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Thickness-independent transport in thin (001)-oriented cadmium arsenide films
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1Department of Physics, University of California, Santa Barbara, California 93106–9530, USA
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The three-dimensional Dirac semimetal is a parent phase for a variety of topological phases that can be
generated by tuning parameters in material growth or device operation. Notably, it has recently been found
that cadmium arsenide, which is ordinarily a three-dimensional Dirac semimetal, can nevertheless realize a
three-dimensional topological insulator in (001)-oriented films about 50-nm thick. In this work, we study the
quantum Hall effect in thin (001)-oriented cadmium arsenide films, their thickness ranging from 12 to 24 nm.
When the carrier density is kept approximately constant across the different films, quantum transport reveals an
identical underlying picture. The result is shown to be consistent with the transport’s origin in the surface states
of a three-dimensional topological insulator, but problematic for a perspective in which the quantum Hall effect
originates from the confined subbands of the bulk band structure. These thin-film results complement previous
studies of the quantum Hall effect in 50-nm-thick films.

DOI: 10.1103/PhysRevB.104.035435

I. INTRODUCTION

Three-dimensional (3D) Dirac semimetals like cadmium
arsenide (Cd3As2) are considered 3D analogs of graphene
because their low energy dispersion realizes the Dirac equa-
tion in three dimensions in the same way that graphene’s
low energy dispersion realizes it in two [1–4]. A practically
important difference between a 3D Dirac semimetal and a 2D
one such as graphene is that the third dimension provides a
way of manipulating the bulk band structure. According to
the bulk-boundary correspondence principle [5], such manip-
ulation amounts to control over the topological surface states
when the bulk band structure is characterized by a topological
invariant different from that of the material surrounding it [6].

In Cd3As2, the subject of this work, the 3D Dirac nodes
are due in part to a crystal symmetry (a fourfold rotation of
the kz axis) [2]. The nodes, which lie along [001] (i.e., parallel
to kz), result in surface states that vary according to the nodes’
projection onto the relevant surface Brillouin zone [2]. It is
thought, for example, that the surface states of (112)-oriented
films consist of pairs of arcs that join the projected Dirac
nodes in the surface Brillouin zone [2,7], similar to the Fermi
arcs in the closely related Weyl semimetals [8].

In this work, however, we focus on (001)-oriented thin
films, in which the nodes project onto the same point in the
corresponding surface Brillouin zone. The surface state in this
case is not Fermi-arc-like. Instead, thin (001)-oriented films
realize a 3D topological insulator (TI). The origin of the 3D
TI state is the band inversion at the center of the Brillouin
zone [2]. At each interface of the film, which lies between
a compound semiconductor layer and a gate dielectric, the
resolution of the band inversion results in a 2D Dirac surface

*Corresponding author: stemmer@mrl.ucsb.edu

state [9–11]. A key feature of these thin film heterostructures
is the energy offset between the two surface states that arises
from the different band offsets on either surface or interface.
In a previous study, we showed that this picture of the 3D TI
surface state explains the sequences of filling factors in the
quantum Hall effect measured in high magnetic fields [12].
Another test of the 3D TI picture is that, within a relevant
range of film thickness, the Landau level spectrum and trans-
port in magnetic fields should be insensitive to the thickness.
This is the focus of the present work.

The remainder of this article is organized as follows: In
Sec. II, we discuss a phenomenological model for the TI
surface state and its relevant predictions. Then we turn to our
experiments. The methods are described in Sec. III, and the
results—quantum Hall data from four samples of thicknesses
between 12 and 28 nm—in Sec. IV. Section V contains a
discussion of the experimental data with reference to the sur-
face state and subband models. We conclude (Sec. VI) with a
summary and some suggestions for future experiments.

II. MODEL

We apply a simple continuum model for the surface states
of a 3D TI to parametrize the relevant underlying physics
[13]. Near the center of the Brillouin zone, we expect that the
surface states can be described by the following Hamiltonian:

H0 =
[

h̄vF (kxσy − kyσx ) + �i

2
1

]
⊗ τz + �h

2
1 ⊗ τx, (1)

where the σi and τi are Pauli matrices, referring to a spin
degree of freedom and a surface pseudospin degree of free-
dom, respectively. The ki are the 2D crystal momenta, and
vF is the Fermi velocity, which parametrizes the steepness
of the (identical) Dirac cones when �h = 0. The term �i is
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formally an inversion-breaking term in the sense that τz is
an inversion symmetry operator. In a more concrete sense, it
describes the effect of the intersurface energy difference that
we ascribe to the asymmetry of the Cd3As2 heterostructure,
that is, the difference in band offsets on either side of the
film. Finally, �h allows a gap to open via the hybridiza-
tion of the two surfaces. This is expected to be relevant
only in films thin enough for there to be significant wave-
function overlap between the surface states on the opposite
surfaces.

In the absence of a magnetic field, the spectrum of this
Hamiltonian is

Eα,β (k) = α

√
(h̄vF k)2 + (�/2)2 + β h̄vF |k|�i, (2)

where α, β = ±1 independently and we substitute � =√
�2

i + �2
h. Obviously, in the circumstance where �i = �h =

0, the result is a doubly degenerate Dirac cone.
In a magnetic field �B = B ẑ, the Zeeman effect acts on the

real spin degree of freedom and is captured by the addition of
the following term to the Hamiltonian, HZ = g∗μBB σz ⊗ 1,
where g∗ is an effective g factor, and μB is the Bohr mag-
neton. More important, though, is the quantization of the
spectrum into Landau levels. The calculation of this is ac-
complished by the Peierls substitution, h̄�k → �̃ = h̄�k + e �A,
where we use the gauge �A = xB ŷ, and e is the magnitude
of the electron charge. Because �k and �A do not commute,
we introduce the ladder operators a = (2eBh̄)−1/2(�y + i �x )
and a† = (2eBh̄)−1/2(�y − i �x ). The resulting Hamiltonian
H(B) reads

H (B) =

⎛
⎜⎜⎝

�i
2 + g∗μBB −√

b(B) a �h
2 0

−√
b(B) a† �i

2 − g∗μBB 0 �h
2

�h
2 0 −�i

2 + g∗μBB +√
b(B) a

0 �h
2 +√

b(B) a† −�i
2 − g∗μBB

⎞
⎟⎟⎠, (3)

where we have used the shorthand b(B) := 2eBh̄v2
F . The ladder operators are associated to states |n〉, where n is an integer � 0,

for which a† |n 〉 = √
(n + 1) | n + 1〉, a |n > 0 〉 = √

n |n−1〉, and a |0〉 = 0.
As long as n > 0, the eigenvectors �n(B) of H(B) have the form

�n>0 =

⎛
⎜⎝

	1,n|n − 1〉
	2,n|n〉

	3,n|n − 1〉
	4,n|n〉

⎞
⎟⎠,

where the 	i,n are numbers. When n = 0, however,

�n=0 =

⎛
⎜⎝

0
	2,0|0〉

0
	4,0|0〉

⎞
⎟⎠.

Combining all these, we find the spectrum in a perpendicular field to be

Eα,β, n>0(B) = α

√
(g∗μBB)2 + (�/2)2 + n b(B) + β

√
n b(B)�2

i + (g∗μBB)2�2,

where, as above, � =
√

�2
i + �2

h, and α, β = ±1 indepen-
dently. For n = 0, Eβ, n=0 = −g∗μBB + β�.

The effect of tuning the model parameters �h and �i is
illustrated in Fig. 1. If both �h = 0 and �i = 0, then the two
Dirac cones are degenerate everywhere, as shown in Fig. 1(a).
A finite �i has the effect of shifting each cone relative to the
other in energy, as seen in Fig. 1(b), so that the energy differ-
ence between the Dirac points is equal to �i. By contrast, the
effect of �h, shown in Fig. 1(c), is to open a gap at the Dirac
point; no degeneracy is split. Far from k = 0, the dispersion
looks like that of Fig. 1(a). If both �i and �h are nonzero, the
case of Fig. 1(d), then the dispersion far from 
 looks like that
of Fig. 1(b), while a gap opens at k = 0.

Since �i essentially tunes a splitting while �h opens a
gap, small changes in �i substantially affect the Landau level
spectrum, in contrast to even fairly large changes in �h. This

difference is illustrated in Figs. 1(e) and 1(f). In Fig. 1(e), �i

is fixed at 75 meV, and the spectra of Eq. (3) are plotted for
different values of �h, ranging from 0 to 60 meV. The effect
of changing �h is subtle and most noticeable for the lowest
Landau levels at low field, or, in the quantum Hall regime, the
smallest filling factors. A spectroscopic experiment, sensitive
to quantitative shifts in the Landau level energies, could, in
principle, be sensitive to the shift of the lowest couple of
Landau levels. Such energy shifts are, however, invisible to
a transport experiment. Equivalently small changes in �i, by
contrast, drastically affect the Landau level spectrum. This
point is illustrated in Fig. 1(f). Here �h, now, is set at a fixed
value and spectra are plotted for various �i, ranging from 0
to 60 meV. A small change in �i results in both splitting
and shifting of the Landau levels, causing the locations of
crossed Landau levels to change. In an experiment—a Hall
measurement—this could be seen as a change in the sequence
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FIG. 1. Model Hamiltonian spectra. (a)–(d) Zero-field spectra for small k and vF = 8 × 105 m/s. The parameter values are chosen for
clarity. In panel (a), the cones are doubly degenerate everywhere because �i = �h = 0. (b) The effect of finite �i is to displace the two cones
in energy. The upper and lower cones are each associated to one of the eigenvalues of the τz operator. (c) By contrast, a finite �h opens a gap in
the spectrum, minimal at k = 0, which affects both surfaces in equal measure; the two bands are doubly degenerate everywhere. (d) When both
�h and �i are appreciable, a gap opens and the two bands are in general nondegenerate. Whether away from k = 0 or E = 0, however, the
spectrum is qualitatively and quantitatively similar to that in panel (b). (e) and (f) Landau level spectra as a function of �h and �i. Throughout
g∗ is set at +25. (The positive sign means that the zeroth Landau level disperses lower in energy with increasing field.) The changing parameter
is colored according to the scale at the far right. (e) Effect of changing �h with finite �i. The Landau levels are shifted in energy, which is
more noticeable for Landau levels with low indices. (f) Effect of changing �i with finite �h. Small changes to �i cause large changes to the
spectrum because the two fans [more visible in panel (e)] are pushed to higher and lower energies, respectively.

of quantum Hall filling factors observed as the external field is
ramped, or as a change in the interplay of multiple frequencies
in quantum oscillations.

III. EXPERIMENTAL METHODS

Capped (001)-oriented Cd3As2 films were grown by
molecular beam epitaxy and fabricated into gated Hall bar
devices. Details regarding the growth and structural and elec-
tronic characterization of the resulting structures have been
reported elsewhere [12,14–16]. The samples consist of a (100)
GaSb substrate, cut 3º toward (111)B, onto which was grown
a buffer layer of InxAl1−xSb, a Cd3As2 layer, and finally a
thin GaSb cap. Where noted, an Al2O3 gate dielectric was
deposited ex situ using atomic layer deposition after the as-
grown devices were first measured. The gate metal, on top of
the dielectric, lies above the region containing the Hall bar’s
voltage leads, and a dc bias is applied between the gate metal
and the Cd3As2 film; the carrier density is determined from
the low-field Hall effect. Quasi-dc Hall measurements were
performed in a Quantum Design PPMS Dynacool using stan-
dard lock-in techniques and a 1-μA current. Raw resistance
data were binned and interpolated before being symmetrized
(Rxx) or antisymmetrized (Rxy) with respect to B. The thick-
ness of each sample was determined from cross sections using
transmission electron microscopy.

IV. RESULTS

We refer to transport measurements on four samples, A, B,
C, and D. The samples differ in the thickness of the Cd3As2

layer, which is 12 nm for sample A, 14 nm for sample B,
18 nm for sample C, and 24 nm for sample D. Table I lists
the film thicknesses, the carrier density and Hall mobility
extracted from the traces in Figs. 2 and 3. Before we compare
these four samples, we examine sample D in detail.

TABLE I. Hall density and mobility extracted from the data
shown in Figs. 2 and 3. The Hall mobility is calculated by fitting
a line to the <0.5 T antisymmetrized Rxy data to find the Hall
coefficient, which is then divided by Rxx(0 T).

Thickness (nm) n2D (1011 cm–2) μH (cm2/Vs)

Sample A 12 6.43 5,380
Sample B 14 6.92 3,260

14.0 2,490
15.0 2,420

Sample C 18 7.62 21,600
14.5 17,700
15.0 17,400

Sample D 24 6.52 21,700
6.95 19,400
13.6 10,800
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FIG. 2. The quantum Hall effect in sample D (n2D = 6.95 ×
1011 cm−2). (a) The longitudinal magnetoresistance, Rxx , acquired at
2 K, is plotted against magnetic field. Minima are indicated with
arrows, matching those in the lower panel. (b) The von Klitzing
constant (RK = h/e2) is divided by Rxy, the Hall resistance, to show
that the plateaus match integer filling factors ν, indicated by the
dashed lines and labels. Arrows correspond to the minima in Rxx ,
shown in panel (a). Though a plateau does not form with ν = 5,
a corresponding minimum in Rxx is nevertheless visible (dashed
arrows).

Figure 2 shows magnetotransport data from sample D. At
magnetic fields below about 5 T, the plateaus are weak and
proceed according to an apparent degeneracy of two, i.e.,
the filling factor ν steps from 10 to 8 to 6, as can be seen
from panel (b), with no hint of other dips in the longitudinal
magnetoresistance, Rxx, that might reveal the missing odd
filling factors [panel (a)]. Around 6 T, the peak in Rxx is,
however, clearly split, corresponding to a suppressed (that is,
not observed) plateau at ν = 5, and the plateau at ν = 3 is
more clearly recorded. The resolution of these odd-numbered
plateaus at higher field is a main feature of these data, and,
except for a different background, it is repeated in samples A,
B, and C, as discussed below.

Comparisons between these samples must be made at fixed
carrier density. As shown elsewhere, the carrier density and
mobility depend strongly on the surface Fermi level, which in
turn depends on the chemical and other boundary conditions
of the sample surface [17]. In Fig. 3, different carrier densities
are achieved by adjusting the top gate bias. Additional traces
shown are from as-grown films, i.e., without the deposition of
a gate dielectric. As grown, the carrier density varies across
the samples. Here, the as-grown carrier density in samples A
and B is nearly the same (about 6.5 × 1011 cm–2), while it is
highest in sample C (2.4 × 1012 cm–2), and sample D’s falls
in between (1.4 × 1012 cm–2).

The Hall data from sample D, shown in Fig. 3(a), demon-
strate that the same spectrum is relevant across a wide range
of carrier densities, which is equal to about 25% the total:
there are no qualitative changes. In other words, the evolution
of the longitudinal magnetoresistance with the magnetic field,
Rxx(B) is nearly the same across this range of carrier density.
Starting at 14 T and tracing Rxx(B) toward B = 0, two pairs of
peaks in the magnetoresistance are evident, as discussed above

FIG. 3. A comparison of the quantum Hall effect, measured at
2 K, in samples A, B, C, and D at various values of carrier density. (a)
The quantum Hall effect in sample D. Each trace is recorded under
a different top gate bias, corresponding to a different carrier density.
For legibility, the traces in the longitudinal magnetoresistance, Rxx ,
are offset from each other by sequential multiples of 250 �. The true
values are all comparable to the lowest resistance trace, which is not
offset. (b)–(d) A comparison of the quantum Hall effect in samples
A, B, C, and D at carrier densities of (b) about 6.5 × 1011 cm−2

(traces for samples A and B were acquired prior to gate deposition),
(c) about 7 × 1011 cm−2 (traces for samples A and B were acquired
prior to gate deposition), and (d) about 1.5 × 1012 cm−2 (the trace
for sample D was acquired prior to gate deposition). No offsets have
been added in panels (b)–(d).

in the context of Fig. 2, resulting in an apparent degeneracy
factor of two at low field. As the carrier density differs, so
does the shape of the double peak that obscures ν = 5, being
essentially a single peak for the lowest-density trace and most
clearly two overlapping peaks in the highest-density one.

A comparison between samples A, B, and D is shown in
Fig. 3(b), for a density of about 6.5 × 1011 cm–2. Sample D,
the thickest, exhibits the longest classical and quantum scat-
tering times (we deduce the difference in quantum scattering
times from the onset of the quantum oscillations and the width
of the oscillating features [18]). Ignoring the difference in the
magnetoresistance background and the broadening of the os-
cillations, all three traces exhibit the same behavior. Following
all three Rxx(B) traces from high to low field, a double peak is
visible around 11 T, more or less resolved according to the
oscillation width, followed by another around 6 T, which in
samples A and B is hardly resolved at all in Rxx, but slightly
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clearer in Rxy. The sequence of filling factors appears to be
identical, and the oscillations match modulo the difference in
carrier density.

The same picture is visible in Figs. 3(c) and 3(d). Panel
(c) shows the same two traces for samples A and B alongside
two slightly higher-density traces for samples C and D. The
apparent phase shift of the Rxx oscillations in sample C versus
those in sample D is due to the difference in carrier density:
the same sequence of filling factors is seen in Rxy. Sample C,
whose thickness is intermediate between that of samples B
and D, has a mobility comparable to that of sample D (see
Table I).

Panel (d) shows traces at high density [approximately 2 ×
that of the traces shown in panels (b) and (c)] for samples B, C,
and D. (In this panel, data for sample D were acquired without
the deposition of a gate.) Once again, while the background
between the three samples varies significantly, and can be
largely attributed to differences in the scattering times that are
characteristic of the thickness of each sample (see Table I),
the quantum oscillations for each sample reveal the same
underlying Landau level spectrum. Here, steps in two of the
filling factor are only resolved in Rxx in sample C.

Across panels (b) through (d), minima in Rxx are close to
zero, but some amount of parallel conductance exists, similar
to other studies of topological insulators [13]. The observed
parallel conductance is not through 3D bulk states, as can be
seen from the lack of trend with film thickness. The smallest
Rxx values recorded for the thinnest sample, sample A, ap-
proach 22 � [panel (b)], whereas for samples C and D, the
two thickest, the smallest values are 14 � [panel (c)] and 34
� [panel (b)], respectively. Since thicker films should support
more channels for parallel conductance through the bulk, we
would expect to see more parallel conductance as the film
thickness increases, which is not what is observed.

We separate the oscillating part of the magnetoresistance
from the slowly varying (classical) magnetoresistance. As
can be seen from the raw data (Fig. 3) the nonoscillating
background differs greatly between the four samples. In all
cases, the procedure is to interpolate the raw data on a grid
in 1/B. Then a weighted polynomial is fit to a subset of the
interpolated data and then subtracted. The results are shown
in Figs. 4(a)–4(d). The Fourier transform of these traces re-
veals the frequency components of the oscillations. These are
shown in Figs. 4(e)–4(h).

At low carrier density, the Fourier transform for all samples
appears to have a single large peak between about 15 and
20 T. A high-frequency peak (40 to 60 T, depending on the
sample), is also visible—it is most prominent in sample D
[panels (d) and (h) in Fig. 4]. It is not a higher harmonic of
the fundamental frequency. Instead, it is due to the resolution
of the two fans that appears at high field, which appears as a
doubled peak at high field. If the Fourier transform is applied
only to the lower-field data—if we window out the double
peak at high field—the high frequency peak disappears (not
shown).

At high carrier density, every sample’s Fourier transform
consists of two comparable-magnitude peaks, at around 10
and 30 T. A reasonable question is whether the low-frequency
(∼10 T) peak is spurious, i.e., introduced by an incomplete (or
overzealous) background subtraction. One test of the back-

ground subtraction is whether the oscillations vary around
zero, as they can be seen to in Figs. 4(a)–4(d). The other
test is the number: the Fourier transform of the subtracted
polynomial has a low-frequency component if it oscillates
(its derivative has zeroes) on the scale of the data. One can
estimate that a fourth-order polynomial (the highest degree
used here) has at most one full peak or dip in the positive half
of the number line. If that were to fall in the range 2 – 14 T (the
plotted and Fourier-transformed range in Fig. 4), we would
register a peak in the Fourier transform with a maximum
of one half period per 12 T, i.e., a frequency in 1/B terms
corresponding to about 6 T. By contrast, the lowest-frequency
peaks seen here, at a frequency of 10 T, would register in the
background-subtracted data as having two peaks separated by
0.1 T−1, which is clearly a feature of the raw data, and not
just the background-subtracted traces. Both these factors, the
success of the background subtraction and the size of the fre-
quency relative to that characteristic of the background, lead
us to conclude that the low frequency peaks measured are not
spurious. The results and interpretation are further confirmed
by direct fitting of the Shubnikov–de Haas oscillations, as
shown in Figs. 4(i)–4(l).

V. DISCUSSION

The relevant question in applying the 3D TI model dis-
cussed in Sec. II to these data is how the Landau level
spectrum, which depends on �h, �i, and the carrier density n,
should evolve under the influence of experimental parameters
varied here, namely the thickness and gate voltage. The term
�h, which couples the two surfaces, is relevant when there is
appreciable spatial overlap between the states on each surface,
which we expect occurs only in very thin films. Heuristically,
if the length scale for the Dirac state goes as h̄vF /�, a Fermi
velocity vF of 8 × 105 m/s and a gap � of 100 meV suggest
that hybridization of the surface states should occur in films
thinner than about 6 nm, which is similar to the estimate in
Ref. [2]. The hybridization gap �h, accordingly, should be
negligible for films thicker than that. In other words, �h may
be a strong function of film thickness when the film is only a
few nanometers thick, but, in the regime studied here, �h is
small and unchanging as the thickness is varied. In addition,
as discussed in the exposition of Fig. 1(e), the Landau level
spectrum is essentially insensitive to modest changes in �h as
long as the Fermi energy lies outside of the gap, meaning that,
even if �h did vary substantially for films 12–24 nm thick, our
experiments would likely not detect its influence.

The inversion-breaking term, �i, we understand to be the
energy difference between the Dirac nodes. Microscopically,
�i should be relevant when the confining potential is not
symmetric about the center of the film, such as in the case,
relevant here, when the thin film is surrounded on either side
by different materials. Then it is the band alignments that
cause the offset in energy between the Dirac nodes of either
surface state. According to that picture, �i does not depend
on the thickness of the Cd3As2 as long as it is great enough to
separate the outer layers from each other, which, as for �h, is
the case for films more than a few nanometers thick.

What happens when a gate voltage is applied to the film?
Applied to the top gate electrode, which sits on top of a
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FIG. 4. Frequency analysis of quantum oscillations. (a)–(d) Oscillations with background subtracted for samples A through D, respectively.
(e)–(h) Fourier transform of the background-subtracted data from samples A through D, respectively. (i)–(l) Fits (lines) of the background-
subtracted oscillations (markers) according to �Rxx = A exp(−B0/B) cos(2πF/B + φ) and �Rxx = A1 exp(−B0,1/B) cos(2πF1/B + φ1) +
A2 exp(−B0,2/B) cos(2πF2/B + φ2), where A, A1, A2, B0, B0,1, B0,2, F, F1, F2, φ, φ1, and φ2 are fit parameters. The extracted oscillation fre-
quencies F , F1, and F2, are compared to those derived from the Fourier transform. Note that the oscillation data are interpolated on even
intervals in 1/B. Panels (i)–(l) are labeled by the difference �F = Ffit–FFT . Where two cosines are used to fit the data, two values are reported,
the lower first. The fit did not converge for the middle sample B trace, and no difference is reported. The agreement for the high-frequency
peak is generally very good, less than 2 T, that is, �F and �F2 are generally small.

dielectric (Al2O3), relative to the Cd3As2 film, the gate
voltage varies the carrier concentration, though its effect is
mitigated somewhat by the presence of the semiconductor
cap layer. It also alters the band alignment, and so shifts the
Dirac node of the top surface in energy. We thus expect �i

to be affected by the gate voltage, though this effect, too, is
mitigated by the intervention of the cap layer.

We can check this reasoning by examining the frequency
of the quantum oscillations (Fig. 4). The oscillating part of
the magnetoresistance against 1/B has a frequency F that
is proportional to the area of the orbit in reciprocal space,
according to F = (h̄/2πe)Ak , where e is the magnitude of
the electron charge and Ak is the area of the orbit. A circular
orbit, for example, has Ak = πk2

F ; kF is the magnitude of the
Fermi wave vector. Only extremal orbits contribute; if there

are multiple extremal orbits with different areas, then multiple
frequencies can be visible.

The Fourier transforms at low carrier density all resemble
each other; those at high carrier density are likewise similar
to each other. At low carrier density, the Fourier transform for
all samples appears to have a single large peak between about
15 and 20 T. At high carrier density, the Fourier transforms all
consist of two comparable-magnitude peaks, at around 10 and
30 T (all samples). In the TI surface state model presented
in Sec. II, finite values of �i result in two frequencies for
quantum oscillations, whose difference increases as a function
of increasing EF or carrier density. This can be seen heuris-
tically by considering the case where �h = 0 and �i > 0.
Then the dispersion looks like two offset Dirac cones [see
Fig. 1(b)]. This results in two extremal orbits: one around
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FIG. 5. Thickness dependence in the subband picture. (The k·p model and coefficients are those from Ref. [27]). In-plane spectra (k|| =
kx = ky) are plotted for a film thickness L equal to (a) 6 nm, (b) 12 nm, (c) 15 nm, (d) 18 nm, (e) 24 nm, and (f) 30 nm. (g) Evolution of the
gap EG as a function of L. The thicknesses corresponding to panels (a)–(f) are marked with labeled, colored vertical lines.

the higher-energy Dirac cone, which has a smaller radius,
and the other around the lower-energy cone, which has a
larger radius. Because the dispersion is linear, the difference in
radius is constant. But, if the radii are k0 − �k and k0 + �k,
then the difference in area is �A = 4πk0�k. Since k0 ∝ EF ,
as EF increases, clearly �A ∝ �F increases, where �F is
the difference in quantum oscillation frequency. Using the
dispersion relation in Eq. (2), with �h = 0, one can calculate
that the difference between the two frequencies for quantum
oscillations is

�F = EF �i

eh̄v2
F

.

As a sanity check, note that a difference in frequency
of 20 T suggests that the quantity EF �i ≈ (60 meV)2, as-
suming vF = 5 × 105 m/s [19]. This is indeed what is
observed in Fig. 4. The 3D TI picture in the model there-
fore provides a satisfactory explanation for the essentially
thickness-independent properties of the quantum Hall effect
in these films.

It is instructive to examine what picture emerges from
considering only the bands that form the 3D Dirac nodes.
The Dirac nodes lie along the kz axis at kz = ±kD. Most first-
principles calculations have found kD < 0.05 Å−1 [2,20,21],
consistent with several experimental studies [22–25], though
there are some discrepancies—for a recent review, see
Ref. [4]. Since the length of the first Brillouin zone is 5
× or 10 × kD, we consider a k · p approach to modeling
the bulk band structure near the Dirac nodes to be accu-
rate, as has been done elsewhere [2,26,27]. A naïve but
effective way to model the thin film confinement is to treat
an infinitely deep well, that is, quantize kz = nπ/L, with

n = 1, 2, 3 . . . and L the thickness of the film. By doing
this, we have explicitly discarded surface states from our
analysis. It is also worth noting that, though the confining
potential V(z) does not break the fourfold symmetry of the
kz axis, the bulk Dirac nodes are nevertheless destroyed.
As remarked elsewhere [12] the agreement between this
heuristic approach and more sophisticated ones [2] is nearly
quantitative.

In-plane spectra, E (kx = ky), are plotted in Fig. 5 across a
range of thickness that includes the films studied here. Panels
(a) through (f) show thicknesses from 6 nm (a) to 30 nm (f).
(The numerical values of the k·p coefficients are taken from
Ref. [27].) The gap shrinks nonmonotonically as thickness is
increased: panel (g) shows the evolution of the gap at k = 0 as
a function of thickness. Across the range of thickness studied
in our experiments, the gap should decrease from a maximum
of about 20 meV to as low as 5 or 10 meV; if some uncertainty
is allowed in the correspondence between the model and re-
ality, we should expect that the gap can take on arbitrarily
small values near certain critical thicknesses. In any event,
the prediction of the subband picture is that the thickness
is a key parameter in determining the size of the gap. More
qualitatively, as L increases, so does the number of subbands
in any particular low-energy window. Comparing panels (b)
through (e), in which spectra are plotted for quantum wells
with thicknesses comparable to those of samples A through
D, respectively, the number of conduction bands relevant to
the transport increases from one to two or three (depending on
EF ). As a result, the model predicts a commensurate increase
in the complexity and/or apparent degeneracy of the Landau
level spectrum. Since the essential feature of the experimental
data, by contrast, is no change of the Landau level sequence
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FIG. 6. Background-subtracted oscillations in conductivity (a)–(d) and corresponding fan diagrams (e)–(n). Panels (a)–(d) show quantum
oscillations, plotted against magnetic field, for samples A–D, respectively. For samples B, C, and D, traces are offset by 40 and 80 μS (zero is
denoted by a horizontal dashed line). In all cases the higher density traces are on the top; the scheme matches the labeling of the fan diagrams
in the bottom half of the figure. Peaks are identified in the conductivity. The magnetic field values for the peak centers are used to make the fan
diagrams in the bottom half of the figure, in panels (e) through (n). These fan diagrams are identified by the sample (a letter) and the carrier
density (in units of 1011 cm–2). Note that not all peaks (open circles) are fitted (solid lines). The x intercept is identified as n0 in each panel,
along with an error (one standard deviation). Finally, note that the abscissa of the fan diagrams (e)–(n) is in all cases simply an unadjusted
integer index of the conductivity peaks, counting up from 1 for the peak at the highest field.

with thickness, the subband picture cannot be said to agree
with the experiment.

VI. CONCLUSION AND OUTLOOK

At fixed carrier density, the insensitivity of the quantum
Hall effect to the film thickness as it is varied from 12 to 24 nm
is problematic if the 2D states are thought to originate from the
quantization of the bulk spectrum. The 3D TI picture in the
model explored above is, by contrast, a satisfactory explana-
tion for the essentially thickness-independent properties of the
quantum Hall effect in these films. We emphasize that surface

state transport is observed across an energy range that is much
larger than the comparatively small energy scale calculated for
the overlap of the two As p-like bands that give rise to the bulk
nodes, because of the much larger energy scale for the 5s − 4p
band inversion at the center of the Brillouin zone (hundreds
of meV [2]). It remains an open question why bulk subband
states do not give rise to observable magnetoresistance oscilla-
tions in these films. One possible explanation is that thin film
strains may change the bulk band gap from those calculated in
Fig. 5. A future direction for future research lies in dual-gated
devices, which can disentangle tuning of the carrier density
from that of �i. That research will be enabled by optimization
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of the capping layer, gate dielectric [19,28], and device design,
and is a critical step toward realizing the quantum spin Hall
insulator state in cadmium arsenide.
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APPENDIX: π BERRY PHASE FROM THE FAN DIAGRAM

Quantum oscillations from topological insulators are often
analyzed in terms of a Berry phase, which is then used to sup-
port the topological nontrivial nature of their surface states.
Extracting the phase from the fan diagram analysis is inher-
ently fraught. At higher filling factors, the analysis suffers
because nonideality of the Dirac spectrum (i.e., a nonlinear
dispersion) causes a departure from the expected behavior,
and there is a long lever. Furthermore, a large g factor causes
deviations at low filling factor (the case here). These points are
discussed in detail in Ref. [29]. Others have identified difficul-
ties arising from inhomogeneity (at the scale considered, not
relevant here) and, more subtly, a constant density vs constant
chemical potential criterion, the applicability of which can,
in principle, change as a function of, e.g., gate voltage [30].
Additionally, particle-hole asymmetry jeopardizes the analy-
sis of the Berry phase from the fan diagram for the 2D surface
states of 3D TIs [31] as well as in bulk 3D Weyl and Dirac
semimetals [32].

Besides these fundamental concerns, there are practical
difficulties in applying the fan diagram analysis to our data,
which fall into a combination of the quantum Hall regime
and a transitional or incipient regime where the gaps between
Landau levels are not fully established, there is significant
parallel conductance, but the Shubnikov–de Haas oscillations
are clear. In other words, these data bridge low Landau level
and high Landau level regimes, and the crossover not only
splits our data in two, but also adds a layer of ambiguity to the
analysis.

Figures 6(a)–6(d) shows a plot of maxima in σxx =
Rxx/(R2

xx + R2
xy) vs an integer n that simply indexes the

counted maxima. These are used to construct the corre-
sponding fan diagrams [Figs. 6(e)–6(n)] as follows. First,
the resistance (Rxx and Rxy) data are used to calculate the
conductance σxx = Rxx/(R2

xx + R2
xy). Second, the background

is subtracted by fitting σxx(B) = σ0 + σ1/2/
√

B + σ1/B +
σ2/B2 + σ3/B3 to the B > 1 portion of the data (the data are
weighted like B−2 to counteract the influence of the widening
quantum oscillations on the fit). Third, peaks in the subtracted
data (i.e., the fit residuals), called �σxx in Fig. 6 above, are
identified using a peak finding routine. At this stage, a couple
of peaks are added and removed by hand (most low-field
peaks are removed; double-peak features are added by hand

FIG. 7. Fan diagrams extracted from the magnetoresistance data
shown in Fig. 3. Each minimum in Rxx (B) is indexed by the con-
current value of ν = RK/Rxy, rounded to an integer, which is plotted
against the value of the inverse of the magnetic field (1/B) where the
minimum occurs. Linear fits are shown; y intercepts are consistent
with zero except for the high-density traces in samples C and D.

on a maximum value criterion). After this, the identified peaks
are plotted on top of the subtracted data in Figs. 6(a)–6(d) as
open circles. Fourth, the field values where the peaks Bi have
been found are used to assemble the fan diagrams, where the
peak positions are plotted in inverse fashion (1/Bi) against an
integer index, called n, which simply counts the number of
maximums, from n = 1 at the highest-field peak, counting up
through the lower-field ones. Last of all, we fit a line to the fan
diagrams. In doing so we exclude peaks that are doubled: the
highest-field peaks in panels (e), (h), (i), (j), and (k), and the
three highest-field peaks in panels (m) and (n). We have also
excluded the extreme low-field peak in panel (l).

The fitted x intercepts accompany the fan diagrams in
Figs. 6(e)–6(n). In most cases we see values near to 0.5 (af-
ter shifting n by the appropriate integer), corresponding to a
Berry phase of π . For the reasons enumerated at the beginning
of this section, we present this as tentative but not necessarily
determinant support that reflects the nature of the topological
surface states.
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The exclusion of some of the peaks in the fitting of the data
in panels 6(e)–6(n) affects the fitted intercept. The rationale
for these exclusions is the same as for avoiding the filling
factor plot (Fig. 7) to find the Berry phase: were one to make a
full accounting of all the filled Landau levels, transforming the
index n into something like ν, one would simply recover the
Landau level degeneracy formula. The analogy to graphene
is perhaps the clearest way of looking at it (see Fig. 1(c) in
Ref. [30]). Another way of saying this is written above: the
data fall in the regime where some of the data crosses be-
tween an incipient regime (the fitted data in the fan diagrams
here) and the deep quantum Hall regime (partially excluded
here), which can be seen from the low-n kinks in the fan
diagrams.

Figure 7 shows nearly the same plots as Fig. 6(e)–6(n),
with a crucial difference: ν is plotted instead of the arbitrary
index n. Each Rxx(B) minimum is indexed by the concurrent
value of ν = RK/Rxy, where RK = h/e2 is the von Klitzing

constant. (Since there are fewer points where ν can be identi-
fied, the fans here are somewhat sparser than in Fig. 6.) Note
that, unlike in the n-indexed plots, the expected value for the
y intercept is zero. This is because, regardless of the zero-field
spectrum (linear vs parabolic dispersion, presence or absence
of the Berry monopole), this plot reflects only the Landau
level degeneracy, i.e., for the Nth Landau level, 1/BN =
Ne/hn2D, see, e.g., discussion of Fig. 1(c) in Ref. [30]. This is
in contrast to the plots in Fig. 6, which have intercepts that are
approximately an integer-and-a-half. But this plot, in which
the Berry phase does not appear as an intercept, demonstrates
that, even with unambiguous peak indexing as in the quantum
Hall regime, there is some amount of error (see the nonzero
intercepts for the high-density sample C and D traces). With
that caveat, we observe as well that, along the lines of the
discussion in Ref. [30], the discrepancy between the ν- and
n-indexed plots indicates against a reservoir of bulk states
pinning the Fermi level of the surface states.
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