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ABSTRACT
We use semidefinite programming (SDP) to find a variety of optimal designs for multi-response linear
models with multiple factors, and for the first time, extend the methodology to find optimal designs for
multi-response nonlinear models and generalized linear models with multiple factors. We construct trans-
formations that (i) facilitate improved formulation of the optimal design problems into SDP problems, (ii)
enable us to extend SDP methodology to find optimal designs from linear models to nonlinear multi-
responsemodelswithmultiple factors and (iii) correct erroneously reportedoptimal designs in the literature
causedby formulation issues.We also derive invarianceproperties of optimal designs and their dependence
on the covariance matrix of the correlated errors, which are helpful for reducing the computation time
for finding optimal designs. Our applications include finding A-, As-, c-, and D-optimal designs for multi-
response multi-factor polynomial models, locally c- and D-optimal designs for a bivariate Emax response
model and for a bivariate Probit model useful in the biosciences.

1. Introduction

Different types of optimal designs have been extensively
constructed and studied for linear and nonlinear models,
see, for example, the design monographs by Fedorov (1972),
Pukelsheim (1993), Berger and Wong (2009), and Dean et al.
(2015). Applications of optimal design ideas are found across
broad disciplines, such as in education testing studies, food
science, agriculture, pharmaceutical industry, toxicology, engi-
neering, and manufacturing sectors. As cost of experiments
rises, the need of having a well-designed study that saves costs
provides a powerful impetus for the continuing search for more
effective ways to compute efficient designs.

The bulk of optimal regression designs concernsmodels with
one response variable and one or two factors. When there are
multiple factors, the models are usually assumed to be linear
and the mean response is adequately modeled by a low degree
multi-factor polynomial or an additive nonpolynomial model.
For example, Chang et al. (2001), Huang et al. (2006), and
Montgomery (2013, p. 496) considered design issues for exper-
iments with two or three response variables and up to three fac-
tors. Optimal designs for nonlinear models with several factors
are rare.

Multiresponse models are increasingly common and design
issues are decidedly more complicated than finding optimal
designs for one-response models. There is relatively little work
in this area even for polynomial homoscedastic models. A
classic reference is Krafft and Schaefer (1992), who found
D-optimal designs for a single covariate model with multiple
responses. Bischoff (1993, 1995) developed determinant for-
mulas from a factorization lemma to help find such optimal

CONTACT Julie Zhou jzhou@uvic.ca Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada VW Y.
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designs. In the last two decades, modest advances have been
made in terms of theory, new criteria, and new applications. For
example, Chang (1997) developed an algorithm to generate near
D-optimal designs, and the models include mainly the first-
order or second-order polynomial model for each response.
Imhof (2000) found exact optimal designs for a bivariate model
where eachmean response ismodeled by a linear and a quadratic
model and the joint responses may be correlated. Wang
(2000) discussed exact and approximate D-optimal designs for
multi-response polynomial models. Using iterated estimators
and convex analysis, Fedorov, Gagnon, and Leonov (2001)
found optimal designs for a model with bivariate responses
when the covariance matrix depends on unknown parameters.
Chang et al. (2001) derived D- and Ds-optimal designs for
polynomial regression models with two response variables and
one independent variable. More recent results include Yue and
Liu (2010) and Liu, Yue, and Hickernell (2011) where they
proposed a class of standardized optimality criteria, including
design criteria based on predictive ellipsoids for linear models,
and constructed various optimal designs for multi-factor linear
models. Yue, Liu, and Chatterjee (2014) constructed D-optimal
designs for multi-response linear models with quantitative and
qualitative factors.

Optimal designs for multi-response nonlinear models
are less studied and there is increasing interest in this area,
especially in the pharmaceutical industry. For example, in
dose-finding studies, multiple endpoints comprising efficacy
and toxicity endpoints can be studied more efficiently when
the design is optimally constructed. Heise and Myers (1996)
and Kpamegan (1998) are early examples where they found
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optimal designs for bivariate logistic and Probit models, respec-
tively. Dragalin, Fedorov, and Wu (2008) constructed two-stage
design for monitoring efficacy and safety in an early phase
clinical trial, where the goal is to find a target dose that most
likely produces the desired probabilities that balance toxicity
and efficacy effects of a drug. Fedorov and Wu (2007) and
Fedorov, Wu, and Zhang (2012) also developed optimal designs
for measuring patients’ progress using continuous outcomes
turned binary measures for studying efficacy and toxicity.
Gueorguieva et al. (2006) found locally D-optimal designs for
multivariate response pharmacokinetic models assuming that
observations from different patients were independent and
observations from the same patient at different time points were
correlated. Mukhopadhyay and Khuri (2008) compared various
optimal designs for multi-response generalized linear models
(GLMs), and Magnusdottir (2013) derived results for c-optimal
designs for estimating a given linear function of parameters in
a bivariate Emax model with one independent variable. Dette
et al. (2013) constructed Bayesian D-optimal designs for a
specific type of multi-response generalized linear models. Most
recently, Kim (2014) found D- and c-optimal designs for the
bivariate and trivariate Weibull model with applications to the
electronic manufacturing industry.

An overarching issue for finding optimal designs for multi-
response nonlinear models with several covariates is compu-
tational. Published works in the area do not discuss numerical
methods well; there are either brief or ad hoc algorithms that
apply only to specific design problems. Semidefinite program-
ming (SDP) as an optimization tool has been widely used in
engineering andmathematics. Even though it is well known that
SDP solvers can solve SDP problems with hundreds or more
variables efficiently (Papp 2012), it is rarely used for solving
optimal design problems. Atashgah and Seifi (2007, 2009) was
an early user of SDP to find A-, D-, and E-optimal designs
for linear models and Papp (2012) was the first to provide a
theory-based approach for solving a class of optimal design
problems for regression models, where the mean response is
a polynomial or a rational function with heteroscedastic noise
modeled also by a polynomial or rational weight function. In
either case, the models are linear, except for the rational poly-
nomial models briefly considered in Papp (2012). Recent work
using SDP to find different types of optimal designs for non-
linear models has only one response variable, see, for example,
Duarte, Sagnol, and Wong (2018), Duarte and Wong (2015),
and Duarte, Wong, and Oliveira (2016). Elfving’s Theorem is a
useful tool for geometrically characterizing a c-optimal design
and Sagnol (2011) extended Elfving’s celebrated theorem for
finding a c-optimal design geometrically in multi-response
experiments and used second-order cone programming for
computing various optimal designs.

Our main contributions in this work are to extend SDP
methodology to find various A-, As-, c-, and D-optimal designs
for multi-response linear/nonlinear models with multi-factors
and correct some results in Atashgah and Seifi (2009) due to
formulation issues. We derive several theoretical properties of
optimal designs that facilitate our SDP-based algorithms for
finding them when we have multi-response linear or nonlinear
models with several independent variables. In addition, we
develop equivalence theorems for different design criteria to
verify optimality of a design for multi-response models with

multiple independent variables and present optimal designs
found from our algorithm useful for biomedical applications.

Section 2 discusses the best linear unbiased estimator for
multi-response linear models and design optimality criteria. In
Section 3, we transform A-, As-, c-, and D-optimal design prob-
lems into SDP problems and use SDP algorithms to find optimal
designs. Section 4 presents optimal designs from our algorithm
and compares themwith those found by other methods. Section
5 finds optimal designs for multi-response GLMs. Section 6
derives several theoretical properties for A-, As-, and D-optimal
designs that are useful for the SDP algorithms, and concluding
remarks are in Section 7. All proofs are in the Appendix.

2. Optimality Criteria for Multi-ResponseModels

Suppose we have r response variables, y1, . . . , yr and p design
variables x1, . . . , xp. To fix ideas, we first consider linear mod-
els and note that the approach can be applied to nonlin-
ear models and GLMs with details in Sections 4 and 5. The
linear models are given by

yi j = f�i (x j)θi + εi j, j = 1, . . . , n, i = 1, . . . , r, (1)

where yi j is the jth observation on the response variable yi,
x denotes the vector of the p design variables, that is, x =
(x1, . . . , xp)�, x j = (x1 j, . . . , xpj)� is the jth run input (design
point), fi(x) is a known vector of regressors for variable yi,
θi = (θi1, θi2, · · · , θiqi )

� is the vector of regression parameters
for yi, and εi j are random errors with mean zero. Further, we
assume that cov(εi j, εlk) = 0 for j �= k, and cov(εi j, εl j) = σil .
This means that the observations for the r response variables are
correlated in the same run and observations from different runs
are independent.

Let q = q1 + · · · + qr be the total number of regression
parameters in (1) and for j = 1, . . . , n, define

y j =

⎛
⎜⎜⎜⎝
y1 j
y2 j
...
yr j

⎞
⎟⎟⎟⎠

r×1

, ε j =

⎛
⎜⎜⎜⎝

ε1 j
ε2 j
...

εr j

⎞
⎟⎟⎟⎠

r×1

,

Z j =

⎛
⎜⎜⎜⎝
f�1 (xj) 0 0 · · · 0

0 f�2 (x j) 0 · · · 0
...

...
0 0 0 · · · f�r (x j)

⎞
⎟⎟⎟⎠

r×q

.

Put

Y =

⎛
⎜⎜⎜⎝
y1
y2
...
yn

⎞
⎟⎟⎟⎠

nr×1

, ε =

⎛
⎜⎜⎜⎝

ε1
ε2
...
εn

⎞
⎟⎟⎟⎠

nr×1

,

Z =

⎛
⎜⎜⎜⎝
Z1
Z2
...
Zn

⎞
⎟⎟⎟⎠

nr×q

, θ =

⎛
⎜⎜⎜⎝

θ1
θ2
...
θr

⎞
⎟⎟⎟⎠

q×1

.

Manifestly, in matrix form the model becomes

Y = Zθ + ε, (2)
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where the covariance matrix of the error term ε is

� = cov(ε) = �0 ⊕ �0 ⊕ · · · ⊕ �0, with
�0 = cov(ε1) = (σil )r×r . (3)

Here ⊕ is the matrix direct sum and �0 is assumed to be a
known positive definitematrix. The best linear unbiased estima-
tor (BLUE) of θ is θ̂ = (Z��−1Z)−1Z��−1Y, and its covariance
matrix is

cov(θ̂) = (
Z��−1Z

)−1 =
⎛
⎝ n∑

j=1

Z�
j �0

−1Z j

⎞
⎠

−1

. (4)

For a predetermined sample size n, we want to choose “opti-
mal” design points x j, j = 1, . . . , n, from the given design space
to minimize some loss function φ(cov(θ̂)) represented by a
scalar function φ. Various optimality criteria can be used, such
as A-, As-, c-, andD-optimality criteria. Throughout, we assume
that we are willing to discretize the design space into N user-
selected points. Let this discretized design space be SN ⊂ Rp,
let its points be u1, . . . ,uN and let U j be the r × q matrix Z j
evaluated at u j, j = 1, . . . ,N. A design measure ξ (x) of x is
denoted by

ξ (x) =
(
u1 u2 · · · uN
w1 w2 · · · wN

)
, (5)

wherew j is the proportion of times that u j is selected as a design
point of ξ (x), withw j ≥ 0 and

∑N
j=1 w j = 1. Ifw j > 0, then u j

is called a support point of ξ (x). Let w = (w1, . . . ,wN ) be the
weight vector and let

A(w) =
N∑
j=1

w jU�
j �0

−1U j, (6)

so that the covariance matrix in (4) is proportional to C(w) =
A−1(w).

An optimal exact design problem is defined by the optimiza-
tion problem
{
minw φ (C(w))

s.t. w j ∈ {0, 1/n, 2/n, . . . , 1}, j = 1, . . . ,N,
∑N

j=1 w j = 1.

When A(w) is singular, φ(C(w)) is defined to be +∞. Since
it is hard to solve exact design problems in general, we relax
the constraints on w and find optimal approximate designs
defined by

{
minw φ (C(w))

s.t. w j ≥ 0, j = 1, . . . ,N,
∑N

j=1 w j = 1. (7)

Optimal exact designs are much more difficult to find and
study than optimal approximate designs. The former are con-
strained integer-valued optimization problems and they defy
analytical solutions. For each sample size n allocated for the
study, the optimal exact design varies and can depend sensitively
on the value n, the criterion, and the model. In contrast, optimal
approximate designs do not depend on n and frequently, analyt-
ical formulas and algorithms can generate the optimal designs.
Consequently, optimal approximate designs are easier to find

and study and are more widely used in practice as approxima-
tions to optimal exact designs.

When the design criterion is convex, which is the case in
our article, a particularly appealing advantage of working with
approximate designs is that an equivalence theorem is available
to verify the optimality of any design among all designs on the
given design space. Each convex criterion results in a different
equivalence theorem but they all have the same form, that is,
each is an inequality with an upper bound of 0 and becomes an
equality at the design points of the optimal design. Equivalence
theorems are widely discussed in design monographs (Fedorov
1972; Pukelsheim 1993; Berger andWong 2009).Most of the dis-
cussion concerns univariate response models. Heise and Myers
(1996) is an early example, where design issues for bivariate
response model were considered. In what is to follow, we focus
only on approximate designs for multi-response models.

For the D-optimality criterion, we have φ(C(w)) =
det(C(w)). For A-, As-, and c-optimality, the loss function
φ(C(w)) has a general form given by

h(w, L) = trace
(
L�C(w)L

) = trace
(
L�A−1(w)L

)
, (8)

where

L =
⎧⎨
⎩
Iq, for A-optimality,
diag(a), for As-optimality,
cq×1, for c-optimality.

(9)

Here Iq is the q × q identity matrix, diag(a) is a user-selected
diagonal matrix with components of the vector a equal to 0 or 1
on the diagonal, and c is the given vector of coefficients for esti-
mating c�θ. Since A(w) is linear in w, h(w, L) in (8) is a con-
vex function of w for each fixed L. Consequently, using convex
analysis results, we can check optimality of a design for multi-
response models using Lemma 1 as follows. We omit its proof
because it is similar to that in Bose and Mukerjee (2015).

Lemma 1. Let h j(w, L) = trace(�0
−1U jA−1(w)LL�A−1

(w)U�
j ) and let d j(w) = trace(U�

j �0
−1U jA−1(w)), j =

1, . . . ,N. Then
(i) ŵ solves problem (7) with the loss function in (8) if and

only if h j(ŵ, L) ≤ h(ŵ, L), for all j = 1, . . . ,N,
(ii) ŵ solves problem (7) for the D-optimality if and only if

d j(ŵ) ≤ q, for all j = 1, . . . ,N.

Here is an interpretation of the equivalence theo-
rem/optimality condition for the A- and D-optimality in
Lemma 1. For each j = 1, . . . ,N, let us write U�

j �
−1/2
0 =

(b1 j, . . . , br j), where all bi j ∈ Rq. The r vectors, b1 j, . . . , br j ,
are all transformed from design point u j ∈ SN , and the trans-
formation is linear in the mean functions f1, . . . , fr in the
multi-response model. Then the condition for the D-optimality
in Lemma 1 can be stated as

d j(ŵ) =
r∑

i=1

b�
i jA

−1(ŵ)bi j ≤ q, j = 1, . . . ,N.

This means that the sum of the squared distance (normalized by
A(ŵ)) for the r vectors, b1 j, . . . , br j , is less than or equal to q,
for all u j ∈ SN . When r = 1, this can be interpreted as that all
the points u j or the transformed points are within an ellipsoid
centered at the origin (Boyd and Vandenberghe 2004, p. 388).
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A similar interpretation for the A-optimality in Lemma 1 can
be obtained by writing h j(ŵ, Iq) = ∑r

i=1 b
�
i jA−2(ŵ)bi j, so the

optimality condition controls the sum of the squared distance
(normalized by A2(ŵ)) for the r vectors.

3. SDP for Optimal Design Problems

It is hard to derive analytical solutions for optimal designs in
general, and numerical methods are often applied to construct
optimal designs in practice. One effective method is to use con-
vex optimization algorithms, SeDuMi (Sturm 1999) and CVX
inMATLAB software, for finding optimal designs. SeDuMi and
CVX are very efficient to solve SDP problems. After introducing
SDP problems, we investigate and characterize the relationship
between SDP and various optimal design problems.

SDP problems are a special class of convex optimization
problems. They have a linear objective function and have lin-
earmatrix inequality as the constraints. Boyd andVandenberghe
(2004) has many applications and results for SDP problems.
Here, we give two simple SDP problems in Example 1, which are
very important to understand the SDP problem for A-optimal
design problems later in this section.

Example 1. Define matrices

M1 =
⎛
⎝ 1 2 1
2 8 0
1 0 v1

⎞
⎠ ,M2 =

⎛
⎝ 1 2 0
2 8 1
0 1 v2

⎞
⎠ ,

M3 =

⎛
⎜⎜⎝
1 2 1 0
2 8 0 1
1 0 v1 0
0 1 0 v2

⎞
⎟⎟⎠ ,

where v1 and v2 are two variables. Consider the following two
SDP problems,

{
minv1,v2 v1 + v2
s.t. M1 ⊕ M2 
 0 ,

(10)

and
{
minv1,v2 v1 + v2
s.t. M3 
 0 ,

(11)

where M1 ⊕ M2 
 0 means that M1 ⊕ M2 is positive semidef-
inite (PSD). Both problems have a linear objective function of
v1 and v2 and have linear matrix inequalities as the constraints.
Each constraint defines a convex set of (v1, v2). It is easy to show
that the solution to (10) is (v∗

1 , v
∗
2 ) = (2.0, 0.25), while the solu-

tion to (11) is (v∗
1 , v

∗
2 ) = (2.5, 0.75). Figure 1 shows the convex

sets and solutions.

In Example 1, we note that thematricesM1,M2, andM3 have
a common principal submatrix formed by the first two rows and
the first two columns. More generally, the SDP problem for-
mulations in (10) and (11) can be generalized to find optimal
designs as follows. LetM be a q × q symmetric positive definite
matrix and let ei be the ith unit vector inRq, i = 1, . . . , q. Define
matrices

Mi =
(
M ei
e�
i vi

)
, i = 1, . . . , q, Mq+1 =

(
M Iq
Iq V

)
,

where V = diag(v1, . . . , vq) is a diagonal matrix. Generalize
(10) and (11) as

{
minv1,...,vq v1 + · · · + vq
s.t. M1 ⊕ · · · ⊕ Mq 
 0 ,

(12)

0 2 4 6 8

0
1

2
3

4
5

(a)

v1

v2

solution

0 2 4 6 8

0
1

2
3

4
5

(b)

v1

v2

solution

Figure . The plots of convex sets (shaded areas) defined by the constraints in SDP problems and solutions: (a) SDP problem in (), (b) SDP problem in ().
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and {
minv1,...,vq v1 + · · · + vq
s.t. Mq+1 
 0 .

(13)

The solution to problem (12) is in Theorem 1 while the solu-
tion to problem (13) is discussed in Theorem 2. Both proofs are
deferred to the Appendix.

Theorem 1. Suppose b11, . . . , bqq are diagonal elements ofM−1.
Problem (12) has a unique solution given by v∗

1 = b11, . . . , v∗
q =

bqq, and v∗
1 + · · · + v∗

q = trace(M−1).

Theorem 2. If v∗
1 , . . . , v

∗
q is a solution to problem (13), then

v∗
1 + · · · + v∗

q ≥ trace(M−1) and the equality holds if and only
ifM is a diagonal matrix.

The two theorems play important roles to discuss the trans-
formation of A-optimal design problems into SDP problems. If
we follow problem (12), we get the correct transformation.How-
ever, following problem (13) leads to a wrong transformation.
From the proof of Theorem 2, we note that the convex set of
(v1, . . . , vq) defined by the constraint in (13) is smaller than that
in (12) in general, so theminimumvalue of v1 + · · · + vq in (13)
is larger than that in (12). Example 1 confirms these results for
a case of q = 2.

Many optimal design problems can be transformed to SDP
problems. We characterize transformations for various criteria
for multi-response models below, including new transforma-
tions for As- and c-optimality.

3.1. A-Optimality

The loss function is h(w, Iq) = trace(A−1(w)) by (8) and (9).
Define matrices

Di =
(
A(w) ei
e�
i vi

)
, i = 1, . . . , q,

W = diag

⎛
⎝w1, . . . ,wN−1, 1 −

N−1∑
j=1

w j

⎞
⎠ ,

where v1, . . . , vq are real variables. Then the constraints in (7)
are equivalent toW 
 0. By Theorem 1, we transform problem
(7) into an SDP problem as follows:{

minv1,...,vq,w1,...,wN−1 v1 + · · · + vq
s.t. D1 ⊕ · · · ⊕ Dq ⊕ W 
 0 .

(14)

This transformation is an extension from one-response mod-
els in Boyd and Vandenberghe (2004) and Ye, Zhou, and Zhou
(2017). The SDP problem for multi-response models in Atash-
gah and Seifi (2009) is similar to (13). FromTheorem2, the solu-
tion to their problem usually does notminimize trace(A−1(w)).

3.2. As-Optimality

The loss function is h(w, diag(a)) = trace(diag(a)A−1(w)

diag(a)) by (8) and (9). Let a = (a1, . . . , aq)�, and ai is either 0
or 1. An SDP problem for (7) is given by{

minv1,...,vq,w1,...,wN−1 a1v1 + · · · + aqvq
s.t. D1 ⊕ · · · ⊕ Dq ⊕ W 
 0 .

(15)

The constraints in (14) and (15) are the same, but the objec-
tive functions are different. In (15), a subset of the variances
is included in the objective function, and the subset is defined
by vector a. This new transformation for the As-optimality also
leads to a new one for c-optimality.

3.3. c-Optimality

The loss function is h(w, c) = c�A−1(w)c. Let c =
(c1, . . . , cq)� and k is the smallest integer such that ck �= 0.
Let I(−k) be the q × (q − 1)matrix obtained by deleting column
k from Iq. Define matrices

E = (c, I(−k))q×q, D̃i =
(
E−1A(w)E−� ei

e�
i vi

)
, i = 1, . . . , q,

where E−� = (E�)−1 and E is nonsingular. It is easy to verify
that

h(w, c) = trace
(
diag(1, 0, . . . , 0)

(
E−1A(w)E−�)−1

×diag(1, 0, . . . , 0)
)
.

Since E is a constant matrix, E−1A(w)E−� is also linear in
w1, . . . ,wN−1. Thus, we follow (15) with a = (1, 0, . . . , 0)� to
get the SDP problem for c-optimality as

{
minv1,...,vq,w1,...,wN−1 v1
s.t. D̃1 ⊕ · · · ⊕ D̃q ⊕ W 
 0 .

(16)

3.4. D-Optimality

We define a q × q upper triangular matrix R with diagonal ele-
ments Rii, i = 1, . . . q. The SDP problem for D-optimality is as
follows,⎧⎪⎪⎨

⎪⎪⎩

minv,R,w1,...,wN−1 −v

s.t. W 
 0,
(
A(w) R�

R Iq

)

 0,

v ≤ (
R11 . . .Rqq

)1/q
, Rii ≥ 0, i = 1, . . . , q.

(17)

The constraints of v ≤ (R11 . . .Rqq)
1/q, Rii ≥ 0, i = 1, . . . , q,

can be written as linear matrix inequality by (
R11 v
v R22

) 
 0 for
q = 2, and for q > 2 we can use the inequality repeatedly.

SeDuMi or CVX inMATLAB can be applied for finding solu-
tions to (14), (15), (16), and (17). There is a sample MATLAB
program in Ye, Zhou, and Zhou (2017) for solving an SDP prob-
lem for one-response model. In practice, the following condi-
tion to check for optimal designs from Lemma 1 is applied, as it
is done similarly in Bose and Mukerjee (2015),

h j(ŵ, L) − h(ŵ, L) ≤ δ, for all j = 1, . . . ,N, (18)

with a small positive δ. For D-optimality, we use d j(ŵ) − q ≤ δ,
for all j = 1, . . . ,N.

Like with most optimization problems, there is seldom one
unique way of solving them. For example, in our problems, two
other potential numerical approaches are (i) the state-of-the-art
algorithm proposed recently by Yang, Biedermann, and Tang
(2013) and (ii) nature-inspired meta-heuristic algorithms such
as particle swarm optimization (PSO). The algorithm in Yang,
Biedermann, and Tang (2013) is an exchange-based algorithm
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where the optimal weights are updated iteratively and it is fast
and flexible. However, it needs to compute the second deriva-
tives of φ(C(w)) with respect to w, and sometimes it produces
negative weights in the iteration. Thus, it may be hard for users
to apply it and make adjustments to find optimal weights. PSO
is easy to program and implement and it can solve optimiza-
tion problems with hundreds of variables. An issue with PSO is
that its convergence frequently depends on the tuning parame-
ters the user selects for the algorithm. The recommended values
for the tuning parameters may or may not work well, depending
on the problem at hand.

The convex optimization algorithms based on the SeDuMi
and CVX are fast and they always produce nonnegative weights.
It is very easy to apply these algorithms in MATLAB, and they
do not need the second derivatives of φ(C(w)). Users do not
need to choose any tuning parameters for the convergence of
the algorithms. In Sections 4 and 5, we give several applications
to find optimal designs using SeDuMi and CVX.

4. Applications

We present three examples to show how our approach can find
optimal designs for multi-response models, including one non-
linear and two linear models. The computation time reported is
from a PC (Intel(R) Core(TM)2 Quad CPU Q9550@2.83GHz),
and the equivalence results with δ = 10−5 are satisfied for
all examples. To present the results we have rounded opti-
mal weights to 4 decimal places, but condition (18) should be
checked using the numerical results in MATLAB. Example 2
shows that our algorithms are very powerful to deal with large
q and N and various design spaces. Example 3 compares our
results with those in Atashgah and Seifi (2007, 2009), and we get
better results for A-optimal designs. Example 4 shows the flexi-
bility of our algorithms for finding optimal designs for nonlinear
models.

Example 2. Consider a three-response model with six design
variables x1, . . . x6,

f�1 (x) = (1, x1, x2, x3, x4, x5, x6, x1x2, x1x3, x1x4, x3x4),
f�2 (x) = (1, x1, x2, x3, x4, x5, x6, x1x2, x1x3, x2x3, x1x4),
f�3 (x) = (1, x1, x2, x3, x4, x5, x6, x5x6),

where x1 ∈ [−1, 1], x2 ∈ [0, 1], x3 ∈ [−1, 1], x4 ∈ [−0.5, 0.5],
x5 ∈ [−8, 8], x6 ∈ [0, 2]. Let Ni be the number of user selected
grid points for xi, i = 1, . . . , 6, and SN is formedby theCartesian

product of these grid points with N = N1N2 . . .N6. The covari-

ancematrix is given by �0=
⎛
⎝ 1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1

⎞
⎠. This model has a large

number of regression parameters with q = 30. We compute A-
optimal designs for various values of N including N = 19, 600.
Representative results are in Table 1 , which gives the informa-
tion of N and �0, the computation time, and optimality con-
dition value δA = max j(h j(ŵ, L) − h(ŵ, L)). The results show
that the algorithms based on the SDP are effective and power-
ful for finding optimal designs. For q = 30 and N = 3375, it
takes less than 151 sec. For N = 10, 000 it takes less than 20
min, while for N = 19, 600 it takes about 64 min. For large
q and N > 20, 000, the computation time can be long but
can be reduced significantly by using the properties derived
in Section 6, which will be discussed there. All the numeri-
cal results of δA indicate that condition (18) with δ = 10−5 is
satisfied.

Example 3. Consider a two-response model with three
independent variables investigated in Atashgah and
Seifi (2007, 2009), where the mean functions have
f�1 (x) = (1, x1, x2, x3, x1x2, x1x3, x21, x23) and f�2 (x) =
(1, x1, x2, x1x2, x21, x22). We take a design space SN contain-
ing 19 possible points in R3, which are listed in Table 2. For
�0 = (

1 ρ

ρ 1 ), we compute A- and D-optimal designs for various
values of ρ, using CVX program in MATLAB (Grant and Boyd
2013). Representative results in Table 2 indicate that the optimal
designs depend on �0 only through |ρ| and are not sensitive to
small changes in |ρ|. From Table 2 the computation is very fast
since N = 19 is small. We also computed D-optimal designs for
a design space SN with 16 points in Atashgah and Seifi (2007)
and our results are the same as theirs.

Atashgah and Seifi (2009) computed an A-optimal design
when �0 = (

2 0.4
0.4 1 ). Their design is shown in Table 3, along

with the A-optimal design found from solving the SDP
problem in (14). The latter design has a smaller value for
trace(A−1(w)), which confirms the results in Theorems 1 and 2
and our correct SDP formulation in (14) for finding A-optimal
designs.

Example 4. Magnusdottir (2013) used a bivariate Emax model
to investigate the efficacy and side-effects of a drug given
by

y1 = Emax
x

x + ED50
+ ε1, y2 = Smax

x
x + SD50

+ ε2,

Table . Results for A-optimal designs in Example  with q = 30. A fast algorithm is used for the cases indicated by ∗∗, which is discussed in Section .
N = N1 . . .N6 (ρ12, ρ13, ρ23) computation time (sec) δA

N = 5 × 5 × 3 × 3 × 3 × 5 = 3375 (., ., .) . 9.31 × 10−6

N = 5 × 5 × 3 × 3 × 3 × 5 = 3375 (., ., .) . 1.18 × 10−9

N = 5 × 5 × 3 × 3 × 5 × 5 = 5625 (., ., .) . 6.30 × 10−6

N = 5 × 5 × 3 × 3 × 5 × 5 = 5625 (., ., .) . 8.29 × 10−8

N = 5 × 5 × 4 × 4 × 5 × 5 = 10,000 (., ., .) . 1.28 × 10−8

N = 5 × 5 × 4 × 4 × 5 × 5 = 10,000 ∗ ∗ (., ., .) .∗∗ 1.28 × 10−8

N = 5 × 5 × 4 × 4 × 5 × 5 = 10,000 (., ., .) . 1.81 × 10−6

N = 7 × 5 × 4 × 4 × 7 × 5 = 19,600 (., ., .) . 8.04 × 10−7

N = 7 × 5 × 4 × 4 × 7 × 5 = 19,600 ∗ ∗ (., ., .) .∗∗ 8.04 × 10−7
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Table . A- and D-optimal designs in Example  for various values of ρ.

Design points in SN A-optimal design weights D-optimal design weights

x1 x2 x3 ρ = 0 ρ = ±0.1 ρ = ±0.5 ρ = 0 ρ = ±0.1 ρ = ±0.5

u1 : .   . . . . . .
u2 :  .  . . . . . .
u3 :    . . . . . .
u4 : . . −. . . . . . .
u5 : . −. −. . . . . . .
u6 : . . . . . . . . .
u7 : −. −. . . . . . . .
u8 : −. . . . . . . . .
u9 : . −. . . . . . . .
u10 : −. . . . . . . . .
u11 : . −. −. . . . . . .
u12 : −. −. −. . . . . . .
u13 : −. −. . . . . . . .
u14 : . . −. . . . . . .
u15 : −. . −. . . . . . .
u16 : −. −. . . . . . . .
u17 : . . . . . . . . .
u18 : −. −. . . . . . . .
u19 : . . . . . . . . .

Computation time (sec) . . . . . .

respectively. Here Emax is themaximal achievable effect from the
drug, Smax is the maximal realizable side-effect, and x ≥ 0 is the
dose level of the drug. The interesting parameters are ED50 and
SD50 which are the dose levels that give half-maximal effect and
side-effect, respectively. For this bivariate nonlinear model, we
let θ�

1 = (Emax,ED50), θ�
2 = (Smax, SD50), σ 2

1 = var(ε1), σ 2
2 =

var(ε2), and ρ = cov(ε1, ε2). The range of dose of interest is
[0, 500].

We construct locally D-optimal designs for estimating the
model parameters and a c-optimal design for estimating util-
ity of a dose. Following Magnusdottir (2013), let the nomi-
nal values for the model parameters Emax, Smax,ED50, SD50 be
E∗
max, S∗

max,ED
∗
50, SD

∗
50, respectively. To apply our methods in

Sections 2 and 3, we first substitute f1(x) and f2(x) by z1(x) and
z2(x), respectively, where

z1(x) = ∂

∂θ1

(
Emax

x
x + ED50

) ∣∣
θ1=(E∗

max,ED
∗
50)

� ,

z2(x) = ∂

∂θ2

(
Smax

x
x + SD50

) ∣∣
θ2=(S∗

max,SD
∗
50)

� .

To implement our strategy, we next discretize the dose inter-
val to form a discrete design space by SN = {500( j − 1)/
(N − 1), j = 1, . . . ,N} with N = 10, 001. Table 4 displays
locally D- and c-optimal designs for various parameter values.
We observe that (i) the support points of the D-optimal designs
are clustered around two or three points, (ii) they all include the

extreme dose 500 as a support point, and (iii) the correlation ρ

between the two responses seems to have influence on the opti-
mal designs. When ρ = 0, the optimal designs are not affected
by the ratio σ 2

2 /σ 2
1 .We also observe that as SD∗

50/ED
∗
50 increases,

signifying that the difference between the two models increases,
the number of support points tends to increase.

Magnusdottir (2013) proposed with justification a compos-
ite utility index (CUI) CUI(x) = k1y1 − k2y2 to measure the
utility of using the dose x. As before y1 represents efficacy and
y2 represents side effect, and k1 and k2 are two user-specified
positive constants. The goal is to find the most desirable dose
that maximizes E[CUI(x)]. Let θ� = (θ�

1 , θ�
2 ) and let hc(θ) =

maxx E[CUI(x)]. Magnusdottir (2013) provided selected c-
optimal designs that minimize the variance of hc(θ̂). Table 4
shows the c-optimal designs from our algorithm, where we
observe that their support points are also clustered around two
or three points. However, the c-optimal designs are more sensi-
tive to the true parameter values than the D-optimal designs.
In addition, the D-optimal designs depend only on |ρ|, but
the c-optimal designs depend on ρ. The results are consistent
with those in Magnusdottir (2013) with small differences due
to the discretized design space. The designs in Magnusdottir
(2013) were derived by informative guessing, which can be dif-
ficult for practitioners. Our SDP-based algorithms can provide
an effective and systematic way for finding optimal designs,
which remain very efficient even for N as large as 10,001 in this

Table . A-optimal weights computed from SDP in () and Atashgah and Seifi () (denoted by ATSE) with trace(A−1(w)) = 17.546 and ., respectively. The
computation time is . sec.

Design points u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

SDP in () . . . . . . . . . .
ATSE . . . . . . . . . .

Design points u11 u12 u13 u14 u15 u16 u17 u18 u19

SDP in () . . . . . . . . .
ATSE . . . . . . . . .
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Table . Locally D- and c-optimal designs for the bivariate Emaxmodelwhen the nominal values are ED∗
50 = 1, E∗

max = S∗
max = 1, k1 = k2 = 1 and selected values of SD∗

50 .
The support points are x1, x2, x3 and  with corresponding weights w1, w2, w3 and 1 − w1 − w2 − w3 . If a point has zero weight, then it is not specified in the table.
The computation times are given for the cases of SD∗

50 = 5.

D-optimal ρ (
σ 2
2

σ 2
1

= 1)
σ 2
2

σ 2
1
(ρ = 0)

SD∗
50  ±0.5 ±0.7 . . .

 x1 . . . . . .
w1 . . . . . .

 x1 . . . . . .
w1 . . . . . .
x2 . . . . . .
w2 . . . . . .

 x1 . . . . . .
w1 . . . . . .
x2 . . . . . .
w2 . . . . . .
x3 .
w3 .

Computation time (sec) . . . . . .

c-optimal ρ (
σ 2
2

σ 2
1

= 1)
σ 2
2

σ 2
1
(ρ = 0)

SD∗
50 −0.5  . . . 

 x1 . . . . . .
w1 . . . . . .
x2 . . .
w2 . . .

 x1 . . . . . .
w1 . . . . . .
x2 . . . . . .
w2 . . . . . .

 x1 . . . . . .
w1 . . . . . .
x2 . . . . . .
w2 . . . . . .
x3 . .
w3 . .

Computation time (sec) . . . . . .

example. The computation time is about 20 ∼ 35 sec for each
case.

5. Multi-Response Generalized Linear Models

SDPs can also be used to generate optimal designs for GLMs.
Consider the maximum likelihood estimator (MLE) to esti-
mate unknown parameters in GLMs. Let l(θ|y, ξ ) denote
the log-likelihood function for a GLM, where θ ∈ Rq is the
unknown parameter vector, y is the vector of multi-response
variables. If we have resources to take n observations and
ξ is the distribution of design points x1, . . . , xn ∈ Rp, the
(i, k)th element of the Fisher information matrix of the
MLE is Ai,k = −E(

∂2l(θ|y,ξ )

∂θi∂θk
), i, k = 1, . . . , q, and the expec-

tation is taken over the distribution of y. Using the dis-
crete design space SN for x and the distribution ξ in (5),
we can write all the elements Ai,k in A(ξ , θ) as linear func-
tions of w. Locally optimal designs minimize some scalar
functions of A(ξ , θ) over w. For instance, locally D-optimal
designs minimize − det(A(ξ , θ)). We now use CVX and
SeDuMi to find locally D-optimal, A-optimal, and other opti-
mal designs for GLMs and discuss one such application in some
detail.

Kpamegan (1998) found locally D-optimal designs for a
bivariate probit response model to study the relationship
between two toxic responses y1 and y2 and the levels of two
drugs, x1 and x2. The two binary response variables are y1
and y2, which take on values 1 for toxicity and 0 for nontox-
icity responses. These bivariate responses Fi j(x1, x2) = P(y1 =
i, y2 = j|(x1, x2)), i, j = 0, 1, are modeled using the bivariate
normal probability density function (pdf) φ(u, v ) with param-
eter vector θ = (μ1, σ1, μ2, σ2, ρ)�, where μ1 and μ2 are the
location parameters, σ1 and σ2 are the scale parameters, and
ρ is the correlation parameter for the two response variables.
For instance, we have F11(x1, x2) = ∫ x2

−∞
∫ x1
−∞ φ(u, v )dudv .

Kpamegan (1998) found D-optimal designs for the following
three cases:

Case (i): Assume ρ = 0 and the parameter vector is reduced
to θ = (μ1, σ1, μ2, σ2)

�.
Case (ii): Assume ρ = 0 and σ1 = σ2 = σ , and θ =

(μ1, μ2, σ )�.
Case (iii): Assume ρ �= 0 and the parameter vector is θ =

(μ1, σ1, μ2, σ2, ρ)�.
We construct D-optimal designs for the three cases below

and compare the results with those in Kpamegan (1998).
Let SN = {(x1 j, x2 j), j = 1, . . . ,N} contain N possible
combinations of the levels of the two drugs. Define
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Table . D-optimal designs for the bivariate probit response model. The computation times are . and . sec for Cases (i) and (ii), respectively.

Support points
Case/method [weights] Function value

Case (i): σ1 = σ2 = 1
CVX (N = 1012) (−1.140,−1.140), (−1.140, 1.140), (1.140,−1.140), (1.140, 1.140) det(A1/N) = 0.0394748

[.], [.], [.], [.]
Kpamegan () (−1.138,−1.138), (−1.138, 1.138), (1.138,−1.138), (1.138, 1.138) det(A1/N) = 0.0394752

[.], [.], [.], [.]
Case (ii): σ = 1
CVX (N = 2012) (−0.940, −0.940), (−0.940, 0.940), (0.940, −0.940), (0.940, 0.940) det(A2/N) = 0.1703124

[.], [.], [.], [.]
Kpamegan () (−0.937,−0.937), (−0.937, 0.937), (0.937,−0.937), (0.937, 0.937) det(A2/N) = 0.1703150

[.], [.], [.], [.]

transformed variables zi j = (xi j − μi)/σi, j = 1, . . . ,N,
i = 1, 2. In Case (i), the Fisher information matrix is given by

A1(ξ , θ) = N
N∑
j=1

w j

×

⎛
⎜⎜⎜⎝

1
σ 2
1
m(z1 j) 1

σ 2
1
z1 jm(z1 j) 0 0

1
σ 2
1
z1 jm(z1 j) 1

σ 2
1
z21 jm(z1 j) 0 0

0 0 1
σ 2
2
m(z2 j) 1

σ 2
2
z2 jm(z2 j)

0 0 1
σ 2
2
z2 jm(z2 j) 1

σ 2
2
z22 jm(z2 j)

⎞
⎟⎟⎟⎠ ,

where m(·) = φ2(·)/[�(·)(1 − �(·))], and φ(·) and �(·) are
the pdf and cumulative distribution function of the univariate
standard normal random variable. In Case (ii), the Fisher
information matrix is given by

A2(ξ , θ) = N
σ 2

N∑
j=1

w j

×
⎛
⎝ m(z1 j) 0 z1 jm(z1 j)

0 m(z2 j) z2 jm(z2 j)
z1 jm(z1 j) z2 jm(z2 j) z21 jm(z1 j) + z22 jm(z2 j)

⎞
⎠ .

Both A1(ξ , θ) and A2(ξ , θ) are linear in w. As in Kpamegan
(1998), we find optimal designs in terms of standardized vari-
ables z1 and z2, where zi = (xi − μi)/σi, i = 1, 2. Let zil =
−3 + 6(l − 1)/(N0 − 1), l = 1, . . . ,N0, i = 1, 2. The design
space SN ⊂ [−3, 3] × [−3, 3] contains N = N2

0 grid points

formed by z1l and z2l . Using CVX program we compute the D-
optimal designs for Case (i) with N = 1012 = 10, 201 and Case
(ii) withN = 2012 = 40, 401 and obtain the results in Table 5. It
took less than 25 sec for Case (i) and less than 4min for Case (ii).
Our results are similar to those in Kpamegan (1998), which are
also listed in Table 5. The search is reduced to one dimensional
in Kpamegan (1998) after analyzing the informationmatrix and
using the symmetry of the D-optimal designs, which worked
well for Cases (i) and (ii). However, if the information matrix
is complicated, the method discussed in Kpamegan (1998) may
not work and we will show this for Case (iii).

In Case (iii), the Fisher information matrix A3(ξ , θ)

(5 × 5 matrix) is also linear in w. Since A3(ξ , θ) contains
many complicated expressions involving integrals and deriva-
tives and it takes 2 pages to display it, we do not show it here.
Notice that there are typos in expressions R, U, and V for
A3(ξ , θ) in Kpamegan (1998, p. 70), and each expression is
missing a factor. Expressions of R, U, and V should include
factors ∂F11

∂ρ
, ∂F11

∂ρ
, and ( ∂F11

∂ρ
)2, respectively, and detailed expres-

sions are given in Yin (2017, p. 76). A3(ξ , θ) is much more
complicated than A1(ξ , θ) or A2(ξ , θ), and it is extremely
hard to find the D-optimal design for Case (iii). Because
of computational difficulties, Kpamegan (1998) only con-
sidered symmetric designs, which have equal weights on
four support points (−a,−a), (−a, a), (a,−a), (a, a) for
some positive number a, to find the D-optimal design. Using
CVX, we can find the D-optimal design without any assump-
tion on the design. Some representative results are given in

Table . D-optimal designs for different values of ρ for the GLM.

D-optimal designs by CVX D-optimal designs in Kpamegan ()

ρ N Support points Weights det(A3/N) Support points (weighs) det(A3/N)

 612 (−.,−.) . . .
(−., .) .
(−.,−.) . (1.138, 1.138) (0.2500)

(−., .) . (−1.138, 1.138) (0.2500)

(.,−.) . (1.138,−1.138) (0.2500)

(., .) . (−1.138,−1.138) (0.2500)

(.,−.) .
(., .) .

. 1012 (−.,−.) . . (0.94, 0.94) (0.2500) .
(−.,−.) . (−0.94, 0.94) (0.2500)

(., .) . (0.94, −0.94) (0.2500)

(., .) . (−0.94, −0.94) (0.2500)

. 112 (−.,−.) . . (0.89, 0.89) (0.2500) .
(−.,−.) . (−0.89, 0.89) (0.2500)

(., .) . (0.89, −0.89) (0.2500)

(., .) . (−0.89, −0.89) (0.2500)
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Table 6, which shows that the optimal designs found by CVX
are better than those in Kpamegan (1998). For ρ > 0, the
D-optimal designs do not have equal weights on support points
(−a,−a), (−a, a), (a,−a), (a, a). In fact, they have equal
weights on points (−a,−a) and (a, a). A theoretical result
about symmetry of optimal designs is derived in Section 6. This
application shows that our algorithms can find optimal designs
for very complicated nonlinear/GLMmodels.

6. Properties of Optimal Designs

In this section, we derive several theoretical results for opti-
mal designs for multi-response models. These results are help-
ful for computing optimal designs, and in some situations we
can reduce the computation time by reducing q and/or N.
Theorem 3 can be used to reduce q, Theorem 6 can be applied
to reduceN, and Theorems 4 and 5 are related to the covariance
matrix �0.

Let �−1
0 = (sil )r×r and let Ail (w) = ∑N

j=1 w jfi(u j)f�l (u j),
i, l = 1, . . . , r. By (6), we obtain

A(w) =

⎛
⎜⎜⎜⎝
s11A11(w) · · · s1rA1r(w)

s21A21(w) · · · s2rA2r(w)
... · · · ...

sr1Ar1(w) · · · srrArr(w)

⎞
⎟⎟⎟⎠ , (19)

which implies the result in Lemma 2 and leads to the result in
Theorem 3.

Lemma 2. If the vector of regression functions are all the same
for the r response variables, that is, f1(x) = f2(x) = · · · = fr(x),
the matrix A(w) in (19) becomes

A(w) = �−1
0 ⊗ A11(w), (20)

where ⊗ denotes Kronecker product and A11(w) =∑N
j=1 w jf1(u j)f�1 (u j).

By properties of Kronecker product of matrices, it is imme-
diate that (i) A−1(w) = �0 ⊗ A−1

11 (w), (ii) det(A−1(w)) =
(det(�0))

q1 (det(A11(w)))−r, and (iii) trace (A−1(w)) =
trace(�0)· trace (A−1

11 (w)), which directly leads to the follow-
ing result.

Theorem 3. Under the assumption in Lemma 2, (i) the A- and
D-optimal designs for the multi-response model do not depend
on �0, and (ii) the A- and D-optimal designs for the multi-
response model are the same as those for one-response model
with response function f�1 (x)θ1.

The above results are more general than those in Krafft and
Schaefer (1992) and Chang et al. (2001), where they considered
models with one independent variable only. Using the result in
Theorem 3 (ii), we can reduce q to q1 for computing A- and D-
optimal designs when f1(x) = f2(x) = · · · = fr(x).

If the r vectors of regressors f1(x), . . . , fr(x) are not the same,
optimal designs may depend on�0. See the numerical results in
Example 3. When r = 2 and

�0 =
(
1 ρ

ρ 1

)
, −1 < ρ < 1, (21)

we have s11 = s22 = 1/(1 − ρ2) and s12 = s21 = −ρ/(1 − ρ2).
For this situation, various optimal designs have been studied,
see, for example, Chang et al. (2001) and Atashgah and Seifi
(2007, 2009). Theorem 4 and the results that follow provide fur-
ther insights into such optimal designs. Their proofs are in the
Appendix.

Theorem 4. Suppose r = 2 and �0 is given by (21). The A-, As-
, and D-optimal designs depend on �0 only through |ρ|. In
addition, if the two response functions are nested, say f�2 (x) =
(f�1 (x), g�

1 (x)) for some vector function g�
1 (x), then the D-

optimal design does not depend on �0.

If �0 depends only on a correlation coefficient ρ, we write
it as �0(ρ). Also note that if Q is a q × q diagonal matrix with
diagonal elements equal to 1 or−1, we have (i)Q−1 = Q, (ii) det
(QA−1(w)Q) =det(A−1(w)), and (iii) trace (QA−1(w)Q) =
trace (A−1(w)), which gives the following result.

Theorem 5. In (6), if �−1
0 (ρ) satisfies

A(w) =
N∑
j=1

w jU�
j �0

−1(ρ)U j = Q
N∑
j=1

w jU�
j �0

−1(|ρ|)U jQ,

where Q = Q1 ⊕ Q2 ⊕ · · · ⊕ Qr with Qi = ±Iqi , then A-, As-,
and D-optimal designs depend on �0 only through |ρ|.

The numerical results in Examples 3 and 4 are consistent with
Theorems 4 and 5,whichmay be used to reduce the computation
by having fewer choices of ρ.

Now we explore invariance properties of optimal designs
which includes the symmetric property. Let T be a one-to-one
function: SN �→ SN and T 2 is an identity map. For a distribution
ξ (x) defined in (5), let

ξ (T (x)) =
(
T (u1) T (u2) · · · T (uN )

w1 w2 · · · wN

)
. (22)

The distribution ξ is called T-invariant if ξ (x) = ξ (T (x)). A
T-invariant distribution ξ implies that wi = w j if T (ui) = u j.

Theorem 6. Suppose model (2) is defined on a given dis-
cretized design space SN and T is an one-to-one function with
T 2 being an identity map. If there exists r diagonal matri-
ces Q1, . . . ,Qr with diagonal elements taking values 1 or −1
and fi(T (x)) = Qifi(x) for all x ∈ SN, i = 1, . . . , r, then there
exists T-invariant A-, As-, and D-optimal designs for any �0.

From the proof of Theorem 6 in the Appendix for A- and
D-optimality, one can relax the requirement that Qi’s be diag-
onal. For a function T , if the Qi’s satisfy QQ� = I, where Q =
Q1 ⊕ · · · ⊕ Qr, one can show that there exists T-invariant A-
and D-optimal designs. Example 5 below shows how the result
in Theorem 6 can be applied to reduce the computation time.

Example 5. Consider a three-response model with two
independent variables x1 and x2, f�1 (x) = (1, x1, x2, x1x2,
x21, x22), f2(x) = f1(x), f�3 (x) = (1, x1, x2), and
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S9 =
{(

0
0

)
,

(−1
−1

)
,

(−1
1

)
,

(
1

−1

)
,

(
1
1

)
,

(−√
2
0

)
,

(√
2
0

)
,

(
0

−√
2

)
,

(
0√
2

)}
.

Define three functions

T1(x) = −x, T2(x) =
(
x2
x1

)
, and T3(x) =

(−x1
x2

)
.

By Theorem 6 for T1 and T3 and the comments below Theorem
6 for T2, we obtain an A-optimal design with equal weights at
points u2,u3,u4, and u5 and equal weights at u6,u7,u8, and
u9. Similarly, the same result holds for a D-optimal design. In
the computation, the number of unknown weights wi’s can be
reduced from 9 to (1 + (N − 1)/4) = 3. This property is very
useful to reduce the computation time for huge N.

In Example 2, we have N = 10,000 and 19,600. By
Theorem 6, we can reduce N to 10,000/4 = 2500 and
19,600/4 = 4900, respectively, if we use the property that
the optimal designs are symmetric about the variables x3 and
x4. In Example 2, x3 takes 4 grid points −1,−0.5, 0.5, 1, and
x4 takes 4 grid points −0.5,−0.25, 0.25, 0.5. There are 16 grid
points for x3 and x4. Using the invariance property in Theorem
6, we only need to include four grid points for x3 and x4 for
this model, so the total number of points in the design space
is reduced by a factor of 1/4. In the computation, we need to
combine the terms with equal weights in matrix A(w) in (6) so
that there are onlyN/4 unknown weightswi’s, and

∑
wi = 1/4.

The computation times are indicated by the cases with ** in
Table 1, which show significant reduction in computation times
using the invariance property. Note that there are other ways to
use the invariance property for this model and we can reduce
N further. Thus, Theorem 6 is very helpful for finding optimal
designs for huge N in this example.

ForGLMs, we can use the following result to check for invari-
ance property. Let A(ξ , θ) = ∑N

j=1 w jB(u j; θ), for some sym-
metric and PSD matrices B(u j; θ).

Theorem 7. Let T be a one-to-one function defined on a given
design space SN and T 2 is an identity map. If there exists a
diagonal matrix Q with diagonal elements taking values −1
or 1 such that B(T (u j); θ) = QB(u j; θ)Q, for allu j ∈ SN, j =
1, . . . ,N, then there exists T-invariant A- and D-optimal
designs.

The proof of Theorem 7 is similar to that of Theorem 6 and
is omitted. Theorem 7 can be applied for the optimal designs in
Table 6.

7. Conclusion

We have studied SDP transformations for various optimal
design problems for multi-response regression models and
applied CVX and SeDuMi algorithms for finding A-, As-, and
c-optimal designs by solving SDP problems. The algorithms are
effective and efficient, and they can be used for finding optimal
designs systematically for any discrete design spaces. They can
also find I-optimal and L-optimal designs.

We have also investigated A-, As-, and D-optimal designs for
multi-response regressionmodels using the invariance property
and dependence on the error covariance matrix �0. Symmetry
of optimal designs can be examined through the T-invariance
property obtained in the article, and it can be applied for various
models and design spaces. Those theoretical results are useful
to reduce the computation time for finding optimal designs for
various models.

In this article, we have assumed that �0 is known and the
BLUE is used to estimate the regression parameter vector.When
�0 is unknown,we need an estimate of�0 to compute the BLUE.
However, itmay be interesting to study robust regression designs
against possible misspecification in �0. Wiens (2015) reviewed
robustness of design, which includes several approaches for
constructing robust designs for one response models. Some of
the approaches can be developed for robust designs for multi-
response models, and the resulting designs should be robust
against possible misspecification in �0 and still maintain high
efficiency for the estimator of θ.

Appendix: Proofs

Proof of Theorem 1. The constraint in problem (12) is true if and only if
Mi 
 0 for all i = 1, . . . , q. SinceM � 0 (positive definite),Mi 
 0 is true
if and only if vi − e�

i M−1ei ≥ 0 (Horn and Johnson 2009, p. 472). This gives
vi − bii ≥ 0, i = 1, . . . , q, where bii is the ith diagonal element ofM−1 and
so v1 + · · · + vq is minimized by v∗

1 = b11, . . . , v∗
q = bqq, and v∗

1 + · · · +
v∗
q = b11 + · · · + bqq = trace(M−1). �
Proof of Theorem 2. From Horn and Johnson (2009, p. 472), the constraint
in problem (13) is true if and only if V − IqM−1Iq 
 0, which is

V − M−1 
 0. (A.1)

Therefore v1 + · · · + vq = trace(V) ≥ trace(M−1) and the minimizer
of v1 + · · · + vq must satisfy v∗

1 + · · · + v∗
q ≥ trace(M−1). Let M−1 =

(bi j )q×q. If M is a diagonal matrix, so is M−1 and by (A.1), vi − bii ≥ 0,
i = 1, . . . , q so that the minimizer of v1 + · · · + vq is v∗

1 = b11, . . . , v∗
q =

bqq and v∗
1 + · · · + v∗

q = trace(M−1). IfM is not a diagonal matrix,M−1 is
still symmetric but not diagonal. This means that there exists at least two
off-diagonal nonzero elements that are nonzero. Without loss of generality,
we assume b12 = b21 �= 0. By (A.1), we still have vi − bii ≥ 0, i = 1, . . . , q.
However, V = diag(b11, . . . , bqq) does not satisfy (A.1) since a�(V −
M−1)a = −2|b12| < 0, with a = (1, sign(b12), 0, . . . , 0)� ∈ Rq. Thus, the
minimizer of v1 + · · · + vq must satisfy v∗

1 + · · · + v∗
q > b11 + · · · + bqq =

trace(M−1). �
Proof of Theorem 4. By (19), when r = 2 we have

A(w) =
(
s11A11(w) s12A12(w)

s21A21(w) s22A22(w)

)
,

where for simplicity, we write Ai j(w) as Ai j . Let G = A22 − ρ2A21A−1
11 A12,

let s11 = s22 = 1/(1 − ρ2) and let s12 = s21 = −ρ/(1 − ρ2). One verifies
that

det (A(w)) =
(

1
1 − ρ2

)q

· det (A11) · det (G) ,

A−1(w) = (1 − ρ2) ·(
A−1

11 + ρ2A−1
11 A12G−1A21A−1

11 ρA−1
11 A12G−1

ρG−1A21A−1
11 G−1

)
, and

trace
(
A−1(w)

) = (1 − ρ2) ·
trace

(
A−1

11 + ρ2A−1
11 A12G−1A21A−1

11 + G−1) .
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It follows that A- and D-optimal designs depend on �0 only through |ρ|,
and the same is true for any As-optimal design.

If the two response models are nested, say f�2 (x) = (f�1 (x), g�
1 (x)), we

may write

A21 =
(
A11

Ã21

)
, A12 = A�

21, A22 =
(
A11 Ã�

21
Ã21 Ã22

)
,

where Ã21 = ∑N
j=1 w jg1(u j )f�1 (u j ) and Ã22 = ∑N

j=1 w jg1(u j )g�
1 (u j ).

Consequently,

det (G) = det
(
(1 − ρ2)A11

) · det
(
Ã22 − Ã21A−1

11 Ã
�
21

)
,

which implies that the D-optimal design does not depend on ρ or �0. �
Proof of Theorem 6. For any distribution ξ (x), let ξ1(x) = ξ (T (x)) as in
(22). After rearranging the columns, we write

ξ1(x) =
(
u1 u2 · · · uN
w̃1 w̃2 · · · w̃N

)

and note that w̃ j = wi and w̃i = w j if T (ui) = u j . Let w̃ = (w̃1, . . . , w̃N )

and let ξ0.5(x) = 0.5ξ (x) + 0.5ξ1(x), that is,

ξ0.5(x) =
(

u1 u2 · · · uN
0.5(w1 + w̃1) 0.5(w2 + w̃2) · · · 0.5(wN + w̃N )

)
.

If T (ui) = u j , ξ0.5(x) has the same weight at ui and u j and so ξ0.5(x) is
T-invariant.

LetQ = Q1 ⊕ · · · ⊕ Qr . Since fi(T (x)) = Qifi(x), we have

A(w̃) =
N∑
j=1

w̃ jU�
j �0

−1U j =
N∑
j=1

w jQU�
j �0

−1U jQ� = QA(w)Q�.

Since det(A(w̃)) = det(A(w)), trace(A−1(w̃)) = trace(A−1(w)),

and trace(L�A−1(w̃)L) = trace(L�A−1(w)L), where L is defined in
(9) and they are all convex in w, we have det (A(0.5(w + w̃))) ≤
det (A(w)), trace (A−1(0.5(w + w̃))) ≤ trace (A−1(w)), and trace
(L�A−1(0.5(w + w̃))L) ≤ trace (L�A−1(w)L) for any ξ (x). It follows that
the weight vector 0.5(w + w̃) corresponds to the T-invariant distribution
ξ0.5(x), which implies that there exist T-invariant A-, As-, and D-optimal
designs. �

SupplementaryMaterials
We have provided representative MATLAB code for computing A-, c- and
D-optimal designs in the supplementary material. The code can be modi-
fied for finding optimal designs for other models and design spaces.
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