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A NEW LOOK AT AN OLD PROBLEM: INVERSION IN MX3 (C3v) MJLECULES 

Lawrence S. Bernstein 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 

ABSTRACT 

A pseudo Jjhn-Teller formalism has been used to construct 

a potential function for the inversion of MX3 (C
3
v) molecules. 

This potential has the form 

where s 2 is the inversion coordinate, f1E 
0 

is the 

lA' -.. 1 II 

electronic transition, and both and cz 1 Az a. are 

fixed by the values of f1E o' the curvature of the potential 

at the equilibrium geometry, and the value of s2 at the 

equilibrium geometry. The actual curvature of the potential 

at the equilibrium geometry, which is chosen to fit the 
II 

average. v 0_.. 1 CA2) transition (i.e., averaging inversion 

splittings), is the only adjustable parameter of the potential. 
II 

This approach yields a fit to the first eight A2 vibrational 

levels in NH 3 comparable to that obtained with a freely 

adjustable five parameter model. With this potential the 

barriers to planarity have been determined in 

PH3 (16452 cm- 1 )~ AsH3 (14798 cm~ 1 ), and SbH3 

. -1 
NH 3 (2179 em ), 

~1-
(17514 em ). 
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I. INTRODUCTION 

This article will develop a general treatment of large 

amplitude motion with application to the f~miliar problem of 

inversion in MX 
3 

ammonia-like molecules of c3v symmetry. 

The MX
3 

system was chosen as a test for this theory because 

it is well studied both experimentally and theoretically. In 

later papers the theory presented here will be applied to 

equatorial-axial interchange in bipyramidal molecules 

MX5 (D3h), (PF 5 , AsF5 , NbF 5 , TaF5 , VF5) molecules, two 

dimensional pseudorotation in MX7 (distorted D5h), (IF7 , 

ReF 7) molecules, and three dimensional pseudorotation in 

MX6 (distorted Oh' XeF6 ) molecules. 

By large amplitude motion we mean any internal motion 

which carries the molecule alorig a path or surface in coordinate 

space far away from the potential minimum. In MX3 molecules 

two equivalent permutations of the X-atoms are separated by 

a relatively long one dimensional path along the 

symmetry coordinate in Fig. 1. The two equivalent 

S (A ") 2 2 

at -s and o' are at potential minima, while the 

~ 3v forms 

n3h form 

at S = 0, represents a potential maximum. The molecular 

properties computed from a double minimum potential are 

sensitive to more than just the symmetry of the potential. 

For instance; a Gaussian barrier might yield a better fit to 

the experimental energy levels than a quadratic barrier ev~n 

though both types of potentials are symmetrically equivalent. 
1 
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Figure 1. Double minimum potential along the s 2 (Az) path. 



While many empirical potentials of the double minimum variety 

have been employed in the past, we will show here that it is 

possible to deduce a "preferred" form for the inversion 

potential. 

The theoretical formalism used to construct the inversion 
2-3 

potential is an application of the pseudo Jahn-Teller effect. 
4-8 

The Jahn-Teller;theorem states that a molecule in an orbitally 

degenerate electronic state will distort itself in order to 

lift the orbital degeneracy. The basis of the pseudo Jahn-

Teller effect is that a molecule in a nondegenerate electronic 

state which is relatively close to other electronic states of 

proper symmetry may distort itself to increase the relative 

distance between these states. 

The pseudo Jahn-Teller effect can be used as an explanation 

of why NH 3 prefers a c3v configuration rather than the more 

symmetrical n3h form. From the molecular orbital diagram 

of a hypothetical MH 3 (n3h) molecule in Fig. 2., we see that 

the ground electronic state is relatively close to the first 

excited state formed by promotion of an electron from the A II 

2 

orbital to the A I* 
1 orbital. As we will see in more detail 

shortly these two states can interact via a distortion of the 

proper symmetry. As the symmetry of the molecule is lowered 

from D3h to c3v, the A2" and A1 
1 * representations both 

decompose to the A1 representation under the c3v point 
1 

group. It is well-known that two states of the same symmetry 

will tend to repulse each other with one state lowering in 

energy and the other gaining energy (non-crossing rule). The 
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Figure 2. Molecular orbital diagram for MI 3 molecules. 

5 



end result for NH 3 is that it can lower its ground electronic 

state energy by distorting to a c3v symmetry. The final 

c3v geometry will be determined by the increasing nonbonded 

repulsive interactions of the H atoms which approach each other 

as the symmetry is lowered from n3h, and opposes the decrease 

in the ground electronic state energy. 

II. THEORY 

The vibronic Hamiltonian, Hv, for an arbitrary MX3 
molecule can be expanded about a n3h reference configuration 

i~ a complete set of symmetry coordinates (Fig. 3). 

The first term, HN, is the nuclear kinetic energy .. The second 

term, H (S ) , is the nonrelativistic Hamiltonian for the v 0 

electrons moving in the n3h potential due to the fixed nuclear 

framework, S
0

. The remaining terms couple the motion of the 

electrons to the motion of the nuclei, and also describe 

nuclear-nuclear repulsion. A purely vibrational Hamiltonian 

can be obtained if a suitable average over the electronic 

coordinates can be performed in those terms which couple the 

electronic and nuclear motions. The most conve.nient electronic 

basis in which to perform this average is defined by the 

eigenfunctions of the electronic Hamiltonian, H (S ) . v 0 

6 

(1) 

( 2) 

.. 

J 

' ' 
r-j 



8 2 6 

7 

., 

+ 

(E') 

.... 
(E'> 

S4y 

XBL 744-6144 

Figure 3. Symmetry coordinates.for MX 3 (n3h) molecules . 
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The lowest order approximation to the ground state vibrational 

potential can be obtained by using just the electronic ground 

state, I~ >, in the averaging process. 
0 

V (S) 
0 = <.PoiHv-HNI.Po> = t;o + k <.Pol (::~)s I.Po> 5 K 

0 

Group theoretical considerations can be used to determine 

whether some of the matrix elements in Eq. (3) vanish. It 

will be assumed that the ground electronic state is non-

degenerate in its spatial dependence. For non-degenerate 

electronic states it is well-known that the linear term in 
7,8 

SK vanishes. 

In general the matrix elements associated with the 

quadratic terms, SKs1 , will be nonzero. The original 
' 

approximation to the vibrational potential in Eq. (3) 

s imp 1 i fie s t o , 

V (S) 
0 

= <~ I 
0 

I~>. 
0 

The potential in Eq. (4) is the usual quadratic approximation 

used as the starting point for a normal coordinate analysis. 

This approximation to the vibrational potential of an arbitrary 

MX3 molecule does not have the flexibility to express a 

8 
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double minimum potential. An improved approximation to the 

ground state vibrational potential is to include the effect 

of higher electronic states on the linear term. We are 

interested in terms of the form 

I1JJ > n 
n>O. 

The nonvanishing terms of this type are defined by 

r1JJ x r5 x r1JJ 
o K n 

= A I 
1 

where r is an irreducible representation of the n3h point 

group. If we consider the NH
3 

series (NH 3 , PH 3 , AsH 3 , SbH
3

) 

then rlll = lA. I (Fig. 2) ' and Eq. (6) simplifies to 1 
0 

Al 
I 

rs x r = 
K ljJn 

This condition will be satisfied in those cases in which 

r = r 5 . 
ljJn K 

From the molecular orbital diagram (Fig. 2) it is 

clear that the lowest excited electronic states for the 

series are 3A II 

2 and lA II 

2 The triplet excited state, 3
A2

11
, 

will not mix with the ground electronic state, 1A 1 even if 1 , 

condition (6a) is satisfied because of orthogonality of the 

triplet and singlet spin functions. The 1A
1 

1 and 1A2" 

states can be coupled by any symmetry coordinate transforming 

as A " 2 . The symmetry coordinates for a n3h configuration 

of an MX3 molecule are displayed in Fig. 3 where it is seen 

that there is a mode of A II 

2 symmetry. Furthermore, this is 

the motion involved in the inversion of MX3(C3 v) molecules. 

9 
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The contribution of the 1A2
11 

excited electronic state to the 

ground state vibrational potential can be determined by 

finding the lowest root of the determinant of the m~trix 

element of the linear term in the 1,,, > I·'· > electronic '1'1 ' '1'1 II 

bas is. 
Al Az 

I 1/JI > lt!Jl II> A' Az 1 

11/11 > -t,; a s2 A' 
1 

lt!Jl "> 
. Az 

a s2 bS 1 + !J.£0 

where a, b, and !J.£
0 

are defined by 

b = <•'· 
'~'I " 

Az ( aH~) as · 
1 s 

0 

= t,;l II 
Az 

where we can define ; 1 , = 0. 
Al 

The eigenvalues of Eq. (7) are 

= 

- ; 

0 

10 
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·, 

The presence of the symmetrical stretching coordinate s
1 

in 

addition to the inversion mode s2 allows an analytic 

description of the change in bond length (M-X) in going from 

the planar to the pyramidal form. Only ~ small change in 

bond length is expected since the symmet'ry and nature of the 

bonding do not change much duripg the inversion. This assumption 

is quantitatively justified by SCF calculations on NH 3
9 and 

10 
PH 3 . If we now ignore the coupling of s

1 
to s2 by setting 

b equal to zero the eigenvalue simplifies to, 

a a. = FE 
0 

where ~L represents the lower root of Eq. (9) because we are 

interested in the ground state, vibrational potential. The 

potential contributed by the ~L term is added to the previous 

approximation to the ground state vibrational potential, V
0

(s) 

(Eq. (4)). Because ~L involves only the inversion coordinate, 

s2 , the other coordin~tes in V (s) 
0 

leaves just the inversion potential~ 

can be ignored which 

Expansion of the first term in Eq. (11) yields 

We can define a truncated form of the potential 1n Eq. (11) by 

11 

(10) 

( 11) 

(12) 

( 13) 



From a physical point of view the quantity c2 cn3h) chiefly 

represents the nonbonded repulsive forces between the X atoms 

and should be a positive quantity. If the following situation 

occurs 

12 

( 14) 

then the quadratic term in s2 will have a negative coefficient 

and the molecule will have a nonplanar equilibrium configuration. -

In this instance the truncated potential becomes 

V (S ) - -aS 2 
+ bS 4 

Trunc 2 - 2 2 a,b>O. 

The improved version of the potential in Eq. (11) is seen 

to have the flexibility to describe a double minimum vibration. 

Furthermore, in the limit of 1 >> 4 a2 s~ over the range of 

s2 of interest the expansion of the potential is reasonable 

and the potential takes a very simple form (15). 

There are other contributions to the·ground state vibra-

tional potential which were ignored in our derivation. First 

there are terms which arise from coupling of the ground 

electronic state to higher electronic states of symmetry 

h h h f . . d 1A" ot er t an t e 1rst exc1te state, 2 . These will give 

contributions of the same form as found in Eq. (10) for ~L' 

however, the relevant symmetry coordinate would be other than 

s2 , which is the coordinate of primary interest in the inversion 

process. Theie other contributions will be less significant 

than that for s2 because the relevant 6£ associated with 

the other electronic transitions are much larger than for the 

(15) 

. ' 
"'!: 



1 • -+ 1 " transition. A larger t:.e: implies a smaller ;L 
Al A2 

because the leading term in the expansion of ;L is propor-

tional to 1/t:.e: and the n'th order terms in ;L are proper-

. 1 t ( 1 I 11 e: ) n - 1 . Th 1 t h · h · d t1ona o u ere are a so erms w 1c were 1gnore 

due to truncation of the expansion of the vibronic Hamiltonian 

to second order in Eq. (1). What we are asserting in this 

theory is that for the mode in which the large amplitude 

motion occurs the higher order terms which result from the 

linear term (Eq. (12)) are more important than the corresponding 

terms which were ignored in the expansion of H . v 
precisely we are implying that 

'. 

n! t:.e:Zn-1 
0 

I . . a2nH 

<1/J ( v) lA I . as 2n 
1 2 s 

(2n)! 

1/Jl > 
A' 

1 
0 

n = 1, 2, 3 ... 

1/J > 
lA" 

2 

More 

2n 

(16) 

13 



where there are no odd terms because the mol~cule contains 

a plane of symmetry with respect to motion along the s2 

coordinate. The quantity to the left of the above inequality 

may be much more slowly convergent for large n then the 

quantity to its right. In fact, for values of the ratio 

of the linear matrix element to h£
0 

on the order of unity 

the quantity on the left diverges for large n. The quantity 

on the right has a coefficient, 1 -----, which drops of rapidly 
(Zn)! 

for large n. We already know that this inequality must 

exist for the quadratic terms in s2 or the molecule would 

not have a c3 geometry (see Eq. (14)). It is reasonable v . 

to expect that the same inequality will also be valid for 

the higher order terms in s2 . 

Now that the form of the inversion potential has been 

established in Eqs. (11 and 15) it remains to give the various 

parameters a quantitative meaning. Working first with Eq. (11), 

values are needed for h£
0

, a, and c2 cn3h). h£
0 

can be 

found from the ultraviolet absorption spectrum of the MH .ll-l 3 
3 

molecules and is just the 1A' 1 -+ 
1A"z transition. Strictly 

speaking 

14 
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6E
0 

is the excitation with respect to the planar form, which 

we will label 6E
0

(D3h) from now on to distingui~h it from 

the experimentally observed quantity 6E (C
3 

). 
0 v The correction 

of 6E
0

(C3v) to 6E
0

(D3h) will be discussed later. Values for 

c2 (D3h), the force constant for the A~ motion in the 

(hypothetical) n3h configuration, and a, the linear matrix 

element, can be established by the following procedure. Take 

the first derivative of the potential (11) and set it equal 

to zero at the potential minimum (C 3v) and potential maximum 

(D3h) (Fig. 1). 

av 
asz 

This yields 

n3h maximum 

The second derivative must equal the curvature (k ) at the 
0 

c3v configuration (S
0
). 

15 

( 17) 

(17a) 

(17b) 

-26E 0a2 (1+4a2 S~)-l/Z + 86E 0a 4 (1+4a2 S~)- 3/Z S~ + C2 (D3h) - k
0 

II 

Initially, k
0 

can be ap-proximated by the A2 force constant 

in the actual c3v conformation. To obtain the true k , the 
0 

force constant, which is based on a normai coordinate analysis, 

( 18) 



must be corrected for anharmonicity effects. This correction 

will be discussed later. Equations (17b) and (18) can be 

solved simultaneously to yield a and c2 cn3h). 

k 
.0 . 2 • 

8t\E S 
0 0 

Solve Eq. (19a) iteratively for a, then c2 (D
3
h) is 

The same analysis can be applied to the truncated potential 

( 1 5 ) t o define the cons t ant s a , and b . 

a = 
/ 

k 
0 

T 

We return now to the correction of l~E 0 (D3h) and k
0

• The 

relationship between li£
0

(D
3
h) and ll£

0
(c

3
v) can be visualized 

as in Fig. 4. NH 3 is definitely known to have a planar 

excited state ( 1A~) while the remaining MH 3 molecules are 
11 

~lso thought to have a planar first excited state. Then the 

correct ion for the MH 3 molecules is 

where 81 is just the barrier height and 8
2 

is the energy 

required to bend the excited state from the ground state 

pyramidal geometry to the planar form. k f H 
11 

is nown or N 3 

from spectroscopic measurements and has a value 
11 

For PD3 ,/8z is known spectroscopically to be 

. -1 
of 5400 em . 

-1 82 ::: 5000 em . 

16 

( 19a) 
I 
! 

.-

(19b) 

(20) 

( 21) 
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Figure 4. Relationship of fi£
0

(C 3v) to fi£ 0 (D3h) 

in Mii
3 

molecules . 
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We will assume this same value for PH 3 , and due to a lack of 

published spectra this same value for o2 will be assumed 

for AsH 3 and SbH 3 • b.£
0

(D3h) can now be corrected in an 

iterative manner. Using the initial guess of the potential, 

\vhcre it was a~sumed b.£
0

(D3h) = b.£
0

(C3v), calculate the 

barrier height and apply Eq. (21). This can be repeated 

until the correction becomes negligible. The justification 
4 -1 for this procedure is that b.E

0
(C3v)(-10 em ) is roughly an 

order of magnitude larger than the barrier height (-103 cm- 1) 

in MH 3 molecules. 

The correction of k
0 

for anharmonicity is also an 

iterative procedure. The initial approximation is that 

II 

where c2 cc3v) is the A2 force constant in the actual c3v 

configuration. The usual method of calculating c2cc3v) 
II 

assumes that the O+l(A2) transition is harmonic. In any real 
~ 

potential, terms of order three or greater in the displacement 

coordinate will also contribute somewhat to the 0+1 transi-

tion. Thus in cases where these higher order contributions 

are non-negligible the curvature (second derivative) of the 

actual potential will be different from the harmonically 

approximated force constant. The first step in the correction 

of k
0 

for these effects is to apply the above approximation 

(22) and use the resulting potential (11) to calculate the 
II 

average v0+1 (A2) transition energy (i.e., averaging the 
. . 

inversion splittings). 

18 
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The differe~ce between the calculated and observed 

transition energy can then, be compensated by appropriately 

adjusting k
0

. This adjus~ment of k
0 

is then repeated until 

the calculated and observed transitions are sufficiently close. 

Each time k
0 

is changed one must re-evaluate the potential 

parameters [Eqs. 19 and 20]. In ,addition, a change in these 

potential pa~ameters will cause a change in the calculated 

barrier height which means 6E
0

(D3h) must be readjusted 

according to Eq. (21). This parametric dependence of the 

quantities 6E 0 (D3h)~ c 2cn3h), and a on k
0 

establishes the 

earlier claim that this is a one parameter model for the 

inversion potential. 

III. CALCULATIONS 

The inversion coordinate s2 is defined by 

13 r(B-Bn ) = 13 r6B 
. 3h 

where r is the M-X bond length and B is the angle of an 

M-X bond with respect to a planar configuration (Fig. 5). 

Because the literature values of the c3v force constant 14 

c2 cc3v) are bas~d on the coordinate· 

S~ = 13 r(a-ac ) = 13 r6a (Fig. 4) 
3v 

we must adjust c2 cc3v) to our inversion coordinate The 

reason for changing coordinates from is the anomalous 

19 
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Figure 5. Plot of a versus B for MX 3 molecules. 
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behavior of 6a in the neighborhood of the planar conformation. 

6a does not change sign in passing through the planar form, 

which means it does not have the proper symmetry to express the 

inversion process. However, if the equilibrium structure is 

not too close to n3h, 6a is suitable for expressing small 

~ equilibrium displacements. The relationship between C~(c 3 v) 
and C~(c3v) in the region of the equilibrium structure (C 3v) is 

c~ C c3v) = c~ C c3v) C ~~~) ~ 
3v 

A similar relationship exists between the reduced mass based 

on the two coordinates. 

The value of (d6a/d68)c for a specific molecule can be 
3v 

determined from the slope of a plot of a versus 8 (Fig. 5). 

The reduced masses used in the calculations were based on 
15 

Wilson's high frequency approximation. In this case the 

high frequency was taken as the A1 stretch and the low 

frequency as the A1 bend, relative to the c3v form (App. 1). 

The initial value of the force constants C~(c3v) used in the 

calculations were based on the derived masses (26). 

·v 0• 1 is entered in (cm- 1), and m~ in (amu) then 
0 

will be in (mdyn/A). Formula (27) is jusi a rearrangement of 

21 
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v 
0 

= /rr (K/m) ~, which shows how the frequency of a 

harmonic oscillator is determined by its force constant (K) 
11-13,16 

and mass (m). The appropriate experimental 1 information 

used as input to the potential function can be found in Table 1. 

The energy levels calculated from the potential were 

obtained by computer diagonalization of ,the vibrational 

Hamiltonian in a 40-member harmonic oscillator basis set. The 

final results can be found in Tables 2 and 3. In Table 2 we 

see that it took 3 iterations to converge on the final NH 3 
potential, while for all the other molecules almost exact 

agreement between ·calc 
"a ... 1 and exp 

"0-+1 was obtained on the first 

iteration. Because of the relatively small barrier in NH 3 
compared to v~;l we would expect a large anharmonicity 

correction while for the other molecules the well is so deep 

that it is very nearly harmonic about the potential minima. 
-1 calc A small correction (3 em ) to v 0 -+l in PH 3 could be made, 

however, it would not significantly alter the indicated 

parameters. 

IV. DISCUSSION 

For the MH3 series we have found that the parameters a, 

and sa 
0 

are very close to unity (Table 2) • Therefore the 

condition for using the truncated potential (1 >> 4a2 S~) is 

not met. This is why only the full potential (Eq ( 2 SA)) was 

in the calculations. 

It is interesting to compare the various potentials used 
17-19 

used 

to describe NH 3 inversion with the one derived in this work. 

22 



0 0 0 0 f'~ 2 0 6 t'il 
0 3 4 

1 2 2 ~ 
V(S) 1 

C2(D3h) sz (This work) = 2 6 £ 
0 

( D 3h) [ 1- ( 1 + 4 a S . ) ] + 2 

V(S) 2 s D 4 S· (Manning)
17 

= - C sech C2p) + sech C2p) 

V(S) K(a + bS 2) 2/(l S2) 2 18 
= + (Newton) 

V(S) 1 as 2 ! bS 4 2 19 = 2 + + v exp (- cS ) (Swalen) 2 

where S is the inversion coordinate. In Manning's potential 

C, p and D are arbitrary constants which were adjusted to obtain 

the best fit to the available experimental energy levels. The 

arbitrary constants K, a, and b in Newton's potential were 

fit to the first four levels of NH 3 with extra weighting given 

to the OS-+- OA splitting. This accounts for Newton's success 

at fitting OS -+- OA while not managing as well with the 15 -+- lA 

transition (Table 3). In Swalen's potential the constants a, 

b, the reduced mass ratio .of NH3 · to ND3 , and the pyramid height 

were least squares fit io the first fourteen (seven each) levels 

of NH 3 and ND3. 

The potential used here Czsa) differs greatly in form and 

concept from its predecessors (28b, c, d). Both Manning and 

Newton picked their particular form to obtain a reasonably easy 
. 

to solve form for the Schr6dinger equation. Swalen chose his 

very flexible five parameter potential in order to get a very 

_exact fit to the energy levels (Table 3), and hence closely 

approximate the true potential. In this work the parameters 

of the poiential have a direct physical interpretation and 

more importantly the form of the potential is not arbitrary but 

23 
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derived, with various approximations, from the exact non-

relativistic Hamiltonian. It should be stressed that in the 

fit for our potential listed in table 3 only two constraints 

were placed on the potential constants: (1) that the average 

v~~~ transition was fit and, (2) that the experimental 

equilibrium geometry was a potential minimum. If one least 

squares adjusted the constants 

c2 cn3h) to the first fourteen levels in NH 3 and ND3 one could 

probably obtain a considerably improved fit to the spectra. 

We have focused our discussion primarily on NH
3 

simply 

because a comparable amount of experimental and theoretical 

information is not available for the other MH 3 (PH 3 , AsH 3 , 

SbH3) molecules. The absence of an observable inversion 

splitting in the lower levels of these molecules makes it 

impossible to fit an arbitrary double minimum potential to 

the splitting in order to obtain an estimate of the barrier 

height. In this work detailed experimental information 

(inversion splittings) is not needed and we have calculated 

the inversion potentials for the entire MH 3 series (Table 2). 

From the energy level computations we have estimated the 

08 ~ OA inversion splittings to be 

-10-S cm-l for PH
3 

and -10- 9 cm-l for 

-1 em for AsH 3 , 

The best 

available data on the inversion potential in the molecules 

other than NH 3 is an SCF calculation on PH 3
10 in which the 

barrier height was calculated to be 13,012 cm-l We calculate 

the PH 3 barrier to be 16,452 cm-l (Table 2). A recent SCF 
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calculation on NH 3
9 placed the barrier at 2,589 cm-l comp;trcd 

to the average experimental determination (table 3) of 2,123 
-1 em T h i s i s a d i f f e r en c e o f about 2 5 % • I n vi e \v o f t h c N I L 

-~ 

case it is not unreasonable that the two calculated barriers 

for PII 3 differ by approximately 25%. 
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Table 1. Experimental Data for MH 3 Molecules 

llBc mB 0 

s8 (A) exp -1 3v rM-H(A) v0-+ 1 (cm ) 2 
( DEG) 0 (amu) 

NH 3 21.8 1. 011 .669 950 .832 

PH 3 32.4 1. 419 1. 390 991 .951 

AsH 3 33.6 1. 523 1. 549 906 .951 

SbH 3 34.0 1. 712 1. 764 782 .951 

,. . 

B 
c2 C c3v) 

cmdrn) 
A -

.443 

. 551 

.412 

.343 

ll£ (C3 ) 
0 v 

0 

(mdyn- A) 

1. 024 

1.103 

1. 085 

1. 008 

' 

N 
0\ 



< 

' 

a The three lines give the results of successive iterations - see text. 

N 
---..] 
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Table 3~ Comparison of Observed and Computed Properties of m13 

.. ' '"· 
Obs. This Work Manning 

.. Swalen · Newton 1 

Barrier 
-1 (em ) 2179 2072 2018 2225 

OS o.oo o.oo 0.00 o.oo o.oo 

OA 0~79 0.78 0.83 0.83 0.79 

1 . 932.5 s I 
938 935. 930 933 

lA 968.3 965 961 -966 956 

2s 1597.6 1660 1610 1596 

. 2A 1910 1892 1870 1882 

Js 2383.5 2410" 2360 2385 

3A 2895.5 2891 2840 . 2897 

I 
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APPENDIX 1. 

High Frequency Ap2roximation in Calculating the 
Mass for the Inversion Notion in XX~J) !-tolecules 

The C-matrix element for the symmetrical stretch (A1) is 

!_ + (1+2 cosa) 
Gll • 

mx . ~ 
(1) 

where mx, ~ are the masses of atoms x, and H respectively, and a 

is defined in Fig. 4. The C-matrix ele~nt for the symmetric bend 

(~) is 

The cress tcr= !s 

• 2 (. 1+2cos:x) ( !__ + 2 (1-~osa)) 
G22 1+ cosa mx ~ 

.. - 2(1 + 2cosa)(l- cosa) 
~ sina · 

The high frequen~y approximation becomes 

2 
c12 

- ell 

The inversion mass can now be defined as 

.. 

(2) 

(3) 

(4) 

(5) 
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