
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Missing Symmetries of the Standard Model

Permalink
https://escholarship.org/uc/item/46m2h00p

Author
Lillard, Benjamin Guion

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/46m2h00p
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Missing Symmetries of the Standard Model

Robust Solutions to the Strong CP Problem

DISSERTATION

submitted in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Physics

by

Benjamin Lillard

Dissertation Committee:
Professor Tim M. P. Tait, Chair
Professor Jonathan L. Feng
Professor Yuri Shirman

April 2019



c© 2019 — Benjamin Lillard

ii



In memory of

Ethan Robert Lillard

and

Robert Morgan Guion

iii



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 Axion Solution to the Strong CP Problem . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 QCD Axion Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Axion Quality Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Robust Solutions to the Strong CP Problem . . . . . . . . . . . . . . . . . . . . . . 7

2 Supersymmetry and Confinement 10
2.1 Supersymmetry and the Electroweak Hierarchy . . . . . . . . . . . . . . . . . . . . 10
2.2 Superfields and Superpotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Minimal Supersymmetric Standard Model . . . . . . . . . . . . . . . . . . . . . 13
2.4 Seiberg Dualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 S-Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 SU(N) with antisymmetric tensor . . . . . . . . . . . . . . . . . . . . . . . . 17

3 An S-Confining Product Gauge Group 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Product Group Extension for an S-Confining Theory . . . . . . . . . . . . . . . . . 22

3.2.1 Infrared Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Dynamically generated superpotential . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Additional tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Other S-Confining Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Special case: SU(4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Sp(2m) with (2m+ 4) quarks . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 SUSY QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Composite Axion Model from S-Confinement 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Axion from a Supersymmetric Product Group . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



4.2.3 Gravitational Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Benchmark Models: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Dynamically Generated Wtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 A High Quality Composite Axion 59
5.1 A New Hope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The Composite Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Axion Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 U(1)B−L as U(1)X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Alternatives to B − L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Gauge-Mediated Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusion 71

A Properties of the QCD Axion 72
A.1 Axion Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Axion Assignment in a General Vacuum . . . . . . . . . . . . . . . . . . . . . . . . 73

B S-Confining Product Gauge Groups 75
B.1 Derivation of classical constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.1.1 D-Flat Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.1.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



List of Figures

3.1 The matter content of the proposed s-confining theory is shown as a moose diagram.
Each Gi represents a gauged SU(N) group, while the dashed circles represent the
SU(4)L × SU(N)R family symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Moose diagram indicating the matter content and gauge interactions of the SU(N)`×
SU(4)× SU(N)r composite axion model. Each Gi and G̃i corresponds to a gauged
SU(N), whereas SU(N) flavor symmetries are represented by dashed circles. The
bifundamental fields Q, Qi, q, and qi are depicted as directed line segments con-

necting adjacent groups, while the field A (A) transforms under G1 (G̃1) in the
antisymmetric two-tensor representation. . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Minimum values for m, ` and r consistent with
∣∣θ̄
∣∣ < 10−10 are shown as a function

of ρ1...4. For the first benchmark model with fa = 1017 GeV, we show only values
of ρ & exp(−MP/fa) ≈ 10−43.4. The fa = 1012 GeV and fa = 109 GeV models are
depicted using dotted and solid lines, respectively. . . . . . . . . . . . . . . . . . . . 54

4.3 The matter content of the SU(N)` × SU(4) × Sp(2n) × SU(N)r composite axion
model is depicted in the moose diagram above, with Sp2n ≡ Sp(2N−4). The SU(2)
family symmetry of the A′ fields is broken explicitly by the tree-level superpotential
Eq. (4.3.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Moose diagram indicating the charges of bifundamental matter fields Q1,2 and Q1,2

under the gauge group SU(N)L×SU(N)SM×SU(N)R×U(1)X and global SU(N)1×
SU(N)2 global symmetries. The Standard Model SU(3)c × SU(2)L × U(1)Y is a
subgroup of G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Maximum values of λ1 ≈ λ2 consistent with Eq. (5.2.22) for given values of fa and
N = 4, 5, 6, 7, 8. The region to the left of each line indicates the axion models
which return

∣∣θ̄
∣∣ < 10−11 without any fine tuning. From left to right within each

band of a given N , models are indicated with: sin 2γ = 0.1, tan βL = tan βR = 1
(thin, dashed); sin 2γ = 0.1, tan βL = tan βR = 10 (thin, solid); sin 2γ = tan βL =
tan βL = 1 (thick, solid); and sin 2γ = 1, tan βL = tan βL = 10 (thin, dotted). In
each case A1 ≈ A2 = 105 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



List of Tables

2.1 The transformation properties of the UV and IR fields under the family SU(4)L ×
SU(N)R×U(1)A×U(1)B×U(1)R symmetry for the F = 4 model are shown, along
with the charges under the spurious U(1)1. The operators J , K, and Z are defined
whether N is even or odd; the fields U , V and W are specific to the even N case,
while the fields X and Y correspond to the odd N case. The U(1)R charges listed
refer to the scalar component of each superfield. . . . . . . . . . . . . . . . . . . . 18

3.1 Matter content of the proposed s-confining theory, showing the transformation prop-
erties under the gauged SU(N)k and the SU(4)L×SU(N)R×U(1)A×U(1)B×U(1)R
family symmetry. The spurious U(1)i=1...k charges are also shown. The alternating
(±) factors in the Qk charges depend on whether k is odd or even: the upper choice
corresponds to odd k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Transformation properties of the composite fields in the confined phase of G1, in
the limit where G2× . . .×Gk is weakly gauged. The composite fields U , V , and W
exist only if N is even; if N is odd, then they are replaced by X and Y . . . . . . . . 24

3.3 The transformation properties of the composite fields in the fully confined phase of
SU(N)k are shown. The subscript Bodd,even refers to i = 1 . . . k, whereas the baryon
content Bi = {Ui, Vi,Wi} or Bi = {Xi, Yi} depends on N . The U(1)B charges of Jk
and Kk are positive if k is odd, and negative if k is even. . . . . . . . . . . . . . . . 25

3.4 Above, the original s-confining theory A + 4(Q0 + Q0) is extended on the left and

right by gauging G2
L× G̃2

R and adding the Qi and Qi fields to cancel the anomalies.
To extend the model beyond ` = r = 2, more quarks Qi and Qj can be added with
alternating U(1)A and U(1)B charges. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 All gauge groups except G0 have confined, leaving ML and MR. The {0, 1} charges
of ML and MR correspond to the cases where ` and r are odd or even, respectively.
Not shown are the baryons Zi and Zj, which do not transform under the non-Abelian
symmetries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 After all of the gauge groups confine, the infrared degrees of freedom are described
by the hadrons shown above. Their U(1)A and U(1)B charges depend on ` and r,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Above, we show the matter fields of the SU(4) ring extension to the A + 4Q + 4Q
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 An Sp(2m) × SU(2m)k model is shown, which is expected to s-confine. At the
bottom of the table, we list the degrees of freedom in the confined phase of Sp(2m).
Subsequent confinement follows the pattern of the A+ 4Q+NQ model. . . . . . . 39

4.1 Representations of the matter fields under the gauged SU(N)` × SU(4)× SU(N)r

symmetries, the flavor symmetries SU(N)L×SU(N)R×U(1)4, and the approximate
U(1)PQ symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



4.2 Operators describing infrared degrees of freedom in the confined phase of SU(N)`×
SU(N)r, and their transformation properties under the approximate SU(N)L ×
SU(N)R × U(1)PQ flavor symmetries. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Three benchmark points in the parameter space of Λi and Λ̃i. With the exception
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Missing Symmetries of the Standard Model

Robust Solutions to the Strong CP Problem

Benjamin Lillard

Abstract of the Dissertation

The strong CP problem is a compelling motivation for the existence of as-yet-undiscovered ad-
ditions to the Standard Model of particle physics. An extraordinary cancellation between two
apparently unrelated parameters in the Standard Model endows the neutron with an essentially
symmetric distribution of electric charge, implying that quantum chromodynamics (QCD) con-
serves parity and time reversal symmetries P and CP , despite the fact that both are broken by
electroweak interactions.

Axion models provide a popular explanation to this puzzle of the Standard Model, by dynami-
cally restoring CP as a symmetry of the QCD vacuum. Yet in the context of a high-energy theory
with broken global symmetries, which encodes for example the expected effects from quantum
gravity, simple axion models require their own severe form of fine-tuned cancellations to prevent
unacceptably large violations of CP symmetry in the vacuum.

Constructing a model that safeguards the axion against these catastrophic effects is highly
nontrivial, and has been an active area of research from around 1990 to the present. Typical
solutions in the literature invoke intricate structures of new symmetries and particles, leading an
ongoing search for simpler and more aesthetically pleasing models.

This thesis explores some supersymmetric models proposed by the author [1–3] as new, robust
solutions to the strong CP problem. In particular, the composite axion model of [3] provides a
compellingly simple extension to the MSSM, with built-in B − L symmetry, a naturally O(TeV)
scale for electroweak physics, and sufficient protection from symmetry-violating effects for the
axion model in the preferred window of parameter space, where the axion is a viable candidate for
dark matter.
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Chapter 1

Introduction

In terms of its ability to describe and predict the behavior of matter at its smallest observed scales,
the Standard Model of particle physics has been remarkably successful. Even so, it has several
unresolved and well documented shortcomings which indicate that it cannot be the complete
description of Nature. It does not address the particle nature of the dark matter which, by mass,
is evidently the dominant form of matter in the universe. The Standard Model does not explain
the asymmetric abundance of baryons over antibaryons in the early universe which prevented
the complete annihilation of matter, allowing the formation of complex structures that provided
the necessary conditions for life. Reflecting the broader difficulty in reconciling gravitation with
quantum mechanics, the Standard Model is also incapable of describing gravity.

Other puzzling aspects of the Standard Model include the hierarchy between the electroweak
and Planck scales; the observed pattern of fermion masses; and the strong CP problem, which is
the focus of this thesis.

In the case of the strong CP problem, two apparently unrelated parameters in the Standard
Model conspire to cancel each other to one part in 1010 or more. This extreme cancellation may
even be exact: state of the art measurements of this physical parameter through the neutron
electric dipole moment find only upper limits on its value. As a result, the strong interaction
appears to respect the symmetries of parity (P ) and the combination of charge conjugation and
parity (CP ) to at least a very high degree, despite the fact that both P and CP are violated by
the electroweak interactions.

Two terms in the Standard Model can in principle induce P and CP violation in the strong
sector: the first,

L =
g2

64π2
θεαβµνGαβGµν =

g2

32π2
θGµνG̃

µν , (1.0.1)

is odd under the action of P or CP , which interchanges G̃µν → −G̃µν and leaves Gµν invariant.
Complex phases in the quark mass matrix also violate CP . By performing subsequent chiral
rotations on the quark fields, the degree of CP violation in the Standard Model is encoded by a
single physical parameter:

θ̄ = θ + arg detMq, (1.0.2)

where arg detMq is the phase of the determinant of the quark mass matrix. The physical parameter
θ̄ is defined on the interval [0, 2π): yet, measurements of the neutron electric dipole moment [4,5]
show that it is ∣∣θ̄

∣∣ < 6× 10−11, (1.0.3)

suggesting an extraordinary cancellation between two apparently unrelated quantities.

1



A number of explanations for this tiny value have been proposed. For example, if CP is
invoked as a fundamental symmetry of the Standard Model, then

∣∣θ̄
∣∣ = 0 automatically. However,

to reproduce the observed violation of CP in the electroweak interactions, manifested for example
by the CP -violating mixing and decay of mesons, CP must be spontaneously broken in the low-
energy theory in such a way that θ̄ remains suitably small. Nelson [6] and Barr [7] proposed
models in which this is achieved at tree level. Preventing higher dimensional operators in these
models from shifting the θ̄ parameter away from zero remains a significant challenge: as outlined
for example in [8], the Nelson-Barr mechanism may need to be augmented by supersymmetry and
additional structure in order for it to produce θ̄ . 10−10 without requiring additional fine tuning.

Other possible explanations for the lack of CP violation in the strong sector invoke a new axial
U(1) symmetry, which if unbroken would render θ̄ unphysical. If for example the up quark were
massless, mu = 0, then the determinant of the quark mass matrix would be zero, and its phase
would no longer be a physical quantity. In the absence of the mass term L ∼ muuLūR, a global
U(1)A symmetry emerges, under which uL → eiαuL and ūR → eiαūR. The action of the U(1)A
symmetry, α→ α + ∆α induces an analogous shift in θ̄ → θ̄ + 2∆α, rendering θ̄ unphysical.

The massless up quark scenario is no longer considered to be a serious solution to the strong
CP problem: lattice results [9] suggest mu/md ≈ 0.5, which is roughly ten orders of magnitude
too large to explain the value of θ̄. If any such axial symmetry does provide the explanation to
the strong CP problem, then, it must be spontaneously broken. This axial U(1) is referred to as
a Peccei-Quinn symmetry, after [10,11], and is the foundation of QCD axion models.

1.1 Axion Solution to the Strong CP Problem

This section is devoted to unpacking the following statement:1

The QCD axion is the pseudo-Nambu–Goldstone boson of a spontaneously broken
global U(1)PQ symmetry; its vacuum expectation value dynamically sets θ̄ = 0, restor-
ing CP as a symmetry of the low energy theory.

A simple model that achieves this goal can be constructed by adding a complex scalar, φ; left-
handed color (anti)-triplet fermions Q and Q; and the interactions

L ⊃ V (φ) + φQQ+ h.c. (1.1.1)

where V (φ) is arranged such that φ acquires a nonzero vacuum expectation value. We use Weyl

notation, where Q and Q are two-component left-handed fermions, and Q† and Q
†

are their

right-handed anti-particles. By design, the mass term mqQQ + m?
qQ
†
Q† is forbidden, so that the

Lagrangian respects the following U(1)PQ symmetry:

φ→ eiαφ Q→ e−iα/2Q Q→ e−iα/2Q. (1.1.2)

Similarly, V (φ) is taken to be a function only of (φ?φ): just like mq 6= 0, terms such as (φ+ φ?) in
V (φ) would violate the Peccei-Quinn symmetry.

The potential V (φ) is minimized by some value of 〈φ〉 6= 0: expanding about this vacuum
solution, the axion is identified as the phase of φ:

φ =

(
〈φ〉+

σ√
2

)
exp

(
i
a

fa

)
, (1.1.3)

1For a more complete review, see for example [12,13].
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where σ and a are real scalar and pseudoscalar fields, respectively, and where fa =
√

2〈φ〉. Upon
replacing φ with σ and a in the Lagrangian, one finds that σ has a mass on the order of mσ ∼ fa,
while the axion a remains massless. This is a result of the Peccei-Quinn symmetry: a U(1)PQ

rotation by some phase α, as in Eq. (1.1.2), corresponds to a linear shift in the field a(x):

a(x)→ a(x) + αfa. (1.1.4)

A mass term of the form m2
aa

2 is inconsistent with the shift symmetry, and is therefore forbidden
if U(1)PQ is an exact symmetry.

In the case of the chiral theory described above, however, U(1)PQ is not exactly conserved.
Even though it is a symmetry of the Lagrangian, it is explicitly broken in the quantized theory
by the chiral anomaly. As described by Adler [14], Bell and Jackiw [15], the axial vector current
is violated by the divergence of some triangle diagrams, specifically those with a closed fermionic
loop with gauge bosons as the external states. These triangle diagrams were originally invoked to
explain the π0 → γγ decay of the neutral pion. For the axion, the effect of the chiral anomaly is
to induce a coupling between the axion and the gluon field strength tensor,

L =
g2

32π2

(
θ̄ +

a

fa

)
GµνG̃

µν . (1.1.5)

This can be seen more simply by repeating the procedure that led us to combine θ and arg detMq

into one physically relevant parameter, θ̄ = θ+ arg detMq. Once φ acquires a vacuum expectation
value, the φQQ interaction endows the quarks with an effective mass term of order fa:

φQQ→ 〈φ〉eia/faQQ MQ = eia/fa
fa√

2
. (1.1.6)

Notice that the phase of the quark mass is determined by the value of a, making it a dynamical
quantity. In the same way that a chiral rotation of the Standard Model quarks allows the phase of
the determinant of the quark mass matrix to be shifted into the value of θ̄, an analogous rotation
on Q and Q shifts this phase into θ̄ as well, so that

θ̄′ = θ + arg detMq + arg detMQ = θ̄ +
a

fa
(1.1.7)

is the physical quantity that determines the size of the neutron electric dipole moment.
Nonperturbative effects from QCD induce a periodic potential for the axion, which can be

heuristically described by the one-instanton potential

V (a) ≈ m2
πf

2
π

(
1− cos

(
a

fa
+ θ̄

))
, (1.1.8)

inducing a mass for the axion ma ∼ mπfπ/fa. A more precise expression can be derived from the
chiral Lagrangian, to include the effect of broken chiral symmetry on the axion potential [16]:

V (a) = m2
πf

2
π

(
2−

√
1 +

2mumd

(mu +md)2
cos

(
a

fa
+ θ̄

))
, (1.1.9)

where mu and md are the up and down quark masses, respectively. In this case the axion mass
would be

m2
a =

mumd

(mu +md)2

m2
πf

2
π

f 2
a

=
z

(1 + z)2

m2
πf

2
π

f 2
a

, (1.1.10)
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where z = mu/md. As a tangential observation, note that in the limit mu → 0, the shift symmetry
a→ a+ αfa is restored in the vacuum.

Whether we use Eq. (1.1.8) or Eq. (1.1.9), the result is effectively the same: both potentials
are minimized by the vacuum solution

〈a〉 = −θ̄fa, (1.1.11)

setting the physically relevant combination of CP violating phases to zero:

θ̄ +
a

fa
= 0. (1.1.12)

Thus, CP is restored as a symmetry of the QCD vacuum, in perfect agreement with measurements
of the neutron electric dipole moment.

1.2 QCD Axion Phenomenology

Originally, it was typically assumed that the axion decay constant fa would be related to the
electroweak scale [10,11,17,18], but this was quickly found to be phenomenologically unviable [19].
Two types of “invisible axion” models were soon formulated, both with fa � vw. The KSVZ-type
“hadronic” axion [20,21] is the prototype for the axion model outlined in Section 1.1: new quarks
carrying PQ charge gain O(fa) masses when the complex scalar φ acquires an expectation value.
In the KSVZ model, the quarks and leptons of the Standard Model are neutral under U(1)PQ, so
that the new superheavy quarks are the only fermions with PQ charge. A second class of invisible
axion, DFSZ [22, 23] avoids adding any new fermions by giving the Standard Model matter fields
PQ charges: this model requires two Higgs doublets φu and φd with hypercharge ±1, and an
electroweak singlet φ, with Peccei-Quinn charges such that the combination (φuφdφ

2) is neutral
under U(1)PQ. The expectation value of φ produces a light axion as the pseudo-Nambu–Goldstone
boson for the spontaneously broken U(1)PQ symmetry, just as in the KSVZ model.

Both the KSVZ and DFSZ models feature a high scale for fa and a correspondingly light mass
for the axion. As the interactions between the Standard Model fields and the axion are suppressed
by powers of fa, the axion is also very weakly coupled: hence the nickname, “invisible axion”.
Astrophysical observations, especially of stellar cooling, constrain the value of fa: if fa is too low,
then production of axions through the Primakov process [24] allows stars to cool at an enhanced
rate. Observations of hydrogen- and helium-burning stars sets a lower bound fa & 109 GeV, or an
upper bound on the axion mass ma < 10−2 eV [25,26].

A notable difference between the DFSZ and KSVZ models arises when considering the electro-
magnetic anomaly of the U(1)PQ current. The mixed SU(2)2-U(1)PQ and U(1)2

Y -U(1)PQ anomalies

induce an axion-photon coupling, L = 1
4
GaγγaFµνF̃

µν , where

Gaγγ =
α

2πfa

(
E

N
− 2

3

4 + z

1 + z

)
, (1.2.1)

where z = mu/md, and E and N represent the electromagnetic and color anomaly coefficients of
the Peccei-Quinn current [27]. Because the DFSZ model utilizes only the Standard Model fermions,
the value of E/N is unambiguously E/N = 8/3. In the KSVZ model, the value of E depends on
the electroweak charges of Q and Q: these are typically taken to be electroweak singlets, implying
E = 0, but E 6= 0 can be achieved simply by giving some hypercharge to the superheavy quarks.
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Bounds on fa from Primakov cooling, then, are model-dependent, but do not become weaker at
E = 0: on the contrary, with z ≈ 0.5 the smallest values for Gaγγ are derived from models with
E/N ≈ 2.2

Part of the enduring popularity of axion models is due to the fact that they provide an excel-
lent candidate for dark matter. Not only is the invisible axion suitably weakly coupled, but they
can be produced with sufficient abundance in the early universe through the misalignment mech-
anism [29–31]. At temperatures above the electroweak scale (T > 100 GeV), the initial vacuum
expectation value of the field φ is set when the electroweak symmetry is still unbroken: because
the nonperturbative effects which generate the potential V (a) for the axion turn off in the massless
quark limit, the initial phase of 〈φ〉 is essentially random:

〈φ〉 =
fa√

2
eiθ0 . (1.2.2)

As the temperature decreases to T ∼ √mπfπ ≈ 100 MeV, the QCD instanton effects serve to realign
the vacuum towards the true minimum of the potential V (a) from Eq. (1.1.9), from 〈a〉/fa = θ0 to
〈a〉/fa = −θ̄. The oscillation of the axion about its true minimum is described by the equations
of motion:

d2a

dt2
+ (3H + Γa)

da

dt
+
∂V (a, T )

∂a
= 0, (1.2.3)

where H ∼ T 2/MP is the Hubble rate, Γa represents the axion decay rate to photons, a → γγ,
and V (a, T ) is the temperature-dependent potential for the axion. Considering that Γa ∼ m3

a/f
2
a

well exceeds the lifetime of the universe, we treat the axion as fundamentally stable with Γa ≈ 0.
Approximating V (a, T ) ≈ m2

πf
2
π+ 1

2
m2
aa

2 for the temperature-dependent mass ma(T ), the equation
of motion for the axion reduces to

d2a

dt2
+ 3H

da

dt
+m2

aa = 0, (1.2.4)

which represents the coherent production of nonrelativistic axions. As the universe continues to
cool, the energy density of the axion oscillations decreases as T−3, while the energy densities of
the relativistic degrees of freedom decrease more rapidly as T−4: thus, the axion can soon become
the dominant component of the universe’s energy density.

Overly robust production of axions in the early universe can create a catastrophically overdense
environment, where the energy density of axions ρa exceeds the critical density ρc, “overclosing”
the universe and causing it to collapse. By solving Eq. (1.2.4) with the appropriate tempera-
ture dependence of the axion mass, the ratio ρa/ρc can be written in terms of fa and the initial
misalignment angle θ0 [32]:

Ωah
2 =

ρa
ρc
h2 = 0.7

(
fa

1012 GeV

)7/6(
θ0

π

)2

, (1.2.5)

where the requirement that axions not overclose the universe for O(1) values of θ0 provides the
constraint fa . 1012 GeV [29–31,33].

2Taking for example z = 0.56 [28], it is in principle possible to tune the fractional hypercharge assignment in
the KSVZ model with E/N ≈ 1.95 so as to make Gaγγ effectively zero. The exercise in model-building is perhaps
a poor way to make friends.
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If axions are to be the dark matter, Eq. (1.2.5) suggests a lower bound on fa: taking a
large initial misalignment θ0 ≈ π and matching Ωa to the measured density of cold dark mat-
ter, ΩCDMh

2 ' 0.12, we find
f (CDM)
a & 2.2× 1011 GeV. (1.2.6)

For smaller values of fa, the misalignment mechanism no longer produces axions with the correct
abundance to compose 100% of the dark matter. Larger values of fa are made possible by somewhat
smaller θ0 < π, though values of fa much larger than 1012 GeV begin to require fine-tuned initial
conditions in the early universe.

The density Eq. (1.2.5) assumes that the spontaneous breaking of U(1)PQ occurs before infla-
tion, so that θ0 is a uniform feature of the observable universe. If the order is reversed, then θ0

varies across different parts of the early universe, and the average contribution to Ωa is [32]:

Ωah
2 = 0.3

(
fa

1012 GeV

)7/6

, (1.2.7)

suggesting that QCD axion dark matter in this scenario calls for

f (CDM)
a ≈ 4.5× 1011 GeV. (1.2.8)

Bounds on axion models from the misalignment mechanism do depend on an initial temperature
well above T ∼ 100 MeV. Although a high reheating temperature TR after the decay of the
inflaton is a standard feature of many cosmological scenarios, measurements of the primordial
abundances of light nuclei suggest only that TR & 1 MeV to match the successful predictions of
Big Bang Nucleosynthesis (BBN). At such small initial temperatures the explicit Peccei-Quinn
violating effects from QCD instantons are felt strongly, the assumption that the initial phase of
〈φ〉 is randomly determined no longer applies, and the upper bound on fa from the misalignment
mechanism are relaxed. While many models of baryogenesis require high reheating temperatures,
a number of low-temperature baryogenesis models with TR < 100 GeV have been developed [34–36]
that would be consistent with a higher value of fa.

Many of the constraints on the QCD axion rely on its relation between fa andma, mafa ∼ mπfπ,
which is the result of U(1)PQ being explicitly broken by QCD instantons. By generalizing the QCD
axion to “axion-like particles”, or ALPs, and dropping the requirement that the subsequent model
is a solution to the strong CP problem, a wider field of phenomenological possibilities emerges,
providing for example a more generic class of dark matter models. Though the production rate of
the invisible QCD axion at particle colliders is negligible, and its lifetime very long, a less weakly
coupled ALP could be produced and detected by collider searches.

1.3 The Axion Quality Problem

As discussed in Section 1.1, axion solutions to the strong CP problem have a generic common
property: a spontaneously broken global U(1)PQ, which is a symmetry of the classical action,
but is explicitly violated by the QCD chiral anomaly. This simplicity, together with the predictive
power of the theory and its viability as a dark matter candidate, has ensured the lasting popularity
of the QCD axion as a possible extension to the Standard Model. In this section we explore the
theoretical problems associated with simple axion models, namely a hierarchy problem and a
fine-tuning problem.3

3Parts of this introduction quote the description of the axion quality problem found in [3], by the author and
Tim M.P. Tait.
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Simple axion models are plagued by the theoretical inconsistencies endemic to theories con-
taining fundamental scalar fields. The scale fa, set by the expectation value of a scalar field, is
sensitive to potentially large additive threshold corrections based on details of the high-energy
theory, for example at the GUT or Planck scales. This generic property of scalar fields is espe-
cially well-studied in the more severe case of the electroweak hierarchy problem. Solutions such as
supersymmetry or compositeness which can render the electroweak scale technically natural work
equally well to stabilize fa �MP in the axion model.

The requirement that U(1)PQ is an exact symmetry of the Lagrangian turns out to be a sig-
nificantly more serious liability than the hierarchy between fa and MP, introducing a degree of
fine-tuning that is much more severe than the factor of 10−10 it was designed to explain. Argu-
ments from general relativity [37–44] suggest that non-perturbative quantum gravitational effects
do not respect global symmetries such as baryon number or U(1)PQ. If additional PQ violating
operators representing the short distance influence of quantum gravity such as

∆V (φ) =
|φ|k+3

Mk
P

(λkφ+ λ?kφ
?) (1.3.1)

are present, the corresponding perturbation in V (a) can shift 〈a〉 far away from the CP -conserving
value of Eq. (1.1.12):

δV (a) ∼ λkf
4
a

(
fa
MP

)k
cos

(
∆PQ

a

fa
− ϕ

)
, (1.3.2)

where the phase ϕ is determined by λk, and ∆PQ is the U(1)PQ charge of the operator φ. It is
convenient to describe such perturbations by defining a “quality factor” Q:

δV (a) = Qf 4
a cos

(
a

fa
− ϕ

)
. (1.3.3)

If we assume ϕ is not tuned to match the value of θ̄, the measured value of
∣∣θ̄
∣∣ . 10−10 is achieved

only if δV (a) satisfies

Q . 10−62

(
1012 GeV

fa

)4

. (1.3.4)

Satisfying this bound requires that the theory of quantum gravity somehow produce a severe fine-
tuning in the λk, such that even the dimension-12 operators in Eq. (1.3.2) must have λk � 1. The
derivation for Eq. (1.3.4) is left to Appendix A.1.

In the “worst-case scenario” for the axion model, threshold corrections at the Planck scale
induce the k = −3 operator L ∼ λ−3M

3
P(φ+ φ?), which spoils the axion solution to the strong CP

problem unless
λ−3 . 10−83 (1.3.5)

for typical values of fa ∼ 1012 GeV. Considering that the axion is introduced to explain fine-tuning
of O(10−10), this calls its motivation into serious question.

1.4 Robust Solutions to the Strong CP Problem

In a truly compelling axion model, the U(1)PQ symmetry should emerge as a consequence of
some other underlying structure which forbids the problematic operators. For example, a gauged
discrete Zn symmetry [45] for some n & 13 can forbid all PQ violating operators smaller than
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(φn + c.c.). More sophisticated models can employ discrete groups as small as Z4 while forbidding
the problematic operators [46,47].

Solutions without gauged discrete symmetries also exist: for example, a composite model [48]
with a gauged SU(N) × SU(m) × SU(3)c protects U(1)PQ to arbitrarily high order, with the
added benefit that the axion scale fa can be generated dynamically. Qualitatively different recent
models [49, 50] have also been shown to provide the appropriate protection from Planck scale
corrections.

Other constructions protect U(1)PQ by gauging a related Abelian group. In one model [51] with
a compact extra dimension, a gauged U(1) symmetry is spontaneously broken by fields localized on
two separated four-dimensional branes. One combination of the fields is eaten by the gauge field,
while the other acts as the QCD axion and is protected from gravitational corrections. A related
model [52] gauges a product group of the form U(1)k with k ≥ 14, which can also be interpreted as
a k site deconstruction of a compact fifth dimension. In a different class of models [42,53], the fields
are assigned large and relatively prime U(1) charges, so that an accidental U(1)PQ is protected
from low-dimensional operators. Many of these constructions are intricate and also rather delicate
in the sense that the axion quality is easily ruined in extensions of the model.

Some of these models, while successful at forbidding low-dimensional U(1)PQ-breaking opera-
tors, still suffer from a hierarchy problem. One resolution is supersymmetry (SUSY), which protects
fa from loop-level corrections, so that the theory is technically natural if the SUSY-breaking scale
is not much larger than fa. Another compelling direction is composite models, which can suppress
dangerous gravitational contributions to the axion potential while allowing the scale of U(1)PQ

breaking to be determined from the confining dynamics. For asymptotically free gauge theories
the confinement scale is expected to be exponentially suppressed compared to MP, so the hierarchy
between fa and MP can be naturally generated dynamically.

In this thesis, we explore the solutions to the axion quality problem based on confining super-
symmetric theories which have been proposed in two recent papers, [2] and [3]. Chapter 2 features
a brief introduction to supersymmetry, focusing in particular on the use of Seiberg dualities to de-
scribe the low-energy behavior of strongly coupled gauge theories. While the behavior of product
gauge groups is generally less well understood, a class of models investigated by the author [1] is
shown to confine without breaking chiral symmetry, and we devote the remainder of Chapter 2 to
these results.

In Chapter 4 we describe how a product gauge theory of this type can be employed as a
solution of the strong CP problem, following [2]. To ensure spontaneous breaking of the U(1)PQ

symmetry at the appropriate scale, some modification to the original model is required: either a
deformation of the tree level superpotential, or an expansion of the gauge structure. While we show
that the resulting model does suppress PQ violating operators to the appropriate degree in the
superpotential, its intricate nature and large gauge groups lead us to suggest that the model is not
more realistic than the previously studied solutions to the axion quality problem [45,48,50,51,53].

A simpler and more promising model is examined in Chapter 5, based on the recently pub-
lished results of [3]. Here we show that a more concise group structure with strongly coupled
SU(5) gauge groups achieves sufficiently small values of θ̄ for fa . 3× 1011 GeV, in the preferred
region of parameter space where the axion is a compelling dark matter candidate. In addition
to satisfactorily addressing the stated goal of solving the strong CP problem, the model is well
suited to provide a solution to the µ problem of the MSSM, as well as messenger candidates for
gauge-mediated supersymmetry breaking.

In this respect the model of [3] fulfills many of the criteria for a “truly compelling axion
model”: not only does it solve the strong CP problem in a robust way while providing a dark
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matter candidate, but it also supplies a naturally TeV scale for the µ term in the MSSM, all
without additional model-building effort.

In Chapter 6, we conclude with some remarks about possible future directions of research.
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Chapter 2

Supersymmetry and Confinement

Quantum field theory, as the union of special relativity and quantum mechanics, is designed around
the symmetries intrinsic to flat spacetime: the translations, rotations and boosts that comprise
the Poincaré group. This framework greatly restricts the range of possible additional symmetries
that can be built into a model: a no-go theorem by Coleman and Mandula [54] based on the
analyticity of the S-matrix shows that the only symmetries consistent with the Poincaré group
are those which are internal, such as the interchange of two particles of identical spin, mass and
interactions with other particles.

Supersymmetry (SUSY) developed as an extension to the internal symmetries known to be
consistent with the Poincaré group. A supersymmetric transformation interchanges bosons and
fermions, and is described by a graded Lie algebra [55, 56]. It was soon shown [57] that super-
symmetry, combined with the types of internal symmetries previously discussed, formed the most
general set of symmetries consistent with the Poincaré group.

2.1 Supersymmetry and the Electroweak Hierarchy

A number of observations about supersymmetric theories led to a dramatic increase in their pop-
ularity. Notably, supersymmetric theories are not perturbatively renormalized [58]: this property
makes supersymmetry an appealing possible solution to the electroweak hierarchy problem.

In the Standard Model, the electroweak scale depends on the quadratic term in the Higgs
potential, V ∼ −µ2 |H|2 +λ |H|4, with µ2 �M2

P. A small value of µ2 is not natural in the ‘t Hooft
sense [59]; no symmetry emerges in the µ2 → 0 limit, and the electroweak scale is very sensitive to
deformations of the high-energy theory. The presence of new heavy particles at some high energy
scale M?, such as the GUT or Planck scale, can introduce large threshold corrections to the Higgs
mass that tend to raise it to the high energy scale, µ2 ∼ O(M2

? ). Achieving µ ∼ 100 GeV in the low
energy effective theory from such a framework requires the parameters of the high energy theory
to be tuned to precisely cancel any such threshold corrections.1 This sensitivity of the electroweak
scale to the details of the high-energy theory is referred to as the electroweak hierarchy problem.

Supersymmetric theories provide an exception to this rule. Nonrenormalization of the super-
potential stabilizes the Higgs mass parameter, as we discuss more generally in Section 2.2. In
the MSSM superpotential, a U(1)R symmetry is restored in the limit where the supersymmetric
Higgs mass vanishes: thus, if supersymmetry is manifest below the scales MP and MGUT, then the
observed hierarchy between MP and µ is consistent with the ‘t Hooft definition of naturalness.

1For a recent comprehensive review of effective field theory, see for example [60].
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2.2 Superfields and Superpotentials

In this section we address some of the mechanics of supersymmetric theories that will be relevant
for the present discussion. As a canonical introduction to supersymmetry, we recommend [61] to
readers wishing for more detail.

The minimal realization of supersymmetry in four dimensions invokes four spinor generators
Qα and Q†α̇ which interchange fermionic and bosonic degrees of freedom. These generators of the
supersymmetric transformation satisfy anticommutation relations,

{Qα, Q
†
α̇} = −2σµαα̇Pµ {Qα, Qβ} = 0 {Q†α̇, Q†β̇} = 0; (2.2.1)

commute with the generators of spacetime translations,

[Qα, P
µ] = 0 [Q†α̇, P

µ] = 0, (2.2.2)

and therefore also with P 2 = PµP
µ; are charged under a global U(1)R symmetry,

[Qα, R] = Qα [Q†α̇, R] = −Q†α̇; (2.2.3)

and carry mass dimension 1
2
, as can be seen from the appearance of momentum P µ in Eq. (2.2.1).

The dotted and undotted spinor indices α̇ = 1, 2 and α = 1, 2 refer respectively to left and right
handed spinors. Extended supersymmetric algebras N > 1 can be constructed by introducing
multiple copies of Q and Q†, but we focus exclusively on the N = 1 case.

Generically, the irreducible representations of the SUSY algebra are supermultiplets composed
of both bosons and fermions. In N = 1 SUSY, the simplest examples pair a chiral fermion either
with a spin-0 complex scalar field or a spin-1 vector boson; the resulting supermultiplets are referred
to as chiral (matter) or vector (gauge) supermultiplets, respectively, and comprise the building
blocks of renormalizable N = 1 theories [61]. Note that the left- and right-handed superpartners
of the gauge bosons, “gauginos”, transform in the adjoint representation of the gauge group and
are Majorana in nature, while the fermionic components of chiral supermultiplets are generally
free to take complex representations.

The construction of an interacting supersymmetric theory is simplified by the introduction of
superfield and superpotential notation. A generic superfield is written as an expansion in terms of
four Grassmannian variables θα and θ†α̇ [61],

S = a+ θξ + θ†χ† + θθb+ θ†θ†c+ θ†σ̄µθvµ + θ†θ†η + θθθ†ζ† + θθθ†θ†d, (2.2.4)

where spinor indices have been suppressed: repeated variables θθ and θ†θ† implicitly refer to the
nonzero products of Grassmann variables θ1θ2 and θ†1θ

†
2. The generic superfield Eq. (2.2.4) includes

several spin-0 fields, a, b, c, d; left- and right- handed fermions ξ, η, χ† and ζ†; and a spin-1 boson,
vµ, and corresponds to a sum of irreducible representations of the SUSY algebra.

A description of the chiral and anti-chiral covariant derivatives used to define the irreducible
representations can be found in [61]. The result is quoted below: chiral and anti-chiral superfields
can generically be written as

Φ = φ+
√

2θψ + θθF Φ? = φ? +
√

2θ†ψ† + θ†θ†F ?, (2.2.5)

while the expansion of the vector superfield in the Wess-Zumino gauge [56] is

V = θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ? +
1

2
θθθ†θ†D. (2.2.6)
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The scalar fields F , F ? and D have no kinetic terms in the Lagrangian, and are referred to as
auxiliary scalars. Their presence is needed to match the number of off-shell bosonic and fermionic
degrees of freedom.

In the superfield notation, the simple supersymmetric theory of a single free chiral supermul-
tiplet Φ from Wess and Zumino [56] can be written concisely as [61]:

Lfree =

∫
d2θd2θ†Φ?Φ = ∂µφ∂µφ

? + iψ†σ̄µ∂µψ + F ?F, (2.2.7)

up to a total derivative. Supersymmetric masses and interactions can be added as well, for example
by

Lint =

∫
d2θ
(
µΦ2 + λΦ3

)
+ h.c. (2.2.8)

More generically, the full Lagrangian of a theory with multiple chiral superfields Φi can be written
in the form

L =

∫
d2θd2θ†K(Φi,Φ

†
i ) +

∫
d2θW (Φi) +

∫
d2θ†W ?(Φ?

i ), (2.2.9)

where the superpotential W is a holomorphic function of the chiral superfields Φi, and the Kähler
potential K(Φi,Φ

†
i ) is a real function of the chiral and anti-chiral superfields.

If we restrict our attention to theories of k chiral superfields Φ1...k with renormalizable interac-
tions, the canonically normalized Kähler potential is simply

K =
k∑

i=1

Φ?
iΦi, (2.2.10)

while the superpotential has the form

W = biΦi + µijΦiΦj + λijkΦiΦjΦk, (2.2.11)

where repeated indices imply summation. Note that the mass dimensions of θ and θ† are −1
2
,

so that the integration rules
∫
d2θ θθ = 1 and

∫
d2θ† θ†θ† = 1 imply that K and W have mass

dimensions +2 and +3, respectively. Nonrenormalizable interactions can be easily accommodated
by the Kähler and superpotentials as well: for example, by K ∼ 1

Λ2 (Φ?Φ)2 or W ∼ 1
Λ

Φ4 for some
mass scale Λ.

Recall that each Φi superfield contains a scalar Fi with mass dimension +2, which appears
in the renormalizable Kähler potential only as

∫
d4θ K → L ∼ F ?F , with no derivative interac-

tions. These auxiliary scalars represent off-shell bosonic degrees of freedom, rather than on-shell
propagating states. As Fi is multiplied by θ2 in the supermultiplet, the integral

∫
d2θW can be

reformulated as a partial derivative, so that the Fi dependence of the Lagrangian can be written:

LF = F ?
i Fi +

∂W

∂Φi

Fi +
∂W ?

∂Φ?
i

F ?
i . (2.2.12)

In cases where we are concerned primarily with the vacuum of the theory, we can integrate out the
auxiliary scalars to derive the scalar potential for the associated φi, using the equations of motion
from Eq. (2.2.12):

Fi = − ∂W

∂Φi

∣∣∣∣
Φ→φ

F ?
i = − ∂W ?

∂Φ?
i

∣∣∣∣
Φ?→φ?

, (2.2.13)

12



where Φ→ φ indicates that after taking the partial derivative of W with respect to the superfield
Φ, the equations of motion are obtained by replacing Φ with its scalar component φ. It is a
standard abuse of notation to use Φ to refer both to the superfield and its non-auxiliary scalar,
which we adopt throughout this thesis. With this convention, the scalar potential V (φi) is written:

V (φi) = −LF =

∣∣∣∣
∂W

∂Φi

∣∣∣∣
2

≥ 0. (2.2.14)

Supersymmetric theories often feature a continuous space of degenerate vacua satisfying V = 0,
known as a moduli space, parameterized by the expectation values of the scalar fields. The subject
of spontaneous symmetry breaking in supersymmetric theories is thus intrinsically linked to the
study of moduli spaces.

Thus far we have considered only supersymmetric theories with chiral superfields. Gauge
theories introduce vector superfields of the form Eq. (2.2.6). It is convenient to use the chiral
covariant derivatives to define the field strength chiral superfields:

Wα = −1

4
DD

(
e−VDαe

V
)
, (2.2.15)

which in the Wess-Zumino gauge becomes:

Wa
α = λaα + θαD

a +
i

2
(σµσ̄νθ)αF

a
µν + iθθ(σµ∇µλ

†a)α (2.2.16)

following the conventions of [61] where ∇µ is used to refer to the standard gauge covariant deriva-
tive,

∇µλ = ∂µλ+ igAaµT
aλ (2.2.17)

and where Wα = 2gT aWa
α, for generators T a in the adjoint representation. The coupling g is

typically combined with the CP violating θ̄ term to define a holomorphic gauge coupling

τ =
1

g2
− i θ̄

8π2
. (2.2.18)

Supposing that there are some chiral superfields Φi which transform as some nontrivial represen-
tation r of the gauge group, the gauge-invariant supersymmetric Lagrangian for the theory can be
written [61]:

L =
g2

4

(∫
d2θ τWaαWa

α + c.c.

)
+

∫
d4θΦ?i

i (e2gTa
r V

a

) j
i Φj +

∫
d2θW (Φ) + c.c. (2.2.19)

2.3 The Minimal Supersymmetric Standard Model

The minimal supersymmetric extension to the Standard Model, the MSSM, introduces a scalar
superpartner for each quark and lepton, squarks and sleptons, and fermionic gaugino superpartners
for each of the gauge bosons. It also replaces the Standard Model Higgs boson with not one but two
chiral superfields, Hu and Hd. A full list of the chiral superfields and their SU(3)c×SU(2)L×U(1)Y
gauge charges is given below:

Qi : (3,2) 1
6
, ūi : (3,1)− 2

3
, d̄i : (3,1) 1

3
, Li : (1,2)− 1

2
, ēi : (1,1)1, Hu : (1,2) 1

2
, Hd : (1,2)− 1

2
,

(2.3.1)
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where the index i = 1, 2, 3 refers to the three generations of matter.
The need for two Higgs supermultiplets arises by requiring the cancellation of all anomaly co-

efficients for the electroweak gauge symmetries. Adding a single fermionic partner to the Standard
Model Higgs would create a model with an odd number of SU(2)L fermion doublets, introducing
a Witten anomaly [62] and several other nonvanishing anomaly coefficients involving hypercharge,
any of which would render the theory inconsistent.

Interactions between the superfields are encoded in the superpotential

W = µHuHd + (Yu)ijūiQjHu − (Yd)ij d̄iQjHd − (Ye)ij ēiLjHd, (2.3.2)

in addition to the standard field strength terms for the gauge bosons. Crucially, several terms
allowed by gauge invariance are absent from this superpotential: for example, those derived by
interchanging Li and Hd in Eq. (5.2.28), or the gauge-invariant operator ūd̄d̄. These renormalizable
operators violate baryon and lepton number in contradiction with observation, for example by
inducing rapid proton decay.

An additional discrete symmetry is imposed on the MSSM to avoid these disastrous conse-
quences: “matter parity”, a discrete Z2 subgroup of U(1)B−L,

PM = (−1)3(B−L). (2.3.3)

Equivalently, by combining matter parity with fermion number F , this symmetry can be recast as
the “R parity”,

PR = (−1)3(B−L)+F , (2.3.4)

under which all the Standard Model fields are even, and their superpartners are odd. Including
PM as an exact discrete symmetry of the MSSM is natural in contexts where B − L is locally
conserved, and spontaneously broken to a discrete subgroup at some high energy scale.

In general, B − L symmetry does not guarantee the absolute stability of the proton, as the
initial and final states of the decay process p→ π0 +e+ have the same B−L number. However, by
forbidding the renormalizable operators in the MSSM superpotential, B − L forces proton decay
to be mediated by irrelevant operators at signficantly suppressed rates.

Imposing R parity on the MSSM has significant phenomenological implications: the lightest
supersymmetric particle (LSP) is absolutely stable, providing a dark matter candidate if the LSP
is electrically neutral.

As the mechanics of supersymmetry breaking are unknown, the MSSM superpotential is sup-
plemented by a wide variety of Lagrangian interactions that explicitly violate supersymmetry, but
which could in principle be calculated once a precise mechanism of spontaneous supersymmetry
breaking (SSB) is chosen. This SUSY-breaking Lagrangian Lsoft is not taken to be entirely generic:
instead, we impose the requirement of “soft” supersymmetry breaking, where Lsoft contains only
relevant operators (mass terms and other couplings with positive mass dimension), so that super-
symmetry is restored in the limit where all these mass scales are taken to be vanishingly small,
msoft → 0. Such a result stands in contrast to the counterexample in which marginal operators that
explicitly violate SUSY are included in L. A Lhard of this type reintroduces the dangerous sensi-
tivity of the Higgs mass parameter to the high-energy limit of the theory, spoiling supersymmetry
as a solution to the electroweak hierarchy problem.

Even with the requirement of soft supersymmetry breaking, the generic form for Lsoft includes
a great number of terms. This is the origin of the masses for the squarks, the sleptons and the
gauginos which make these heavier than their superpartners. Gauge-invariant trilinear couplings
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between the scalars are also included, in what is often referred to as the “A-term potential”.
Notably, the supersymmetric mass term W = µHuHd for the Higgs doublets is supplemented by a
non-supersymmetric “b” term, Lsoft = −bHuHd + c.c., as well as their individual SUSY-breaking
masses m2

Hu
and m2

Hd
.

Generating the appropriate potential for electroweak symmetry breaking requires µ2 and b to
match each other fairly well, µ2 ∼ b. In principle the scales b ∼ m2

soft and µ2 need not have any
relation to each other, making their coincidence highly suspicious. This is variously referred to as
the µ problem, the µ/b problem, or the µ/Bµ problem of the MSSM. Various models have been
proposed which would explain the proximity of their values, typically by generating µ by the same
mechanism that spontaneously breaks supersymmetry [63–66].

In Chapter 5, we show how the search for a simpler composite solution to the axion quality
problem led to the development of a model which accidentally resolves the µ problem of the MSSM,
while at the same time supplying the B−L symmetry needed to forbid the problematic operators
in its superpotential.

First, we review some aspects of confining SUSY gauge theories in the following Sections 2.4
and 2.4.1. Section 2.4.2 discusses more specific properties of the A + 4Q + NQ model with an
SU(N) gauge group, including the coefficients in its dynamically generated superpotential. The
derivation is presented in Appendix B.1. All of the material in Sections 2.4, 2.4.1 and 2.4.2 has
been previously published by the author in [1].

2.4 Seiberg Dualities

It is generally difficult to analyze the infrared behavior of strongly coupled theories, due to the
failure of perturbation theory in this limit. Seiberg, Intriligator and others have made this prob-
lem more tractable by exploiting some of the remarkable properties of supersymmetry, allowing
some infrared properties of SUSY gauge theories to be calculated exactly [67, 68]. Seiberg’s in-
frared dualities between different phases of gauge theories were central to these developments. We
summarize some of the results in this section; a more detailed review is given in [69].

Seiberg found that in SU(N) gauge groups with F flavors of quarks and antiquarks, also
known as SUSY QCD, the infrared behavior of the F = N and F = N +1 cases can be completely

described by a set of gauge invariant operators, M = QQ, B = QN , and B = Q
N

. This dual
theory has no gauge interactions, so the F = N and F = N + 1 theories are said to confine:
every test charge can be “screened” by creating quark-antiquark pairs from the vacuum, and a
gauge-invariant Wilson loop obeys a perimeter law.

Classically, the gauge invariant operators obey particular constraints, following from the Bose
symmetry of the superfields and the definitions of M , B, and B. For F = N + 1,

BiM
i
j = 0

M i
jB

j
= 0 (2.4.1)

(M i
j)
−1 detM = BiB

j
,

while for F = N
detM −BB = 0, (2.4.2)

where the indices i and j refer to the family SU(F ) symmetries of the Q and Q. It has been
shown [70–72] that Eq. (2.4.2) is modified quantum mechanically:

detM −BB = Λb, (2.4.3)
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where Λb is the holomorphic scale

Λb = µb exp
{
−8π2/g2 + iθYM

}
. (2.4.4)

Here θYM is the CP -violating θ-term of the SU(N) gauge group, g is the gauge coupling, and
b = 3N − F = 2N is derived from the β function for the gauge coupling. The quantum-modified
constraint Eq. (2.4.3) can be enforced by a superpotential

W = λ
(
detM −BB − Λ2N

)
(2.4.5)

if we introduce a Lagrange multiplier superfield λ. At the origin of the classical moduli space,
M = B = B = 0, the UV family symmetry SU(F )L×SU(F )R×U(1)B is conserved. However, this
point is not on the quantum-deformed moduli space given by Eq. (2.4.3), so the chiral symmetry
is broken in the vacuum.

2.4.1 S-Confinement

In the F = N + 1 case, the classical constraint equations are not modified. Instead, they are
enforced by a dynamically generated superpotential [73].

Wd =
1

Λ2N−1

[
BMB − detM

]
, (2.4.6)

which has 〈M〉 = 〈B〉 = 〈B〉 = 0 as a solution to the equations of motion. This vacuum corresponds
to confinement without chiral symmetry breaking, which we refer to as s-confinement. More
precisely, a theory is s-confining if [74]:

• All infrared degrees of freedom are gauge invariant composite fields;

• The infrared physics is described by a smooth effective theory, which is valid everywhere on
the moduli space (including the origin);

• There is a dynamically generated superpotential.

For the effective theory to be smooth, there should be no gauge invariant order parameter that
can distinguish the Higgs and confined phases of the theory. The infrared degrees of freedom must
also satisfy the anomaly matching conditions.

Generally, the dynamically generated superpotential is determined up to an overall factor based
on symmetry arguments, and by matching its equations of motion to the classical constraints.
Its dependence on the holomorphic scale Λb can be found either on dimensional grounds, or by
requiring that Wd is neutral under the anomalous U(1) symmetry.

The requirement that a superpotential is dynamically generated adds a powerful constraint on
the matter content of any s-confining theory. An N = 1 SUSY theory with f massless matter
superfields has a classical family symmetry of rank f+1 including the R symmetry, but the G2U(1)
anomaly removes one linear combination of the U(1) family symmetries. This allows us to define a
U(1)R symmetry such that exactly one of the matter superfields φi has R charge, qi, with all other
fields neutral. Using the normalization in which the gauginos have R charge +1, cancellation of
the G2U(1)R anomaly requires that

qi =
1

µi

[∑

j

µj − µG
]
, (2.4.7)
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where µj and µG are the Dynkin indices of the matter fields φj and the gluinos, respectively, with
the normalization µ( ) = 1. For the dynamically generated superpotential to have R charge +2
under any of the possible anomaly-free R symmetries, it must have the form

W ∼
∏

i

[
φ

2/qi
i

]
=
∏

i

(φµii )2/[
∑

j µj−µG] . (2.4.8)

The matter content must therefore satisfy the index constraint of Csaki et al. [74]:

∑

j

µj − µG = 2. (2.4.9)

In [75] this index constraint is used to find all N = 1 s-confining theories with one gauge group
and no tree-level superpotential. Both F = N + 1 SUSY QCD and the A + 4Q + NQ model are
included.

In theories with a product gauge group this constraint is relaxed: the number of fields exceeds
the rank of the family symmetry, and it is no longer possible to identify a unique R symmetry for
each field.

2.4.2 SU(N) with antisymmetric tensor

Properties of the +F + (N +F − 4) model have been studied by several authors [76–79]. In
the F = 2 case there is a superpotential generated by a one-instanton effect; for F = 3 the theory
confines, with a quantum-deformed moduli space that induces dynamical symmetry breaking; and
for F = 4, the theory is s-confining. The quantum modified constraints have been derived in [77]
for F = 3, but the classical constraints for the A+4Q+NQ model do not appear in the literature.
We derive the relative coefficients of the dynamically generated superpotential in Appendix B.1,
and quote the results in this section.

Infrared operators: In the A+ 4Q+NQ model, the set of gauge invariant operators changes
based on whether N is even or odd. This is due to the representation: if N = 2m is even, then
the gauge invariants include the antisymmetrized products (Am), (Am−1Q2), and (Am−2Q4), while
for odd N = 2m+ 1 the gauge invariants include (AmQ) and (Am−1Q3).

Below, we define the simplest gauge invariant operators for the N = 2m and N = 2m + 1

models. Both cases include the operators (QQ), (AQ
2
), and (Q

N
):

J ij = Qi
αQ

α

j , (2.4.10)

Kj1j2 = AαβQ
α

j1
Q
β

j2
, (2.4.11)

Z = detQ =
εα1...αN

εj1...jN

N !

(
Q
α1

j1
Q
α2

j2
. . . Q

αN

jN

)
. (2.4.12)

For even N ≥ 4, we also add the gauge invariants

U = PfA =
εa1a2...aN

2mm!

(
Aa1a2Aa3a4 . . . AaN−1aN

)
, (2.4.13)

Vi1i2 =
εa1a2...aN

2m−1(m− 1)!2!

(
Aa1a2Aa3a4 . . . AaN−3aN−2

)
Qi1
aN−1

Qi2
aN
, (2.4.14)

W =
εa1a2...aN

2m−2(m− 2)!

εj1j2j3j4
4!

(
Aa1a2Aa3a4 . . . AaN−5aN−4

)
Qj1
aN−3

Qj2
aN−2

Qj3
aN−1

Qj4
aN
, (2.4.15)
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G SU(4)L SU(N)R UA UB UR U1

A −4 −1 0 0
Q N − 2 −1/2 1/2 0

Q 0 1 0 1

Λb 0 0 0 N

J N − 2 1/2 1/2 1
K −4 1 0 2
Z 0 N 0 N

U −2N −N/2 0 0
V 0 −N/2 1 0
W 2N −N/2 2 0
X −N −N/2 1/2 0
Y N −N/2 3/2 0

Table 2.1: The transformation properties of the UV and IR fields under the family SU(4)L ×
SU(N)R × U(1)A × U(1)B × U(1)R symmetry for the F = 4 model are shown, along with the
charges under the spurious U(1)1. The operators J , K, and Z are defined whether N is even or
odd; the fields U , V and W are specific to the even N case, while the fields X and Y correspond
to the odd N case. The U(1)R charges listed refer to the scalar component of each superfield.

whereas for odd N ≥ 5 we include

Xj =
εa1a2...aN

2mm!

(
Aa1a2Aa3a4 . . . AaN−2aN−1

)
Qj
aN
, (2.4.16)

Yj =
εa1a2...aN

2m−1(m− 1)!

εjj2j3j4
3!

(
Aa1a2Aa3a4 . . . AaN−4aN−3

)
Qj2
aN−2

Qj3
aN−1

Qj4
aN
. (2.4.17)

The numeric coefficients absorb the combinatoric factors from the ε tensors, with the convention
ε123...N = +1. In general, we reserve the indices a, b, α, β for gauge groups, and use the indices i, j
to refer to family symmetries. Superscripts and subscripts are chosen for visual clarity, and do not
signify any particular group representation.

It is useful to classify the {U, V,W , X, Y, Z} fields as “baryons” and the J and K fields as
“mesons,” to separate the operators which scale with N from those which are independent of
N . The transformation properties of these operators under the family symmetries are shown in
Table 2.1. There is a continuous family of equivalent U(1)A ×U(1)B ×U(1)R charge assignments,
but the choice shown in Table 2.1 is particularly convenient.

For N = 4, the theory contains four flavors of Q + Q. This value of N is unique in that both

mAPfA and mi
jQ

α
i Q

j

α are gauge-invariant mass terms: if these masses are large compared to Λ,
then every field can be integrated out above the confinement scale. This special case is discussed
in Section 3.3.1. For N = 3 the and representations are equivalent, and the A + 4Q + 3Q
model reduces to SUSY QCD with F = 4.

As discussed in Section 2.4, the form of the dynamically generated superpotential is determined
by the representations of the matter fields. For the A+ 4Q+NQ model,

Wd ∼
∑ AN−2Q4Q

N

Λb
. (2.4.18)
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The sum includes all possible gauge-invariant contractions of the group indices, with some relative
coefficients:

Wodd N ∼ 1

Λb

[
XY Z +XKm−1J3 + Y KmJ

]
, (2.4.19)

Weven N ∼ 1

Λb

[
UWZ + V 2Z + UKm−2J4 + V Km−1J2 +WKm

]
. (2.4.20)

Both Fodd = {J,K,X, Y, Z} and Feven = {J,K, U, V,W , Z} satisfy the t’ Hooft anomaly matching
conditions for the mixed SU(4)2U(1) and SU(N)2U(1) anomalies, the various U(1)3 anomalies,
and the mixed U(1) gravitational anomalies, for all U(1) symmetries listed in Table 2.1 except for
U(1)1. The G2

1U(1)1 anomaly breaks U(1)1 explicitly at the scale Λ1, so it is not a symmetry of
the infrared theory.

Dynamically generated superpotential: The number of infrared operators, dimF , is larger
than the dimension of the moduli space, dimM0 = N(N − 1)/2 + 4N + 1. For N = 2m+ 1,

dim{J,K,X, Y, Z} =

(
4N +

N(N − 1)

2
+ 4 + 4 + 1

)
, (2.4.21)

and for N = 2m,

dim{J,K, U, V,W , Z} =

(
4N +

N(N − 1)

2
+ 1 +

4(3)

2
+ 1 + 1

)
, (2.4.22)

implying for both cases that the number of constraints is

Ncon = dimF − dimM0 = 8. (2.4.23)

For odd N , the eight constraints are

X iZ =
εj1j2...jN

2mm!

(
Kj1j2Kj3j4 . . . KjN−2jN−1

)
J ijN

YiZ =
εj1j2...jN εii2i3i4

2m−1(m− 1)!3!

(
Kj1j2Kj3j4 . . . KjN−4jN−3

)
J i2jN−2

J i3jN−1
J i4jN , (2.4.24)

while for even N

UZ =
εj1...jN
2mm!

Kj1j2Kj3j4 . . . KjN−1jN = PfK,

Vi1i2Z =
εj1...jN

2m−1(m− 1)!

εi1i2i3i4
2!

Kj1j2Kj3j4 . . . KjN−3jN−2
J i3jN−1

J i4jN , (2.4.25)

WZ =
εj1...jN

2m−2(m− 2)!

εi1i2i3i4
4!

Kj1j2Kj3j4 . . . KjN−5jN−4
J i1jN−3

J i2jN−2
J i3jN−1

J i4jN .

The index i = 1 . . . 4 refers to the SU(4) family symmetry.

By taking partial derivatives of Eq. (2.4.19) and Eq. (2.4.20) and matching the equations of
motion to the classical constraints, one can determine the relative coefficient of each term in the
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dynamically generated superpotential. The results appear below:

Wodd =
α

Λb

{
X iYiZ −

εj1...jN εi1...i4
2m−1(m− 1)!3!

X i1(Kj1j2 . . . KjN−4jN−3
)J i2jN−2

J i3jN−1
J i4jN

−ε
j1...jN

2mm!
Yi(Kj1j2 . . . KjN−2jN−1

)J ijN

}
; (2.4.26)

Weven =
α

Λb

{
UWZ − εi1...i4

222!
V i1i2V i3i4Z −W PfK

− εj1...jN
2m−2(m− 2)!

εi1i2i3i4
4!

U(Kj1j2 . . . KjN−5jN−4
)(J i1jN−3

. . . J i4jN )

+
εj1...jN εi1i2i3i4

4 · 2m−1(m− 1)!
V i1i2(Kj1j2 . . . KjN−3jN−2

)J i3jN−1
J i4jN

}
. (2.4.27)

As in SUSY QCD, the overall factor α cannot be determined by symmetry arguments. In principle,
it is possible to add heavy quark masses and integrate out two flavors of (QQ) so as to match the
F = 2 model, whose superpotential can be calculated from a one-instanton calculation analogous
to F = N − 1 SUSY QCD.

It is useful to consider the phases of α and Λb. As defined in Eq. (2.4.4), the phase of Λb

is determined by the CP -violating θYM parameter. The phase of α is arbitrary: because Wd is
charged under an unbroken U(1)R symmetry, α can be made real by a U(1)R rotation.
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Chapter 3

An S-Confining Product Gauge Group

The following is based on a previously published paper by the author [1].

3.1 Introduction

Experimental evidence so far suggests that the Standard Model gauge group GSM = SU(3)c ×
SU(2)L × U(1)Y well describes the universe. Attempts to expand the gauge sector beyond GSM

must therefore explain why the additional interactions have not yet presented any evidence for
their existence.

There are several well-motivated ways to achieve this. The new gauge bosons and matter fields
might form a “dark sector” and interact weakly (or not at all) with the particles described by the
Standard Model. It is also possible for an extended gauge symmetry to be spontaneously broken
to GSM at some high-energy scale which we have not yet probed. In this chapter we consider the
alternative in which the new dynamics are so strongly coupled that particles charged under the
new interactions confine to form neutral bound states, with binding energies at the TeV scale or
larger.

We focus on a particular class of N = 1 supersymmetric (SUSY) gauge theories with product
gauge groups of the form SU(N)1×SU(N)2×. . .×SU(N)k. Our model includes one antisymmetric
tensor Aαβ and four quark fields Qi

α charged under SU(N)1, and a series of bifundamental fields
(Qi)

α
β charged under adjacent gauge groups SU(N)i×SU(N)i+1 as shown in Table 3.1. This theory

is an extension of a model, SU(N) : ( + 4 +N ), which has been shown to confine [76,78,80].

Examples for Feynman diagrams

1 Moose Diagrams

Q
SU(4)

A
•

G1

Q1
G2

Q2 Qk�1

Gk

Qk
SU(N)

(1.1)

1

Figure 3.1: The matter content of the proposed s-confining theory is shown as a moose diagram.
EachGi represents a gauged SU(N) group, while the dashed circles represent the SU(4)L×SU(N)R
family symmetry.

We propose in the language of [74] that this SU(N)k model is “s-confining:” that is, the
theory confines smoothly in the infrared without breaking chiral symmetry, and it generates a
non-vanishing superpotential that describes the interactions between the gauge invariant composite
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fields. Although the N = 1 s-confining theories with a simple gauge group are fully classified [75],
very few examples of s-confinement in product gauge groups are known [81,82].

Our SU(N)k product group model has two distinctive features which may be useful for model-
building. First, there are no small gauge-singlet operators: the number of fields contained in every
gauge invariant operator depends on k or N . Second, the various SU(N)i subgroups generally
confine at different scales Λi, with hierarchies based on the coupling constants gi.

Product groups of this form appear in studies of five-dimensional gauge theories [83–86]. The
model shown in Table 3.1 can be interpreted as a k-site deconstruction of a 5d SUSY SU(N) gauge
theory with a Z2 orbifold. In the 5d theory the chiral fields {A,Q} and Qk exist on opposing 4d
branes, while the bifundamental Qi superfields correspond to a single bulk Q field. A natural
hierarchy between the Λi arises if the extra dimension is warped: for example, the model with
Λ1 > . . . > Λk has A and Q on the ultraviolet brane and Qk on the infrared brane.

3.2 Product Group Extension for an S-Confining Theory

Our interest in the product group model of Table 3.1 is motivated by an observation from the
G1 × G2 case, in which the family symmetry G2 = SU(N)R of the Q is weakly gauged. In the
confined phase of G1, there are three types of operators charged under G2: one antisymmetric
K = , four quarks J = , and N antiquarks Q2 = . Remarkably, this is identical to the original
s-confining model.

The model described in Section 2.4.2 can be extended indefinitely by adding more gauge groups
Gi and bifundamental matter Qi. As long as Λ1 > Λ2 . . . > Λi > Λi+1, confinement under Gi always
produces mesons charged as + 4 under Gi+1. This is the model shown in Table 3.1, where the
gauge group is G1 × . . . × Gk. In this section we devote our attention to the question: is this
SU(N)k theory s-confining, or is s-confinement disrupted by the product group?

There are two obvious ways in which the K + 4J +NQ2 “k=2” model differs from the original
(“k=1”) s-confining theory. First, in the k = 1 model there is no tree-level superpotential, but
in the k = 2 case there is a superpotential from G1 confinement that may alter how {K, J, P}
confine under G2. Luckily, inspection of the classical constraints shows that K, J , and Q2 may be
varied freely, as long as the baryon products {UZ, V Z,WZ} or {XZ, Y Z} vary in accordance with
Eqs. (2.4.24) and (2.4.25). The second main difference is that under G2, the classical moduli space
is modified quantum mechanically. For the k ≥ 2 theory to be s-confining, we must determine
whether or not the origin remains on the moduli space.

Of the existing literature regarding SUSY product groups, the work of Chang and Georgi [86]
on SU(N)k extensions to F = N SUSY QCD is particularly relevant to our present study. Our
method also has some similarities to deconfinement [76, 87], particularly in Section 3.3 when we
consider Sp(2N) groups.

3.2.1 Infrared Operators

To understand the infrared behavior of the theory, we develop a basis of gauge invariant operators
which describe the moduli space and obey anomaly matching conditions. Then in Sections 3.2.2
and 3.2.3, we find the dynamically generated superpotential and perform some consistency checks.

Let us define a basis for the anomalous U(1) charges, U(1)j=1...k, such that the anomaly co-
efficient A(G2

iU(1)j) is zero if and only if i 6= j, as shown in Table 3.1. Each U(1)i is explicitly
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broken at a scale associated with Λi, so that the approximate UV symmetry is broken to:

SU(4)L× SU(N)R×U(1)R×U(1)k+2 −→ SU(4)L× SU(N)R×U(1)R×U(1)A×U(1)B. (3.2.1)

The U(1)i charges of the Λb
i are determined by the G2U(1) anomaly coefficients. Note that b =

2N − 1 for Λb
1, while b = 2N for Λb

i 6=1.

G1 G2 G3 . . . Gk SU(4) SU(N) UA UB UR U1 U2 U3 . . . Uk
Q N − 2 −1/2 1/2 0 0 0 0
A −4 −1 0 0 0 0 0
Q1 0 1 0 1 0 0 0

Q2 0 −1 0 −1 1 0 . . . 0
Q3 0 1 0 1 −1 1 0
...

. . . 0
... 0

...
... 0

Qk 0 ±1 0 ±1 ∓1 ±1 . . . 1

Λb
1 0 0 0 N 0 0 0

Λb
2 0 0 0 0 N 0 0

Λb
3 0 0 0 0 0 N 0

...
...

...
...

...
. . . 0

Λb
k 0 0 0 0 0 0 N

Table 3.1: Matter content of the proposed s-confining theory, showing the transformation properties
under the gauged SU(N)k and the SU(4)L×SU(N)R×U(1)A×U(1)B×U(1)R family symmetry.
The spurious U(1)i=1...k charges are also shown. The alternating (±) factors in the Qk charges
depend on whether k is odd or even: the upper choice corresponds to odd k.

From Table 3.1, it is clear that combinations of the form

(
Q
N

1 Q
N

2

Λb
2

)
,

(
Q
N

2 Q
N

3

Λb
3

)
, . . .

(
Q
N

k−1Q
N

k

Λb
k

)

are neutral under all of the symmetries, including the spurious U(1)i. Therefore, the dynamically
generated superpotential has the form

Wd ∼
∑

p2...pk

{(
AN−2Q4Q

N

1

Λb
1

)(
Q
N

1 Q
N

2

Λb
2

)p2 (
Q
N

2 Q
N

3

Λb
3

)p3

. . .

(
Q
N

k−1Q
N

k

Λb
k

)pk}
(3.2.2)

for some powers pi = 0, 1, . . . for each i = 2, 3, . . . k. Any such superpotential has an R charge of +2
under all of the possible U(1)R symmetries. Before we can find the individual terms that appear
in Wd, it is necessary to understand the equations of motion between the infrared operators.

To find a set of gauge invariant operators in the far infrared, let us consider the ordered case
Λ1 � Λ2 � . . .� Λk. As discussed in Section 2.4.2, G1 confinement produces the operators

J1 = (QQ1), K1 = (AQ
2

1), Z1 = (Q
N

1 ), (3.2.3)

U1 = (Am), V1 = (Am−1Q2), W1 = (Am−2Q4); X1 = (AmQ), Y1 = (Am−1Q3), (3.2.4)
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where J1 and K1 are charged under G2. Although U(1)1 is broken, the U(1)2×. . .×U(1)k symmetry
is approximately preserved above the scale Λ2, adding O(k3) anomaly coefficients that must be
calculated.

This is the benefit of the strategically-defined U(1)i charges shown in Table 3.1: the fields
{Q,A,Q1} are neutral under U(1)2 . . . U(1)k, and all of these anomaly matching conditions are
trivially satisfied. The fields J1 and K1 transform similarly to Q and A under the non-Abelian
symmetries, but their U(1)B charges are different, as shown in Table 3.2.

G2 G3 . . . Gk SU(4) SU(N) UA UB UR U2 U3 . . . Uk
J1 N − 2 +1/2 1/2 0 0 0
K1 −4 +1 0 0 0 0
Q2 0 −1 0 1 0 0

Q3 0 +1 0 −1 1 . . . 0
...

. . . 0
... 0

...
... 0

Qk 0 ±1 0 ∓1 ±1 . . . 1

U1 −2N −N/2 0 0 0 0
V1 0 −N/2 1 0 0 0
W1 2N −N/2 2 0 0 0
X1 −N −N/2 1/2 0 0 0
Y1 N −N/2 3/2 0 0 0

Z1 0 N 0 0 0 0

Table 3.2: Transformation properties of the composite fields in the confined phase of G1, in the
limit where G2 × . . .×Gk is weakly gauged. The composite fields U , V , and W exist only if N is
even; if N is odd, then they are replaced by X and Y .

At the scale Λ2 < Λ1, the G2 fields confine to form the following G1 ×G2 singlets:

J2 = (J1Q2) K2 = (K1Q
2

2) X2 = (Km
1 J1) Y2 = (Km−1

1 J3
1 ) (3.2.5)

U2 = (Km
1 ) V2 = (Km−1

1 J2
1 ) W2 = (Km−2

1 J4
1 ) Z2 = (Q

N

2 ). (3.2.6)

The fields J2 and K2 transform under G3 as and respectively.
It is convenient to define the shorthand notation Bi, where Bi = {Ui, Vi,Wi} for even N = 2m,

and Bi = {Xi, Yi} for odd N = 2m + 1. At scales below Λ2 and above Λ3, the intermediate
degrees of freedom are {J2, K2, B1, B2, Z1, Z2, Q3, . . . , Qk}. This set of fields satisfies the anomaly
matching conditions for SU(4)L × SU(N)R × U(1)A × U(1)B × U(1)R × U(1)3 × . . .× U(1)k.

It is straightforward to continue this procedure until all groups including Gk have confined,
using the following recursive operator definition:

Ji = (Ji−1Qi) Ki = (Ki−1Q
2

i ) Xi = (Km
i−1Ji−1) Yi = (Km−1

i−1 J3
i−1) (3.2.7)

Ui = (Km
i−1) Vi = (Km−1

i−1 J2
i−1) Wi = (Km−2

i−1 J4
i−1) Zi = (Q

N

i ). (3.2.8)

This definition can be applied to i = 1 as well if we define J0 = Q and K0 = A. Below the scale
Λk, all of the gauge groups have confined, and the approximate U(1)i=1...k symmetries are broken
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SU(4)L SU(N)R UA UB UR
Jk N − 2 ±1/2 1/2
Kk −4 ±1 0

Uodd −2N −N/2 0
Vodd 0 −N/2 1
Wodd 2N −N/2 2
Ueven −2N +N/2 0
Veven 0 +N/2 1
Weven 2N +N/2 2

Xodd −N −N/2 1/2
Yodd N −N/2 3/2
Xeven −N +N/2 1/2
Yeven N +N/2 3/2

Zodd 0 N 0
Zeven 0 −N 0

Table 3.3: The transformation properties of the composite fields in the fully confined phase of
SU(N)k are shown. The subscript Bodd,even refers to i = 1 . . . k, whereas the baryon content
Bi = {Ui, Vi,Wi} or Bi = {Xi, Yi} depends on N . The U(1)B charges of Jk and Kk are positive if
k is odd, and negative if k is even.

to discrete ZN groups. The charges under the remaining continuous family symmetries are shown
in Table 3.3.

It must be shown that the basis of infrared operators is large enough to cover the moduli space.
For the SU(N)k gauge group with fields {A,Q,Q1, . . . , Qk}, the dimension of the moduli space is

dimM0(k) =
N(N − 1)

2
+ 4N + kN2 − k(N2 − 1) = 4N +

N(N − 1)

2
+ k, (3.2.9)

while the operator basis {Jk, Kk;B1, . . . , Bk;Z1, . . . , Zk} has dimension

Nops = 4N +
1

2
N(N − 1) + 9k, (3.2.10)

implying that there are 8k complex constraints. By rearranging Eq. (3.2.7) as follows, we can find
8(k − 1) of the constraint equations:

Xi = (Km
i−1Ji−1) = (Ki−2Q

2

i−1)m(Ji−2Qi−1) = (Km
i−2Ji−2)(Q

2m+1

i−1 ) = Xi−1Zi−1

Yi = (Km−1
i−1 J3

i−1) = (Ki−2Q
2

i−1)m−1(Ji−2Qi−1)3 = (Km−1
i−2 J3

i−2)(Q
2m+1

i−1 ) = Yi−1Zi−1,
(3.2.11)

for i = 2, 3 . . . k. Similarly,

Ui = Ui−1Zi−1 Vi = Vi−1Zi−1 Wi = Ui−1Zi−1. (3.2.12)

The eight remaining constraints are provided by

XkZk = Km
k Jk YkZk = Km−1

k J3
k , (3.2.13)

or

UkZk = Pf (Kk) VkZk = Km−1
k J2

k WkZk = Km−2
k J4

k . (3.2.14)

It is possible that these classical constraints may be quantum-modified.
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Reduced operator basis: The classical constraints for Bi>1 are mildly problematic, because
Eqs. (3.2.11) and (3.2.12) imply that these operators are redundant: that is, they can be written
as products from a smaller operator basis, {B1, Z1, Z2, . . . Zk}, and are therefore not independent
degrees of freedom. Excitations of the Bi fields above the vacuum acquire O(Λi) masses if they do
not obey the classical constraints. These massive modes decouple at the scale Λk, leaving only the
degrees of freedom consistent with the classical (or quantum-modified) constraints. Unfortunately,
anomaly cancelation depended on the fields Bi=2...k: if these are not true degrees of freedom, then
the anomaly matching conditions might not be satisfied.

A solution to this problem can be seen by studying the Xodd and Yeven charges in Table 3.3.
Their fermionic components have opposite charges under each of U(1)A, U(1)B, and U(1)R. When
we calculate the anomaly coefficients for each of the mixed and pure U(1) anomalies, the contri-
butions from each Xodd cancel those from a Yeven field. This is also true for the SU(4)2U(1) and
SU(4)3 anomalies. Therefore, we refer to Xodd and Yeven as an “anomaly neutral pair,” indicating
that they can be removed without changing any of the anomaly coefficients. Similarly, Xeven and
Yodd also form an anomaly neutral pair.

If k is odd, then all of the operators {X2, Y2, . . . , Xk, Yk} can be removed in neutral pairs.
Substituting Xk and Yk with their equations of motion, Eq. (3.2.13) becomes

(X1Z1Z2 . . . Zk−1)Zk = Km
k Jk (Y1Z1Z2 . . . Zk−1)Zk = Km−1

k J3
k (3.2.15)

This is not possible if k is even. To remove all the redundant operators, we must also remove a
pair {X1, Yeven} or {Xeven, Y1}, and this is inconsistent: both X1 and Y1 are necessary to describe
the moduli space.

This can be seen if we move away from the origin along the flat direction parameterized by
(AmQ), while keeping Q1 = 0. Along this flat direction X1 increases, but Xeven = 0. Therefore,
X1 describes directions on the moduli space that cannot be described by Xeven. Similarly, by
increasing (Am−1Q3) and fixing Q1 = 0, we can see that Y1 is just as necessary.

Quantum modification to Eq. (3.2.15) could explain why the odd k and even k situations are
different. If U(1)B is broken in the vacuum, then {Xi, Yi} become an anomaly-neutral pair under
the remaining symmetries, for any value of i = 1 . . . k. Based on F = N SUSY QCD, one would
expect the classical relationships involving Qi and Qi+1 to be quantum-modified. Specifically,
the combination (Zi−1Zi) has the same spurious U(1)i charge as Λb=2N

i , allowing modifications to
equations such as Eq. (3.2.15). For example, the classical k = 4 constraint for X4Z4 might become

X1

(
Z1Z2Z3Z4 + β1Λb

2Z3Z4 + β2Z1Λb
3Z4 + β3Z1Z2Λb

4 + β4Λb
2Λb

4

)
= Km

4 J4, (3.2.16)

with some as-yet-unknown coefficients βi. As long as the coefficients are not zero, then the flat
direction corresponding to (AmQ) 6= 0 with Q1 = 0 now requires some of the Zi 6=1 to have nonzero
expectation values. In this Z1 = 0, X1 6= 0 example, Eq. (3.2.16) implies that Λb

2(Z3Z4 + Λb
4) = 0,

spontaneously breaking U(1)B even in the limit where 〈X1〉 � Λk. Once U(1)B is broken in the
vacuum, the operators {J4, K4, X1, Y1, Zi=1...4} obey the anomaly matching conditions.

A quantum-modified constraint like Eq. (3.2.16) also explains why {Jk, Kk, X1, Y1, Zi=1...k} is
consistent at the origin of moduli space if k is odd. In this case the Zi = 0 solution remains
valid far away from the origin, because every Λb term multiplies at least one Z field. Consider
Eq. (3.2.16) with k = 5:

Km
5 J5 = X1

(
Z1Z2Z3Z4Z5 + β1Λb

2Z3Z4Z5 + β2Z1Λb
3Z4Z5 + β3Z1Z2Λb

4Z5 + β4Z1Z2Z3Λb
5

+β5Z1Λb
3Λb

5 + β6Λb
2Z3Λb

5 + β7Λb
2Λb

4Z5

)
. (3.2.17)
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In this case, the (AmQ) 6= 0, Q
N

i=1...k = 0 flat direction remains on the moduli space for arbitrarily
large values of (AmQ).

This does not mean that U(1)B is necessarily broken in the vacuum if k is even. Let us fix
Zi = 0 for all i = 1 . . . k to ensure that U(1)B is not broken at the scale Λi. After imposing this
constraint, Eq. (3.2.16) becomes

X1 =
Km

4 J4

Λb
2Λb

4

, (3.2.18)

implying that X1 is not an IR degree of freedom when U(1)B is conserved. The same is true for
Y1Λb

2Λb
4 = Km−1

4 J3
4 . In this particular vacuum X1 and Y1 are redundant operators, and after they

are removed from the calculation the U(1)B anomaly coefficients match the ultraviolet theory.

Theories with even N behave in essentially the same way. Under the exact family symmetries,
the operator pairs {Uodd,Weven}, {Ueven,Wodd}, and {Vodd, Veven} are anomaly-neutral. As in the
odd N case, if k is even then it is not possible to remove all the redundant {Ui, Vi,Wi} operators
while preserving the anomaly matching. This leads us to expect that the classical constraint
equations

Uk = U1 (Z1Z2 . . . Zk−1), Vk = V1 (Z1Z2 . . . Zk−1), Wk =W1 (Z1Z2 . . . Zk−1) (3.2.19)

receive quantum modifications of the form

PfKk = U1

(
Z1Z2 . . . Zk−1 + . . .+ (Λb

2Λb
4 . . .Λ

b
k−2)Zk−1Zk + (Λb

2Λb
4 . . .Λ

b
k)
)
. (3.2.20)

if k is even. Either U(1)B is broken in the vacuum, or the operators {U1, V1,W1} are not degrees
of freedom: in both cases, the IR theory satisfies t’ Hooft anomaly matching. Thus, the reduced
operator basis describes all infrared degrees of freedom, for both even and odd N .

3.2.2 Dynamically generated superpotential

In this section we find a dynamically generated superpotential in the region of parameter space
with Λ1 � Λ2 � . . .� Λk. We begin by considering how the Wd of Eq. (2.4.26) and Eq. (2.4.27)
becomes modified at the G2 confinement scale. Ignoring the precise relative coefficients between
terms,

W
(1)
odd =

1

Λb
1

(
X1Y1Z1 −X1K

m−1
1 J3

1 − Y1K
m
1 J1

)
(3.2.21)

W (1)
even =

1

Λb
1

(
U1W1Z1 − V 2

1 Z1 − U1K
m−2
1 J4

1 + V1K
m−1
1 J2

1 −W1K
m
1

)
(3.2.22)

At the scale Λ2, we expect J1 and K1 to confine to form the B2 baryons. If we make these
replacements in W (1), it becomes

W
(1)
odd =

1

Λb
1

(X1Y1Z1 −X1Y2 − Y1X2) (3.2.23)

W (1)
even =

1

Λb
1

(
U1W1Z1 − V 2

1 Z1 −W1U2 − U1W2 + V1V2

)
(3.2.24)
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It is likely that G1 confinement changes the holomorphic scale Λ2 to some new Λ̃2. To find the
relationship between Λ2 and Λ̃2, let us normalize the hadrons to have mass dimension +1:1

J̃1 =
J1

Λ1

K̃1 =
K1

Λ2
1

Z̃1 =
Z1

ΛN−1
1

, (3.2.25)

and similarly for the baryon operators B1. The dynamically generated superpotential W2 has the
form

W (2) =
∑

contr.

(
K̃N−2

1 J̃4
1Q

N

2

Λ̃b
2

)
=
∑

contr.

(
KN−2

1 J4
1Q

N

2

Λ2N
1 Λ̃b

2

)
. (3.2.26)

From Eq. (3.2.2), symmetry requirements ensure that the superpotential has the form

W (2) ∼ AN−2Q4Q
N

1

Λb
1

Q
N

1 Q
N

2

Λb
2

−→ KN−2
1 J4

1Q
N

2

Λb
1Λb

2

, (3.2.27)

allowing Λ̃b
2 to be expressed as

Λ̃2N−1
2 =

1

Λ1

Λ2N
2 . (3.2.28)

This expression can also be derived with the same result by matching the gauge couplings at the
mass threshold Λ1. Based on this agreement, we do not expect the superpotential W2 to receive
modifications of the form

W (2) →
(

1 +
Z1Z2

Λb
2

+ . . .

)
W (2), (3.2.29)

even though such terms are consistent with the family symmetries.

As confinement continues, the products of intermediate mesons J2 and K2 can be replaced with
G3 baryons. Each i = 1 . . . k superpotential W (i) becomes

W
(i<k)
odd =

(
i∏

j=1

Λb
j

)−1

(XiYiZi −XiYi+1 − YiXi+1) (3.2.30)

W
(k)
odd =

(
k∏

j=1

Λb
j

)−1 (
XkYkZk −XkK

m−1
k J3

k − YkKm
k Jk

)
, (3.2.31)

W (i<k)
even =

(
i∏

j=1

Λb
j

)−1 (
UiWiZi − V 2

i Zi −WiUi+1 − UiWi+1 + ViVi+1

)
(3.2.32)

W (k)
even =

(
k∏

j=1

Λb
j

)−1 (
UkWkZk − V 2

k Zk −WkK
m
k − UkKm−2

k J4
k + VkK

m−1
k J2

k

)
. (3.2.33)

The full superpotential is the sum

Wd =
k∑

i=1

W (i). (3.2.34)

1Even after dividing by these powers of Λ, it is not necessarily true that the fields are canonically normalized.
Corrections in the Kähler potential are likely to require additional normalization.
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Equations of motion: Let us consider equations of motion of the form ∂W/∂B1, where B1 =
{U1, V1,W1, X1, Y1} is any of the G1 baryons. It is easy to show that these equations are

Y2 = Y1Z1 X2 = X1Z1 X1Y1 = 0 (3.2.35)

for odd N , and

W2 =W1Z1 V2 = V1Z1 U2 = U1Z1 U1W1 = V 2
1 (3.2.36)

for even N . The ∂W/∂B2 equations yield more surprising results: for example,

∂Wd

∂X2

= −Y1

Λb
1

+
Y2Z2

Λb
1Λb

2

= 0 −→ Y2Z2 − Y3 = Y1Λb
2. (3.2.37)

The classical constraint Y2Z2 = Y3 is modified, due to the appearance of X2 in both W (1) and
W (2). For i = 2, 3 . . . (k − 1), we find

BiZi = Bi+1 + Λb
iBi−1. (3.2.38)

The equations of motion ∂Wd/∂Zi are not modified, so that

XiYi = 0, UiWi = V 2
i (3.2.39)

for all i. Finally, the Bk equations of motion are

XkZk = Km
k Jk + Λb

kXk−1, YkZk = Km−1
k J3

k + Λb
kYk−1 (3.2.40)

for odd N , and

UkZk = Km
k + Λb

kUk−1, VkZk = Km−1
k J2

k + Λb
kVk−1, WkZk = Km−2

k J4
k + Λb

kWk−1 (3.2.41)

for even N .
Recall from Section 2.4.2 that each gauge group SU(N)i has a related CP parameter θi, which

determines the phase of the holomorphic scale Λb
i . Although Λb did not appear in the k = 1

equations of motion, the phases of Λb
i do affect the equations of motion in the product group case.

The overall phase of Wd can still be removed by performing a U(1)R rotation; however, the relative
phases between the Λi may have physical effects.

Armed with these iterative equations of motion, we can rewrite the larger baryons Bi>1 in
terms of {B1} and the Zi fields. For example,

B2 = B1Z1 (3.2.42)

B3 = B1(Z1Z2 − Λb
2) (3.2.43)

B4 = B1(Z1Z2Z3 − Λb
2Z3 − Z1Λb

3) (3.2.44)

B5 = B1(Z1Z2Z3Z4 − Λb
2Z3Z4 − Z1Λb

3Z4 − Z1Z2Λb
4 + Λb

2Λb
4). (3.2.45)

Our guesses in Eqs. 3.2.16 and 3.2.17 as to the form of the quantum modification are correct, with
βi = ±1 for each coefficient. This process is extended to arbitrary Bi in the following way: each
classical constraint involving products of the form (Z1Z2 . . . Zj) is modified by replacing adjacent
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pairs (Zi−1Zi) by (−Λb
i), and each possible term is added to the product (Z1 . . . Zj). After making

these adjustments, the kth equations of motion return the following constraints if k is odd:

Km
k Jk = X1

{
(Z1 . . . Zk)− Λb

2(Z3 . . . Zk) + . . .+ (−1)(k−1)/2(Λb
2Λb

4 . . .Λ
b
k−1)Zk

}

Km−1
k J3

k = Y1

{
(Z1 . . . Zk)− Λb

2(Z3 . . . Zk) + . . .+ (−1)(k−1)/2(Λb
2Λb

4 . . .Λ
b
k−1)Zk

}
,

Km
k = U1

{
(Z1 . . . Zk)− Λb

2(Z3 . . . Zk) + . . .+ (−1)(k−1)/2(Λb
2Λb

4 . . .Λ
b
k−1)Zk

}

Km−1
k J2

k = V1

{
(Z1 . . . Zk)− Λb

2(Z3 . . . Zk) + . . .+ (−1)(k−1)/2(Λb
2Λb

4 . . .Λ
b
k−1)Zk

}

Km−2
k J4

k = W1

{
(Z1 . . . Zk)− Λb

2(Z3 . . . Zk) + . . .+ (−1)(k−1)/2(Λb
2Λb

4 . . .Λ
b
k−1)Zk

}
,

(3.2.46)

or if k is even:

Km
k Jk = X1

{
(Z1 . . . Zk) + . . .− (−1)

k
2 (Λb

2 . . .Λ
b
k−2)Zk−1Zk + (−1)

k
2 (Λb

2Λb
4 . . .Λ

b
k)
}

Km−1
k J3

k = Y1

{
(Z1 . . . Zk) + . . .− (−1)

k
2 (Λb

2 . . .Λ
b
k−2)Zk−1Zk + (−1)

k
2 (Λb

2Λb
4 . . .Λ

b
k)
}
,

Km
k = U1

{
(Z1 . . . Zk) + . . .− (−1)

k
2 (Λb

2 . . .Λ
b
k−2)Zk−1Zk + (−1)

k
2 (Λb

2Λb
4 . . .Λ

b
k)
}

Km−1
k J2

k = V1

{
(Z1 . . . Zk) + . . .− (−1)

k
2 (Λb

2 . . .Λ
b
k−2)Zk−1Zk + (−1)

k
2 (Λb

2Λb
4 . . .Λ

b
k)
}

Km−2
k J4

k = W1

{
(Z1 . . . Zk) + . . .− (−1)

k
2 (Λb

2 . . .Λ
b
k−2)Zk−1Zk + (−1)

k
2 (Λb

2Λb
4 . . .Λ

b
k)
}
.

(3.2.47)

In both cases, the origin of moduli space is a solution to the equations of motion.
As we suggested in Section 3.2.1, if k is even then the B1 fields are not independent degrees of

freedom when Zi=1...k = 0:

Km
k = U1(−1)

k
2 (Λb

2Λb
4 . . .Λ

b
k)

Km−1
k J2

k = V1(−1)
k
2 (Λb

2Λb
4 . . .Λ

b
k)

Km−2
k J4

k = W1(−1)
k
2 (Λb

2Λb
4 . . .Λ

b
k)

;
Km
k Jk = X1(−1)

k
2 (Λb

2Λb
4 . . .Λ

b
k)

Km−1
k J3

k = Y1(−1)
k
2 (Λb

2Λb
4 . . .Λ

b
k).

(3.2.48)

Therefore, if U(1)B is a symmetry of the vacuum and k is even, then the B1 fields are completely
determined by Jk and Kk. After removing the B1 fields, the t’ Hooft anomaly matching conditions
are satisfied. Elsewhere on the moduli space the B1 fields may vary independently from Kk and
Jk, U(1)B is spontaneously broken by 〈Zi〉 6= 0, and the anomaly coefficients for the infrared
symmetries match the values calculated in the ultraviolet theory.

3.2.3 Additional tests

So far we have restricted our attention to the ordered Λ1 > . . . > Λk case to find the dynami-
cally generated superpotential. Due to the holomorphy of the superpotential, changes in the Λi

hierarchy should not alter the form of the superpotential. In this section we test this supposition
by considering the Λ1 � Λi 6=1 case. In this limit the SU(N)k model reduces to an SU(N)k−1

extension to F = N SUSY QCD which has been studied by Chang and Georgi [86].
As Λ1 → 0, the A and Q fields decouple from the strongly coupled Qi. Chang and Georgi find

that the infrared operators involving only Qi obey the following constraints:

det(Q1Q2) = Z1Z2 − Λb
2 (3.2.49)

det(Q1Q2Q3) = Z1Z2Z3 − Λb
2Z3 − Z1Λb

3 (3.2.50)

det(Q1Q2Q3Q4) = Z1Z2Z3Z4 − Λb
2Z3Z4 − Z1Λb

3Z4 − Z1Z2Λb
4 + Λb

2Λb
4, (3.2.51)

and so on. This is exactly the same form we derived for Bi≥2 in Section 3.2.2. At scales above
O(Λ1) but below Λi>1, the G1 charged degrees of freedom include A, Q, and M = (Q1Q2 . . . Qk).
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Let us define the mass-normalized field M,

M =
(Q1Q2 . . . Qk)

Λ2Λ3 . . .Λk

, (3.2.52)

and let the fields {A,Q,M} confine under G1, producing

Jk = QM, Kk = AM2, ZM = det(M), (3.2.53)

and the baryons B1 = {U1, V1,W1;X1, Y1} as defined in Section 3.2.1. The dynamically generated
superpotential is

Wodd =
X1Y1ZM −X1K

m−1
k J3

k − Y1K
m
k Jk

Λ̃b
1

(3.2.54)

Weven =
(U1W1 − V 2

1 )ZM − U1K
m−2
k J4

k + V1K
m−1
k J2

k −W1K
m
k

Λ̃b
1

. (3.2.55)

The effective scale Λ̃b
1 contains a product of (Q

N

1 . . . Q
N

k ) and Λb
2 . . .Λ

b
k, so that the superpotential

is invariant under the spurious symmetries.
There is also a quantum modified constraint

ZM = detM = (Z1 . . . Zk)− Λb
2(Z3 . . . Zk) + {all other contractions}. (3.2.56)

If we use a Lagrange multiplier λ, Eq. (3.2.56) follows from the superpotential

W ′
d = λ {ZM − (Z1 . . . Zk) + (all contractions)} . (3.2.57)

After replacing ZM with {Zi}, the equations of motion are identical to Eqs. (3.2.46) and (3.2.47),
suggesting that there is no phase transition in the parameter space.

Notice that the equations of motion from ZM also determine a vacuum solution for λ:

∂Wodd

∂ZM
=

X1Y1

Λ̃b
1

+ λ = 0 (3.2.58)

∂Weven

∂ZM
=

U1W1 − V 2
1

Λ̃b
1

+ λ = 0 (3.2.59)

(3.2.60)

Thus, the Lagrange multiplier can be treated as a new redundant baryon operator, which should
be integrated out along with the other redundant fields.

Finally, let us consider regions of parameter space in which Λ1 is neither the largest nor the
smallest confinement scale. In these cases the redundant operators include a mix of Bi and Zij, all
of which produce the same equations of motion in the reduced operator basis. For any arrangement,
at the last confinement scale Λf there is a dynamically generated superpotential of the form

W (f) ∼
K̃N−2
f J̃4

fMN

Λ̃b
f

, (3.2.61)

where Jf , Kf , and M are such that

(JfM) = (QQ1 . . . Qf )(Qf+1 . . . Qk) = Jk, (KfM
2) =

(
AQ

2

1 . . . Q
2

f

)(
Qf+1 . . . Q

2

k

)2

= Kk,

(3.2.62)
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and where {J̃f , K̃f ,M} are normalized to have mass dimension +1. Under the remaining gauged
Gf , these fields satisfy the index condition for s-confinement,

∑
j µj − µG = 2, and there is a

dynamically generated superpotential. Lagrange multipliers λi enforce the constraint between
the operators det(Qi . . . Qj) and {Zi . . . Zj}, and the equations of motion provide a relationship
between λi and the other hadrons. After replacing the redundant operators with their equations
of motion, we find that the constraints relating {Jk, Kk} to {B1, Zi} are unchanged.

Flow: It is a necessary condition for s-confining theories that their description in terms of gauge-
invariants is valid in the Higgs phase, when some fields acquire large expectation values and
spontaneously break the gauge group to a subgroup. If the low-energy theory does not s-confine,
then the original theory cannot be s-confining either. This is the “flow requirement” of [74], which
we use in this section to test the SU(N)k theory.

In the 〈Jk〉ij � Λ vacuum with 〈Aαβ〉 = 0, the SU(N)k group is broken to SU(N − 1)k in the

classical limit. This requires a nonzero (Qi)
α
β for every Qi, which break each gauged SU(N)i to

SU(N−1)i. The SU(N)i×SU(N)i+1 bifundamentals Qi decompose into SU(N−1)×SU(N−1)
representations as follows:

SU(N)× SU(N)→ SU(N − 1)× SU(N − 1) : ( , ) −→ ( , )⊕ ( ,1)⊕ (1, )⊕ (1,1).
(3.2.63)

The (2N − 1) broken generators of each gauge group Gi 6=1 “eat” the combination + + 1 from
Qi−1 and Qi to create (2N −1) massive gauge superfields, leaving behind the ( , ) bifundamental
fields.

The G1 group behaves somewhat differently: its broken generators “eat” the ( ,1) part of Q1

and a linear combination of the superfields Qi=1...4. Under SU(N−1)1 the field decomposes as
( ⊕ ), so that the “eaten” Q field is replaced by a component of A. After removing the massive

superfields, the SU(N−1)1 charged matter is A′+4Q′+(N−1)Q
′
1. The overall effect of 〈Jk〉 � Λ

on the SU(N)k model is to replace N with N − 1.
Now let us consider the limit where 〈Aαβ〉 � Λ and 〈J〉 = 0. In the even N = 2m case with

〈U1 = PfA〉 � Λ1, SU(2m)1 is broken to Sp(2m)1 and decomposes into
Sp
⊕ 1. Here

Sp
is

the (2m2 −m − 1) dimensional representation of Sp(2m). There are also (2m2 −m − 1) broken
SU(2m) generators, so the superfield A′ =

Sp
is eaten.

The fields Q and Qi are not directly affected by 〈PfA〉: however, as Sp(2m) has no complex
representations, Q and Q1 are effectively (2m + 4) quarks charged in the representation of
Sp(2m). This theory is known to s-confine [88]. It is likely that the Sp(2m)×SU(2m)k−1 product
group theory is also s-confining: we explore this possibility in Section 3.3.2.

In the case where N is odd, an expectation value 〈X1〉 = 〈AmQ〉 � Λ breaks SU(2m + 1) to
Sp(2m) instead. Aside from a few extra singlets and massive gauge bosons, there is little difference
between the odd N and even N cases: the infrared theory is Sp(2m)× SU(2m)k−1.

Conclusion: Our product group extension to the A + 4Q + NQ model exhibits the behavior
required for an s-confining theory. The set of gauge invariant operators {Jk, Kk, B1, Z1...k} satisfies
the t’ Hooft anomaly matching conditions; the origin remains on the quantum moduli space, so
the theory can confine without breaking chiral symmetry; and there is a dynamically generated
superpotential. Furthermore, the operators {Jk, Kk, B1, Z1...k} provide a smooth description of the
entire moduli space: there is no gauge invariant order parameter to distinguish the confined and
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Higgs phases. By considering the flow along flat directions, we have also found another product
group extension to an s-confining theory, Sp(2m)× SU(N)k−1.

3.3 Other S-Confining Theories

In the previous section we find strong evidence that the product group extension to the A+4Q+NQ
model is s-confining. In this section we consider the follow-up question: how many other s-
confining models can be extended into product groups? We have already suggested that Sp(2m)
with (2m+ 4) can be extended into an Sp(2m)×SU(N)k−1 product group model. If this theory
is not s-confining, then the SU(N)k A+ 4Q+NQ model is not s-confining either. We discuss the
behavior of this theory in Section 3.3.2.

There are also additional possibilities for the A+ 4Q+NQ model in the case where N = 4. In
this special case the entire SU(4)L×SU(N)R family symmetry can be gauged: we consider whether
or not such theories are s-confining in Section 3.3.1. In Sections 3.3.3 and 3.3.4 we discuss the
other s-confining theories in [75] with family symmetries large enough to accommodate a gauged
SU(N) subgroup. This includes SUSY QCD with F = N + 1 flavors, and Sp(2m) with ( + 6 )
matter for m = 2 and m = 3. We show that some of these theories are not s-confining.

Due to the lack of an index constraint on the matter content, it is difficult to conduct a
systematic search for new s-confining product groups. We have seen in the A + 4Q + NQ model
that G1 confinement increases the index sum of the G2 charged matter by +2, but other confining
theories tend to change the index sum by varying amounts. Therefore, the list of theories considered
in this section is presumably incomplete.

We restrict our attention to s-confining models which can be extended by gauging a subgroup of
the family symmetries and adding bifundamental fields. Our goal is to determine whether product
group s-confinement is possible in each model, based on the index constraint after confinement.
This is sufficient to show which of the product group extensions are obviously not s-confining. A
more detailed analysis is appropriate for the theories which pass this test.

3.3.1 Special case: SU(4)

In this section, we extend the N = 4 A+ 4Q+NQ model by gauging SU(4)`L ×G0 × SU(4)rR for
some ` and r. Here G0 is the SU(4) gauge group containing the + 4( + ) matter, and every
other gauged SU(4) contains four flavors of ( + ). It is convenient to relabel the hadrons to
reflect the Q↔ Q symmetry of the matter content of the A+ 4Q+ 4Q model:

M = QQ, K = AQ
2
, K = AQ2, U = A2, Z = Q4, Z = Q

4
. (3.3.1)

A convenient redefinition of the U(1)A×U(1)B×U(1)R charges is shown in Table 3.4, for ` = r = 2.

After extending the model in this way, the model has a “left-right” symmetry which simplifies
many of the calculations in this section:

`↔ r, Gi ↔ G̃i, Λi ↔ Λi, SU(4)L ↔ SU(4)R, U(1)A ↔ U(1)B, Qi ↔ Qi. (3.3.2)

Above, Λi corresponds to the group Gi, while Λi is the confinement scale of the group G̃i. The
group G0 × U(1)R and the field A are invariant under the discrete transformation.
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SU(4)L G2 G1 G0 G̃1 G̃2 SU(4)R UA UB UR
Q2 1 0 0
Q1 −1 0 0
Q0 1 0 0
A −2 −2 1
Q0 0 1 0
Q1 0 −1 0
Q2 0 1 0

Table 3.4: Above, the original s-confining theory A+ 4(Q0 +Q0) is extended on the left and right

by gauging G2
L × G̃2

R and adding the Qi and Qi fields to cancel the anomalies. To extend the
model beyond ` = r = 2, more quarks Qi and Qj can be added with alternating U(1)A and U(1)B
charges.

Infrared operators: Based on our understanding of the (` = 0, r = k− 1) models developed in
the previous section and the vectorlike nature of the G0-charged fields, we can guess the form of
the gauge-invariant operators which describe the moduli space:

F ≡





U1 = A2

Zi = Q4
i

Zj = Q
4

j ,

M`r = (Q` . . . Q1Q0Q0Q1 . . . Qr)
K` = (Q2

` . . . Q
2
0A)

Kr = (AQ
2

0 . . . Q
2

r)



 , (3.3.3)

for i = 0, 1, . . . , ` and j = 0, 1, . . . , r.
Only under certain conditions do we expect the basis F to obey the anomaly matching

conditions for the family symmetries listed in Table 3.4. We have already seen that in the
(` = 0, r = k − 1) models with even k, some of the operators in F become redundant in the
U(1)B preserving vacuum. If this pattern continues in the (`, r) models with ` 6= 0 and r 6= 0, then
we would expect that the set F obeys the anomaly matching conditions only if ` and r are even.
If either ` or r is odd, we expect that some operators in F become redundant if U(1)A × U(1)B is
preserved in the vacuum.

For a given (`, r), the number of infrared operators is given by

dimF = 1 + (`+ 1) + (r + 1) + 42 +
4(3)

2
+

4(3)

2
= `+ r + 31, (3.3.4)

while the dimension of the classical moduli space is

dimM0 = (`+ 1)42 +
4(3)

2
+ (r + 1)42 − (`+ 1 + r)(42 − 1) = `+ r + 23. (3.3.5)

This implies that there should exist Ncon = 8 constraint equations.

Equations of Motion: It is easiest to derive the equations of motion in the case where G0

confines last. The groups G1 × . . .×G` and G̃1 × . . .× G̃r confine separately to form the mesons
ML = (Q0 . . . Q`) and MR = (Q0 . . . Qr), the baryons Zi=0...` and Zj=0...r, and some larger baryon
operators with quantum-modified constraints. The charges of ML and MR are shown in Table 3.5.
In the limit where Λ0 is small, the theory reduces to two copies of F = N SUSY QCD with product
group extensions. According to [86], the fields obey the following constraints:

detML = (Z0Z1 . . . Z`)− Λb
1(Z2 . . . Z`)− . . .− (Z0 . . . Z`−2)Λb

` + . . . (3.3.6)

detMR = (Z0Z1 . . . Zr)− Λ
b

1(Z2 . . . Zr)− . . .− (Z0 . . . Zr−2)Λ
b

r + . . . (3.3.7)
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If ` is odd-valued, then the sum of neighbor contractions includes a constant term, (Λb
1Λb

3 . . .Λ
b
`); if

` is even, then all terms include some power of Zi. The same relationship holds for r and detMR.
As in the SU(N)k models, we expect that the distinction between even and odd ` and r determines
which of the operators in F are redundant when U(1)A and U(1)B are conserved in the vacuum.

SU(4)L G0 SU(4)R UA UB UR
ML {0, 1} 0 0
A −2 −2 1
MR 0 {0, 1} 0

Table 3.5: All gauge groups except G0 have confined, leaving ML and MR. The {0, 1} charges of
ML and MR correspond to the cases where ` and r are odd or even, respectively. Not shown are
the baryons Zi and Zj, which do not transform under the non-Abelian symmetries.

When G0 confines, {ML, A,MR} form the following hadrons:

U1 = A2

ZL = detML

ZR = detMR

M`r = (MLMR)
K` = (AM2

L)
Kr = (AM2

R),
(3.3.8)

with the dynamically-generated superpotential

Wd ∼
A2M4

LM4
R

Λ̃b
0

∼ U1ZLZR − ZRK2
` − ZLK

2

r − U1M
4
`r +K`M

2
`rKr

Λ̃b
0(Λ1 . . .Λ`)4(Λ1 . . .Λr)4

, (3.3.9)

for some Λ̃b
0 consistent with the anomalous symmetries. We show the charges of the composite

fields in Table 3.6.

The equations of motion from U1, K`, and ZL produce the following constraints:

detM`r = ZLZR
U1M

3 = K`MKr,
K`ZR = M2

`rKr

KrZL = K`M
2
`r,

PfKr = U1ZR
PfK` = U1ZL.

(3.3.10)

These equations are not all independent, but contain Ncons = 8 independent constraints.

SU(4)L SU(4)R Uodd `
A U even `

A Uodd r
B U even r

B UR
K` −2 0 −2 −2 1
M`r 0 1 0 1 0
Kr −2 −2 −2 0 1
U1 −4 −4 −4 −4 2

Zeven i +4 +4 0 0 0
Zodd i −4 −4 0 0 0
Zeven j 0 0 +4 +4 0
Zodd j 0 0 −4 −4 0

Table 3.6: After all of the gauge groups confine, the infrared degrees of freedom are described by
the hadrons shown above. Their U(1)A and U(1)B charges depend on ` and r, respectively.
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If we introduce Lagrange superfields λL and λR, the quantum modified constraints relating
{ZL, ZR} to {Zi, Zj} as a superpotential:

WL = λL

(
ZL − (Z0Z1 . . . Z`) + Λb

1(Z2 . . . Z`) + . . .+ (Z0 . . . Z`−2)Λb
` + . . .

)
(3.3.11)

WR = λR

(
ZR − (Z0Z1 . . . Zr) + Λ

b

1(Z2 . . . Zr) + . . .+ (Z0 . . . Zr−2)Λ
b

r + . . .
)
. (3.3.12)

Redundant Operators: In this section we use the equations of motion to study the operator
basis F . In the U(1)A preserving vacuum with 〈Zi〉 = 0, the expectation value of ZL depends
heavily on whether ` is even or odd. If ` is even, then ZL ≈ 0; if ` is odd, then ZL ≈ (Λb

1Λb
3 . . .Λ

b
`)�

0. The same pattern holds for r and Zj when U(1)B is preserved.
It is simplest to consider the case in which both ` and r are even. Expanding about the Zi =

Zj = 0 vacuum to first order in Zi and Zj, we find that every term in Eq. (3.3.10) contains a product
of at least two fields, so that none of the operators in the set F are redundant. This is consistent
with the fact that all of the anomaly coefficients from SU(4)L×SU(4)R×U(1)A×U(1)B ×U(1)R
match the ultraviolet theory when r and ` are even.

This is not true if ` is odd. In this case the equations of motion for KrZL and U1ZL can be
rewritten as

Kr =
K`M

2
`r

(Λb
1Λb

3 . . .Λ
b
`)
, U1 =

PfK`

(Λb
1Λb

3 . . .Λ
b
`)
. (3.3.13)

near the U(1)A×U(1)B preserving vacuum. Similarly, the equation of motion for detM`r becomes

Z0(Λ
b

2Λ
b

4 . . .Λ
b

r) + Λ
b

1Z2(Λ
b

4 . . .Λ
b

r) + . . .+ (Λ
b

1Λ
b

3 . . .Λ
b

r−1)Zr =
detM`r

(Λb
1Λb

3 . . .Λ
b
`)
, (3.3.14)

which can be recast into a linear constraint equation for any one of the Zeven fields. Taken
together, Eqs. (3.3.13) and (3.3.14) imply that the operators {Kr, U1, Zeven} should be removed in
the U(1)A × U(1)B preserving vacuum if ` is odd and r is even. In the even `, odd r case it is the
operators {K`, U1, Zeven} which become redundant, and ZR rather than ZL remains large in the
Zj = 0 vacuum.

If both ` and r are odd, then the origin of moduli space is no longer a solution to the equations
of motion:

detM`r = (Λb
1Λb

3 . . .Λ
b
`)(Λ

b

1Λ
b

3 . . .Λ
b

r)−
(
Z0Z1Λb

3 . . .Λ
b
` + Z0Λb

2Z3 . . .Λ
b
` + . . .

)
(Λ

b

1 . . .Λ
b

r)

−(Λb
1 . . .Λ

b
`)
(
Z0Z1Λ

b

3 . . .Λ
b

r + Z0Λ
b

2Z3 . . .Λ
b

r + . . .
)

+ . . . (3.3.15)

To satisfy this constraint, either 〈M〉 6= 0, 〈ZevenZodd〉 6= 0, or 〈ZevenZodd〉 6= 0. Different family
symmetries are broken in each case, leaving different sets of independent operators.

In the 〈M〉 6= 0 vacuum where M i
j is proportional to δij, SU(4)L × SU(4)R is broken to its

diagonal subgroup SU(4)d. The fields Q` and Qr transform under SU(4)d as and , respectively,
while the meson M decomposes as

⊗ = 1⊕Adj : M`r −→ (TrM`r)⊕ (M`r − TrM`r). (3.3.16)

In the U(1)A×U(1)B preserving vacuum with Zi = Zj = 0, it is possible to write Kr and U1 either
in terms of K` and M`r, or K` and U1 in terms of Kr and M`r. Therefore, we can either remove
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the set {K`, U1,TrM} or {Kr, U1,TrM}. This degeneracy is related to the fact that K` and Kr

have the same transformation properties under SU(4)d × U(1)A × U(1)B × U(1)R.
If instead 〈M〉 = 0 and 〈ZevenZodd〉 6= 0, only U(1)A is broken in the vacuum. One “(Zeven +

Zodd)” linear combination determined by the ratio of the expectation values becomes massive, and
all sixteen M i

j degrees of freedom remain independent. The operator Kr is not redundant in this

vacuum: the ZLKr equation of motion includes a term ZevenZoddKr which is not small. The set
of redundant operators is {K`, U1, (Zeven + Zodd)}.

Finally, if the nonzero expectation value is 〈ZevenZodd〉, then U(1)B is broken. As we would
expect from the left-right symmetry, the redundant operators are {Kr, U1, (Zeven + Zodd)} in this
vacuum. It is also possible to break a linear combination of U(1)A and U(1)B if 〈ZevenZodd〉 6= 0
and 〈ZevenZodd〉 6= 0.

Anomaly Matching: We have discussed six distinct cases with maximal symmetry in the vac-
uum, based on ` and r. Below, we show a summary of our results for each case:

(`, r) Broken symmetry Redundant operators
(even, even) None None
(odd, even) None {Kr, U1, Zeven}
(even, odd) None {K`, U1, Zeven}

SU(4)L × SU(4)R {K` or Kr, U1,TrM`r}
(odd, odd) U(1)A {K`, U1, (Zeven + Zodd)}

U(1)B {Kr, U1, (Zeven + Zodd)}

For the remaining symmetries and operators in each case, we have verified that the anomaly
coefficients match the UV theory. There are 21 matching conditions for each of the first three cases,
17 for the fourth case, and 12 each for the final two cases. Although some of these coefficients are
related to each other via the left-right symmetry, the explicit calculation is lengthy and not very
illuminating.

Let us also consider points on the moduli space with nonzero 〈Zi〉 or 〈Zj〉, where none of the
operators in the set F are redundant. In these vacua U(1)A×U(1)B is spontaneously broken, and
the infrared operators should obey anomaly matching conditions for the remaining symmetries.

For the odd `, even r case, U(1)A is broken by 〈Zi〉 6= 0 for some Zi. After U(1)A is broken,
{U1, Zeven} form an anomaly-neutral pair: their U(1)B,R charges are opposite, so all of the U(1)3

and gravitational U(1) anomalies cancel. The fermionic part of Kr is neutral under U(1)B×U(1)R,
and it is in a real representation of SU(4)R: therefore, Kr contributes nothing to the remaining
anomaly coefficients. Thus, the t’ Hooft anomaly matching conditions are also satisfied in the
〈Zi〉 6= 0 vacuum where the operators {Kr, U1, Zeven} are independent degrees of freedom.

In the even-`, odd-r models, the operators {K`, U1, Zeven} are restored as independent degrees of
freedom when 〈Zj〉 6= 0 and U(1)B is spontaneously broken. Applying the left-right transformation
to the above results, the introduction of {K`, U1, Zeven} has no net effect on the anomaly coefficients
once U(1)B is removed. Finally, when 〈Zi〉 6= 0 and 〈Zj〉 6= 0 in the odd-`, odd-r models, the
operators {K`, U1, Zeven} are restored as independent degrees of freedom without contributing to
the anomaly coefficients of the remaining symmetries. Both U(1)A and U(1)B are broken in this
case.

Flows: Our proposed s-confining extensions to the SU(4) model pass several consistency checks.
As a final test, let us spontaneously break the gauge group by giving large expectation values
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to the gauge invariant operators. For example, 〈M`r〉 � Λ breaks SU(4)`+r+1 to SU(3)`+r+1,
leaving + 4 + 3 matter charged under SU(3)0. Three of the fields come from the G0 × G1

bifundamental Q0, while the fourth comes from

SU(4)→ SU(3) : −→ ⊕ . (3.3.17)

Note that = for SU(3), so that there are effectively (3 + 1) flavors of ( + ) charged under
SU(3)0. The low-energy theory is a left-right extension of F = 4, N = 3 SUSY QCD, where an
SU(3)L×SU(3)R subgroup of the family SU(4)L×SU(4)R is gauged. In Section 3.3.3 we consider
such models in more detail.

Along flat directions with 〈PfA〉 � Λ0, SU(4)0 is broken to Sp(4), leaving an (`, r) product
group extension of the s-confining Sp(4) : (4 + 4) model. In this theory an SU(4)L × SU(4)R
subgroup of the SU(8) family symmetry is gauged. We discuss models of this type in Section 3.3.2.

Summary: In every (`, r) model with (`, r) 6= (0, 0), there are quantum deformations to the
classical moduli space. The origin remains on the moduli space unless both ` and r are odd. In
the mixed case where only one of {`, r} is odd, eight of the fields become redundant in the vacua
which conserve U(1)A×U(1)B. If ` and r are both even, all of the infrared operators in Eq. (3.3.3)
are independent, interacting degrees of freedom even at the origin of moduli space. Due to the
existence of a dynamically generated superpotential and the possibility of confinement without
chiral symmetry breaking, we conclude that the (`, r) models are s-confining if ` and r are not
both odd.

SU(4) Ring Extension: Before moving on to consider other types of models, let us extend
the (`, r) model even further by gauging a diagonal subgroup Gd of the family SU(4)L × SU(4)R
symmetry. This connects the left and right ends of the (`, r) extension as shown in Table 3.7, so
that different models are labelled by the sum (`+r). Models of this type appear in deconstructions
of 5d gauge theories, as in [83].

G` G`−1 . . . G1 G0

Q`

Q`−1
...

Q1
. . .

Q0

A

Table 3.7: Above, we show the matter fields of the SU(4) ring extension to the A+4Q+4Q model.

Although the baryon operators PfA and detQi are unaffected by the ringlike nature of the prod-
uct gauge group, there is now only one gauge-invariant meson operator: TrM = Tr (Q0Q1 . . . Q`).
For any group Gi, the adjoint operator

(M̂i)
α
β = (QiQi+1 . . . Q`Q0 . . . Qi−1)αβ −

1

4
(TrM)δαβ (3.3.18)

is a degree of freedom in the limit where Gi is weakly gauged, and can be used to create gauge-
invariant operators of the type Tr (M̂iM̂i) and Tr (M̂3

i ). In this notation, Q−1 = Q` for the i = 0
case.
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Even when these operators have large expectation values, the gauge group is not completely
broken. It has been shown [89] in the SU(N)k extension to F = N SUSY QCD that at an arbitrary
point on the moduli space has a remaining U(1)3 gauge group. In the A + 4Q + 4Q model it is
also possible to set 〈PfA〉 � Λ0, so that SU(4)0 is broken to Sp(4). This reduces the rank of the
group by one, but is not sufficient to break U(1)3 completely. Therefore, the SU(4) ring extension
has a Coulomb branch, and is not s-confining.

3.3.2 Sp(2m) with (2m+ 4) quarks

In Section 3.2.3, we found that the SU(N)k extension of the A + 4Q + NQ model flows to an
Sp(2m)× SU(2m)k−1 theory. In the limit where Sp(2m) is much more strongly coupled than the
SU(2m) groups, the (2m+4) quarks confine to produce the operator M = (Q2), which transforms
in the representation under the approximate SU(2m+ 4) family symmetry.

The fields Q and M have the following charges:

Sp(2m) SU(2m+ 4) U(1)R
Q 1/(m+ 2)

M 2/(m+ 2)

A dynamically generated superpotential

Wd =
PfM

Λ2m+1
(3.3.19)

reproduces the classical constraints on the Qi fields.

SU(4)L Sp(2m) SU(2m)1 . . . SU(2m)k SU(2m)R
QL

Q0

Q1
...

. . .

Qk−1

Qk

(Q2
L)

(QLQ0)

(Q
2

0)
Q1
...

. . .

Qk

Table 3.8: An Sp(2m)×SU(2m)k model is shown, which is expected to s-confine. At the bottom of
the table, we list the degrees of freedom in the confined phase of Sp(2m). Subsequent confinement
follows the pattern of the A+ 4Q+NQ model.

In the product gauge group model shown in Table 3.8, an SU(2m) subgroup of the family
symmetry is gauged and new bifundamental fields are added to cancel the anomalies. The family
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SU(2m+4) is explicitly broken to SU(2m)×SU(4)×U(1), under which the meson M decomposes
as

−→ ( ,1;−4)⊕ ( , ;m− 2)⊕ (1, ; 2m) : M −→MA ⊕MQ ⊕M0, (3.3.20)

and the dynamically generated superpotential becomes

Wd −→
Mm−1

A M2
QM0

Λ2m+1
. (3.3.21)

Including the bifundamental field Q1, the SU(2m)1 charged matter in the confined phase of Sp(2m)
is MA + 4MQ + 2mQ1, which is expected to s-confine.

This model can also be derived using the deconfinement technique of Berkooz [76], by treating
the matter field A as a bound state of two quarks transforming in the fundamental representation
of a new Sp(N).

3.3.3 SUSY QCD

A product group extension to F = N + 1 SUSY QCD can be derived from the N = 3 case of
A+4Q+NQ. In SU(3), the representation is the same as , so that the G1 matter is effectively
4 +4 . By gauging the SU(3) family symmetry of the Q and adding a sequence of bifundamental
fields Qi, we have found a product group extension to SUSY QCD.

For larger values of N , let us gauge an SU(N) subgroup of the SU(N + 1)R family symmetry
as shown below:

SU(N + 1)L SU(N)1 SU(N)2 SU(N)R
Q
q̄

Q1

Q2

After SU(N)1 confinement, the hadrons are (Qq̄), (QQ1), (QN), (Q
N

1 ), and (q̄Q
N−1

1 ), which trans-
form under SU(N)2 and the family symmetries as:

SU(N + 1)L SU(N)2 SU(N)R
(Qq̄)
(QN)

(Q
N

1 )

(QQ1)

(q̄Q
N−1

1 )
Q2

Under SU(N)2 there are (N+1)( + ) matter fields, which is consistent with the index constraint
for s-confinement.

For this theory to be s-confining, it must be shown that the dynamically generated superpoten-

tial from SU(N)1 does not prevent the operators (QQ1) and (q̄Q
N−1

1 ) from varying independently;
that the infrared operators obey the appropriate anomaly matching conditions; and that the ori-
gin is on the moduli space. The additional gauge groups are likely to introduce quantum-modified
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constraints between some of the operators, which may induce chiral symmetry breaking in some
cases.

This theory can also be extended by gauging an SU(N) subgroup of SU(N + 1)L, so that the
most general product group extension is SU(N)` × SU(N)0 × SU(N)r. Based on the behavior of
the (`, r) A+4Q+4Q model for odd ` and r, we expect that some of the (`, r) SUSY QCD models
also break chiral symmetry.

Alternating Gauge Groups: The F = N+1 model can also be extended by gauging the entire
SU(N + 1) family symmetry. In this case, the gauge group has the alternating form SU(N) ×
SU(N + 1)× SU(N)× SU(N + 1)× . . ., with a series of bifundamental fields:

SU(N + 1)L SU(N)1 SU(N + 1)2 SU(N)3 SU(N + 1)R

Q
Q1

Q2

Q3

The matter content is simpler in this case, as all of the fields are SU(N + 1) × SU(N) bifunda-
mentals. When SU(N)1 confines, we are left with

SU(N + 1)L SU(N + 1)2 SU(N)3 SU(N + 1)R

(QN)
(QQ1)

(Q
N

1 )
Q2

Q3

Under SU(N + 1)2, there are (N + 1) flavors of + which is expected to confine with chiral

symmetry breaking. Many of the G2 singlets we would näıvely construct, such as (QQ1)(Q
N

1 ), are
set to zero by the equations of motion, so G2 confinement leaves the following charged fields:

SU(N + 1)L SU(N)3 SU(N + 1)R

(QN)
(QQ1Q2)

Q3

After G1 × G2 confinement, the low energy theory is simply F = N + 1 SUSY QCD with some
gauge singlet fields.

Both product group models based on SUSY QCD have the potential to be s-confining, and
may be promising directions for future study.

3.3.4 Other Models

Of the s-confining theories listed in [75], there are only a few models possessing non-Abelian
family symmetries larger than the gauge group. We have already discussed the SU(N) models
with A + 4Q + NQ and (N + 1)(Q + Q), as well as the Sp(2m) model with (2m + 4)Q. There
are two remaining cases based on Sp(2m) with A + 6Q [90, 91]. If m = 2 or m = 3, an SU(4) or
SU(6) subgroup of the family symmetry can be gauged. In this section, we show that the product
group extensions do not exhibit s-confinement.
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Sp(6) with A + 6Q: Consider the m = 3 case with just one extra product group. Below, we
show the matter fields above and below the Sp(6) confinement scale:

Sp(6) SU(6) SU(6)R

A
Q
Q

(A2)
(A3)

(Q2)

(QAQ)

(QA2Q)

Q

In the confined phase of Sp(6), the SU(6) index sum becomes

∑

j

µj − µG = 3 · (6− 2) + 6 · 1− 2 · 6 = +6, (3.3.22)

so the product group does not s-confine. It may be possible to remove some of the degrees of
freedom by adding a nonzero tree-level superpotential, but this is outside the scope of the current
study.

Sp(4) with A + 6Q: In the Sp(4) case, an SU(4) subgroup of the SU(6) family symmetry is
gauged.

SU(2)L Sp(4) SU(4) SU(6)R
QL

A
QR

Q

The set of Sp(4) invariants is

F = {(A2); (Q2
L), (QLQR), (Q2

R); (QLAQL), (QLAQR), (QRAQR)}. (3.3.23)

The operators (QLQR) and (QLAQR) are bifundamentals of SU(2) × SU(4), while (Q2
R) and

(QRAQR) transform as (1, ). The other hadrons are gauge singlets. Together with Q, the SU(4)
charged matter is 2 + 4 + 4 , with the index sum

∑

j

µj − µG = 2(2) + 4(1) + 4(1)− 2 · 4 = +4. (3.3.24)

Therefore, the Sp(4) product group extension to Sp(4) : (A+ 6Q) is also not s-confining.
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3.4 Conclusion

For several s-confining theories, we find product gauge group models with the following properties:

• All infrared degrees of freedom are gauge invariant composite fields;

• The infrared physics is described by a smooth effective theory, which is valid everywhere on
the moduli space (including the origin);

• There is a dynamically generated superpotential.

This allows confinement without symmetry breaking, even when the quantum and classical moduli
spaces are different. In particular, this behavior may be found in the following models:

SU(N) : A+ 4Q+NQ Sp(2m) : (2m+ 4)Q SU(N) : (N + 1)(Q+Q).

In this chapter we argue that the A + 4Q + NQ and Sp(2m) : (2m + 4)Q product group models
s-confine. Based on less rigorous arguments we suggest two product group extensions of SUSY
QCD which may also be s-confining, but a more detailed analysis is required. It is also entirely
possible that there are many other s-confining product group theories unrelated to the models
considered here.

In the A+ 4Q+NQ model with N = 4, we consider a set of product group extensions of the
form G`

L×G0×Gr
R. When ` and r are both odd, the chiral symmetry is necessarily broken in the

vacuum, so the theory is not s-confining. If instead the sum (`+ r) is odd, then the origin remains
on the quantum-deformed moduli space, and some of the infrared operators become redundant in
the symmetry-enhanced vacua. Finally, if ` and r are both even, we find that all of the operators
are interacting degrees of freedom in the neighborhood of the origin. In each case, there is a
dynamically generated superpotential.

A promising direction for future study is to treat the product gauge groups as k site decom-
positions of 5d SUSY theories. Exact calculations in N = 2 SUSY may provide us with a better
understanding of the 4d N = 1 models considered here.

One feature of the product group models is the lack of small gauge-invariant operators, which
has a promising phenomenological application to composite axion models. After lifting some of
the flat directions, a Peccei-Quinn U(1) symmetry may be dynamically broken when the gauge
group confines, producing a light composite axion. If the product gauge group is suitably large, the
Peccei-Quinn symmetry is protected against the explicit symmetry breaking effects which would
otherwise be induced by higher-dimensional operators. Chapter 4 is devoted to the study of this
scenario.
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Chapter 4

Composite Axion Model from
S-Confinement

The following is based on a previously published paper by the author and Tim M.P. Tait [2].

4.1 Introduction

Compositeness is invoked in many of the solutions to the axion quality problem discussed in
Section 1.4. A properly constructed model can protect the axion potential from the PQ violating
effects that induce CP violation in the vacuum, while also generating the scale fa dynamically.

If the axion is a strongly bound state of multiple fundamental fields, φ ∼ ψn, the problematic
Lagrangian operators of the form L = m3(φ + φ?) originate from nonrenormalizable interactions
in the high-energy theory, suppressing the magnitude of the coupling m3. Taking Λ as the scale
at which the fields ψ confine to form the composite axion, φ ∼ ψn/Λn−1, Planck scale violation of
the Peccei-Quinn symmetry induces the effective operator

LUV ∼
ψn + ψ?n

Mn−4
P

=
Λn−1

Mn−4
P

(
ψn

Λn−1
+

ψ?n

Λn−1

)
, (4.1.1)

implying that the coupling m3 is of order Λn−1M4−n
P . In terms of the quality factor defined in

Eq. (1.3.4), a satisfactory solution to the strong CP problem would require

Λn−1M4−n
P fa . 10−62(1012 GeV)4. (4.1.2)

With the simplifying choice Λ ∼ fa ∼ 1012 GeV, an appropriately small value for m3 is attained if
n > 12, just as in the case where U(1)PQ is protected by a Zn discrete symmetry [45].

A complete solution to the axion quality problem must also satisfy several additional criteria.
First, the U(1)PQ symmetry must have no chiral anomaly with the strongly coupled group: other-
wise, instanton effects will explicitly break U(1)PQ at the scale Λ, completely invalidating the axion
model. Second, all low dimensional PQ violating operators should be forbidden, even those not
directly involving the scalar field φ. In particular, tree level masses for SU(3)c charged fermions
or other types of U(1)PQ violation, L ∼ mqqq̄ + 1

M?
(qq̄)2 + . . . introduce loop-level perturbations

to the axion potential V (a), easily resulting in effective values of θ̄ larger than 10−10. This cri-
teria applies even to supersymmetric theories, due to loop effects below the scale of spontaneous
supersymmetry breaking.
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Simultaneously satisfying these various requirements is a highly nontrivial exercise, and this
is reflected in the relatively small set of models in the literature. Typical solutions, whether
composite [48–50] or not [42,52,53], rely on some sort of product gauge group to protect the axion
potential from all the possible loop-induced PQ violating effects.

In this regard, the structure of the s-confining theory outlined in Chapter 3 makes it a nearly
ideal candidate for QCD axion model-building. The “meson-like” gauge invariant operators Jk =

QQ1Q2 . . . Qk and Kk = AQ
2

1Q
2

2 . . . Q
2

k grow in dimension with the length of the product gauge
group, SU(N)1×SU(N)2× . . . SU(N)k, while the dimensions of the “baryon-like” operators scale
with N . By increasing N and k, Planck scale Peccei-Quinn violation can be made arbitrarily
irrelevant at low energies, ameliorating the axion quality problem.

A number of practical questions must be addressed, in order to convert the s-confining theory
of Chapter 3 into a working QCD axion model. To solve the strong CP problem, the SU(3)c
gauge group must be present somewhere in the theory, embedded for example within the SU(4) or
SU(N)R global symmetries shown in Table 3.3. Ensuring anomaly cancellation will necessitate the
addition of new, presumably non-composite fields. Sections 4.2 and 4.2.1 in this chapter develop
a model based on one particular set of choices, corresponding to the moose diagram shown in
Figure 5.1. Assuming that all of the anomaly-free global symmetries are broken to some extent
by the Planck-scale perturbations to the theory, we identify the unique combination of the global
U(1) symmetries that corresponds to U(1)PQ.

An s-confining theory by definition includes the origin on the moduli space: this is the vacuum
in which the expectation value of every scalar field is zero, and every global symmetry of the
high-scale theory is manifest in the infrared limit. This “confinement without chiral symmetry
breaking” is not the right behavior for an axion model, because U(1)PQ must be spontaneously
broken in order to solve the strong CP problem without new, massless fields. Engineering the right
vacuum thus requires an external superpotential, which when combined with the dynamically gen-
erated superpotential successfully excises the origin from the moduli space, spontaneously breaking
U(1)PQ with some fa determined jointly by the confinement scale and parameters in the external
superpotential. In Section 4.2.2 we show how this is accomplished. Section 4.2.3 estimates the size
of the leading gravitational corrections, and determines parameters such that the axion quality
problem is ameliorated to a sufficient degree. In Section 4.3, we show how a simple extension of
the basic model can dynamically generate superpotential terms on which the basic module relies,
resulting in a theory in which all of the essential mass scales are generated from strong dynamics.

As we shall see, solving the quality problem can imply that a theory whose low energy limit looks
like a rather standard invisible axion model may blossom at high energies into a rich interlocking
structure of gauge dynamics.

4.2 Axion from a Supersymmetric Product Group

The construction of our axion model begins with a gauge group SU(N)(1), with one matter field
A transforming in the antisymmetric ( ) representation; four quarks, Q; and N antiquarks Q1.
This theory is known to s-confine [76–78,88]: that is, a set of gauge-invariant operators provides a
smooth description of the moduli space which is valid at the origin, and a dynamically generated
superpotential enforces the classical constraints between operators [74,75]. When supplemented by
an appropriately chosen external superpotential, U(1)PQ is spontaneously broken when SU(N)(1)

confines.
High axion quality is enforced by expanding SU(N)(1) into a product gauge group, SU(N)r =
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Examples for Feynman diagrams

1 Moose Diagrams

Q
SU(4)

A
•

G1

Q1
G2

Q2 Qk�1

Gk

Qk
SU(N)

(1.1)

SU4 q

A

•

eG1

q1

eG2

q2 q`�1

eG`

q`
SUN

Q

A•

G1

Q1
G2

Q2 Qr�1

Gr

Qr
SUN

(1.2)

1

Figure 4.1: Moose diagram indicating the matter content and gauge interactions of the SU(N)`×
SU(4)×SU(N)r composite axion model. Each Gi and G̃i corresponds to a gauged SU(N), whereas
SU(N) flavor symmetries are represented by dashed circles. The bifundamental fields Q, Qi, q,
and qi are depicted as directed line segments connecting adjacent groups, while the field A (A)

transforms under G1 (G̃1) in the antisymmetric two-tensor representation.

SU(N)(1) × SU(N)(2) × . . .× SU(N)(r). In addition to the SU(N)(1)-charged A+ 4Q, the matter
fields include a set of bifundamentals Qi which transform under SU(N)(i) × SU(N)(i+1), and
N antiquarks Qr charged only under SU(N)(r). It has recently been demonstrated that this
product group model s-confines [1], and that the gauge-invariant operators include “mesons” of the

form (QQ1Q2 . . . Qr) and (AQ
2

1 . . . Q
2

r); “baryons” (Q
N

i ) for each i = 1 . . . r; and special baryons

(A
N−p

2 Qp) for 0 ≤ p ≤ 4, subject to the condition that (N − p) is even. An axion living in
a combination of these fields enjoys the feature that increasing r and N results in increasingly
suppressed gravitational corrections.

To accommodate QCD within the model, we introduce a second copy of the matter fields
A+ 4q+ q1 + . . .+ q`−1 +Nq` charged under a new s-confining SU(N)` gauge group, and we let Q
and q transform in the fundamental ( ) and antifundamental ( ) representations under a weakly
gauged SU(4) which contains SU(3)c as a subgroup. The full matter content of our theory is
thus {A,Q,Q1 . . . Qr;A, q, q1 . . . q`}, with the gauge group SU(N)r×SU(4)×SU(N)`. The gauge
structure and matter assignments is represented as a moose diagram in Figure 5.1, and is vaguely
reminiscent of a deconstructed extra dimension with a bulk SU(N) broken to SU(4) on a defect.
As we show in Section 4.2.3, this structure permits smaller values of N for a given axion qualty.

For convenience, we introduce the notation SU(N)` = G̃1 × G̃2 × . . . × G̃` and SU(N)r =

G1 × G2 × . . . × Gr, where G̃i and Gi represent SU(N) groups that confine at scales Λ̃i and Λi

respectively. Up to a constant, the holomorphic scales Λ̃i and Λi are defined as

Λ̃b
i ≡ µb exp{−8π2/g̃2

i + iθ̃i}, Λb
i ≡ µb exp{−8π2/g2

i + iθi}, (4.2.1)

where g̃i and gi are the coupling constants of the gauge groups G̃i and Gi. In the dynamically
generated superpotential for each group there is an overall constant that is not determined by
symmetry arguments; to simplify the notation, we absorb these constants into Λ̃b

i and Λb
i .

In the absence of an external superpotential, there is a conserved U(1)A × U(1)B × U(1)C ×
U(1)R × SU(N)L × SU(N)R global symmetry, and an approximate U(1)PQ that is broken by the
SU(4)2-U(1) anomaly. Charges are shown in Table 5.1, where for convenience, we have taken the
U(1)R charges of Q and A to be equal to q and A, respectively, with qQ = N−4

N
and qA = 16−2N

N(N−2)
. By

defining U(1)PQ as in Table 5.1, we assume that the operator (AQ
2

1 . . . Q
2

r) is more suppressed than

46



SU(N)L G̃` . . . G̃1 SU(4) G1 . . . Gr SU(N)R UA UB UC UR U(1)PQ

q` 0 0 ±1 0 0
q`−1 0 0 ∓1 0 0

...
. . .

...
...

...
...

...
q1 0 0 1 0 0

A −4 0 −N
N−2

qA 0

q N − 2 0 0 qQ 0

Q 2−N 0 0 qQ
2−N
N

A 4 −N
N−2

0 qA 4/N

Q1 0 1 0 0 0
...

. . .
...

...
...

...
...

Qr−1 0 ∓1 0 0 0
Qr 0 ±1 0 0 0

Table 4.1: Representations of the matter fields under the gauged SU(N)` × SU(4) × SU(N)r

symmetries, the flavor symmetries SU(N)L × SU(N)R × U(1)4, and the approximate U(1)PQ

symmetry.

(Aq2
1 . . . q

2
`), so that U(1)PQ is expected to be a better symmetry than U(1)A. Appropriate U(1)PQ

charges in the opposite limit can be recovered by performing the following outer automorphism on
the moose diagram:

`↔ r, Gi ↔ G̃i, Λi ↔ Λ̃i, A↔ A, Q↔ q, Qi ↔ qi. (4.2.2)

At a generic point on the moduli space the full global symmetry is spontaneously broken,
producing a number of Nambu-Goldstone bosons. Although the explicit symmetry breaking from
gravity would supply masses for the pNGBs, a tree-level external superpotential

Wtree =
(Aq2

1q
2
2 . . . q

2
`)

M2`−2
A

+
(Q

N

1 )

MN−3
B

+
(qN1 )

MN−3
C

+
(AmQ)(Am−1Q3)

MN−1
R

+
(A

m
q)(A

m−1
q3)

MN−1
r

(4.2.3)

increases the pNGB masses by breaking the global symmetries more severely. This is essential
in the case of the second (MB) term, which as we shall see below determines the PQ symmetry
breaking scale fa after confinement. The remaining Mi could be safely taken to be MP without
harm. In addition, to avoid deforming the G1 confinement, we choose them to satisfy Λ1 .Mi.

In Section 4.3 we discuss the possibility that some of the terms in Eq. (4.2.3) are generated
dynamically through the s-confinement of a strongly coupled Sp(2n) gauge group, providing a
natural and completely dynamical origin for the scale fa.

4.2.1 Confinement

We choose the UV gauge couplings such that SU(N)` and SU(N)r confine at an intermediate scale
where SU(4) remains weakly coupled and supersymmetry is unbroken. For odd N = 2m+ 1, the
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groups SU(N)` and SU(N)r confine separately to produce the following hadrons:

JL = (q`q`−1 . . . q1q), KL = (q2
`q

2
`−1 . . . q

2
1A), x1 = (A

m
q), y1 = (A

m−1
q3), zi = (qi)

N ,
(4.2.4)

JR = (QQ1Q2 . . . Qr), KR = (AQ
2

1Q
2

2 . . . Q
2

r), X1 = (AmQ), Y1 = (Am−1Q3), Zi = (Qi)
N .

(4.2.5)

Their transformation properties under the global symmetries are summarized in Table 4.2. These
operators obey quantum-modified equations of motion, for which we define the shorthand notation:

(Π̃`
1z) =





even `:
(z1z2z3 . . . z`)− Λ̃b

2(z3z4 . . . z`)− z1Λ̃b
3(z4 . . . z`) + Λ̃b

2Λ̃b
4(z5 . . . z`) + . . .

+ (Λ̃b
2Λ̃b

4Λ̃b
6 . . . Λ̃

b
`−2)z`−1z` + (Λ̃b

2Λ̃b
4Λ̃b

6 . . . Λ̃
b
`−2Λ̃b

`),

odd `:
(z1z2z3 . . . z`)− Λ̃b

2(z3z4 . . . z`)− z1Λ̃b
3(z4 . . . z`) + Λ̃b

2Λ̃b
4(z5 . . . z`) + . . .

+ z1(Λ̃b
3Λ̃b

5Λ̃b
7 . . . Λ̃

b
`) + . . .+ (Λ̃b

2Λ̃b
4Λ̃b

6 . . . Λ̃
b
`−1z`);

(4.2.6)

(Π̃r
1Z) =





even r:
(Z1Z2Z3 . . . Zr)− Λb

2(Z3Z4 . . . Zr)− Z1Λb
3(Z4 . . . Zr) + Λb

2Λb
4(Z5 . . . Zr) + . . .

+ (Λb
2Λb

4Λb
6 . . .Λ

b
r−2)Zr−1Zr + (Λb

2Λb
4Λb

6 . . .Λ
b
r−2Λb

r),

odd r:
(Z1Z2Z3 . . . Zr)− Λb

2(Z3Z4 . . . Zr)− Z1Λb
3(Z4 . . . Zr) + Λb

2Λb
4(Z5 . . . Zr) + . . .

+ Z1(Λb
3Λb

5Λb
7 . . .Λ

b
r) + . . .+ (Λb

2Λb
4Λb

6 . . .Λ
b
r−1Zr).

(4.2.7)

The constraint equations include:

Km
L JL = x(Π̃`

1z)

Km
R JR = X(Π̃r

1Z)

Km−1
L J3

L = y(Π̃`
1z)

Km−1
R J3

R = Y (Π̃r
1Z)

xy = 0
XY = 0.

(4.2.8)

Not shown above, X, Y , x, and y each carry an SU(4) gauge index, which is summed over in
the expressions xαyα = XαY

α = 0. Each term in the equations above is invariant under the
SU(N)L × SU(N)R family symmetry. Combinatoric coefficients have been suppressed for clarity.

The analysis is simplified by introducing spurion superfields Xi>1, Yi>1, xi>1 and yi>1, such that
the constraints between operators follow directly from the dynamically generated superpotential
Wd = WL +WR, where

WL =
x1y1z1 − x1y2 − y1x2

Λ̃b
1

+
`−1∑

i=2

xiyizi − xiyi+1 − yixi+1

Λ̃b
1Λ̃b

2 . . . Λ̃
b
i

+
x`y`z` − x`Km−1

L J3
L − y`Km

L JL

Λ̃b
1Λ̃b

2 . . . Λ̃
b
`

(4.2.9)

WR =
X1Y1Z1 −X1Y2 − Y1X2

Λb
1

+
r−1∑

i=2

XiYiZi −XiYi+1 − YiXi+1

Λb
1Λb

2 . . .Λ
b
i

+
XrYrZr −XrK

m−1
R J3

R − YrKm
R JR

Λb
1Λb

2 . . .Λ
b
r

.

(4.2.10)

Each of the fields {Xi>1, Yi>1, xi>1, yi>1} is a redundant operator: that is, the equations of motion
determine the low-energy behavior of each superfield exactly, leaving no independent degrees of
freedom. For example, the constraint ∂Wd/∂Xi = 0 determines the value of Yi+1:

Y2 = Y1Z1, Y3 = Y1(Z1Z2 − Λb
2), Yi+1 = YiZi − Λb

iYi−1 = Y1(Π̃i
1Z). (4.2.11)
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SU(4) SU(N)L SU(N)R U(1)PQ

x1 0
y1 0
zi 1 0

JL 0
KL 1 0

X1 1
Y1 −1
Zi 1 0

JR
2−N
N

KR 1 4/N

Table 4.2: Operators describing infrared degrees of freedom in the confined phase of SU(N)` ×
SU(N)r, and their transformation properties under the approximate SU(N)L×SU(N)R×U(1)PQ

flavor symmetries.

After confinement, the tree-level superpotential Eq. (4.2.3) leads to

Wtree →
(KL)i1i2
M2`−2

A

+
Z1

MN−3
B

+
z1

MN−3
C

+
Xα

1 Y
α

1

MN−1
R

+
xα1y

α
1

MN−1
r

, (4.2.12)

where the indices i and α refer to SU(N)L and SU(4), respectively. In the discussion that follows,
we assume that MB is several orders of magnitude below MP, and that MB .MA,C,R,r .MP.

4.2.2 Symmetry Breaking

Each term in Wtree is introduced to break an undesired global symmetry: however, the Z1 and z1

tadpoles induced by Wtree also have a significant effect on the vacuum structure. Added to the full
superpotential,

W = Wtree +WL +WR, (4.2.13)

the Z1 and z1 tadpole terms in Wtree shift the moduli space away from the origin: specifically, their
equations of motion cause 〈X1Y1〉 and 〈x1y1〉 to be nonzero. In this section we consider the case
〈X1Y1〉 � 〈x1y1〉 and show that SU(4)× U(1)PQ is spontaneously broken to SU(3)c.

It is convenient to normalize the infrared operators by appropriate factors of Λi so as to give
them canonical mass dimension +1:

J̃L ≡
JL
Λ`
L

, K̃L ≡
KL

(Λ`
L)2

, x̃ ≡ x1

Λ̃m
1

, ỹ ≡ y1

Λ̃m+1
1

, z̃i ≡
zi

Λ̃N−1
i

(4.2.14)

J̃R ≡
JR
Λr
R

, K̃R ≡
KR

(Λr
R)2

, X̃ ≡ X1

Λm
1

, Ỹ ≡ Y1

Λm+1
1

, Z̃i ≡
Zi

ΛN−1
i

(4.2.15)

where

Λ`
L ≡ (Λ̃1Λ̃2 . . . Λ̃`), Λr

R ≡ (Λ1Λ2 . . .Λr). (4.2.16)
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In terms of these operators, the tree-level superpotential Eq. (4.2.3) becomes

Wtree → Λ2
L

(
ΛL

MA

)2`−2

(K̃L)i1i2 + Λ2
1

(
Λ1

MB

)N−3

Z̃1 + Λ̃2
1

(
Λ̃1

MC

)N−3

z̃1

+ Λ1

(
Λ1

MR

)N−1

X̃Ỹ + Λ̃1

(
Λ̃1

Mr

)N−1

x̃ỹ, (4.2.17)

and the dynamically generated superpotential includes the leading terms

WL +WR = x̃ỹz̃1 + X̃Ỹ Z̃1 −
x1y2 + y1x2

Λ̃b
1

− X1Y2 + Y1X2

Λb
1

+ . . . (4.2.18)

The equation of motion ∂W/∂Z̃1 = 0 enforces:

X̃αỸ
α = − ΛN−1

1

MN−3
B

≡ σ2. (4.2.19)

By performing an SU(4) gauge transformation, the nonzero expectation values can be rotated into
the α = 4 component such that

〈X̃〉(4) = βσ, 〈Ỹ 〉(4) =
1

β
σ, 〈X̃〉α=1,2,3 = 〈Ỹ 〉α=1,2,3 = 0, (4.2.20)

where β parametrizes a flat direction of the degenerate vacua, which is likely to be lifted in a
particular model of SUSY breaking; we treat it as a free parameter. An SU(3)c subgroup of SU(4)
remains as an infrared symmetry, and the other 15−8 = 7 generators of SU(4) are broken. Through
the super-Higgs mechanism, 7 of the 8 would-be NGBs are eaten by the SU(4) superfields to make
them massive, and a single NGB remains massless. The matter fields decompose into irreducible
representations of SU(3)c as follows:

−→ ⊕ 1,

X̃α′ −→ X̃α ⊕ X̃(4),

−→ ⊕ 1,

Ỹα′ −→ Ỹα ⊕ Ỹ(4),

Adj −→ Adj⊕ ⊕ ⊕ 1,
λa −→ λ′a ⊕ λ+ ⊕ λ− ⊕ λ0.

(4.2.21)

A combination of the superfields X̃α=1,2,3 and Ỹα=1,2,3 are eaten by the massive λ± vector super-

multiplets. Another linear combination of X̃ and Ỹ is eaten by the diagonal T 15 generator of
SU(4), leaving exactly one massless superfield to play the role of the axion.

We introduce the real scalar fields φ1, φ2, a and η to describe the bosonic degrees of freedom:

X̃(4) =
(
φ1√

2
+ 〈X̃(4)〉

)
exp

[
i
fa

(a+ αη)
]

Ỹ(4) =
(
φ2√

2
+ 〈Ỹ(4)〉

)
exp

[
i
fa

(
−a+ 1

α
η
)]
,

(4.2.22)

where fa is the axion decay constant, and α is a constant determined by requiring canonical
normalization of the scalar kinetic terms. It is convenient to define v1,2 such that

v1 =
√

2
∣∣∣〈X̃(4)〉

∣∣∣ =
√

2 |βσ| v2 =
√

2
∣∣∣〈Ỹ(4)〉

∣∣∣ =
√

2

∣∣∣∣
σ

β

∣∣∣∣ , (4.2.23)
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so that normalization of the scalar fields requires

f 2
a = v2

1 + v2
2, α =

v2

v1

. (4.2.24)

In the discussion above we assume that X̃ and Ỹ are the only U(1)PQ-charged fields with nonzero
expectation values. This is not necessarily true: for example, 〈KR〉 may acquire an expectation
value without breaking SU(3)c. In the limit where 〈KR〉 � σ its contribution to the axion potential
is vanishingly small, and the physics remains approximately as discussed here. For completeness,
in Appendix A.2 we derive the composition of the physical axion in the more general 〈KR〉 6= 0
case.

To preserve SU(3)c in the vacuum, the QCD-charged components of the scalars x̃, ỹ, J̃L and

J̃R must not acquire expectation values, which places mild constraints on the unspecified nature
of SUSY-breaking. Nonzero VEVs for the i = 4 components of the scalar fields are permitted.

4.2.3 Gravitational Corrections

Non-perturbative gravity produces U(1)PQ-violation, which at low energies are described by local
gauge invariant operators in an effective superpotential. The leading (in 1/MP) terms are:

Wg = ρ1

(q`q`−1 . . . q1qQQ1Q2 . . . Qr)

M `+r−1
P

+ρ2

(q`q`−1 . . . q1q)(A
mQ)

M `+m−1
P

+ρ3
(A

m
q)(AmQ)

M2m−1
P

+ρ4
(AQ

2

1Q
2

2 . . . Q
2

r)

M2r−2
P

,

(4.2.25)
with coefficients ρi which encode the details of the unknown quantum gravitational physics. Naive
power counting would argue for ρi ∼ O(1), whereas computations based on wormhole configura-
tions or stringy realizations of quantum gravity favor ρi ∼ O (exp [−Swh]) with Swh ∼ MP/fa. To
capture the range of possibilities, we will consider a range of ρi (all taken to have roughly equal
magnitudes) in our analysis below.

After confinement, Wg maps on to:

Wg → ρ1
Λ`
LΛr

R

M `+r−1
P

(J̃LJ̃R) + ρ2
Λ`
LΛm

1

M `+m−1
P

(J̃LX̃) + ρ3
Λ̃m

1 Λm
1

M2m−1
P

(x̃X̃) + ρ4
(Λr

R)2

M2r−2
P

(K̃R)j1j2 , (4.2.26)

where the index j refers to the SU(N)R family symmetry.
There are two types of tree-level corrections to the axion potential. In the supersymmetric

limit, the equations of motion from Wtree + Wd + Wg produce operators in the Lagrangian of the
form

Lg ∼
(∏

i,j

φiφ
?
j

)
(Φ + Φ?) , (4.2.27)

where Φ has non-zero U(1)PQ charge (and thus some of its phase is part of the axion), and φi
and φ?j are scalar fields as determined by the equations of motion. Replacing the fields with their
expectation values, Lg corrects the axion potential by:

δV [a] ∼
(∏

i,j

〈φi〉〈φ?j〉
)
〈Φ〉 cos

(
qΦa

fa
+ θ0

)
. (4.2.28)

Clearly this type of correction is only operative if all of the relevant fields φi,j have non-zero
expectation values.
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The second type of tree-level correction arises once SUSY is broken, and the low energy La-
grangian contains A-terms of the form

Lg ∼ msWg + h.c. (4.2.29)

(where Wg should be understood to have its super-fields replaced by their scalar components, and
there is a separate SUSY-breaking coefficient of O(ms) for each term in Wg). In the cases where
the necessary scalar fields have zero expectation values, these terms can still correct the axion
potential at loop level.

As can be seen from Eq. (4.2.8), the moduli space includes vacua with 〈KR〉 = 〈JR〉 = 0. These
flat directions are lifted by SUSY-breaking, and thus model-dependent. Rather than getting bogged
down in the details of a specific model, we make the pessimistic assumption that the resulting
expectation values are large:

〈J̃ j(4)〉, 〈K̃j1j2〉 ∼ O(ms). (4.2.30)

This assumption additionally simplifies the analysis in that for such large expectation values, the
tree-level corrections to the axion potential are expected to dominate over any of the loop level
corrections.

Generically, the leading contributions to the axion potential are expected to arise from SUSY-
breaking rather than from the equations of motion. This is because the equations of motion
from Wd involve high-dimensional operators, which are only important at tree level if all of the
participating fields have relatively large expectation values. For example,

∣∣∣∣
∂W

∂J̃R

∣∣∣∣
2

=

∣∣∣∣∣
Λ`
LΛr

R

M `+r−1
P

(J̃L)− (X̃kJ̃
2
R)K̃m−1

R

Λm
r

− (Ỹk)K̃
m
R

Λm−1
r

∣∣∣∣∣

2

(4.2.31)

reduces to

Lg ∼
(

Λ`
LΛr

R

M `+r−1
P

〈K̃m
R 〉

Λm−1
r

)
〈J̃?L〉Ỹk + h.c. (4.2.32)

In the product 〈K̃m
R 〉, the SU(N)R indices are contracted antisymmetrically. If some of the expec-

tation values are close to zero, the entire product vanishes. Only in the case where 〈K̃〉 and 〈J̃〉
are comparable to Λr does Eq. (4.2.32) contribute significantly.

Quality Factors: The SUSY-breaking A-term corresponding to the ρ1 term in Wg is

Lg ∼ msρ1

(
Λ`
LΛr

R

M `+r−1
P

)
(J̃L)αi (J̃R)αj + h.c., (4.2.33)

where the indices i and j correspond to the SU(N)L×SU(N)R global symmetry. As J̃R is charged

under U(1)PQ 〈J̃LJ̃R〉 6= 0 shifts the axion potential by

δV [a] ∼ ρ1ms

(
Λ`
LΛr

R

M `+r−1
P

) ∣∣∣〈J̃L〉〈J̃R〉
∣∣∣ cos

(
qJ
a

fa
+ θ0

)
, (4.2.34)

with qJ = 2−N
N

= O(1). From Eq. (??), consistency with
∣∣θ̄
∣∣ < 10−10 requires

ρ1

msMP

∣∣∣〈J̃L〉〈J̃R〉
∣∣∣

(1012 GeV)4

(
Λ`
LΛr

R

M `+r
P

)
< 10−62. (4.2.35)
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B1 (GeV)
fa 1017

Λ1 1017

Λi>1 1015

Λ̃i 1015

ms 106

B2 (GeV)
fa 1012

Λ1 1012

Λi>1 109

Λ̃i 109

ms 104

B3 (GeV)
fa 109

Λ1 109

Λi>1 104

Λ̃i 104

ms 104

Table 4.3: Three benchmark points in the parameter space of Λi and Λ̃i. With the exception of
〈X̃〉 and 〈Ỹ 〉, the expectation values of the SU(3)c singlet fields are taken to be O(ms).

A limit on r is set by the ρ4 term:

δV [a] ∼ ρ4ms
Λ2r
R

M2r−2
P

∣∣∣〈(K̃R)j1j2〉
∣∣∣ cos

(
qK

a

fa
+ θ0

)
, (4.2.36)

where qK = 4/N . Ignoring the O(1) number qK ,

ρ4

msM
2
P

∣∣∣〈K̃R〉
∣∣∣

(1012 GeV)4

(
ΛR

MP

)2r

< 10−62. (4.2.37)

From the ρ3 term

δV [a] ∼ msρ3
Λ̃m

1 Λm
1

M2m−1
P

∣∣∣〈x̃(4)〉〈X̃(4)〉
∣∣∣ cos

(
a

fa
+ θ0

)
, (4.2.38)

we find a constraint on N = 2m+ 1:

ρ3

msMP〈x̃(4)〉〈X̃(4)〉
(1012 GeV)4

(
Λ̃1

MP

)m(
Λ1

MP

)m
< 10−62. (4.2.39)

Finally, the ρ2 term sets an additional constraint on ` and N :

δV [a] ∼ msρ2
Λ`
LΛm

1

M `+m−1
P

∣∣∣〈J (4)
L 〉〈X̃(4)〉

∣∣∣ cos

(
a

fa
+ θ0

)
, (4.2.40)

ρ2

msMP〈JL〉〈X̃(4)〉
(1012 GeV)4

(
ΛL

MP

)`(
Λ1

MP

)m
< 10−62. (4.2.41)

As long as β is neither very large nor very small, Eqs. (4.2.35), (4.2.37), (4.2.39) and (4.2.41)
provide the most restrictive constraints on m, ` and r. A wide range of values is allowed for each
of the parameters, as we discuss in more detail below.

4.2.4 Benchmark Models:

In this section we consider the quality of the axion potential in three particular models, with
fa = 1017 GeV, fa = 1012 GeV and fa = 109 GeV. For simplicity, we take Λ1 ∼ MB ∼ fa and
Λi 6=1 ∼ Λ̃i for each model, and we allow all QCD singlet scalar fields to acquire O(ms) expectation
values. Choices for each of these scales are shown in Table 4.3.

Model B1 is particularly susceptible to gravitational disruptions, as the scales Λi and Λ̃i are
taken to be relatively close to the Planck scale MP ∼ 1019 GeV. In this model even exponential
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Figure 4.2: Minimum values for m, ` and r consistent with
∣∣θ̄
∣∣ < 10−10 are shown as a func-

tion of ρ1...4. For the first benchmark model with fa = 1017 GeV, we show only values of
ρ & exp(−MP/fa) ≈ 10−43.4. The fa = 1012 GeV and fa = 109 GeV models are depicted using
dotted and solid lines, respectively.

suppression of the constants ρi ∼ exp(−MP/fa) ∼ 10−44 cannot account for the high quality of
the axion potential, and large values of N , ` and r are required. Models B2 and B3 have values
of fa . 1012 GeV consistent with the axion dark matter hypothesis; with its smaller values of Λi

and Λ̃i, model B3 is more adept at suppressing gravitational corrections.

In Figure 4.2 we show minimum values for m ≡ N−1
2

, `, and r consistent with
∣∣θ̄
∣∣ < 10−10 for

the SU(N)`×SU(4)×SU(N)r composite axion, as a function of the parameters ρi. A wide range
is shown for ρ, to accommodate both exponentially suppressed and O(1) values. In the ρi = O(1)
limit, the minimal gauge groups for the three benchmark models are:

B1: SU(23)11 × SU(4)× SU(23)9

B2: SU(9)3 × SU(4)× SU(9)4

B3: SU(7)2 × SU(4)× SU(7)3.
(4.2.42)

Naturally, if after SUSY breaking the scalar fields J̃L,R, x̃, ỹ, and K̃R do not acquire expectation
values, then the U(1)PQ violation induced by Wg affects the axion potential only at loop level,
and smaller values for N , ` and r are permitted. In the limit where ρ is exponentially suppressed,∣∣θ̄
∣∣ < 10−10 no longer constrains m, ` or r. Although Eqs. (4.2.35), (4.2.37), (4.2.39) and (4.2.41)

are valid only for m ≥ 2, r ≥ 1 and ` ≥ 0, smaller values for m and r are shown in Figure 4.2 to
indicate where ρ is small enough that compositeness is no longer necessary.
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4.3 Dynamically Generated Wtree

As described in Section 4.2, the SU(N)`×SU(4)×SU(N)r composite accidental axion has a high-
quality scalar potential and most of the important scales are derived from the confining dynamics,
with the exception of MB in the tree-level superpotential. This is a relatively minor shortcoming:
fa is determined by the relationship between MB, Λ1, and β2 = 〈X̃〉/〈Ỹ 〉,

f 2
a = 2

∣∣∣∣
ΛN−1

1

MN−3
B

(
β2 +

1

β2

)∣∣∣∣ , (4.3.1)

and the scale MB � MP is added “by hand” in the tree-level superpotential. In this section we
show how theMB term inWtree can be dynamically generated by the s-confinement of an Sp(2N−4)
gauge group, so that all of the important mass scales are determined by strong dynamics.

A gauge theory with 2N quarks ψ charged under Sp(2N−4) in the fundamental representation
s-confines [88] to form mesons Mij = εabψ

a
i ψ

b
j , with the superpotential

Wd =
PfM

Λ2N−1
0

. (4.3.2)

We break the SU(2N) flavor symmetry by gauging its SU(N)1 × SU(N)2 = G1 ×G2 subgroup:

−→ ( ,1)⊕ (1, ) ψai −→ (ψ1)aα ⊕ (ψ2)aβ, (4.3.3)

where α and β correspond respectively to the SU(N)1 and SU(N)2 gauge indices. The meson
M ∼ decomposes into irreducible representations of G1 ×G2:

Mα1α2
1 =

(ψ1)α1
a (ψ1)α2

b εab
Λ0

, Q
αβ

1 =
(ψ1)αa (ψ2)βb εab

Λ0

, Mβ1β2
2 =

(ψ2)β1a (ψ2)β2b εab
Λ0

, (4.3.4)

where Λ0 is the confinement scale of Sp(2N − 4). In terms of these operators the dynamically
generated superpotential is

Wd =
Pf (ψ2)

Λ2N−3
0

=
(Λ0)N

Λ2N−3
0

[
Mm

1 Q1Mm
2 +Mm−1

1 Q
3

1Mm−1
2 + . . .+M1Q

2m−1

1 M2 +Q
2m+1

1

]
, (4.3.5)

in the case where N = 2m+1 is odd. Combinatoric factors for each term in the expansion of PfM

such as Q
N

1 ≡ detQ1 have been suppressed.
To match this theory with the A+4Q+NQ model, the M1 and M2 degrees of freedom must be

removed. This is achieved by adding the following matter fields charged under SU(N)1×SU(N)2:

2A′ + 4Q+ χ+NQ2 = 2( ,1)⊕ 4( ,1)⊕ (1, )⊕N(1, ). (4.3.6)

In the SU(N)` × SU(4)× SU(N)r composite model, the SU(4) and SU(N) family symmetries of
the Q and Q2 are gauged. The full matter content of the theory is shown in Figure 4.3.

Gauge-invariant operators of the form (A′ψ2
1) and (χψ2

2) can be added as marginal operators
in a tree-level superpotential:

Wtree = λi(A
′
i)
α1α2(ψ1)a1α1

(ψ1)a2α2
εa1a2 + λ0χ

β1β2(ψ2)a1β1(ψ2)a2β2εa1a2 , (4.3.7)
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Examples for Feynman diagrams

1 Moose Diagrams

Q
SU(4)

A( )•

G1

Q1
G2

Q2 Qk�1

Gk

Qk
SU(N)

(1.1)

SU4 q

A

•

eG1

q1

eG2

q2 q`�1

eG`

q`
SUN

Q

A•

G1

Q1
G2

Q2 Qr�1

Gr

Qr
SUN

(1.2)

G1 Q A( )•

SU4

q
eG1

q1 q`�1

eG`

q`
SUN

�( )

•

 1A0( )SU2
Sp2n

 2

G2

Q2 Qr�1

Gr

Qr
SUN

(1.3)

1

Figure 4.3: The matter content of the SU(N)`×SU(4)×Sp(2n)×SU(N)r composite axion model
is depicted in the moose diagram above, with Sp2n ≡ Sp(2N − 4). The SU(2) family symmetry
of the A′ fields is broken explicitly by the tree-level superpotential Eq. (4.3.7).

where the indices i, a, α and β correspond to SU(2), Sp(2N−4), SU(N)1 and SU(N)2, respectively,
and λi and λ0 are dimensionless coupling constants. After Sp(2N − 4) confines, Wtree becomes

Wtree = λiΛ0(A′i)
α1α2Mα1α2

1 + λ0Λ0χ
β1β2Mβ1β2

2 . (4.3.8)

This is extremely convenient: in the limit where Λ0 � Λ1, the fields M1, M2, χ, and the linear
combination “(A′1 +A′2)” all acquire large masses and decouple. One linear combination of A′1 and
A′2 remains massless, which we define as A:

A ≡ λ2A1 − λ1A2

N , (4.3.9)

with some normalization factor N .
The dynamically generated superpotential simplifies greatly when we consider the fact that

M1 and M2 have O(Λ0) masses from Wtree:

∂W

∂A′i
= λiΛ0M1,

∂W

∂χ
= λ0Λ0M2. (4.3.10)

After integrating out the heavy fields, the superpotential becomes

W =
Q
N

1

ΛN−3
0

. (4.3.11)

Not only is this the desired tree-level superpotential for the composite axion model, but all of the
extra matter fields A′, χ, M1 and M2 have decoupled, leaving only A and Q1 as infrared degrees
of freedom. In Eq. (4.3.1) MB is replaced by Λ0, so that

f 2
a = 2

∣∣∣∣
ΛN−1

1

ΛN−3
0

(
β2 +

1

β2

)∣∣∣∣ . (4.3.12)

Every important scale other than MP is now determined solely by confining dynamics.
The nonzero Sp(2N − 4)2-U(1)B anomaly breaks U(1)B explicitly, as can be seen from the Wd

of Eq. (4.3.5). Although in principle the new fields χ and A′ provide two additional anomaly-
free U(1) symmetries, these are broken by the tree-level superpotential Eq. (4.3.7), and only the
SU(N)L × SU(N)R × U(1)A × U(1)C × U(1)R global symmetry remains. Introducing

δWtree =
(Aq2

1q
2
2 . . . q

2
`)

M2`−2
A

+
(qN1 )

MN−3
C

+
(AmQ)(Am−1Q3)

MN−1
R

+
(A

m
q)(A

m−1
q3)

MN−1
r

(4.3.13)
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Sp(2N − 4) SU(N)1 SU(N)2 SU(N)3 SU(4) SU(2) U(1)PQ

ψ1 −2/N
ψ2 +2/N

A′ 2 4/N

χ 1 −4/N

Q 2−N
N

Q2 0

Table 4.4: A subset of the matter fields in the Sp(2N−4) model are shown with their Peccei-Quinn
charges. All of the non-Abelian groups except for SU(2) are gauged.

with MA ∼ MC ∼ MR ∼ Mr ∼ MP is sufficient to give masses to the additional pNGBs. In
Table 4.4, the Peccei-Quinn charges of each field is shown.

Axion Quality: Of the new superpotential terms which break U(1)PQ, the leading terms are

Wg ∼
χmQ2Q3 . . . Qr

Mm+r−4
P

+
∑

p

(Am−p1 Ap2Q)(qq1q2 . . . q`)

Mm+`−1
P

(4.3.14)

As χ has a mass of O(Λ0) and no expectation value, the χm interaction has no tree-level effect on
the axion potential. The only effects are loop-induced and receive additional suppression.

One linear combination in the (Am−p1 Ap2Q) sum corresponds to the infrared operator (AmQ),
which has the expectation value 〈X1〉. This term is already included in the Wg of Eq. (4.2.25).
Every other term in the sum includes a power of the massive combination (λ1A1 + λ2A2), which
has no expectation value, and is therefore less disruptive to the axion potential than the effects
already considered in Eq. (4.2.25).

Aside from the replacement of MB by Λ0, the quality factors calculated in Section 4.2.3 are
largely unchanged. Operators involving Q1 are the exception: now that Q1 = ψ1ψ2/Λ0, a suppres-
sion of Λ0/MP is added to the operators involving JR and KR, marginally improving Eqs. (4.2.35)
and (4.2.37):

ρ1

msMP

∣∣∣〈J̃L〉〈J̃R〉
∣∣∣

(1012 GeV)4

(
Λ0

MP

)(
Λ`
LΛr

R

M `+r
P

)
< 10−62 (4.3.15)

ρ4

msM
2
P

∣∣∣〈K̃R〉
∣∣∣

(1012 GeV)4

(
Λ0

MP

)2(
ΛR

MP

)2r

< 10−62. (4.3.16)

For many values of ρi this decreases the minimum value for r by one, as can be seen from the three
benchmark models at ρi = O(1):

B1: SU(23)11 × SU(4)× Sp(42)× SU(23)9

B2: SU(9)3 × SU(4)× Sp(14)× SU(9)3

B3: SU(7)2 × SU(4)× Sp(10)× SU(7)2.
(4.3.17)

Alternate Confinement Order: Thus far, we have required that Λ0 > Λ1, simply because the

dual of SU(N) : 2A + 4Q + (2N − 4)Q with the tree-level superpotential Wtree ∼ AQ
2

does not
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appear in the literature. In principle the infrared behavior of the 2A+4Q+(2N−4)Q theory with
Wtree 6= 0 can be determined using “deconfinement” techniques [76] and a sequence of dualities: a
similar calculation [92] has been completed for A+ FQ+ (N + F − 4)Q with a superpotential of

the form W ∼ AQ
2
.

Without calculating the degrees of freedom and the superpotential in the infrared dual of
SU(N) : 2A + 4Q + (2N − 4)Q, it is not known how the scale fa is set in the dual theory. If in
the Λ0 � Λ1 limit U(1)PQ is still broken at the scale f 2

a ∼ ΛN−1
1 /ΛN−3

0 , then fa ∼ 1012 GeV can be
achieved with much smaller values of Λ0 and Λ1, significantly improving the axion quality.

4.4 Conclusions

In the composite axion model based on the gauge group SU(N)` × SU(4) × SU(N)r, a U(1)PQ

is spontaneously broken by the vacuum expectation values of the SU(4)-charged hadrons X1 =
(AmQ) and Y1 = (Am−1Q3), simultaneously producing the QCD axion and breaking SU(4) to
SU(3)c. All important scales in the axion model are generated dynamically from confinement, and
are naturally small compared to the Planck scale.

By calculating the disruption to the axion potential V [a] induced by Planck-scale effects, we
have demonstrated that the composite model is successful at preserving the quality of the axion
potential even when large expectation values are permitted for all of the U(1)PQ-charged QCD-
singlet scalar fields. In realistic models incorporating SUSY breaking with positive quadratic terms
for these scalars such that no large expectation values result, the quality of the axion potential
will improve significantly for any given N , ` and r, as the terms in Wg disrupt the axion potential
to a lesser degree. It would be worthwhile to further investigate such constructions.

It is likely that the success of the SU(N)`×SU(4)×SU(N)r composite axion can be replicated
by embedding SU(3)c within the SU(N)R flavor symmetry of the A + 4Q + NQ model. In this
case U(1)PQ will be more closely associated with the U(1)B flavor symmetry of Table 5.1 rather

than U(1)A, and the axion will be generated from a linear combination of (Q
N

i ) baryons.
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Chapter 5

A High Quality Composite Axion

The following is based on a previously published paper by the author and Tim M.P. Tait [3].

5.1 A New Hope

Axion models with sufficiently protected Peccei-Quinn symmetries have proven so far to be an
illusive target. Quite apart from the aspiration that an axion arises as an“accidental” consequence
of some simple extension to the Standard Model, most existing solutions to the axion quality prob-
lem are the results of clever and deliberate model-building. “Cleverness” as a pejorative term [8] is
certainly a valid criticism of the axion model developed in Chapter 4: after invoking the strongly
coupled Sp(2n) to generate the terms in the superpotential needed to instigate spontaneous U(1)PQ

breaking, the moose diagram Figure 4.3 represents a theory that is substantially more complex
than the Standard Model. While we would by no means propose this as a rubric for aesthet-
ics, Figure 4.3 shows roughly one node for every order of magnitude in the strong CP problem
(
∣∣θ̄
∣∣ < 10−10).

A much simpler and more appealing model is presented in this chapter, based on an SU(5)×
SU(5) confining supersymmetric gauge theory with local B − L symmetry. The Standard Model
matter fields and interactions are easily embedded, and we show that the axion quality is preserved
even with the addition of new fields. Certain mesons in the theory are identified as composite Higgs
fields, ameliorating the µ problem of the MSSM by coincidentally generating a TeV scale value for
µ ∼ f 2

a/MP. Gauge coupling unification is preserved, and the remaining non-Higgs mesons provide
composite messengers for gauge-mediated supersymmetry breaking.

These positive developments are natural consequences of the structure of the axion model, with
little to no additional model-building effort. Only the Higgs Yukawa couplings must be added “by
hand” to the superpotential to complete the MSSM: all of the undesirable baryon and lepton
violating superpotential operators are forbidden by the gauged B −L symmetry. Taking all these
beneficial qualities into account, we argue that the model described in this chapter represents one
of the most compelling known solutions to the axion quality problem.

5.2 The Composite Model

Before specializing to the SU(5), B − L model promised in the introduction, we present the
generic framework for the composite axion model as a solution to the axion quality problem, with
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Examples for Feynman diagrams

1 Moose Diagrams
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Figure 5.1: Moose diagram indicating the charges of bifundamental matter fields Q1,2 and Q1,2

under the gauge group SU(N)L × SU(N)SM × SU(N)R × U(1)X and global SU(N)1 × SU(N)2

global symmetries. The Standard Model SU(3)c × SU(2)L × U(1)Y is a subgroup of G0.

the generic results shown in Figure 5.2. The minimal SU(5) B −L version which fits so well with
the MSSM is developed in Section 5.2.2

Conjectured dualities [68, 72] allow one to analyze the low energy behavior of supersymmetric
gauge theories. In particular, an SU(Nc) gauge theory with Nf = Nc flavors of quarks (Q+Q) in
the (anti-)fundamental representation is expected to confine at a characteristic scale Λ, such that
the low energy degrees of freedom are described by the gauge-singlet operators

M = (QQ), B = (QN), B = (Q
N

), (5.2.1)

subject to the quantum-modified constraint

detM −BB = Λ2N . (5.2.2)

The constraint Eq. (5.2.2) guarantees that the global SU(Nf ) × SU(Nf ) × U(1) symmetry is
spontaneously broken, either by 〈M〉 6= 0 or 〈BB〉 6= 0. Similar behavior has been demonstrated in
theories with product gauge groups of the form SU(N)×SU(N)×. . .×SU(N) with bifundamental
matter [86]. We show that a composite axion emerges in a subset of these theories, with sufficiently
high axion quality.

We invoke the gauge group SU(N)L×SU(N)SM×SU(N)R×U(1)X , where SU(N)SM contains
the Standard Model SU(3)c× SU(2)L×U(1)Y either as a gauged subgroup or as an SU(5) grand
unified theory. The strongly coupled SU(N)L,R confine at the characteristic scales ΛL,R � TeV, but
the Abelian U(1)X is weakly coupled1. The bifundamental fields Q1,2 and Q1,2 have U(1)X charges
±1, as depicted in the moose diagram of Figure 5.1, with U(1)PQ charges shown in Table 5.1.

Below the scales ΛL and ΛR, the low energy degrees of freedom are described by the composite
operators satisfying equations of motion:

M = (Q2Q1) B1 = (Q
N

1 ) B2 = (Q
N

2 ) Λ2N
L = detM −B1B2

M = (Q1Q2) B1 = (QN
1 ) B2 = (QN

2 ) Λ2N
R = detM −B1B2.

(5.2.3)

In the absence of a superpotential, this model respects the global SU(N)1 × SU(N)2 symmetries
shown in Figure 5.1, as well the gauged U(1)X . There is also a conserved U(1)R, under which
the gauginos have charge +1 and all of the Q1,2 and Q1,2 are neutral, which remains unbroken
everywhere on the moduli space.

In the regime where G0 is weakly coupled, there is another nearly exact global symmetry,
U(1)PQ, which is broken only by the G2

0-U(1)PQ anomaly. Due to the locally conserved U(1)X , there

1The axion construction leaves the charges of the MSSM matter under U(1)X largely undetermined. We explore
several alternatives below.
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SU(N)1 GL G0 GR SU(N)2 U(1)X U(1)PQ

Q2 1 −(1− α)/N
Q1 −1 (1− α)/N
Q1 1 (1 + α)/N
Q2 −1 −(1 + α)/N

M 0 0
M 0 0
B2 N −1 + α
B1 −N 1− α
B1 N 1 + α
B2 −N −1− α

Table 5.1: U(1)PQ charges and representations under the gauged GL × G0 × GR and the global
SU(N)1 × SU(N)2 symmetries are indicated for the bifundamental quarks (upper half) and com-
posite operators resulting from GL ×GR confinement (lower half).

is no unique assignment of Peccei–Quinn charges: rotations under U(1)PQ can always be combined
with a global U(1)X transformation to define a new, equally valid Peccei–Quinn symmetry. This
degeneracy is parameterized by the parameter α in Table 5.1.

On the quantum-deformed moduli space described by Eq. (5.2.3), the global SU(N)1×SU(N)2×
U(1)X × U(1)PQ symmetry must be broken to a subgroup. Furthermore, if the low energy limit
of this theory is to approach the Standard Model, then it must be true that detM = detM = 0;
otherwise, SU(3)c would be broken in the vacuum. The vacuum therefore must be engineered to
lie on the 〈B1B2〉 6= 0, 〈B1B2〉 6= 0 branch of the moduli space, where U(1)X and U(1)PQ are both
spontaneously broken, and the U(1)X vector supermultiplet acquires a mass by “eating” a combi-
nation of the chiral superfields. This is accomplished by including a term in the superpotential of
the form:

(
Q2Q1

)
(Q1Q2)

M∗
(5.2.4)

which after confinement generates a mass term for the mesons, W ∼ µMM , lifting the mesonic flat
directions. If not otherwise present, this term is expected to be induced by quantum gravitational
effects.

A unique definition of the Peccei–Quinn charges emerges once U(1)X is broken: by canonically
normalizing the kinetic terms of the (would-be) Nambu–Goldstone bosons of U(1)PQ and U(1)X ,
the parameter α of Table 5.1 is related to the vacuum expectation values (VEVs) of the baryons
as

α =
v̄2

1 + v̄2
2 − v2

1 − v2
2

f 2
X

, (5.2.5)

where

v̄2
i = 2

∣∣∣∣
〈Bi〉
ΛN−1
L

∣∣∣∣
2

, v2
i = 2

∣∣∣∣
〈Bi〉
ΛN−1
R

∣∣∣∣
2

, f 2
X = v̄2

1 + v̄2
2 + v2

1 + v2
2, (5.2.6)

and where the axion decay constant fa is

f 2
a = f 2

X

(
1− α2

)
. (5.2.7)
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With this normalization, a U(1)PQ rotation by a phase θ is achieved by the linear shift

a→ a+ θfa. (5.2.8)

Although the products v1v2 and v̄1v̄2 are set by the quantum modified constraints,

v̄1v̄2 = 2
∣∣Λ2

L

∣∣, v1v2 = 2
∣∣Λ2

R

∣∣ , (5.2.9)

the values of the decay constants fa and fX vary along the flat directions within the allowed ranges

f 2
X ≥ 4

∣∣Λ2
L

∣∣+ 4
∣∣Λ2

R

∣∣, f 2
a ≤ f 2

X . (5.2.10)

The case fa � fX is achieved in the limits ΛL � ΛR or ΛL � ΛR, as α → ±1. Conversely, the
special case v2

1 + v2
2 = v̄2

1 + v̄2
2 corresponds to fa = fX .

5.2.1 Axion Quality

To examine the axion quality, we introduce operators characterized by MP which represent an effec-
tive field theory description of the low energy residual effects of quantum gravity. It is convenient
to introduce a set of rescaled composite operators with mass dimension +1:

M =
(Q2Q1)

ΛL

M =
(Q1Q2)

ΛR

Bi =
(Q

N

i )

ΛN−1
L

Bi =
(QN

i )

ΛN−1
R

. (5.2.11)

The effective gravitational superpotential violating all of the global symmetries takes the form:

Wg = λ1
(Q

N

1 )(QN
1 )

M2N−3
P

+ λ2
(Q

N

2 )(QN
2 )

M2N−3
P

+ λ3
(Q

N

2 )(Q
N

1 )

M2N−3
P

+ λ4
(QN

1 )(QN
2 )

M2N−3
P

+ ρ1
(Q2Q1)(Q1Q2)

MP

+ . . .

(5.2.12)

=

(
ΛN−1
L ΛN−1

R

M2N−3
P

){
λ1B1B1 + λ2B2B2 + λ3B1B2 + λ4B1B2

}
+ ρ1

(
ΛLΛR

MP

)
MM+ . . . ,

(5.2.13)

with parameters λi and ρi encoding the UV physics. Of the operators listed above, only the
two associated with λ1 and λ2 violate U(1)PQ. All of the lower-dimensional operators such as
(Q2Q1)(Q1Q2) are neutral under U(1)PQ, and thus not harmful to the axion quality.

In a supersymmetric vacuum, the leading U(1)PQ violation appears with M4N−6
P suppression

in the Lagrangian: for example, within terms such as

∣∣∣∣
∂Wg

∂B1

∣∣∣∣
2

=

∣∣∣∣
ΛN−1
L ΛN−1

R

M2N−3
P

∣∣∣∣
2 ∣∣λ1B1 + λ4B2

∣∣2 , (5.2.14)

implying a perturbation to the axion potential on the order of

Qf 4
a ∼ |λ1λ4|

(√
ΛLΛR

MP

)4N−4

M2
P〈B1〉〈B2〉. (5.2.15)

Taking ΛL ≈ ΛR ≈ fa ≈ 1011 GeV as a benchmark and ignoring O(1) factors, the quality factor

Q ∼ |λ1λ4| 1048−32N (5.2.16)
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satisfies the bound given in Eq. (??) for N > 3, even when the λi are O(1).
More serious perturbations to the axion potential emerge when supersymmetry breaking is

taken into account. Supersymmetry breaking induces an “A-term” potential,

− LA =

(
ΛN−1
L ΛN−1

R

M2N−3
P

){
A1λ1B1B1 + A2λ2B2B2 + A3λ3B1B2 + A4λ4B1B2

}
+ h.c, (5.2.17)

where the mass scales Ai are in principle calculable once a particular mechanism of supersymmetry
breaking is specified. To remain agnostic concerning the details of supersymmetry-breaking, we
assume that the Ai should be of roughly the same magnitude as the SU(3)c × SU(2)L × U(1)Y
gaugino masses.

Both the A1 and A2 terms in Eq. (5.2.17) perturb the axion potential:

δV (a) = 2
ΛN−1
L ΛN−1

R

M2N−3
P

{∣∣A1λ1〈B1〉〈B1〉
∣∣ cos

(
2
a

fa
+ ϕ1

)
+
∣∣A2λ2〈B2〉〈B2〉

∣∣ cos

(
2
a

fa
+ ϕ2

)}
.

(5.2.18)
Again taking ΛL,R ≈ fa ≈ 1011 GeV, the constraint on the quality factor Eq. (??) can be written
as

λiAi
104 GeV

(
1019 GeV

MP

)2N−3(
ΛLΛR

1022 GeV2

)N−1 〈Bi〉〈Bi〉
1022 GeV2 · 10−16N . 10−76 (5.2.19)

for i = 1, 2, indicating that models with N ≥ 5 are free from fine-tuning as long as the characteristic
scales ΛL,R and fa are not much larger than 1011 GeV.

In Figure 5.2 we plot the maximum values of λi consistent with Eq. (5.2.19), for given values
of fa, N , and the other parameters, with the simplifying assumptions A1 ≈ A2 and λ1 ≈ λ2. It is
convenient to label the vacua with the following parameterization:

tan βL =
v̄2

v̄1

tan βR =
v2

v1

sin2 2γ =
f 2
a

f 2
X

= 1− α2. (5.2.20)

All of the dimensionful parameters except for Ai and MP are now expressed in terms of fa:

v̄1 =
cos βL
2 cos γ

fa v̄2 =
sin βL
2 cos γ

fa v1 =
cos βR
2 sin γ

fa v2 =
sin βR
2 sin γ

fa, (5.2.21)

so that the axion quality condition is expressed:

Qf 4
a

M4
P

= 8

(
f 2
a

8M2
P sin 2γ

)N
(sin 2βL sin 2βR)

N−1
2

(
λ1A1 cos βL cos βR + λ2A2 sin βL sin βR

MP

)
. 10−88.

(5.2.22)
Because βL,R label degenerate vacua on the moduli space defined by Eq. (5.2.3), particularly

large or small values of tan βL,R are typically unnatural. On the other hand, γ is primarily deter-
mined by the ratio ΛL/ΛR:

tan γ =
ΛL

ΛR

√
sin 2βL
sin 2βR

, (5.2.23)

so large or small values of tan γ are more easily tolerated from a naturalness perspective. As we
see from Eq. (5.2.22), the best axion quality is achieved for tan γ ≈ 1, when fa ≈ fX and ΛL ≈ ΛR.

We show the maximum tolerable λ1 ≈ λ2 as a function of fa for a few choices of N , tan βL =
tan βR, and sin 2γ in Figure 5.2. While effective field theory would suggest that generic theories
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Figure 5.2: Maximum values of λ1 ≈ λ2 consistent with Eq. (5.2.22) for given values of fa and N =
4, 5, 6, 7, 8. The region to the left of each line indicates the axion models which return

∣∣θ̄
∣∣ < 10−11

without any fine tuning. From left to right within each band of a given N , models are indicated
with: sin 2γ = 0.1, tan βL = tan βR = 1 (thin, dashed); sin 2γ = 0.1, tan βL = tan βR = 10 (thin,
solid); sin 2γ = tan βL = tan βL = 1 (thick, solid); and sin 2γ = 1, tan βL = tan βL = 10 (thin,
dotted). In each case A1 ≈ A2 = 105 GeV.

of quantum gravity should produce λ1,2 ∼ O(1), in [39,40,43] it is argued that wormhole-induced
U(1)PQ violation yields suppressed values of λi ∼ exp(−Sw), where the wormhole action Sw de-
pends logarithmically on the axion decay constant, Sw ∼ a−b ln fa

MP
. For typical cases the resulting

suppression in λi is modest: values as small as λ ∼ 10−7 are achieved in [43] for fa ∼ 1012 GeV. For
N = 5 such that G0 is large enough to contain the SM, O(1) λ’s are consistent with fa . 1011 GeV.

Generally, the high axion quality observed in Eq. (5.2.19) is preserved even when new fields
are coupled to the model provided that they are neutral under U(1)X . Problems arise if there are
fields S with U(1)X charges:

qS = ±N,±N
2
,±N

3
, . . . ,± N

N − 1
, (5.2.24)

for which case Wg includes gauge-invariant terms SpB1,2 or SpB1,2 for some power p < N .

5.2.2 U(1)B−L as U(1)X

From Eq. (5.2.19) we see the remarkable fact that for fa . 1011 GeV and O(1) values in the
couplings λi, sufficient protection of the axion quality requires N ≥ 5: precisely the right size to fit
the entire Standard Model within G0. In this section we take G0 = SU(5) to be a global symmetry
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SU(5)1 SU3 SU2 U(1)Y SU(5)2 U(1)B−L U(1)PQ

M(3)
5 3 1/3 0 0

M(2)
5 2 −1/2 0 0

M(3) 3 −1/3 5 0 0
M(2) 2 1/2 5 0 0
QL 3 2 1/6 +1/3 0
ūR 3 −2/3 −1/3 0
d̄R 3 1/3 −1/3 0
L 2 −1/2 +1 0
ēR +1 −1 0
ν̄R 0 −1 0

B1, B2 0 5q ±1 + α
B1, B2 0 −5q ±1− α

Table 5.2: Transformation representations of the superfields for the U(1)X = U(1)B−L model.

with a gauged SU(3)c×SU(2)L×U(1)Y subgroup, and we identify U(1)X as the B−L symmetry
of the Standard Model. The mesons M(5) and M(5) decompose into irreducible representations
of SU(3)× SU(2)× U(1):

M(5) −→M(3)(3,1)− 1
3
⊕M(2)(1,2) 1

2
(5.2.25)

M(5) −→M(3)
(3,1) 1

3
⊕M(2)

(1,2)− 1
2
. (5.2.26)

Table 5.2 indicates the representations of the composites under the SM, plus three generations of
MSSM matter and three right-handed neutrinos necessary to cancel the U(1)B−L gauge anomaly.

The B − L charges of the baryons Bi and Bi are left in terms of a constant q 6= 0 which
parameterizes their size relative to the canonical charges of the MSSM matter. While generic
values of q are phenomenologically viable, certain choices would permit low-dimensional U(1)PQ-
violating operators and spoil the axion quality. The problematic q can be identified by considering
all of the low-dimensional SU(5)SM singlet operators with nonzero B − L charge:

(ν̄R)−1, (ν̄nR)−n, (LM(2)
)+1, (d̄RM(3))−1/3, (M(3)

QLL)+1/3, (5.2.27)

where the subscripts indicate the B − L charge of each operator. Since none of these carry PQ
charge, the superpotential operator constructed by multiplying any of them by a baryon superfield
would violate U(1)PQ unacceptably. To avoid this issue, we restrict ourselves to the cases where
q 6= ±n

5
, for n = 0, 1, 2, 3, 4, and also q 6= ±1

3
.

Composite Higgs Doublets

The identification of X = B − L has positive implications for the superpotential, notably by
forbidding many of the operators that would mediate highly constrained B and/or L violation
such as proton decay [93]. The allowed low energy effective superpotential has the form:

W = µM(2)M(2)+µ′M(3)M(3)+yuQLM(2)ūR+ydQLM(2)
d̄R+yeLM(2)

ēR+yνLM(2)ν̄R, (5.2.28)
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containing mass terms for the doublet and triplet mesons, and Yukawa interactions for the doublets
with the MSSM matter.

The mesonsM(2)
andM(2) have the same gauge representations as the MSSM Higgs superfields

Hd and Hu. We take the economical route of interpreting the lightest M(2)
+M(2) pair of the

five flavors of SU(2)L doublet mesons as composite MSSM Higgs superfields, which potentially
offers insight into the µ problem of the MSSM. The terms in Eq. (5.2.28) descend from non-
renormalizable composite operators in the UV theory. In the case of the µ terms, these operators
are dimension-4 and violate the U(1)R symmetry. If generated by quantum gravitational residuals,
the natural mass scale for µ and µ′ would thus be:

Wg ∼
(Q2Q1)(Q1Q2)

MP

−→ ΛLΛR

MP

(
M(2)M(2) +M(3)M(3)

)
−→ µ, µ′ ∼ ΛLΛR

MP

. (5.2.29)

This is µ ∼ O(TeV) for our benchmark choice of ΛL ≈ ΛR ≈ 1011 GeV.

The Yukawa interactions of Eq. (5.2.28) similarly correspond to dimension five operators in the
UV. Realizing the large couplings necessary for the heavy quarks requires that they be generated
at a lower scale MF �MP:

W = y′u
QL(Q1Q2)ūR

MF

+ y′d
QL(Q2Q1)d̄R

MF

+ y′e
L(Q2Q1)ēR

MF

, (5.2.30)

where yt ∼ 1 requires MF ∼ ΛR (and yb requires ΛL is not much larger). Unlike the dynamics
generating the µ terms, the Yukawa interactions are compatible with the U(1)R symmetry, which
allows for the disparate scales to remain technically natural.

The presence of the four additional M(2) and M(2)
in Eq. (5.2.30) poses a potential phe-

nomenological problem. In the absence of any additional structure, the y′u,d,e couplings of the
matter fields with the heavier SU(2)L doublets will generally introduce flavor-changing neutral
currents (FCNC). A number of potential solutions exist in the literature. For example, by impos-

ing minimal flavor violation [94] on Eq. (5.2.30), the M(2) and M(2)
can have masses as small as

a few TeV. Or, as we discuss in Section 5.3, a discrete symmetry can be imposed (even if broken
at MP) to forbid the y′u,d,e couplings for all of the mesons except for Hu and Hd.

Color-Triplet Mesons

As illustrated in Eq. (5.2.29), we expect that gravitational effects induce electroweak scale O(ΛLΛR

MP
)

supersymmetric masses for each of the five pairs of M(3)M(3) color triplets. Generically, color
triplets with weak scale masses are very tightly constrained, especially because the interactions

Wbad ∼ QLM(3)
L+ ūRM(3)ēR + d̄RM(3) +M(3)

ūRM(3)
+ . . . , (5.2.31)

if present, would mediate fast proton decay. Fortunately, every term in Eq. (5.2.31) is forbidden

upon gauging U(1)X = U(1)B−L. Thus, M(3) and M(3)
are distinct from the Higgs color triplets

which typically appear in SU(5) grand unified theories. In Section 5.3 we explore the possibility
that they could (along with the extra SU(2)L doublets) serve as messengers for gauge-mediated
supersymmetry breaking.
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SU(5)1 SU3 SU2 U(1)Y SU(5)2 U(1)X U(1)PQ

M(3)
5 3 1/3 0 0

M(2)
5 2 −1/2 0 0

M(3) 3 −1/3 5 0 0
M(2) 2 1/2 5 0 0

B1, B2 0 5 ±1 + α
B1, B2 0 −5 ±1− α
QL 3 2 1/6 +q 0
ūR 3 −2/3 +q 0
d̄R 3 1/3 −3q 0
L 2 −1/2 −3q 0
ēR +1 +q 0
ν̄R 0 5q 0
Hu 2 1/2 −2q 0
Hd 2 −1/2 2q 0

Table 5.3: Charges of the matter fundamental superfields and Higgs doublets and composite
baryons and mesons in the “5/-3/1” U(1)X model.

5.2.3 Alternatives to B − L
In addition toB−L, there are a number of other acceptable anomaly-free U(1)X charge assignments
for the Standard Model matter. While none are as attractive as B − L, in this section we sketch
three alternatives: a “5/-3/1” pattern of U(1)X charges within each generation; every matter
superfield neutral under U(1)X ; and a Li − Lj model.

5/-3/1 Model

An alternative charge assignment is shown in Table 5.3: QL, ūR and ēR fields have U(1)X charge
q; L and d̄R have charge −3q; and the ν̄R has charge 5q to cancel the U(1)3

X . anomaly. Forbidding
all U(1)PQ-violating operators of dimension less than 10 requires:

q 6= ±1,±1

2
,±1

3
,±1

4
,±5

2
,±5

3
, (5.2.32)

but otherwise q is a free parameter describing a family of models. With this charge assignment
the undesirable baryon and lepton number violating operators LHu, LLēR, QLd̄R and ūRd̄Rd̄R are
all forbidden, and proton decay occurs via the dimension 5 operator W ∼ ūRūRd̄RēR/MP.

Unlike in the B − L model, U(1)X forbids the mesons M(2) and M(2)
from having Yukawa

interactions with MSSM matter unless q = 0. Thus, additional fundamental Higgs doubletsHu+Hd

with U(1)X charges ±2q must be added to generate quark and lepton masses,

WH = µHuHd + yuQLHuūR + ydQLHdd̄R + yeLHdēR + yνLHuν̄R. (5.2.33)

As in the MSSM with fundamental Higgs doublets, there is no a priori reason for µ to be at the
weak scale.

Renormalizable couplings between the mesons M and M and the MSSM fields are mediated
exclusively by gauge interactions. Direct couplings in the superpotential are suppressed, beginning
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with the dimension-7 operators (MM)HuHd. Direct couplings which would allow the mesons to
decay entirely into the Standard Model depend sensitively on q, with the operators permitting
prompt decay also typically violating U(1)PQ and forbidden by Eq. (5.2.32). As consequence, the
lightest mesons tend to have long lifetimes, and for some values of q can be absolutely stable and
bounded by the strong constraints on colored or charged cosmological relic particles.

q = 0: Neutral MSSM

In the limit q → 0, the MSSM decouples from U(1)X . This assignment allows for Yukawa inter-

actions between the mesons and MSSM matter, permittingM(2) andM(2)
to play the role of the

MSSM Higgs doublets, with O(ΛLΛR/MP) supersymmetric masses as in Eq. (5.2.29). However,
U(1)X no longer forbids the problematic operators of Eq. (5.2.31) or

W ′
bad ∼ LM(2) + LLēR +QLd̄R + ūRd̄Rd̄R. (5.2.34)

Among the potentially disastrous consequences of W ′
bad is a short proton lifetime. This problem is

averted in the MSSM by imposing a Z2 R parity, which ensures that the superpotential respects
the B − L global symmetry. Upon imposing R parity or some other discrete symmetry on the
q = 0 model, the superpotential comes to resemble that of the B − L axion model in all respects
except one: if q = 0 the right-handed neutrino is a singlet under the gauge symmetries, at which
point it can be safely omitted.

Li − Lj Models

The Standard Model also admits anomaly-free U(1) symmetries for which charges not are uniform
across all three generations. The combinations of Lµ−Lτ and Le−Lτ are among the phenomeno-
logically interesting alternatives. Models of this type are typically consistent with a composite Hu

and Hd, but as in the MSSM, an R parity must be imposed on such models to ensure that all of
the B and L violating operators of Eq. (5.2.34) are forbidden.

5.3 Gauge-Mediated Supersymmetry Breaking

Beyond the usual MSSM superfields, there are relatively few additional light degrees of freedom:

• The four baryons B1,2 and B1,2 contain at most two light fields in the 〈Bi〉 6= 0, 〈Bi〉 6= 0
vacuum. There is a chiral multiplet containing the composite axion.

• For U(1)X gauge coupling gX � 1, there is a U(1)X vector supermultiplet with a mass
mX ∼ gXfX , where fX is typically ∼ fa.

• The mesons M and M have O(ΛLΛR/MP) vectorlike masses. In the B − L model and its
variants, the lightest such SU(2)L doublets are identified as the MSSM Hu and Hd leaving

four heavier M(2) +M(2)
pairs, and five color triplets M(3) +M(3)

.

In this section we explore how these mesons may be utilized as messengers of supersymmetry
breaking.

We parameterize the supersymmetry-breaking in a secluded sector as a set of one or more chiral
superfields Xi acquiring F -term expectation values,

〈X〉 = X + θ2FX , (5.3.1)
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with FX 6= 0. Introducing superpotential terms of the form W ∼ XM(3,2)M(3,2) communicates
supersymmetry breaking to the MSSM [95, 96]. In the UV theory this superpotential originates
from dimension-5 operators (Q2Q1)X(Q1Q2)/M2

S, reducing in the IR to

Ws = λ
′ij
3

(
ΛLΛR

M2
S

)
XM(3)

i M(3)
j + λ

′ij
2

(
ΛLΛR

M2
S

)
XM(2)

i M(2)
j , (5.3.2)

where the indices i, j = 1 . . . 5, for some scale MS &
√

ΛLΛR which we take to be small compared
to MP. It is convenient to absorb the factors of ΛLΛR/M

2
S into the definitions of λ2,3:

λij2,3 =
ΛLΛR

M2
S

λ
′ij
2,3. (5.3.3)

As with the Yukawa couplings of Eq. (5.2.30), the superpotential Ws respects a global U(1)R
symmetry under which the mesons M and M are neutral, and X has charge +2.

As discussed in Section 5.2.2, Yukawa-like couplings between the matter fields and the four

heavy M(2) +M(2)
may introduce unacceptable flavor-changing neutral currents. A standard

solution is to impose a “messenger parity” on the model, under which the Higgs Hu,d are even, and

the messengers M(2,3) and M(2,3)
are odd. Thus, the direct couplings between messenger SU(2)L

doublets and the matter fields are forbidden, and the problematic flavor-changing neutral currents
are avoided.2 Imposing this Z2 symmetry reduces Eq. (5.3.2) to:

Ws = λ1,1
3 XM(3)

1 M(3)
1 + λ1,1

2 XHdHu +
∑

i=2...5

∑

j=2...5

(
λij3 XM

(3)

i M(3)
j + λij2 XM

(2)

i M(2)
j

)
, (5.3.4)

where, if the messenger parity is derived from the global symmetries of the quarks Q2 and Q2, we

take the SU(3)c triplets M(3)

1 and M(3)
1 to be even under the Z2 messenger parity.

Since the mesons come in complete SU(5) multiplets, gauge unification at a scale MGUT is

preserved due to the fact that M(3) +M(2) and M(3)
+M(2)

form complete SU(5)SM multiplets.
Following [97], the gauge coupling strength αGUT at the unification scale MGUT is modified by

δα−1
GUT = −Nf

2π
ln
MGUT

X (5.3.5)

where Nf = Nc = 5. Requiring that SU(5)SM remains perturbative up to the unification scale
imposes a lower bound on X :

X & 10−13 ×MGUT ≈ 2 TeV. (5.3.6)

In addition to Eq. (5.3.2), the meson messengers also acquire U(1)R violating mass terms from
the Planck scale effects, µ2,3 ∼ ΛLΛR/MP, leading to a scalar mass matrix:

(
M†

(2,3) M(2,3)

)( (λ2,3X + µ2,3)†(λ2,3X + µ2,3) (λ2,3FX)†

λ2,3FX (λ2,3X + µ2,3)(λ2,3X + µ2,3)†

)( M(2,3)

M†
(2,3)

)
.

(5.3.7)

2The messenger parity is a discrete subgroup of the SU(5)1×SU(5)2 flavor symmetry, and can be derived from
the breaking pattern SU(5)1,2 → SU(4)1,2×U(1) with Z2 ⊂ Z4 ⊂ U(1), where Hu,d and the corresponding SU(3)c
triplets are invariant under the action of Z4.
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Performing SU(4)1,2×U(1)1,2 rotations on the fieldsM(2)
andM(2), the matrices (λ2X +µ2) and

(λ2FX) can be simultaneously diagonalized and made real:

Mi = (λ2X + µ2)ii, Fi = (λ2FX)ii, (5.3.8)

with eigenvalues M2
i ± Fi. This basis also diagonalizes the scalar mass matrix of M(3)

and M(3)

in the special case λ2 = λ3 and µ2 = µ3 (but not in general). Positivity of the (squared) messenger
masses imposes a constraint on the F -term VEV of the superfield X:

FX <
µ2

2

λ2

+ 2µ2X + λ2X 2 (5.3.9)

for each pair of λii2 and µii2 in the diagonal basis. Note that due to the compositeness of the
messengers, the couplings λ2,3 are suppressed by a factor ΛLΛR/M

2
S which may be much smaller

than unity.
To produce the correct electroweak scale, the M2 and F terms for Hu and Hd must coincide.

Taking λ1,1
2 ∼ ΛLΛR

M2
S

and µ1,1
2 ∼ ΛLΛR

MP
, this condition implies a relationship between the scales MS,

X and FX :

FX ∼ ΛLΛR

( X
MS

+
MS

MP

)2

. (5.3.10)

Taking the simplifying case
√

ΛLΛR ∼ fa ∼ 1011 GeV and MS & fa in the limit X < 105 GeV,
Eq. (5.3.10) reduces to the condition

√FX ∼ faMS

MP
. An investigation of the extensions to the

composite axion model satisfying this constraint would be an interesting opportunity for future
work.
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Chapter 6

Conclusion

In Chapter 5 we explored a composite axion model in which an accidental Peccei–Quinn sym-
metry naturally emerges as a solution to the strong CP problem. Gravitational perturbations to
the axion scalar potential are shown to be sufficiently suppressed in the Nc = 5 model to permit
an axion decay constant of fa . 3 × 1011 GeV, even under the pessimistic assumptions that su-
persymmetry breaking induces the most dangerous U(1)PQ-violating A-term potential, and that
the higher-dimensional operators representing quantum gravitational effects are parameterized by
O(1) coupling constants.

In addition to providing a satisfactory solution to the axion quality problem, this composite
framework is easily extended to any model of axion-like particles (ALPs) with masses much smaller
than the scale of spontaneous symmetry breaking.

The general SU(N)L×SU(N)R×U(1)X axion model allows the Standard Model matter fields
to carry nearly any anomaly-free U(1)X charge assignment without negatively affecting the axion
quality. In particular, attractive features emerge when U(1)X is associated with gauging the
Standard Model B − L global symmetry. The leading terms in the superpotential are those of
the MSSM, with none of the problematic B or L violating operators that would otherwise need
to be forbidden by invoking a discrete “matter parity”. Additionally, if the Higgs Hu and Hd are
taken to be the lightest of the SU(2)L charged mesons from SU(5)L and SU(5)R confinement, the
dimension-4 gravitationally-induced operator naturally generates an electroweak scale µ term for
fa ∼ 1011 GeV. Other choices of U(1)X charge assignments share this feature, that the SU(2)L
charged mesons have the same quantum numbers as Hu and Hd, and could therefore produce a
composite Higgs with a TeV scale µ term.

The low energy phenomenology largely resembles the MSSM plus a chiral superfield containing
the standard QCD axion, axino, and a saxion. More unique are the presence of meson fields in
vectorlike color triplet and electroweak doublet representations. In theories in which the lightest
weak doublet pair are identified as the MSSM Higgs superfields, they will have∼ TeV masses. Their
detailed phenomenology depends on the U(1)X charge assignments and some choices of (perhaps
slightly broken) global symmetries, and their presence indicates that the Large Hadron Collider
could potentially uncover clues to higher scale physics. Alternatively, some of these fields could
play the role of messengers, leading to a picture in which supersymmetry-breaking is mediated by
gauge interactions.

Among the many opportunities for future work, some promising directions include developing
the supersymmetry breaking sector, explaining the pattern of Yukawa couplings in the MSSM, or
exploring the cosmological implications of the composite model in the early universe.
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Appendix A

Properties of the QCD Axion

These appendices originally appeared in [2], by the author and Tim M.P. Tait.

A.1 Axion Quality

To leading order in a, the QCD-induced axion potential V (a) has the form

V (a) = V0 −
1

2
m2
a

(
a+ faθ̄

)
, (A.1.1)

which is minimized when 〈θ〉 ≡ (a/fa + θ̄) is equal to zero. It is convenient to define the shifted
field α ≡ a + faθ̄, so that 〈θ〉 = 〈α〉/fa. Explicit U(1)PQ violation elsewhere in the theory adds
corrections to V (a),

δV (a) = Qf 4
a cos

(
κ

(
a

fa
+ θ̄

)
+ θ0

)
, (A.1.2)

which for small values of 〈θ〉 is approximately

δV (a) = Qf 4
a

(
1− 1

2

(
κα

fa

)2
)

cos θ0 −Qf 4
a

(
κα

fa

)
sin θ0. (A.1.3)

As θ0 is determined by the precise manner in which U(1)PQ is broken, we do not assume that it is
smaller than O(1). Combining Eqs. (A.1.1) and (A.1.2), V (a) becomes

V (α) =
(
V0 +Qf 4

a cos θ0

)
−
(
Qf 3

aκ sin θ0

)
α− 1

2

(
m2
a +Qf 2

aκ
2 cos θ0

)
α2, (A.1.4)

so that the expectation value 〈α〉 shifts away from zero:

〈α〉 = − Qf 3
aκ sin θ0

m2
a +Qf 2

aκ
2 cos θ0

. (A.1.5)

Experimental measurements of 〈θ〉 set an upper bound 〈α〉 < fa |θmax|. Assuming |θmax|κ� sin θ0,
the corresponding bound on Q is

Q <
m2
a

f 2
a

|θmax|
κ |sin θ0|

. (A.1.6)

Using m2
a = m2

πf
2
π/f

2
a and assuming κ sin θ0 = O(1), Eq. (A.1.6) implies

Q . 10−62

(
1012 GeV

fa

)4

. (A.1.7)
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A.2 Axion Assignment in a General Vacuum

Suppose there exist many fields Φi, each with a Peccei-Quinn charge qi. Let us define the charge-
normalized expectation value

vi ≡ qi
√

2〈Φi〉 (A.2.1)

for each field Φi. If there are n fields with nonzero expectation values, then let us define n − 1
fields ηi and the axion a, with the following assignment:

Φ1 =

(
φ1√

2
+ 〈Φ1〉

)
exp

(
iq1

fa
(a+ α1η1)

)
(A.2.2)

Φ2 =

(
φ2√

2
+ 〈Φ2〉

)
exp

(
iq2

fa
(a+ β1η1 + β2η2)

)
(A.2.3)

Φ3 =

(
φ3√

2
+ 〈Φ3〉

)
exp

(
iq3

fa
(a+ γ1η1 + γ2η2 + γ3η3)

)
(A.2.4)

...

Φn−1 =

(
φn−1√

2
+ 〈Φn−1〉

)
exp

(
iqn−1

fa
(a+ α

(n−1)
1 η1 + . . .+ α

(n−1)
n−1 ηn−1)

)
(A.2.5)

Φn =

(
φn√

2
+ 〈Φn〉

)
exp

(
iqn
fa

(a+ α
(n)
1 η1 + . . .+ α

(n)
n−1ηn−1)

)
(A.2.6)

In the sequence above, the first appearance of each field ηi is in the phase of Φi. The field Φn does
not introduce any new ηi fields.

Let us define the following (n− 1) constants:

x1 = β1 = γ1 = δ1 = . . . = α
(n−1)
1 = α

(n)
1 (A.2.7)

x2 = γ2 = δ2 = . . . = α
(n−1)
2 = α

(n)
2 (A.2.8)

x3 = δ3 = . . . = α
(n−1)
3 = α

(n)
3 (A.2.9)

...

xn−2 = α
(n−1)
n−2 = α

(n)
n−2 (A.2.10)

xn−1 = α
(n)
n−1. (A.2.11)

These equalities follow from the vanishing of the kinetic cross terms, which also give the following
relationships between the xi and {α1, β2, γ3, . . . , α

(n−1)
n−1 }:

0 = 1 + x1α1 (A.2.12)

0 = 1 + x2
1 + x2β2 (A.2.13)

0 = 1 + x2
1 + x2

2 + x3γ3 (A.2.14)
...

0 = 1 + x2
1 + . . .+ x2

n−2 + xn−1α
(n−1)
n−1 . (A.2.15)

Finally, we require that the kinetic terms (∂µηi)
2 and (∂µa)2 are canonically normalized. This leads
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to the remaining n constraints:

f 2
a

v2
1

= 1 + α2
1 (A.2.16)

f 2
a

v2
2

= 1 + x2
1 + β2

2 (A.2.17)

f 2
a

v2
3

= 1 + x2
1 + x2

2 + γ2
3 (A.2.18)

...
f 2
a

v2
n−1

= 1 + x2
1 + x2

2 + . . .+ x2
n−2 + (α

(n−1)
n−1 )2 (A.2.19)

f 2
a

v2
n

= 1 + x2
1 + x2

2 + . . .+ x2
n−2 + x2

n−1. (A.2.20)

These systems of equations have the solutions:

α2
1 =

f 2
a − v2

1

v2
1

x2
1 =

v2
1

f 2
a − v2

1

(A.2.21)

β2
2 =

f 2
a (f 2

a − v2
1 − v2

2)

v2
2(f 2

a − v2
1)

x2
2 =

v2
2f

2
a

(f 2
a − v2

1 − v2
2)(f 2

a − v2
1)

(A.2.22)

γ2
3 =

f 2
a (f 2

a − v2
1 − v2

2 − v2
3)

v2
3(f 2

a − v2
1 − v2

2)
x2

3 =
v2

3f
2
a

(f 2
a − v2

1 − v2
2 − v2

3)(f 2
a − v2

1 − v2
2)
, (A.2.23)

and so on. The general solution is

(α
(i)
i )2 =

f 2
a (f 2

a − v2
1 − v2

2 − . . .− v2
i )

v2
i (f

2
a − v2

1 − v2
2 − . . .− v2

i−1)
(A.2.24)

x2
i =

v2
i f

2
a

(f 2
a − v2

1 − v2
2 − . . .− v2

i )(f
2
a − v2

1 − v2
2 − . . .− v2

i−1)
, (A.2.25)

for i = 1 . . . (n− 1). Each α
(i)
i and xi must also obey

α
(i)
i xi < 0, (A.2.26)

but the signs of α(i) and xi are otherwise arbitrary.
Finally, the axion decay constant is:

f 2
a = v2

1 + v2
2 + . . .+ v2

n−1 + v2
n. (A.2.27)
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Appendix B

S-Confining Product Gauge Groups

This appendix originally appeared in [1] by the author.

B.1 Derivation of classical constraints

In this appendix we find the classical constraints between gauge singlet operators in theA+4Q+NQ
model, along with the coefficients in the dynamically generated superpotential. It is useful to
consider a particular non-trivial solution of the D flatness conditions.

B.1.1 D-Flat Directions

The auxiliary gluon scalar fields have interactions from the Kähler potential given by V = 1
2
DaDa,

where

Da = −g
(
Q?α
i (T a )βαQ

i
β +Q

?j

α (T a )αβQ
α

j + A?βα(T a )δεαβAδε

)
. (B.1.1)

Ground state solutions are given by DaDa = 0. Equation (B.1.1) can be simplified by replacing
T and T with T a:

(T a)αβ = −(T a)βα, (T a)δεαβ = (T a)δαδ
ε
β + δδα(T a)εβ. (B.1.2)

With this substitution, we may write Da as

Da = −g
(
Q?α
i Q

i
β −Q

α

jQ
?j

β + 2A?αγAγβ

)
(T a)βα. (B.1.3)

The indices i and j refer to SU(4)L and SU(N)R, respectively, while α, β and γ correspond to the
gauge group. The generators T a span the set of traceless N ×N matrices, so if the fields satisfy

Q?α
i Q

i
β −Q

α

jQ
?j

β + 2A?αγAγβ = ρδαβ (B.1.4)

for any constant ρ, then Da = 0. It is useful to define the matrices d, d̄, and dA as follows:

dαβ = Q?α
i Q

i
β, d̄αβ = Q

α

jQ
?j

β , (dA)αβ = A?αγAγβ, (B.1.5)

so that Eq. (B.1.4) can be written as

dαβ − d̄αβ + 2(dA)αβ = ρδαβ . (B.1.6)
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Each d term defined above is invariant under the SU(4)L × SU(N)R flavor transformations.

By rotating the SU(N) color basis, it is possible to block-diagonalize the matrix A such that
the only non-zero entries are A12 = −A21 = σ1, A34 = −A43 = σ2, etc. For even SU(N = 2m),
this continues until σm = AN−1,N . In this basis, the dA matrix is diagonal and equal to

(dA)αβ = Diag(|σ1|2, |σ1|2, |σ2|2, |σ2|2, . . . , |σm|2, |σm|2), (B.1.7)

with PfA = σ1σ2 . . . σm. For odd N = 2m + 1, σm = AN−2,N−1, and AjN = 0 for all j = 1 . . . N .
The dA matrix is again diagonal, but with (dA)NN = 0.

(dA)αβ = Diag(|σ1|2, |σ1|2, |σ2|2, |σ2|2, . . . , |σm|2, |σm|2, 0). (B.1.8)

The Pfaffian, PfA, is not defined for odd-dimensional matrices.

It is not generally possible to simultaneously diagonalize dA, d, and d̄. This is a departure from
SUSY QCD: in this case, if d̄ is diagonal, then dαβ = d̄αβ + ρδαβ must also be diagonal. Once dA is
added, this condition is relaxed.

B.1.2 Special Cases

In this section we consider the 〈φ〉 � Λ limit along particular flat directions in which dA, d, and
d̄ happen to be diagonal. Let us begin with the N = 2m case:

A =




0 σ1

−σ1 0
0 σ2

−σ2 0
. . .

0 σm
−σm 0




, Q =




v1 0
0 v2 0

0 v3 0
0 v4

0 0 0 0
...

...
0 0 0 0




, Q =




v̄1 0
0 v̄2

0
. . .

. . . 0
0 v̄N



.

(B.1.9)

In this vacuum, the matrices dA, d and d̄ are:

dA = Diag
(
|σ1|2 , |σ1|2 , |σ2|2 , |σ2|2 , . . . , |σm|2 , |σm|2

)
(B.1.10)

d = Diag
(
|v1|2 , |v2|2 , |v3|2 , |v4|2 , 0, . . . , 0

)
(B.1.11)

d̄ = Diag
(
|v̄1|2 , |v̄2|2 , |v̄3|2 , . . . , |v̄N−1|2 , |v̄N |2

)
, (B.1.12)

subject to the constraint

dαα − d̄αα + 2(dA)αα = ρ. (B.1.13)
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In the classical limit, the gauge-invariant operators are

J =




v̄1v1 0
0 v̄2v2 0

0 v̄3v3 0
0 v̄4v4

0 0 0 0
...

...
0 0 0 0




, K =




0 σ̂1

−σ̂1 0
0 σ̂2

−σ̂2 0
. . .

0 σ̂m
−σ̂m 0




, (B.1.14)

V =




0 V12 0 0
−V12 0 0 0

0 0 0 V34

0 0 −V34 0


,

U = σ1σ2 . . . σm
W = v1v2v3v4σ3 . . . σm
Z = v̄1v̄2v̄3 . . . v̄N ,

(B.1.15)

where we define

V12 ≡ (v1v2)σ2σ3 . . . σm , V34 ≡ σ1(v3v4)σ3 . . . σm , σ̂i ≡ σiv̄2i−1v̄2i (B.1.16)

for i = 1 . . .m.

In the N = 2m + 1 case we add a row and column to A, with Aα,N = AN,β = 0 for all α and
β. The form of Q is left unchanged, but we add a nontrivial N th row to Qi

N with entries qi 6= 0.
With these modifications, the matrices dA, d and d̄ become

dA = Diag
(
|σ1|2 , |σ1|2 , |σ2|2 , |σ2|2 , . . . , |σm|2 , |σm|2 , 0

)
(B.1.17)

d = Diag

(
|v1|2 , |v2|2 , |v3|2 , |v4|2 , 0, . . . , 0,

∑

i

|qi|2
)

(B.1.18)

d̄ = Diag
(
|v̄1|2 , |v̄2|2 , |v̄3|2 , . . . , |v̄N−1|2 , |v̄N |2

)
, (B.1.19)

and the gauge-invariant operators are

J =




v̄1v1 0
0 v̄2v2 0

0 v̄3v3 0
0 v̄4v4

0 0 0 0
...

...
0 0 0 0

v̄Nq1 v̄Nq2 v̄Nq3 v̄Nq4




, K =




0 σ̂1 0
−σ̂1 0

0 σ̂2

−σ̂2 0
. . .

0 σ̂M 0
−σ̂M 0 0

0 0 0 0




,

(B.1.20)

X i = σ1σ2 . . . σMqi
Z = v̄1 . . . v̄N

, Yi =





i = 1 : σ1v3v4σ3 . . . σMq2

i = 2 : −σ1v3v4σ3 . . . σMq1

i = 3 : v1v2σ2σ3 . . . σMq4

i = 4 : −v1v2σ2σ3 . . . σMq3

. (B.1.21)
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Classical constraints The dynamically generated superpotential has the formW ∼ AN−2Q4Q̄N .
For odd N , there are three ways to contract the gauge indices:

Wd =
α

Λb

(
X iYiZ + β1εi1...i4ε

j1...jNX i1(Kj1j2 . . . KjN−4jN−3
)J i2jN−2

J i3jN−1
J i4jN

+β2ε
j1...jNYi(Kj1j2 . . . KjN−2jN−1

)J ijN

)
, (B.1.22)

while for even N there are five terms:

Wd =
α

Λb

(
UWZ + γ1εi1...i4V

i1i2V i3i4Z + γ2εj1...jN εi1...i4U
(
Kj1j2 . . . KjN−5,jN−4

) (
J i1jN−3

. . . J i4jN

)

+γ3εj1...jN εi1...i4V
i1i2
(
Kj1j2 . . . KjN−3,jN−2

) (
J i3jN−1

J i4jN

)
+ γ4WPfK

)
. (B.1.23)

The relationships between the coefficients are determined by matching the equations of motion
from Wd to the classical constraints on the operators.

In the classical limit for even N , it follows from Eq. (B.1.15) that

PfV = V12V34 = (σ1σ2v1v2v3v4)(σ3 . . . σm)2 = U · Z, (B.1.24)

for example, so that

γ1 = − 1

222!
. (B.1.25)

Applying this technique to other products of gauge invariant operators, we find

γ2 = − 1

2m−2(m− 2)!4!
, γ3 = +

1

4 · 2m−1(m− 1)!
, γ4 = −1. (B.1.26)

For odd N the relevant classical constraints have the form

X iZ = −β2ε
j1...jN (Kj1j2 . . . KjN−2jN−1

)J ijN (B.1.27)

YiZ = −β1εii2i3i4ε
j1...jN (Kj1j2 . . . KjN−4jN−3

)J i2jN−2
J i3jN−1

J i4jN . (B.1.28)

Based on Eqs. (B.1.20) and (B.1.21),

X iZ = (σ1 . . . σmqi)(v̄1 . . . v̄N) (B.1.29)

YiZ = (σ1v3v4σ3 . . . σmq2)(v̄1 . . . v̄N), (B.1.30)

which when matched to the corresponding products of J and K imply that

β1 = − 1

2m−1(m− 1)!3!
, β2 = − 1

2mm!
. (B.1.31)

In both cases the overall constant α has no effect on the equations of motion, and cannot be
calculated from the classical constraints.
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