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Abstract

,-;

We have developed an harmonic representation for the three dimensional field components
within the windings of accelerator magnets. The form by which the field is presented is suitable
for interfacing with other codes that make use of the 3D field components ( particle tracking
and stability). The field components can be calculated with high precision and reduced cpu
time at any location (r,O,z) inside the magnet bore. The same conductor geometry which is
used to simulate line currents is also used in CAD with modifications more readily available.
It is our hope that the format used here for magnetic fields can be used not only as a means
of delivering fields but also as a way by which beam dynamics can suggest possible correction
to the conductor geometry.

Introduction

In 2D problems we are accustomed to express the transverse components of a non-skew
magnetic field in the form :

Br = L bnrn-l sin nO
n=l

Be = L bnrn-l cos nO
n=l

(1)

It is of interestto exhibitsimilarmeansby whichthe componentsof a 3D fieldcorrespondingly
might be usefullyexpressedin a non-skewsituation.

We accordinglynote that in the curl-freedivergence-freeregion near the axis r=Othe field
components may then be expressed as given by jj = - \7V where V is a scalar potential function
for which V2V = O. The proposed solution can be written in the form :

V =L Vn(r, z) sin nO
n=l

with:

~~(r aVn)+ a2vn- n2Vn = 0
r ar ar 8z2 r2

(2)

'f'.

We note that if Vn were to be free of any z-dependence, the acceptable solution for Vn near
the axis would be expressed by a single term proportional to rn (i.e., involving r raised to the
positivepowern); more generallyone wouldrepresentVn by a power series involvingfactors
rn+2k,commencing with rn, and employing z-dependent coefficients:

11. = '" C (z )rn+2k
n ~ n,k

k=O

with Cn,k(Z) satisfying the recursion 1'elation

1 d2Cn k-l

Cn,k(Z)= - 4k(n + k) dZ'2

(3)

k=l,...
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in order that the series for Vn satisfy the differential equation written above. With introduction
of An(z) as a notation for Cn,o(z), the solution of the recursion relation becomes expressed by

n' d2kAn(z)

Cn,k(Z) == (-l)k ~ dZ2k (4)

and therefore:

-

(
",. ( )

k+l' n! (2k)
(

2k

)
n

Vn - - ~ -1 22kk!(n+ k)!An z)r r
'!"

or :
" ,",

V~ ==A (z),n - An(z) ,n+2 + An (z) ,n+4
n n 4(n+l) 32(n+l)(n+2)

A""" (z )- n ,n+6 +
384(n+ l)(n + 2)(n + 3) ...

(5)

With

B avn. 0 n-l. 0r n == -- a SIn n == grn' SIn n, ,
Be n ==_::Vn cos nO ==gen,n-l cos nO, ,

B avn. O n' 0z n == -- a SIn n == gzn' SIn n, z

(6)

2-Dimensional Field

The transverse components of a 2D non skewed magnetic field in a current-free region near
the axis are conveniently expressible as2:

Br ==L bn,n-l sin nO
n=l

Be ==L bn,n-l cos nO
n=l

and:

Bx = L bn,n-l sin (n - 1)0
n=l

By = L bnrn-l cos (n - 1)0
n=l

The two dimensional Cartesian components can be written in complex notation as:

B* == -i L bnZn-l ; B* == Bx - iBy
n=l

where Z = ,ie = x + iy . The aboveequationcan be reduced to :

B* == L C~Zn-l
n=l

where C~== an - ibn and an == 0 in a non skewedfield. For a dipole n=1,3,5,..,
and for a quadrupole n=2,6,lO...
2 K. Halbach, "Fields And First Order Petrubation Effects In Two-Dimensional Conductor Dominated
Magnets" , Nuclear Instruments And Methods 78 , 185-1f)8 (1970) .

(7)

...
(8)

(9)
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3-Dimensional Field

~

The transverse field components Bx and fu

We attempt here to develop the transverse field components of a three--dimensional non skew
field in the same spirit as was done for the two-dimensional case. The transverse components
of the field can be put into a more general form than equation (7) :

B " n-l' Br = L..,; grn l' SIn n
n=l

Bo = L gOnrn-l cos nB
n=l

and:

B L grn + gOn n-l .
( l)B + L grn - gOn n-l .

( + l)Bx = r SIn n - r SIn n2 2
n=l n=l

B -" grn + gOn n-l ( l)B " grn- gOn n-l ( + l)By - L..,; 2 r cos n - - ~ 2 r cos n
n=l n=l

Similarly to equation (8) the transverse Cartesian components can be expressed using complex
notation:

(10)

B* = -i" grn + gOnZn-l + i" grn - gOn 1 Z*n+l
~ 2 ~ 2 r2
n=l n=l

Note that in the limitingcase wherethe fieldreducesto a two dimensionalone grn = gOn = bn.
Also, as will be shown later,

(11)

grn - gOn= r J
8gzn(r, z)

8r dz
(12)

~

The functions grn and ~n

Whereas the harmonic coefficients bn constitute a set of constants in the 2D case, their
equivalentcounterpartsgrn , gOnin the 3D case are in generalfunctionsof rand z (Eq. 5 and
6 ) as shown below for a current-free region (e.g. , near the axis) :

( ) =" (-l )k+l n!(n + 2k) A(2k)( )
2k

grn r, z ~ 22kk!(n+ k)! n z r

" k+l n!n (2k) 2k

gOn(r,z) = ~(-1) 2kk'( k),An (z)rk 2 '. n + .=0
Explicitly we can write the above as :

n + 2 "2 n + 4 '''' 4
grn(r,z) = -nAn(z) + ( )An(z)r - ( )( )An (z)r4 n + 1 32 n + 1 n + 2

n + 6 "'''' 6

+ ~.~"' ~ " . ~)(n + 3)An (z)r -. ..
n "2 n Iff' 4

gen(r,z) = -nAn(z) + 4(n + l)An(z)r - 32(n . 1\1 I O\An (z)r
. n """ 6
+ ~ ~ . , ~ , , ~, / . ~ ,An (Z )r -. ..

(13)

(14)
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wherein the coefficients An (z) , A~(z) , etc. are coefficients of a scalar potential function
as previously shown. Such formulas, if not truncated, lead to 3D field components that are
both curl-free and divergence free, as is appropriate for a stationary magnetic field in a current-
free region. If the summationsover k are truncat~dso that the summationsfor grn , gOnare
extended through values of this index that are greater by unity than the index limit for gzn, then
the corresponding magnetic field will still be seen to be divergence free ( as may be appropriate
for a Hamiltonian formulation of particle dynamics under the action of q[vxB] forces).

As shown above grn , g(Jnare power functions in r and functions of An (z) and its derivatives.
As will be shown we can evaluate An (z) and set it in tables from which its derivatives can be
calculated as well. Equation (11) now suggests the following form for the transverse component
of the 3D field:

'"

..

B*(r, z) = Bx - iB = - i '"
[

'" (-l )k+l n!(n + k) A(2k)( ). 2k

]

Zn-l

y ~ ~ 22kk!(n+k)! n z r

+ i "'
.

[

'" (-l )k+1 n!k A(2k) ( ) 2(k-l)

]
Z*(n+l)

~ ~ 22kk! (n + k)! n z rn=l k=O

(15)

The! directed field component Hz

We can express the z directed field component as:

B - '" n' aVz-~gznr Slnn()=--
n=l az

(16)

(Note that we have here rn and not rn-l as written in equation 10). In analogy to equation
12 we have:

gzn(r,z) = L (_l)k+l r-.,>z.1I~! . n.A~2k+l)r2k
k=O

(17)

or explicitly:

, 1 III 2 1 "'" 4
gzn(r,z) = -An(z) + ,If I 1\An(z)r - <'tof I 1\f I o\An (z)r ..... (18)

f..

Note also that:

gzn(r, z) = ~ag(Jn(r, z)n az (19)

It will be noted from equation (10) - or, more explicitly, from equation (15)- that in truly
3D situations a single harmonic component (characterized by a single index n to describe the
e dependence of the r, (), and z components of the field) will contain "pseudo-multipole"

4
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components3 of field in the sense that the transverse field components for such a harmonic no
longer will exhibit a pure fI-l dependence on the cylindrical-coordinate radius. Such additional
pseudo-multipole terms arise not only from the presence of the factor Z*n+l shown explicitly
in equation (11), but also from the r-dependence of the many terms that form the (differing)
expressions for grn(r,z)and gOn(r,z)[as is evident from equations (12) , or (15)].Thus, as Krejcik
and others ( E.J.N. Wilson, G. Wustefeld ) have indicated, a lens structure with quadrupole
symmetry can lead in a 3D analysis of end helds to the presence of pseudo-octupole components.I

The integrals of the transverse components of the field ( integrated with respect to z at
constant values of rand 0, completely through an end region of a lens element with a simple 2D
design in the interior) of course will themselves have strictly 2D character, with the integrals
of gOnand grn becoming identical, and the "pseudo_multipole" elements of these integrated
fields will be absent. [In simple cases in which a surrounding magnetic shield (if present) is
of high permeability with an extended cylindrical interface, the 2D character of the integrated
transverse components of field indeed can be directly related to the integral of the longitudinal
component of current density.]4

It may be regarded as desirable that the respective series for gr n , gOn'and gznbe truncated
so that the series for gzn contains one fewer terms than either of the series for gr nand gOn'
It will be seen that, with such a termination, the divergence of B will vanish exactly (if the
derivatives of An (z) are accurately interrelated) , although the curl of B in general then will
not do so exactly.

\1 . B = ~0 (r'f3r ) + ~oBe + oBz = 0
r or r 00 oz

The vanishing of the divergence, however, assures that this field is derivable from a vector-

potential function (Appendix A) , as is required for a Hamiltonian representation of particle
motion under the influence of q[vxB] forces. For symplectic computational work one of course
must also take into consideration the need for symplectic integration algorithems.5

(20)

Example= dipole D19

As an example we have used the end region of dipole D19. Shown is the conductor geometryI

used for field calculation. We have computed both gr n , gOnand gznfrom which the A(z) and
its derivatives have been computed. In theifollowing figures we show results for the A's derivedI

from the conductor only the iron only and;both iron and conductor together. For the conductor

alone the A's have been computed up to i a6a~~z) for n=I,3,5,7 and 9. The quality of the iron
contribution at the present time is limited;and therefor the A's for the iron and for the iron +

conductor have been computed only to a2a~~z)for n=I,3,5,7 and 9

3 This terminology has been suggested by F.Krejcik, CERN ps/87-21 (AA) -paper presented at the
1987 IEEE Particle Accelerator Conference, Washington, D.C. ; March 16-19, 1987 ; Froc. 1987 IEEE
Particle Accel. Conf., V.2 , 1278-1280.
4 For discussion of end windings of this character see, for example, Laslett, Caspi, and Helm, Particle
Accelerator 22, 1-14 (1987) and 23, 149-150 (1988).
5 See, for example, Etienn

.

e Forest and Ronald D. Ruth, "Fourth-Order Symplectic Integration", Physica
D, 43 , 105-117 (North-Holland, 1990). We have been informed by Dr. Forest that he has also obtained
similar results for sixth-order integration. Earlier third-order results were presented by Dr. Ruth at the
1983 Panicle Accelerator Conference, "A Canonical Integration Technique", IEEE Trans. Nucl. Sci.,
NS-30 (No.4, Part 1), 2669-2671 (1983).
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13.7802

11.0800

7.7500
~

Figure 1 Conductor geometry in the end region of dipole magnet D19 - LAYER-ITOP.

Figure 2 Conductor geometry in the end region of dipole magnet Dl9 - LAYER-l SIDE.

20.5665

13.0000

:-"

Figure 3 Conductor geometry in the end region of dipole magnet Dl9 - LAYER-2TOP.
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Figure 4 Conductor geometry in the end region of dipole magnet D19 - LAYER-2 SIDE.

I
z=10.0

I
z=25.0

1
z=50,O

J
z=60.0

Figure 5 Coil schematic and IRON location in the end region.
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Z (em)

8



45000

j 40000
<'6

~ 35000
N
';::; 30000<

75000

Dipole D19
Al(z) at r=1.0 em

50.0 60.0

70000
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Figure 10 The first derivative function of n=1 - Al '(z) - IRON ONLY.
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Figure 12 The second derivative fun4tion of n=l - A1"(z) - CONDUCTOR ONLY.
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Figure 13 The second derivativ~ function of n=l - Al"(z) - IRON ONLY.
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Figure 14 The secondderivativefunctionof n=l - Al"(z) - CONDUCTOR and IRON.
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Figure 15 The 3-rd derivative function of n=1 - Al "'(z) - CONDUCTOR ONLY.
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Figure 16 The fourth derivative function of n=l - A1""(z) - CONDUCTOR ONLY.
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Figure 17 The fifth derivative function of n=l - A1"'''(z) - CONDUCTOR ONLY.
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Figure 18 The sixth derivativefunction of n=1 - Al''''''(z) - CONDUCTOR ONLY.
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Figure 20 The sextupole function A3(z) - IRON ONLY.

Dipole D19
A3(z) at 1.0 em

100

-100

-150
10.0 20.0 30.0 40.0 50.0 60.0

Z (em)
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Dipole Di9
A3'(z}at 1.0 em
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Figure 22 The first derivative function of n=3 - A3'(z) - CONDUCTOR ONLY.
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Figure 23 The first derivative function of n=3 - A3'(z) - IRON ONLY.
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Figure 26 The second derivative function of n=3 - A3"(z) - IRON ONLY.
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Figure 27 The second derivative function of n=3 - A3"(z) - CONDUCTOR and IRON.
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A3"'(z)at 1.0 em
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Figure 28 The 3-rd derivative function of n=3 - A3"'(z) - CONDUCTOR ONLY.
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Figure 29 The fourth derivative function of n=3 - A3""(z) - CONDUCTOR ONLY.
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Dipole D 19
A3"'''(z) at 1.0 em

30.0 40.0 50.0 60.0

Figure 30 The fifth derivative function of n=3 - A3"'''(z) - CONDUCTOR ONLY.
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Figure 31 The sixth derivative function of n=3 - A3"''''(z) - CONDUCTOR ONLY.
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Figure 32 The decapole function A5(z) - CONDUCTOR ONLY.
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Figure 44 The sixth derivative function of n=5 - A5"""(z) - CONDUCTOR ONLY.
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Figure 45 The 14 pole function A7(z) - CONDUCTOR ONLY.
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Figure 49 The first derivative function of n=7 - A7'(z) - IRON ONLY.
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Figure 56 The fifth derivative function of n=7 - A7""'(z) - CONDUCTOR ONLY.
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Figure 57 The sixth derivative function of n=7 - AT"'''(z) - CONDUCTOR ONLY.
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Figure 58 The 18 pole function A9(z) - CONDUCTOR ONLY.
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Figure 60 The 18 pole function A9(z) - CONDUCTOR and IRON.
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Figure 61 The first derivative function of n=9 - A9'(z) - CONDUCTOR ONLY.

35

0.05

IIIa"
.......
0)
Q'J
::s 0.00G$

N
(;)<

-0.05

0.10

0.08

0.06

0.04

i 0.02
.......
V1
V1
::s 0.00G$

.......

-0.02en
<

-0.04

-0.06

-0.08

-0.10
10.0 20.0



0.00010

0.00005

"s
<:)

.........
1I'J
1I'J
~
cd
~

0.00000

Dipole D 19
A9'(z) at r=1.0 em

'7

20.0 30.0 40.0 50.0 60.0

~
~<

-0.00005

-0.00010
10.0

Figure 62 The first derivative function of n=9 - A9'(z) - IRON ONLY.

Z (em)

0.10

Dipole Di9
A9'(z) at r=1.0 em

".

-0.10
10.0 20.0 30.0 40.0 50.0 60.0
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Figure 64 The second derivative function of n=9 - A9"(z)- CONDUCTOR ONLY.
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Figure 65 The second derivative function of n=9 - A9"(z)- IRON ONLY.
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Figure 67 The 3-rd derivative function of n=9 - A9"'(z) - CONDUCTOR ONLY.
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Appendix A The Vector Potential

Consistentwith the form of seriesproposedfor expressingthe field componentswe may
provide in various ways forms for a vector-potential function whose curl will provide these field
components. One such form is shown below and, if truncated in the manner suggested, will give
a field that remains divergence free. We express the vector potential A as :

A = L [Ar,nlr + Ao,nlo + Az,nlz]
n

(1)

and write:

1111

n A:(z) n+2 + An (z)
Az,n = [An(z)r - 221!(n+ 1)r 242!(n+ l)(n + 2)

/1/1/1

An (z) rn+4rn+6+ ...] cos nO
- 263!(n+ l)(n + 2)(n + 3)

I III

An (z) n+1 An (z ) r n+3

Ar,n = [ 2(n+ 1)r + 231!(n+ l)(n + 2)
'''11

An (z) rn+5+...]cosnO
- 252!(n + l)(n + 2)(n + 3)

- - A~(z) rn+l + A:' (z) rn+3
Ao,n-[ 2(n+l) 23l!(n+l)(n+2)

"'11

An (z) rn+5 + ...] sin nO
- 252!(n+ l)(n + 2)(n + 3)

(2)

~
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