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A note on Murakami’s theorems and

incomplete social choice without the Pareto principle

Wesley H. Holliday™ and Mikayla Kelley*

1 University of California, Berkeley and I Stanford University

Preprint of January 2020. Forthcoming in Social Choice and Welfare.

Abstract

In Arrovian social choice theory assuming the independence of irrelevant alterna-
tives, Murakami (1968) proved two theorems about complete and transitive collec-
tive choice rules that satisfy strict non-imposition (citizens’ sovereignty), one being a
dichotomy theorem about Paretian or anti-Paretian rules and the other a dictator-or-
inverse-dictator impossibility theorem without the Pareto principle. It has been claimed
in the later literature that a theorem of Malawski and Zhou (1994) is a generaliza-
tion of Murakami’s dichotomy theorem and that Wilson’s (1972) impossibility theorem
is stronger than Murakami’s impossibility theorem, both by virtue of replacing Mu-
rakami’s assumption of strict non-imposition with the assumptions of non-imposition
and non-nullness. In this note, we first point out that these claims are incorrect: non-
imposition and non-nullness are together equivalent to strict non-imposition for all
transitive collective choice rules. We then generalize Murakami’s dichotomy and im-
possibility theorems to the setting of incomplete social preference. We prove that if one
drops completeness from Murakami’s assumptions, his remaining assumptions imply
(i) that a collective choice rule is either Paretian, anti-Paretian, or dis-Paretian (unan-
imous individual preference implies noncomparability) and (ii) that adding proposed
constraints on noncomparability, such as the regularity axiom of Eliaz and Ok (2006),

restores Murakami’s dictator-or-inverse-dictator result.

Keywords: social choice without Pareto, non-imposition, strict non-imposition,
citizens’ sovereignty, Wilson’s Theorem, incomplete social preference,

regularity, minimal comparability, Yasusuke Murakami

1 Introduction

In an innovative monograph applying multi-valued logic to social choice theory, Murakami
(1968) proved the first theorems in what has become a subgenre of the social choice liter-
ature on “social choice without the Pareto principle” (see, e.g., Wilson 1972; Fountain and
Suzumura 1982; Border 1983; Kelsey 1984; Campbell 1989; Malawski and Zhou 1994; Miller
2009; Cato 2012, 2016; Coban and Sanver 2014; Holliday and Pacuit 2018). Working in the
setting of Arrovian social choice assuming the independence of irrelevant alternatives, Mu-

rakami’s method was to first prove a dichotomy theorem for Paretian or anti-Paretian rules



and then, by analyzing each case, to prove a dictator-or-inverse-dictator theorem without
the Pareto principle. In this note, we first correct a misconception in the literature about
the strength of Murakami’s theorems relative to later results of Wilson (1972) and Malawski
and Zhou (1994). We do so by proving an equivalence between strict non-imposition, as-
sumed in Murakami’s theorems, and the combination of non-imposition and non-nullness,
assumed in the later results, where this equivalence holds not only for the complete and
transitive collective choice rules to which the cited results apply but more generally for all
transitive collective choice rules. We then generalize Murakami’s theorems to the setting of
possibly incomplete social preference (see, e.g., Sen 1970; Barthelemy 1983; Weymark 1984;
Pini et al. 2008; Cato 2013, 2018). Under the assumptions of his dichotomy theorem except
for completeness, we prove a trichotomy theorem: a collective choice rule is either Paretian,
anti-Paretian, or dis-Paretian (unanimous individual preference implies noncomparability).
Finally, by analyzing each case of the trichotomy theorem, we prove a dictator-or-inverse-
dictator theorem first under the assumption of regularity of social preference (Eliaz and Ok
2006) and then under the weaker assumption of minimal comparability (Cato 2018).

Let us briefly recall the setup of Arrovian social choice. Fix a nonempty set X of
alternatives and a nonempty set V' of voters. We assume that |X| > 3 and V is finite
(though we will lift this finiteness assumption in the next section). For a binary relation R
on some Y C X, we write ‘zRy’ for (z,y) € R and define binary relations P(R), I(R), and
N(R) on Y by: zP(R)y if and only if 2Ry and not yRz; xI(R)y if and only if 2Ry and
yRx; and xN(R)y if and only if neither xRy nor yRx. We say that R is complete if for all
z,y € Y, xRy or yRx; R is transitive if for all x,y,z € Y, if xRy and yRz, then zRz; and
R is quasi-transitive if P(R) is transitive. If R is transitive, then it is quasi-transitive and

satisfies the following for all z,y,z € Y=

PR-transitivity: if tP(R)y and yRz, then zP(R)z; (1)
RP-transitivity: if 2Ry and yP(R)z, then zP(R)z. (2)

Let B(Y) be the set of all binary relations on Y and O(Y) the set of all complete and
transitive binary relations on Y. A profile on Y C X is a function R : V — O(Y). For
i € V, we write ‘R;’ for R(7). We call a profile on X simply a profile, and for any profile R
and Y C X, we define R|y to be the profile on Y assigning to each i € V the relation R;NY2.
A collective choice rule (CCR) is a function f: D — B(X) where D is some nonempty set
of profiles. A CCR f satisfies universal domain (UD) if D is the set of all profiles; f is
complete (resp. transitive) if for all R € dom(f), f(R) is complete (resp. transitive); f is
a social welfare function (SWF) if for all R € dom(f), f(R) is complete and transitive;
fis null if for all z,y € X and R € dom(f), not zP(f(R))y; f is Paretian (resp. anti-
Paretian) if for all x,y € X and R € dom(f), if zP(R;)y for all i € V, then P(f(R))y
(resp. yP(f(R))x); and f is dictatorial (vesp. inversely dictatorial) if there is an ¢ € V such
that for all z,y € X and R € dom(f), if zP(R;)y, then zP(f(R))y (resp. yP(f(R))x). The

first result in Section 2 concerns a logical relation between the following axioms for CCRs:

e free triple property (FT): for any Y = {z,y,2} C X and profile Q on Y, there is an
R € dom(f) such that Rly = Q.



e independence of irrelevant alternatives (ITA): for all R, R’ € dom(f) and z,y € X, if
Rl(z,y1 = R'[{a,y}, then 2 f(R)y if and only if 2 f(R')y.

e non-nullness (NN): f is not null.
e non-imposition (NI): for all z,y € X, there is an R € dom(f) such that zf(R)y.

e strict non-imposition (SNI) (called ‘citizens’ sovereignty’ in Arrow 1951): for all
z,y € X with « # y, there is an R € dom(f) such that xP(f(R))y.

For the sake of simplicity, we state all theorems in this section in terms of the same domain
condition, UD, rather than FT or other domain conditions used in the original theorems or
later refinements (see Campbell and Kelly 2002). But for the sake of generality, we prove
several results in Section 2 under the weaker assumption of FT.

Arrow’s (1951) original impossibility theorem' states that any SWF satisfying UD, IIA,
SNI, and an additional axiom of positive association of social and individual values (PA) is
dictatorial. Later Arrow (1963, p. 97, Theorem 2) replaced SNI and PA by the assumption
that the SWF is Paretian, resulting in the statement usually quoted as Arrow’s Theorem
today: any Paretian SWF satisfying UD and IIA is dictatorial.

Murakami (1968) clarified the relation between Arrow’s theorems and the Pareto prin-

ciple with the following results.

Theorem 1 (Murakami 1968, p. 101, Theorem 6-1). Any SWF satisfying UD, ITA, and

SNI is either Paretian or anti-Paretian.

Theorem 2 (Murakami 1968, p. 103, Theorem 6-2). Any SWF satisfying UD, IIA, and
SNT is either dictatorial or inversely dictatorial.

Murakami originally stated the second theorem as an impossibility theorem: there is no
SWEF satisfying UD, ITA, SNI, non-dictatorship, and non-persecution (f is not inversely
dictatorial). The logically equivalent form in Theorem 2 is the form given in Cato 2012.2

It has been suggested in the subsequent literature that Murakami’s theorems were “gen-
eralized” or “strengthened” by the following results (with Theorem 3 stated in the form given
in Cato 2012).

Theorem 3 (Malawski and Zhou 1994). Any SWF satisfying UD, ITA, and NI is either

null, Paretian, or anti-Paretian.

Theorem 4 (Wilson 1972). Any SWF satisfying UD, ITA, and NI is either null, dictatorial,

or inversely dictatorial.

Concerning the logical relation between Theorem 1 and Theorem 3, Malawski and Zhou
(1994, p. 107) claim that their result is “slightly more general” than Murakami’s. Where P

and AP stand for the Paretian and anti-Paretian properties, respectively, they write:

LAs corrected by Blau (1957) to use UD.

2Note that Theorem 2 immediately implies Theorem 1, as dictatorial (resp. inversely dictatorial) implies
Paretian (resp. anti-Paretian). Conversely, Theorem 2 can be proved from Theorem 1 and Arrow’s theorem
as follows: if f is Paretian, then it is dictatorial by Arrow’s theorem, while if f is anti-Paretian, then it is
inversely dictatorial—for if not, then the SWF fT defined by xf ' (R)y if and only if yf(R)x is Paretian
and non-dictatorial, contradicting Arrow’s theorem.



Using the notations developed in the paper, Proposition 1 [Theorem 3] can be
stated as: [FT, ITA, and NI| = [P, or AP, or nullness|, while Murakami’s result
is: [FT, IIA, and SNI] = [P or AP]. Since SNI is a condition stronger than
NI and excludes the possibility of nullness, Murakami’s result is implied by
Proposition 1. (p. 107)

Similarly, Cato (2012, p. 874) writes, “Malawski and Zhou (1994) establish a generalization
of Murakami’s Theorem 6-1.”

But these claims of generalization are incorrect. For the implication
[FT, ITA, and NI] = [P, or AP, or nullness]
is logically equivalent to
[FT, IIA, NI, and NN] = [P or AP],
which is not a generalization of Murakami’s implication
[FT, ITA, and SNI| = [P or AP],
due to the following fact (implied by Proposition 5 below):
[FT and ITA] = [(NI and NN) < SNIJ.

Concerning the logical relation between Theorem 2 and Theorem 4, Campbell and Kelly
(2002, p. 53) write that Murakami’s theorem “is in the same vein as Wilson’s Theorem,
but not as strong.” Similarly, Cato (2012, p. 874) writes: “Wilson (1972) imposes NI
instead of SNI, and obtains a stronger result” than Murakami (and in Cato 2010, p. 269:
“Murakami’s theorem (1968, Theorem 6.2, p. 103) is weaker than Wilson’s theorem”). But
these statements are incorrect for the same reason as noted above. Where D and ID stand

for the dictatorial and inversely dictatorial properties, respectively, Wilson’s implication
[UD, IIA, and NI| = [D, or ID, or nullness|
is logically equivalent to
[UD, ITA, NI, and NN] = [D or ID],
which is not stronger than Murakami’s implication
[UD, ITA, and SNI] = [D or ID],
due to the fact that NI and NN are together equivalent to SNI relative to UD and ITA

(again, by Proposition 5 below).

In fact, Wilson’s own theorem refutes the claim that Theorem 4 is stronger than Theo-



rem 2. For Wilson proves
[UD, IIA, NI, and NN] = [D or ID|,

and clearly
[UD and (D or ID)] = SNI,

so we see that Murakami’s assumptions are implied by Wilson’s:
|[UD, IIA, NI, and NN| = [UD, IIA, and SNIJ.

Hence Wilson’s theorem is not a stronger result. By analogous reasoning, Malawski and
Zhou’s own theorem refutes the claim that Theorem 3 is a generalization of Theorem 1, as
clearly [FT and (P or AP)] = SNL

Moreover, the equivalence between SNI, on the one hand, and the combination of NI
and NN, on the other, holds in an even more general setting than that of Murakami (1968),
Wilson (1972), and Malawski and Zhou (1994). Since at least Sen (1970), there has been
interest among social choice theorists in dropping the requirement that the social preference
relation be complete (Barthelemy 1983; Weymark 1984; Pini et al. 2008; Cato 2013, 2018).
In this setting, all of the theorems cited above fail (see Remark 7). Yet we will prove that
the equivalence of SNI and the combination of NI and NN holds in the incomplete setting,

in which we then prove generalizations of Theorems 1 and 3 and Theorems 2 and 4.

2 Results

We now allow V to be of arbitrary cardinality, so the next two results apply to social
choice with infinite electorates, where Wilson’s theorem does not hold without additional
assumptions (see, e.g., Fishburn 1970; Kirman and Sondermann 1972; Campbell 1990) and

hence cannot be used to prove even the special case of Proposition 5 for SWFs.

Proposition 5. If f is a transitive CCR satisfying FT and IIA, then f satisfies NI and NN
if and only if f satisfies SNI.

Proof. For any CCR f, SNI clearly implies NI and NN. So we are left to show that if f is a
transitive CCR that satisfies FT, ITA, NI, and NN, then f satisfies SNI. Fix z,w € X such
that z # w. We show there is an R € dom(f) such that zP(f(R))w. By NN, there are
some x # y and R™Y € dom(f) such that xP(f(R"Y))y. There are six cases to consider:

1. z=y and w = x; 4. z=y and w # x,y;
2. z# x,y and w = y; 5. z # x,y and w = x;
3. z=z and w # x,¥; 6. 2 # x,y and w # x,y.

For case 2, by NI, let R! € dom(f) be such that zf(R')z. For each i € V, define a



binary relation QY on {z,y,z} by:

a@Qa for all a € {z,y, 2};
Q% & 2R}z, and 2Q%r & 2R} z;
2Qfy & 2Ry, and yQir & YRV
yQVz & [yR) Yz & 2R} 2], and 2Qy & [2R}x & 2RYy).

Then @Y is a transitive relation on {z,y,z2}. It follows (see Szpilrajn 1930; Arrow 1963,
p. 64) that there is a complete and transitive relation @; on {x,y,z} such that QY C Q;
and P(QY) C P(Q;). Let Q be the profile on {x,y, z} that assigns Q; to voter i. Then by
FT, there is an R € dom(f) such that R, , .} = Q. By IIA, zf(RY)z implies zf(R)x,
and zP(f(R*Y))y implies xP(f(R))y, so zP(f(R))y by (2).

For case 3, by NI, take R! € dom(f) with yf(R!)w. Then, as in case 2, there is an
R € dom(f) with R|{Ly} = Rw,y|{x,y} and R|{y’w} = Rl‘{y@}. By HA, xP(f(R))y and
yf(R)w, so zP(f(R))w by (1).

For case 4, by NI, take R! € dom(f) with yf(R')z. By case 3, take R? € dom(f)
with #P(f(R?))w. Then, as above, there is an R € dom(f) with R, 3 = R'|(;,) and
Ri(u) = Rl By 1A, 5f (R)z and 2P(F(R))w, so yP(f(R))w by (2).

We now prove case 1. By case 4, take R! € dom(f) with yP(f(R!))w. By NI, take R? €
dom(f) with wf(R?)z. Then, as above, there is an R € dom(f) with Ry} = RY|{y w1
and Rl{y 23 = R?|u2). By IIA, yP(f(R))w and wf(R)z, so yP(f(R))z by (1).

For case 5, by case 1, take R' € dom(f) with yP(f(R'))x. By NI, take R? € dom(f)
with zf(R?)y. Then, as above, there is an R € dom(f) with R|(, .3 = R'|f, .1 and
Rl(. 4y = R?(.y- By HA, 2f(R)y and yP(f(R))z, so zP(f(R))z by (2).

For case 6, by case 5, take R' € dom(f) with zP(f(R'))z. By case 3, take R? € dom(f)
with 2P(f(R?))w. Then, as above, there is an R € dom(f) with R|(. ;3 = R*[(. .} and
Rl{z0} = R?|(zw)- By A, 2P(f(R))x and zP(f(R))w, so zP(f(R))w. O

Remark 6. Our definition of NN (there are z,y € X and R € dom(f) with 2P(f(R))y)
follows Campbell and Kelly (2002, p. 43) and Cato (2010; 2012; 2016). Wilson (1972)
and Malawski and Zhou (1994) use a different definition of NN: there are z,y € X and
R € dom(f) such that not zf(R)y. Let us call our version and their version strict NN
(SNN) and weak NN (WNN), respectively. Then SNN and WNN are equivalent for SWFs,
but WNN is weaker than SNN for arbitrary transitive CCRs. In addition, Proposition 5
fails for WNN in place of SNN. To see this, fix a voter ¢ € V. Define a CCR, f such that for
all x,y € X and profiles R:

o if zI(Ri)y, then zI(f(R))y;

e otherwise, zN(f(R))y.

Then f satisfies UD, IIA, NI, and WNN, and f is transitive. For if 2 f(R)y and yf(R)z,
then zI(R;)y and yI(R;)z, so xI(R;)z by the transitivity of R;. Thus, zf(R)z. But f
does not satisfy SNI. Hence f is neither Paretian nor anti-Paretian, and neither dictatorial
nor inversely dictatorial. Therefore, like Proposition 5, all of the theorems in Section 1 fail
if we replace SWFs with transitive CCRs and NN with WNN.



Remark 7. All of the theorems in Section 1 fail if we replace SWFs with transitive CCRs
and maintain the assumption of NN, i.e., SNN, discussed in Remark 6. Thus, none of those
theorems can be used to prove Proposition 5. To see that the theorems fail in this setting,
fix distinct voters 7,5 € V. Define a CCR f such that for all z,y € X and profiles R:

e if zI(R;)y and zP(R,;)y, then zP(f(R))y;
o if zI(R;)y and yP(R;)z, then yP(f(R))z;
e otherwise, zN(f(R))y (except if x = y, in which case zf(R)z).

Then f satisfies UD, ITA, and SNI, and f is transitive. For if zf(R)y and yf(R)z, then
zI(R;)y, 2P(R;)y, yI(R;)z, and yP(R;)z, which together imply zI(R;)z and xP(R;)z
by the transitivity of R; and R;. Thus, 2P(f(R))z. However, f is neither Paretian nor

anti-Paretian and hence neither dictatorial nor inversely dictatorial.

Remark 8. A number of authors have investigated CCRs f for which f(R) is required to be
complete and quasi-transitive but not necessarily transitive (see, e.g., Sen 1969; Guha 1972;
Mas-Colell and Sonnenschein 1972; Hansson 1976; Fountain and Suzumura 1982; Gibbard
2014a,b). For this class of CCRs, the analogue of Proposition 5 does not hold. To see this,
fix a voter ¢ € V and distinct alternatives a,b € X. Define a CCR f such that for all
xz,y € X and profiles R:

o if {z,y} # {a, b}, then zf(R)y;
e if {z,y} = {a,b}, then 2 f(R)y if and only if zR;y.

Then f is complete and quasi-transitive (as there are no x,y, z such that P(f(R))y and
yP(f(R))z), and f satisfies UD, ITA, NI, and NN, but not SNI.

Next, we use Propositon 5 to show that together NI and NN are sufficient (given FT and
ITA) to prove a generalization of Murakami’s Theorem 1 and hence also of Malawski and
Zhou’s Theorem 3 to incomplete CCRs. Define a CCR to be dis-Paretian if for all z,y € X
and R € dom(f), if zP(R;)y for all i € V, then zN(f(R))y.

Theorem 9. Any transitive CCR satisfying F'T, IIA, NI, and NN is either Paretian, anti-

Paretian, or dis-Paretian.

Proof. Let f satisfy the hypothesis of the theorem. We say that V is weakly decisive
(resp. weakly inversely decisive) on z,y € X for f if for any R € dom(f), if 2P(R;)y
for all ¢ € V, then zf(R)y (resp. yf(R)x). We say that V is decisive (resp. inversely deci-
siwe) on x,y € X for f if for any R € dom(f), if tP(R;)y for all i € V, then P(f(R))y
(resp. yP(f(R))x). We first show that if V' is weakly decisive (resp. weakly inversely deci-
sive) on some pair x,y, then f is Paretian (resp. anti-Paretian).

Suppose V is weakly decisive (resp. weakly inversely decisive) on z,y. Let a € X \ {z, y}.
We show that V' is decisive (resp. inversely decisive) on x,a. Let R € dom(f) be such that
2P(R;)a for all i € V. Since f satisfies NI and NN, f satisfies SNI by Proposition 5. Thus,
there is an R¥* € dom(f) such that yP(f(R¥'%))a (resp. aP(f(R¥*))y). By FT, there is
an R’ € dom(f) such that:

Rl|{ac,a} = R|{x,a};



R'|(y.0y = R"[(y.a3;
xP(R})y for all i € V.

Since V' is weakly decisive (resp. weakly inversely decisive) on z,y, we have that xf(R')y
(resp. yf(R)))). By TIA, yP(f(R'))a (vesp. aP(f(R'))y). So by (2) (resp. (1)), zP(f(R'))a
(resp. aP(f(R’))x). Hence by ITA, zP(f(R))a (resp. aP(f(R))z). Therefore, V is decisive
(resp. inversely decisive) on x, a. By similar reasoning, V is decisive (resp. inversely decisive)
on any a,b € X, so f is Paretian (resp. anti-Paretian).

We now prove the trichotomy. Fix =,y € X and let R € dom(f) be such that zP(R;)y
for all : € V. If zf(R)y (resp. yf(R)z), then by ITA, V is weakly decisive (resp. weakly
inversely decisive) on x,y and hence f is Paretian (resp. anti-Paretian) by the previous
paragraph. Lastly, suppose 2 N(f(R))y, so f is neither Paretian nor anti-Paretian. Then
for any a,b € X and R’ € dom(f), if aP(f(R}))b for all i € V, then aN(f(R'))b by the

previous reasoning. Hence f is dis-Paretian. O
The CCR defined in Remark 7 shows that the third case of the trichotomy is possible.

Remark 10. Inspection of the proofs of Proposition 5 and Theorem 9 shows that full
transitivity is not needed. It suffices that f satisfies the conditions of PR-transitivity and
RP-transitivity from Section 1. To see that the combination of these properties is weaker
than transitivity,® fix distinct alternatives a,b € X and consider the CCR f defined as
follows for any z,y € X and profile R:

e if zP(R;)y for all ¢ € V', then 2 P(f(R))y;

o if yP(R;)x for all i € V, then yP(f(R))z;

o if {z,y} # {a,b} and xI(R;)y for all i € V, then zI(f(R))y;

e otherwise, tN(f(R))y (except if = y, in which case z f(R)x).

Then f satisfies UD, ITA, SNI, and PR- and RP-transitivity. To see that f does not satisfy
transitivity, fix y € X \ {a,b} and consider a profile where a(R;)yI(R;)b for all i € V.
Then since al(R;)b for all i € V, it follows that aI(f(R))y and yI(f(R))b but aN(f(R))b.

Finally, as a sample application of Theorem 9, we prove two generalizations of Mu-
rakami’s impossibility theorem, Theorem 2, in the setting of incomplete social preference.
Weymark (1984, Corollary 2) observed that by dropping completeness from Arrow’s axioms,
while retaining the Paretian assumption, Arrow’s conclusion weakens from a dictatorship
to an oligarchy. Below we drop both completeness and the Paretian assumption, but we
add an axiom that distinguishes noncomparability, N(R), from indifference, I(R). The re-
sult is a Murakami-style dictatorship-or-inverse-dictatorship theorem. The additional axiom
comes from the choice-theoretic analysis of noncomparability vs. indifference by Eliaz and
Ok (2006), who propose the following property of noncomparability: for all z,y € X, if
2N (R)y, then there is a z € X such that one of the following holds: zP(R)z and zN(R)y;

3Sen (1969) observes that in the presence of completeness, transitivity is equivalent to the combination
of PR-transitivity and RP-transitivity.



2P(R)x and zN(R)y; yP(R)z and xN(R)z; or zP(R)y and zN(R)z. They call a binary
relation R regular if N(R) satisfies this property,* and we call a CCR regular if f(R) is
regular for every R € dom(f). Intuitively, the key difference between N(R) and I(R) is
as follows: if x and y are equally good, and if we change = to a better alternative =’ or a
worse alternative z’, then z’ should be better than y or worse than y, respectively; whereas
if x and y are noncomparable, then z’ and y may still be noncomparable in either case
(cf. Chang 1997). Regularity requires that there be a witness to this difference between
N(R) and I(R). For the following result, we again assume that V is finite.

Theorem 11. Any transitive and regular CCR satisfying UD, ITA, NI, and NN is either

dictatorial or inversely dictatorial.

Proof. Assume f is a CCR satisfying the hypothesis of the theorem. By Theorem 9, f is
Paretian, anti-Paretian, or dis-Paretian. First, we claim that f cannot be dis-Paretian in
light of regularity. Let L be a linear order on X, and let R be a profile such that R; = L for
all i € V. Then 2N (f(R))y for all distinct =,y € X, so f is not regular. Next suppose f is
Paretian. Then by Corollary 2 of Weymark 1984, there is a nonempty coalition C C V' that
is decisive, i.e., for any x,y € X and profile R, if zP(R;)y for all ¢ € C, then zP(f(R))y,
and such that each i € C has a strong veto, i.e., for any x,y € X and profile R, if xP(R;)y,
then not yf(R)z. If |C| > 2, then take 7,5 € C with ¢ # j. Fix some linear order L on X,
and define a linear order L’ by L’y if and only if yLz. Let R be a profile with R; = L and
R; = L'. Then zN(f(R))y for all distinct =,y € X, since ¢, j have strong vetoes. Again this
contradicts regularity. Hence |C| = 1, which with the decisiveness of C' implies that f has a
dictator. Finally, if f is anti-Paretian, then the CCR fT defined by T (R)y if and only if
yf(R)x is a transitive and regular CCR satisfying UD, ITA, NI, and NN, which is Paretian.

Hence by the previous reasoning, f' has a dictator, so f has an inverse dictator. O

Remark 12. Adding to Theorem 11 the assumption that f is Paretian of course yields that
f is dictatorial. A referee informed us that Cato (2019, Theorem 2) independently proved
this impossibility result assuming Pareto. Our result is therefore a generalization of his
without the Pareto principle. Note that Cato proves his result using an ultrafilter approach
whereas our proof in the Paretian case uses Weymark’s (1984) oligarchy theorem.

We also learned that Cato (2018) proved a related dictatorship result using the condi-
tion of minimal comparability—for all R € dom(f), there are distinct x,y € X such that
2 f(R)y—which is implied by regularity but not vice versa: any transitive and Paretian
CCR satisfying UD, ITA, and minimal comparability is dictatorial. Inspection of our proof
of Theorem 11 shows that it is minimal comparability that is violated if there is no dictator

or inverse dictator. Thus, we obtain the following generalization of Cato’s (2018) result.”

4Note that if R is complete, then R is trivially regular.

5Like Proposition 5 and Theorem 9, Theorems 11 and 13 can be stated with PR- and RP-transitivity
instead of full transitivity (recall Remark 10). Inspection of the proof of Weymark’s oligarchy theorem
(Weymark 1984, Corollary 2) shows that it uses only quasi-transitivity and RP-transitivity. While PR- and
RP-transitivity together with regularity imply full transitivity, with minimal comparability they do not.
For the former claim, note that if I(R)alI(R)y, then strict preference between z, z implies strict preference
between z,y and vice versa by PR- and RP-transitivity, so regularity precludes xN(R)y; moreover, PR-
and RP-transitivity preclude strict preference between z,y. Hence zI(R)y, so R is transitive. For the latter
claim, this can be seen by modifying the CCR in Remark 10 to use a single voter ¢ instead of all ¢ € V'; then
minimal comparability holds due to the completeness of R;.



Theorem 13. Any transitive CCR satisfying UD, ITA, NI, NN, and minimal comparability

is either dictatorial or inversely dictatorial.

3 Conclusion

The results of Wilson (1972) and Malawski and Zhou (1994) have not strengthened or
generalized Murakami’s (1968) original theorems. However, we have obtained genuine gen-
eralizations of Murakami’s theorems in Theorem 9 and Theorems 11 and 13. In proving
Theorems 11 and 13, we extended what Cato (2012) calls “Murakami’s method” to the in-
complete setting: just as Murakami proved his impossibility theorem by analyzing each case
of his dichotomy theorem, we proved an impossibility theorem by analyzing each case of
the trichotomy theorem. A natural next step is to use Murakami’s method to prove fur-
ther impossibility results assuming axioms for social preference other than those considered
here. We leave the details of further applications of Murakami’s method to incomplete social

choice for future work.
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