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Abstract

We have developed an harmonic representation for the three dimensional field components
within the windings of accelerator magnets. The form by which the field is presented is suitable
for interfacing with other codes that make use of the 3D field components ( particle tracking
and stability). The field components can be calculated with high precision and reduced cpu
time at any location (r,0,z) inside the magnet bore. The same conductor geometry which is
used to simulate line currents is also used in CAD with modifications more readily available.
It is our hope that the format used here for magnetic fields can be used not only as a means
of delivering fields but also as a way by which beam dynamics can suggest possible correction
to the conductor geometry.

Introduction

In 2D problems we are accustomed to express the transverse components of a non-skew
magnetic field in the form :

B, = Z b,r" 1 sinn
n=1

= (D
By = Z b,r™ 1 cos nd
n=1

It is of interest to exhibit similar means by which the components of a 3D field correspondingly
might be usefully expressed in a non-skew situation.

We accordingly note that in the curl-free divergence-free region near the axis r=0 the field
components may then be expressed as given by B = —VV where V is a scalar potential function
for which V2V = 0. The proposed solution can be written in the form :

V= Z Va(r, z) sinnf
n=1

with : 2)
10 ( SVR) oV, n%V,

ror\ or ) T 02 T
We note that if V, were to be free of any z-dependence, the acceptable solution for V, near
the axis would be expressed by a single term proportional to " (i.e., involving r raised to the

positive power n); more generally one would represent V,, by a power series involving factors
™2k commencing with ", and employing z-dependent coefficients :

V, = Z Cn,k(z)r“”k
k=0

with Cy k() satisfying the recursion relation 3)
1 dPCss.i

. i) = ;
M) = - i

k=1,..




in order that the series for V, satisfy the differential equation written above. With introduction
of A,(z) as a notation for C,, o(z), the solution of the recursion relation becomes expressed by

2k
An! )
k n'& dz?

— 4)
Cn,k(z) ( ) 22kk1(n i3 k)
and therefore :
!
7 s e L 8
In (k-—o( ) 22k k! (n + k)! ()™ )r
or
" i 5)
An(2) 4, (2) (
. n_ _‘n\%) nt2 n n+4
Vo= A" = o D" T Rmt DT
I S
384(n+1)(n +2)(n + 3)
With
Brpn = ———=sinnf = g;,r" ! sinnf
: or
Byn = _EVR cosnd = gg,r" ") cos nf 6)
r
o —% sinnf = g,,r" sinnf
’ 0z

2-Dimensional Field

The transverse components of a 2D non skewed magnetic field in a current-free region near
the axis are conveniently expressible as?:

Be== Zb r*1sinnd

Z bor™ 1 cos nf

and : @)
x_Zbr Lsin(n —1)0

y_anr cos (n — 1)0

The two dimensional Cartesian components can be written in complex notation as:

B*=—i) b,z ; B*=B;—iB, 8)

where Z = 7% = ¢ 44y . The above equation can be reduced to :
=) crz*! ©)
where C} = a, — 1b, and a, = 0 in a non skewed field. For a dipole n=1,3,5,..,

and for a quadrupole n=2,6,10...

z K., Halbach “Fields And First Order Petrubation Effects In Two-Dimensional Conductor Dominated
Magnets” , N uclear Instruments And Methods 78 , 185-198 (1970) .
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3-Dimensional Field

The transverse field components Bx and By

We attempt here to develop the transverse field components of a three—dimensional non skew
field in the same spirit as was done for the two—dimensional case. The transverse components
of the field can be put into a more general form than equation (7) :

B, =Y gmr" 'sinnf

n=1
Py Zggnr""l cos nfl
n=1

and : (10)

B, =Y §mTdn ;99“ i (n— 1)8 + y Z2—H0r" sin (n +1)0

n=1 n=1

B, = Z Grn T Gbn ;—ggn 1 cos (n—1)8 — Z m—”%—@ﬁr“"] cos(n+1)0

n=1 n=1
Similarly to equation (8) the transverse Cartesian components can be expressed using complex
notation :
¥ __ - Grn + Gon n—1 . Grn — 90n 1 "
B —-MEZITZ +‘LZ:1T;§'Z (11)
n= n=

Note that in the limiting case where the field reduces to a two dimensional one grn = ggn = bn.

Also , as will be shown later,
d
rn — 96n = ?‘/ gzn(r’Z)dz (12)
- Or

The functions g, and gy,

Whereas the harmonic coefficients b, constitute a set of constants in the 2D case , their
equivalent counterparts g,, , gg» in the 3D case are in general functions of r and z (Eq. 5 and
6 ) as shown below for a current-free region (e.g. , near the axis) :

n!l(n + 2k
gl ) = 2 (1 g A o

A=l i o (13)
_ ekl : 2k) . 2k
gon(r 2) = g( D S mrm G
Explicitly we can write the above as :
n-+2 " 2 n+4 " 4
ra\T, = An L -
g (T Z) n (Z) + 4(n + 1)An(z)r 32(??. + 1)(n + 2)AR (Z)r
+ n + 6 i r rﬁ _

384(n—|—1)(n+2)(n+3) " (14)

n " n "
P T | 2 _ B
PTEE ) R Uy i (&
n

gon(r,z) = —nAn(z) +
1 6

R D)@ T




wherein the coefficients An(z) , A,(z) , etc. are coefficients of a scalar potential function
as previously shown. Such formulas, if not truncated, lead to 3D field components that are
both curl-free and divergence free, as is appropriate for a stationary magnetic field in a current-
free region. If the summations over k are truncated so that the summations for ¢, , gs, are
extended through values of this index that are greater by unity than the index limit for g, then
the corresponding magnetic field will still be seen to be divergence free ( as may be appropriate
for a Hamiltonian formulation of particle dynamics under the action of g[vxB] forces).

As shown above g¢,, , g4, are power functions in r and functions of A, (z) and its derivatives.
As will be shown we can evaluate A,(z) and set it in tables from which its derivatives can be
calculated as well. Equation (11) now suggests the following form for the transverse component
of the 3D field :

[ !
B*(r,z) = By — 1By = — 32 Z (_1)k+1 22‘:;%(1? +__k36 1AL2")(z)-r2k Zn—1
) et WP (15)
s | lk ” RN R
+1 iR 42 2wl
; _g( e
The z directed field component B,
We can express the z directed field component as:
B, =) gir"sinn = ﬁ%g_ (16)
n=1

(Note that we have here r™ and not r"~! as written in equation 10). In analogy to equation
12 we have:

!
gen(rr2) = 3 (" At o
=0

or explicitly :

L ]_ nr 1 Hrer

o L. SR 2 4
gzﬂ(""s z) = An(z) + 4(71 + 1)An (Z)T‘ 32(?’3 I 1)(?1 B 2) n (z)'r """ (18)
Note also that :
10 n\’,
Gen(r, 2) = ;——99 a(zr 2) (19)

It will be noted from equation (10) — or, more explicitly, from equation (15)— that in truly
3D situations a single harmonic component (characterized by a single index n to describe the
0 dependence of the r, ¢, and z components of the field ) will contain “pseudo-multipole”
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components> of field in the sense that the transverse field components for such a harmonic no
longer will exhibit a pure ™! dependence on the cylindrical-coordinate radius. Such additional
pseudo-multipole terms arise not only from the presence of the factor Z """ shown explicitly
in equation (11), but also from the r-dependence of the many terms that form the (differing)
expressions for gm(r,z) and gy, (r,z) [as is evident from equations (12) , or (15)].Thus, as Krejcik
and others ( EJ.N. Wilson , G. Wustefeld ) have indicated, a lens structure with quadrupole
symmetry can lead in a 3D analysis of end fields to the presence of pseudo-octupole components.

The integrals of the transverse components of the field ( integrated with respect to z at
constant values of r and ¢, completely through an end region of a lens element with a simple 2D
design in the interior ) of course will themselves have strictly 2D character , with the integrals
of gy, and grn becoming identical, and the “pseudo_multipole” elements of these integrated
fields will be absent. [ In simple cases in which a surrounding magnetic shield (if present) is
of high permeability with an extended cylindrical interface, the 2D character of the integrated
transverse components of field indeed can be directly related to the integral of the longitudinal
component of current density.]*

It may be regarded as desirable that the respective series for g; , , gg,» and gzn be truncated
so that the series for g, contains one fewer terms than either of the series for g;, and g0,
It will be seen that, with such a termination, the divergence of B will vanish exactly (if the
derivatives of A,(z) are accurately interrelated ) , although the curl of B in general then will
not do so exactly.

19(rBy) 10Bg A 0B, _
Ve Tt Y e
The vanishing of the divergence, however, assures that this field is derivable from a vector-
potential function (Appendix A) , as is required for a Hamiltonian representation of particle
motion under the influence of q[vxB] forces. For symplectic computational work one of course

must also take into consideration the need for symplectic integration algorithems.?

Example — dipole D19

As an example we have used the end region of dipole D19. Shown is the conductor geometry
used for field calculation. We have computed both g, , g9, and g, from which the A(z) and
its derivatives have been computed. In the following figures we show results for the A‘s derived
from the conductor only the iron only and both iron and conductor together. For the conductor

alone the A’s have been computed up to ‘367‘:52—) for n=1,3,5,7 and 9. The quality of the iron
contribution at the present time is limited and therefor the A’s for the iron and for the iron +
conductor have been computed only to a—éi@ for n=1,3,5,7 and 9

* This terminology has been suggested by P.Krejcik, CERN ps/87-21 (AA) —paper presented at the
1987 IEEE Particle Accelerator Conference , Washington, D.C. ; March 16-19, 1987 ; Proc. 1987 IEEE
Particle Accel. Conf., V.2 , 1278-1280.

*  For discussion of end windin§s of this character see, for example, Laslett, Caspi, and Helm, Particle
Accelerator 22, 1-14 (1987) and 23, 149-150 (1988).

> See, for example, Etienne Forest and Ronald D. Ruth, “Fourth-Order S mplectic Integration”, Physica
D, 43, 105-117 (North-Holland, 1990). We have been informed by Dr. Forest that he has also obtained
similar results for sixth-order integration. Earlier third-order results were presented by Dr. Ruth at the
1983 Particle Accelerator Conference, “A Canonical Integration Technique”, IEEE Trans. Nucl. Sci.,
NS-30 (No. 4, Part 1), 2669-2671 (1983).
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Figure 2 Conductor geometry in the end region of dipole magnet D19 — LAYER-1 SIDE.
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Figure 3 Conductor geometry in the end region of dipole magnet D19 — LAYER-2 TOP.
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Figure 4 Conductor geometry in the end region of dipole magnet D19 — LAYER-2 SIDE.
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Figure 5 Coil schematic and IRON location in the end region.



Dipole D19
Al(z) at r=1.0 em
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Figure 6 The dipole function Al1(z) — CONDUCTOR ONLY.
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Figure 7 The dipole function Al(z) — IRON ONLY.
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Dipole D19
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Figure 8 The dipole function Al(z) — CONDUCTOR and IRON.
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Figure 9 The first derivative function of n=1 — A1’(z) — CONDUCTOR ONLY.
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Dipole D19
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Figure 10 The first derivative function of n=1 — A1’(z) — IRON ONLY .
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Figure 11 The first derivative function of n=1 — A1’(z) — CONDUCTOR and IRON.
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Dipole D19
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Figure 12 The second derivative function of n=1 — A1”(z) — CONDUCTOR ONLY.

Dipole D19
A1"(z) at r=1.0 cm
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Figure 13 The second derivative function of n=1 — A17(z) — IRON ONLY.



Dipole D19
A1"(z) at r=1.0 em

1500 ~—rrrrrrr T
1000
g 500
B
=
&
=
E L
7 0
-
-500 |-
—1000 L Lo
10.0 20.0

Figure 14 The second derivative function
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of n=1 — A1”(@z) — CONDUCTOR and IRON.

Dipole D19
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Figure 15 The 3-rd derivative function of n=1 — A1'"(z) — CONDUCTOR ONLY.
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Dipole D19
AL"(z) at r=1.0 ¢
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Figure 16 The fourth derivative function of n=1 — A1""(z) — CONDUCTOR ONLY.
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Figure 17 The fifth derivative function of n=1 — A1”"’(z) — CONDUCTOR ONLY.
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Dipole D19
AL"""(z) at r=1.0 cm
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Figure 18 The sixth derivative function of n=1 — A1”""(z) — CONDUCTOR ONLY.
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Figure 19 The sextupole function A3(z) — CONDUCTOR ONLY.
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Dipole D19
A3(z) at 1.0 cm
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Figure 20 The sextupole function A3(z) — IRON ONLY.
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Figure 21 The sextupole function A3(z) — CONDUCTOR and IRON.
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Dipole D19
A3'(z) at 1.0 cm
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Figure 22 The first derivative function of n=3 — A3’(z) — CONDUCTOR ONLY.
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Figure 23 The first derivative function of n=3 — A3’(z) — IRON ONLY.
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Dipole D19
A3'(z) at 1.0 em
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Figure 24 The first derivative function of n=3 — A3’(z) — CONDUCTOR and IRON.
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Figure 25 The second derivative function of n=3 — A3”(z) — CONDUCTOR ONLY.
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Dipole D19
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Figure 26 The second derivative function of n=3 — A3"(z) — IRON ONLY.

Dipole D19
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Figure 27 The second derivative function of n=3 — A3"(z) — CONDUCTOR and IRON.
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Dipole D19
A3'"(z) at 1.0 em
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Figure 28 The 3-rd derivative function of n=3 — A3™(z) — CONDUCTOR ONLY.
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Figure 29 The fourth derivative function of n=3 — A3""(z) — CONDUCTOR ONLY.

19



Dipole D19
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Figure 30 The fifth derivative function of n=3 — A3"’(z) — CONDUCTOR ONLY.
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Figure 31 The sixth derivative function of n=3 — A3""(z) — CONDUCTOR ONLY.
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Dipole D19
A5(z) at r=1.0 em
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Figure 32 The decapole function A5(z) — CONDUCTOR ONLY.
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Figure 33 The decapole function A5(z) — IRON ONLY.
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Figure 34 The decapole function A5(z) — CONDUCTOR and IRON.
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Figure 35 The first derivative function of n=5 — A5’(z) — CONDUCTOR ONLY.
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Figure 36 The first derivative function of n=5 — A5’(z) — IRON ONLY.
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Figure 37 The first derivative function of n=5 — A5’(z) — CONDUCTOR and IRON.
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Figure 38 The second derivative function of n=5 — A5”(z) — CONDUCTOR ONLY.
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Figure 39 The second derivative function of n=5 — A5”(z) — IRON ONLY.
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Figure 40 The second derivative function of n=5 — A5”(z) — CONDUCTOR and IRON.
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Figure 41 The 3-rd derivative function of n=5 — A5™(z) — CONDUCTOR ONLY.
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Dipole D19
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Figure 42 The fourth derivative function of n=5 — A5™"(z) — CONDUCTOR ONLY.
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Figure 43 The fifth derivative function of n=5 — A5""(z) — CONDUCTOR ONLY.
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Dipole D19
A5"""'(z) at r=1.0 cm
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Figure 44 The sixth derivative function of n=5 — A5"""(z) — CONDUCTOR ONLY.
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Figure 45 The 14 pole function A7(z) — CONDUCTOR ONLY.
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Figure 46 The 14 pole function A7(z) — IRON ONLY.
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Figure 47 The 14 pole function A7(z) — CONDUCTOR and IRON.
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Dipole D19
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Figure 48 The first derivative function of n=7 — A7’(z) — CONDUCTOR ONLY.
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Figure 49 The first derivative function of n=7 — A7’(z) — IRON ONLY.
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Dipole D19
A7'(z) at r=1.0 cm
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Figure 50 The first derivative function of n=7 — A7’(z) — CONDUCTOR and IRON.
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Figure 51 The second derivative function of n=7 — A7”(z) — CONDUCTOR ONLY.
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Dipole D19
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Figure 52 The second derivative function of n=7 — A77(z) — IRON ONLY.
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Figure 53 The second derivative function of n=7 — A7"(z) — CONDUCTOR and IRON.
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Dipole D19
A7"(z) at r=1.0 cm
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Figure 54 The 3-rd derivative function of n=7 — A7"(z) — CONDUCTOR ONLY.
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Figure 55 The fourth derivative function of n=7 — A7"(z) — CONDUCTOR ONLY.
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Dipole D19
A7""(z) at r=1.0 cm
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Figure 56 The fifth derivative function of n=7 — A7”""(z) — CONDUCTOR ONLY.
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Figure 57 The sixth derivative function of n=7 — A7"""(z) — CONDUCTOR ONLY.
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Figure 58 The 18 pole function A9(z) — CONDUCTOR ONLY.
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Figure 59 The 18 pole function A9(z) — IRON ONLY.
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Figure 60 The 18 pole function A9(z) — CONDUCTOR and IRON.
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Figure 61 The first derivative function of n=9 — A9’(z) — CONDUCTOR ONLY.
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Dipole D19
A9’(z) at r=1.0 cm
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Figure 62 The first derivative function of n=9 — A9’(z) — IRON ONLY.
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Figure 63 The first derivative function of n=9 — A9’(z) — CONDUCTOR and IRON.
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Dipole D19
A9"(z) at r=1.0 cm
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Figure 64 The second derivative function of n=9 — A9”(z) — CONDUCTOR ONLY.
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Figure 65 The second derivative function of n=9 — A9”(z) — IRON ONLY.
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Figure 66 The second derivative function of n=9 — A9”(z) — CONDUCTOR and IRON.
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Figure 67 The 3-rd derivative function of n=9 — A9'"(z) — CONDUCTOR ONLY.
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Figure 68 The fourth derivative function of n=9 — A9"(z) — CONDUCTOR ONLY.
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Figure 69 The fifth derivative function of n=9 — A9™”(z) — CONDUCTOR ONLY.
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Dipole D19
A9"""(z) at r=1.0 cm
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Figure. 70 The sixth derivative function of n=9 — A9"(z) — CONDUCTOR ONLY.
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Appendix A The Vector Potential

Consistent with the form of series proposed for expressing the field components we may
provide in various ways forms for a vector-potential function whose curl will provide these field
components. One such form is shown below and, if truncated in the manner suggested, will give
a field that remains divergence free. We express the vector potential A as :

A. = Z [Ar,nér + Aﬁ,néﬂ + Az,néz} (1)
and write :
A, (2) A, (2)
Az "= " n n n+2 n
n = A = o ) 2191(n + 1)(n + 2)
A;w(z) n+4_n+6
263!(n+1)(n+2)(n+3)r r" 7% 4+ ] cosnb
Ar - {___ An(z) Tn+1 + An (z) rn+3
o 2(n+1) 281!(n+ 1)(n +2) @
Ay'(2) i
Pt )t e
Ai’ (z) Aﬂ!(z)
A e [ n n+1 n n+3
on =3+ T Py D(n+2)
A, (2) n+5 4 .]sinnf

- 22(n+ 1)(n+2)(n + 3)
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