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Continuity of the measure of the spectrum for quasiperiodic
Schrodinger operators with rough potentials

Svetlana Jitomirskaya and Rajinder Mavi*

August 18, 2015

Abstract
We study discrete quasiperiodic Schrédinger operators on £2(Z) with potentials defined by ~-Holder
functions. We prove a general statement that for v > 1/2 and under the condition of positive Lyapunov
exponents, measure of the spectrum at irrational frequencies is the limit of measures of spectra of periodic
approximants. An important ingredient in our analysis is a general result on uniformity of the upper
Lyapunov exponent of strictly ergodic cocycles.

1 Introduction
Consider quasiperiodic operators acting on [2(Z) and given by:
(Hoot)(n) = ¥(n—1)+¢(n+1)+ flwon+0)¢(n), n=...,-1,0,1,..., (1.1)

where f(z) is a real-valued sampling function of period 1. Denote by S(w,8) the spectrum of H, g. For
rational & = p/q the spectrum consists of at most ¢ intervals. Let S(w) = UGERS(W,H). Note that for

irrational w the spectrum of H (as a set) is independent of 6 (see, e.g., [13]), and therefore S(w, ) = S(w).
In this paper we study continuity of S(w) and its measure upon rational approximation of w, for rough
sampling functions f.

The last decade has seen an explosion of general results for operators (ILI)) with analytic f, see e.g. [9] [1§]
and references therein, and by now even the global theory of such operators is well developed [2 [3]. There
are very few complete results, however, beyond the analytic category. Indeed, not only the methods of
the mentioned papers intrinsically require analyticity or at least Gevrey regularity (e.g. the large deviation
theorems), but it is essential for some results too. For example, continuity of the Lyapunov exponent [10], an
important ingredient of many later developments, may not hold in the case of even C* regularity [35] (see
also [21]). The surprising counterexample in [35] has made it natural to conjecture that (near) analyticity
is essential for many other general properties of quasiperiodic potentials: positive Lyapunov exponents at
high couplings, localization in the regime of positive Lyapunov exponents, finiteness of transitions between
supercritical and subcritical regimes, almost reducibility conjecture, etc. This paper presents a result in
the opposite direction. We show that, under certain conditions, for the fundamental question of continuity
in w (previously established under the analyticity condition) not only analyticity is not essential, but such
continuity always holds even at surprisingly weak regularity. Namely, in the regime of positive Lyapunov
exponents, spectra of rational approximants converge a.e. to S(w) for all f, with Holder-1/2+ continuity.
To our knowledge, other than the very basic facts that require, at most, continuity of f, there are no other
results that do not require exclusion of potentially relevant parameteres or additional assumptions (e.g.
transversality) and work for potentials that rough, and the fact that one can even go beyond the Lipshitz
condition has been a surprise to the authors. Moreover, we have reasons to expect that our condition is
optimal as far as Holder regularity go.

*The work was supported by NSF Grant DMS-1101578.
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The fact that various quantities could be easier to analyze and sometimes are even computable for
periodic operators, H,, 4 9, makes results on continuity in w particularly important. For example, the famous
Hofstadter butterfly [16] is a plot of the almost Mathieu spectra for 50 rational values of w and visually based
inferences about the spectrum for irrational w implicitly assume continuity. It is therefore an important and
natural question if and in what sense the spectral properties of such rational approximants relate to those
of the quasi-periodic operator H,, g.

The history of this question was centered around the Aubry conjecture on the measure of the spectrum [T,
popularized by B. Simon [32,[33] : that for the almost Mathieu operator given by (1)) with f(6) = 2\ cos 276,
for irrational w and all real A, 6 there is an equality

[Sx(w,0)] = 4|1 — |\l (1.2)

Here, for sets, we use | - | to denote the Lebesgue measure. Avron,van Mouche, Simon [8] proved that, for
Al £ 1, |Sx(pn/an)] — 4|1 — |A|| as ¢, — oo, and Last [30] established this fact for |[A] = 1. Given these
theorems, the proof of the Aubry-Andre conjecture was reduced to a continuity result.

The continuity in w of S(w) in Hausdorff metric was proven in [7, [I4], requiring only the continuity of f.
Continuity of the measure of the spectrum is a more delicate issue, since, in particular, |S(w)| can be (and is,
for the almost Mathieu operator) discontinuous at rational w. We will actually use an even stronger notion
of a.e. setwise continuity. Namely, we say lim,,_, ., B, = B if and only if

limsup B,, = liminf B,, = B <= lim xp, = xB Lebesgue a.e. (1.3)
n—o00 n—00

n—r oo

Establishing continuity at irrational w requires quantitative estimates on the Hausdorff continuity of
the spectrum. The first such result, namely the Hélder—% continuity was proved in [11], where it was used
to establish a zero-measure spectrum (and therefore the Aubry-Andre conjecture) for the almost Mathieu
operator with Liouville frequencies w at the critical coupling A\ = 1. That argument was improved to the
Holder-1/2 continuity (for arbitrary f € C) in [§] and subsequently used in [29, [30] to establish (I2) for
the almost Mathieu operator for w with unbounded continuous fraction expansion, therefore proving the
Aubry-Andre conjecture for a.e. (but not all) w. The extension to all irrational w is due to [19] 6].

It was argued in [§] that Holder continuity of any order larger than 1/2 would imply the desired continuity
property of the measure of the spectrum for all w and f € C'. It was first noted in [23] that in the regime
of semi-uniform localization, the appropriate cut-offs of the exponentially localized eigenfunctions provide
good enough approximate eigenvectors for a perturbed operator to establish almost Lipshitz continuity (thus
establishing the Aubry-Andre conjecture in the localization regime available at that time). The idea of [19]
was that for Diophantine w and analytic f one can extract such eigenvectors (and thus establish almost
Lipshitz continuity of S) by finding the cut-off places at distance L from each other where the generalized
eigenfunction is exponentially small in L, simply as a corollary of positive Lyapunov exponents, without
establishing localization. This led to establishing that, in the regime of positive Lyapunov exponents, for
any analytic f, [S(£2)] — [S(w)| for every Diophantine w and its approximants £=. Recently, it was shown
in [22] that positivity of the Lyapunov exponent is not needed for this result, in particular, for analytic f,
and all irrational w, S(£2) — S(w).

Our goal is to show that under the condition of positivity of the Lyapunov exponent, one can significantly
relax the required regularity of f.

For a given energy F € R, a formal solution u of

Hu=Eu (1.4)

with operator H given by (1)) can be reconstructed from its values at two consecutive points with the
transfer matrix

AZ(9) = ( B-76 ); AZ T - SLy(R) (1.5)

I Tt should be noted that the argument of [6] that, in particular, completed the result for the critical value of A, did not
involve continuity in frequency



via the equation

< u(n+ 1) > — AP (0 4 nuw) ( u(sz(ﬁ)l) ) (1.6)

u(n)

Setting R : T — T, Rx := z+w, the pair (w, A®) viewed as a linear skew-product (z,v) — (Rz, A(x)v), x €
T, ve Rz, is called the corresponding Schrédinger cocycle. The iterations of the cocycle (w, A¥) for k>0

are given by
AP (0) = AB(REVg) ... AB(R'0)AE(9), AV =1 (1.7)

and
AE(0) = (AE(R*19)): k<o (1.8)

Therefore, it can be seen from (L6 that a solution to (4] for chosen initial conditions (u(0),u(—1)) for all

k € Z is given by,
( u(z(ﬁ)l) ) B AkE(G)( uié(_oi) > (1.9)

From general properties of subadditive ergodic cocycles, we can define the Lyapunov exponent
1 E - E
L(E)= hllén p In || A} (9)||d6 = Hlif Z In || A} (0)]|d8, (1.10)

furthermore, £(E) = limy, + In ||AF (6)|| for almost all 6 € T.
As mentioned above, £ may be discontinuous in the non-analytic category. Set Ly (w) := {E : L(E) > 0}.
Our main result is

Theorem 1.1 For every irrational w, there exists a sequence of rationals Z—" — w such that for any f €
CY(T) with v > 3

s(z—:) NLy(w) = S (w) N Ly(w). (1.11)

Remark 1. The convergence holds in the strong sense of (L3]).

2. The sequence 2—" will be the full sequence of continued fraction approximants of w in the Diophantine
case, and an appropriate subsequence of it otherwise. For practical purposes of making conclusions

about S(w) based on the information on S ( Z—") it is sufficient to have convergence along a subsequence.

3. It is an interesting question whether v = 1/2 represents a sharp regularity threshold for this result for
a.e. w.

4. Lower regularity is sufficient for a measure zero set of non-Diophantine w, see Theorem

5. It is also interesting to find out what is the lowest regularity requirement for the convergence of
full union spectra, without condition of positive £, and for the related Last’s intersection spectrum
conjecture. Both are more delicate and currently established only for analytic f ([22], see also [31]). We
expect that higher than 1/2 regularity should be required for those results, but that analytic condition
is improvable.

6. If we replace f in (1)) with Af, then L is expected to be positive for most f and large A through most
of the spectrum, creating a wide range of applicability for Theorem [Tl For analytic f this is known
to hold uniformly in (F,w) for large A. For the rough case, the relevant results are [34, 24](reviewer
requests Sinai)

Theorem [LT] certainly has an immediate corollary:



Corollary 1.2 For every irrational w, there exists a sequence of rationals Z—" — w such that for any f €
CY(T) with v > 3

S (5-") ALy ()] = S (W) N Ly (). (1.12)
n

This corollary for analytic f was the main result of [19] and our proof borrows some important ingredients
from that work. The main idea of the current paper is to show that, for Diophantine frequencies, y-Hélder
continuity of f is sufficient to find the cut-off places at distance L from each other where the generalized
eigenfunction is polynomially small in L, thus establishing S-Holder continuity of the spectrum with § < .
The requirement v > 1/2 comes from the application of the original argument in [8]. For non-Diophantine
frequencies we obtain the statement by extending the Holder continuity theorem of [§] in the following way:
for v-Holder functions f the spectrum is %—Hélder continuous, which is sufficient, under an appropriate
anti-Diophantine condition, even without positivity of the Lyapunov exponent, see Theorem

The proof requires very tight control on the perturbations of cocycles, in absence of continuity of the
Lyapunov exponent. To this end, we show that generally, for cocycles over uniquely ergodic dynamics, upper
bound is uniform in phases and neighborhoods (Theorem [3:2)).

The main part of the proof of Theorem [I.1] follows from Holder continuity properties of the spectrum
in the Hausdorff metric which are stated in section The argument for the positive Lyapunov exponent
regime uses tight bounds on matrix cocycle approximation covered in Section 4] which in turn depend on
a general result on uniform upper-semicontinuity of Lyapunov exponents for cocycles over uniquely ergodic
dynamics, and is proven in Section Bl Section [l completes the proof of Theorem .11

2 Continued fraction approximants

For k > 0, w € R is said to be x-Diophantine if there exists some C,, > 0 so that

Co
for all n € Z, where || - || denotes distance to the integers. For k > 0 a.e. w € T is k-Diophantine. For k =0

this condition is equivalent to having bounded type, so a.e. w € T is not 0-Diophantine.
Writing w in continued fraction expansion,

1
W:a0+ 1 :[GO;alaa/Qa"']u
a1 +
' 1
az + ———
as + e
the truncations p, /g, = [ao;a1,as,...,a,] are known as the continued fraction approximants. From the

theory of continued fractions [27], for xk-Diophantine w and n > n,, we have for some C,, > 0,

w
o <o

n

_Pn
Gn

1 1
< —-
dndn+1 dn

(2.2)

We will also need the following fact:

Lemma 2.1 (e.g. [20]) For an interval I C T, if n is such that |I| > qi then for any 6 € T there is
0<j<@Gn+Ggn-1—1 50 that 0+ jw e I.

We are now ready to formulate a more detailed version of the main Theorem

Theorem 2.2 Assume f € CY(T) with 1 >~y > 0. Then



‘ . , 1
1. If w is k-Diophantine, k > 0, and v > 35, then
S (“) NLy(w) = S (w)N Ly (w). (2.3)
qn
for pn/qn the sequence of continued fraction approrimants of w.
2. If w is not k-Diophantine with k = vy~ ! — 1,then

S (&) = S (w) (2.4)

an

for a subsequence of approrimants

Remark 1. Thus, for Lipshitz f (2Z4]) holds for a.e. w (all except possibly for the bounded type). This
is already implicit in [29].

2. Theorem certainly implies Theorem [I.T]

3 Uniform upper semicontinuity of the upper Lyapunov exponent

This section is devoted to some fundamental properties of the Lyapunov exponent in the general setting. It is
well known that the Lyapunov exponent of ergodic cocycles is upper semicontinuous. For a uniquely ergodic
underlying dynamics, Furman [I5] has shown, by a subadditivity argument originally used by Katznelson
and Weiss [26] to prove Kingman’s ergodic theorem, that rate of convergence of a cocycle from above can
be bounded uniformly in the phase. Now we investigate the coincidence of these properties.

Assume (X, T, u) is an ergodic Borel probability space. We use the notation {f} for a sequence (f,) €
C(X,R) N L*(X, u) which is a continuous subadditive cocycle with respect to T, that is

fram(z) < ful@) + f(T"2).

The category of continuous subadditive cocycles will be denoted I'(X). We define the Lyapunov exponent
as,

n o n

A =tim = [ fule)u(de),
X

By Kingman’s subadditive ergodic theorem we have, for almost all x € X,

hm fn 1nf—/fn = A(f). (3.1)

To proceed it will be useful to introduce a metric on I'(X). For two continuous cocycles {g},{f} € I'(X)
define

o i Hgn_anO

where the norm || f|jo = maxg | f(#)|. Then (I'(X), d) is a metric space. Since for any n the map {f} — < [ fn
is continuous in (I'(X), d), it follows that the infimum

(ry =it [ fautae) = A()

is upper semicontinuous in (T'(X), d)E On the other hand, for a fixed cocycle over uniquely ergodic dynamics
the convergence is uniform in the phase.

2This is true for general L! cocycles, with no continuity required.



Theorem 3.1 (Furman [15]) Let {f} be a continuous subadditive cocycle on a compact uniquely ergodic
space. Given € > 0, there exists ne so that for n > ne for any x € X we have

~fale) <A +e

In the following theorem we combine these properties to obtain uniform uppersemicontinuity in both
the cocycle and phase. Note that our simple proof is self-contained, and except for a basic result in [12]
(requiring unique ergodicity) it only uses compactness,continuity and subadditivity. In particular, it gives a
significantly streamlined proof of Theorem

Theorem 3.2 Let (X,T,u) be a compact uniquely ergodic dynamical system. Then A : T'(X) — R is
uniformly uppersemicontinuous with respect to d, meaning that given € > 0 there exist ¢, ne such that for g
with d(f,g) < de and n > ne, for allz € X,

“gn() S A() +e

Proof By [12] for any = and € > 0 one finds m(x) > 0 such that ﬁfm(w)(x) < A(f) + €. By continuity

and compactness, we find M < oo so that for all z, m(z) < M and d. > 0 such that for d(f,g) < 4,
%gm(x)(x) < A(f) + 2e. By subadditivity, for k large enough and any r =0,..., M and all = one has

1 1

- - < -
km(x)_i_rgkm(m)-i-r(x) = km(:v)—i—r

(km(z)(A(f) +2¢) +Cr) < A(f)+3e.
4 Rate of convergence for matrix cocycles

The first application of Theorem is to approximations of matrix cocycles. Consider a continuous matrix
A € C(X,GL,(C)) defined on a compact uniquely ergodic space (X, T, ). Let the metric on C (X, GL,(C))
be defined by the norm ||Aljo = maxy ||A(#)||. Then

In||A,(0)] :=1n ||A(T"_1:v) - Ax)]], Ag =1,

is a subadditive cocycle and its Lyapunov exponent is defined by
1
£(A) =inf / I AT 2) - A(z)| p(de).
n X

Immediately, an application of Theorem results in uniform uppersemicontinuity of the Lyapunov
exponent: given €, for D near A and large k, we have

[ Dk(@)]] < exp{k(L(A) +€)} (4.1)

uniformly in z, since D in a small Cy neighborhood of A implies {In||D,||} in a small d neighborhood of
{In||A4,]||}. This observation leads to the following

Corollary 4.1 Let € > 0, and A € C (X, GL,,(C)). For small enough ¢ and large ke, if
1D = Allo <6

and k > k., then
| A — Diflo < selHEWH). (4.2)

3a similar idea has been used in more specialized settings in [4} [5]



Proof To bound the left hand side of ([£2) we will break it into terms composed of iterates of cocycles A
and D. We obtain this by a standard trick

Ar(0) = A(T*0) o0 Ap_1(0) = (A—D)(T*10) 0 Aj_1(0) + D(T* 1) 0 Ay_1(0)
and iterate on the last term to retrieve the iterates of D

14x(6) = Dk(O)]] < Y DT “0)(D — AYT*40) A1 o(6))]
0<e<k—1

> AIDeloll D = Aljoll Ax—1—¢llo-

0<e<k—1

IN

For small enough ¢ > 0 we may apply Theorem [B2]to both the A and D iterates in the last term. Particularly,
setting f(z) = In||A(z)|| we obtain that for 0 < € < € there is ||[D — Al|o < ¢ and k(¢’) large so for £ > k(¢'),

| De(a)|| < eFe+ (4.3)

We partition the sum accordingly, for k > 2k(€’)

145 (0) — Di(0)]] < >+ > + > [ Delloll D — Allol| Ar—1-¢llo (4.4)

0<<k(e))—1 k(e/)<t<k—k(¢)—2 k—k(e)—1<t<k—1

Applying (£3) to all iterates A;, D; for j > k(€'), noting that the first and last summands consist of k(¢')
terms each and that for £ < k(€') we can bound ||D|lo < (|| Allo + €)%, |[Ar—1-¢llo < (|| Aljo + €)F¥17¢ | we
obtain

1Ax(0) = D) < 6 > |DillollAr—1—ello + 20 FTDEFDT N (| 4] + )
ko <t<k—k.—2 0<t<ke—1
< el NERD [ po ST (|4 +0)f

0<t<k_—1
selk(Lte)

IN

for large enough k > k.. N

Remark A standard argument would easily obtain [@L2) with exp{k(L + ¢€)} replaced by C||A||5. The issue
here is tight control on the exponential rate of growth of the error, without assuming continuity of L.

5 Holder Continuity in Frequency

If I = [u,v] C Z we write
Hig = Hyv)0 := RiHo Ry

where R; projects onto the subspace of coordinates restricted to I. The Green’s function for the interval is
the inverse of the restriction G (i, j) = 67 H; '6;. The determinants of the truncated matrix will be labeled
PE(0) := det(H (0,k—1];0 — £). The truncated Hamiltonian relates to the cocycle matrices by the equation

PE@®) —-PF (0+w)
AE () = k ket 5.1
CO=| PELO) —PE(0+w) (&1)

The following simple lemma allows to bound |Py| from above uniformly in 6 and for a large measure
subset of the spectrum



Lemma 5.1 For any ¢,n > 0 there exists a set F((,n) C S(w), |F({,n)] < ¢, and k(w,(,n) = kp so that
E € S(w)\F(¢,n) and k > kg implies
|PE(6)| < e EE+m, (5.2)

Furthermore there is some (r > 0 so that uniform upper convergence in the sense of Corollary [{.] holds.
Thus, E € S(w)\F(¢,n) implies if |D — AP|| < (p and k > kp then ({{-2) holds.

Proof For all E there exists kg, and (g so that Corollary Bl holds. Thus,
H{E : kg, >k} —0ask— o0

and
HE : (g <6} = 0as(— 0.

Therefore,
F((,n)={E: (g <} U{E kg, >k}

for small enough ¢ and large enough k = kg so that |F({,n)| < (. N

5.1 The general case

Here we observe that a result of Avron, Mouche and Simon on 1/2-Hoélder continuity of the spectrum easily
generalizes from f € C' to y-Holder case.

Theorem 5.2 Suppose f € C'(T), 1 > v > 0. Then for E € S(w) and for small enough |w — &'|, there
exists an E' € S(w') so that |[E — E'| < Cflw — /| %7, for some constant Cy > 0 not depending on w or w'.

Note that by C; we mean a constant that depends only on f. Different such constants are denoted by
the same C; in the proofs below. The proof is very similar to that of [§]. Starting with an approximate
eigenfunction for H, o — E and using the same test function as in [§], upon a cutoff at a distance L we
obtain an approximate eigenfunction for H, g with an error in the kinetic energy of order L~!. The main
difference is that the potential energy error is now bounded by C'L|w — w’|”, so the choice of L is optimized

by L = Cflw — W' T
More precisely, given € > 0 and E € S(w), there exists an approximate eigenfunction ¢. € £2(Z) so that

. +
(Huo — E)ée|| < elléell. Set g;.1(n) = (1 - @) , where g™ (n) = g(n),n > 0 and g*(n) = 0 otherwise.

Avron-van Mouche-Simon [§] prove that for sufficiently large L for any bounded f : T — R there exists
Jj such that g; r¢. # 0,and for any € > 0,

[(Heo = E)gjéel® < C (¢ + L72) llgseel, (5-3)

where C' is universal. Now let 6’ be given by wj + 6 = w’j + 6. By the Holder assumption on f and
j—L <n<j+ L, observe that

(0 +nw) — £ +nw')] < Cf (Llw — ')’
Thus,

[(Huror — E)gjoell < (Horor — Huo)gj, 006l + [[(Hupo — E)gj, L0 ||
(Cr (Wl =) +C (€ +L272)7) lgsee. (5.4)

IN

Since € can be arbitrarily small, choosing L = C'f|lw — w’ |_ﬁ, to make both addends on the right-hand
side of (54 equal, we obtain the statement of Theorem [5.2] by the variational principle. W



5.2 Diophantine case

As discussed in detail in [8] (the last section), for Diophantine rotations 1/2-Holder continuity of the spectrum
(the best that can be obtained from Theorem [5.2]) is not sufficient, so that is what we aim to improve.

Theorem 5.3 Suppose H, ¢ is an operator of the form (I1) where f € C7, 1 >~ > 0, w € [0,1] is k-
Diophantine, k > 0. Fiz 0 < 8 < . Given { > 0 there is a B¢, 0 < |B¢| < ¢ so that for E € S(w)NL4(w)\B¢
and any w' near w, there exists E' € S(w') such that

|E - E'| < Clw—uw'|5.
Remark The theorem holds for v > 8 > 0, but the application we are interested in will require v > § > %

Proof We assume L (w) N S(w) # O otherwise the Theorem holds vacuously. Suppose f is y-Holder. Let
0<pB <~ Let & = {F € S(w)NLi(w) : L(E) < x}, with x > 0 so small that |&,| < % By upper
semicontinuity of the Lyapunov exponent, the Lyapunov exponent is bounded on compact sets. Let x > 0

be an upper bound of the Lyapunov exponent on S(w). Let 1 > ¢ > %. Choose d so that ¢ — % >d > i.

Choose J
0<T<s< W_ﬂﬁ ;1>b>max(1—§7-,c)andb<a<1. (5.5)
B‘f’l_; (1+2’€) X
Finally, let 7 > 0 be such that
1
0 < <min{x7 —x(1 =), x(1 —a), x(c —d = 3)}. (5.6)

Define B = &, U F({/2,n) with F(-,-) from Lemma [5.I] with associated kr and dp. Take E € S(w) N
Li(w)\B;. We now find an Nth degree trigonometric polynomial fy that approximates f. Namely, for

~v-Holder functions f, we have
Ifn = fIl <CpNT?
where i
() =K f0) = Y (1 - L) F(i)e,

_NS<N N+1

Ky being Fejer’s summability kernel, see for example [25].

Set
N = exp {sz}
v

and let AV)-F be the cocycle matrix defined by the potential determined by the sampling function fy.
For a map B : T — SLy(R) and associated cocycle,

Vi (t, B) = {96’11‘: %111”3,@(9)” >t} CT. (5.7)

The measure of this set, for large k, can be bounded below by use of Corollary A1l Indeed, for k > kr we
have for all 6, + In ||AF(6)|| < L(E) + n, thus using ([I0) and @),

L(E) gA%mHAE(&)H%g Vi (al(E), AP) [(L(E) +n) + (1 —|Vk (aL(E), A®)|) aL(E), (5.8)

the lower bound on the measure of Vj follows immediately,

(1 - a)L(E)

T aL@ 7 = |V (@EE): A7), (5.9)



Furthermore, we make the following claim regarding the sets V(- ) for k > kg = max{kp,kqp.c}, and
|E — E|,|E — E| < exp{—x7k},

Vi(aL(E), AF) c Vi (bL(E), AME) € Vi(cL(E), AP). (5.10)

The left inclusion of (B.I0) follows from the approximation,

0 € Vi(al(E),A") =
Ao = Jarol - 4@ - A
> eakﬁ(E) _ (|E _ Ev| + CfN—v) ek(ﬁ(E)—i—n) > eakL(E) _ Cek([,(E)-l-n—XT) > ebkﬁ(E)'

The second inequality follows from the definition of G.7]and an application of Corollary[41] the next inequality
is immediate from the choice of E and N, finally the by the choice of parameters in (5.6) we have £(E) +
17— 7x < bL(E) so that the final inequality holds. The right inclusion of (5.I0) is similar, with comparisons
(applications of Corollary E1)) made to A%,

0 e Vi(be(E),AMF) =
|[af@) = ||aE o) - a0 - aE0)|| - |aF0) - af )|
> M) (O N+ |E = B| + |E - B|)erE®rn

> ebk:ﬁ(E) _ Cek:(ﬁ(E)—i—n—x‘r) > ec}’cL',(E)7

again using (5.6) to obtain the final inequality. Using the inclusion (G.I0) and the lower bound on measure

B3l we have

Vk(bE(E),A(N)’E)‘ > X > (5.11)

1
“x+n/(l-a) =2

with the final inequality following from (5.8). Thus Vi (bL(E), AN)-F) being defined by a polynomial of
order 4k exp{xk7/v}, contains an interval of length exp{—xks/v}, for sufficiently large k. It follows from
(GI0) that Vi (cL(E), AF) also contains an interval I of length exp{—xks/v}.

Now we move on to constructing the approximate eigenfunction. Let Eyp be a generalized eigenvalue

of H,p so that |E — Eo| < e Xtk with generalized eigenvector 1. For spectrally a.e. E, |[¢(x)| =
o((1 + |2|)/2%€) (known as Schnol’s Theorem, see for example [28]), so we assume Fy is such a value. Thus

there exists an x,,, so that
ol (1Y o)
[zm[+1 e \Jo[+1/) 7 |z[+1
for all x € Z. Let ¢ be normalized so that,

W)l _

| T +1
The sublinear growth property together with the convergence properties of cocycles we have discussed
forces 1 to take on small values at controlled distances, allowing as to make an effective cutoff, as we will

now show. Using the Diophantine property (2Z2]) for w, we find a denominator of an approximant g, such
that

117" < exp{kxs/7} < gn < exp {kxs(1+2r)/7} . (5.12)

where I C V(cL(E), AF) is an interval discussed in the reasoning after (EI1]). Using Lemma 211 applied
to the interval I there exists an z/, with x,, — 2q,, — k < 2} < @, — k, so that T*10 € I C V(cL(E), AF).
Similarly, there exists x5, with z,, < z < z,;, + 2¢,, such that 7736 € I. The need for an upper bound on
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¢n will arise later. The lower bound on the norm of AZ at T%16 (that follows from (5.7) implies by the form
of the cocycles of A¥ in (5.1)) that for 2} = 27 or #1 =2y — 1 and ky = k,k — 1, or k — 2 , we have

1
|PE(T™0)] > Zecﬁ(E)’“.
Similarly for 3 =25 or a3 =25 —land k, =k, k—1, or k —2

1
|PE(T720)| > Zecﬁ<E>’“.

+ |k L
Ty=1 —|; xr=x —1.
4 1 2 3 3 2

Let

Set also xo = 1 + k¢ — 1 and x4 = x5 + k, — 1. Using Cramer’s rule, as in [17]

Plaz—en T O] _ (0t exp {~(x+mke)) exp {(L(E) +m) )

RRICTHEN S < exp {—dkL(E
[EgICTAESY] |PE> (T+10)| oxp {cL(E)ke} { (E)}
(5.13)
similarly,
(G5 ey (s 7)| < exp {=dk, L(B)} (5.14)

with the numerator in the second inequality bounded above with ([£2]) and the last inequality following from
E8) for sufficiently large k. For similar reasons (5.13) also holds with (xy,x1) replaced with (z, — 1,21),
(x¢—1,22) or (x4, z2) and (BI4) holds with (z,,x3) replaced by (z, —1,x3), (2, —1,24) or (2, 24). Let A =

[x¢, x,-] and let ¥p be the truncation of ¥ to A or 1)y = Ra1p. We have |A| < 4g, +k+2 < 5exp {kx@}
by the upper bound of ¢, (5I12). By choice of x,,, and with z, = x, or xy,

[ (za)] _ [Y(za)| |7al +1 < |Ta| +1 (5.15)
|Tm | + 1 |Tm| + 1 |xa| +1 7 |xm| +1
m o —Tm|+1 142
< [oml+ |7 = Tm| + §1—|—|xa—xm|§1+2qn+k/2<3exp{kxu}.
|Zm| + 1 Y
As a formal eigenfunction, v satisfies, for 1 < x < xo,
U(z) = =GP (@ el —1) = GE° o (w,22)i (w2 + 1), (5.16)

and similarly for 23, z4. Applying both (BI5) and (&I3)) to (EI6) we obtain bound at an end point of A,
1+2
(xg) < CO(|lzm| + 1) exp{kx@}exp{—kdﬁ(E)} (5.17)

A similar bound follows for ¢(z; — 1), and following the same reasoning on [z3, z4] and using (5.13) we have
similar bounds for ¢ (z,) and ¢ (z, 4+ 1). The cutoff function then satisfies,

(Hop — Bo)toall < Cllwm| +1) exp {—k (d,c(E) _ X<(1:72ﬂ>) }

Define ¢pp = ¥a/||%a||- By the normalization of 1, we have ||a]l > |zm| + 1 > 1 so that

[(Huw,o — Eo)oall < ﬁ [(Hoy — Eo)iall < Cexp {—k (dﬁ(E) - X<(1+2F6)) } -

11



For w’ € T set §' = § — =32 (w — w’). Then, perturbing the Hamiltonian’s frequency,

|(Hos — Horp) 6l € max | F(0+aw')— f(0+aw)] < Cp (IA]- |/ — w])" < Cplo/ | exp{hxs(1+2r)}

To<xT<Tp
(5.18)
Thus

[(E = Hur o) oAl < |E = Eo| + [|(Eo — Hu0)Oall + |(Huo — Hor o) o4l (5.19)

< |E—-Ey|+Cexp {—k (dE(E) — XM) } + Cflw’ — w|” exp{kxs(1+ 2k)}

Y
1+2

< Cexp {—k (dﬁ(E) - XC(:J> } + Crlw" — w|” exp{kxs(1 + 2K)}. (5.20)

Thus, by the variation principle, there exists an E’ in S(w’) so that
|E' = E| < |(E = Hur o) $all - (5.21)
If we take k > kg such that
—Blnfw - /|

X (d— ¢l +2I€))

—(y=f)njw - |

<k<
- xs(1+ 2k)

3

which we can do, by (B.H), for sufficiently small |w—w’|, we obtain |E’— E| < |w—w'|?. The required smallness
of |w — w’| depends only on chosen parameters, therefore on w (through its Diophantine parameters), 3, ¢
and f. i

6 The strong continuity. Proof of Theorem

This argument is very similar to that of [19] (which in turn is a modification of the proof in [29]). First,
continuity of S(w) in Hausdorff metric [7] implies

limsup S (g) C D(w), (6.1)

2w
q

for any irrational w € T (inclusion holds set-wise, not just a.e, for any continuous f and any sequence % - w),
which immediately implies the corresponding inclusion in Theorem[2.2] For the opposite inclusion we need to
consider continued fraction approximants %. Note that because of continuity in 6, the set S(p,/¢n) consists

of at most ¢, disjoint intervals, say S(pn/qn) = Ug:"l [@nisbnil, @4 < Gn.
We now treat Diophantine and non-Diophantine cases separately.
For a Diophantine w, Theorem [5.3] implies that for n > n(w, 8, ¢, f),
g an Dn g Pn
(W) N Ly (w) C Uy fan,i — Cplw — q—| ybni + Crplw — q—l JU B¢
n n

thus
|(S(w) N Ly (W)\B)\S(Pn/qn)| < 2Cpgn|w — Z—:Iﬁ —0

since 5 > 1/2.
Therefore, for every ¢ > 0, we have [S(w) N Ly (w)\B¢)\ iminf,, /. 0 S(Pn/qn)| = 0. Thus

[S(w) N Ly (w)\ N¢so Be)\ liminf S(pn/gn)| =0,
pn/qn‘)‘*}

12



which gives the desired inclusion in Theorem [l
Now, consider the irrational w so that there exists a sequence of rational f;—" so that p, and ¢, are

mutually prime and !
1ty

~ Pn

w—2 0, 6.2
0 (6.2)

so that, w is not x Diophantine for x > % — 1. Similar to the above calculation, we have, letting S (%) =

Ui<i<q/, [@n,i; bn,i], and using Theorem that
e
1+7]

B Pn
abn,i + Cf W= —
an

S(w) C U lam — Of ‘w — Zﬁ

1<i<q!, "

Thus, by 6.2),
S(w) C liminf S (&) [ |

Pn/qn—w dn
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