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ABSTRACT OF THE THESIS

Residual streaming flows in buoyancy driven cross-shore exchange

by

Ricardo Felez

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2017

Professor Antonio L. Sanchez, Co-Chair

Professor Eugene Pawlak, Co-Chair

Cross-shore exchange processes are of critical importance for coastal ecosys-

tems such as coral reefs with implications for transport of nutrients, larvae and

heat. We present an analytical study of two-dimensional flow in a wedge driven by

a time-dependent surface heat flux as a model problem to understand buoyancy-

induced cross-shore flow. Besides the turbulent Prandtl number and the Rayleigh

number, both assumed to be of order unity, the solution is seen to depend on the

geometry through a small parameter β measuring the bottom slope. Following pre-

vious efforts (e.g. [1]) an analytic solution is sought in the asymptotic limit β � 1

for a water layer bounded by an adiabatic bottom surface subject to a harmonic

heat flux on the upper surface. The analysis reveals that the motion at leading or-

der can be expressed as the sum of a harmonic component and a steady component,

the latter driven by the nonlinear advection terms. This steady-streaming motion

includes a nearshore and alongshore oriented vortex with associated counterclock-

wise recirculating motion that could have a significant effect on the near-short

transport dynamics.

ix



Chapter 1

Introduction

Cross-shore transport plays a significant role in the allocation and redis-

tribution of heat, nutrients, sediment and pollutants across the continental shelf

and the surf zone. These cross-shore exchange processes can be driven by different

mechanisms, such as Ekman transport (e.g. [2]), buoyancy driven flows (e.g. [1] )

or surface or internal waves (e.g. [3]). These different mechanisms become more

important depending on the local characteristics, like bathymetry or stratification

[4].

The field studies have shown that the contribution of the diurnal surface

heat flux plays an important role in the driving mechanism of these cross-shore

flows [5]. The shallower waters subjected to a surface heat flux absorb and release

the heat faster than the deeper waters subjected to the same flux, this cause a

baroclinic cross-shore flow that exchanges heat and momentum with the adjoining

ocean. The forcing that drives this flow has a period of a day, where the heat-

ing/cooling phases each last 12 hours. The motion corresponding to the heating

phase is characterized by a colder onshore flow compensated by a warmer offshore

flow at the bottom. Then the flow reverses to the opposite flow corresponding to

the cooling phase.

Theoretical studies have been focused on studying the thermally driven

baroclinic exchange as an important mechanism in driving these flows in agreement

1
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with field observations [6] of both, the velocity and temperature fields, at Kilo Nalu

Observatory in Oahu, Hawaii.

The initial models to characterize these flows [7] considered a two dimen-

sional domain with a rectangular cross-section. However, more recent efforts (Far-

row & Patterson, [1], [8]) have used a more realistic model, where the fluid domain

is contained in a infinite triangular domain. In these studies, the diurnal heating

cycle is modeled as a internal heat source. The difference between the approaches

by Farrow & Patterson, [1] and [8], relies on the treatment of the boundary condi-

tions and the nature of the source. Farrow & Patterson [1] considered a periodic

source term independent of the depth, with adiabatic upper and lower surfaces.

However in [8] they considered a source term given by Beer’s law (this term is hori-

zontally uniform); this paper consider the bottom as a black surface (the absorbed

heat is immediately released), therefore as a source, and the upper surface is adi-

abatic (the heat adsorbed by the upper surface is small compared to the source

term).

The theoretical studies of cross-shore exchange processes can be divided

in two groups, a numerical approach and an analytical approach. The analytical

studies consider the slope as a small parameter to perform an expansion around

it, because with the expansion, a linear system of equations is obtained and can

solved to obtain the analytical expression for the temperature and velocity. Farrow

and Patterson [1], found a temperature distribution that was independent of the

depth, where the approximation is only appropriate close to the tip. Even though

the main focus of these studies is to characterize the flow analytically, they also

perform a numerical simulation to study the validity of the solution.

The numerical efforts share the same geometric model of near-shore buoy-

ancy driven flows ([9]; [10], [11] ; [12], [13], [14]) and similarly to the analytical

studies the difference relies on the definition of the boundary conditions and the

source term. The geometry consists of a triangular shape wedge with a wall located

at a certain distance from the tip. Lei & Patterson [10], [15] considered a similar
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model to the one used by Farrow [8] (source term given by the Beer’s law with

a reflective bottom surface and an adiabatic upper surface). Other studies, like

Mao [13], considered that the forcing term comes to play through the boundary

condition in the upper surface (constant heat source) and not through an internal

heat source term. The aim of these studies is to characterize all the instabilities

for the different kinds of flow (e.g. viscous, laminar)

The present study is aimed at characterizing analytically the transient re-

sponse of the turbid flow in a two-dimensional wedge which is subjected to a

time-dependent surface heat flux. This study uses more appropriate parameters

in the dimensional analysis for the turbulent flow as the ones done before (e.g.

Farrow [8]) that corresponds to a natural convection flow as this analysis takes

into account turbulent thermal diffusivity and viscosity.



Chapter 2

Problem formulation

Consider a two dimensional flow induced in a wedge fluid domain (Figure

2.1) of angle β with non-slip at the bottom and rigid lid in the top (where per-

turbations of the free surface are assumed to be small relative to the local depth).

The bottom is considered to slowly vary as a function of the distance to shore.

The local depth is given by:

zb = −zch(x/xc) (2.1)

where zc is the characteristic depth and xc is the characteristic distance to

shore. As the bottom does vary slowly, the angle β is chosen to be the mean slope

of the bottom.

Figure 2.1: Geometry of the domain

4
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A periodic heat flux is applied to the upper surface (z = 0 defined for

x > 0), with an angular frequency ω, when t = 0 the heat flux is on the peak of

the heating phase corresponding to midday. In this model the case of turbid water

is considered, that implies that the attenuation coefficient is higher than previous

efforts, where clean water was considered. This value of the attenuation coefficient

implies that during the heating phase, the heat that gets to the bottom can be

neglected compared with the period heat flux, therefore the bottom is assumed

to be adiabatic. The surface heat flux is an appropriate approach for the cooling

phase because all the heat lost is through the upper surface.

Turbulent mixing is described with an eddy turbulent viscosity, which con-

sidered here as a constant.

2.1 Governing equations

The temperature of the water increases and decreases as a consequence of

the flux with a period of one day, which produces a pressure gradient that, in turn,

drives a flow. These changes in temperature and the subsequent flow are governed

by the Navier-Stokes equations and the energy conservation equation under the

Boussinessq assumptions:

∂u

∂x
+
∂w

∂z
= 0 (2.2)

∂u

∂t
+
∂u2

∂x
+
∂wu

∂z
= −

∂(p
′

ρ
)

∂x
+ νt

(
∂2u

∂z2
+
∂2u

∂x2

)
(2.3)

∂w

∂t
+
∂uw

∂x
+
∂w2

∂z
=

(
−
∂(p

′

ρ
)

∂z
+ gα(T − T0)

)
+ νt

(
∂2w

∂z2
+
∂2w

∂x2

)
(2.4)

∂T

∂t
+
∂uT

∂x
+
∂wT

∂z
= κt

(
∂2T

∂z2
+
∂2T

∂x2

)
(2.5)

where x and z are the horizontal and vertical coordinates respectively, with

the origin located at the tip (see Figure 2.1). The horizontal velocity is indicated

as u and the vertical component is given by w. P ′ is the pressure, T is the
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temperature, ρ is the density, t is the time, g is the acceleration due to gravity,

α is the thermal conductivity, νt is the turbulent viscosity and κt is the turbulent

thermal diffusivity. Note that it is assumed that there are no variations in the

along-shore direction (y).

The previous assumptions lead to the following boundary conditions:

• At z = 0:
∂u

∂z
= w = 0 (2.6)

κt
∂T

∂z
=

q

ρCp
cos(ωt) (2.7)

• At z = zb:
∂T

∂z
− ∂T

∂x

∂zb
∂x

= w = u = 0 (2.8)

Where zb is the local depth and ω is the angular frequency.

2.2 Dimensional analysis

Here we develop the analytical model in nondimensional form. From the

energy equation, assuming a balance between the turbulent transport term and

the variation of the temperature in time, a characteristic thickness (thickness of

the heated layer) is obtained:

∂T

∂t
∼ κt

∂2T

∂z2
⇒ δ =

√
κt
ω

(2.9)

where the characteristic time is given by the inverse of the angular frequency (ω−1)

The general geometry considered in this problem imposes no natural length

scale. However a vertical length can be constructed by considering the growth of

the thermal boundary layer at the near-horizontal rigid bottom boundary found

before:

zc ∼ δ ∼
√
κt
ω

(2.10)
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xc ∼
δ

β
∼
√

κt
ωβ2

(2.11)

From the boundary conditions for the temperature at z = 0, the character-

istic increment of temperature is obtained as follows:

κt
∂T

∂z
∼ q

ρCp
cos(ωt)⇒ ∆T =

( q
ρ Cp

)
√
κtω

(2.12)

From the equation of the conservation of momentum in the z axis, the

pressure scaling can be obtained as:

∂(p
′

ρ
)

∂z
∼ gα(T − T0)⇒ p′

ρ
= gα∆Tδ ⇒ (2.13)

p′c =
gαq

Cpω
(2.14)

The characteristic velocity scales for each component can be obtained from

the balance between the acceleration term and pressure gradient in the equation

of conservation of momentum along the z axis:

∂u

∂t
∼ ∂

∂x

(
p′

ρ

)
⇒ (2.15)

⇒ uc =
gαqβ

ρCp
√
ω3κt

(2.16)

⇒ wc =
gαqβ2

ρCp
√
ω3κt

(2.17)

The governing equations can be now expressed in dimensionless form:

∂u

∂x
+
∂w

∂z
= 0 (2.18)

∂u

∂τ
+Ra β2

(
∂u2

∂x
+
∂wu

∂z

)
= −∂p

∂x
+ Pr

(
∂2u

∂z2
+ β2∂

2u

∂x2

)
(2.19)
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∂w

∂τ
+Ra β2

(
∂uw

∂x
+
∂w2

∂z

)
= β−2

(
−∂p
∂z

+ θ

)
+ Pr

(
∂2w

∂z2
+ β2∂

2w

∂x2

)
(2.20)

∂θ

∂τ
+Ra β2

(
∂uθ

∂x
+
∂wθ

∂z

)
=

(
∂2θ

∂z2
+ β2 ∂

2θ

∂x2

)
(2.21)

Where p = p′

ρ
and θ = T−T0

∆T

The Rayleigh and Prandtl number are defined as:

Ra =
gαq

ρCpω2κt
, P r =

νT
κt
.

The boundary conditions written in dimensionless form are:

• At z = 0:
∂u

∂z
= w = 0 (2.22)

∂θ

∂z
= cos(ωt) (2.23)

• At z = zb:
∂θ

∂z
− β2 ∂θ

∂x

∂zb
∂x

= w = u = 0 (2.24)

Additionally as x→∞ the fluid is at rest

u = w = 0, (2.25)

and the temperature distribution is independent of x

θ = θ(z) =
1√
2
e
− z√

2 cos

(
τ − z√

2
+

3

4
π

)
(2.26)
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Also note that from direct integration of the continuity equation (2.18), we

can obtain an integral condition that must be satisfied by the solution to (2.18−
2.24):

w =

∫
∂u

∂x
dz ⇒ ∂

∂x

∫ 0

zb

u dz = 0⇒
∫ 0

zb

u dz = 0 (2.27)

The problem defined in (2.18−2.24) can be solved using the stream function,

however in this project the problem has been solved using primitive variables.

2.3 Asymptotic solution

An asymptotic solution is obtained below for small β in the distinguished

limit Pr ∼ 1 and Ra ∼ 1. At leading-order in the description for β � 1 the

problem becomes linear, as is clear from inspection of (2.17)-(2.20). An interesting

feature of the associated periodic solution is that, besides harmonic temperature

and velocity fields, resulting from the harmonic forcing through the surface heat

flux, the leading-order solution exhibits a steady component, including a residual

temperature increase and associated steady-streaming velocity. The existence of

this nonzero steady solution, additional to the expected harmonic response, can

be anticipated by taking the time average 〈·〉 = 1
2π

∫ 2π

0
·dt of (2.20) to yield:

β2Ra

(
∂〈uθ〉
∂x

+
∂〈wθ〉
∂z

)
= β2∂

2〈θ〉
∂x2

+
∂2〈θ〉
∂z2

. (2.28)

Integrating in z across the fluid layer with account taken of the boundary

conditions given in (2.21)-(2.23) provides:

∂

∂x

(
Ra

∫ 0

zb

〈uθ〉dz −
∫ 0

zb

∂〈θ〉
∂x

dz

)
= 0, (2.29)

which further reduces to:
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∫ 0

zb

(
Ra〈uθ〉 − ∂〈θ〉

∂x

)
dz = 0 (2.30)

The above exact result, independent of β, indicates that, since the product

of two harmonic functions in general does not average to zero, the average temper-

ature must also be nonzero, which in turn induces an average motion with 〈u〉 6= 0

and 〈w〉 6= 0.

As mentioned before, if β is considered as a small parameter (β � 1), an

expansion similar to Farrow [1] can be done as follows:

u = u0 + β2u1 + β4u2 + . . . (2.31)

w = w0 + β2w1 + β4w2 + . . . (2.32)

p = p0 + β2 p1 + β4 p2 + . . . (2.33)

θ = θ0 + β2 θ1 + β4 θ2 + . . . (2.34)

Using this expansion in equations (2.18−2.21) and retaining only zero order

term, the system of equations yield in a linear system of equations given by:

∂u0

∂x
+
∂w0

∂z
= 0 (2.35)

∂u0

∂τ
= −∂p0

∂x
+ Pr

∂2u0

∂z2
(2.36)

0 = −∂p0

∂z
+ θ0 (2.37)

∂θ0

∂τ
=
∂2θ0

∂z2
(2.38)

with the following boundary conditions:
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• At z = 0:
∂u0

∂z
= w0 =

∂θ0

∂z
− cos(τ) = 0 (2.39)

• At z = zb:
∂θ0

∂z
= w0 = u0 = 0 (2.40)

The complete solution for the leading order terms, u0, w0, p0 and θ0, can

be decomposed in two contributions, one harmonic part, that carries out the time

dependence, and one steady contribution.

u0 = R
{
U0(x, z)eiτ

}
+ 〈u0〉 (2.41)

w0 = R
{
W0(x, z)eiτ

}
+ 〈w0〉 (2.42)

p0 = R
{
P0(x, z)eiτ

}
+ 〈p0〉 (2.43)

θ0 = R
{

Θ0(x, z)eiτ
}

+ 〈θ0〉 (2.44)

As shown above, the harmonic component of the solution is solved using

separation of variables which eliminates the dependence on time and yields the

following relations for the complex amplitudes:

∂U0

∂x
+
∂W0

∂z
= 0 (2.45)

iU0 = −∂P0

∂x
+ Pr

∂2U0

∂z2
(2.46)

0 = −∂P0

∂z
+ Θ0 (2.47)

iΘ0 =
∂2Θ0

∂z2
(2.48)

With the boundary conditions:

• At z = 0:
∂U0

∂z
= W0 =

∂Θ0

∂z
− 1 = 0 (2.49)
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• At z = zb:
∂Θ0

∂z
= W0 = U0 = 0 (2.50)

The time independent Navier-Stokes equations and the heat equation are

given by:

∂〈u0〉
∂x

+
∂〈w0〉
∂z

= 0 (2.51)

0 = −∂〈p0〉
∂x

+ Pr
∂2〈u0〉
∂z2

(2.52)

0 = −∂〈p0〉
∂z

+ 〈θ0〉 (2.53)

0 =
∂2〈θ0〉
∂z2

(2.54)

As the solution has to be independent of time, the boundary conditions

become:

• At z = 0:
∂〈u0〉
∂z

= 〈w0〉 =
∂〈θ0〉
∂z

= 0 (2.55)

• At z = −βx:
∂〈θ0〉
∂z

= 〈w0〉 = 〈u0〉 = 0 (2.56)

The harmonic problem, equations (2.45− 2.50), is solved in Chapter 3 and

the steady problem, equations (2.51− 2.56), is solved in Chapter 4. To finalize in

Chapter 5, the complete solution is analyzed.



Chapter 3

Harmonic solution

The set of equations given in (2.45− 2.48) are solved in this chapter.

3.1 Analytical solution

From (2.48), the temperature can be obtained easily:

Θ0 = C1(x)e
i+i√
2
z

+ C2(x)e
− i+i√

2
z

(3.1)

After applying the boundary conditions, ∂Θ0

∂z

∣∣
z=0
− 1 = ∂Θ0

∂z

∣∣
z=zb

= 0, the

zero order temperature Θ0 is:

Θ0 = −(1− i)√
2

(
e
− 1+i√

2
(z−2zb)

+ e
1+i√

2
z
)

(
e

2 1+i√
2
zb − 1

) (3.2)

θ̃0 = R
{

Θ0 e
iτ
}

The main balance as β → 0 is between the unsteady term and the diffusion

term. The temperature distribution is independent of the Prandtl number. Unlike

the zero order temperature distribution obtained by Farrow [1], the distribution

found in this study is dependent on the depth. It is easy to check that this

13
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temperature distribution is also consistent with field observations ([4]), where,

as x→ 0, the temperature increment/decrement is higher.

If we take the partial derivative of (2.47) with respect to x and the partial

derivative of (2.46) with respect to z, we eliminate the pressure, and equation

(2.46) becomes:

i
∂U0

∂z
= −∂Θ0

∂x
+ Pr

∂3U0

∂z3
(3.3)

The solution for the equation (2.46) can be decomposed into two parts, a

particular solution plus a homogeneous solution:

U0 = U0,part + U0,hom

The expression for the particular solution is given by:

U0,part = 2
1 + i√

2

(
e

2 1+i√
2
z − 1

)
e
− 1+i√

2
(z−2zb)

(1− Pr)
(
e

2 1+i√
2
zb − 1

)2

dzb
dx

(3.4)

As can be seen, the previous expression has a singularity when the value of

the Prandtl number is equal to one, however the velocity has to be finite for all

the values of the Prandtl number. The particular solution for Pr = 1 can be then

found in the limit Pr → 1.
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U0,part

∣∣∣∣
Pr=1

= lim
Pr→1

U0,part =

= −
(

1
4

+ i
4

)
e
− 1+i√

2
z(

e
2 1+i√

2
zb − 1

)2

[(
(2 + 2i)(z − 1)− 3

√
2 +
√

2e
−2 1+i√

2

)
e

2 1+i√
2

(zb+z)
] dzb
dx
−

−
(

1
4

+ i
4

)
e
− 1+i√

2
z(

e
2 1+i√

2
zb − 1

)2

[(
3
√

2 + (2 + 2i)z
)
e

2 1+i√
2
zb
] dzb
dx

(3.5)

The homogeneous equation for the horizontal velocity can be treated as a

linear ODE with constant coefficients, yielding the solution:

U0,hom = −1 + i√
2

√
Pr e

− 1+i√
2Pr

z
(
C2(x)− C1(x) e

2 1+i√
2Pr

z
)

+ C3(x). (3.6)

The expression of the coefficients C1(x), C2(x), and C3(x) are shown in Ap-

pendix 1. This coefficients can be interpreted as constants of integration with with

respect to z. These are found by proper application of the boundary conditions,

∂U0

∂z

∣∣
z=0

= U0

∣∣
z=zb(x)

= 0 and the additional integral condition given in (2.27), that

particularize for the harmonic solution becomes:
∫ 0

zb
U0 dz = 0.

Once the horizontal component of the velocity is obtained, the vertical ve-

locity can be calculated using the continuity equation (2.45). The solution of the

vertical component of the velocity can be decomposed as a particular solution and

a homogeneous one in a similar manner to the horizontal component.

W0 =

∫ z

0

∂U0

∂x
dz =

∫ z

0

∂U0,part

∂x
dz +

∫ z

0

∂U0,hom

∂x
= W0,part +W0,hom (3.7)

The expression of the particular solution is:

W0,part =
2
(
e

1+i√
2
z − 1

)2
e
− 1+i√

2
(z−2zb)

(
2 4
√
−1
(
e
2 1+i√

2
zb + 1

) (
d zb
dx

)2 − (e2 1+i√
2
zb − 1

)
d2zb
dx2

)
(Pr − 1)

(
e
2 1+i√

2
zb − 1

)3
(3.8)
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The expression of the particular solution for horizontal velocity has a singularity as

Pr → 1, so does the particular solution for the vertical velocity. The problem can be solved in a

similar way.

W0,part

∣∣∣∣
Pr=1

= lim
Pr→1

W0,part (3.9)

The homogeneous part is given by:

W0,hom = zC ′3(x)− iPr
[(
e

1+i√
2Pr

z − 1
)
C ′1(x) +

(
e
− 1+i√

2Pr
z − 1

)
C ′2(x)

]
(3.10)

3.2 Discussion of the harmonic solution

In this treatment, the local depth is considered as a function of the distance to shore.

We consider a bottom boundary that has small variations with respect to the mean slope, so

that it can be approximated as zb = −x.

As mentioned before, the temperature profile depends on the depth. Away from shore,

the ratio of the height of the heated layer to the local depth decreases. In other words, as the

distance to shore increases, the effects of the surface heat flux are contained to a layer that is

thin relative to the depth as shown in Figure 3.1. This phenomenon can be seen in Figure 3.1.

Figure 3.1 also shows that the shallower regions absorb more heat than the deeper regions, in

agreement with the field observations .
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t =3.1416

t =4.7124

Figure 3.1: Temperature profiles at x = 1, 3, 6, 9, 12 and 15 for different times

In contrast to Farrow [1], where the streamlines go to infinity and a vortex is formed

when the flow reverses, in the case of turbid water and periodic heat flux on the surface, the
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velocity field has multiple vortices where the intensity of the vortices decays with the distance to

shore. This is shown clearly in Figure 3.2, where the streamlines are plotted for different times.

Looking at Figure 3.2 it is apparent that the vortices move off-shore becoming bigger and weaker

over time. In what follows, a thorough discussion of the velocity field with Pr = 1 is provided

for clarity before addressing the influence of the Prandtl number on the velocity field.
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Figure 3.2: Streamlines at different times for Pr = 1. The aster-

isks denote the position of the vortex peak.

The velocity field can be divided into two regions: the viscous region (x→ 0), where the

main balance is between the viscous terms and the horizontal pressure gradient, and the inertial

region, where viscosity can be neglected and the main balance is between the inertia terms and

the horizontal pressure gradient. The behavior of the flow in the viscous region is characterized

by an immediate adaptation to the changes in the forcing, as is shown in Figure 3.3 (right).
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Figure 3.3: Contours of the surface temperature and velocity in the (t-x) plane

In Figure 3.3, the contours of surface temperature (θ0|z=0) and velocity (u0|z=0) are

plotted as a function of the time (expressed as a the number of cycles). The surface temperature

plot shows the phenomenon mentioned before, the temperature ranges is higher in the shallower

regions is higher than in the deeper regions. When t = n/2 (n = 0, 1, 2, ...), a reversal of the force

leads to a creation of a new vortex. In both plots, the solid contours represent the stagnation

point (u0|z=0 = 0), where the pressure gradient changes sign. In the surface velocity plot as,

x → 0, the flow adjusts immediately to the changes in the forcing as it corresponds to the

viscous-dominated region. In both plots, the regions in which the contours are yellow represent

the heating phase, for the surface velocity plot the circulation of the vortex in the heating phase

is clock-wise, and the blue regions represent the cooling period, in which the circulation of the

vortex is anti clock-wise.
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Figure 3.4: Magnitude of the vortex of the velocity for different Pr

The Prandtl number, which represents the ratio of viscosity to thermal diffusivity, in-

fluences the fluid flow as long as the temperature and velocity field are coupled, such as in the

context of the Boussinesq approximation. As Pr increases, the flow will become more viscous

and the magnitude of the velocity decreases, as shown in Figure 3.4. Vortex magnitudes decrease

with time and also weaken with increasing Pr. It is also illuminating to look at both limits of

the Prandtl number (Pr → 0 and Pr →∞). As Pr → 0, thermal diffusion is dominant in com-

parison with momentum diffusion. Viscous effects are relatively weak so that the changes in the

velocity are limited to a small layer, or in other words, there is going to be two boundary layers

in both boundary layers. Figure 3.5 shows that there is a boundary layer at z = 0 and another

one when z = zb. In the case of the limit of Pr → ∞, the momentum diffusion is dominant

compared to the thermal diffusion. In this limit the flow is so viscous that the flow does not move.

Examination of this problem would require rescaling of the equations using alternate parameters.
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Figure 3.5: Horizontal velocity profile at x = 1 and t = 0



Chapter 4

Steady solution

The complete solution has to satisfy the equation given in (2.30). As mentioned before,

if the product of two harmonic functions in general does not average to zero, the average tem-

perature must also be nonzero, which implies that a steady solution may exist, and in fact, for

the case considered in this study, a steady solution must exist, as shown below.

0 5 10 15

x

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr = 0.1

Pr = 1

Pr = 7

Figure 4.1: Heat flux along the boundary layer

The fact that the heat flux of the harmonic solution is not constant along the boundary

21
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layer requires the existance of a steady solution.

4.1 Analitical solution

The expression for the temperature is trivial:

〈θ0〉 = f (x) (4.1)

Where f(x) is a unknown function of x.

Once the temperature distribution is known, the velocity field can be calculated. The

pressure can be eliminated from in a similar manner to the harmonic component. If we take the

partial derivative with respect to x of (2.53) and the partial derivative with respect to z of (2.52)

the pressure can be eliminated, and the equation (2.52) becomes:

0 = −∂〈θ0〉
∂x

+ Pr
∂3〈u0〉
∂z3

(4.2)

The steady component of the horizontal velocity can be found by integrating (4.2) three

times and after applying the boundary conditions,∂〈u0〉
∂z

∣∣∣
z=0

= 〈u0〉
∣∣
z=zb

= 0 and the integral

condition
∫ 0

zb
〈u0〉dz = 0, the expression for the horizontal component is given by:

〈u0〉 =
8 z3 − 9 z2zb + z3b

48Pr
f ′(x) (4.3)

where ·′ = d
dx

The expression of the vertical component can be found if we apply the continuity equation

(2.51):

〈w0〉 =

∫ z

0

∂〈u0〉
∂x

dz =
z z2b − z3

48Pr
f ′(x) +

3 z3zb − z z3b − 2 z4

48Pr
f ′′(x) (4.4)

At zero order, the solution is undetermined as both the temperature and velocity field

depend of an unknown function of x and its derivatives. We can determine the function f(x) we

can carry the first order perturbation in the analysis or we can use the condition given in (2.30),

which is exact. If the expressions (2.41− 2.41) are introduced in (2.30), (2.30) becomes:

∫ 0

zb

(
Ra〈

(
R
{
U0 e

iτ
}

+ 〈u0〉
) (

R
{

Θ0 e
iτ
}

+ 〈θ0〉
)
〉 −

∂〈
(
R
{

Θ0 e
iτ
}

+ 〈θ0〉
)
〉

∂x

)
dz = 0 (4.5)
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The following terms of 4.5 go to zero because the average of a harmonic function is zero:

∫ 0

zb

〈
(
R
{
U0 e

iτ
})
〈θ0〉〉dz =

∫ 0

zb

〈
(
R
{

Θ0 e
iτ
})
〈u0〉〉dz =

∫ 0

zb

∂〈R
{

Θ0 e
iτ
}
〉

∂x
dz = 0

Remembering that the steady temperature is independent of z the term of the product

of the steady temperature and velocity goes to zero, as shown below:

∫ 0

zb

〈θ0〉〈u0〉dz = 〈θ0〉
∫ 0

zb

〈u0〉dz = 0

Applying this simplifications equation (4.5) yields:

Ra

∫ 0

zb

(
〈
(
R
{
U0 e

iτ
}) (

R
{

Θ0 e
iτ
})
〉 − f ′(x)

)
dz = 0 (4.6)

At the limit x→∞, the fluid is at rest and the temperature is independent of x, therefore

the boundary condition for f(x) is f(∞) = 0

4.2 Discussion of the steady solution

In this approach to the cross-shore exchange problem, the analysis shows that, at leading

order, there is a residual streaming flow. As mentioned before, this flow results from the require-

ment that heat cannot accumulate at a given x location. One of the reasons for the existence of

this residual flow is that the harmonic velocity and the harmonic solution are partly out phase

(0 ≤ ϕ < π). In previous studies, such as Farrow [1], where the temperature distribution is

independent of the depth, the flow will not have the residual flow at zero order. This can be

shown as follows:

d

dx

∫ zb

0

〈u0(x, z)θ0(x)〉 dz =
d

dx
〈θ0(x)

∫ zb

0

u0(x, z) dz〉 (4.7)

And remembering the integral condition given in (2.27):

d

dx
〈θ0(x)

∫ zb

0

u0(x, z) dz〉 = 0 (4.8)

Once the residual flow has been introduced, the temperature distribution may be ana-

lyzed. The steady temperature distribution, unlike the harmonic distribution, depends on the

Prandtl number. This dependence comes from the fact that the function f(x) depends on u0,

which also depends on the Prandtl number. Figure 4.2 shows how the temperature distribution

varies with Pr.
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Figure 4.2: Function f(x) for different values of the Prandtl number

Equation 4.6 shows that the function f(x) is proportional to the Rayleigh number, there-

fore the steady solution for both the temperature and velocity, will be also linearly proportional

to the Rayleigh number.

The velocity distribution has multiple number of vortices, as can be seen in Figure 4.3,

where the streamlines have been plotted for different Prandtl numbers. These vortices become

bigger and weaker as the distance to shore increases in a similar manner to the harmonic solution.

The vortices also depend on the Prandtl number, as it increases, the vortices grow in size and

their intensity decays. This fact can be observed as well in Figure 4.3



25

0 5 10 15

x

-15

-10

-5

0

z

Streamlines steady Pr = 1

0 5 10 15

x

-15

-10

-5

0

z

Streamlines steady Pr = 7

0 5 10 15

x

-15

-10

-5

0

z

Streamlines steady Pr = 0.1

Figure 4.3: Streamlines of the steady solution for different Prandtl numbers



Chapter 5

Complete solution

The complete solution is given by the combination of the harmonic and steady compo-

nents:

u0 = ũ0 + 〈u0〉

w0 = w̃0 + 〈w0〉

θ0 = θ̃0 + 〈θ0〉

When the full solution is considered, the Rayleigh number plays an important role in the

flow structure, determining the relative contributions. Figure 5.1 compares the decay ratio of

the vortices of the harmonic solution and the steady solution. The Rayleigh number determines

the amplitude of the steady vortex decay curve as shown in 5.1. In other words, as the Rayleigh

number increases, the steady solution becomes dominant.
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Figure 5.1: Magnitude of the vortices as x increases

Figure 5.2 shows the shape of the surface velocity with respect to time for different values

of the Rayleigh number. As can be seen, when Ra = 0.1 if 0 ≤ x ≤ 6 the harmonic solution is

dominant and if x ≥ 6 the steady solution is comparable to the harmonic solution and becomes

the dominant solution. For a Ra = 1, the steady solution is comparable to the harmonic one in

distances to shore of order one. In the case that the other limit is considered, Ra� 1 the steady

solution is dominant in the whole domain except in a small region close to the tip.
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Figure 5.2: Surface velocity for Ra = 0.1, Ra = 1 and Ra = 10

It is of interest to analyze the behavior of the vortices in the region where both solutions
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are comparable. To illustrate this analysis, the streamlines for the case of Ra = 1 have been

plotted and can be seen in Figure 5.2. In the harmonic region the vortices travel off shore,

becoming weaker as they travel. These traveling vortices are then absorbed by the steady vortices

and they no longer travel, but begin to oscillate. These oscillations are shown in Figure 5.3.

Figure 5.3: Surface velocity for Ra = 0.1, Ra = 1 and Ra = 10



Chapter 6

Concluding remarks

This paper presents an analytical model of turbid water flow in an infinite wedge. An

asymptotic solution has been found for a particular case of the complex geophysical situation.

The results obtained from solving the unsteady Navier-Stokes equation shows that the

harmonic temperature is consistent with the field studies. The absorbed/released heat flux

decreases as the distance to shore increases. The harmonic solution also shows that the velocity

distribution has an infinite number of traveling vortices, which intensity of these vortices decreases

as they travel away from shore.

When perturbations of the first order are considered, there is an accumulation of heat in

the inside of the fluid domain. A residual streaming flow appears in the leading order distribution

to compensate for the accumulation of heat. The streamlines of the residual streaming flow show

the presence of an infinite number of steady vortices, whose intensities decay in a similar manner

as the harmonic component.

The final distribution of temperature and velocity is the sum of the harmonic and the

steady contributions.

Dimensional analysis shows that the only parameters influencing velocity and temper-

ature distribution are the Prandtl and Rayleigh number. A analysis of the influence of both

parameters has been performed showing that as the Prandtl number the Prandtl number in-

creases, the vortices become weaker and bigger. The limiting cases have also been explored. In

the case where Pr → 0 there are two boundary layers in both surfaces. As Pr → ∞ there will

be no motion and a new dimensional analysis is required.

The Rayleigh number has an important role in the final solution, making the steady
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solution more or less dominant with respect to the harmonic one. If Ra � 1, the harmonic

solution will be dominant in the region closer to shore. If Ra � 1 however, the steady solution

will be dominant. The last case considered is when Ra ∼ 1 both solution can be compared, the

traveling vortices from the harmonic component are absorbed by the steady solution and they

start to oscillate around a certain x coordinate.



Chapter 7

Appendix A

A.1. Notation
Cp Specific heat capacity
g Acceleration due to gravity
P ′ Pressure
Pr Prandtl number Pr = νT

κt

q Specific heat
Ra Rayleigh number Ra = gαq

ρCp ω2κt

t Time
T Temperature

∆T Characteristic increment of temperature
u,w Velocity components in x and y directions
uc, wc Characteristic velocity in x and y directions
x, z Coordinates in horizontal and vertical directions
xc, zc Characteristic horizontal and vertical lengths
zb Local depth zb = −zch(x/xc)

Greeks
α Thermal conductivity
β Bottom mean slope
δ Characteristic thickness
ω Angular velocity
ρ Density
θ Non-dimensional temperature
κt Turbulent thermal diffusivity
νt Turbulent viscosity
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A.2. Constants of integration

Here the expresions of the terms C1(x), C2(x), C3(x), C ′1(x), C ′2(x) and C ′3(x)

denominatorC1
= 2(Pr − 1)

√
Pr

(
1 + cosh

(
(1 + i) zb√

2

))
((
−
√
Pr +

(1 + i) zb√
2

)(
sinh

(
(1 + i)

√
2 zb√

Pr

)
+ cosh

(
(1 + i)

√
2 zb√

Pr

))
+
√
Pr +

(1 + i) zb√
2

)

C1(x) =

[
−

[
sinh

(
(1+i)zb√
2
√
Pr

)
+ cosh

(
(1+i)zb√
2
√
Pr

)] [
Pr −

(1+i)zb sinh
(

(1+i)zb√
2

)
√
2

+ cosh
(

(1+i)zb√
2

)
− 1

]
denominatorC1

+

+

[
(1+i)

√
Przb√
2

] [
Pr −

(1+i)zb sinh
(

(1+i)zb√
2

)
√
2

+ cosh
(

(1+i)zb√
2

)
− 1

]
denominatorC1

]
i z′b csch2

((
1
2 + i

2

)
zb√

2

)
(7.1)

C2(x) = −
2e

4√−1(
√

Pr+1) zb√
Pr

[
(−1)3/4 zb

(
−2
√
Pre

4√−1(
√

Pr+1) zb√
Pr + e2

4
√
−1 zb − 1

)]
z′b

(Pr − 1)
√
Pr
(
e2

4
√
−1 zb − 1

)2(
e

2 4√−1 zb√
Pr

(
4
√
−1 zb −

√
Pr
)

+
√
Pr + 4

√
−1 zb

)+

+

2e
4√−1(

√
Pr+1) zb√
Pr

[
i

(
e

4
√
−1 zb

(
−2Pr e

4√−1 zb√
Pr + 2Pr + e

4
√
−1 zb − 2

)
+ 1

)]
z′b

(Pr − 1)
√
Pr
(
e2

4
√
−1 zb − 1

)2(
e

2 4√−1 zb√
Pr

(
4
√
−1 zb −

√
Pr
)

+
√
Pr + 4

√
−1 zb

)
(7.2)

C3(x) =

2 4
√
−1e

4
√
−1 zb

[(√
Pr − 1

)(
−e

2 4√−1(
√

Pr+1) zb√
Pr

)
+
(√

Pr + 1
)
e2

4
√
−1 zb

]
z′b

(Pr − 1)
(
e2

4
√
−1 zb − 1

)2(
e

2 4√−1 zb√
Pr

(
4
√
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√
Pr
)

+
√
Pr + 4

√
−1 zb

) +

+

2 4
√
−1e

4
√
−1 zb
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Pr + 1

)
e

2 4√−1 zb√
Pr + 2(Pr − 1)e

4
√
−1 zb + 2(Pr − 1)e
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√
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Pr
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(Pr − 1)
(
e2
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e
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√
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√
Pr + 4
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2 4
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−1e
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4Pre

4√−1(
√

Pr+1) zb√
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√
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(Pr − 1)
(
e2

4
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)2(
e
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(
4
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√
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+
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(7.3)
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