used in
marine design. The numerical treatment of these components by standard means, such as
the boundary-integral method, is expected to be troublesome. The usual situation is that
the numerical problem becomes ill-conditioned as the thickness of the body decreases. This
is because two opposite points of the body surface tend to carry the same information in the
limit of vanishing thickness. It is more natural then to consider the potential jump across
the body surface instead. This reduces the number of problem unknowns to at least a half,
which is a significant reduction for three-dimensional problems.
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It follows from the boundary-integral formulation that the potential field over a zero-
thickness shell is represented by a double-layer sheet. The application of boundary condi-
tions then leads to a hypersingular integral that needs to be computed carefully [26, 12].
Such a treatment is also a good approximation to bodies of the same shape having a finite
but small thickness [27]. This method was originally used in solid mechanics for crack prob-
lems in [13] and was later used for water-wave problems to model the scattering [12, 28] and
radiation [29, 30] of water waves from flat or curved plates, and disks. These last references
used a novel method to deal with the hypersingularity. The potential jump over the body
surface was represented in terms of Chebychev basis functions with the proper weights so
that the hypersingular integral could be evaluated analytically over flat surfaces. The same
method could be used for different geometries if the integrand is written as the sum of sin-
gular and regular terms. The integral of the singular part is then treated analytically and
the correction terms are integrated numerically. This is the case in [31] in which a surging
flap wave energy converter, modeled as a thin vertical plate was considered. This procedure
also has the advantage of considering the square-root singular behavior near the body edges
explicitly. The problem is that the series expansion of the integrand has to be valid over all
the body surface, which may require several terms in the series expansion especially as the
body shape becomes more complicated. Integration over the whole surface is also required
to compute each influence coefficient of the linear system. Given that calculating these co-
efficients requires the bulk of the computational effort, it is more desirable to find a more
effective method. The procedure we present here depends on a set of compact basis func-
tions and does not require any series expansion over the entire body surface. The method is
found to be very stable and well conditioned. Note that the hypersingular integral can be
avoided altogether by regularization [26]. This involves the use of Stoke’s theorem to reduce
the order of the singularity but usually requires some additional work for the evaluation of
tangential derivatives of the unknown potential, which presents another numerical challenge
that cannot be easily handled in practice.

In this chapter, we treat the singularity directly by Taylor expanding the integrand about
the singular point. This is the approach for the case of a truncated circular cylinder in [32].
In this work, the original field equation is transformed into a set of Helmholtz equations in
two dimensions after the potential is expanded in terms of the natural vertical modes. This
procedure was used in [31] to model a flap-type wave energy converter. This decomposition,
which only applies for bottom-mounted cylinders, is very convenient from a computational
standpoint as the numerical procedure is simplified and the simulation time is significantly
reduced.

Our solution method is applied to model incident-wave flow over vertical cylinders of any
cross-sectional shapes. This conveniently allows us to model open shells and study the wave
loads on these bodies subject to time-harmonic incident waves or arising because of the mo-
tion of the bodies themselves in surge, sway, roll, pitch and yaw directions. We assume that
these motions are theoretically possible although the cylinders extend to the ocean floor.
That means that proper supports are used at the bottom or the results here are approxima-
tions to finite draft bodies whose height is comparable to the water depth. This is a good
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approximation in general, especially in deeper water where most activity is confined near
the free surface. The authors’ previous works on this subject include [22], [33] and [21]. In
this last paper, a higher-order method based on the modified Overhauser elements is used
to solve the hypersingular problem. The results for an open shell are then analyzed in some
detail and presented here as well.

We also note that that the hypersingular integral equation formulation is used to avoid
non-uniqueness problems (irregular frequencies) associated with floating solid bodies [34, 35].
The combination of the hypersingular integral equation with the less singular equation is well
posed for all frequencies. The open thin shells considered here do not suffer from those prob-
lems because no internal potential (inside the thin bodies) exists but the procedure presented
here is useful in those situations as well.

The following sections start by presenting the problem formulation and method of solu-
tion. Then, radiation and diffraction results for open circular, elliptical and square shaped
shells are presented and discussed. The free-surface elevations for some particular geometries
are also presented.

2.2 Computational Theory

2.2.1 Problem Formulation

We assume linear water wave potential theory. All potentials Φ are considered harmonic
in time with frequency ω such that Φ(x, y, z, t) = Re{φ(x, y, z)e−iωt}. These potentials are

normalized as φR = φ
R
/alU and φS = φ

S
/η0

√
ga for any of the radiation and scattering po-

tentials respectively. The terms with an overbar are always dimensional, a is a characteristic
length of the body, g is the acceleration of gravity, and η0 is the incident wave amplitude.
The constant U is the amplitude of the translation and rotation forced motions and the
integer l is 1 for surge and sway and is 2 for roll, pitch and yaw. These motions will be
denoted by the integers p = 1, 2, 4, 5, 6 respectively and we use p = 0, 7 for the incident and
diffracted potentials. The corresponding potential for these different motions is denoted by
φp. In addition, the water depth is finite and given by h.

Let the coordinate system be fixed on the calm free surface with the y axis pointing
upwards (see figure 2.1). We use the characteristic length a to nondimensionalize all length
parameters and wavenumbers in this work. The problem is then the classical water wave
formulation given by:

∇2φp = 0, (2.1)

∂φp

∂y
− νφp = 0, y = 0, ν =

ω2a

g
, (2.2)

∂φp

∂y
= 0, y = −h. (2.3)
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Figure 2.1: Schematic diagram of a square shaped open shell

Let −→n = [n1, 0, n2] be the normal vector pointing out of the body, then the kinematic
condition on the body surface applies as:

∂φp

∂n
=















np, (p = 1, 2),
(y + h)np−3, (p = 4, 5),
zn1 − xn2, (p = 6),

−∂φ0

∂n
, (p = 7).

(2.4)

We assumed that the rolling and pitching axes pass through the origin projection on the
ocean floor. A radiation condition that dictates outgoing waves is also required. Now we
can introduce the decomposition:

φp(x, y, z) =
∞
∑

n=0

ϕp
n(x, z)Yn(y), (2.5)

Yn(y) =
cosh(κn(y + h))

Mn

, Mn =

√

sinh(2κnh)

4κn
+
h

2
(2.6)

where the M ′

ns are scale factors to make the Y ′

ns an orthonormal set. The functions ϕp
n are

unknown modal potentials in the horizontal plane and κn are real (n = 0) and imaginary (n >
0) wavenumbers that satisfy the usual dispersion relation κn tanh(κnh) = ν. The functions
Yn(y) satisfy the conditions (2.2) and (2.3) effectively removing any depth dependence. The
incident potential is given and can be decomposed in the same manner:

φ0(x, y, z) = ϕ0
0(x, z)Y0(y), (2.7)

ϕ0
0 =

eiκ0(x cosβ+z sinβ)

i
√
νY0(0)

,
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Figure 2.2: Schematic of one panel showing points Q and P and the cross sectional shapes of
elliptical- and square-shaped bodies. The incident wave direction, of angle β, is also shown.

where β is the incident wave direction (figure 2.2). The problem thus reduces to:

(∇2 + κ2n)ϕ
p
n = 0, (2.8)

∂ϕp
n

∂n
=



















np
sinh(κnh)
κnMn

, (p = 1, 2),
np−3

κ2
nMn

(κnh sinh(κnh)− cosh(κnh) + 1), (p = 4, 5),

(zn1 − xn2)
sinh(κnh)
κnMn

, (p = 6),

−∂ϕ0
0

∂n
δ0n, (p = 7).

(2.9)

The equations in (2.9) were derived from (2.4) using the fact that Yn are orthogonal over the
water depth. Equations (2.8, 2.9) will be solved as an integral equation using the boundary
element method. The potential ϕp

n is thus represented by a normal dipole sheet and then
(2.9) is applied [12]:

∂ϕp
n

∂nP

=

∫

C

[ϕp
n]

∂2Gn

∂nP∂nQ

ds, (2.10)

where [ϕp
n] is the potential jump across the body and P (x, z) and Q(ξ, ζ) are collocation and

integration points respectively (e.g. see [9]). C is one side of the body surface and Gn is the
fundamental solution of the corresponding Helmholtz equation and is given by [34]:

Gn = − i

4
H0(κnR), (2.11)

R = |PQ| =
√

(x− ξ)2 + (z − ζ)2.

Here H0 is the Hankel function of the first kind and order zero. In general, an additional
term needs to be added to the left hand side of (2.10) to account for the fact that the kernel
is hypersingular (see [36]). However, the additional term is not needed in this case because
we will use straight panels with zero curvature to discretize the boundary. More care should
be taken for higher order elements.

Using the fact that −→nP = [sin(α),− cos(α)] and −→nQ = [sin(θ),− cos(θ)], where α and θ are
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the slope angles of the body curve in the horizontal plane (defined in figure 2.2), we have:

∂2Gn

∂nP∂nQ

=
iκn
4R2

(

2H1(κnR)

R
− κnH0(κnR)

)

×
(

(ξ − x)2 sin(α) sin(θ) + (ζ − z)2 cos(α) cos(θ)

− (ξ − x)(ζ − z) sin(θ + α))

− iκn
4R

H1(κnR) cos(θ − α). (2.12)

2.2.2 Numerical Integration and Solution Procedure

The body contour is divided into N flat panels Cj[(ξj, ζj), (ξj+1, ζj+1)] as in (figure 2.2).
Collocation inside the panels is easy and does not require higher order interpolating basis
functions but that leads to nonconforming elements, which results in a lower accuracy of
the formulation as well as a dependency on the position of the collocation points (see [37]
for more information). It is more natural then, and desirable to collocate at the edges of
the panels. This ensures that the boundary conditions are met at the exact positions of the
original problem. Because the kernel of the integral in (2.10) is hypersingular, this requires
a density distribution that at least belongs to C1,α, the space of functions with Holder
continuous first derivatives [13]. However, this requirement can be loosened as indicated in
[38]. In fact, we will use the concepts in this last reference as explained in appendix A.
Nonetheless, to obtain a high order method, we choose to use the modified cubic Overhauser
polynomial elements to represent the potential jump distribution. These elements have a
continuous derivative at the edges of the panels and the interesting property of being locally
independent of each other. That is, any local errors will not propagate across the mesh as in
the case of other functions. They also do not require evaluating derivatives at the edges as
continuity of the derivatives is guaranteed by the structure of the elements themselves. This
makes them simple to use. Furthermore, several authors have shown the superiority of these
elements in certain aspects such as stability. A short review on these elements can be found
in [39] and [40]. The authors in this last reference note that the Overhauser elements suffer
from errors when the mesh size is nonuniform. They develop a set of modified Overhauser
elements that take the varying mesh into account and show their applicability to boundary
element methods. We choose to adopt those last elements in this work.

We introduce a parameter t that varies between 0 and 1 over some panel j. Let [ϕ]j be
the value of the density at the starting edge of the panel j. If j wasn’t at some end of the
shell then the density [ϕ] over that panel is interpolated as:

[ϕ] =

j+2
∑

q=j−1

Nq(t)[ϕ]q, (2.13)

Nq(t) =
4
∑

k=1

bqkt
k−1. (2.14)
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Here, Nq(t) are the Overhauser elements. These coefficients vary for each panel and are
given by:

bqk =











0 − (1−w1)2

w1

2(1−w1)2

w1
− (1−w1)2

w1

1 1−2w1

w1

w1(2−w2)−2
w1

w1(w2−1)+1)
w1

0 w1
2(1−w1)−w2(1−2w1)

1−w2

w1(1−w2)−1
1−w2

0 0 − w2
2

1−w2

w2
2

1−w2











,

w1 ≡
Sj−1

Sj + Sj−1

, w2 ≡
Sj

Sj+1 + Sj

. (2.15)

where Sj is the length of panel j. In case the panel lies on either end of the shell, then
quadratic Overhauser polynomials are sufficient to ensure continuity of the derivative at the
inner edge of the panel. In that case, the coefficient matrix needs to be changed to:

bqk =









1 −w − 1 w 0
0 1

1−w
− w

1−w
0

0 − w2

1−w
w2

1−w
0

0 0 0 0









,

w =
Sj

Sj + Sj+1

, (2.16)

for a panel on the starting panel of the sheet and to:

bqk =









0 0 0 0

0 − w2

1−w
w2

1−w
0

1 2w−1
1−w

− w
1−w

0

0 1− w w 0









,

w =
Sj

Sj + Sj−1

, (2.17)

for a panel on the end of a sheet. The same concept is used at corner points where the
potential jump is continuous but the derivatives can be unbounded. The two corner panels
will be the start and end panels of their respective sheets. The evaluation of the integral in
(2.10) then involves integrals of the form:

∫

Cj

tk−1 ∂2Gn

∂nP∂nQ

ds =
1

Sk−1
j

∫ Sj

0

sk−1 ∂2Gn

∂nP∂nQ

ds. (2.18)

These integrals are regular (evaluated by standard numerical quadrature) except when the
collocation point lies on one of the edges of the panel. The treatment of this last case requires
special care and is detailed in Appendix A.

Once all influence coefficients are evaluated at the collocation points, we obtain a system
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2.2. Computational Theory

of equations that is solved for the potential jumps across the panels at the collocation points.
We only collocate at points connecting two panels. We also assume that the normal vector
at the collocation point is the mean of the normal vectors of the two panels. The end points
of the sheet are assumed to have zero potential jump as the potential (and pressure) go back
to being continuous in the body of the fluid. In fact, the jump in potential varies as

√
t near

t = 0 for a panel on the starting edge of the sheet and as
√
1− t near t = 1 for a panel on

the ending edge [41]. Polynomials cannot adequately represent that type of end behavior in
general. However, by using a dense collection of panels near the edges, the effect will be very
small, especially for the load computations which are integrated quantities. More precise
end behavior could possibly be incorporated in the method in a manner similar to [13].

2.2.3 The Wave Loads and Surface Elevation

The wave loads on the body can be obtained by integrating the dynamic pressure over
its surface. We define the dimensionless added inertia and damping coefficients as µkp =
Mkp/ρhAa

c and λkp = Bkp/ρhAa
cω respectively. Here, ρ is the water density and c is an

integer ranging between 0 and 2 chosen to make the expressions dimensionless. A is the
surface area of the internal region. The excitation force from the diffraction problem is also
normalized as fk = Fk/ρη0gAa

l−1 where the integer l was previously defined. The wave loads
are then expressed by:

µkp + iλkp =
1

Ah

∫

C

∫ 0

−h

[φp]
∂φk

∂n
dyds, (2.19)

fk = − i
√
ν

A

∫

C

∫ 0

−h

[φ7]
∂φk

∂n
dyds. (2.20)

Here, A = A/a2 is the dimensionless area which is π, πb and 4 for the circlar, elliptical and
square shells respectively. The normal gradient of the potential in these expressions was
given in (2.4). Note that the incident wave does not contribute to the loads because the
body has zero thickness. The integrals in these expressions are evaluated in Appendix B. It
is also useful to visualize the free surface elevation over the wave field near the body. The
expression for the elevation is obtained from the field potential through the integral equation
and is given by:

ηS

η0
= eiκ0(x cosβ+z sinβ) + i

√
νY0(0)

∫

C

[ϕ7
0]
∂G0

∂nQ

ds, (2.21)

ηp

U
√

a/g
= i

√
ν

∞
∑

n=0

Yn(0)

∫

C

[ϕp
n]
∂Gn

∂nQ

ds, (2.22)

∂Gn

∂nQ

=
iκnH1(κnR)

4R
(ξ − x)nξ + (ζ − z)nζ . (2.23)

The integrals in these expressions are regular and can be evaluated by standard methods.
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2.3. Results and Discussion

2.2.4 The Haskind Relation

The well known Haskind relation [1] relates the diffraction forces to the radiation potential.
It serves as an additional check to the validity of the results. The relation gives the force in
(2.20) by:

fp = − i
√
ν

A

∫

C

∫ 0

−h

(

φ0∂[φ
p]

∂n
− [φp]

∂φ0

∂n

)

dyds

=
iκ0

AY0(0)

∫

C

[ϕp
0]e

iκ0(x cosβ+z sin β)(nx cos β + nz sin β)ds

=
iκ0

AY0(0)

N
∑

j=1

Sj((n1)j cos β + (n2)j sin β)e
iκ0(xj cosβ+zj sinβ)

j+2
∑

q=j−1

[ϕp
0]qQjq(β), (2.24)

Qjq(β) = −
bm1P

3
j − bm2P

2
j + 2bm3Pj − 6bm4

P 4
j

+
(bm4 + bm3 + bm2 + bm1)P

3
j − (3bm4 + 2bm3 + bm2)P

2
j + (6bm4 + 2bm3)Pj − 6bm4

P 4
j

ePj ,

Pj(β) = ik((xj+1 − xj) cos β + (zj+1 − zj) sin β).

Here, it is understood that for a panel on the left edge of the shell, q ∈ [j, j + 2] and for
one on the right edge, q ∈ [j − 1, j + 1]. (nk)j is the normal component of the panel j in
direction k. We also used m = q − j + 2 so that m ∈ [1, 4]. Again, m should be modified
at the outermost panels to m = q − j + 1 and m = q − j + 3 for the left and right panels
respectively. The points xj and zj are the starting points of panel j.

The Haskind relation was used to verify the results. It also provides a means for a fast
calculation of the diffraction loads once the radiation problem is solved.

2.3 Results and Discussion

The method presented above can be used to simulate the wave field over any thin vertical
cylinder. Multiple bodies could be handled the same way as well. In this work, we present
results for elliptical and square shaped open cylinders as an example of the application of
the method and in order to understand the effect of the opening. The cross-sections and
definitions of their dimensions are shown in figure 2.2.

Two elliptical shapes are considered. The first is simply a circle with a = b = 1 and the
second is such that a = 1, b = 1.5. Both have an opening 2θ0 as shown in figure 2.2. The
third shape has a square cross-section of side length 2a and opening d. The openings are
oriented along the positive x-axis.
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2.3. Results and Discussion

2.3.1 Validation of Results

The results of this method were compared to that in the lower order method in the works
in [22, 33]. These last two references were verified separately using results in the literature.
The results are also compared to the case of diffraction and radiation from an open circular
cylinder, which could be obtained using a matched eigenfunction expansion method similar
to [42] but is more involved and will not be shown here although it was found to match the
results obtained.

Furthermore, as the frequency approaches zero, the dimensionless added mass results
should approach those for the corresponding two dimensional bodies with the same shape.
We present here a comparison of our results with those for a two-dimensional closed square
cylinder of side length 2a = 2 in a potential field. This comparison is useful because in
the two-dimensional limit, the equation retains its hypersingular nature as well as the dif-
ficulty associated with having geometrical corners. The potential jump around a corner is
continuous but its derivative is unbounded though integrable. As mentioned earlier, this is
taken into account in the present method. The added mass and mass of inertia in surge
and yaw motion, respectively, for the external flow were given in [43] to be µe

11 = 4.745 and
µe
66 = 0.725. The surge added mass of the internal flow is simply the entrained internal

mass which is µi
11 = 4.0 while the yaw mass moment of inertia is more involved. The yaw

potential of the internal flow is obtained analytically as an eigenfunction expansion:

Φi = Φ(x, y)− Φ(y, x), (2.25)

Φ(x, y) =
∞
∑

n=1

an cos
nπ(1 + y)

2

(

cosh
nπ(1 + x)

2
− cosh

nπ(1− x)

2

)

,

an = −8((−1)n − 1)

π3n3 sinhnπ
.

The yaw added mass moment of inertia is then given by:

µi
66 =

∞
∑

n=1

16an
nπ

(

sinhnπ +
3− (−1)n

nπ
(1− coshnπ)

)

. (2.26)

This trurns out to be µi
66 = 0.417. The total added mass is the sum of the internal and

external contributions so that µt
11 = 8.745 and µt

66 = 1.142. The error of the numerical
method is then defined as:

Ej =
|µjj − µt

jj|
µt
jj

. (2.27)

Figure 2.3 is a plot of the natural logarithm of the error versus that of the step size δ
for the closed square case (κ0 is taken as 0.01 in the numerical method). A uniform mesh
is used with 60-140 panels. From the slopes of the curves, we can see that E1 ∼ δ1.91 and
E6 ∼ δ1.45 which is less than the second-order accuracy expected but better than first order
accurate. These convergence rates are typical of this method for other geometries as well.
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Figure 2.3: Plot of log(Ej) vs log(δ) for the closed square case at κ0 = 0.01 and h = 3. The
slopes of the lines are 1.91 and 1.45 respectively

A simulation with 130 panels using a cosine distribution leads to an error less than 0.5% for
all loads.

All results presented in this work are for a water depth h = 3. We used 75 and 100 panels
for the circle and ellipse respectively and 112, 120 and 128 panels for the three square-shaped
shells varying with the decreasing opening size. This is sufficient for graphical accuracy. The
grid points are concentrated near the edges and the corners according to a cosine distribution
for better accuracy. The Overhauser elements are known to perform well near corner points.
For the radiation results, 4 modal terms were found sufficient for our purpose.

2.3.2 Diffraction Results

To understand the effect of opening the cylinder, it is useful to compare the amplitude of the
free surface elevation around the open and closed bodies. Figure 2.4 shows the amplitude
of the wave field over a circular cylinder for a wave approaching along the positive x-axis
(β = 0). These plots are useful because they indicate the position and amplitude of the
highest waves. This is usually at the first point of contact with the obstacle. At low
frequencies (κ0 < 0.1), the amplitude inside the body is comparable to the highest value
outside because the wave does not “see” the body so well. This visibility of the body becomes
stronger as the frequency increases and the opening size decreases. The surface elevation
is also representative of the pressure field over a certain region. Having a difference in the
elevation on opposite sides of the cylinder creates a force acting in the normal direction.
Because the field is symmetric about the x-axis in this case, the net force f1 will be a result
of the difference between the regions in the back and front sides of the body. We expect a
higher load on an open body than the closed one, provided the difference in surface elevation
is comparable in both cases, because the opening area does not contribute to any force on
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Figure 2.4: Surface amplitude of the diffraction field over a closed (left) and open (right,
θ0 = π/3) circular shell at a wave direction β = 0 (indicated by arrow) and κ0 = 1.5 (The
colors indicate surface amplitude)
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Figure 2.5: Surface amplitude of the diffraction field over a closed (left) and open (right,
θ0 = π/3) circular shell at a wave direction β = 0 (indicated by arrow) at the Helmholtz
mode where κ0 = 0.65 (The colors indicate surface amplitude)
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Figure 2.6: Surface amplitude of the diffraction field over a closed (left) and open (right,
d = 1.5) square shell at a wave direction β = π (indicated by arrow) and κ0 = 1.5 (The
colors indicate surface amplitude)

the body that would balance the pressure on the back side.
Figure 2.5 shows the diffracted wave field amplitude over the circular shell as in the

previous case but at the Helmholtz mode. The wave amplitude inside the shell rises to very
high levels (according to the theory considered here) and more so as the shell opening size
decreases. This leads to high loads on the body. The wave amplitude outside the shell is
also greater when the body is open.

The last surface plot in this section is for an incident wave propagating in the negative
x-direction and diffracting from a square shaped shell (figure 2.6). Because of the opening
present, the force f1 in this case will be different than the one for a wave along β = 0.
The former case also shows a higher surface amplitude inside the body when compared to
the latter case. The higher amplitude inside occurs on the opposite side of the opening as
expected.
The rest of the results in this section are plots of the amplitudes of the loads acting on the
shell because of the diffracted wave field. We note that the incident wave potential does not
contribute to the loads because the body has zero thickness. The loads are the result of the
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Figure 2.7: Diffraction forces f1 on the circular shell in 3 wave directions: β = 0 (left),
β = π/2 (middle) and β = π (right)
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β = π/2 (middle) and β = π (right)
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correction potential only.
The results in figures 2.7 & 2.8 show the force and moment in the x-direction for different

incident wave directions. The moment results are very similar to the force ones and are of the
order of the force results multiplied by a factor h/2. This is to be expected as the moment
is a result of that force. In fact, this similarity extends to all forces and corresponding
moments (in the same direction) in this work and we will therefore restrict ourselves to
forces for brevity. The results in the first plot of figure 2.7 indicate that a very large force
results at lower frequency when the body is opened. Although the force on the closed body
peaks in this range as well, the open body force is observed to be much sharper and larger,
especially as the opening gets smaller. This is the “Harbour Paradox” [2, Ch5]. This force
then decreases well below the closed body case to peak again above the Helmholtz mode
of the closed inner region. Note that in reality, the forces would not be so large because
of the effects of friction at the entrance and nonlinearities which we have neglected here.
An approximate theory for long waves that takes friction into account [2, Ch6] shows that
the peak at the Helmholtz mode completely disappears when there is sufficient friction at
the opening. The theory presented here will become a better approximation as the opening
size increases. Nonlinearity can also play a role by moving the energy from the lower to the
higher harmonics. This should be particularly important around the Helmholtz mode as the
amplitude of the surface becomes larger. As indicated in [44, Ch12], nonlinearity effects are
expected to dominate (even over friction) as the harbor length increases along the direction
of wave propagation compared to the width.

The elevation inside the closed shell is always zero. The load, which is related to the
difference in elevation on opposite sides of the shell, results from the high amplitude waves
on the outer side of the wall just upstream of the shell. This is balanced, to a certain extent
by the difference downstream. In the case of an open shell, this balancing effect disappears
and larger forces are observed. At the Helmholtz (pumping) mode, the elevation inside the
shell is almost uniform except near the opening [45]. The same thing is also observed for a
moonpool with a bottom gap [46]. The body is essentially acting as a Helmholtz resonator
in this long wave limit. As the body is opened, it becomes possible to excite the internal
region which leads to the larger loads. In between the two peaks, the elevation inside the
shell is close to that outside. In fact, most of the pressure difference occurs close to the edges
at the opening where wave heights are small. The resulting loads are significantly lower than
those on the closed body.

When the incident wave approaches at β = π, even lower loads result in that frequency
range when compared to the closed shell. In fact, we can see near zero loads in that case
(figure 2.7). This hints that by properly choosing the opening size, it is possible to achieve
zero loads on the body. The zero load frequencies could be tuned to be close to the peak of
the wave field spectrum in an irregular wavefield. The results are also seen to be somewhat
insensitive to changes in frequency so the possibility of designing the opening to reduce loads
on the structure may be viable. The results in the middle plot of the same figure are also
important because these loads only arise when the body is open. This is because of the
asymmetry that is introduced by having an opening. These loads can be seen to be of the
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Figure 2.9: Diffraction loads f2 (left) and f5 (right) on the circular shell in wave direction
β = π/2

same order of magnitude as the loads when the wave is directed along the opening direction.
Figure 2.9 shows the force and moment on the circular shell in the z-direction when the

incident wave approaches in that same direction. The interesting result here is the possibility
of having a zero force and moment on the body for a certain frequency and for all openings
as long as the body is open.

The results in figure 2.10 are for an elliptical shell and are analogous to those in figure
2.7. The loads appear similar to those of the circular shell and the general behavior can be
described in a similar manner. This indicates that the shape of the harbor has little effect on
the physical behavior. The normalized loads on the elliptical shell are found to be slightly
lower than those on the circular one when the body is open in contrast to the closed case.
The dimensional loads will be greater though because the elliptical shell is larger in size.

Because of symmetry, the force and moment in the z-direction and the yaw moment are
only nonzero when the incident wave approaches at a direction β = π/2 even when the
body is open. We present those cases in figure 2.11. Again, the force and moment in the
z-direction are similar. We notice that the loads decrease from the closed body case when the
opening increases. This has to do with higher wave elevations inside the shell and therefore
less differences with the outside. High elevations inside are not observed except close to the
resonance frequency. Again, it is possible to have points of zero loads at certain frequencies
when the body is opened. The yaw moment in the right plot of figure 2.11 is also of interest
because it only appears for an open body. The behavior is a bit more complicated for this
moment than the rest of the loads because it depends on forces in both horizontal directions.
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Figure 2.10: Diffraction forces f1 on the elliptical shell in 3 wave directions: β = 0 (left),
β = π/2 (middle) and β = π (right)
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Figure 2.11: Diffraction loads f2 (left), f5 (middle) and f6 (right) on the elliptical shell in
wave direction β = π/2
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Figure 2.12: Diffraction forces f1 on the square shell in 3 wave directions: β = 0 (left),
β = π/2 (middle) and β = π (right)
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Figure 2.13: Diffraction loads f2 (left), f5 (middle) and f6 (right) on the square shell in wave
direction β = π/2
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The forces do not balance because of the asymmetry created by the opening inside the body
and in the wake and the net effect is a moment about the y-axis.

The case of the square shell is similar to the circle and ellipse. Figure 2.12 shows the
wave force in the x-direction for 3 incident wave directions while figure 2.13 shows the wave
loads in the z-direction and the yaw moment when the incident wave approaches from the
side in a manner analogous to figure 2.11. For loads resulting from beam waves, points of
zero force are clearly possible for all opening sizes as long as the shell is open.

The first resonant wavenumbers for the open circular and square bodies in figures 2.7 &
2.12 can be compared to those of the corresponding closed bodies. Those latter ones are
κ0 = π/2 for a square and κ0 = 1.8412 for a circle moving in surge. This last value is the
root of ∂J1(κ0r)/∂r at r = 1 for the Bessel function of first kind and first order, which is well
known. An important question here is why do we observe resonance at low frequencies for
the open shell although these are far from the first natural frequencies of the closed shell. A
simple analogy can be made with the problems of wave propagation over a string or in a gas
tube. It is well known that the resonant behavior of a string connected to a wall is different
from that with a free end. The same can be said about a gas tube with a closed or open
ends. For a closed-opened tube (analogous to the open case), the first resonant wavenumber
(κa = π/4) in a gas tube of length 2a becomes half of its value for the closed-closed tube
(κa = π/2). The second resonant wavenumber (κa = 3π/4) for the closed-open tube is triple
the first one [47]. This is similar to what we observe for the open harbor where the first
resonance is dramatically shifted to lower frequencies as the shell is opened. The second
resonance also occurs somewhere on the order of triple the first resonance. An equivalent
statement is to say that damped systems (radiating open bodies) are known to have lower
resonant frequencies. Naturally, our problem is more involved than the case of a string or gas
tube because of the more complex geometries, the three dimensional effects and the presence
of an outer domain.

It was observed that at certain opening size and frequency values, the load along the
x-axis approaches zero. This behavior is observed for an incident wave approaching at β = π
but not for the case when β = 0. This leads to the surprising observation that directing an
open structure towards the incident waves leads to lower loads than directing it the opposite
way around. We found that the values θ0 = [0.1441π, 0.1265π], d = 0.89 at wavenumbers
k = [0.916, 0.704, 0.726] are representative of the zero load conditions (numerically |f1| <
0.007) for the circular, elliptical and square bodies considered in this work.

2.3.3 Radiation Results

Although the cylinder is bottom mounted, it is still useful to know its radiation properties
because it could still be connected to the bottom using a suitable joint that allows its motion
or it could represent a reasonable model for truncated cylinders with a long enough draft.
This approximation is expected to work better for the open shell because the fluid could
escape through the opening easier than through the bottom gap and the effect of this gap
will be less important.
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Figure 2.14: Radiation surge added mass µ11 (left) and damping λ11 (right) coefficients for
the circular shell
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Figure 2.15: Radiation sway added mass µ22 (left) and damping λ22 (right) coefficients for
the circular shell

Figure 2.14 shows the added mass and damping coefficients of a surging circular shell.
The closed shell added mass shows resonant behavior as expected. Opening the shell slightly
increases the resonant frequency and drastically reduces the added mass at resonance. This
is because the fluid can now escape the inner region. Another peak in added mass appears
at lower frequencies as was the case for diffraction forces. The damping coefficients also peak
at these points. This range of frequencies is characterized by an increase in the free surface
elevation to very high levels, which causes high pressure differences across the wall. Again,
as for the diffraction problem, the absence of a balancing force where the opening is located
leads to a high net force on the shell.

Figure 2.15 shows the coefficients for the swaying circular shell. The results indicate a
slight decrease in both coefficients and a slight shift of resonance towards higher frequency
as the opening size increases. Close to resonance, the added mass changes to finite extrema
while the radiation damping significantly increases as waves from inside escape to the outer

27



2.3. Results and Discussion

0 1 2 3
−4

−2

0

2

4

6

8

10

κ
0

µ 11

0 1 2 3
0

1

2

3

4

5

κ
0

λ 11

 

 

θ
0
=0

π/12

π/6

π/3

Figure 2.16: Radiation surge added mass µ11 (left) and damping λ11 (right) coefficients for
the elliptical shell
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Figure 2.17: Radiation sway added mass µ22 (left) and damping λ22 (right) coefficients for
the elliptical shell
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Figure 2.18: Radiation yaw added inertia µ66 (left) and damping λ66 (right) coefficients for
the elliptical shell
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Figure 2.19: Radiation surge added mass µ11 (left) and damping λ11 (right) coefficients for
the square shell
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Figure 2.20: Radiation sway added mass µ22 (left) and damping λ22 (right) coefficients for
the square shell
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Figure 2.21: Radiation yaw added inertia µ66 (left) and damping λ66 (right) coefficients for
the square shell
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field. This case could be used as a wavemaker that generates a single desired frequency. The
effect of resonance is reduced as the opening size increases.

Figures 2.16 & 2.17 present the radiation coefficients for the elliptical shell moving in
surge and sway respectively. The results are qualitatively very similar to those of the circu-
lar cylinder. The magnitudes are slightly higher though. It is interesting to note that the
resonance frequency is the same as that of the circular shell in the surge motion and lower
in the sway motion. This is because the resonance in the sway direction is mostly governed
by the length b rather than a.

Figure 2.18 shows the yaw added inertia and damping coefficients for the elliptical shell.
These coefficients are zero for the circular cylinder. The distinctive feature of these coeffi-
cients is the dominance of higher frequencies when compared to the other motions. Opening
the shell leads to a large increase in the radiation damping close to the resonant frequency
as in the previous cases. The fact that this occurs at a higher frequency requires further
attention to this motion if open floating bodies are to be considered for ocean applications.

Figures 2.19, 2.20 and 2.21 show the radiation coefficients on the square shaped shell in
the surge, sway and yaw directions. The results for surge and sway are similar to those of
the circle and ellipse. The shape of the body does not come in significantly for these coeffi-
cients. One might expect that this would be different for the yaw motion because the force
is completely a result of the body shape and this is indeed the case. The yaw coefficients are
seen to be quite different from those of the elliptical shell.

It is interesting to draw similarities of the radiation results with the case of a cylinder in a
channel. This latter case was presented in [48] as well as [49]. First note that the added mass
and damping in figures (2.14-2.21) appear to have their peak values over similar wavenumber
positions. Furthermore, the magnitude of the damping at the peak (either peak) and the
extent of the corresponding added mass jump behavior are somewhat equal. This is not
unlike the case presented in [49] in which the authors gave a heuristic argument of why the
extent of the spikes in added mass and damping are nearly the same. The same argument
can be used in this case if a simple pole in the complex load (λ+ iµ) behavior exists below
the real axis. The similarity also extends to the case of a cylinder that is eccentric (not
centered) along the channel width and swaying below the first cutoff frequency. In this case,
propagating modes are possible in addition to the trapped mode and the behavior resembles
our open cylinder case. When there is no eccentricity, only the trapped mode is present and
the radiation damping vanishes. This resembles what happens in the internal region of the
closed body case. One could not help but notice then the similarity in the radiation loads as
presented in this last reference and our results. In particular, the peaks in the added mass
and damping are shifted to higher wavenumbers as the opening size (analogous to eccen-
tricity) increases. Recently, reference [50] reported a similar observation for the case of two
flap-type energy converters facing each other when compared to a single converter facing the
coast.
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Figure 2.22: Schematic for the harbor and breakwater model
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Figure 2.23: Diffraction over the circular shell with the tongue present at a wave direction
β = π and κ0 = 1.5 (The colors indicate surface amplitude)

2.3.4 Harbor With a “Tongue”

Finally, it would be interesting to see what is the effect of having a breakwater (tongue)
at the mouth of the harbor, an idea suggested by the proposal to build floating harbors off
the US coasts (the Portunus Project). We will only present the most important case, which
is when an incident wave approaches at β = π and hits the breakwater. A simple harbor
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Figure 2.24: Diffraction force amplitude |f1| on the shell (left) and on the tongue (right)

model consists of a circular shell and a straight tongue oriented along the z-axis (figure 2.22).
This should capture most of the desired physical effects. The computer program described
in this work has been modified to accommodate multiple bodies and the shell and tongue
are considered as separate elements. We consider the effect of the distance d of the tongue
from the center of the shell. The length of the tongue in this example is equal to one shell
radius and the mouth size is taken to be θ0 = π/3 with the same definition as before. Figure
2.23 shows the amplitude of the free surface as a head wave hits the tongue.

Figure 2.24 shows the amplitude of the force in the x-direction on both the shell and the
tongue and comparison is made in the first case with the shell without a tongue. The force
is defined as in (2.20) and the area of the harbor is used for normalization. We used 100
panels on the circular shell and 67 on the tongue concentrated near the edges to obtain these
results.

The results indicate that the force on the shell is actually significantly higher near the first
resonant frequency when the tongue is present. Again, this is similar to the Harbor Paradox
described earlier and the limitations discussed earlier apply here as well. In particular, the
high amplitude of the force is expected to be lower in reality, especially when the effective
opening size becomes smaller. The position of the tongue does not seem to be significant in
the frequency range considered though. The force on the tongue itself peaks in this range as
well, although the total force is less than that on the shell. As the frequency of the incident
wave increases, the breakwater comes into play and causes a reduction in the loads on the
shell. The position of the tongue is significant in determining the second resonant frequency
and the force amplitude at that peak. As the breakwater is moved farther away from the
center of the shell, both the second resonant frequency and force amplitude move to lower
values. Solution for harbor shapes other than a circular rim can be obtained with little
difficulties, though not pursued here.

32



Chapter 3

The Added Mass of Thin Plates of Arbitrary Shapes

3.1 Introduction

In chapter 2, we presented a method to find a numerical solution to the water-wave problem
with an infinitely thin body. We showed that when the depth variation is factored out,
the problem can be formulated as a hypersingular integral equation for the two dimensional
Helmholtz equation. The solution requires the treatment of one dimensional hypersingular
integrals which we performed using a higher order method.

In this chapter, we look at a similar problem in a general sense but very different
implementation-wise. Here we consider the added mass values for infinitely thin plates of
general shapes. This still requires handling the hypersingular kernels we faced in the previ-
ous chapter but the problem is now fully three dimensional and the solution to the boundary
integral method requires discretization over a two dimensional surface. For simplicity, we
neglect the presence of any free surface and the domain is considered to be infinite. This
work has been submitted for publication at the time of writing this thesis [51].

The added mass of flat plates is useful in practice as it appears in many engineering dis-
ciplines that have to deal with fluid flows. A triangular flat plate for example, can be used
to model an aircraft as it moves perpendicular to the flat surface. A similar problem is that
of modeling the motion of butterfly wings using flat plates. Finding the difference in added
mass of different shapes might shed some light on why wings are shaped the way they are.
For marine structures, flat plates appear as structural stiffeners or as motion dampers. The
oars traditionally used to drive the motion of smaller boats can be modeled as flat plates
as well. We will be particularly interested in plates with holes as those frequently appear
in applications but seem to be missing from the literature. Example references for added
masses of some general shapes are [52] and [53].

In what follows, we will first present the formulation of the problem and our approach,
and then will show results for common shapes that are not available in the literature. The
goal here is to make these results readily available for anyone who needs them and had to
previously rely on approximations.

3.2 Problem Formulation

Consider a coordinate system xyz with the z-axis pointing upwards (perpendicular to the
plates we consider here). Then the flow over the plate can be represented using a velocity
potential. We consider three modes of motion (heave, roll and pitch) for the plate with
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3.2. Problem Formulation

Figure 3.1: Schematic of a thin plate with a hole and the three possible modes of motion

translation and angular velocities U3(t), ω1(t), ω2(t) respectively (Figure 3.1). The three
resulting potentials φi, where i ∈ {3, 4, 5} for the three respective modes, can then be
normalized as:

φ3 =
φ3

U3a
, (3.1)

φ4 =
φ4

ω1a2
, (3.2)

φ5 =
φ5

ω2a2
, (3.3)

for some plate characteristic length a. These will be governed by Laplace’s equation:

∇2φi = 0. (3.4)

Since the domain is infinite and we do not consider any free surface, the potential must also
diminish to zero at infinity so that the problem can be formulated as a boundary integral
equation as explained in the thesis introduction (equation (1.27)):

4π
∂φi(P )

∂nP

=

∫

S

(

[φi(Q)]
∂2G(P,Q)

∂nP∂nQ

)

dSQ. (3.5)

Here S is the surface of one side of the thin plate considered to lie in the horizontal plane
(as in figure 3.1), [φi] is the potential drop across the plate surface and the Green function

34



3.3. The Numerical Procedure

for this problem is the simple Rankine source:

G =
1

RPQ

, (3.6)

where again RPQ is the distance between points P and Q. The normal vectors point in the
z direction. The kernel function can be written explicitly as:

∂2G

∂z∂ζ
= − 1

R3
+ 3

(z − ζ)2

R5
. (3.7)

Now since integration is only in the horizontal plane, z = ζ = 0 and the kernel simplifies to:

∂2G

∂z∂ζ
= − 1

R3
, (3.8)

and the equation to solve for is:

4π
∂φi(P )

∂nP

= −
∫

S

(

[φi(Q)]
1

R3
PQ

)

dSQ. (3.9)

The left side of the equation is determined by the type of problem being solved:

∂φi(P )

∂nP

=







n3 = 1, (i = 3)
n4 = y − y0, (i = 4)
n5 = x− x0, (i = 5)

(3.10)

Here x0 and y0 are the centers of rotation for pitch and roll respectively. The other modes
of motion are irrelevant for flat plates.

3.3 The Numerical Procedure

The problem formulation above seems to allude to the simplicity of this problem, but in
practice, performing the integrals required in (3.9) is a daunting task that requires a careful
treatment of the hypersingular part (see [54] for example). It is possible to solve the problem
in the usual manner using a collocation scheme. However, we found that many triangular
panels were required to obtain accurate results using that approach when a first order scheme
is used.

In this work, we adopt a Galerkin approach as that was found to be more accurate
and yet maintains its simplicity. The integrals required by both approaches are similar and
can be used interchangeably. The Galerkin approach requires an additional integral which
would make computing the influence coefficients more demanding but it does present some
advantages. For instance, the size of the resulting system of equations is much smaller as we
will see and the system will be symmetric. An efficient method to deal with hypersingular
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3.4. Symmetry and the Added Inertia Over Different Axes

kernels using a Galerkin approach in three dimensions has been given in [55]. The reference
also presents a good summary of the different approaches to this problem.

We prefer a simpler approach. To solve this problem, we first approximate the potential
jump [φi] using Chebychev polynomials of the first kind:

[φi] =
∞
∑

n=0

∞
∑

m=0

Ai
mnTm(x)Tn(y), (3.11)

where the Chebychev polynomials cross-product Fmn(x, y) = Tm(x)Tn(y) is defined by:

Fmn(x, y) = cos(m cos−1(x)) cos(n cos−1(y)). (3.12)

A Galerkin approach to the integral equation then results in:

4π

∫

S

∂φi

∂n
Fmn(x, y) = −

∞
∑

p=0,q=0

Ai
mn

∫

S

∫

S

(

Fmn(x, y)Fpq(ξ, η)
1

R3
PQ

)

dSQdSP . (3.13)

This is a system of equations for the unknown coefficients Amn. When this equation is
repeated for every m and n, the system will be complete. Now, not only is this a tedious
computation that requires a double integration over an arbitrary area of the plate, it also
involves a hypersingular kernel as discussed earlier. The good news is that the number of
equations is going to be small as a small number of Chebychev polynomials are enough to
represent the smooth solution expected from potential flow for most bodies of interest.

Our approach to obtaining those integrals is simple. First, the surface of the plate
is discretized into triangular elements. The potential representation proposed in equation
(3.11) can then be substituted by its Taylor series expansion over the center of each triangle.
This will make it possible to perform analytic integration over each triangle. The details are
given in appendix E. Finally, Gaussian quadrature is used to perform the second integration.
Note that Chebychev polynomials are only defined within the interval [-1,1] so any plate
shape of interest must be scaled to fit that frame.

3.4 Symmetry and the Added Inertia Over Different

Axes

It is common for plate shapes of interest to be symmetric about one or two axes. The heave
potential jump across the plate will then be symmetric across that axis while the pitch or roll
potential jump will be antisymmetric. It is therefore desired to take that into consideration
to reduce the computational effort of the problem and obtain more accurate results.

The implementation of that is straight forward. If the potential was symmetric over
some axis, all the asymmetric modes over that axis in equation (3.11) should be dropped
out. Those are the odd modes. If the potential was asymmetric, the even modes are dropped.

36



3.5. Added Mass of Some Common Plate Shapes

Finally, the added mass µij for i, j ∈ {3, 4, 5} can be computed by integrating the pressure

over the side of the plate. Written in dimensionless form µij =
µij

ρas
where ρ is the fluid density

and s = 3, 4 or 5 for ij ∈ {33}, {34, 35, 43, 53} or {44, 45, 54, 55} respectively, it is given by:

µij = −
∫

S

[φi]njdS. (3.14)

Here, the length metrics are taken to be dimensionless (using a) as well.
Now the results presented here for the pitch and roll motion are taken about a particular

axis of the plate. It might be the case that the results for a different axis are desired. A
simple transformation derived here will allow using the current results for any axis. Suppose
a new roll potential is solved for a new roll axis y1. The new potential φs

4 satisfies the Laplace
equation as well as the boundary condition:

∂φs
4

∂n
= y − y1 = (y − y0)− d, (3.15)

where d = y1 − y0 is the distance between axes. By superposition, we can then say that
φs
4 = φ4 − dφ3. Furthermore, the new added mass is given by:

µs
44 = −

∫

S

[φs
4](y−y1)dS = −

∫

S

[φ4−dφ3](y−y0−d)dS = µ44−dµ43−dµ34+d
2µ33. (3.16)

Similarly, we can write:

µs
43 = µ43 − dµ33, (3.17)

µs
45 = −

∫

S

[φ4 − dφ3](x− x0)dS = µ45 − dµ35. (3.18)

3.5 Added Mass of Some Common Plate Shapes

With regards to mesh generation for all the shapes presented here, we used the code provided
by Professor Per-Olof Pearson which is described in [56]. The code itself is available online
under the name “DistMesh”. The code allows for a nonuniform distribution of the triangular
elements and we used that to add more panels near the edges and hole edges of the plates.

To test the procedure presented here, we compared our results to those in the literature
for a circular and square shaped plates. The results for the circle of radius 1 were given in
[52] as µ33 = 8/3 and µ44 = 16/45. These results were obtained by solving for the potential
due to the motion of an ellipsoid and taking the limiting case where one dimension is zero.
It is therefore possible to obtain closed form solutions in this particular case. Our numerical
results were correct to 0.05% and 0.068% respectively using 2240 triangular panels and 14
even modes. Note that the result given for µ44 in page 393 of [52] has an additional π added
by mistake as can be verified by rederiving the value of the added inertia using the potential
given in the same reference. For the square-shaped plate, we used the result obtained
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3.5. Added Mass of Some Common Plate Shapes

computationally (using Chebychev polynomials as basis functions) in [57], µ33 = 0.4547,
to which we had an error of 0.095% using 2196 triangular panels and 14 even modes. Note
that the errors for other plates are expected to be higher especially when no symmetry exists
and with more irregular shapes.

Figure 3.2 shows the plate shapes considered in this work with the parameter definitions.
The parameter a is always used for normalization as before. Now for each shape, we used
two meshes. For the circular plate without any holes, the first had 591 elements and the
second 2240 and a similar ratio for the plates with increasing hole sizes. Note that these are
only for the one quarter of the circle needed for the computation with symmetry around two
axes. Figure 3.3 shows the percentage difference between results from the two meshes as the
number of modes n = m is increased. The results show that the error between meshes is less
than one percent when more than 10 modes are used. This is true for all cases considered
with different hole sizes. All results presented in this work used a largest mode m = n = 26
and a mesh size between 2000 and 3200 panels for the part of the geometry where compuation
is performed afer taking symmetry into account.

In what follows, we present the computational results obtained for the added mass of
the plates in figure 3.2.

3.5.1 Added Mass of a Circular Plate With a Center Hole

The first shape we present is the circular plate with a concentric hole. Figures 3.4 and
3.5 show the potential drop across the plate in heave and roll respectively. Notice how the
potential drop decreases to zero around the edges so that the potential becomes continuous
again outside the plate. This is a common characteristic of all the shapes we will show here.

Figures 3.6 and 3.7 show the added mass and inertia in heave and roll respectively as
a function of hole radius to circle radius ratio. This is labeled as the numerical solution.
The figures also show the result obtained if we simply subtract the added mass or inertia
of the inner circle from the outer one as an approximation. Clearly the difference between
the numerical solution and this algebraic one is substantial. In addition and as expected,
the added load decreases as the hole size increases as there is less structure to push the
fluid. The results for roll are taken about the x-axis but any other axis can be considered
by using the transformation introduced in section 3.4. The other added loads are zero for
this symmetric shape.

3.5.2 Added Mass of a Square Plate With a Center Hole

The second shape we present is the square plate with a concentric hole. Figures 3.8 and
3.9 show the potential drop across the plate in heave and roll respectively. Figures 3.10 and
3.11 show the added mass and inertia in heave and roll respectively as a function of hole
radius to square side ratio. The algebraic solution is also shown for this case confirming
our previous observation that this approximation returns poor results. Although the added
load decreases as the hole size increases, it is interesting to see how different shapes of the

38



3.5. Added Mass of Some Common Plate Shapes

Figure 3.2: The different plate shapes considered: (1) circle with a hole, (2) square with a
hole, (3) Square with 4 holes, (4) equilateral triangle with a hole, (5) isosceles triangle, (6)
right triangle
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Figure 3.4: Potential drop across circular plate with a hole in heave (b/a = 0.3)
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Figure 3.5: Potential drop across circular plate with a hole in roll (b/a = 0.3)
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Figure 3.6: Added mass of a circular plate with a hole in heave as a function of varying hole
size
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Figure 3.7: Added inertia of a circular plate with a hole in roll as a function of varying hole
size
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Figure 3.8: Potential drop across square plate with a hole in heave (b/a = 0.15)

same area compare in terms of their added mass. It turns out that the circle is slightly more
efficient in moving mass than the square of the same area. This only applies when no hole
is present. A completely different situation results with the holes present depending on the
size of the holes.
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Figure 3.9: Potential drop across square plate with a hole in roll (b/a = 0.15)
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Figure 3.10: Added mass of a square plate with a hole in heave as a function of varying hole
size
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Figure 3.11: Added inertia of a square plate with a hole in roll as a function of varying hole
size

3.5.3 Added Mass of a Square Plate With a 4 Holes at the

Quadrant Centers

The next shape we present is a square plate with 4 equal size holes centered at the 4 quadrants
of the square. Figures 3.12 and 3.13 show the potential drop across the plate in heave and
roll respectively. Figures 3.14 and 3.15 show the added mass and inertia in heave and roll
respectively as a function of hole radius to square side ratio. The algebraic solution is also
shown for this case also showing poor results.

3.5.4 Added Mass of an Equilateral Triangle With a Hole at its
Centroid

Next we present the results for an equilateral triangle with a hole centered at its centroid.
Figures 3.16, 3.17 and 3.18 show the potential drop across the plate in heave, roll and pitch
respectively. Figures 3.19, 3.20, 3.21 and 3.22 show the added mass and inertia across all
modes that are nonzero as a function of hole radius b to triangle side length a ratio. In this
case, symmetry is broken over the x-axis and this results in correlation between the heave
and roll motions. The algebraic approximation is also shown as described earlier. In this
case, since we only have the added inertia in roll of the circle over an axis passing through
its center (Figure 3.7), it needs to be computed by shifting the axis of rotation as described
in equation 3.16. The correlation terms in equation 3.16 are zero for a circle and the added
mass µ33 was given in figure 3.6.
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Figure 3.12: Potential drop across square plate with 4 holes in heave (b/a = 0.15)
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Figure 3.13: Potential drop across square plate with 4 holes in roll (b/a = 0.15)
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Figure 3.14: Added mass of a square plate with 4 holes in heave as a function of varying
hole size
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Figure 3.15: Added inertia of a square plate with 4 holes in roll as a function of varying hole
size
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Figure 3.16: Potential drop across an equilateral triangular plate with a hole in heave (b/a =
0.15)
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Figure 3.17: Potential drop across an equilateral triangular plate with a hole in roll (b/a =
0.15)
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Figure 3.18: Potential drop across an equilateral triangular plate with a hole in pitch (b/a =
0.15)
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Figure 3.19: Added mass of an equilateral triangular plate with a hole in heave as a function
of varying hole size
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Figure 3.20: Heave-roll coupling added inertia of an equilateral triangular plate with a hole
as a function of varying hole size
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Figure 3.21: Added inertia of an equilateral triangular plate with a hole in roll as a function
of varying hole size
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Figure 3.22: Added inertia of an equilateral tringular plate with a hole in pitch as a function
of varying hole size

3.5.5 Added Mass of an Isosceles Triangle With Variable Height

Next we present the results for an isosceles triangle with a variable height. Figures 3.23,
3.24 and 3.25 show the potential drop across the plate in heave, roll and pitch respectively.
Figures 3.26, 3.27 and 3.28 show the added mass and inertia across all modes that are
nonzero as a function of triangle height h to triangle base length a ratio. In this case as well,
symmetry is broken over the x-axis and this results in correlation between the heave and roll
motions.

3.5.6 Added Mass of a Right Triangle With Variable Height

In the last part, we present the results for an isosceles triangle with a variable height.
Figures 3.29, 3.30 and 3.31 show the potential drop across the plate in heave, roll and pitch
respectively. Figures 3.32, 3.33 and 3.34 show the added mass and inertia across all modes
that are nonzero as a function of triangle height h to triangle base length a ratio. In this
case, no symmetry exists and all modes of motion need to be considered.
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Figure 3.23: Potential drop across an isosceles triangular plate in heave (h/a = 1.25)
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Figure 3.24: Potential drop across an isosceles triangular plate in roll (h/a = 1.25)
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Figure 3.25: Potential drop across an isosceles triangular plate in pitch (h/a = 1.25)
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Figure 3.26: Added mass of an isosceles triangular plate in heave as a function of varying
height
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Figure 3.27: Heave-roll coupling added inertia of an isosceles triangular plate as a function
of varying height
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Figure 3.28: Added inertia of an isosceles triangular plate in roll and pitch as a function of
varying height
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Figure 3.29: Potential drop across a right triangular plate in heave (h/a = 0.175)
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Figure 3.30: Potential drop across a right triangular plate in roll (h/a = 0.175)
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Figure 3.31: Potential drop across a right triangular plate in pitch (h/a = 0.175)
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Figure 3.32: Added mass of a right triangular plate in heave as a function of varying height
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Figure 3.33: Heave-roll and heave-pitch coupling added inertia of a right triangular plate as
a function of varying height
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Figure 3.34: Added inertia in roll and pitch and roll-pitch coupling inertia of a right triangular
plate as a function of varying height
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Chapter 4

A Fast Multipole Method for the Three Dimensional

Linear Water-Wave/Structure Interaction Problem

with Arbitrary Bottom Topography

4.1 Introduction

The solution of the problem of linear water-wave interaction with floating structures is an
important one since it is applied in all kinds of ocean related activities, ranging from the
design of ships and offshore structures to shore protection and recreational activities. The
ocean bottom topography can be important in the design of these structures and accordingly
many researchers provided means of including its effects in the solution procedure. Most no-
tably, the authors in [58] developed two hybrid methods to treat the problem. The first
splits the computational domain into an inner region in which the solution is modeled using
finite elements while matching the more simplistic outer domain in which eigenfunctions
are used. The second method uses simple source free-space integral equations for the inner
domain and the radiation condition is applied directly to the boundary at a finite distance
from the body of interest. Both methods allow for arbitrary bottom topography in the inner
region. Later, Yeung [59] introduced an updated method which matches the inner potential,
governed by the simple source integral equation, to an outer potential that is represented
with the natural eigenfunction solutions of the outer domain. His work was restricted to
two dimensions though. Reference [60] extended the latter’s work to three dimensions while
in [61] a more elaborate and accurate method for the same problem was presented. In this
work, we make use of this last approach as a starting point to our solution procedure which
is able to handle a much larger numbers of unknowns. Additional work on these hybrid
methods include that in [62] which solved for the steady state wave-resistance problem, that
in [63] which presented a way to use the first-order solution presented here to obtain the
second-order loads on floating structures, and the work in [64] which allowed for a water
depth that varies with direction although with much more work, both of which inspire pos-
sible extensions for the work presented here. In addition, a method for matching an inviscid
exterior domain to a viscous interior one was presented in [65].

Often times in practical situations, it is required to solve for a large number of un-
knowns. The design of Very Large Floating Structures (VLFS) is one important example
and unknowns beyond the scope of capabilities of traditional methods are sometimes needed
[66]. In addition, the simulation of the interaction of large numbers of bodies such as in a
wave energy farm, requires significant computational effort, particularly if the bodies are in
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4.2. The Hybrid Method

close proximity to each other. For example, the method used in [67], which makes use of the
far-field behavior cannot be used. In addition, commonly used methods such as interaction
theory [68] have limitations such as the requirement of constant water depth and only apply
to bodies that are not vertically overlapping. In addition, achieving satisfactory accuracy
requires ever more terms as the bodies come closer to each other. The fact that these meth-
ods scale at best as O(M2) where M is the number of bodies is a further limitation for
large arrays. Other methods that have been used include the preconditioned Fast Fourier
Transform (pFFT) which is a hierarchical iterative method [69]. The pFFT is usually chosen
because of its ability to handle the free-surface Green function which is the usual Green func-
tion used in modeling these problems. The algorithm provides an O(Nlog(N)) efficiency in
speed and memory and has been used successfully to model large scale problems of interest
[70]. The authors noted that using this method (included in FastWAMIT), up to 100,000
elements could be easily used and in fact they showed results for 87,040. The algorithm is
restricted to the use of uniform grids because of its dependency on the FFT and has not
been used to model variable bathymetry. For a brief review of methods used for multiple
body interactions see [71].

Instead of using the pFFT, we make use of the fact that the hybrid method depends
on the simple source and is, therefore, amenable to the application of the Fast Multipole
Method (FMM). The FMM was first introduced in [15] for the simulation of the interaction
of a large number of particles. It is a hierarchical scheme based on the idea that groups of
particles farther away from a target particle can be grouped together and their effects com-
bined into a single expression. This reduced the computational complexity of the problem
from O(N2) to O(N) and memory usage to O(N) where N is the number of particles. This
was indeed used in [17] for the discrete element method. For boundary element methods, the
interactions between panels can be treated as interactions between sheets of particles and
therefore can be simulated using the FMM. This requires that an iterative solver be used if
the unknown values are to be found. The FMM can be applied to algorithms that depend on
the free-surface Green function as well [72]. However, the present method is not as heavily
dependent on the use of transcendental functions and can therefore be made more efficient.

In what follows, we will describe the use of the FMM for the hybrid method and present
examples of its usage to treat problems that require a high number of panels or that have
complicated ocean floor topography. This work is to be submitted for publication soon [73].

4.2 The Hybrid Method

In this section, we will provide a summary of the hybrid method used without acceleration.
This follows closely the work in [61] with the exception that we use triangular panels rather
than the quadrilateral ones used there.

Consider a coordinate system situated at some point on the free surface and the z-axis
pointing upwards as shown in figure 4.1. The figure also shows the body surface SB, the free

58



4.2. The Hybrid Method

Figure 4.1: Schematic of the problem domain and parameter definitions

surface SF , the bottom topography surface ST , the radiation boundary SR and the normal
vector pointing out of these surfaces. Assume the flow can be represented by a time harmonic
potential Φj(x, y, z, t) = Re{φj(x, y, z)e

−iωt} where ω represents the angular frequency of the

harmonic motion, j is the mode of motion and i =
√
−1. In this work, we use the notation

that an overbar represents dimensional variables.

4.2.1 The Radiation Problem Formulation

We start with the radiation problem. That is, when one of the bodies oscillates at some
frequency ω in a given direction. Define the dimensionless radiation velocity potential φj =
φj/a

lUj where a is a problem characteristic length and Uj is the translation or angular
velocity for the jth mode of motion. The integer l is 1 for the translation modes and 2 for
the rotational ones. Henceforth, a is used to make all length parameters dimensionless. The
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problem then is that of linear water wave theory:

∇2φj = 0, (4.1)

∂φj

∂z
− νφj = 0, z = 0 (4.2)

∂φj

∂n
= 0, z = −h(x, y) (4.3)

∂φj

∂n
= fj(Sb). P (x, y, z) ∈ Sb (4.4)

∂φj

∂n
= 0. P (x, y, z) ∈ (SB − Sb) (4.5)

Here, P is a point of interest, and φj results from the motion of the body or bodies Sb with
a unit normal velocity or angular velocity of fj and j ∈ [1, 6] for surge, sway, heave, roll,
pitch and yaw respectively. In addition, h(x, y) is the variable water depth which defines the
bathymetry. The parameter ν = ω2a/g, where g is the gravitational acceleration, relates the
frequency to the wavenumber k by ν = k tanh(kh). In addition, fj = nj for j ∈ [1, 3] and

fj =
[−→
R ×−→n

]

j
for j ∈ [4, 6] where

−→
R is the distance from the center of rotation and −→n is

the normal vector. A radiation condition which dictates outgoing waves at infinity is also
required.

4.2.2 The Scattering Problem Formulation

The scattering (or diffraction) problem can be formulated in a similar manner. First de-
fine the dimensionless scattering velocity potential φS = φS/η0

√
ga where η0 is the wave

amplitude of the incident wave. Consider the scattered potential governing equations:

∇2φS = 0, (4.6)

∂φS

∂z
− νφS = 0, z = 0 (4.7)

∂φS

∂n
= 0, z = −h(x, y) (4.8)

∂φS

∂n
= 0. P (x, y, z) ∈ SB (4.9)

The driving force for this problem is the incident wave approaching from infinity. The
incident wave potential for the flat bottom case is given by:

φ0 = − igη0
ω

cosh(k(z + h0))

cosh(kh0)
eik(x cosα+y sinα). (4.10)

Here α is the incident wave direction (see figure 4.5). The dimensionless incident potential
is defined as φ0 = φ0/η0

√
ga. Again we use a to make all length parameters dimensionless.
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Now assume that h(x, y) is variable only within a restricted region x2 + y2 < r20 for some
given r0 and is a constant h0 otherwise. The idea here is to solve for each domain separately
using a suitable method and then match the solution at the common boundary.

Now in the exterior domain, we can write φS = φ7 + φ0 where φ7 is the diffracted
potential. This has the interpretation that the scattered potential is the sum of the incident
wave and a correction term represented by the diffraction potential φ7. This interpretation
falls short in the interior domain since the incident potential given in (4.10) is not a valid
solution for the interior region with variable topography. However, from an implementation
standpoint, it is convenient to write φS = φ7 + φ0 as that would make matching at the
common boundary much simpler. This is acceptable though as, mathematically speaking,
only the total potential φS needs to satisfy condition (4.8), not the individual components.
Having that said, the equivalent problem for φ7 can be solved instead:

∇2φ7 = 0, (4.11)

∂φ7

∂z
− νφ7 = 0, z = 0 (4.12)

∂φ7

∂n
= −∂φ0

∂n
, z = −h(x, y) (4.13)

∂φ7

∂n
= −∂φ0

∂n
. P (x, y, z) ∈ SB (4.14)

These equations apply for both domains where needed. In addition, matching of the poten-
tials and there normal derivatives resulting from the solutions of both domains is required
at the common boundary SR. φ7 also has to satisfy a radiation condition dictating outgoing
at infinity in the exterior domain.

4.2.3 The Solution Formulation

The solution proceeds by dividing the domain into two regions separated by a fictional
cylindrical surface SR defined by the boundary x2 + y2 = r20. The solution for the external
region will be represented by eigenfunction expansions relevant to that region (j ∈ [1, 6]∪[7]):

φj =
∞
∑

n=0

∞
∑

m=0

(αj
mn cos(nθ) + βj

mn sin(nθ))
Hn(Kmr)

Hn(Kmr0)

cosh(Km(z + h0))

cosh(Kmh0)
. (4.15)

αj
mn and βj

mn are constants to be determined, Hn are the Hankel functions of the first kind
and order n while r and θ are cylindrical coordinates in the horizontal plane. In addition,
K0 = k and Km = ikm, where ν = −km tan(kmh).

Inside SR, the problem is formulated into a boundary integral of the form:

2πφj(P ) =

∫ ∫

S

(

∂φj

∂n
(Q)

(

1

RPQ

)

−φj(Q)
∂

∂n

(

1

RPQ

))

dS(Q). (4.16)
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Here Q is an integration point on the full surface S = SB + SF + ST + SR. RPQ is the
distance between points P and Q. The solution of the inner region is the potential that
satisfies equation (4.16). Now both the outer region solution and its normal derivative are
substituted into equation (4.16) which is solved using the boundary element method.

4.3 The Numerical Procedure

In the original work of [61], the surface is discretized into quadrilateral panels and the po-
tential is assumed constant over each panel. In this work though, we choose to use flat
triangular panels as that will provide easier means of generating meshes and modeling com-
plex geometry. The potential is still assumed constant over each panel. Now with the use
of the boundary conditions (4.2), (4.3), and (4.5), discretization, and by choosing the col-
location points Pp to be on the panel centroids, the problem is reduced to the solution of a
system of linear equations:

NB
∑

q=1

Apqφj(Qq) +

NB+NF
∑

q=NB+1

(Apq − νBpq)φj(Qq) +

NB+NF+NT
∑

q=NB+NF+1

Apqφj(Qq)

+

NR
∑

n=0

MR
∑

m=0

(Fpmnα
j
mn +Gpmnβ

j
mn) =

NB
∑

q=1

Bpqfj(Qq). (4.17)

Here we define

Apq =

∫

S

∂

∂n

1

RPQ

dS + 2πδpq, (4.18)

Bpq =

∫

S

1

RPQ

dS. (4.19)

Integration is taken over the relevant triangular panel and δpq is the Kronecker delta. In
addition
[

Fpmn

Gpmn

]

=

∫

SR

[

∂

∂n

1

RPQ

− KmH
′

n(Kmr0)

Hn(Kmr0)

1

RPQ

]

cosh(Km(ζ + h))

cosh(Kmh)

[

cos(nψ)
sin(nψ)

]

dS

+2π
cosh(Km(z + h))

cosh(Kmh)

[

cos(nθ)
sin(nθ)

]

δp, (4.20)

where δp is 1 when p corresponds to a collocation point on SR and 0 otherwise. The values
NB, NF and NT correspond to the number of panels used on SB, SF and ST respectively while
MR and NR are the truncation limits used for the infinite series in 4.15. The integration
in equations 4.18 and 4.19 will only be required when computing the direct influences of
panels on one another. Gaussian quadrature over a triangle could be used except when the
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collocation point lies over the integration panel. In that case, and when the collocation point
lies within the same plane as the panel in general, the integral in 4.19 is exactly zero while for
that in 4.18, we refer the reader to appendix C for the details of the analytic method used.
For (4.20), it is possible to perform the integration over the angular direction analytically as
was shown in [61]. In appendix D, we present a brief description of that method also used
in our work.

4.4 The Fast Multipole Method

The fact that the method just described uses the free-space Rankine source allows us to make
use of the FMM to improve the efficiency of the method for larger number of unknowns. The
FMM is a hierarchical scheme introduced in [15] and that makes use of the fact that the
interaction between elements at large distances from each other can be adequately accounted
for indirectly using multipole representations of the Rankine source. We provide a brief
explanation of the method following closely the work in [74].

In the first step, the particles or panels are divided into cells in a hierarchical manner.
An octree is used in three dimensions. This means that each cell is divided into eight smaller
ones until the number of panels in each cell is less than a specified value. The lowest level
cells are called the leaves of the tree. In this work, we adopt an adaptive scheme for the
FMM. This means that cell division takes into account that different parts of the domain
have different concentrations of panels and therefore will have different levels of divisions.
This will make the method more efficient but will complicate the interactions between the
cells. Figure 4.2 shows a mesh for a problem with four floating truncated cylinders while
figure 4.3 shows the resulting octree for that mesh. Only the leaves are shown for clarity.
One can clearly see from the figure that most cells are concentrated near the four cylinders
where most panels are.

The second step is to calculate the moments for each cell. These are representations of
the influence of all the panels in each cell without regard to the target cells. We use the fact
that the Rankine source can be expanded into:

1

RPQ

=
∞
∑

a=0

b=a
∑

b=−a

Sa,b(P −Qc)Ta,b(Q−Qc), |Q−Qc| < |P −Qc|, (4.21)

Sa,b(P ) = (a− b)!P b
a(cos(θ))e

−ibϕ 1

ra+1
, (4.22)

Ta,b(P ) =
1

(a+ b)!
P b
a(cos(θ))e

ibϕra, (4.23)

where Qc is a point chosen to be the cell center, (r, θ, ϕ) are spherical coordinates and P b
a

are the associated Legendre functions defined as:

P b
a(x) = (1− x2)b/2

db

dxb
Pa(x), (4.24)

63



4.4. The Fast Multipole Method

Figure 4.2: Small mesh for the four cylinder problem

and Pa(x) is the Legendre polynomial of degree a. The moments are then calculated for all
the leaves using the expressions:

Ma,b(Qc) =

∫

S

γ(Q)Ta,b(Q−Qc)dS(Q), (4.25)

Ma,b =

∫

S

δ(Q)
∂Ta,b
∂n

(Q−Qc)dS(Q). (4.26)

Here γ and δ are the source and dipole strengths. In the final formulation of the problem, γ
is the normal derivative of the potential and is known from the boundary conditions given
in equations (4.2-4.5) while δ is the trial solution from the iterative solver for the potential
itself on the surface (assumed constant on each panel). The total moment on each panel is a
combination of Ma,b and Ma,b. For our problem, it is simply Ma,b−νMa,b for the free surface
panels (SF ) and Ma,b for panels on SB and ST .

After all the moments of the leaves are computed, the moments for the parent cells
are obtained by first transferring the center of each of the child cells to their parents and
then adding the contribution from each child cell. The center transformation known as the
moment to moment translation (M2M) is given by:

Ma,b(Q
′

c) =
a
∑

a′=0

a′
∑

b′=−a′

Ta′,b′(Qc −Q′

c)Ma−a′,b−b′(Qc). (4.27)
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Figure 4.3: Adaptive octree for the four cylinder problem

The third step is to calculate the local coefficients La,b for each cell. The local coefficients
represent the effects of all the cells on one particular cell with the exception of a few adjacent
ones which include the cell itself. The effects of the panels in the adjacent cells are computed
using the direct method instead. The local coefficients for one cell with center Ql due to a
particular cell with center Qc can be computed using the moment to local (M2L) translation:

La,b(Ql) = (−1)a
∞
∑

a′=0

a′
∑

b′=−a′

Sa+a′,b+b′(Ql −Qc)Ma′,b′ , |P −Ql| < |Qc −Ql|. (4.28)

The advantage of the FMM is that the local coefficients can be translated from the parent
cells to their children which in turn removes the requirement to account, on the child cell,
for the influences of all the cells that have already influenced the parent cell. This local to
local translation (L2L) is given by:

La,b(Q
′

l) =
∞
∑

a′=a

a′
∑

b′=−a′

Ta′−a,b′−b(Q
′

l −Ql)La′,b′(Ql). (4.29)

Naturally all these infinite summations have to be truncated at some point for the numerical
calculation. It is possible to formally estimate the error from these assumptions (see [75]).

65



4.5. Demonstration of The Method

Central to the local expansion stage is the association to each cell, a map of cells that
are adjacent (whose influence is calculated strictly using the direct method), cells in the
interaction list (whose influence is computed using the M2L translation) and cells in the far
list (whose influence is translated from the parent cell by the L2L translation). There are
different approaches for assigning these lists but the common factor is that all the influences
from all the cells must be accounted for and no influence is accounted for more than once.
For the adaptive FMM, this task is not trivial. We cite the works in [75] and [76] for two
possibilities. In this work, we adopt an approach that combines features from these two
works. For each cell j, we assign every other cell k (starting from the top level downwards)
into one of four lists. Any time a cell is assigned, all its descendants are ignored afterwards
since their effect is already accounted for. Some cells do not fall into any of the lists but
their descendants might. Otherwise, they would be in the far list and their is no need to
account for them. Two cells are said to touch each other if any of their edges or vertices
coincide. Also if cell j is at level L, then any cell at level greater than L is smaller and
deeper down the tree so that the largest levels will be strictly occupied by leaves. The four
lists are defined as follows:
List 1: if both cells j and k are leaves and touch each other
List 2: if both cells are at the same level of the tree, do not touch but their parent cells do
List 3: if cell j is a leaf at level L and cell k is at level L+1, they do not touch but j touches
the parent of k
List 4: if cell j is a leaf at level L and cell k is at level greater than L+1, they do not touch
but j touches the parent of k
In addition, cell j is added to List 4 of all cells in its List 3, and cell j is added to List 3 of
all cells in its List 4. Finally, all cells in Lists 1 and 4 are considered adjacent cells while all
those in Lists 2 and 3 are considered in the interaction list.

When all the local coefficients are calculated, it is then possible to find the influence of
the associated panels on the target cell using the expression:

∫

S

δG(P,Q)dS =
∞
∑

a=0

a
∑

b=−a

Ta,b(P −Ql)La,b(Ql). (4.30)

4.5 Demonstration of The Method

The method described above was implemented and verified against the results in [42] for a
single body as well as those in [68] for multiple bodies. The hybrid method itself was first
tested in [61] and verified to return correct results. With regards to computational efficiency,
we mentioned earlier that the method presented here has an O(N) complexity in principle.
The method consists of two parts. The first part is the influence of the inner domain panels
computed using the FMM which has been proven to have the O(N) behavior (see [15]).
The second part is the influence of the outer domain potential represented by the factors
in (4.20). Now assuming that the number of Fourier modes in (4.20) is kept constant as N
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4.6. Body Interactions With Variable Topography

increases, then the complexity of this second part will have O(N) behavior as well. This
is a fair assumption given that these modes act in the frequency domain and the radiation
boundary is usually far from the floating body for the latter to have significant influence on
it. Put together, this will make the whole method scale as O(N) as well.

To demonstrate the efficiency of the method, we ran a test case for a wide range of values
of N as shown in figure 4.4. The case is that of four identical circular cylinders arranged
in a circular fashion with a 90 degree angular phase between them over a constant water
depth as in figure 4.2. This case could represent, for example, an ocean platform with four
spars or a tension leg platform. For the case considered here, the radii of the four cylinders
are assumed to be exactly 1, the distance from the origin to the cylinder centers is equal to
3.5 radii and the drafts are set to 2 radii. The water depth is 5 and the radius of the inner
domain shown in the figure is 15 radii. In addition, we used a maximum of 90 panels in each
leaf cell and we used 4 as an upper truncation limit for the series in equations (4.21) and
(4.29) as well as MR = 5 and NR = 9. With these parameters, figure 4.4 shows the time
required to perform one matrix vector multiplication of those required in an iterative solver
to solve for the system in (4.17) as a function of the total number of unknowns N . The
figure shows the expected approximately linear behavior with N .

Note that for this case, the direct influence coefficients were stored for adjacent cells to
avoid having to compute them for every iteration. The same applies to the outer domain
influence coefficients (equation (4.20)). This requires an O(N) of memory. In addition, we
used the stored direct influence coefficients to form a block diagonal matrix which was used
as a preconditioner. That helped reduce the number of required iterations significantly.

4.6 Body Interactions With Variable Topography

As an example of the use of this numerical method, we study two problems:

4.6.1 Four Cylinders With a Parabolic Bottom Profile

The first case we consider here is that of four circular cylinders in proximity oscillating in
water or subject to an incident wave. Figure 4.2, presented earlier, shows a small mesh of
about 7600 panels for this problem. The actual simulation was performed on meshes of the
order of 40000 panels. The problem solution is made unique to our method by introducing a
variation in the topography of the ocean floor. The aim here is to see what is the consequence
of installing the cylinders over a ground protrusion (assumed parabolic for demonstration)
compared to the flat bottom case usually assumed. Figure 4.6 shows the cross section of the
axisymmetric bottom profiles that we considered here. In addition and for comparison, we
consider the flat bottom cases h = 3.5, 5, 6.5 which bound the protruded profiles. The case
considered assigns a radius of a = 1 to each of the cylinders with a draft of 2, a distance of
1.5 in both x and y directions from the origin (see figure 4.5 where s = 3), and a radiation

67



4.6. Body Interactions With Variable Topography

0 2 4 6 8 10 12 14

N ×104

0

2

4

6

8

10

12
T

im
e
 (

s
e
c
)

Figure 4.4: Plot of the time required for one matrix multiplication vs number of unknowns

boundary radius of 15. We also used MR = 5, NR = 9, and kept 8 terms in equations (4.21)
and (4.29).

With the potential for a particular problem solved for, the loads on the bodies are ob-
tained by an integration of the pressure over the surface area of each body. Since the problem
is symmetric along both horizontal axes, it suffices to find the radiation loads due to the
motion of one of the cylinders on all others. The radiation loads are traditionally separated
into added mass µjk = µjk/πρa

c and damping coefficients λjk = λjk/πρωa
c for a forced

motion with velocity Uj. Here, c is chosen to make the terms dimensionless depending on
the mode of motion. These coefficients are given by:

µjk + iλjk =
1

π

∫

Sb

φjnkdS, (4.31)

where integration is taken over the body of interest Sb only. This represents the load (force
or moment) in the direction of motion k due to the motion of the body Sb in the direction
j. For multiple bodies, the integration is taken over the surface of the body of interest using
the potential caused by the motion of any of the other bodies. The diffraction loads are
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Figure 4.5: Schematic for the four cylinder problem

obtained in the same manner:

Fk =
F k

πρgη0ad
=
iν

π

∫

Sb

(φ7 + φ0)nkdS, (4.32)

where d is chosen to make the expression dimensionless as needed (2 for forces and 3 for
moments). More conveniently, Fk can be obtained by the use of the Haskind relation if φk

from the radiation problem is available. The Haskind relation can be derived as follows.
Consider Green’s second identity for harmonic potentials φ7 and φk:

∫

SB+SF+ST+SR

(

φ7
∂φk

∂n
− φk

∂φ7

∂n

)

dS = 0. (4.33)

Now upon using the known boundary conditions on φ7 and φk, this simplifies to:
∫

Sb

φ7nkdS =

∫

SB+ST

φk
∂φ7

∂n
dS. (4.34)

Since ∂φ7

∂n
= −∂φ0

∂n
on SB and ST then:

∫

Sb

φ7nkdS = −
∫

SB+ST

φk
∂φ0

∂n
dS. (4.35)
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Figure 4.6: Cross-sections of the bottom profiles considered

Finally, the diffraction load is given by:

Fk =
iν

π

∫

Sb

φ0nkdS − iν

π

∫

SB+ST

φk
∂φ0

∂n
dS. (4.36)

This way, the load can be obtained without having to solve the diffraction problem sepa-
rately.

In figures 4.7-4.10, the notation used is that the superscripts mn indicate the effect of
motion of body m on body n while the subscripts jk are as defined in 4.31. Figures 4.7 and
4.8 show the heave added mass and damping coefficients on body 4 (as labeled in figure 4.5)
as it heaves with the other 3 bodies static. The effects of the variable topography appear
to be more prominent in the damping results. It is interesting to note how the loads with
the protruded cases change as a function of frequency. Since all protrusion topographies
(h = 5−−, 5−, 5+, 5++) have a limiting depth of h = 5 as we move outwards in the radial
direction, the loads tend to that of the case h = 5 as the frequency approaches 0. However,
as the wavelength approaches the size of the protrusion, the protrusion depth becomes the
deciding factor and the results approach those of the corresponding flat-bottom depths. This
is seen to occur at larger wavelengths for the cases h = 5 − − and h = 5 + + compared to
those where h = 5− or h = 5+ because the protrusion size is larger. It is also clear that the
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Figure 4.7: Added mass coefficients on body 4 in the z-direction due to heave of body 4
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Figure 4.9: Added mass coefficients on body 3 in the z-direction due to surge of body 4
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Figure 4.11: Diffraction on body 4 in the z-direction

results for the limiting depths of h = 6.5 and h = 3.5 envelope the rest of the other cases in
between. A similar behavior is observed for the forces on the other bodies due to the heave
motion of body 4.

An interesting observation is shown in figures 4.9 and 4.10 where the surge motion of
body 4 causes a vertical load on body 3 that is affected by the protrusion size (with the
water depth playing a more significant role). This is not observed for the horizontal load on
the same body where it seems that the bulk of the interference between the two bodies is
mostly transferred horizontally away from the bottom protrusion.

Finally, in figure 4.11, we show the vertical excitation force on body 4 as a wave ap-
proaches in the direction α = 0. The interesting observation here is that a higher load is
experienced at lower frequencies for the case h = 5 − − while a higher load is experienced
in the case h = 5 + + at higher frequencies.

4.6.2 Sixteen Cylinders with Sinusoidal Bottom Profile

The second problem we will show here demonstrates the ability of the current method to
deal with a problem with high number of unknowns. The problem is that of diffraction of
incident waves hitting an array of 16 truncated cylinders arranged as in figure 4.12. In this
figure, the cylinders are arranged onto three concentric circles having 10, 5 and 1 cylinders
respectively. The coordinate system is at the center of cylinder 16. The center of cylinder
11 lies on the x-axis and the angle between different cylinders is 2π/5 for the middle circle.
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Figure 4.12: Schematic of the 16-cylinder problem

The center of cylinder 1 forms an angle of π/10 with the x-axis and the angle between the
different cylinders on the outer circle is π/5. The radius of the middle circle is 2.5 and that
of the outer circle is 5. Again, a = 1 is the radius of one cylindrical body. We compare
the two cases when the bottom is flat and when it has a sinusoidal variation as shown in
figures 4.13 and 4.14. The sinusoidal profile has the form zT = −h+1.5× sin(5πr/r0) where
r is the radial distance. We used about 150,000 triangular panels for this problem which
is way beyond the capabilities of traditional boundary element solvers. Most panels are
concentrated on the floating bodies.

Numerically, we also used MR = 10, NR = 19, and kept 8 terms in equations (4.21) and
(4.29) for higher accuracy. Note that these number are significantly larger than those used
to generate figure 4.4 and therefore required about 140 seconds per iteration on a 3 GHz
single processor which is higher than suggested in that figure. The number of panels per leaf
cell, which can be chosen arbitrarily as a hyper-parameter, also affects the processing time.

We will only consider results when the incident angle α = 0. Figures 4.15 and 4.16 show
what the amplitude of the potential function looks like as an incident wave approaches the
group of cylinders. The matching of the potentials between the exterior and interior domains
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Figure 4.13: Cross-section of the sinusoidal bottom profile considered

Figure 4.14: Mesh of the sinusoidal bottom profile considered

is visible in figure 4.15. It is interesting that for this case, the maximum wave elevations
actually happen just before the center of the group rather than at the first contact point
as one might expect. Figure 4.17 shows the vertical force on the three bodies 6, 16 and
1 due to the incident wave. Each plot in the figure represents the load on a cylinder at a
different position in the group and includes the case when the ocean floor is flat and when
the sinusoidal variation is present. The results seem to indicate that higher loads are to
be expected when the sinusoidal floor is present in all three cases. The results also predict
higher loads on cylinder 6 (which is facing the incident wave) compared to 16 which also
has a higher load than 1 but only at the lower frequencies. In the mid range frequencies
(ka ∼ 0.35), it seems that there is a constructive interference effect on body 16 in the center
leading to higher loads.
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Figure 4.15: Plot of the free-surface potential amplitude |φ| (wave elevation amplitude) as a
wave of ka = 0.65 approaches the 16-cylinder group from left to right over a flat bottom
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Figure 4.16: Close-up view of figure 4.15
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Chapter 5

Conclusions and Future Work

In this thesis, we explored new ways to advance the computational methods that are used
to solve the linear water-wave problem. Our interest was mainly focused on floating bodies
and the loads that are exerted by the waves on these bodies. Two new techniques for the
numerical solution of the water wave problem were introduced. The first dealt with the
computation of the wave field around thin bodies in the water while the second introduced a
new method to reduce the computational effort required to solve the general linear problem
with arbitrary body shape and arbitrary ocean floor topography. Both techniques were used
to solve for particular problems of interest in order to demonstrate these methods and to
gain insight into these types of problems. In addition, we developed a method to solve for
the added mass of flat plates of arbitrary shapes and possibly with holes. These difficult to
obtain results are missing from the literature and we decided to fill this gap by presenting
many of those values of interest.

In chapter 2, we studied the effects of having open arbitrary cylindrical shells in a wave
field. Both radiation and diffraction of waves from the body were considered and analyzed.
This work also presented a simple way to treat problems that can be modeled using a hyper-
singular integral equation. This last method is better conditioned and faster than a standard
boundary integral formulation used to model bodies approaching zero thickness. The results
are also more reliable. The same concepts presented here can be extended to more compli-
cated problems. We presented several new results for loads acting on open cylinders that
are circular, elliptical and squared in planform shape with a special emphasis on the effect of
the increasing opening size. We also presented plots for the free surface elevation amplitude
for wave radiation and diffraction from the bodies considered. The results are also extended
to multiple bodies and the one case of an open circular harbor with a frontal breakwater is
considered.

Results indicate that a significant change in the load profile occurs when the body is
opened. Specifically, very large loads appear at lower frequencies along the direction of the
opening especially when the shell is not opened widely. Smaller loads appear as the frequency
increases when compared to the case of a closed shell except when the frequency approaches
the resonant frequency of the internal region of the shell. Then the inside resonates partially,
which causes higher loads. The loads in the direction perpendicular to the opening act dif-
ferently. Surprisingly, the increasing opening size leads to smaller loads except at resonance.
Zero loads were found possible for certain combinations of wave frequencies and opening size
when the opening lies upstream. Zero loads are always possible for open structures in beam
seas relative to the opening. In general, the opening has the possible advantage of decreasing
the loads on the body.
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With regards to wave radiation, it was found that the added mass decreases when the
body is opened because the fluid in the direction of motion could escape from the shell.
Remarkably, open bodies were also found to radiate more waves when the frequency is close
to resonance as compared to the closed ones. Free surface plots also indicate regions of large
oscillations and regions shielded from the incoming waves. These discoveries should be useful
for marine operations.

The problem of an open harbor with a protective breakwater (tongue) was also consid-
ered. Results indicate that the breakwater might actually cause higher loads because of the
inflicted resonance. The breakwater is effective though at high frequencies.

Possible future work on this subject may include a quantitative study of the effects ex-
erted by nonlinear waves on the structures. It is expected that nonlinearity will move some
of the energy from near resonance frequencies to higher and lower frequencies resulting in
lower loads on the body. This will require solving the second order or higher wave problem
using the formulations available in the literature or the full nonlinear problem, both cases
requiring the use of a hypersingular formulation. The effects of viscosity and vortex shedding
are also important for these types of structures. These constitute an even more daunting
task as they require the solution of the full Navier Stokes equations or some reasonable ap-
proximation.

In chapter 3, we dealt with the problem of finding the added loads on thin plates of
arbitrary shapes. The formulation of this problem again required handling hypersingular
boundary integral equations albeit in a three dimensional setting. We neglected the pres-
ence of a free surface and approached the problem in a new way using a Galerkin formulation.
We particularly were interested in holes present in these plates and their influence on the
added load terms. The results presented for a circle, square and equilateral triangle shaped
plates, all with a central hole, as well as those for an isosceles and right triangles make these
results available for use as they are missing from the literature. A quick comparison with
an algebraic method, which simply subtracts the added mass of the hole plate from the full
plate, showed a significant difference with our numerical results indicating the need for their
computation. Finally, a possible extension here is to include the effects of the free surface
although a new approach might be required if the computational effort becomes unwieldy.

In chapter 4, we presented a new method to solve the linear water-wave problem when
the number of unknowns is very large. The method is based on applying the Fast Multipole
Method to a hybrid matching scheme. It has the advantage of being able to model variable
ocean floor topography as well as handling multiple floating structures of arbitrary shapes all
while scaling linearly with the number of unknowns. This allows for modeling more complex
problems than is possible with other methods in the literature.

We demonstrated the linear complexity of the method and as an example, we presented
two case studies. The first looked at the effects of different parabolic profiles of the ocean
floor on a group of 4 truncated vertical cylinders arranged in a circular fashion. Our results
indicate the importance of modeling the variable shape of the ocean floor, especially for the
heave radiation problem. At very low frequencies, the profile shape is insignificant and the
asymptotic depth is the only one that matters. As the frequency increases to the point when
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the wavelength is about the same as the profile size, the bottom effects become important up
to the point when the wave essentially sees the peak (or minimum) depth as the dominant
water height rather than the asymptotic depth. The second case study was for the diffraction
of incident waves over a group of 16 cylinders arranged over three concentric circles. This
case was meant to show the ability of the current method to return accurate results when a
large number of unknowns is required. Having an uneven ocean floor in this case seems to
cause higher loads on the bodies.

A possible extension of this work is studying the effects of sea shores on wave energy
farms designed to be placed close to shorelines. In addition, it is possible to develop similar
methods for other types of marine problems such as the linear sea keeping problem.
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Appendix A

Treatment of the Hypersingular Integrals

We left the details of the treatment the hypersingular integral to this appendix because they
require some explanation. The integrals in (2.18) span the range of [0, 1] in the parameter
t and are only singular when the collocation point lies on one of the ends of that interval.
The idea here is to approximate the kernel by its Taylor series close to the singular edge
and integrate analytically while performing numerical integration over the rest of the panel
length. We will only consider the range of integration [0, T ] or [1 − T, 1] for a collocation
point placed on t = 0 or t = 1 respectively and for some suitable T .

The kernels that are to be integrated here have different forms. They will include both
hypersingular terms (O(t−2)) and singular terms (O(t−1)). The singular terms cancel out
with those from the integral over the adjacent panel (Principle Values) provided the normal
vector is continuous. The hypersingular ones do not though. However, as explained in
[13], if the density belongs to C1,α, it is possible to consider the finite part (in the sense of
Hadamard) of these integrals. It follows then that all we have to do is analytically remove
the singular and hypersingular parts.

One point to note here is that while the density function is chosen to have enough
continuity, our choice for straight panels to approximate the surface of the body will lead to
a discontinuous normal vector at the panel edge and therefore a discontinuous kernel. That
can be remedied by choosing a higher order approximation for the shell. However, as pointed
out in [38], a discontinuous density is allowed if the definition of the integral is changed to
remove any unbounded terms. In fact, we can justify doing that in this case because as we
remove the singular terms, we effectively assume that we are using the same normal vector
for the singular parts of the kernel but not for the regular parts. The following integrals
(definitions) will be used:

∫ R0

0

1

s2
ds = lim

ǫ→0

∫ R0

ǫ

1

s2
ds− 1

ǫ
= − 1

R0

, (A.1)

∫ R0

0

1

s
ds = lim

ǫ→0

∫ R0

ǫ

1

s
ds+ ln(ǫ) = ln(R0), (A.2)

∫ S

S−R0

1

(s− S)2
ds = lim

ǫ→0

∫ S−ǫ

S−R0

1

(s− S)2
ds− 1

ǫ
= − 1

R0

, (A.3)

87



∫ S

S−R0

s

(s− S)2
ds = lim

ǫ→0

∫ S−ǫ

S−R0

s

(s− S)2
ds− ln(ǫ)− S

ǫ
= − ln(R0)−

S

R0

, (A.4)

∫ S

S−R0

s2

(s− S)2
ds = lim

ǫ→0

∫ S−ǫ

S−R0

s2

(s− S)2
ds− 2S ln(ǫ)− S2

ǫ

= −2S ln(R0) +R0 −
S2

R0

, (A.5)

∫ S

S−R0

s3

(s− S)2
ds = lim

ǫ→0

∫ S−ǫ

S−R0

s3

(s− S)2
ds− 3S2 ln(ǫ)− S3

ǫ

= −3S2 ln(R0) + 3R0S − R2
0

2
− S3

R0

. (A.6)

The parameter R0 < S, with S a shorthand for Sj, is a number chosen small enough to
provide the required accuracy in the Taylor expansion in what follows. We note here, as
was pointed out in [13], that the integrals with strong singularities are not independent of
scaling the variable of integration. Here we integrate using the original variables to avoid
that problem.

Using the fact that when the singular point is at t = 0 or 1, then R = St and S(1 − t)
respectively, we can Taylor-expand the kernel of (2.12) as:

∂2Gn

∂nP∂nQ

= A1

(

4

κ2nS
2
j (t− ts)2

+ 1

)

− A2

(

1 +
2i

π

(

ln

(

κnSj|t− ts|
2

)

+ γ − 2

κ2nS
2
j (t− ts)2

− 1

2

))

+O(R2ln(R)), (A.7)

A1 =
κ2n

4πS2
j

(

a21 sin(αj) sin(θj) + a22 cos(αj) cos(θj)− a1a2 sin(θj + αj)
)

,

A2 = − iκ
2
n cos(θ − α)

8
.

Here, γ is Euler’s constant, a1 = ξj+1 − ξj and a2 = ζj+1 − ζj. Clearly a hypersingular point
of order R−2 exists. This expression will be integrated analytically in the neighborhood of
the singular point in (2.18). The required integrals when the collocation point lies on the
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starting edge of the panel are then are evaluated as:

I0 =

∫ R0

0

∂2Gn

∂nP∂nQ

ds = A1R0

(

1− 4

κ2nR
2
0

)

− A2R0

[

1 +
i

π

(

2 ln(
κnR0

2
) + 2γ +

4

κ2nR
2
0

− 3

)]

, (A.8)

I1 =

∫ R0

0

s
∂2Gn

∂nP∂nQ

ds = A1R
2
0

(

1

2
+

4 ln(R0)

κ2nR
2
0

)

− A2R
2
0

[

1

2
+
i

π

(

ln(
κnR0

2
) + γ − 4 ln(R0)

κ2nR
2
0

− 1

)]

, (A.9)

I2 =

∫ R0

0

s2
∂2Gn

∂nP∂nQ

ds = A1R
3
0

(

1

3
+

4

κ2nR
2
0

)

− A2R
3
0

[

1

3
+
i

π

(

2

3
ln(

κnR0

2
) +

2

3
γ − 4

κ2nR
2
0

− 5

3

)]

, (A.10)

I3 =

∫ R0

0

s3
∂2Gn

∂nP∂nQ

ds = A1R
4
0

(

1

4
+

2

κ2nR
2
0

)

− A2R
4
0

[

1

4
+
i

π

(

1

2
ln(

κnR0

2
) +

1

2
γ − 2

κ2nR
2
0

− 3

8

)]

, (A.11)

while the integrals required when the collocation point lies on the ending edge are:

J0 =

∫ S

S−R0

∂2Gn

∂nP∂nQ

ds = I0, (A.12)

J1 =

∫ S

S−R0

s
∂2Gn

∂nP∂nQ

ds = A1R
2
0

(

1

T
− 1

2
− 4

κ2nR
2
0

(

ln(R0) +
1

T
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− A2R
2
0
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1

T
− 1

2
+
i

π

(

(
2

T
− 1)

(

ln(
κnR0

2
) + γ

)

+
4

κ2nR
2
0

(

ln(R0) +
1

T

)

+ 1− 3

T

)]

, (A.13)

J2 =

∫ S

S−R0
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∂nP∂nQ
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1
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− 1

T
+

1

T 2
− 4
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2
0

(

2

T
ln(R0)− 1 +
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T 2
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1
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+
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i
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(

1

3
− 1
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+
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)(
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2
0

(

2

T
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1

T 2

)

− 5
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+

2

T
− 3

T 2
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, (A.14)
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J3 =

∫ S

S−R0

s3
∂2Gn

∂nP∂nQ
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4
0
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−1

4
+

1

T
− 3
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T
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+
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2

(

−1

4
+

1

T
− 3
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+

1
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2
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+
4
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2
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(

3

T 2
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1

2
− 3

T
+

1
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)

+
3

8
− 5

3T
+

3

T 2
− 3

T 3

)]

. (A.15)

Here, T = R0/S. The integral of the whole Overhauser element could then be obtained by
superposing the integrals above weighted by the values in (2.15, 2.16 and 2.17).
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Appendix B

Force Integrals Evaluations

We evaluate the integrals needed for the forces in (2.19) and (2.20). From (2.19) for p =
1, 2, 4, 5, 6:

µkp + iλkp =
1

Ah

∞
∑

n=0

sinh(κnh)

κnMn

N
∑

j=0

(nk)jSj

×
j+2
∑

q=j−1

[ϕp
n]q

(

bm1 +
1

2
bm2 +

1

3
bm3 +

1

4
bm4

)

, (k = 1, 2), (B.1)

µkp + iλkp =
1

Ah

∞
∑

n=0

κnh sinh(κnh)− cosh(κnh) + 1

κ2nMn

N
∑

j=0

(nk−3)jSj

×
j+2
∑

q=j−1

[ϕp
n]q

(

bm1 +
1

2
bm2 +

1

3
bm3 +

1

4
bm4

)

, (k = 4, 5), (B.2)

µkp + iλkp =
1

Ah

∞
∑

n=0

sinh(κnh)

κnMn

N
∑

j=0

Sj

×
j+2
∑

q=j−1

[ϕp
n]q

[

(zjn1 − xjn2)

(

1

2
bm1 +

1

6
bm2 +

1

12
bm3 +

1

20
bm4)

)

+ (zj+1n1 − xj+1n2)

(

1

2
bm1 +

1

3
bm2 +

1

4
bm3 +

1

5
bm4)

)]

.(k = 6). (B.3)

Again, it is understood that for a panel on the left edge of the shell, q ∈ [j, j + 2] and for
one on the right edge, q ∈ [j − 1, j + 1]. (nk)j is the normal component of the panel j in
direction k. We also used m = q − j + 2 so that m ∈ [1, 4]. Again m should be modified
at the outermost panels to m = q − j + 1 and m = q − j + 3 for the left and right panels
respectively. The points xj and zj are the starting points of panel j.
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From (2.20):

fk =
i
√
ν

A

sinh(κ0h)

κ0M0

N
∑

j=0

(nk)jSj

×
j+2
∑

q=j−1

[ϕ7
0]q

(

bm1 +
1

2
bm2 +

1

3
bm3 +

1

4
bm4

)

, (k = 1, 2), (B.4)
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i
√
ν

A

κ0h sinh(κ0h)− cosh(κ0h) + 1

κ20M0
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∑
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[ϕ7
0]q

(
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1

2
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3
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1

4
bm4

)

, (k = 4, 5), (B.5)

fk =
i
√
ν
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sinh(κ0h)

κ0M0

N
∑
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Sj

×
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∑

q=j−1

[ϕ7
0]q

[

(zjn1 − xjn2)

(

1

2
bm1 +

1

6
bm2 +

1

12
bm3 +

1

20
bm4)

)

+ (zj+1n1 − xj+1n2)

(

1

2
bm1 +

1

3
bm2 +

1

4
bm3 +

1

5
bm4)

)]

.(k = 6). (B.6)

The interval for q at the edges is the same as that used in treating the radiation coefficients.
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Appendix C

Analytical Evaluation of the Source Integrals over a

Right Triangle

While Gaussian quadrature is used in general to evaluate the integrals in equations 4.18 and
4.19, analytic integration is required for 4.18 when the collocation point lies within the panel
of integration. The integral in 4.19 is exactly zero in that case as well as when the collocation
point lies within the same plane as the integration panel. In that case, integration is carried
over in the plane of the integration panel (a two dimensional integral). Now, the panel shape
is triangular and any triangle can be divided into two right triangles separated by one of the
vertex heights. It is therefore necessary to only derive analytic solutions for integration over
a right triangle. The value of the integrals will also remain unchanged if we perform the
integration over a system whose origin is placed at the point of right angle of the triangle
and whose axes are along its two right sides (see figure C.1).
In that case, the required integral is of the form:

Figure C.1: Schematic diagram of a triangular element
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I =

∫ ξ0

0

∫ 0

δ(ξ−ξ0)

1
√

(ξ − x)2 + (η − y)2
dηdξ

= −y sinh−1

(

x

|y|

)

− x sinh−1

(

y

|x|

)

− y sinh−1

(

ξ0 − x

|y|

)

+ x sinh−1

(

δξ0 + y

|x|

)

+
δ(ξ0 − x) + y√

δ2 + 1
sinh−1

(−δy + (ξ0 − x)

|y + δ(ξ0 − x)|

)

+
δ(ξ0 − x) + y√

δ2 + 1
sinh−1

(

δ(δξ0 + y) + x

|y + δ(ξ0 − x)|

)

,

(C.1)

and δ = −η0/ξ0 where ξ0 and η0 are defined in figure C.1. There are some special cases to
consider. When y = 0:

I = x sinh−1

(

δξ0
|x|

)

+
δ|ξ0 − x|√
δ2 + 1

sinh−1

(

1

|δ|

)

+
δ(ξ0 − x)√
δ2 + 1

sinh−1

(

δ2ξ0 + x

|δ(ξ0 − x)|

)

. (C.2)

When x = 0:

I = −y sinh−1

(

ξ0 − x

|y|

)

+
δξ0 + y√
δ2 + 1

sinh−1

(−δy + ξ0
|y + δξ0|

)

+
δξ0 + y√
δ2 + 1

sinh−1

(

δ(δξ0 + y)

|y + δξ0)|

)

. (C.3)

When y + δ(ξ0 − x) = 0:

I = −y sinh−1

(

x

|y|

)

− x sinh−1

(

y

|x|

)

− y sinh−1

(

ξ0 − x

|y|

)

+ x sinh−1

(

δξ0 + y

|x|

)

. (C.4)

Note that these special cases are not required when the collocation point is on the integration
panel.
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Appendix D

Details for Evaluating the Outer Domain Infuence

Coefficients Using the Fourier Expansion of the

Rankine Source

In the work in [61], the Rankine source in 4.20 is expanded into a Fourier series:

1

RPQ

=
1

2π
̺0 +

1

π

∞
∑

n=1

̺n cos(θ − ψ), (D.1)

̺n =
2√
rr0

Qn− 1
2

(

r2 + r20 + (z − ζ)2

2rr0

)

, (D.2)

where Qn is the Legendre function of the second kind and order n while (r, θ, z) and (r0, ψ, ζ)
are the cylindrical coordinates of the points P and Q respectively. This expansion is then
used to perform the integration over ψ in 4.20 directly so that:

[

Fpmn

Gpmn

]

= Ppmn

[

cos(nθ)
sin(nθ)

]

(D.3)

Ppmn =

∫ 0

−h

[

∂̺n

∂n
− KmH

′

n(Kmr0)

Hn(Kmr0)
̺n
]

×cosh(Km(ζ + h))

cosh(Kmh)
r0dζ + 2π

cosh(Km(z + h))

cosh(Kmh)
δp. (D.4)

In this final expression, the integral is evaluated numerically except in the region ζ ∈ [z −
∆, z +∆] for some small enough ∆. In that region, the expansions:

̺n =
2

r0
log

(

2r0
|z − ζ|

)

+ ̺n(R), (D.5)

∂̺n

∂n
= − 1

r20
log

(

2r0
|z − ζ|

)

+
∂̺n(R)

∂n
, (D.6)

are used. Here ̺n(R) and ∂̺n(R)

∂n
are the remainders left after extracting the singular parts.

The integral over these remainders is carried over numerically as well while the integral over
the singular parts is given by:

P (S)
pmn = −

(

1

r0
+ 2

KmH
′

n(Kmr0)

Hn(Kmr0)

)

Sm(∆)
cosh(Km(z + h))

cosh(Kmh)
, (D.7)
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where Sm is defined as:

Sm(∆) =
2

Km

(

Shi(Km∆)− sinh(Km∆) log

(

∆

2r0

))

, (D.8)

and Shi is the hyperbolic sine integral function [77].
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Appendix E

Integration of the Chebychev Type Potential With a

Hypersingular Kernel

The equation to solve here is that in (3.13):

4π

∫

S

∂φi

∂n
Fmn(x, y) = −

∞
∑

p=0,q=0

Ai
mn

∫

S

∫

S

(

Fmn(x, y)Fpq(ξ, η)
1

R3
PQ

)

dSQdSP . (E.1)

The idea here is to approximate the representation Fpq(ξ, η) in the first integral using a few
terms of its Taylor series (expanded at the center of each triangular element of the mesh) and
then using that to perform the first integration in an analytical fashion. This requires the
derivatives of Chebychev polynomials which are readily available in closed form. The inte-
gration is then simplified to finding analytical forms for the integrals of low order monomials
multiplied by the hypersingular kernel which is much more weildy than the original form.
The second integral can be performed using Gaussian quadrature over triangular elements.

To start with, we use the ideas of appendix C to simplify the problem to an integration
over a right triangle in the system whose axes are along the right sides of that triangle (figure
C.1). This is a shifted and rotated system. In that case, the required integrals will be of the
form:

Imn =

∫ ξ0

0

∫ 0

δ(ξ−ξ0)

ξmηn

((ξ − x)2 + (η − y)2)3/2
dηdξ. (E.2)

These integrals can then be grouped together in the Taylor series integral to obtain the
desired original integral. It is important to point here that the values for ξ and η in these
integrals are defined in the new rotated system and can be related to the original variable
using the transformations:

ξold = cos θξnew − sin θηnew +X0, (E.3)

ηold = sin θξnew − cos θηnew + Y0, (E.4)

where θ is the angle of rotation of the new system and X0, Y0 are the shift values in the x
and y directions respectively. If x and y are also shifted and rotated, then the denominator
of the integral is only a function of the distance between two points and is invariant under
translation and rotation. This means that only the numerator needs to be shifted back to
the old system. The monomial integrals in the old system (needed for our problem) are a
linear combination of the monomial integrals in the new system.

Now getting back to the integral set E.2, we notice that the higher order integrals can
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be written in a simpler manner. To do that, it is useful to define the set:

Jmn =

∫ ξ0

0

∫ 0

δ(ξ−ξ0)

(ξ − x)m(η − y)n

((ξ − x)2 + (η − y)2)3/2
dηdξ. (E.5)

These integrals are slightly easier to evaluate. Accordingly, we can write:

I00 = J00, (E.6)

I10 = J10 + xI00, (E.7)

I01 = J01 + yI00, (E.8)

I11 = J11 + xI01 + yI10 − xyI00, (E.9)

I20 = J20 + 2xI10 − x2I00, (E.10)

I02 = J02 + 2yI01 − y2I00, (E.11)

and so forth. Therefore, it is only necessary to evaluate the integrals Jmn. Those could be
obtained using any symbolic computation package and are not shown here for brevity. Note
that we noticed that going to higher order is worth the effort.
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