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As a central hub of cellular metabolism and signaling, the
mitochondrion is a crucial organelle whose dysfunction can
cause disease and whose activity is intimately connected to
aging. We review how the mitochondrial network maintains
proteomic integrity, how mitochondrial proteotoxic stress is
communicated and resolved in the context of the entire cell, and
how mitochondrial systems function in the context of organis-
mal health and aging. A deeper understanding of how mito-
chondrial protein quality control mechanisms are coordinated
across these distinct biological levels should help explain why
these mechanisms fail with age and, ultimately, how routes to
intervention might be attained.

The decline in the health of an organism over time derives
from dysfunction at the cellular level, which largely arises from
the progressive accumulation of damage to proteins and organ-
elles (Fig. 1A). Work over the past decades has identified the
mitochondrion as an organelle whose function imparts a signif-
icant effect on aging. Here, we review a set of underlying path-
ways and molecular machines that are central to the mitochon-
drial contribution to aging.

The key functions mitochondria are tasked with—energy
homeostasis, metabolism, and apoptosis—rely upon an elab-
orate network of proteins, many of them multisubunit com-
plexes. Several challenges face the mitochondrion with
respect to establishing and maintaining a functional pro-
teome. First, having descended from an ancestral bacterium,
the mitochondrial proteome and genome are separated from
the rest of the cell by inner and outer membranes (Fig. 1B).
Only ~13 of its ~1,100 resident proteins are encoded by the
mitochondrial genome (mtDNA) (1); therefore, a vast major-
ity of mitochondrial proteins have to be folded following
translation in the cytoplasm and import into mitochondria.
Moreover, once imported into the organelle, mitochondrial
proteins are physically separated from the cytoplasmic pro-
tein-folding machinery, therefore requiring mitochondrion-
localized machinery for their maintenance. The second chal-
lenge is that a number of key mitochondrial protein complexes

contain subunits encoded by both the nuclear and mitochon-
drial genomes, and an imbalance in the expression from these
two genomes can be detrimental to mitochondrial protein
homeostasis. A third challenge is that the primary energy-pro-
ducing process inside the mitochondrion, oxidative phosphor-
ylation (OXPHOS),* creates damaging reactive oxygen species
(ROS) as a by-product of the electron transport chain (ETC).
These ROS threaten not only the OXPHOS machinery but also
other mitochondrial proteins, lipids, and the mtDNA.

To defend against these proteomic challenges, mitochon-
dria employ several mechanisms to maintain protein home-
ostasis, or “proteostasis” within the organelle. In general
terms, proteostasis mechanisms exist to monitor and control
all steps in the life of a protein, including biogenesis, folding,
localization, and degradation. Proteostasis of mitochondrial
proteins includes mitochondria-localized chaperones and
proteases that re-fold or degrade individual mis-folded pro-
teins, as well as bulk mitochondrial organelle degradation,
inter-organellar communication, and trans-cellular signal-
ing, all of which impact the quality of proteins functioning
within mitochondria. Defects in these mitochondrial pro-
teostasis defense pathways in these different layers of biolog-
ical complexity can have substantial impacts on organismal
health and aging. A number of mutations in genes encoding
mitochondrial proteostasis machinery result in accelerated
proteostatic collapse, and many eventually manifest in age-
associated diseases (Table 1). In addition, acute environmen-
tal insults, such as exposure to mitochondria-targeted pesti-
cides, herbicides, and antibiotics are thought to increase the
proteostatic burden on mitochondria and are known to be
pathogenic to humans (2). An increased focus on mitochon-
drial proteostasis as it connects to cellular and organismal
health should yield a more informed perspective on the eti-
ology and treatment of aging and aging-related disease.

Mitochondrial proteostasis at the organellar level

Types of damage that accumulate in mitochondria

To trace the connection between mitochondrial proteostasis
and organismal health, we first review the types of damage to
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“The abbreviations used are: OXPHOS, oxidative phosphorylation; ROS, reac-
tive oxygen species; ETC, electron transport chain; PD, Parkinson’s disease;
IMS, intermembrane space; AD, Alzheimer’s disease; mtUPR, mitochon-
drial unfolded protein response; ER-UPR, unfolded protein response of the
ER; ER, endoplasmic reticulum; MDV, mitochondria-derived vesicle; MDC,
mitochondria-derived compartment; MAM, mitochondria-associated ER
membrane; MCSR, mitochondrial-to-cytosolic stress response.
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Figure 1.Factors thatimpact mitochondrial proteostasis. A, mitochondria
must balance the damage that occurs to its proteins with activation of path-
ways evolved to counteract this damage. B, mitochondrial proteostasis
occurs at multiple scales: at the level of the mitochondrion, the mitochondri-
on'’s interaction with the rest of the cell, and with the organism as it impacts
metabolism, health, and life span.

Table 1

Genetic mutations in mitochondrial protein quality control factors
associated with disease and age-related disorders

Protein Function Associated disorder

PINK1 Signaling in mitophagy Parkinson’s disease (96)

Parkin E3 ubiquitin ligase in Parkinson’s disease (96);
mitophagy ovarian cancer (152)

mtHsp60 Matrix-localized protein Spastic paraplegia 13 (24)
folding chaperonin

m-AAA, various  Inner membrane-localized Spastic paraplegia 7 (23);

subunits metalloprotease facing spino-cerebellar ataxia
matrix type 28 (25)

ClpP Matrix-localized peptidase Perrault Syndrome (22)

TRAP1 Matrix-localized mtHsp90 Parkinson’s disease (29)
chaperone

OPA1 IMS-localized; mitochondrial ~ Automsomal domaint optic
fusion atrophy (52)

MFN2 Outer membrane-localized Charcot-Marie Tooth

GTPase; membrane fusion disease (53)

the mitochondrial proteome and the molecular machines that
function within the organelle to repair this damage. Much like
other cellular proteins, mitochondrial proteins misfold, mis-
assemble in protein complexes, and aggregate over time, and
these events all pose a threat to proteostasis if left unresolved. In
some cases, this type of damage can be reversed locally through

SASBMB

JBCREVIEWS: Proteostasis in cellular and organismal aging

protein-folding molecular chaperones. In contrast, terminally
damaged proteins, such as those containing carbonylated resi-
dues due to exposure to ROS (3), must be degraded. In addition
to direct protein damage, the mitochondrial proteome can be
adversely affected by mutations or deletions in the mitochon-
drial genome. Each mitochondrion carries multiple copies of
mtDNA, and a mutation in even a fraction of these copies can
result in the synthesis of misfolded proteins. Mutations and
deletions in mtDNA can also perturb mitochondrial proteosta-
sis because they affect ATP production and increase ROS pro-
duction (4-8).

The accumulation of mitochondrial proteome damage
directly impacts organismal health and aging. Compromised
OXPHOS proteins perturb the overall structure and function of
mitochondria, particularly in organisms of advanced age (9).
Carbonylation of mitochondrial proteins from ROS damage
has been observed to increase with age in multiple model
organisms (3), and inducing excessive ROS in mice or humans
causes Parkinson’s disease (PD)-like symptoms (2). Further-
more, mutations in mtDNA accumulate with age, resulting in
dysfunction of its encoded proteins, which can have direct
physiological consequences. For example, mtDNA mutations
have been observed in the substantia nigra of the midbrain and
are more prevalent in PD patients compared with age-matched
controls (10, 11). In addition, mutations in POLG, the gene
encoding the mitochondrial DNA polymerase responsible for
replication, cause deletions in, and copy number variations of,
mtDNA and correlate with inheritance of parkinsonism (12), as
well as a diverse panel of progressive neurological and muscular
symptoms (13). The relevant mouse model of Polg mutation,
termed the mutator mouse, accumulates mutations and dele-
tions and exhibits premature aging phenotypes (7).

Mitochondria-localized mechanisms to combat damage

The canonical cytoplasmic proteostasis systems, such as the
proteasome and heat-shock proteins, do not function inside
mitochondria. For this reason, the mitochondrion has evolved a
dedicated set of molecular machines, such as a network of res-
ident chaperones, proteases, and other quality control factors,
whose function is to protect the proteome (Fig. 2). The mito-
chondrion in particular bears a substantial burden with respect
to protein folding, because all imported polypeptides must be
folded immediately upon import and integrated into elaborate
protein complexes that function inside the mitochondrion.
Molecular chaperones are essential to correctly fold proteins
after they are imported as nascent polypeptides into mitochon-
dria and to re-fold any unfolded or misfolded proteins that may
cause proteotoxic damage (Fig. 24). A key chaperone, the mito-
chondrial Hsp70 (mtHsp70) is associated with the inner mem-
brane import complex on the matrix side and actively mediates
the import and folding of nascent proteins (14). In addition,
a mitochondrial isoform of the heat-shock protein TRAP1
(mtHsp90) and the large chaperonin Hsp60/10 complex also
contribute to the folding of matrix-localized polypeptides that
require additional assistance (15—17). Separately, SOD2 in the
matrix and SOD1 in the intermembrane space (IMS) convert
damaging ROS into less toxic H,O, and O, before they can
damage proteins (18, 19).

J. Biol. Chem. (2019) 294(14) 5396-5407 5397
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Figure 2. Protein quality control machines at work within mitochondria. A, protein folding chaperones that function in the mitochondrial matrix to fold
nascent polypeptides or repair mis-folded proteins. B, proteins can be damaged by the ROS generated by components of the OXPHOS machinery. Proteases
in the intermembrane space and matrix degrade these damaged proteins. G, fission and fusion work dynamically to alter the shape of the mitochondrial

network to dilute or segregate areas of damage.

In parallel with chaperone-mediated protein folding and
repair, mitochondrial proteostasis also relies on a set of dedi-
cated proteases to resolve irreversible protein damage through
degradation (Fig. 2B). The mitochondrial proteome has a high
turnover rate: measurements from yeast reveal that as much as
6—12% of the mitochondrial proteome is degraded in each gen-
eration (20). Proteins with terminal damage or orphan subunits
from multimeric complexes are frequent targets for the mito-
chondrion’s numerous proteases. In the matrix, these include
LonP and ClpP, whereas the inner membrane contains two pro-
tease complexes, m-AAA (AFG3L2, AFG3L1, and SPG7) and
i-AAA (YMEILL), which face the matrix and IMS, respectively
(21). These inner-membrane proteases are especially impor-
tant for functional integrity of the OXPHOS machinery, which
are particularly susceptible to oxidative damage due to their
ROS-releasing activity.

Defects in these chaperone and protease machines are asso-
ciated with diverse organismal pathologies (Table 1). In some
cases, loss of mitochondrial quality control machinery causes
severe organismal pathology starting in early or mid-life: muta-
tions in the CLPP protease have been associated with Perrault
syndrome, resulting in neonatal or early childhood sensorineu-
ral hearing loss (22). In addition, two degenerative hereditary
spastic paraplegias can be caused by mutations in the mito-
chondrial protease SPG?7 or the chaperone HSP60 (23, 24), and
spinocerebellar ataxia type 28 results from mutations in the
m-AAA component, AFG3L2 (25). Mutation in, or decreased
expression of, mitochondrial chaperones is also associated with
aging-related diseases such as PD and Alzheimer’s disease (AD)
(26 -28). For example, loss of TRAP1 by mutation has been
associated with late-onset PD, as well as decreased OXPHOS
activity and loss of membrane potential in patient cells (29). In
addition, SOD2 is up-regulated in both AD (30) and PD patients
(31), presumably in response to oxidative stress within mito-
chondria from these diseases. As an organism ages, its capacity
to fight proteostatic insults appears to decrease: for example,
basal Lonp expression decreases with age in mice (32); similarly,
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the ability of mice and Caenorhabditis elegans to induce expres-
sion of mitochondrial chaperones decreases with age (33, 34).
There is an unfortunate paradox in these data, since the need
for such protective measures increases with age. Inherited neu-
rological disorders are not the only pathology derived from loss
of mitochondrial quality control; the mitochondrial matrix pro-
tease CLPP is highly expressed in leukemias (35) and multiple
tumors (36), suggesting that cancer cells may experience a high
proteotoxic burden within mitochondria.

Beyond managing their internal proteome, mitochondria
continuously undergo opposing fusion and fission events, and
this dynamic process is necessary for maintaining a healthy
mitochondrial network (Fig. 2C). In healthy cells, mitochondria
are fused into a large network, with multiple copies of the
mtDNA and contiguous inner and outer membranes (37).
Mitochondrial fusion, which mixes contents of different mito-
chondrial membranes as well as soluble components, relies on
MEN1/MEN2 and OPA1 for outer and inner membrane fusion,
respectively (38, 39).

In healthy cells, fusion dilutes the effects of small amounts of
damage within the larger network (40). In fact, some stresses
promote hyper-fusion in a process involving MFN1, OPA1, and
the scaffolding inner membrane protein, SLP2 (40). Such
hyper-fusion has been shown to be vital to cell survival during
stresses like starvation (41) and may stave off fission-induced
apoptosis. In contrast, mitochondrial fission partitions dam-
aged mitochondria away so the health of the overall mitochon-
drial network can recover (42). Mitochondrial fission is driven
by the dynamin-related protein DRP1/DNM1 and OMA1 (43—
45). DRP1/DNML1 is recruited to mitochondrial fission sites by
several identified outer mitochondrial membrane receptors,
such as FIS1 and MFF (46 -48). Under conditions of stress,
OMA1 induces mitochondrial fragmentation by proteolytically
cleaving OPA1 (49, 50). In addition to recovering the mito-
chondrial network, mitochondrial fission also plays a critical
role in mitophagy (see below) and the initial steps of apoptosis,
or programmed cell death (51).
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Figure 3. Mitochondrial proteostasis mechanisms that function at the level of the cell. A, mitochondrial-nuclear communication as described in C. elegans.
Mitochondria signal proteotoxic stress to the nucleus to up-regulate genes that will aid in restoring mitochondrial health as well as enact epigenetic changes across
the genome. We focus on the ATFS-1 and LIN-65/MET-2/DVE-1 pathways. During basal conditions (No stress), the MLS targets ATFS-1 for mitochondrial import and
subsequent degradation. During mitochondrial stress (High stress), low mitochondrial membrane potential and blocked mitochondrial import impairs mitochondrial
targeting of ATFS-1, instead allowing NLS-dependent nuclear localization of ATFS-1, where it activates various gene transcription pathways. NLS, nuclear localization
sequence; MLS, mitochondrial localization sequence. For a complete summary of all identified mtUPR players, we direct the reader to two recent mtUPR-focused
reviews (154, 155). B, mechanisms of mitochondrial degradation via mitophagy for bulk degradation (top) or specialized, vesicle-dependent degradation (bottom).
Mitophagy by either the PINK1/Parkin or NIX pathways in humans requires recognition of defective mitochondria, followed by recruitment and engulfment by an
autophagosome membrane, and shuttling to the lysosome. Under basal conditions (No stress), PINK1 is targeted to the mitochondria and rapidly degraded. In one
described mechanism, this occurs via mitochondrial import and N-terminal cleavage by the inner membrane protease PARL (99). N-terminally cleaved PINK1 (PINKT")
is then shuttled to the cytoplasm for proteasomal degradation. MDC (Saccharomyces cerevisiae) and MDV (humans) have both been shown to selectively target
mitochondrial protein and other metabolite cargo for degradation. C, mitochondrial- cytoplasmic quality control mechanisms include the MCSR from C. elegans and
proteasome-dependent degradation of mitochondrial outer membrane proteins. HSF-1, heat-shock factor 1.

Mutations in several components of the mitochondrial dynam-
ics machinery also yield organismal pathologies, particularly neu-
rological disorders. Mutation of OPAI causes dominant optic
atrophy (52), and mutations of MFN2 that disrupt the morphology
and distribution of the mitochondrial network can cause Charcot-
Marie-Tooth syndrome type 2A, characterized by dystrophy of
peripheral muscle (53, 54). Remarkably, a knockout of Mfn2
in the mouse leads to specific loss of dopaminergic neurons,
a phenotype observed in PD patients (55, 56).

A cellular perspective: mitochondrial proteostasis in the
context of the cell

The mitochondrial genome has lost the vast majority of its
protein-coding genes, and its proteome is therefore derived
overwhelmingly from nuclear transcription, cytoplasmic trans-
lation, and polypeptide import into the mitochondrion. For
this reason, whereas mitochondrial chaperones, proteases, and
fusion/fission machinery act internally to maintain mitochon-
drial proteostasis, the overall integrity of mitochondrial func-
tion requires cooperation and communication with other cel-
lular compartments.

Mitochondrial-nuclear communication: mtUPR

Originally identified in mammalian cells (57), the mitochon-
drial unfolded protein response (mtUPR) has been established

SASBMB

as a prominent line of defense for mitochondrial proteotoxic
stress in mammals, Drosophila, and C. elegans (57-60) (Fig.
3A). In a pathway named after the unfolded protein response of
the endoplasmic reticulum (ER-UPR) (61), the mtUPR senses
proteotoxic stress within mitochondria and enacts a gene
expression program to recover organellar proteostasis. Like the
ER-UPR, the mtUPR up-regulates target genes that include
organelle-specific chaperones and proteases. An additional
goal of the mtUPR is to alleviate the demands on stressed mito-
chondria by shifting metabolism away from mitochondrial-de-
pendent OXPHOS and toward cytoplasmic glycolysis (62).
Activation of the mtUPR arises from a wide range of proteo-
toxic stresses, including blocking mitochondrial translation
(60), depletion of mtDNA (63, 64), targeted impairment of
mitochondrial chaperones or proteases (65, 66), excessive ROS
(67), ETC impairment (58), or expression of a misfolded protein
(57). It is unclear how misfolded or damaged proteins are rec-
ognized by mtUPR machinery. One possibility is through the
oligopeptides generated by the protease ClpP (66) after degrad-
ing compromised proteins. However, many of the stresses that
induce the mtUPR converge on decreased mitochondrial pro-
teinimport. To this end, work in C. elegans, where the mtUPR s
best-studied, showed that the transcription factor ATFS-1, a
primary activator of the mtUPR (68), is highly sensitive to

J. Biol. Chem. (2019) 294(14) 5396-5407 5399
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mitochondrial import efficiency. As a primary activator of the
mtUPR, ATFS-1 is uniquely suited to communicate mitochon-
drial stress to the nucleus as it contains both mitochondrial and
nuclear localization sequences that are differentially utilized
under basal and stressed conditions. Under basal conditions
when mitochondrial membrane potential is high and protein
import is robust, the N-terminal mitochondrial targeting se-
quence routes the nascent ATFS-1 protein to the mitochon-
drial import machinery. Immediately following import, it is
rapidly degraded to undetectable levels by LonP (Fig. 34, No
stress) (68). However, during mitochondrial stress, protein
import is compromised; this causes the ATFS-1 protein to
accumulate in the cytoplasm, allowing its C-terminal nuclear
localization sequence to access the nuclear import machinery
(Fig. 3A, High stress). Once in the nucleus, ATFS-1 activates the
transcription of genes to restore mitochondrial health such as
chaperones, protein import machinery, ROS detoxification
genes, as well as innate immunity and glycolysis factors to
improve mitochondrial and cellular health (62). Consistent
with ATFS-1 transcription factor activity being sensitive to
import efficiency, a direct block in protein import, thereby lim-
iting ATFS-1 import into mitochondria, leads to activation of
the mtUPR (68).

Beyond ATES-1, evidence suggests that additional methods
for mtUPR activation also occur: of the 700 transcripts found to
be induced during mitochondrial stress, only ~400 required
atfs-1 for induction (68). This additional regulation may come,
in part, from the histone demethylases JMJD-1.2 and JMJD-3.1,
which facilitate access to mtUPR response gene promoters (69),
as well as the transcription factor DVE-1 and its ubiquitin-like
cofactor UBL-5 (Fig. 3) (66, 70). The joint action of DVE-1 and
UBL-5 is additionally driven by H3K9 dimethylation by MET-2
and its cofactor LIN-65 to up-regulate the mtHsp70 and Hsp60
chaperones upon mitochondrial stress (71). These chromatin
factors promote nuclear localization of DVE-1 and enact the
epigenetic changes required for mitochondrial stress signaling
(71). How independent the ATFS-1 and DVE-1/LIN-65/
MET-2 branches of mtUPR activation are is not fully known.

Although best-studied in C. elegans, the mtUPR was first dis-
covered in mammalian cells (57) and remains an active area of
investigation. Notably, a mammalian ortholog of ATFS-1,
ATEF5, has been shown to regulate the mtUPR in mammalian
cells and to up-regulate transcription of mammalian orthologs
of many C. elegans quality control genes in response to mito-
chondrial stress (72). Although such evolutionary conservation
of function is noteworthy, it is clear that the mammalian
mtUPR involves additional factors, such as the transcription
factors CHOP and CEBPB (C/EBPf), which have binding sites
in many mtUPR-responsive genes (57, 73), including ATF5
itself (74). Furthermore, recent evidence has suggested that the
mtUPR works closely alongside the integrated stress response
in responding to mitochondrial stress, and that this may be a
prominent mechanism for responding to stress in mammalian
systems (75, 76). Finally, although the majority of mtUPR-de-
scribed mechanisms focuses on proteotoxic stress in the mito-
chondrial matrix, an unfolded protein response specific to the
IMS in human cells has also been reported (77).
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An important aspect of the mtUPR is its close relationship to
aging and organismal health. In C. elegans, Drosophila, and
mice, mitochondrial stresses that activate the mtUPR can
extend life span and improve health (58, 60, 69, 78, 79). For
example, disrupted balance of expression from the mitochon-
drial and nuclear genomes, via altered expression of a mito-
chondrial ribosomal subunit, strongly correlates with increased
longevity in mice (60). Furthermore, higher expression of jmjd-
1.2/Phf8 or jmjd-3.1/Jmjd3 correlates with life span extension
in both C. elegans and mice (69). In Drosophila, knockdown of
ETC components to activate mtUPR promotes expression of
genes regulated by the FoxO transcription factor to extend life
span (78). In a recent study, knockout of Clpp in mice led to a
compensatory mitochondrial stress response that increased
insulin sensitivity and protected mice from diet-induced obe-
sity (79). Finally, a recent study points to the mammalian
mtUPR as a component of hematopoietic stem cell regenera-
tion (80). There can, however, be a fitness compromise associ-
ated with this mtUPR-mediated extended life span. C. elegans
animals often become developmentally delayed or less repro-
ductively fit upon mtUPR activation (81, 82). In addition,
ectopic activation of the mtUPR in dopaminergic neurons can
cause cell death (83), suggesting that chronic activation of the
mtUPR may be detrimental to cell survival. Rather than be
interpreted as a longevity panacea, mtUPR-mediated effects for
promoting health span may be context-dependent, highlight-
ing the need for further investigation.

Mitophagy: removal of proteotoxic damage in bulk

During stresses such as accumulation of misfolded proteins
or loss of membrane potential, the mtUPR up-regulates a host
of mitochondrial proteases that degrade aberrant proteins.
However, when these stresses induce too much damage within
an individual mitochondrion, the entire organelle can be
degraded in a process known as mitophagy (mitochondrial-
specific autophagy) (Fig. 3B). Although healthy mitochondria
rapidly re-fuse back into the network following fission (84, 85),
unhealthy mitochondria are poor at fusion, remain separated
from the network, and are recognized by the mitophagy
machinery. This segregation and pruning approach allows
mitochondria harboring mutant mtDNA or with a critically
high burden of misfolded proteins to be degraded, thereby facil-
itating the recovery of the rest of the network. Many stresses
that activate the mtUPR also activate mitophagy, leading to the
idea that the mtUPR and mitophagy are complementary: the
mtUPR may act as a first line of defense to combat insults to
mitochondrial proteostasis, whereas mitophagy acts to remove
the unsalvageable mitochondria (86).

The precise mechanisms by which the mitophagy machinery
recognizes defective mitochondria remain incompletely under-
stood, but they are generally thought to target mitochondria
with reduced membrane potential (85), increased ROS (87),
blocked mitochondrial protein import (88), or excess mis-
folded proteins (89). Although the exact molecular players dif-
fer between yeast and mammalian systems, general principles
of mitophagy involve recognition of a damaged mitochondrion,
subsequent engulfment by the autophagosome membrane, and
shuttling to the lysosome, or vacuole in yeast, for degradation.

SASBMB



In yeast, where mitophagy mechanisms have been best stud-
ied, autophagosome components Atgl1 and Atg8 recognize the
outer membrane mitochondrial protein Atg32 (90, 91). In
mammalian systems, mitophagy mechanisms are more com-
plex, involving at least two distinct pathways (Fig. 3B). Much of
what is known about mitophagy in mammals focuses on
BNIP3L (NIX)-driven mechanisms, in which the outer mem-
brane protein NIX binds to the autophagosomal protein
MAPI1LC3A (LC3) to initiate mitophagy (92—94). Interestingly,
NIX is also up-regulated during hypoxia (95), suggesting that
NIX is broadly involved in restoring mitochondrial proteostasis
through mitophagy during stress. An additional mechanism of
mitophagy in mammalian cells is the PINK1/PRKN (Parkin)
pathway. PINK1 and Parkin have gained special attention from
the discovery that mutations in both proteins result in auto-
somal-recessive forms of PD (Table 1) (96). Similar to ATFS-1,
PINK]1 recognition of defective mitochondria is also regulated
by mitochondrial protein import. In the absence of stress,
PINK1 is imported and constitutively degraded; this occurs
either by protease degradation in the mitochondrial matrix (97,
98) or by cleavage by the IMS-localized protease PARL followed
by translocation to the cytoplasm and N-end rule pathway deg-
radation by the proteasome (Fig. 3B, No stress) (99, 100). During
stress, mitochondrial import efficiency decreases, and PINK1
accumulates on the mitochondrial surface (Fig. 3B, High stress)
(101). This PINK1 accumulation recruits the E3 ubiquitin ligase
Parkin to the mitochondrial surface, where it polyubiquitinates
outer membrane proteins (102—104). It has been proposed that
the autophagosome recognizes ubiquitylated mitochondria
through the ubiquitin-binding protein SQSTM1 (p62), as it has
been observed to accumulate on mitochondria and bind LC3
(105), but the exact mechanism of autophagic recognition
remains unclear (103, 106).

NIX and PINK1/Parkin homologs have also been found to
regulate mitophagy in C. elegans (107). Importantly, they have
been shown to interface with other genetic pathways such as
SKN-1, the transcription factor that regulates mitochondrial
biogenesis, and the DAF-16 insulin/IGF-1 pathway to regulate
aging (107). In mice, a PINK1 knockout exhibits impaired mito-
chondrial respiration and synaptic plasticity (108). Overall,
mitophagy is an essential pathway that eliminates defective
organelle activated under high levels of mitochondrial proteo-
static stress to promote steady-state mitochondrial integrity
and healthy aging.

Asymmetric cell division: controlling mitochondrial
inheritance

Mitochondrial fission followed by mitophagy eliminates
the damaged fraction of the mitochondrial network. How-
ever, another opportunity to eliminate damaged mitochon-
dria occurs during the process of cell division. Typically, during
mitosis, cytoskeletal components strategically organize mito-
chondria to equally split the mitochondrial network between
the two daughter cells (109, 110). However, individual mito-
chondria can be actively segregated to either the mother or the
daughter cell based on their quality. This active parsing of mito-
chondria has been demonstrated in systems as diverse as bud-
ding yeast and human mammary stem cells (111, 112) with
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substantial impacts on the health and life span of the daughter
cells. In budding yeast, the healthiest mitochondria are passed
to the daughter cell to promote longer replicative life span (111,
113, 114). The underlying mechanism involves mitochondrial
interactions with the actin cytoskeleton (115) and mitochon-
drial fusion: only mitochondria that undergo fusion at the bud
tip are retained and passed on to the daughter cell (116). In
higher eukaryotes, segregation of healthy from unhealthy com-
partments is critical to maintain cellular and tissue homeostasis
(117, 118). A recent study demonstrated that mammalian epi-
thelial stem-like cells divide asymmetrically to retain the
newest mitochondria and pass older mitochondria on to the dif-
ferentiating daughter cell (112). Interestingly, only the mitochon-
dria, and not other subcellular components such as the lysosome,
ribosome, or Golgi apparatus, were asymmetrically apportioned,
suggesting there is a crucial aspect of mitochondrial homeostasis
required for stem cell maintenance.

Inter-organellar proteostasis

Mitophagy evolved as a mechanism to degrade an entire
mitochondrion, but smaller-scale degradation mechanisms
that transport damaged mitochondrial components for pro-
cessing elsewhere in the cell are an emerging area of investiga-
tion. Two prominent mechanisms that have recently been
described are mitochondria-derived vesicles (MDVs) and com-
partments (MDCs), which transport protein- and other metab-
olite-containing vesicular bodies to other organelles in the cell.
MDVs have been reported to transport specific mitochondrial
cargo to the peroxisome (119) as well as oxidized mitochondrial
proteins for degradation in the lysosome (120). Although the
formation and lysosomal targeting of these vesicles seem to be
independent of mitochondrial fission and canonical mitophagy
mechanisms, intracellular MDYV trafficking relies on both Par-
kin and PINK1 and can be triggered by mitochondrial oxidative
stress (120, 121). In yeast, a different vesicular body, the MDC,
is involved in the direct removal of mitochondrial proteins for deg-
radation in the vacuole (122). In contrast to MDVs in human cells,
MDC release relies directly on the fission and autophagy machin-
ery. Recent evidence for direct mitochondria—lysosome contacts
in mammalian cells further highlights the importance of under-
standing this inter-organelle communication (123).

The role of these mitochondria-derived vesicular bodies in
physiological contexts remains to be defined. However, grow-
ing evidence suggests that direct mitochondrial contacts with
the endoplasmic reticulum (ER) impact human health: disturb-
ance of these contact sites in the brain is observed in numerous
neurodegenerative diseases (124, 125) and in primary human
myotubes from patients with type 2 diabetes (126). These
ER-mitochondria contact sites (also called mitochondria-asso-
ciated ER membranes, or MAMs), have recently emerged as
mediators of mitochondrial homeostasis. One of the primary
roles of MAMs is coordinating Ca®" signaling and lipid metab-
olism between the ER and mitochondria, which regulate
OXPHOS and apoptosis (127-129). How MAMs as inter-or-
ganellar contact sites impact mitochondrial proteostatic health
is an area of new investigation. ER—mitochondria contact sites
are enriched for stress-induced cytoplasmic protein aggregates,
which are later captured by mitochondria for degradation
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(130). In addition, MAMs have been shown to directly control
mitochondrial homeostasis by regulating mitochondrial fission
sites and mtDNA replication (131, 132). The functional homo-
logy of ER-mitochondria contact sites from yeast to humans
(129, 133) highlights the importance of mitochondrial commu-
nication in signaling and cellular homeostasis.

Proteostasis through mitochondrial- cytoplasmic
communication

A burgeoning area of research is in the coordination of pro-
teostasis mechanisms among different cellular compartments.
In one such mechanism discovered in C. elegans, termed mito-
chondrial-to-cytosolic stress response (MCSR), mitochondrial
proteotoxic stress from pathogenic protein aggregates up-reg-
ulates not only the mtUPR but the cytosolic unfolded protein
response as well, including heat-shock protein 1 (hsp-1) (Fig.
3C). This occurs via changes in lipid biosynthesis that act as the
signal between the mitochondria and cytosol and serves to pro-
tect the cell as a whole from proteotoxic insults (134). Impor-
tantly, the MCSR was conserved in a cell culture model of Hun-
tington’s disease, suggesting a broad evolutionary need to
coordinate intracellular stress-response pathways.

There may also exist mechanisms for coordinated protein
degradation between mitochondrial and cytoplasmic compart-
ments. The cytoplasmic proteasome has been implicated in
extracting and degrading misfolded proteins from the mito-
chondrial outer membrane (135, 136). Additionally, it was pro-
posed that cytosolic protein aggregates may be targeted to
mitochondria for degradation by mitochondrial proteases
(137). Although these mechanisms remain to be further
explored, it is interesting to consider why the cell may route
damaged proteins to different compartments of the cell and
what the physiological consequences may be in aging.

Global effects of a local process: the whole-organism
impact of mitochondrial proteostasis

Agingis a phenotype visible to the naked eye but is intricately
connected to mitochondrial dysfunction at the cellular and
subcellular levels. Studies of mitochondrial proteostasis offer
an interesting and clear example of this connection. A remark-
able set of studies established that dysfunction in the ETC (81,
138 -140) or induction of ROS (141) can lead to life span exten-
sion. Interestingly, there is only a small window during devel-
opment in which this effect can occur (81), providing nuance to
the long-standing hypothesis that the level of ROS generated
over the lifetime of an organism directly correlates with its rate
of aging (142). Rather, these newer findings suggest that during
development, the organism senses energy-production capacity
and permanently adjusts organismal physiology to ultimately
impact life span. Connection between mitochondrial output
and altered life span depends on two histone demethylases (69),
suggesting that mitochondrial dysfunction in early develop-
ment can alter the epigenomic landscape that regulates gene
expression during adulthood.

These findings prompted the question of whether the entire
organism or, rather, specific tissues are responsible for sensing
mitochondrial health and orchestrating the downstream effects
that impact life span. Remarkably, studies in C. elegans have shown
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that mitochondrial dysfunction in neurons alone is sufficient to
account for the life span extension (58). Furthermore, up-regula-
tion of the mtUPR in one tissue (neurons) was sufficient to activate
the mtUPR in another (the intestine). These data point to a cell-
nonautonomous mechanism for communication among mito-
chondria in separate tissues and prompted the hypothesis that
neuronal mitochondria communicate as master regulators with
the rest of the organism via a currently unidentified molecule
termed a “mitokine” (58). Studies in C. elegans have proposed that
this mitokine may derive from secreted neuropeptides (143, 144).

In mice, two separate instances of trans-cellular mitochon-
drial communication by mitokine have been reported that
appear to rely on a mechanism distinct from the one observed
in C. elegans. Specifically, a block in mitophagy in muscle cells
caused these cells to secrete an FGF21 mitokine into the serum
(145). Follow-up in C2C12 cells showed that FGF21 expression
is induced as part of an ATF4-dependent integrated stress
response, as the FGF21 promoter contains ATF4-binding sites
(120). Independently, a GDF15 mitokine was shown to be
released from muscle cells upon perturbation of mitochondrial
translation or mutation of POLG, and it was confirmed in a
muscle cell culture model that GDFIS is up-regulated in a
CHOP-dependent but ATF4-independent manner (146). It was
recently reported that patients with mtDNA mutations that
cause mitochondrial encephalomyopathy, lactic acidosis, and
stroke-like episodes (MELAS) exhibit abnormally high levels of
GDF15, which the authors suggest could be used as a biomarker
for mitochondrial disease (147). At the organismal level, both of
these muscle mitokines suppress sensitivity to insulin, high-
lighting the powerful impact of tissue-specific stress on the
metabolic state of the entire organism. In a separate study, it
was shown that mitochondrial dysfunction in Drosophila, when
combined with mutation in Ras, leads to cell nonautonomous
progression of tumor growth via the IL6 and WNT signaling
pathways (148), suggesting that the mitochondria in the tumor
microenvironment can impact severity of tumorigenesis.

Although the biochemical and physiological specifics of
these three examples—from C. elegans, mice, and Drosophila—
are distinct, they clearly demonstrate how mitochondria in a
single tissue can communicate the state of their proteome
across the organism. Thus, although the mitochondrion is not
typically thought of as a major component of the endocrine
system, these recent data prompt a new perspective of consid-
ering mitochondria in organismal signaling.

A separate cell-nonautonomous mechanism impacting
mitochondrial proteostasis is the transfer of mitochondria
between cells (149), suggesting that the mitochondrial proteo-
static burden can be relieved through transfer or exchange of
organelles between cells. For instance, it has been reported that
healthy mitochondria can be sent through tunneling nanotubes
from untreated PC12 cells to UV-irradiated cells to rescue these
cells and avoid apoptosis (150). However, in a process termed
trans-mitophagy, depolarized mitochondria can be extruded
from optical ganglion cells at the optic nerve head and subse-
quently engulfed and degraded by surrounding astrocytes
(151). It is an interesting notion that in diseases such as PD, in
which mitophagy is an important regulator of disease progres-
sion, trans-mitophagy may also play a role.
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Concluding remarks

The phrase “the mitochondrion is the powerhouse of the
cell” is both an educational truism and a misrepresentation of
the sophistication of this organelle. In reality, the mitochon-
drion is not an isolated factory, tirelessly and reliably feeding
energy to the rest of the cell. Instead, its function is tightly
integrated with that of the rest of the cell, and a set of dedicated
circuits has evolved to sense and resolve mitochondrial stress.
Failure to do so, whether due to genetic or environmental
insults, has profound effects on the entire organism.

At the foundation of robust cell function is a set of mecha-
nisms for surveillance of mitochondrial proteomic integrity.
These mechanisms face unique challenges because of the phys-
ical and genetic separation of the mitochondrion from the rest
of the cell. As a consequence, not one but multiple mechanisms
at different layers of biological complexity have evolved to reg-
ulate mitochondrial proteostasis. Initial control is imposed by
intra-organellar machinery composed of a network of chaper-
ones and proteases that fold and degrade mitochondrial pro-
teins and complexes, as well as coordinated mitochondrial
dynamics operating through fission and fusion.

Importantly, mitochondrial proteostasis is also maintained
by factors beyond the organelle: coordination with other organ-
elles is crucial in maintaining mitochondrial and cellular health.
These recent discoveries point to a new perspective of mito-
chondria as not only a regulator of metabolism but also of
cellular proteostasis. Genetic evidence connects dysfunction
within every tier of mitochondrial proteostasis to aging and
age-related disease, especially to those of the central nervous
system. One challenge is to understand why such defects in
mitochondrial proteostasis, which presumably occur systemi-
cally, can have such tissue-specific effects. Equally compelling is
the emerging role for mitochondrial proteomic health in the
progression of certain cancers (152, 153). In principle, these
mitochondrial proteostasis pathways contain a wealth of drug-
gable circuits. Given how integrated the mitochondrion is into
overall cell and organismal function, an additional challenge is
to understand how to selectively regulate mitochondrial func-
tion without unwanted cellular and organismal effects. Finally,
recent evidence on the cell nonautonomous coordination of
mitochondrial proteostasis suggests that assessing the role of
mitochondrial dysfunction in aging requires an understanding
of the mitochondrial signaling circuits that operate across dif-
ferent tissues. Implicit in this line of reasoning is the tantalizing
notion that targeted control over mitochondrial proteostasis in
one tissue may result in a systemic improvement in health.
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Note added in proof—While this manuscript was under review,
Zhang et al. (156) reported that neuronal mitochondrial stress can be
communicated via the canonical Wnt pathway to distal tissue.
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