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The ability to thoroughly mix two fluids is a fundamental need in microfluidics. While a variety
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of different microfluidic mixers have been designed by researchers, it remains unknown which (if
any) of these mixers are optimal (that is, which designs provide the most thorough mixing with

the smallest possible fluidic resistance across the mixer). In this work, we automatically designed
and rationally optimized a microfluidic mixer. We accomplished this by first generating a library of
thousands of different randomly designed mixers, then using the Non-dominated Sorting Genetic
Algorithm Il (NSGA-II) to optimize the random chips in order to achieve Pareto efficiency. Pareto
efficiency is a state of allocation of resources (e.g. driving force) from which it is impossible to
reallocate so as to make any one individual criterion better off (e.g. pressure drop) without making
at least one individual criterion (e.g. mixing performance) worse off. After 200 generations of
evolution, Pareto efficiency was achieved and the Pareto-optimal front was found. We examined
designs at the Pareto-optimal front and found several design criteria that enhance the mixing
performance of a mixer while minimizing its fluidic resistance; these observations provide new
criteria on how to design optimal microfluidic mixers. Additionally, we compared the designs from
NSGA-II with some popular microfluidic mixer designs from the literature and found that designs
from NSGA-II have lower fluidic resistance with similar mixing performance. As a proof of concept,
we fabricated three mixer designs from 200 generations of evolution and one conventional popular
mixer design and tested the performance of these four mixers. Using this approach, an optimal
design of a passive microfluidic mixer is found and the criteria of designing a passive microfluidic

mixer are established.

1 Introduction

Mixing is one of the fundamental functions in microfluidic chips.
For the past decade, a wide variety of different microfluidic mix-
ers have been designed!. Microfluidic mixers are usually cate-
gorized as either “active” (an external energy force or an exter-
nal physical field is present to accelerate mixing phenomenon) or
“passive” (mixing is accomplished only by diffusion and is depen-
dent only on the area of contact between the two fluids and the
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amount of time the fluids are in contact). Active mixers gener-
ally outperform passive mixers, but integrating an external force
or field in the chip adds unwanted complexity and cost. Passive
mixers are simpler and more economical, but increasing the area
and time of contact between the two fluids has undesirable con-
sequences: increasing contact area by lengthening the channel
containing the two fluids adds unwanted additional fluidic re-
sistance to the channel, and increasing contact time by slowing
the flow rate decreases the overall throughput of the microflu-
idic chip2. Thus, there is an unmet need for mixer designs that
combine high mixing performance with low fluidic resistance and
high flow rates.

Several studies have been conducted on the optimization of
standard microfluidic mixer designs. Li et al. optimized a chaotic
microfluidic mixer using lattice Boltzmann method®. Hertzog et
al. used an optimized microfluidic mixer to study the protein fold-
ing kinetics*. Two continuous studies from Wang et al. focused
on the optimization of the layout of obstacles for enhanced mixing
in microchannels for different applications using a fluid dynam-

Journal Name, [year], [vol.], 1-10 |1
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Fig. 1 (A) Schematic of a simulated microfluidic mixer unit. A simulated unit has two inlets and two outlets. Between inlets and outlets is a 500 um x
500 um design domain. In the design domain, each mixer has ten cylindrical posts with random sizes and locations. Different cylinder posts were
allowed to overlap to create additional structures like walls. (B) The predicted fluid velocity field of a typical mixer unit. This velocity field is used for
simulating the solute concentration profile in the mixer. (C) The predicted pressure profile of the mixer unit. This pressure profile is used to
characterize the fluidic resistance of the mixer. (D) The predicted solute concentration profile of the mixer unit. This concentration profile is used to

determine the mixing performance of this mixer unit.

56, Hossain et al. conducted research of optimiz-

ing a modified Tesla structure based on topology optimization”.
Finally, Cortes-Quiroz et al. optimized a grooved microfluidic
mixer using a multi-objective optimization approach®. In these
optimization processes, the design criteria of the post-optimized
mixer designs remained unchanged compared to their original
designs, which results in a limited improvement of the mixing
performance. For instance, Hossain et al. optimized the mixing
performance of the Tesla structure mixer, but the basic design of

the mixer remained unchanged”’.

ics software

Occasionally, researchers develop new microfluidic mixer de-
signs that have advantages over existing designs. For example, Fu
et al. designed a rapid vortex microfluidic mixer utilizing double-
heart chambers that achieved a 92% mixing ratio at Reynolds
numbers as low as Re = 1° and Wang et al. used triangular posts
in a conventional Y-shaped microfluidic mixer to increase the mix-
ing performance 10, But are these mixer designs really optimal, or
are there better designs waiting to be discovered? With an infinite
variety of possible designs, and only a relatively small number of
researchers exploring this design space, progress toward better
mixers is frustratingly slow.

This situation inspired us to ask, is it possible to design a
microfluidic mixer from scratch by computer algorithm without
needing microfluidics expertise at design phase? If so, is it pos-

2| Journal Name, [year], [vol.],1-10

sible that these automatically-designed mixers will give us new
useful design criteria to use when manually designing mixers?

In this work, we set out to answer the question, is it possible
to find the most optimized mixer within certain conditions? Specif-
ically, are we able to explore the performance boundary of how
good a microfluidic mixer can possibly be within a certain limit
on fluidic resistance?

Here, we developed an approach to automatically design and
optimize passive microfluidic mixers for specific conditions. We
accomplished this in two steps. First, we generated a library of
more than six thousand different random mixer designs and sim-
ulated the performance of each of them. We have previously used
this technique to generate designs of functional microfluidic chips
that can deliver solutes of any desired concentrations!!. Second,
we used the Non-dominated Sorting Genetic Algorithm IT (NSGA-
II) 12 to optimize multiple design parameters of our microfluidic
mixer at the same time. NSGA-II is one of the multi-objective evo-
lutionary algorithms (MOEAs), which helped our mixer designs to
increase their mixing performance, achieve Pareto efficiency, and
find the Pareto-optimal front. Pareto efficiency is a state of al-
location of resources (e.g. fluid driving force) from which it is
impossible to reallocate so as to make any one individual crite-
rion better off (e.g. pressure drop) without making one or more
individual criterion (e.g. mixing performance) worse off. The

This journal is © The Royal Society of Chemistry [year]
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Pareto-optimal front is the set of all Pareto efficient allocations,
which is conventionally visualized as a boundary in a graph of
performance. To investigate the Pareto efficiency of our system,
random mixer designs and NSGA-II mixer designs were visualized
in the same graph (Fig. 4A) of mixing performance vs. fluidic re-
sistance.

Our results showed that after 200 generations of evolution, the
mixer designs converged near the true Pareto-optimal front; this
allowed us to explore the fundamental performance limits of a mi-
crofluidic mixer. A user can select a design from these optimized
mixers and be confident that the design is optimal for a given flu-
idic resistance. Additionally, we identified certain design trends
in the optimized mixers, manually designed several mixers that
incorporate these trends, and compared the performance of our
manually-designed mixers to that of our automatically-designed
optimal mixers. In each case, our automatically-designed and op-
timized mixers equaled or exceeded the mixing performance of
conventional designed mixers. Finally, to confirm that the mix-
ers designed by our algorithm function as predicted, we chose
three optimum mixer designs at corresponding minimized resis-
tance conditions from the Pareto-optimal front and one chip from
conventional designed mixers and fabricated corresponding poly-
dimethylsiloxane (PDMS) microfluidic chips for experimental ver-
ification.

2 Materials and Methods

2.1 Generating initial random mixer designs

We created our first generation of passive microfluidic mixers by
generating mixer designs at random!!. Of course, there is an
essentially limitless variety of possible mixer designs, so we ap-
plied certain constraints to our random designs. Fig. 1A shows
the basic design template of our random mixers. Each mixer has
two inlets, two outlets, and a 500 um x 500 pum design do-
main where the random mixing structures are located. In the
design domain are ten cylindrical posts with random sizes and
locations. Ten cylindrical structures were chosen as a balance be-
tween computational resources and achieving as many different
mixing features as possible within a 500 yum x 500 um design
domain. Each cylindrical structure acted as a building unit of
the mixing features in each design, and ten cylindrical structures
were good enough to represent the diversity of mixing features.
For example, two or more cylindrical posts can overlap, which en-
ables the mixer designs to also include non-circular features (like
walls, inverted-L or S-shape). In addition, cylindrical structures
naturally create smoother fluid streamlines than square or trian-
gular structures, which is helpful for reducing the overall fluidic
resistance of the mixer. In total, 6096 different mixer designs
were generated and stored in a database. Finally, in addition
to randomly-generated designs, we also manually designed five
mixer units based on our experience so as to compare them with
the randomly generated designs as well as NSGA-II designs. The
specific code we write to generate 6069 mixer designs is available
in Supplementary Information.

This journal is © The Royal Society of Chemistry [year]
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2.2 Simulating mixer performance

All simulations were performed using the finite element analy-
sis software COMSOL Multiphysics (COMSOL Inc., Burlington,
MA). We used the software’s MATLAB API to automate the simu-
lation process. The Laminar Flow physics module and Transport
of Dilute Species physics module as well as two stationary solvers
were used in COMSOL Multiphysics. In the Laminar Flow physics
module in COMSOL Multiphysics, each inlet was assigned an in-
let boundary condition of 1 mm -s~! normal inflow velocity, and
each outlet was assigned an outlet boundary condition of 0 Pa
pressure. The remaining boundaries were walls (no-slip bound-
ary condition), and the material filling the channels was water
under incompressible flow. In the Transport of Dilute Species
physics module, inlet 1 is assigned an inflow concentration of 1
mmol - L~! and inlet 2 is assigned an inflow concentration of 0
mmol -L~!. The two outlets were assigned as outflows. The solute
diffusion coefficient of fluorescein (4.25 x 10710 m? . s~ 1) was used
in simulation in order to represent the mixing behavior of small
molecules 3. Fig. 1B and C show the calculated velocity field and
pressure field of one mixer unit design, and Fig. 1D shows the
concentration mixing field of the same design. The correspond-
ing script for simulating the performance of the mixer designs is
available in Supplementary Information.

2.3 Evolving mixer designs with NSGA-II

The genetic algorithm NSGA-II'? was used to evolve optimized
versions of our passive random mixers. A flow chart representa-
tion of our custom NSGA-II implementation is shown in Fig. 2.
The fitness function for fluidic resistance (Sp) is

Sp=P—P €8]

where P, is the pressure at the outlets and P is the pressure at
the inlets. This means that the smaller the pressure drop across
the mixer, the better the performance of the mixture. The fitness
function for mixing performance is defined as the mixing score
(Sc),

Sc=(1-C1)+(C,—0) 2

where C is the average concentration of Outlet 1; 1 —C) calcu-
lates the average concentration difference between Inlet 1 and
Outlet 1; C, is the average concentration of Qutlet 2; C, —0 cal-
culates the average concentration difference between Inlet 2 and
Outlet 2. This indicates that the closer the concentrations of the
fluids in Outlet 1 and Outlet 2, the better performance of the
mixer. Equation 2 is not our only choice for quantifying the mix-
ing performance. For example, ((1 —Cy)+ (C2 —0))? or C; /C; are
acceptable fitness functions as well. However, Equation 2 has sev-
eral advantages in this study. For example, Equation 2 results in
a range of scores that is normalized from O to 1. For instance, a
perfectly mixed solution would have C; = C, = 0.5 mmol - L',
Sc would equal 1; a perfectly un-mixed solution would have
Ci =1 mmol-L~',Cy =0 mmol - L', Sc would equal 0. Addition-
ally, since Equation 1 had been defined as a First-order equation,
it was natural to define the fitness function for mixing perfor-
mance as a First-order equation as well because both optimiza-

Journal Name, [year], [vol.], 1-10 |3
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Fig. 2 A flow chart depicting our custom NSGA-II process for optimizing
mixers and finding the Pareto-optimal front. The overall goal was to
minimize the pressure drop (fluidic resistance) of mixer designs while
increasing the mixing performance. Numerical simulation was
conducted by COMSOL Multiphysics and MATLAB. Typical genetic
operators (selection, crossover, mutation) were conducted after a
non-dominant sorting operator. After that, the population of next
generation mixer designs were generated and repeated in the loop until
the optimization criterion was satisfied.
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tion criteria are equally important in our optimization process.
Using fitness function like ((1 —Cy) 4 (C; — 0))? for mixing per-
formance would probably yield similar results. However, plots of
the Pareto-optimal front would be distorted by the non-uniform
spacing of mixing scores. For these reasons, Equation 2 was used
to quantify the mixing performance in this work.

Out of all 6069 random mixer designs, one design was chosen
as Generation 0 (GO, the parent of first generation in our evo-
lutionary algorithm). GO was chosen for two reasons. First, GO
is one of the top performers, which is located at the edge of all
random designs in the pressure drop vs. mixing score map (Fig.
4 A), a location that might already be close to the Pareto-optimal
front. Second, after investigating the post layout of GO, we found
all ten cylindrical posts were located around the center region
of the design domain, which might let our algorithm to have a
higher probability to explore as many post layouts as possible in a
limited number of evolution runs. The non-dominant sorting op-
eration, selection, crossover, and mutation operators were then
conducted so as to generate the new population of designs. After
that, numerical simulations were performed using the same sim-
ulation parameters as the randomly generated designs above. In
total, 200 generations were calculated to find the Pareto-optimal
front. The corresponding guidelines for implementing NSGA-II
for specific applications are available in Supplementary Informa-
tion.

2.4 The robustness of NSGA-II

NSGA-II is one of the most popular Multi-objective evolutionary
algorithms (MOEAs), and the algorithm has been applied in many
different fields 1417, To verify the performance and robustness of
MOEASs, computer scientists have developed guidelines and care-
fully selected a number of test problems 18:1°. The objective func-
tions of these test problems are complicated mathematical func-
tions, whose graphs could be convex, nonconvex, disconnected or
even nonuniformly spaced. Computer scientists then used MOEAs
to find the minimum solutions which were satisfying all the objec-
tive functions at the same time. After testing with nine test prob-
lem sets, NSGA-II demonstrated strong robustness among differ-
ent MOEAs 12,

2.5 Functional chip design, fabrication and experiments

Design Generation 0 (GO), Generation 60 (G60), Generation 120
(G120) and Conventional design C (shown in Fig. 4) were cho-
sen to be fabricated by conventional soft-lithography2°. Since
each mixer unit (Fig. 1) predicted by our method has limited
mixing performance in the 500 um x 500 um design domain,
we put 11 identical mixing units in a chain to amplify the mix-
ing performance. As shown in Fig. 3A and C, each fabricated
microfluidic mixer has 11 mixing units and each mixing unit du-
plicates the structure of the design domain from GO, G60, G120,
and Conventional design C. Treating all 11 copies of each mixer
identically is not ideal. However, our decision to do so repre-
sents a trade-off between two practical issues. On one hand, since
the amount of mixing provided by a single mixer is rather small
and would be difficult to accurately quantify experimentally, we

This journal is © The Royal Society of Chemistry [year]
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Fig. 3 (A) The SU-8 mold of mixer designs G0, G60, G120, and Conventional design C. (B) In each case Inlet 1 was injected with FD&C Blue #1 and
Inlet 2 was injected with FD&C Red #3. Silastic laboratory tubings were used to connect the syringe pump and sample reservoirs with the microfluidic
mixers. Post-mixed fluids were collected in these reservoirs for quantification of the mixing performance. (C) Photographs of the G60 microfluidic
mixer. As with all designs, this G60 microfluidic mixer has two inlets and two outlets. The main channel consists of 11 identical mixing units, each of
which corresponds to the structure of pre-simulated G60 design. (D) Photographs of the first mixing unit and the last mixing unit of G60 microfluidic
mixer in operation. Two dyes (red color from the top inlet, and orange color from the bottom inlet) flow into the chip. The different layouts created by
the 10 posts in the design domain affected the mixing performance and the resistance of each mixer design, causing the two fluids to be significantly

mixed after passing through 11 mixing units and exiting through the two outlets.

needed a way to amplify the net mixing we observed in our exper-
iments. On the other hand, we recognize that the second mixer
in a series receives a slightly different concentration profile than
the first mixer, the third mixer receives a different profile than
the second, and so on. Accurately predicting the unique behav-
ior of the N unit mixer would require knowledge of the unique
behavior of all N — I unit mixers upstream. This interdependence
would add enormous computational complexity to our task: find-
ing an optimal series of different mixer designs would require
simulating and optimizing thousands of versions of all 11 designs
connected together, a computational task that is far outside of
our capabilities. As a trade-off between experimental verification
and computational feasibility, we experimentally tested different
mixer designs using 11 identical copies of each mixer.

The main features (cylindrical posts) of the mixer were de-
signed by our algorithms and exported into DXF files2!. Based
on these DXF files, additional features including inlets and out-
lets were designed manually in AutoCAD (Autodesk, San Rafael,
CA) and then written to a transparent mask. Negative photoresist
(SU-8 25, Microchem, MA) was spin-coated on a 4-inch polished
silicon wafer to fabricate the SU-8 mold as shown in Fig. 3A.
The channel width was 200 um and the channels depth was 50
um, which was consistent with our simulation models. After that,
a volumetric ratio of 10:1 mixture of PDMS (Sylgard 184, Dow
Corning, MI) and curing agent were poured onto the SU-8 mold.
After degassing and curing, the PDMS replica was peeled off from
the master and punched on top for inlet and outlet. Finally, a
plasma cleaner was used to change the surface properties of the
PDMS replica and the glass slides in order to create a PDMS-glass
bond.

This journal is © The Royal Society of Chemistry [year]

As shown in Fig. 3B, a dual channel syringe pump was used
to provide the driving force for the microfluidic mixers (although
we expect that pressure-driven flow using identical pressures at
each inlet will give similar results, since the two sets of inlet and
outlet channels in our mixer chips have the same length and re-
sistance to flow). The volumetric flow rate for each syringe was
set to 3 uL-min~!. The inlets of chips were connected to the sy-
ringes by Silastic laboratory tubing (Dow Corning, Michigan, US)
and the outlets were connected to the sample reservoirs by tubing
as well. Fig. 3D shows the first mixing unit and the last mixing
unit of G60 microfluidic mixer in operation. For visualization,
Inlet 1 contains a dye that appears orange on our imaging sys-
tem (FD&C Red #3) and Inlet 2 contains a dye that appears red
(FD&C Blue #1). The chips were imaged using an optical micro-
scope (Olympus BX51, Tokyo, Japan) . For quantification of the
mixing performance, Inlet 1 was injected with water and Inlet 2
was injected with FD&C Red #3. To make sure that the system
reached steady state and all the air bubbles went away, samples
were collected from the chip after 5 minutes of flow and visual
confirmation for the nonexistence of bubbles in the channels was
conducted with the microscope. After that, samples from both
outlets were collected into tubes. A standard curve was plotted
based on standard dye concentration. Both the standard curve
and samples were analyzed using a UV-VIS-NIR spectrophotome-
ter at 530 nm (Shimadzu UV3600, Kyoto, Japan). Finally, the
concentration of each sample was calculated using the standard
curve.
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Fig. 4 (A) Pressure drop (Sp) vs. mixing score (Sc) for random microfluidic mixer designs (blue dots) and NSGA-II-evolved mixer designs (red stars).
The random designs are distributed in the bottom-left corner while the NSGA-II designs are at the boundary of all random designs. By connecting all
the NSGA-II designs, we can draw a Pareto-optimal front (dashed line). Conventional designs (B—F) (yellow stars) lie above the Pareto-optimal front,
which means that their mixing performance is not as good as NSGA-II designs with a certain pressure drop. (G0—G200) The concentration profiles of
NSGA-II designs of generation 0, 25, 50, 75, 100, 125, 150, 175 and 200. Additional concentration profiles, pressure profiles, and velocity fields of
0-200 generations are available in Supplementary Information.
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3 Results and discussion

3.1 Finding the Pareto-optimal front

Fig. 4A plots pressure drop versus mixing score for each of
the randomly-generated designs (small blue circles), NSGA-II-
evolved optimal designs (red stars), and conventional designs
(yellow stars). The NSGA-II designs distribute at the boundary
of the randomly generated designs. This means that NSGA-II
successfully found the Pareto-optimal front. To achieve a similar
mixing score, NSGA-II designs always need less pressure drop or
generate less resistance in a mixer unit. In other words, within a
certain pressure drop condition, the NSGA-II designs will always
have better mixing performance than the random-design mixers.
Since GO was randomly designed, its pressure drop still had space
to be minimized. That is why we observed a small decrease in
pressure drop during the initial 20 generations. After that, as the
mixing score increased, the pressure drop increased as well.

Fig. 4B-D are three common microfluidic mixer designs being
constrained to our design domain using cylinder posts to map the
geometry. Conventional design B has a pressure drop of 0.98 Pa
and a mixing score of 0.35 mmol -L~'. Conventional design C
has a pressure drop of 5.36 Pa and a mixing score of 0.59 mmol -
L~!. Conventional design D has a pressure drop of 1.29 Pa and a
mixing score of 0.38 mmol-L~!. Adding their mixing performance
to the plot in Fig. 4A (yellow stars) shows that designs B, C, and
D all lie above the evolved designs (red stars). This tells us that
the common mixer designs for microfluidics still have potential to
be optimized.

Fig. 4 (GO-G200) are the concentration profiles of NSGA-II de-
signs in generations 0, 25, 50, 75, 100, 125, 150, 175 and 200.
As the generation number increases, the mixing performance im-
proves and the mixer geometry converges into an S-shaped line
of cylinders. The S-shape suggests that NSGA-II selects S-shaped
designs as elite designs and retains the S-shaped feature into the
next generations. The S-shape could increase the mixing contact
area as well as minimizing the fluidic resistance. The small gaps
between each post also appear to be crucial to the performance of
the mixer. From the concentration and pressure profiles of each
generation (see Supplementary Information), we know that each
small gap allows fluid with no chance to mix (solute concentra-
tion around O mmol - L~!) to go through the S-shape and reduce
the overall fluidic resistance of the mixer. We are unaware of any
similar designs that have been created by conventional manual
design methods. Finally, Fig. 4E and F are manually-designed
mixers that are inspired by NSGA-II designs. Conventional de-
sign E has a pressure drop of 2.87 Pa and a mixing score is 0.59
mmol - L~!. Conventional design F has a pressure drop of 0.81
Pa and a score of 0.40 mmol - L. Their performance (gold stars
marked E and F on Fig. 4A) is close to the Pareto-optimal front
but they do not have small gaps in dark blue area (solute concen-
tration around 0 mmol - L) to reduce the fluidic resistance.

3.2 Experimental verification

To demonstrate the functionalities of the automatically-designed
microfluidic mixers, three evolved designs (GO, G60, and G120 in
Fig. 4) and one of the conventional designs (C in Fig. 4) were

This journal is © The Royal Society of Chemistry [year]
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(A) The last mixing units of four fabricated
microfluidic mixers in operation
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Fig. 5 (A) The concentration profiles of each last (11th) mixing unit of
G0, G60, G120, and Conventional design C in operation. (B) Mixing
scores and predicted pressure drop of four fabricated mixers. The left
y-axis indicates the mixing score and the right y-axis indicates the
predicted pressure drop of total 11 mixing units of each mixer. Three
measurements were conducted for each point of the mixing scores;
error bars indicate +1 standard deviation.
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chosen to be fabricated and tested. The concentration profiles of
each last (11th) mixing unit of GO, G60, G120, and Conventional
design C in operation are shown in Fig. 5A. As generation num-
ber increased, the red fluid occupied more region in the design
domain, invading the area of the orange fluid, which enhanced
the mixing phenomenon. The small gaps created by posts in the
red fluid region contributed to minimizing the fluidic resistance.
The mixing in Conventional design C simply relied on diffusion
between two fluid without any structure to minimize the fluidic
resistance. As shown in Fig. 5B, the mixing scores of GO, G60,
G120 and Conventional design C were 0.459 mmol -L™', 0.498
mmol - L™, 0.613 mmol - L~! and 0.762 mmol - L~!, respectively;
and the predicted pressure drop of the 11 mixing units by COM-
SOL Multiphysics were 5.5 Pa, 5.39 Pa, 8.36 Pa and 58.96 Pa,
respectively. After evolving for 120 generations, the mixing score
improved by 33.6% while the cost (the pressure drop generated
by 11 mixing units) increased by 52%. In contrast, though Con-
ventional design C had a better mixing score than G120 (0.762
mmol - L™ vs. 0.613 mmol - L™1), the pressure drop cost was
tremendous (58.96 Pa vs. 8.36 Pa).

Table 1 Mixing cost of four tested mixers

GO G60 G120 Conventional Design C
Mot (Pa-mmol™"-L) 12.0 109 13.7 76.9

In order to mathematically quantify the performance of the
mixers using the mixing score and the pressure drop, equation
3 is defined as follows,

Meost = Sl 3

Sc

where Sp is the pressure drop that is defined in equation 1 and
calculated by COMSOL Multiphysics; S¢ is the mixing score de-
fined in equation 2 and measured by experiments; M, indicates
the mixing cost of the mixers by calculating the fraction of the
pressure drop and the mixing score. The physical meaning of
M_os is how much pressure (the driving force) we need in order
to achieve 1.0 mmol - L~' mixing score. The M, of four tested
mixers is summarized in table 1. It is clear that although conven-
tional Design C has a higher mixing score than GO, G60 or G120,
its M, is more than 5 times higher than the M, of GO, G60 and
G120 in average. The M, first dropped 10% from GO to G60
and increased 25% from G60 to G120. Since GO was randomly
designed and only located close to the Pareto-optimal front, the
10% drop indicated that GO to G60 was approaching the ideal
Pareto-optimal front, in which the increase of S¢ was along with
the decrease of Sp in a certain range. The 25% increase indicated
that the mixer designs of G60 to G120 had lain on the Pareto-
optimal front, in which the increase of S¢ had to be along with
the increase of Sp as well and the increment of Sp is larger than
the increment of Sc. Overall, the M, gives us a quantitative way
to calculate how much a specific mixer design can be optimized.
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(A) 1stRun (B) 2nd Run
Generation 179 Generation 150
Sp: 5.09 Pa Sp: 5.47 Pa

Sc: 0.68 mmol-L~ Sc: 0.68 mmol-L™

mmol -Ii"

Fig. 6 (A) The NSGA-II design selected at the end of the first run of
evolution. (B) The NSGA-II design selected at the end of a second run
of evolution. In the second run, the geometry converged into a Y-shape.
To achieve a similar mixing score as the S-shaped design from run 1,
the Y-shaped design from run 2 will have a higher fluidic resistance. Two
gray arrows indicate the inefficient use of two posts by the NSGA-II
algorithm, which seemed to only increase the resistance instead of
improving the mixing performance.
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3.3 Rational design inspired by two separate evolution runs
Since we only have 200 populations in each generation while
the size and position of cylinder posts in the design domain are
infinite, the Pareto-optimal front we found is close to the ideal
Pareto-optimal front theoretically. It is interesting to investigate
how separate evolution runs will affect the design of mixers. Fig.
6 shows the comparison of NGSA-II designs between two sepa-
rate evolution runs. Fig. 6A is the first run (the results are the
same as those in Fig. 4). Fig. 6B is the second run, and in this
run we found that the geometry converged into a Y-shape instead
of an S-shape. While the mixing scores of these two separate evo-
lution runs are similar (around 0.68 mmol - L™!), the design from
the first run has a lower pressure drop. This indicates that the
Pareto-optimal front found from the first run is closer to the ideal
Pareto-optimal front. Although the geometries resulting from the
two evolution runs are different, they do share two important
similarities. First, they both created a narrow gap near the left
edge with a large cylindrical post. Second, they used the rest of
the cylinder posts to generate a wall containing small gaps in the
dark blue area (around 0 mmol - L™!) so as to minimize the pres-
sure drop. So, why did the design from the first evolution run
have a lower pressure drop? From the concentration profiles, we
can see that in the first run design, fluid had a longer contact time
and contact area before entering the critical gap (generated by
the largest post). Additionally, it seems that the second-evolution
designs only used eight posts to create a wall instead of ten. Two
upper cylinder posts (pointed by gray arrows) seem to have no
function but increase the fluidic resistance of this design.

The main reason two separate runs falls into two different local
minimums is due to the limited populations in each generation.
In order to get highly identical results between separated runs,
we could include more populations in each generation. How-
ever, predicting the velocity fields and concentration profiles of
more populations would be computationally expensive. It took
us several hours to simulate 200 different velocity fields and con-
centration profiles for only one generation even the simulations
were processed in a workstation with a Intel 10-core Xeon Silver
CPU and 64 GB RAM. Fortunately, the comparison between two
separated runs gave us a perfect example- if we want to reduce
the overall pressure drop, we could design some gaps in the re-
gion where fluid get no chance to mix without hurting the overall
mixing performance.

4 Conclusions

We demonstrated how to optimize a functional microfluidic mixer
for two parameters, pressure drop and mixing score, using NSGA-
II. We accomplished this by using MATLAB and COMSOL Multi-
physics as our simulation platform and implementing NSGA-II in
MATLAB. We found the pressure drop versus mixing score Pareto-
optimal front. After that, we compared the designs at the Pareto-
optimal front with conventional designs and random designs. Our
simulations indicate that designs from NSGA-II have lower pres-
sure drops than designs by conventional methods or random de-
signs while achieving a similar mixing performance. Based on
the NSGA-II designs, we have a better understanding about how
to design a microfluidic mixer rationally: a mixer should have a
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constriction to increase contact area and contact time between
the fluids, as well as some features that are not for mixing but
rather for reducing the overall resistance of the mixer.

4.1 Limitations

The optimum mixer designs generated by our algorithm have cer-
tain constraints. Since the boundary conditions of our optimizing
system were set to a fixed value, the optimum mixer design is only
investigated and experimentally verified when Reynold number is
around 0.4. Our current work utilizes a constant volumetric flow
rate to drive fluid flow. Since the two sets of inlet and outlet chan-
nels in our mixer chips have the same length and resistance to
flow, we expect that our results would also hold true for pressure-
driven flow using identical pressures at each inlet. It is possible
that the optimal mixing features (the layout of posts) will change
according to different boundary conditions. For instance, a cer-
tain optimum mixer design may still have potential to be opti-
mized if we apply it on inertial microfluidics, centrifugal microflu-
idics or capillary microfluidics. As for other methods for driving
fluid flow (like inertial, centrifugal, or capillary forces), as long
as we can accurately model the physical phenomena involved in
those methods, our micromixer generating algorithm can opti-
mize those microfluidics designs based on the predicted results.
Accurately modeling inertial, centrifugal, and capillary forces in
microfluidics is itself a challenging and active research topic, one
that is beyond the scope of this work. But as improved modeling
techniques are developed in the future, these techniques can be
integrated with our micromixer generating algorithm to develop
optimal mixer designs for systems that utilize those forces.

In addition, our simulations were constrained in a 2-D plane,
and the height of the channel was not defined. In theory, a 3-D
simulation would be a more accurate way to capture the mixing
and diffusion phenomenon. For instance, Stroock et al. designed
a chaotic micromixer with a herringbone design in the bottom of
the channels that could introduce mixing of different lamina in
3-D22. Cha et al. presented a PDMS-based micromixer with 3-D
structures for rapid mixing performance23. However, the compu-
tational expense of implementing such a large number of simula-
tions in 3-D was prohibitive for us. Therefore, the performance
of 3-dimensional micromixers could not be compared with our
optimum mixer designs.

4.2 Future directions

Our approach is not limited to optimize only mixer
performance—it should be able to optimize additional pa-
rameters as well. For instance, the overall chip size is also a key
aspect of a microfluidic chip. Instead of constraining a mixer
into a fixed design domain, we could try to minimize the size
of the design domain as well. Additionally, microfluidic mixers
are just one of many components in microfluidic chips®*2°,
We are confident that our approach can be applied to other
applications of microfluidics. For example, cell sorting is a major
application in microfluidics2®. In various sorting technologies,
inertial microfluidics shows the potential to efficiently separate
different cells based on the sizes of cells27-30. However, inertial
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microfluidic devices are usually operated at a high Reynolds
number, at which shear stress could be harmful to the target
cells3!. In this case, coupled with our previous work (MOPSA,
microfluidics-optimized particle simulation algorithm32), NSGA-
II could be used to optimize an inertial microfluidic chip so as
to increase the separation performance while minimizing the
damage to cells from shear stress.
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