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Abstract

We report microplastic densities on windward beaches of Oahu, Hawai‘i, USA, an island

that received about 6 million tourist visits a year. Microplastic densities, surveyed on six

Oahu beaches, were highest on the beaches with the coarsest sands, associated with high

wave energy. On those beaches, densities were very high (700–1700 particles m-2), as high

as those recorded on other remote island beaches worldwide. Densities were higher at

storm tide lines than high tide lines. Results from our study provide empirical data on the dis-

tribution of microplastics on the most populated and visited of the Hawaiian islands.

Introduction

The pollution of the marine environment by plastic debris is widely recognized as a significant

environmental threat globally. Plastics now make up the majority of marine debris [1], and

oceans are currently estimated to be filled with trillions of plastic pieces weighing over a quar-

ter of a million tons [2]. Marine plastic debris is harmful to marine organisms and ecosystems;

for example, plastic waste is associated with disease in corals [3].

Microplastics are typically defined as plastics 1 μm—5 mm in size (but see [4]). Marine plas-

tic debris can be broken up through oceanic weathering processes into smaller pieces, which is

one source of (secondary) microplastics [5, 6]. Other sources of (primary) microplastics are

plastic microbeads (in personal care products), as well as plastic resin pellets or nurdles, the

raw industrial material for many plastic products, that get into the environment by spillage

during handling and transport, and that have been reported on beaches around the world [7].

Microplastics threaten marine [8], terrestrial [9] and aquatic (freshwater) [10] ecosystems

worldwide. Microplastics are the predominant form of marine plastic debris [11] and found in

marine habitats ranging from the open seas [12], deep oceans [13] and mid-ocean gyres [14],

to coastal estuaries [15] and beaches [16].

Microplastics are considered to be particularly harmful to marine ecosystems because they

resemble the food of many marine organisms [17], and adsorbed toxic persistent organic pol-

lutants [18, 19]. Small organisms, including those in the beach environment, are key in marine

food webs; thus, toxins could be bioamplified. Ingesting microplastics has been shown to affect

organisms’ behavior, fitness and abundance [20]. For example, lugworms are ecosystem
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engineers that oxygenate sediments through bioturbation and are found in intertidal and shal-

low subtidal muddy and sandy beaches. They have been found to produce fewer casts in sedi-

ments with microplastics, indicating less feeding activity [21]. Tosetto et al. [22] found that

ingesting microplastics and the associated persistent organic pollutants affected behavior and

reduced survival of beachhoppers, a crustacean inhabiting sediments in wave-washed beaches

and an important food source for shorebirds.

It has been estimated that between 19 and 23 Mt of “plastic waste generated globally in 2016

entered aquatic ecosystems” [23]. Although mismanaged solid waste in coastal communities is

a major source of marine plastic debris [24], ocean current patterns, wind direction, and fre-

quency of beach use are factors that affect distribution of plastic pieces from the oceans back

onto shorelines [25, 26]. Microplastics have been found on beaches around the world wherever

they have been surveyed, for example on continental beaches in Slovenia [27], Brazil [28], and

India [29], and on remote island beaches [30]. In those studies densities typically ranged from

tens to hundreds of particles per kilogram or per square meter of sand. Where island beaches

have been surveyed their density of microplastics often exceeds continental beaches. In Ger-

many, on nearshore barrier islands in the North Sea [31] an average of 671 particles kg-1 was

measured, higher than continental shoreline surveyed nearby in Belgium. On remote Easter

Island [32] an average of 800 particles m-2 was extraordinarily high compared to beaches in

mainland Chile.

Many islands worldwide are the focus of beach tourism, and island beaches often harbor

large amounts of debris including plastics (Fig 1). Remote oceanic islands receive plastic debris

transported by ocean currents, e.g., in Tonga, the Cook Islands, and Fiji in the southwest

Pacific [32], as well as Hawai‘i [e.g., 33, 34]. Island beach plastics can also originate from local

land-based sources especially where many people do not have waste-removal services or waste-

water treatment [35]. A larger proportion of an island, than of a continent, is its coastline

(owing to greater perimeter to area ratio for a smaller land mass), and beaches are important

locations for recreation and tourism, as well as subsistence and commercial fisheries and other

economic activities. Furthermore, beaches–and community beach clean-up events–have

become the focus of marine plastics pollution education and outreach in recent decades on

continents and islands worldwide [36, 37] (S1 Table).

We present quantitative information on microplastics density and size distribution on six

beaches on the island of Oahu, Hawai‘i, USA. Oahu is by far the most populated island in the

remote Pacific archipelago of oceanic islands, and the focus of a major tourism industry, much

of that tourism beach-oriented, drawing visitors from around the world. Oahu is home to

more than two thirds of Hawai‘i’s 1.42 million people, and hosts more than 60% of Hawai‘i’s

>9 million visitors per year (https://dbedt.hawaii.gov/visitor/visitor-research/). To our knowl-

edge beach microplastics have not been systematically surveyed in Hawai0i, although impor-

tant research on beach plastic degradation has been done in Hawai0i [e.g., 25, 33]. We analyzed

the density of microplastics on beaches in relation to sand texture (as a proxy for wave energy)

and at high tide line versus storm tide line. We expected greater microplastics density on

coarse-sand beaches where higher wave energies were expected to deposit more microplastics.

We expected to find a greater density of microplastics at storm tide lines where they would

accumulate because daily variation in tides would not wash them back into the ocean.

Methods

Microplastics survey on Oahu beaches

We collected microplastics on six beaches on the windward side of Oahu which is subject to

constant southeast trade winds and onshore flow (Fig 2). Beaches were initially selected to
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range from low-wave to high-wave energy using observed beach slope and grain size as proxy.

Lanikai and Kaoina beaches have low slopes, fine grained sands and fringing reefs (low-wave

energy); Makapu0u and Kahuku are steep beaches with coarse sands (high-wave energy);

Fig 1. Beach plastic debris on Caribbean islands. Examples of macroplastics and other debris on islands from a) Abaco, The Bahamas (Dec

2017); b) Barahona, Dominican Republic, Hispaniola (Nov 2016) (photos by JF).

https://doi.org/10.1371/journal.pone.0247224.g001
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Kalama and Sherwood are intermediate in their slope and sand texture. We stratified sampling

in this way to identify any pattern of plastic density with wave energy. Sand texture was then

measured at each beach and microplastic density was analyzed in relation to sand texture

(rather than our a priori stratification).

Sampling was carried out between 1–22 October 2017 (when there were no storm events

that would confound microplastics accumulation on different beaches), during low tides. At

each beach, the high tide line was identified by a strip of debris or discoloration from the previ-

ous high tide, and inland and parallel to the high tide line, the storm tide line was identified by

a linear concentration of debris such as branches, twigs or seeds (Fig 3A). A 45-m transect line

was haphazardly located [38] in each beach and laid along the high tide line, and storm tide

line, in parallel. Random coordinates were generated to locate nine 30 cm x 30 cm quadrats

along each transect, and in each quadrat the first two cm of sand [39] was collected (Fig 3B). In

this study we quantified microplastics 500 μm—5 mm in size. Larger plastic pieces were sepa-

rated out. Sand samples were first sieved through a 5 mm then a 500 μm mesh to remove items

larger than 5 mm and smaller than 500 μm. In total there were 18 samples from each beach,

nine each from high and storm tide lines. Bulk sediment samples were reduced by pouring

samples through a 5 mm sieve, discarding larger materials caught in the sieve, and retaining

materials that passed through [39].

We minimized self-contamination of microplastic samples during data collection and pro-

cessing by avoiding fleece and other synthetic clothing, using non-plastic or new (not weath-

ered or worn) equipment, and sampling each beach using same people and equipment.

Samples were processed in a laboratory free from sources of plastic particles. Our samples may

Fig 2. Beaches sampled. Locations of sampled beaches on the island of Oahu, Hawai‘i, USA, with inset map showing

each beach on the windward side of Oahu: Kahuku, Sherwoods, Kalama, Lanikai, Kaiona, Makapu0u.

https://doi.org/10.1371/journal.pone.0247224.g002
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nonetheless suffer from some level of undetected self-contamination. Self-contamination in

microplastics research, however, is usually in the form of very small microplastics, i.e. microfi-

bers [40], from clothing and other sources that may be airborne in the environment, including

the laboratory. By restricting our survey to microplastics > 500 μm, we therefore mitigated the

effect of contamination on our density estimates and our analysis.

We used the commonly used approach of visually inspecting the reduced sample (in a glass

petri dish) with a stereomicroscope (20X/40X) to separate plastics from organic (shells, sand,

wood) and inorganic (metal) materials [39]. Criteria used to visually identify microplastics

based on their color, shape and texture were: no cellular or organic structures visible; clear and

homogenous colors throughout (blue, green, yellow, etc.); particles with uneven, sharp,

crooked edges; uniform thickness; and fibers same width throughout their length [39, 41]. All

sample processing was done by the same person (SFR) using equal search time per sample.

Individual pieces of microplastic collected per sample were counted. Previous studies have

shown that other i.e. spectroscopic methods can identify small-sized microplastics overlooked

using microscopy [e.g., 42], but by restricting our analysis to particles >500 μm we are unlikely

to have significantly undercounted microplastics [differences were only significant in the<50

micron size class in 43]. The number of plastic pieces was then divided by the quadrat size to

Fig 3. Data collection. Images of A) high and storm tide lines at Kahuku Beach; and B) sampling top 2 cm sand in quadrats at Lanikai Beach.

https://doi.org/10.1371/journal.pone.0247224.g003
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find the density of plastic pieces per square meter. Size distribution of microplastics was char-

acterized using stacked sieve shakers with mesh sizes of 4 mm, 2 mm and 1 mm. Samples col-

lected from the same tide line at the same site were combined. The stack was shaken for 30 s

and then the number of plastics in each size range were counted.

One sample of sand was collected at each beach near the transect lines by collecting the first

2 cm to be analyzed for particle size distribution as a measure of texture. Sand samples from

each beach were weighed and distributed through the stacked sieve shaker with mesh sizes 4

mm, 2 mm, 1 mm, 500 μm, 250 μm, 100 μm, 63 μm. The sieve shaker was run for 3 minutes.

The portion from each sieve was weighed.

Analysis of variance (ANOVA) was used to identify differences in microplastic particle den-

sity among beaches and between tide lines, and a Tukey Honest Significant Differences post-

hoc test was used to test for significant pairwise differences in the main effects and interac-

tions. ANOVA was also used to test for differences in microplastics size class distribution with

beach characteristics and tide line. We tested for correlation between microplastic density and

proportion of coarse sand grains using the Pearson product-moment correlation coefficient.

Statistical analysis was done in the R environment [44].

Results

Microplastics on Oahu beaches

Plastic densities differed significantly among beaches (P<0.001) and between high and low

tide lines (P<0.001) according to the ANOVA (and there was a significant interaction,

P = 0.005; Table 1). There were higher densities at the storm tide lines than the high tide lines

(Fig 4). Plastic densities varied across beaches (Table 1) by an order of magnitude, irrespective

of tide line, with the highest average densities at Kaoina and Kahuku (>700 particles m-2; Fig

4). The interaction between tide and beach was significant because while there was generally

the greater microplastic density at storm tide versus high tide, this difference was mainly

driven by higher storm tide densities on Kaoina and Kalama (Fig 4). Storm and high tide den-

sities were similar on the other four beaches, with high densities but also large variances at

both high and storm tideline for Kahuku.

Fine textured sands (high proportion of sediment grains<250 μm) were found at Kalama

and Lanikai, and coarse (highest proportion >500 μm) at Kahuku. Makapu‘u was dominated

by the intermediate-sized sediment grains (250–500 μm), while Kaoina and Sherwood were

characterized by a mixture of intermediate and coarse with some fine grains (Fig 5). There was

a positive correlation between average microplastic density and the coarseness of sand as

Table 1. Analysis of variance of plastic particle density� between tidelines and beaches.

High Storm

380.2 693.6

LANIKAI KAOINA KALAMA SHERWOODS MAKAPU‘U KAHUKU

52.4 727.2 413.6 70.9 199.3 1757.9

Df Sum Sq Mean Sq F value Pr(>F)

Tide 1 2652367 2652367 12.96 <<0.01

Beach 5 37947650 7589530 37.10 <<0.01

tide:beach 5 3648038 729608 3.57 <0.01

Residuals 96 19641136 204595

�Plastic particle density (particles m-2 in the top 2 cm of sand) among tide lines (high and storm tide line) and beaches.

https://doi.org/10.1371/journal.pone.0247224.t001
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measured by the proportion of sand in the largest size class for both storm tide line (r = 0.87)

and high tide line (r = 0.76).

The types of microplastics observed [41] were primarily fragments, with some foams, beads

and filaments. Most were white, blue, red, yellow, and green. We did not quantity differences

in types between beaches or tidelines. The majority (>75%) of microplastics sampled were in

the two smaller size classes (<4 mm) that we enumerated (Fig 6). There was no significant dif-

ference in size distribution between tide lines, and no relationship between microplastic size

distribution and sand texture detected in our study.

Discussion

Microplastic densities on several Oahu windward beaches were high (>1000 particles m-2),

comparable to those found on other oceanic islands. Densities were higher at the storm tide

than at the high tide, suggesting that wave energy and storm conditions affect density of micro-

plastics found on these beaches. Storm events have been shown to increase microplastic debris

both offshore [45] and on beaches, with one study showing an increased number of plastic pel-

lets collected during sampling a few days after a storm [19]. A storm line is formed with the

most energetic waves from the previous big wave event. During storm events, especially when

they coincide with high tide, energetic waves transport a lot of material from the ocean com-

bined with debris redistributed from the previous high tide line. This could be a contributing

factor in the reformation of the high tide line and ultimately the distribution of plastics into

the beach environment. Storm events can also cause beach erosion, re-mobilizing buried

Fig 4. Distribution of microplastic density in transects. Interaction plot showing the distribution of the number of plastic particles (m-2) in quadrats for tide line types

(N = 54 quadrats per type), and beach (N = 18 quadrats per beach), with the lines connecting the means for each group.

https://doi.org/10.1371/journal.pone.0247224.g004
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microplastics that move into the marine compartment and may stay there or return to the

beach [46]. While many studies of microplastics on sandy beaches, have focused on high tide

line [39], our finding that microplastic densities were higher at storm tide line suggests that

sampling storm tide lines in additional to high tide lines may improve estimates of overall

microplastics distributions on beaches.

Plastic densities also varied among beaches. Other studies have found great variation in

density of microplastics among beaches, as well as seasonal differences [28]. In our study,

microplastic density was notably higher on beaches with coarser sand, suggesting that densities

are higher on high-wave energy beaches. Factors other than wave energy affect overall density

of plastics on a beach. Ocean currents and wind patterns can distribute microplastics to differ-

ent beaches. The amount of beach use, a factor we could not control in this study, may be a

contributing factor to the presence and visibility of a high or storm tide line [19], as well as the

amount and sources of microplastics.

Our study only sampled a few locations and provides initial information about microplas-

tics density on Oahu windward beaches. Future research could provide greater detail on the

type and source of microplastics, including those in smaller size classes than were considered

here, by applying advanced methods such as infrared spectroscopy [47] to more extensive

probabilistic sampling, in combination with explicit protocols for separation, contamination

Fig 5. Sand texture on beaches sampled. Percentage composition of sand grain size classes for six beaches arranged from those with more than 30% fine textured sand

(Kalama, Lanikai), to those dominated by medium and coarse sands (Kahuku).

https://doi.org/10.1371/journal.pone.0247224.g005
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control, and identification [39]. Identifying microplastics sources is interesting because on

continental beaches or near-shore barrier islands sources are often identified as land-based,

coming from wastewater treatment [31] or beach use [29], whereas on smaller, remote, oceanic

islands, sources are often exogenous [32, 33]. Future work could also address other factors

affecting microplastics distribution on Hawaiian beaches, such as seasonal differences that can

result from of rainfall variation or patterns of ocean currents and winds [28]. The effect of land

use in Hawaiian beach hinterlands, as well as the amount of beach use, on microplastics

amounts and land-based sources would be valuable. This would require more widespread sur-

veys. Nevertheless, our study provides baseline information showing that microplastic densi-

ties can be quite high on the popular windward beaches of the most densely-populated and

frequently-visited island in the remote Hawaiian archipelago–densities as high as those that

have been found on other remote oceanic islands.

Fig 6. Microplastics size distribution on beaches sampled. Percentage composition of microplastic size classes for six

beaches.

https://doi.org/10.1371/journal.pone.0247224.g006
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