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Abstract

WTRP (Wireless Token Ring Protocol) is a medium access control (MAC) protocol for wireless

networks. The MAC protocol through which mobile stations can share a common broadcast channel

is essential in wireless networks. In a IEEE 802.11 network, the contention among stations is not

homogeneous due to the existence of hidden terminals, partially connected network topology, and

random access. Consequently, quality of service (QoS) is not provided. WTRP supports guaranteed

QoS in terms of bounded latency and reserved bandwidth which are crucial real time constraints of

the applications. WTRP is efficient in the sense that it reduces the number of retransmissions due

to collisions. It is fair in the sense that each station use the channel for equal amount of time. The

stations take turn to transmit and are forced to give up the right to transmit after transmitting for

a specified amount of time. It is a distributed protocol that supports many topologies since not all

stations need to be connected to each other or to a central station. WTRP is robust against single

node failure. WTRP recovers gracefully from multiple simultaneous faults. WTRP has applications

to inter-access point coordination in ITS DSRC, safety-critical vehicle-to-vehicle networking, home

networking and provides extensions to sensor networks and Mobile IP.
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Chapter 1

Overview

1.1 Introduction

WTRP (Wireless Token Ring Protocol) is a medium-access-control (MAC) protocol for applications

running on wireless ad-hoc networks that provide quality of service. In ad hoc networks, participat-

ing stations can join or leave at any moment in time. This implies a dynamic topology. The MAC

protocol through which mobile stations can share a common broadcast channel is essential in an

ad-hoc network. Due to the existence of hidden terminals and partially connected network topol-

ogy, contention among stations in an ad-hoc network is not homogeneous. Some stations can suffer

severe throughput degradation in access to the shared channel when load of the channel is high,

which also results in unbounded medium access time for the stations. This challenge is addressed

as quality of service (QoS) in a communication network.

In networks, QoS efforts have focused on network layer queuing and routing techniques [5],[6].

In an unreliable medium such as wireless, providing QoS at the network layer using queuing and

routing techniques is not sufficient. QoS must also be addressed at the data-link layer. The IEEE

802.11 [7] in PCF (Point Coordination Function) mode, the HiperLAN [18], and Bluetooth [19]

1



achieve bounded latency by having a central station poll the slave stations. Most academic research

has focused on this centralized approach [9],[8]. The centralized approach is suitable for networks

where only the last hop is wireless. In the centralized approach, the network is managed centrally

from a central station.

The Wireless Token Ring Protocol (WTRP) discussed in this paper is a distributed medium

access control protocol for ad-hoc networks. Its advantages are robustness against single node

failure, and support for flexible topologies, in which nodes can be partially connected and not all

nodes need to have a connection with a master. Current wireless distributed MAC protocols such

as the IEEE 802.11 (Distributed Coordination Function (DCF) mode) and the ETSI HIPERLAN do

not provide QoS guarantees that are required by some applications. In particular, medium is not

shared fairly among stations and medium-access time can be arbitrarily long [12], [13].

As in the IEEE 802.4 [4] standards, WTRP is designed to recover from multiple simultane-

ous failures. One of the biggest challenges that the WTRP overcomes is partial connectivity. To

overcome the problem of partial connectivity, management, special tokens, additional fields in the

tokens, and new timers are added to WTRP. When a node joins a ring, it is required that the join-

ing node be connected to the prospective predecessor and the successor. The joining node obtains

this information by looking up its connectivity table. When a node leaves a ring, the predecessor

of the leaving node finds the next available node to close the ring by looking up its connectivity

table. Partial connectivity also affects the multiple token resolution protocol (deleting all multiple

tokens but one). In a partially connected network, simply dropping the token whenever a station

hears another transmission is not sufficient. To delete tokens that a station is unable to hear, we

have designed a unique priority assignment scheme for tokens. Stations only accept a token that has

greater priority than the token the station last accepted. The WTRP also has algorithms for keeping

each ring address unique, to enable the operation of multiple rings in proximity.
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WTRP has other desirable properties. It achieves high medium utilization since the collision

probability is reduced by scheduling the transmission with token reception. WTRP distributes

throughput in a flexible and fair manner among stations because each station in the ring takes a

turn to transmit and forced to give up the right to transmit after a fixed time that results in bounds

on medium-access time.

1.2 Applications

The wireless ad hoc network has many applications: Military, rescue missions, national security,

commercial use, education, sensor networks, in which there is a need for rapid establishment of a

communication infrastructure. Usefulness of the WTRP protocol is applicable in all these areas and

some of applications are described here and in Chapter 12.1.

1.2.1 Unmanned Vehicles

One of the trends in transportation studies is the application of inter-vehicles communication. WTRP

is to be deployed initially for University of California at Berkeley PATH Advanced Vehicle Safety

Systems Program [10], the CALTRANS-PATH Demonstration 2002, and the Berkeley Aerobot

project [15]. These applications impose stringent bandwidth, latency, and speed of failure recovery

requirements on the medium access protocol. The platoon mode of the automated highway project

involves up to 20 nodes in each platoon, and requires that information (approximately 100 bytes per

vehicle for speed, acceleration, and coordination maneuvers) be transmitted periodically. WTRP

meets the application requirements in terms of bounded delay and share of bandwidth to all stations

in the network and fast failure recovery if there is a failure in a station.
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1.2.2 Home Networking

Home networks link1 many different electronic devices in a household through a connected local

area network (LAN). Home networking allows all users in the household to access the Internet

and applications at the same time. In addition data, audio, and video files can be swapped, and

peripherals such as printers and scanners can be shared. There is no longer the need to have more

than one Internet access point, printer, scanner, or in many cases, software packages.

In the future, the broadband “pipe” coming into a home will carry more than the Internet; it

will also carry new telephone and entertainment services in the form of streaming video and audio

and interactive networked games. Consequently, more devices that have real time constraints are

expected to compete for the frequency band of wireless LAN as both number of users and type of

wireless LAN devices increase in number. One observes that total aggregate throughput diminishes

dramatically in IEEE 802.11 (DCF mode) with increase in number of concurrent transmissions due

to collisions as shown in [2]. Apart from WTRP, other protocols take the centralized approach in

home networking. Distributed property of WTRP provides partial connectivity in which all nodes

need not to be connected with the access point. Partial connectivity, reduce transmission power and

with packet forwarding of WTRP, connection is guaranteed for a node away from the range of the

access point.

1.3 History of WTRP

WTRP was first designed for Automated highway project [10]. The first version was designed by

Duke Lee in 1998. The second version was implemented with Teja software [23], released by Duke

1According to the Yankee group [27], 29 percent of U.S. households have multiple PCs. Many of these households
also have high-speed (Broadband) Internet access (either cable modem or DSL). According to a recent report by ARS
of La Jolla [28], there are now 5.1 million cable modem subscribers and 3.3 million DSL subscribers today. The total
number is expected is grow to 28 million by 2004.
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Lee, Roberto Attias , Dr.Stavros Tripakis, Dr.Anuj Puri, Dr.Raja Sengupta, and Prof.Pravin Varaiya

in 2000 and reported in [2]. The last version is implemented in Linux Operating System with three

deliverables by Duke Lee, Ruchira Datta, Jeff Ko, Dr.Anuj Puri, Dr.Raja Sengupta, Prof.Pravin

Varaiya and by the author in August 2001 and published online2 as an open source software.

In this version, compared to the second version, we simplified the Finite State Machine of the

protocol. We introduced a distributed admission control procedure. Unlike the second version in

which the module is implemented in application layer and hooked to the kernel, a kernel implemen-

tation is built as a Linux link layer module.

Besides the kernel implementation, we built a user-space implementation that works solely in

the application layer as a platform-independent scheduler and a simulator that enables testing the

protocol in a wireless environment.

1.4 Summary

In wireless medium, network layer modifications are insufficient to provide quality of service (QoS).

QoS must also be addressed in link layer. Wireless Token Ring Protocol is a medium access pro-

tocol that provides QoS in terms of bounded latency and reserved bandwidth. WTRP overcomes

the challenges introduced by ad hoc wireless medium through procedures for joining, leaving and

failure recovery.

Applications of Intelligent Transportation Systems require QoS in terms of delay-bounds or fair

share of the spectrum. This quality of service guarantee is critical in mesh stability of the formation

of the vehicles. The communication of the speed and the velocity of the lead vehicle to all other

vehicles in the formation had been shown to be sufficient for mesh stability of the system. In the

future in a home, more devices are expected to compete for the frequency band of Wireless LAN.

2http://wow.eecs.berkeley.edu/WTRP
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They require QoS in order to reduce collision and create connectivity.

WTRP has been developed by Berkeley Web over Wireless Group [1] since 1998 and the last

version was distributed in 2001.
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Chapter 2

Network Architecture

2.1 Introduction

Inspired by the IEEE 802.4 [4] standards, WTRP builds a logical ring that defines a transmission

sequence among the nodes in the ring. It also provides a distributed way to add and delete stations

from the ring. When adapting a MAC protocol designed for wireline networks to the wireless ad hoc

case, additional challenges are encountered in the wireless environment. The stations in the network

are organized into multiple rings that can exists in proximity. Stations may not be fully connected

that means not all nodes in the ring are directly connected. Radio range can be asymmetrical. In

this chapter, we describe the design of WTRP to cope with these issues and outline the functions of

each module, and discuss the context in which these modules are designed.

2.2 Overall System Architecture

To put WTRP into a context in terms its placement in the communication system, we describe

the overall system architecture in Figure 2.1. In addition to the communication stack including

the Datalink Layer where WTRP will be located, we need Mobility Manager, Channel Allocator,
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Figure 2.1: System Architecture

Management Information Base (MIB), and Admission Control Manager. We assume that multiple

channels are available, and that different rings are on different channels. Different rings are assigned

to different channels by a channel allocator (Section 2.2.2).

2.2.1 Medium Access Control

Medium Access Control (MAC) enables multiple nodes to transmit on the same medium. This is

where WTRP is located. The main function of MAC is to control the timing of the transmissions by

different nodes to increase the chance of successful transmission.

In our architecture, the MAC layer performs ring management and timing of the transmissions.

The ring management involves:

1. Ensuring that each ring has a unique ring address.

2. Ensuring that one and only one token exists in a ring.

3. Ensuring that the rings are proper.

4. Managing the joining and the leaving operations.

We will describe the operations of the MAC layer in Section 3 and Section 4.
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2.2.2 Channel Allocator

In a general sense, the channel allocator chooses the channel on which the station should trans-

mit. If a large number of token rings exist in proximity, their efficiency can be increased by achiev-

ing spatial reuse through sensible channel allocation. The idea of spatial reuse is a core idea of

wireless cellular telephony. The same channel (or a set of channels) can be reused in region A and

B, if the two regions are separated by sufficient distance measured in terms of the signal to inter-

ference ratio. One way to increase spatial reuse is to reduce the cell size. Reducing the cell size

(by reducing the transmission power) increases the capacity and decrease equipment costs. How-

ever, dividing the nodes into multiple rings will reduce the number of nodes in a ring, and thereby

increase routing overhead between rings.

Finding the globally optimal solution for channel allocation, an allocation that maximizes the

capacity of the network, is a challenging problem in any large deployment of many mobile nodes.

First, collecting and maintaining channel allocation information can be difficult and burdensome.

This is because the collection and maintenance of information may involve frequent packet trans-

missions. Second, the optimal allocation computation is complex. The complexity of the problem

is greater than that of allocating channels to already divided regions, allocating with the restriction

that no adjacent regions can have the same channel. Moreover, in our applications, the network

capacity must be maintained without violating the latency and the bandwidth requirements of each

node.

A much more scalable solution could be a distributed one. And this is the method that is being

considered for our design. In our implementation, the channel allocator is local to each station,

and the channel allocator can access the network topology information through the MIB. Each

node decides on which channel to join in a distributed manner using the information collected from
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the token structure, which contains the number of nodes (NoN) in the ring. If NoN reaches the

maximum value, this is an indication for the nodes out of the ring to shift to the next channel and

search for another ring.

2.2.3 Mobility Manager

The Mobility Manager decides when a station should join or leave the ring. The problem that the

Mobility Manager has to solve is similar to the mobile hand-off problem. When a mobile node

is drifting away from a ring and into the vicinity of another ring, at some threshold the Mobility

Manager decides to move to the next ring. The level of connection of a node to a ring can be found

from the connectivity table described in Section 3.

2.2.4 Admission Control

The Admission Control Manager limits the number of stations that can transmit on the medium.

This is to ensure that a level of quality of service in terms of bounded latency and reserved band-

width is maintained for stations already granted permission to transmit on the medium. There is

an Admission Control Manager in each ring. The Admission Control Manager may move with

the token but does not have to move every time the token moves. The Admission Control Man-

ager periodically solicits other stations to join if there are “resources” available in the ring. The

“resource” of the token ring can be defined in the following way. The MAXMTRT is the min-

imum of the maximum latency that each station in the ring can tolerate. RESVMTRT is the

sum of token holding time (THT) of each station. MAXNoN is the maximum number of node

(NoN) that is allowed in the ring. The Admission Control Manager has to ensure the inequality:

RESV MTRT < MAX MTRT andNoN < MAX NoN . Only if these inequalities are sat-

isfied, may the Admission Control Manager solicit another station to join. During the solicitation,
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the Admission Control Manager also advertises the available resources. Only stations that require

less resource than available in the ring may join.

2.2.5 Policer

The policer monitors the traffic generated by the application. It throttles the application when more

traffic than reserved is produced. In the WTRP, because the token holding timer polices the traffic

generated by a station, no special policer module is necessary.

2.2.6 Management Information Base (MIB)

The Management Information Base holds all the information that each management module needs

to manage the MAC module. Majority of this information is collected by the MAC module and

stored there. However, some of the information may need to be communicated. This is gathered

and refreshed by the SNMP agent. Details on this are still being investigated.

2.3 Summary

In order to manage the wireless medium, WTRP operates in conjunction with several modules.

Medium Access Control is where WTRP is located, Channel Allocator deals with channel assign-

ment of rings in order to avoid interference, Mobility Manager performs hand over in case of move-

ment. Admission Control manages the ring size and invites if there is room. Policer monitors the

traffic and perform congestion control, Management Information Base is the place where the ring

parameters is stored.
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Chapter 3

Protocol Overview

3.1 Definitions

1. WTRP refers to Wireless Token Ring Protocol, the topic of this report.

2. The term “frame” refers to the sequence of bits that is passed to the physical layer for one

packet. A “frame” does not include the preamble, the start delimiter, the CRC check, and the

end delimiter.

3. The terms “station” and “node” are used interchangeably to describe the communication en-

tities on the shared medium.

4. The predecessor and the successor of station X describe the station that X receives the token

from and the station that the X passes the token to, respectively.

5. “Incorrect state” means that a node’s view of the topology is wrong. For example node X

may believe that node Y is its predecessor, but node Y does not.

6. “Stable environment” refers to a state in which the topology of the network is fixed and there

are no transmission errors.
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7. “Proper ring” refers to a ring where the successor and predecessor fields of a node are correct.

It is more precisely defined in Section 10.1.

8. Capacity of the network refers to the total bandwidth.

9. The Channel Allocator, Mobility Manager, and Admission Control Manager introduced in

Section 2.2 are referred to as “management modules”.

10. THT refers to the Token Holding Time, i.e., the amount of time that a station can hold the

token for transmission of data.

11. NoN refers to the Number of Nodes in the ring.

3.2 Observations

1. Not all stations need to be involved in token passing. Only those stations which desire to

initiate data transmission need to be involved.

2. Any station may detect multiple tokens and lost tokens. There are no special “monitor” station

required to perform token recovery functions.

3. Due to errors, stations may not have a consistent view of the ring.

3.3 Description

In WTRP, the successor and the predecessor fields of each node in the ring define the ring and the

transmission order. A station receives the token from its predecessor, transmits data, and passes the

token to its successor. Here is an illustration of the token frame.
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Figure 3.1: Connectivity Table

FC RA DA SA NoN GenSeq Seq

1 6 6 6 2 4 4 bytes

FC stands for Frame Control and it identifies the type of packet, such as Token, Solicit Suc-

cessor, Set Predecessor, etc. In addition, the source address (SA), destination addresses (DA), ring

address (RA), sequence number (Seq) and generation sequence (GenSeq) number are included in

the token frame. The ring address refers to the ring to which the token belongs. The sequence

number is initialized to zero and incremented by every station that passes the token. The generation

sequence number is initialized to zero and incremented at every rotation of the token by the creator

of the token. The number of nodes (NoN) in the ring is represented in the token frame and calculated

by taking the difference of sequence numbers in one rotation.

The Connectivity manager resident on each node tracks transmissions from its own ring and

those from other nearby rings. By monitoring the sequence number of the transmitted tokens, the

Connectivity Manager builds an ordered local list of stations in its own ring and an unordered global

list of stations outside its ring (See Figure 3.1). In Figure 3.1, station D monitors the successive
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token transmission from E to F before the token comes back to D. At time 0, D transmits the token

with sequence number 0, at time 1, E transmits the token with the sequence number 1, and so on. D

will not hear the transmission from F and A, but when it hears transmission from B, D will notice

that the sequence number has been increased by 3 instead of 1. This indicates to E that there were

two stations that it could not hear between E and B.

The Ring Owner is the station that has the same MAC address as the ring address. A station can

claim to be the ring owner by changing the ring address of the token that is being passed around.

Stations rely on implicit acknowledgements to monitor the success of their token transmissions.

An implicit acknowledgement is any packet heard after token transmission that has the same ring

address as the station. Another acceptable implicit acknowledgement is any transmission from a

successive node regardless of the ring address in the transmission. A successive node is a station

that was in the ring during the last token rotation. In other words, the successing stations are those

present in the local connectivity table.

Each station resets its IDLETIMER whenever it receives an implicit acknowledgement. If

the token is lost in the ring, then no implicit acknowledgement will be heard in the ring, and the

IDLE TIMER will expire. When the IDLETIMER expires, the station generates a new token,

thereby becoming the owner of the ring.

To resolve multiple tokens (to delete all tokens but one), the concept of priority is used. The

generation sequence number and the ring address define the priority of a token. A token with a

higher generation sequence number has higher priority. When the generation sequence numbers of

tokens are the same, ring addresses of each token are used to break the tie. The priority of a station

is the priority of the token that the station accepted or generated. When a station receives a token

with a lower priority than itself, it deletes the token and notifies its predecessor without accepting

the token. With this scheme, it can be shown that the protocol deletes all multiple tokens in a single
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Figure 3.2: Joining

token rotation provided no more tokens are being generated (See Section 10.1).

The ring recovery mechanism is invoked when the monitoring node decides that its successor is

unreachable. In this case, the station tries to recover from the failure by forming the ring again. The

strategy taken by the WTRP is to try to reform the ring by excluding as few as possible. Using the

Connectivity Manager, the monitoring station is able to quickly find the next connected node in the

transmission order. The monitoring station then sends the SETPREDECESSOR token to the next

connected node to close the ring.

WTRP allows nodes to join a ring dynamically, one at a time, if the token rotation time (sum of

token holding times per node, plus overhead such as token transmission times) would not grow un-

acceptably with the addition of the new node. As illustrated in Figure 3.2, suppose station B wants to

join the ring. Let us also say that the admission control manager on station A broadcasts (Br.) other

nodes to join the ring by sending out a SOLICITSUCCESSOR that includes successor(C) of A. The

Admission Control Manager waits for the duration of the response window for interested nodes to

respond. The response window represents the window of opportunity for a new node to join the ring.

The response window is divided into slots of the duration of the SETSUCCESSOR transmission

time. When a node, such as B that wants to join the ring, hears a SOLICITSUCCESSOR token, it
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picks a random slot and transmits a SETSUCCESSOR token. When the response window passes,

the host node, A can decide among the slot winners. Suppose that B wins the contention, then the

host node passes the SETPREDECESSOR token to B, and B sends the SETPREDECESSOR to

node C, the successor of the host node A. The joining process concludes.

As shown in Figure 3.3, suppose station B wants to leave the ring. First, B waits for the right

to transmit. Upon receipt of the right to transmit, B sends the SETSUCCESSOR packet to its

predecessor A with the MAC address of its successor, C. If A can hear C, A tries to connect with C

by sending a SETPREDECESSOR token. If A cannot hear C, A will find the next connected node,

in the transmission order, and send it the SETPREDECESSOR token.

Interference is eliminated by including NoN in the token packet. When a station detects a ring, it
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examines the NoN value in the token. If NoN is set to maximum, the station changes its channel and

searches for another ring. Otherwise, the station either waits to become a ring member or changes

its channel to search for another ring. If the station waits, it suspends transmission and waits for a

SOLICIT SUCCESSOR token. As a result, a newcomer station never interferes with the ring.

In Figure 3.4, we can see that the ring address of a ring is the address of one of the stations in

the ring, which is called the owner of the ring. In the example, the owner of ring A is station A. Be-

cause we assume that the MAC address of each station is unique the ring address is also unique. The

uniqueness of the address is important, since it allows the stations to distinguish between messages

coming from different rings. Multiple ring management is left open and cited briefly in Chap-

ter 12.1. There are possible schemes where a station can belong to more than one ring or a station

may listen to more than one ring.

To ensure that the ring owner is present in the ring, when the ring owner leaves the ring, the

successor of the owner claims the ring address and becomes the ring owner. The protocol deals

with the case where the ring owner leaves the ring without notifying the rest of the stations in the

ring as follows. The ring owner updates the generation sequence number of the token every time it

receives a valid token. If a station receives a token without its generation sequence number updated,

it assumes that the ring owner is unreachable and it elects itself to be the ring owner.

The transmission proceeds in one direction along the ring. We use Figure 3.5 to analyze the

protocol. Assume that there are N nodes on a token ring. We defineTn to be the time during which
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noden transmits when it gets the token, before it releases the token. Thus,Tn can range from 0 to

THT. A station first sends its data duringT and if there is enough time left, the station decides to

send SOLICITSUCCESSOR. PROP stands for propagation time of a signal in the medium.

3.4 Summary

Wireless Token Ring Protocol manages the medium by creating multiple rings. Rings are identified

by an ID that is the MAC address of a node in the ring. Each station has a successor and predecessor.

When a station gets the token from its predecessor, it transmits for a fixed time and passes the token

to its successor. After transmitting, the station looks for an implicit acknowledgement that is a

transition from its successor to the successor of its successor. Stations monitor token transitions and

create a connectivity table, an ordered list of stations in their ring. A token has a priority which

increases each time it is transmitted. If a station gets two different tokens, it chooses the higher

priority one and notifies its predecessor.

Each station monitors the token rotation time and the number of nodes in the ring and send

the invitation to the nodes outside if there is room. The joining process is a handshake mechanism

between the inviting station, joining station and the successor of the inviting station. When a station

leaves the ring willingly, it notifies its successor to its predecessor and predecessor tries to connect

to the successor of the station and if it is unsuccessful, the predecessor closes the ring with the next

station in its connectivity table. If there is a failure in a station, its predecessor detects it when

passing the token and tries to connect with the next station in its connectivity table.
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Chapter 4

Specification

4.1 Introduction

We will describe in this section the timers and the frame formats of the protocol. The timers are

important in terms of policing the data flow, regenerating a new token in case of lost token, retrans-

mission of tokens, and recovery from failures as described in Section 3. The frame formats are also

defined in detail.

4.2 MIB Parameters

ProcessingTime (PT) This time represents the time it takes for a station to process a token. More

precisely, it is the delay between the end of reception of a token to beginning of data or token

transmission in reaction to the token reception.

Max Token Holding Time (MTHT) This is the maximum amount of time one station can hold the

token before passing it. A station can only transmit data packets when it is holding the token.

After this amount of time has passed, it must yield the token even if it has not transmitted all

its data, so other stations also have a chance to transmit. It must be set appropriately to achieve
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good bandwidth and latency: each station should be able to transmit a significant amount of

data while it has the token, and no station should have to wait too long before receiving the

token.

Max Token Rotation Time (MTRT) This is the maximum amount of time the token should take

to travel around the ring and return to the station. This determines the latency of the data

transmission. This time is enforced by keeping too many nodes from joining the ring.

Max Num Token PassTry (MTPT) This is the maximum number of times the station should try

to pass the token before concluding that it is badly connected to the rest of the ring and leaving

the ring.

TransmissionRate (TR) This is the data transmission rate of the connection (measured in bytes

per jiffy in kernel implementation (Chapter 9)).

Solicit SuccessorProb (SSP)This is the probability in percent that the station will solicit a succes-

sor (i.e., look for new nodes to join the ring) at any given opportunity. This is only relevant if

there is room in the ring, i.e., neither the maximum number of nodes nor the maximum token

rotation time has been reached.

4.3 Timers

4.3.1 Definitions

1. Each timer value is randomized before it is assigned.R(.) represents the randomize function.

2. TICKS PERSEC represents ticks per second. In the kernel implementation,HZ value is

considered (Chapter 9).

3. BANDWIDTH(BW) defined asTR/TICKS PER SEC.
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4. MAX TOKEN PASSTIME (MTPT) defined asR(2(MTHT ) + 2(PT )).

5. TOKEN ROTATION TIME (TRT) defined asmax((NUM NODE ∗MTPT ), MTRT ).

6. MAX JOINING TIME1 defined as the maximum time that takes for a joining process.

7. MAX RESPONSETIME2 defined as maximum time to get a response from the soliciting

station in the joining process.

4.3.2 Timer Types

Idle Timer is set to theR(TRT ) and starts to count down. It is reset whenever the station receives

an implicit acknowledgement. When theidle timerexpires, the station callsidle timer handler.

Inring Timer is set to theR(TRT + IDLE TIME) and starts to count down whenever the

station receives a token. When theinring timer expires, the station assumes that it has been

kicked out of the ring, and callsinring timer handlerto exit the ring.

Token PassTimer is set to theR(2(MTHT ) + 2(PT )) whenever a station sends a token and

starts to count down. When the timer expires without the station receiving an implicit ac-

knowledgement of the transmission, it assumes that the transmission was unsuccessful and

callstokenpasstimer handlerto retransmit thetoken.

Token Holding Timer is set to theMTHT and the station can transmit data until the timer expires

andtokenholding timer handleris called to pass the token.

Offline Timer is set to theR(TRT + IDLE TIME) and starts to count down when the station

goes to theofflinestate.Offline timer handleris called when the timer expires.

1
R(3 ∗ PT + SOLICIT SUCCESSOR SIZE+SET SUCCESSOR SIZE+SET P REDECESSOR SIZE+3∗P HY HEADER SIZE

BW
)

2
R(PT + SET SUCCESSOR SIZE+SET P REDECESSOR SIZE+2∗P HY HEADER SIZE

BW
)
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Claim Token Timer is set to theR(TRT + TOKEN PASS TIME) and counts down at the

floatingstate. When expired, the station callsclaim tokentimer handlerto make aself ring.

Solicit SuccessorTimer is set to MAX JOINING TIME and when expired, the station callsso-

licit successorhandlerto sendsolicit successortoken.

Solicit Wait Timer is set toR(TOKEN PASS TIME) and when expired, the station calls

solicit wait handlerto pass thetoken.

Contention Timer is set to the MAXRESPONSETIME. When the invited station does not re-

ceivesetpredecessorfrom the soliciting node for CONTENTIONTIME, it assumes that it

has lost the contention process and callscontentiontimer handlerto go back tofloatingstate.

The timer values are arranged so that following relationship holds:

1. TOKEN HOLDING TIME < IDLE TIME < INRING TIME

2. MTRT3 ≤ IDLE TIME

4.3.3 Timer Handlers

Idle Timer Handler Station sendsclaim tokenandtokenand goes tomonitoringstate.

Inring Timer Handler Station goes tofloatingstate.

Offline Timer Handler Station goes tofloatingstate.

Claim Token Handler Station makesself ring, sendsclaim tokenand goes toidle state.

Solicit SuccessorHandler Station sendssolicit successortokenand goes tosolicitingstate.

3MTRT is the Maximum Token Rotation Time defined more precisely in Section 4.2 & 10.1
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Token Holding Timer Handler Station passes thetokento its successor and goes tomonitoring

state.

Solicit Wait Handler Station goes to theidle state if it isself ring, otherwise, sendstokenand

goes tomonitoringstate.

Contention Timer Handler Station goes tofloatingstate.

Token PassTimer Handler Station retransmits token fornumtokenpasstry times, if it is unsuc-

cessful, the station sendssetpredecessortokento close the ring and goesofflinestate.

4.4 Frame Formats

4.4.1 Frame Control Field

1. Control Frame

0 0 C C C C C C

C C C C C C Type

0 0 0 0 0 0 TOKEN

0 0 0 0 0 1 CLAIM TOKEN

0 0 0 0 1 0 SOLICITSUCCESSOR

0 0 0 0 1 1 SETPREDECESSOR

0 0 0 1 0 0 SETSUCCESSOR

0 0 0 1 0 1 TOKENDELETED

2. Data Frame

F F M M M P P P
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F F Frame Type

0 1 data

1 0 reserved

1 1 reserved

M M M Mac Action

0 0 0 Request with no response

0 0 1 Request with response

P P P Priority

1 1 1 highest priority

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 lowest priority

3. Transparent Data Frame

This is the 802.11 DCF Packet Format. This is an option in the kernel implementation. With

this option WTRP and 802.11 network can communicate with each other.

4.4.2 Sequence Control Fields

Sequence Number (Seq)Whenever a station passes a token the sequence number is increased.

The counter wraps around to 0 when it reaches232.
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Generation Sequence Number (GenSeq)Whenever the owner of the token (the station that has

the same MAC address as the ring address of the token) passes the token, it increments the

generation sequence number. The counter wraps around when it reaches232.

Together the sequence number and the generation sequence number defines the priority of the

token. The priority is used for resolving multiple token resolution.

4.4.3 Address Fields

Destination Address Field (DA) The MAC address of the packet destination.

Source Address Field (SA)The MAC address of the packet source.

Ring Address Field (RA) The MAC address of the station that generated the token.

4.4.4 Admission Control Field

Number of Nodes (NoN) When the token rotates the owner calculates the number of nodes in the

ring by taking the difference between theSeqof the token andSeqof the node.

4.4.5 Queues

Data Packet QueueData packets coming from the upper layer are stored and transmitted when the

station gets the token.

Control Packet Queue Control packets if there is a failure in its transmission are stored and re-

transmitted.

4.4.6 Invalid Frame

We have assumed that the physical layer filters out the garbled packets. In addition the following

are invalid frames that the MAC layer can discard.
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1. The FC field is undefined.

2. DA and SA are the same.

4.4.7 Frame Types

1. Token

0 0 0 0 0 0 0 0 RA DA SA NoN GenSeq Seq

1 6 6 6 2 4 4 bytes

The token is used to transfer the right to transmit.

2. Claim Token

0 0 0 0 0 0 0 1 RA Br. SA

1 6 6 6 bytes

The Claim Token is broadcast(Br.) when a station generates the token in the case where a

station creates a ring. It is also used when a station regains the token in the case of lost token.

3. Solicit Successor Token

0 0 0 0 0 0 1 0 RA Br. SA NoN NS

1 6 6 6 6 6 bytes

Thesolicit successortoken updates the successor field of a station. It is broadcast for inviting

another nodes to join the ring. NS field is to inform the joining node about its prospective

successor.

4. Set Predecessor Token

0 0 0 0 0 0 1 1 RA DA SA NoN GenSeq Seq

1 6 6 6 2 4 4 bytes
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Thesetpredecessortoken updates the predecessor field of a station. It is used for both joining

the ring and exiting the ring.

5. Set Successor Token

0 0 0 0 0 1 0 0 RA DA SA NS

1 6 6 6 6 bytes

Theset successortoken updates the successor field of a station. It is used for both joining the

ring and exiting the ring.

6. Token Deleted Token

0 0 0 0 0 1 0 1 RA DA SA

1 6 6 6 bytes

The tokendeletedtoken is used to give predecessor notification that the token has been

deleted. This is to prevent the predecessor from invoke the ring recovery mechanism.

7. Data

0 1 M M M P P P RA DA SA Data

1 6 6 6 bytes

8. Transparent Data

FC Duration DA SA BSSID SC N/A Data CRC

2 2 6 6 6 2 6 0-2312 4 bytes

• FC - Frame Control:protocol version and frame type

• Duration - Time reserved for packet transmission

• BSSID - Basic Service Set ID
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• SC - Sequence Control

• CRC -Cyclic Redundancy Check

4.5 Summary

WTRP is implemented as a Finite State Machine and each state has one or more timers. Timer

values are calculated from the MIB parameters. When it passes to a new state, a station initializes

the timers of the state and the handler function of the timer is called, when a timer expires. Tokens

have a three-dimensional priority; sequence number that is incremented in each passing, generation

sequence number that is incremented in each rotation by the owner, and ring address. In addition

to the token signal, WTRP introduces additional control signals involved in joining, leaving, and

failure recovery processes.
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Chapter 5

Finite State Machine

5.1 Introduction

In this chapter, we describe the finite state machine in detail. Figure 8.1 shows the finite state

machine (FSM) of WTRP. The states are{ Beginning, Floating, Offline, Joining, Soliciting, Idle,

Monitoring, Have Token}. To cope with “mobility”, FSM hasjoining andsoliciting state where

inviting and joining processes are handled, “Interference avoidance” to other rings is done by intro-

ducingfloatingandofflinestates, whereby a station suspends transmission in these states and waits

to join a ring. “Collision avoidance” in the same ring is eliminated by theidle state, whereby a

station suspends transmission until it gets thetoken. “Equal bandwidth share” is controlled byhave

tokenstate whereby the station transmits packets as long as it is allowed.Monitoring state is for

“guaranteed transmission”, whereby a station checks its transmission and retransmits in case of a

failure. In the rest of the chapter, we describe the states and states transitions in detail.
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BEGINNING FLOATING
Always

Figure 5.2: Transition From/To Beginning State

5.2 States

5.2.1 Beginning State

Beginningstate is a virtual state that represents the starting of the protocol. There is only one

transition as seen in Figure 5.2 and the station directly goes to thefloatingstate.

5.2.2 Floating State

Floating state is the state where a station resets its parameters and waits to join a ring. When a

station passes to thefloatingstate, it resets its station parameters, cleans up its packet queues, and

initializes theclaim tokentimer.

A station passes to the floating state at the beginning and when there is a failure in the ring.

When the station isself ring (When the successor and predecessor of the station is itself and station

is in idle state.) and detects another ring, it goes tofloating state. If the station does not get the

token in theidle state or can not join to a ring,idle timer expires and it goes tofloatingstate. If the

station detects a ring and is in thefloating state, it waits to be invited from the ring and suspends

its transmission in order not to interfere the ring transmission. If the station does not detect a ring

, claim tokentimer expires and it goes to theidle state and creates aself ring. If the station gets

a solicit successortoken, and if it wants to join a ring, the station sends aset successortoken and

goes tojoining state. The state transitions from or to thefloatingstate can be seen in Figure 5.3.
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Figure 5.3: Transition From/To Floating State

5.2.3 Offline State

When a station goes to theofflinestate, it initializes the station, clears the packet queues, and adds

offline timer to the scheduler. Sinceoffline timer is twice themax tokenrotation time, the wait

period in theofflinestate gives sufficient time to the former ring members to realize that the station

is out of the ring. This prevents the station from joining a ring before the ring is closed. A station

goes to theoffline state if it belongs to a ring other thanself ring when it detects another ring or

when a station joins a ring but fails to pass the token to its successor. In theofflinestate, a station

waits and does nothing until theoffline timer expires. From theofflinestate, a station only goes to

floatingstate. The state transitions from or to thefloatingstate can be seen in Figure 5.4.

5.2.4 Joining State

When a station goes to thejoining state, it initializes thecontentiontimer. A station goes tojoining

state only fromfloatingstate. When a station receivessolicit successorand decides to join the ring,

the station sendsset successorand goes to thejoining state. If the station receivessetpredecessor,

this means that joining is successful. Therefore, the station sendssetpredecessorand passes to

themonitoringstate. If the station does not getsetpredecessor, contentiontimer expires and this
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Figure 5.5: Transition From/To Joining State

means a failure in joining and the station goes back to thefloatingstate as seen in Figure 5.5.

5.2.5 Soliciting State

When a station goes to thesoliciting state, the station initializessolicit wait timer and sets the

station->numnode1 to MAX NoN+1 in order to suspend transmission of other stations if it is

not aself ring. When the station is in theidle state and receives thetoken, it checks its queues

and if they are empty, it decides to send solicit successor. If the decision is positive, then it

sendssolicit successortoken and goes to thesoliciting state. If the station isself ring, it addsso-

licit successortimer and when it expires, it sendssolicit successortoken and goes to the soliciting

state.

1stationstructure is defined more precisely in Section 6.4
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Figure 5.6: Transition From/To Soliciting State

If a station receivesset successorin the soliciting state, this means that there is a station re-

sponding to itssolicit successor, then the station sendssetpredecessorand goes to themonitoring

state. If there is no response to the invitation,solicit wait timer expires and the station goes toidle

state if it isself ring andmonitoringstate if it is notself ring as seen in Figure 5.6.

5.2.6 Idle State

When the station goes toidle state, it adds idle timer and inring timer if it is not a self ring ,

otherwise it adds onlysolicit successortimer. When the station passes thetokento its successor,

it goes to themonitoringstate to listen forimplicit ack that is a transmission from its successor

to the successor of its successor. After hearing theimplicit ack, the station goes back to theidle

state. When the station gets thetokenwith greater priority (lower priority tokens are deleted by

sendingtokendeletedtoken) and packet queues are nonempty, station goes tohavetokenstate. If

the packet queues are empty, then it decides whether to sendsolicit successoror not; if the decision

is positive, it goes tosoliciting state, otherwise, the station passes thetokenand goes tomonitoring

state. If the station receivesset successortoken that means a station is leaving , the station sends

setpredecessorand goes to themonitoringstate. If the station wants to leave, it sendsset successor
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Figure 5.7: Transition From/To Idle State

and goes toofflinestate. The detailed state transition ofidle state can be seen in Figure 5.7.

5.2.7 Monitoring State

When the station goes to themonitoringstate, it resetsnumtokenpasstry and addstokenpasstimer.

Monitoringstate is to monitor the medium in order to make sure that the transmission is successful.

Implicit ack is used to decide whether a transmission is successful or not. If there is a retransmis-

sion of the same token, the station sendstokendeletedtoken. Figure 5.8 shows the transition to and

from monitoringstate. If the transmission is successful , the station goes toidle state.

5.2.8 Have Token State

When the station goes to thehavetokenstate, it initializestokenholding timer. A station passes

to havetokenstate only from theidle state if it has packet to send. When a packet is transmitted

tx donehandleris called.Tx donehandlerchecks for the packet queues and transmits if those are

nonempty. When the queues are empty or thetokenholding timer is expired, the station passes the
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Figure 5.9: Transition From/To Have Token State

tokento its successor and goes tomonitoringstate as seen in Figure 5.9.

5.3 Operating Types

5.3.1 Normal Operating Flow

The station does certain state changes when it is operating innormal operating flow. Normal op-

erating flowis the flow when there is no joining process that means either the ring is full or there

is no station outside of the ring. When the station gets thetokenin the idle state, it goes tohave

token, soliciting, andmonitoring state, when there is a packet to send, when it decides to send

solicit successoror when the packet queues are empty andsolicit successordecision is negative,

respectively. The station goes back toidle state frommonitoringstate when it gets theimplicit ack.
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5.3.2 Saturation Operating Flow

The station operates in saturation condition when there are always packets to send. In this case,

the station passes to thehavetokenstate from theidle state and keeps sending packets until theto-

kenholding timer is expired. The station passes to themonitoringstate after passing thetokento its

successor, and goes back toidle state after receivingimplicit ackas seen in Figure 8.1. The differ-

ence betweennormalandsaturationoperating flow is that the latter does not sendsolicit successor

and state transitions always follow theidle, have tokenandmonitoringorder, whereas the former

does not follow an ordered state transition.

5.4 Summary

In WTRP, a station changes its state upon packet reception, packet transmission, or timer expiration.

Floatingandofflinestates are the states where the station only listens to the medium. In these states,

the station does not belong to any ring. When a station belongs to a ring, it waits fortokenin theidle

state and passes tohavetokenstate if it has data to send. If the station has enough time, it may send

solicit successortoken and pass tosoliciting state. When a station wants to join a ring, it responds

to a solicit successortoken and passes tojoining state. The station confirms its transmissions in

monitoringstate. A station traverse aroundidle, have token , solicitingandmonitoringstates when

it operates innormaloperating conditions. If it operates insaturationcondition, the station follows

idle, have token, monitoringstates in order.

38



Chapter 6

Implementation Overview

6.1 Introduction

Wireless Token Ring Protocol is deployed in three modes:{Simulator, User-Space, and Kernel

Implementations}. We create a unified codebase that is shared by all the implementations. The main

core of the protocol is the same for all three implementation and each implementation introduces

certain hooks to the main core as seen in Figure 6.1. This unified codebase is made possible by

the implementation of Linux kernel libraries for packet manipulations and event scheduling in user

space.

Ad hoc networks are now being designed that can scale to very large configurations. Design and

development costs for such systems could be significantly reduced if there were efficient techniques

for evaluating design alternatives and predicting their impact on overall system performance metrics.

Simulation is the most common performance evaluation technique for such systems. The simulator

we developed attempts to address design and development cost reduction by providing an easy path

for migration of simulation models to operational software prototypes and support for visual and

hierarchical model design. The Wireless Token Ring Simulator (See Figure 6.1) allows debugging
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Figure 6.1: Implementation Overview

and simulating the WTRP core shared by all implementations.

The importance of the user-space implementation (Figure 6.1) is that it is platform independent.

In a managed network, applications can reduce the frequency of packet collisions by sending the

UDP packet using the UDP interface. In this case, WTRP is used as a transmission scheduling

method rather than a medium access control.

The Linux kernel module is developed for kernel version 2.2.19, and it is inserted between the

IP and WaveLAN libraries as seen in Figure 6.1.

6.2 State Transitions

State transitions in WTRP are defined in timer handler functions (See Section 4.3.3) and inpro-

cesspacketfunction. These functions are from the unified codebase. The transitions that these

functions introduce are explained in detail in Section 5. When the timer is expired, appropriate han-

dler of the timer is called. When there is a packet reception, after removing the appropriate header

of the packet according to each implementation, the protocol callsprocesspacketfunction.
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6.3 Data Flow

Data packets coming from the medium are processed first in theprocesspacketand thenapp rx is

called. Data coming from the upper layer is first queued and then transmitted to the medium when

the station gets thetoken. Successful transmission is notified to the protocol bytx donehandlerthat

re-checks the queues. If the queue is empty, the protocol passes thetoken, otherwise, sends another

packet.

6.4 Data Structures

Stationanddevicestructure are the main structures that preserve the station information and im-

plementation specific information respectively.Stationstructure contains the protocol state and is

encapsulated in thedevicestructure that contains the implementation parameters.

6.4.1 StationStructure

In the stationStructure, protocol parameters of the station are kept which include{Identification,

MIB, Ring Statistic, Joining and Monitoring Parameters, Timers, Packet Queues, Connectivity Ta-

ble}.

Identification Parameters

A node is identified by MAC address of the node (TS), MAC address of the previous node (PS),

MAC address of the next node (NS), MAC address of the ring owner (RA), Sequence Number of

the node (seq), Generation Sequence Number of the node (genseq).

MIB Parameters

User specified parameters (See Section 4.2) are also pointed in thestationstructure.
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Ring Statistic Parameters

The station calculates the number of nodes in the ring (numnode) by subtracting theseqof the

token from theseqof station since in the rotation,seqnumber of the token is incremented by each

station. Token rotation time (lastaccepted) is calculated by taking the difference of two successive

tokenarrival times.

Joining Parameters

When a station wants to join a ring, the station setswantsto join to true. After getting an in-

vitation from a station, it sets thesoliciting station to the address of inviting station andsolic-

iting stationsuccessoras the successor of the inviting station. This information is sent withso-

licit successortoken(See Section 4.4.7).

Monitoring Parameters

The station tries up tonumtokenpasstry before giving up passing token and exiting.

Timers

Stationstructure contains the timers. A timer is initialized byinit timer function which creates the

timer structure by assigning the appropriate handler to thehandlerpointer,devicestructure to the

datapointer and timer value to theexpirationpointer of the timer structure.

Packet Queues

Stationstructure contains pointers to two queues;out bufferedqueuewhich is the queue for data

packets that are buffered for later transmission andout tx queuewhich is the queue for the packets

that are ready to be transmitted, but blocked due to hardware being busy (packet can be blocked due
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to carrier sensing).

Connectivity Tables

Pointer to connectivity tables of the station is contained in thestationstructure. The connectivity

table (my ctable) holds information about local transmissions that are from the station‘s ring. The

other connectivity table (other ctable) holds information about all transmissions in the reception

range.

Initialize station

Station is initialized byinitialize station function, When the function is called, all the parameters

are set to default values.

6.4.2 DeviceStructure

Devicestructure contains the protocol information and implementation specific parameters. In the

simulator implementation, position and velocity information, seed of the random variable, move-

ment pattern, application list is contained here. In the user-space implementation, socket informa-

tion is kept here.Stationinformation is casted out from thedevicestructure when it is passed to a

function as an input.

6.5 Summary

In this chapter, we presented the approach that we take when designing the WTRP Implementations.

WTRP has three deliverables; User-Space, Simulator, Kernel implementations. We created a uni-

fied codebase for each implementation. Common structures are presented.Stationstructure keeps

protocol parameters anddevicestructure containsstationstructure and implementation parameters.
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User-Space implementation is a platform independent scheduler, Simulator is a tool to simulate the

WTRP in wireless environment and do some performance analysis, and Kernel Implementation is a

Linux link layer module.
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Chapter 7

Wireless Token Ring Simulator

7.1 Introduction

WTRS (Wireless Token Ring Simulator) is a simulation library for Wireless Token Ring protocol.

It is built on top of the WTRP Core that provides the finite state machine of the WTRP. It has

been designed and built with the primary goal of simulating the actual implementation code in

large network models that can scale up to a hundred or thousand nodes. This design of simulator

is advantageous since it eliminates the need to develop separate program for simulation and for

deployment. The separated development is not only expensive in terms of added developmental

costs, but also increases the chance of failure to identify potential problems of the protocol since the

protocols that are tested in simulations and deployed are often different.

As most network systems adopt a layered architecture, WTRS is being designed using a layered

approach similar to the OSI seven-layer network architecture. Simple APIs are defined between

different simulation layers. This allows the rapid integration of models developed at different layers

by different people. Actual implementation code can be easily integrated into WTRS with this

layered design. Now, WTRP was implemented in MAC layer.
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Layer Models
Physical Free Space

Data Link WTRP
Transport UDP

Application CBR

Table 7.1: Models Currently in WTRS Library

Table 7.1 lists the WTRS models currently available. WTRS supports three different mobility

models. Nodes can move according to a model that is generally referred to as the “brownian” model.

A node periodically moves to a position with randomly chosen x and y velocities. The second

mobility model is called “bounce” in which a node moves linearly to a location with fixed x and y

velocities specified in the configuration file. In these two mobility models, the initial position and

initial velocities can be specified in the configuration file and when the node reaches the boundary

of the canvas, it bounces back and continues. The third mobility model is called “manual”. In this

mobility pattern, any movement pattern can be specified by chopping it into linear segments that is

defined by initial and final positions, velocities and starting time in the configuration file. The node

position is updated periodically by a parameter specified in the configuration file. Before describing

each interface, one more point worth mentioning is the use of the same random function in the

configuration. This ensures that the same output will be generated with the same seed. This helps

to debug code easily and results of parameter modification can be tested in the same environment

as before. The random function isnet random, identical to Linux. The seed can be specified in the

configuration file.

7.2 Architecture

Overall design of the simulator can be divided into four parts, ordered from input to output;{animator,

simulator core, analyzer and visual tracer} as seen in Figure 7.1. Animator creates the simulator
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Figure 7.1: Overall Design

configuration information. The simulator core is the main part where the simulator engine, channel

model, data application and WTRP module are located. Visual Tracer and Analyzer process the

output files generated by the simulator. Currently, NAM [20] is used for visualization and analyzer

file format is the same as that of NS [21] trace file.

7.2.1 Animator

As we mentioned before, simulation parameters are defined in animator. A snapshot of the GUI can

be seen in Figure 7.2. Parameters of the simulation are shown in Table 7.2. These parameters are

used as an input to the Simulator Engine (See Figure 7.1) and used at the initialization.
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Parameter Definition
Canvas size Determines the size of the topology
Visual tracer output File Name for NAM
Analyzer output File Name for log info
Simulation time Determines the execution time
Random Seed Controls the outcome of the simulation
Record Function Frequency Controls the output file size
Nodes & Nodes Address Node Identification Parameters
Movement Patterns Defines the movement patterns of the nodes
Nodes Topology Information Defines the velocity and initial and final position information
Constant Bit Rate (CBR) ApplicationsDefines the application information

Table 7.2: Configuration Parameters

Figure 7.2: Animator GUI
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Figure 7.3: Visual Tracer

7.2.2 Visual Tracer & Analyzer

For visualization, a topological snapshot of the simulation is taken periodically and recorded in a

trace file. The trace file is in NAM format and is viewed with NAM [20]. A screen shot of the

visualization is shown in Figure 7.3. Movement, transmission, reception and ring address can be

observed from the Visual Tracer.

We created a set of libraries that can be used to record performance-related events for Analyzer.

We have implementedrecord packettransmissionandrecord packetreceptionfunctions that write

detailed information about that packet and station to the analyzer output file.
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7.2.3 Simulator Engine

Simulator Core consists of two basic parts: WTRP module and simulator module. The simulator

provides interface for scheduling and packet manipulation code to the WTRP module. The simulator

module also contains a simulation engine which allows simulation of multiple nodes.

Node data structure, Data agent (CBR), Scheduler, Channel module, Monitoring functions con-

stitute the simulator module as can be seen in the Figure 7.1.

Node Data Structure

Instance of a node is represented by a data structure that holds state information. All the variables

are node specific and are stored inside thedevicestructure (See Section 6.4.2).

CBR Agent

Constant Bit Rate (CBR) is a basic data application. It sends periodic packets to the module. CBR

module usestx handler function of the unified codebase to transmit. Being consistent with Linux

implementation, packet information is encoded intosk buff data structure. CBR structure is a linked

list and initialized for each instance of CBR agent during the initialization state of simulator. From
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__________________________________________________________________

struct timer_list {
struct timer_list *next; //Pointer to the next event
struct timer_list *prev; //Pointer to the previous event
unsigned long expires; //Expiration Time
unsigned long data; //Device structure
void(*function)(unsigned long);//Handler function
};

__________________________________________________________________

Figure 7.5: Event Structure

network module to the CBR as an acknowledgementapp rx can be used from the unified codebase.

Scheduler

Scheduler implements an event queue, add event and delete event functions. We used the same data

structure and function calls as Linux.Eventis a linked list, which has a specific handler function.

Figure 7.5 shows the event structure. The scheduler functionsadd timer anddeletetimer are for

adding and deleting event to the scheduler respectively.Mod timer updates the expiration value of

the event.

In simulator, both transmission and reception are scheduled as an event. Packet transmission

to the medium is an event done bytransmit. Making packet transmission an event is to introduce

transmission delay. This improves concurrency among transmission events scheduled for exactly

the same time. Functiontransmit is called later in order to pass the transmission to the channel

module.

Channel module decides on the success of packet transmission from the transmitter to every

other node in the network pairwise. Channel module schedules packet reception event for each

node by callingadd timer with handler functionrx handlerfrom the unified codebase.
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Channel Module

In terms of the channel model, the simulator models a simple Direct Sequence Spread Spectrum

(DSSS) capturing effect based on signal to interference ratio, free space propagation, and underlying

CSMA radio. Multipath or fading affect is not modelled. Packet Loss is modelled based on distance

and power and packet corruption is modelled based on Signal to Interference Ratio.

Monitoring

Topology monitoring functions record NAM position information of the nodes by a periodic event

calledrecord function. Periodicity of the event is set by a parameter in the configuration file. As

a result, we can adjust recording period to reduce the size of output file at the expense of brittle

movements of nodes. Monitoring functions mark the node with different color, shape or character

for the duration of reception. Currentlystart transmissionhighlights transmitting station red and

start receptionmarks the receiving station green and ring address of the node is marked on top of

it. A snap shot of the NAM can be seen in Figure 7.3.

Therecord transmissionandrecord receptionfunctions are used for the analyzer output file in

order to keep a log of the packet events. These functions create a log of information of the packet

header with a time stamp.

After discussing basic hookups of the simulator, We can investigate the simulator run in more

detail.

7.2.4 Simulator Run

Simulator starts with initialization process. The initialization steps are as follows:

1. Initialize simulation
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__________________________________________________________________

while(clock< simulation_time) {
tmp=take_event(); // Takes the event from the queue
update_clock ; // Sets the time to the time of the event
tmp.handler(); // Calls the handler function of the event
}

__________________________________________________________________

Figure 7.6: Main Loop

Initialize simulation is where the node structures are created, the memory is allocated, and

the events are initialized.

2. Initialize topology

Initialize topology is used for initializing nodes for the topology.

3. Initialize traffic

Initialize traffic creates the linked list of CBR structures and attaches them to the nodes.

4. Initialize record function

As mentioned above,record functionis used for recording the monitoring information peri-

odically in order to reduce the output files and it is scheduled here. The handler records the

positions and schedules itself as an event again.

5. Main Loop

After initialization, simulator goes into the main loop and runs forsimulationtime, a pa-

rameter of the configuration file. The Main loop implements an event driven simulation.

Depending on the next event, the clock jumps to that time and calls its handler function as

seen in Figure 7.6.
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7.3 Summary

Simulator is designed for the purpose of simulating the actual code in a wireless environment with

multiple nodes. The initial aim of the simulator is to facilitate the implementation code and do

rudimentary performance analysis. An instance of a node is represented by a data structure that

holds state information, and the code base of the WTRP module provides rules for state transitions.

Delay in events and timer functions are implemented as scheduling of events to be executed later.

The scheduler takes the event, runs the code, and then adds the event. This cycle runs the simulation.
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Chapter 8

User Space Implementation

8.1 Introduction

WTRP manages the medium by scheduling the transmission. Stations start transmitting upon recep-

tion of a token and are forced to stop transmitting after a fixed time. This idea can be considered as

a scheduler and extended to be used by the applications to reduce the frequency of packet collisions

among the application that runs on top of WTRP. User-Space Implementation deploys this sched-

uler idea and is designed for applications using the UDP socket. The implementation is designed in

the application layer in order to be platform independent. Applications use the provided WoW API

[3] (Web Over Wireless Application Program Interface) and WoW API re-routes the UDP packets

to the WTRP module that sits in the application layer and WTRP module does the scheduling.

8.2 Implementation

8.2.1 Initialization

User Space implementation uses IP address instead of MAC address to distinguish a node. An

node reads the IP address from(/etc/hosts)in Linux . In the initialization state,init stationcalls
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Figure 8.1: User Space Engine
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initialize stationfrom unified codebase to create thestationparameters andinit timer for all WTRP

timers (See Section 4.3). At the end,init stationstarts the station infloating state if theIOCTL

option is not set. WhenIOCTL option is set, station waits to join a ring until it gets “request

medium” system call from an application.

UDP sockets are used for packet transmission and reception. UDP ports are open for appli-

cations and the medium byinitialize socket. Applications useTOK APP PORT to send packet

to WTRP Module or receive packet from WTRP module via local loop. WTRP module uses

TOK DEV PORT when sending packet to the medium or receiving from the medium as seen in

Figure 8.1.

8.2.2 System Call (IOCTL)

System Call (IOCTL) is implemented to control the WTRP module from the application. When

IOCTLoption is set, the station waits for a request from an application. Request is sent through the

local loop to the WTRP module and if the request isREGISTER, the application that is registering

is added to the application list of the station. If the request isJOIN, station goes tofloating state

to join a ring. If the request isLEAVE, station leaves the ring after getting the token. The request

GET INFO sends thestationparameters to the application.

8.2.3 Application Interface (WoW API)

Application Interface (WoW API) is a set of functions that can be used by datagram applications

to use the protocol developed in user space. The idea in the API is that an application uses WOW

socket functions instead of the Linux socket functions. The Linux socket functions{socket, bind,

recvfrom, sendto} are replaced by{my socket, mybind, myrecvfrom, mysendto} respectively.

my ioctl is introduced forIOCTL option similar to theioctl system call in Linux.
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__________________________________________________________________

while(1) {
update timer; // Update Clock.
retval=select(); // Listen for a fixed time.

if retval=0 // No packet detected.
call timer_handler; // Handler of the timer.

else if from TOK_APP_PORT // Packet from application.
call tx_handler; // Handler of application.

else if from TOK\_DEV\_PORT // Packet from medium.
call rx_hanler; // Handler of medium.

else ASSERT(not_reached);
}

__________________________________________________________________

Figure 8.2: Main Loop

my socket callssocketin order to open a UDP socket.

my bind changes the socket destination address to local loop address (“127.0.0.1”) and callsbind

to get a file descriptor for the socket.

my recvfrom changes the source address to local loop address and callsrecv from.

my sendto creates a new message by appending the destination address to the original message and

sends the packet with the local loop address as the destination to theTOK APP PORT by

callingsendto.

my ioctl sends theREQUESTand thevalue to the WTRP Module bysendtovia the local loop

address andTOK APP PORT.

8.2.4 User Space Engine

After the initialization, a station runs in an infinite loop as seen in Figure 8.2.
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Scheduling function,select, listens to two ports,TOK DEV PORTandTOK APP PORT, for

a certain amount of time that is determined by expiration value of the initialized timer. Function

selectreturns positive if there is a packet in the ports or returns zero if the timer expires. If there

is no packet, the protocol calls thehandler function of the timer. If theselectfunction returns

because of a packet in theTOK APP PORT, the protocol calls thetx handler. If the packet is in

theTOK DEV PORT, the protocol calls therx handler. As can be seen in Figure 8.1, packets from

the application are handled by thetx handler and packets from the medium are handled by the

rx handler.

8.2.5 Transmission

When an application sends a packet to the medium, the packet is modified and directed to the

WTRP module by WOW API (See figure 8.1) and the protocol callstx handler. Functiontx handler

examines the data and the destination, and callsprocesspacket if the destination is local loop;

otherwise, it callstok tx handler. Processpacketis called because if the destination is local loop,

this means that two applications at the same station are communicating, therefore the packet should

be directly forwarded to the destination. Functiontok tx handler puts the packet to the packet

queue to be transmitted after the station gainstoken. When the station gets thetoken, station sends

the packet to its destination through theTOK DEV PORT with destination port appended to the

data as seen in Figure 8.1. Control packets are broadcast through theTOK DEV PORT.

8.2.6 Reception

Similar to the MAC layer, all packets received from the medium are from theTOK DEV PORT

captured by therx handlerthat callstok rx handler. Functiontok rx handlercallsprocesspacket

from the unified codebase.processpacketexamines the packet and if it is a data packet, it calls
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app rx in order to send it to the application via the local loop. If the packet is control packet,

processpacketprocesses the packet and executes the corresponding state transitions.

8.3 Summary

User-Space implementation is a platform independent implementation running in the application

layer for applications that uses UDP sockets. The implementation uses UDP sockets to communi-

cate with the applications and the medium. A UDP interface is provided for applications in order

to re-direct their packets to the WTRP module. If theIOCTL option is set, an application can send

commands to the ring by theIOCTL calls. A station attempts to join or leave a ring after getting

the corresponding system signal from the application. Linux scheduling function,select, listens to

the application and medium sockets for the corresponding expiration value of the state timer. Three

events drive the implementation. Timer handler is called when there is no packet. Application han-

dler is called when the packet is from an application. Finally, medium handler is called when the

packet is from the medium. Outcomes of these events are inputs to the WTRP module.
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Chapter 9

Kernel Implementation

9.1 Introduction

In this chapter, we present the detailed description of the Kernel Implementation. Kernel Implemen-

tation is a link-layer module, derived from the unified codebase. Some of the kernel functions and

data structures are used in non-kernel code. These functions are scheduling functions and socket

buffer data structure. The Linux protocol stack does not maintain layering below the network layer.

It performs some rudimentary logical link control functions itself and delegates the rest of these low-

level functions to the device where it is integrated. While this may lead to better performance, for

research and development of link-layer protocols we prefer to retain the full layering in a completely

modular way as in ISO layering model (See Table 9.1).

We first explain the usual path between the network device and the network-layer protocols, and

then the path taken by our implementation. Every computer requires peripheral hardware devices

to operate. Each device plugs into some type of port or socket. This port or socket may be part of

an interface card which plugs into the system bus; or the socket itself may be on the bus, as in the

case of PCMCIA sockets [24]. In any case, to the computer, the peripheral device is an entity at a
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Layer 7 Application Layer
Layer 6 Presentation Layer
Layer 5 Session Layer
Layer 4 Transport Layer
Layer 3 Network Layer
Layer 2 Data Link LLC (Logical Link Control) Sublayer

MAC (Medium Access Control) Sublayer
Layer 1 Physical Layer

Table 9.1: ISO Layering Model

particular address which sends and receives data over the bus. When the device has data to send over

the bus, it must interrupt the computer so that the computer can stop whatever it is doing, receive the

data, and respond appropriately. Thus, each device has a unique IRQ number. When the operating

system, in this case Linux, receives an interrupt, it passes control to the interrupt handler registered

for that IRQ, usually in the device driver which is bound to that device. This interrupt handler does

the necessary processing of the information received from the device, before returning control to the

operating system. It must be fast and efficient, because while it is handling this interrupt, interrupts

are disabled: no other device can interrupt the system.

One function of the device driver is to handle interrupts from the device. Another function is

to send data to the device, perhaps to control it or perhaps to transmit through the device (such

as a networking device). In this way, the kernel does not have to know all the details about the

communication through well-defined interfaces, and it is up to the device driver to interpret between

such an interface and its particular device or class of devices.

In the early days of Linux, all device drivers were built into the kernel image loaded at boot

time. But this quickly became impractical, so now most device drivers are also available as modules

which can be loaded or unloaded as needed, while the operating system is running. In any case,

the device driver must be bound to the particular device for which it is responsible. That is, it must

know the IRQ of the device so it can register to receive interrupts from that device, and it must know
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the address at which it can communicate to the device. This may happen through parameters passed

to the device driver module when it is loaded, through autoprobing, or through some other means

such as the Card Services daemon.

In the case of network devices, Linux treats each device as an abstraction defined by adevice

data structure (net devicein kernel version 2.4). This structure1 conventionally referenced through

a pointer asstruct device∗ dev, includes several function pointers as well as some data fields. These

define the API through which the kernel interacts with the device. It is the responsibility of the

device driver to allocate this structure, fill in the function pointers and the data fields appropriately,

and register the device with kernel. A network device usually issues interrupts for two reasons: to

notify the system that it has received a packet, or to notify the system that it has finished transmitting

and is ready for more packets. The device driver must register itself to receive these interrupts and

handle them appropriately. Linux handles all networking packets through an abstraction called a

socket buffer, defined by ask buff data structure. This structure2 conventionally referenced through

a pointer asstruct skbuff ∗skb, contains many data fields specially adapted for networking. The

most important of these, of course, is data, which contains the actual data in the packet. However,

this is not as simple as it seems; thesk buff structure is allocated just once and passed up or down

through all layers,skb->datashrinks as each layer interprets its own header and respective header

so it is still accessible. All this is done through pointer manipulations with a minimum of copying or

reallocation of memory. In between some of these stages, theskbmay be placed on various queues

to await processing, so it also includes links for this purpose. When a device receives a packet, it

issues an interrupt which is serviced by the device driver. The interrupt handler in the device driver

allocates astruct skbuff structure and copies the data into this structure. It then reads the link layer

header to determine which protocol (usually, a network layer protocol) should handle the packet

1The structure is defined in/usr/src/linux/include/linux/netdevice.h
2The structure is defined in/usr/src/linux/include/skbuff.h
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next. It assigns this protocol to theskb->protocolfield, and then it callsnetif rx(skb). Finally the

interrupt handler exits, returning control to the operating system.

9.2 Kernel Modules

One of the useful things about Linux is its use of kernel modules. Kernel modules allow for the

expansion of the kernel code at run time. This means that we can compile individual modules

separately and attach them to the kernel when the system is running, instead of recompiling the

entire kernel.

9.3 Real Time Processes in Linux

The Linux kernel runs at 100 Hz by default in x86 compatible hardware and 1024Hz in Sun.

The 100 Hz clock translates into the clock granularity of 10ms. The coarse granularity creates

problems because WTRP runs much faster than 10ms, and the protocol uses many timers. To

combat this problem, one can increase the granularity of the clock by increasing the HZ value in

/usr/src/linux/asm-i386/param.hand then recompiling the kernel. Increasing the granularity results

in a more responsive system, however the price paid is the additional overhead of processing more

clock interrupts. We have increased the granularity of the clock on P3 500Hz and 700Hz laptops to

2048 Hz. This has resulted in reduced joining and fault recovery time and increased stability of the

token ring.

9.4 Old tale of WaveLAN

Old tale of WaveLAN [22] describes the Kernel and WaveLAN interface before the modification.

Below are small portions of the code that illustrate how the WaveLAN device driver works. The
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wavelan2_cs.c

Figure 9.1: Old Tale of WaveLAN

general idea is necessary to understand the implementation. For details on the implementation,

please refer to the WTRP code. At the initialization of the network device driver, all handlers

are attached to the device. Thedev->hard start transmitreceives packets from the IP layer and the

link->irq.Handlerhandles packets from the network card. Thedev->busyflag is used by the logical

link control to control the flow. Thesk buff is the data structure used by the Linux kernel to pass

the packet up and down the communication protocol stack without memcopying. The interfaces

between the IP and data-link layers, and the data-link layer and the device library use a pointer to

theskbuffas an argument. When sending a packet down the stack, the data field of theskbuff is an

Ethernet packet. When receiving a packet from the network card, the Ethernet header is stripped

off.
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9.4.1 Initialization

Insertion

When WaveLAN card is inserted,PCMCIA Card Servicedetects the type.Card Servicesloads the

device driver modulewavelan2cs.oand callsadapterattach.

Attachment

Functionadapterattachis needed to attach PCMCIA driver. The function createsstruct devlink t

*link andstruct device *dev, sets function pointers, registerslink with Card Services. Function

adapterattachregisters card event handler(adapterevent)with Card Services.

Hooks

These are the hooks that bind WaveLAN card with the OS.

Interrupt Service Requestlink->irq.handler =wvlan2isr

Transmission dev->hard start xmit=wvlan2tx

Control dev->do ioctl = wvlan2 ioctl

Via call toethersetup

Transmission Headerdev->hard header = ethheader

Ditto,After Address Resolutiondev->rebuild header=ethrebuild header

Insertion Redux

Card Servicesnotifies adapter of card insertion event. Functionadaptereventdispatches event

to wvlan insert andwvlan insert sets device IRQ and IO port address, marks device as ready to

transmit, registersdevwith kernel and configures WaveLAN card.
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9.4.2 Transmission

This part describes the packet transmission from network layer to the wireless medium as seen in

Figure 9.1. Packet from the upper layer is sent to the scheduler and then to the device when the

device is ready to transmit.

Network Layer

Network layer creates or modifies packet and callsdev->hard headerto push link layer header

on the packet. Network layer resolves address and callsdev->rebuild headerto correct address.

Network layer callsdevqueuexmit.

Kernel Scheduler

Functiondevqueuexmit puts packet on device queue and callsqdiscwakeupto start queue. Func-

tionqdiscwakeupchecks if device is ready to transmit and callsqdisc restart. Functionqdisc restart

callsdev->hard start xmit that passes the packet to the device driver.

Device Driver

Device Driver controls thedevicestructure, link layer and physical layer. Functionwvlan2 tx does

the following:

1. checks if device is ready to transmit

2. notifies if device is busy transmitting

3. disables interrupts

4. gives packet to card for transmission

5. notifies if device is ready to transmit
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6. enables again the interrupts

The card interrupts in order to notify done transmitting. Functionwvlan2 isr notifies that device is

ready to transmit, marksNET BH and restores interrupts.

9.4.3 Reception

Packet is detected from the card and forwarded to the upper layers. Device Driver gets the packet

from card and cast the packet intoskbstructure and decodes the ethernet header. Kernel scheduler

pulls the packet from the device driver and sends it to the upper layer.

Device Driver

Card interrupts to notify that packet is received. Functionwvlan2 isr calls wvlan2 rx. Function

wvlan2 rx gets packet from card, puts packet into (structsk buff∗skb) and decodes and “pulls” Eth-

ernet header. Functionwvlan2 rx callsnetif rx andnetif rx marksNET BH. After these,wvlan2 isr

restores interrupts.

Bottom Half

Kernel scheduler runs task queues and runs networking task queue (net bh). Functionnet bh runs

pending transmissions, pulls packet off received queue and checks protocol type. Functionnet bh

sends packet to functions registered to handle this protocol type on all devices. Handlers that are

bound to packet socket receive the packet.

Packet distribution to functions registered to handle this type on this device is done bynet bh.

Network layer handlers such asip rcv or arp rcv receive packet.
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Figure 9.2: WTRP Kernel Architecture

9.5 Installing WTRP to Kernel

In the implementation,devstructure is put intoBWOW3 Glue Layer. This layer directs the packets

to the loaded link layer module. In the kernel implementation, both WTRP module and 802.11

module exist. Modular structure allows user to select the preferred MAC layer.

9.5.1 Initialization

Delegation

We modified thewavelan2cs.omodule in the sense that at initialization, it requestsBWOW Glue

Manager Module(bwow.o) and registersBWOWwavelan2setupwith BWOW. adapterattachnow

does not createstruct device∗devand does not set hooks indevsincedevis encapsulated inBWOW

Layer (See Figure 9.2). Instead of these,adapterattachcallsbwowattachdevthat manages the

attachment.

3BWOW stands for Berkeley Web Over Wireless Group
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Attachment

Functionbwowattachdevcreatesstruct device∗devand registersdev->init = bwow init dev. In

the kernel implementation, functionwvlan2 insert does not registerdevstructure with kernel but

bwowattachdevregistersdevwith kernel. After these, kernel callsbwow init dev.

Other thandevstructure,bwowattachdevcreatesstruct bwowchannel∗chand/procfilesystem

entries that enable the user to change the WTRP parameters at run time and observe some statistics.

After these,bwowattachdevcallsBWOWwavelan2setupthat set up the WaveLAN interface.

Hooks

Hooks are set inBWOW Glue Layer. Functionbwow init devcalls bwowresetdevand function

pointers are set as below bybwowresetdev.

Transmission dev->hard start xmit = bwowxmit

Control dev->do ioctl = bwow ioctl

Transmission Headerdev->hard header = bwowheader

Ditto,After Address Resolutiondev->rebuild header= bwowrebuild header

BWOWwavelan2setupsets function pointers as

Transmission ch->HW sendpacket= wvlan2 tx

Control ch->HW ioctl= wvlan2 ioctl

9.5.2 Loading the Protocol

User takes some action in order to load the WTRP. User loads WTRP main protocol modulewtrp.o.

wtrp.omodule initialization registerswtrp rcv with kernel to handle packets of typeETH P WTRP.
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User loads protocol glue modulebwowproto wtrp.o and bwowproto wtrp.o module initializa-

tion registersbwowwtrp init with BWOW. User writeswtrp to /proc/bwow/wavelan0/protocol.

bwowwrite procsetsch->protocoland callsbwowwtrp init.

9.5.3 Initializing the Protocol

Functionbwowwtrp init registersdev, bwowwtrp up to network, andbwowwtrp data transmit

with WTRP. Functionwtrp registercreatesstruct stationstruct *stationand callsinit station, asso-

ciating withdev. bwowwtrp init sets function pointers and creates/proc filesystem entries; State,

Ring Address, Number of Nodes, Max Token Holding Time, Contention Time, Last Token Rotation

Time, Generation Sequence Number, Sequence Number.

9.5.4 Protocol Hooks

The hooks about transmission, reception, and queues are described below.

Reception-ch-LINK rx=bwow wtrp rx

Transmission- ch->LINK xmit=bwowwtrp xmit

Protocol Busy- ch->LINK stopqueue = bwowwtrp stopqueuenotifies that protocol is busy.

Protocol Available- ch->LINK wakequeue = bwowwtrp wakequeuenotifies availability of the

protocol.

9.5.5 Headers on Data Packets

WTRP may push just a standard Ethernet header onto data packets whendev->hard headerpoints

eth headerand after address resolutiondev->rebuild headerpoints eth rebuild header. This is

calledtransparentdata
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WTRP may push its own header onto data packets whench->LINK headerpoints wtrpheader

and after address resolution whench->LINK rebuild headerpointswtrp rebuild header.

9.5.6 Transmission

Into WTRP

Packets coming from upper layer are directed from the BWOW layer to WTRP module. If WTRP

pushes its own data header network layer callsdev->hard headerwhich points tobwowheader

andbwowheadercallsch->LINK headerwhich points towtrp header.

Kernel scheduler callsdev->hard start xmit which points tobwowxmit andbwowxmit calls

ch->LINK xmit which points tobwowwtrp xmit. bwowwtrp xmit calls wtrp data requestand

wtrp data requestcalls tok tx handler. tok tx handler is one of the function from the common

codebase.

Out of WTRP

The created packet inside the WTRP module goes to the hooktransmit. Functiontransmitchecks

whether the device is ready or not. If it is,transmitcallsbwowwtrp data transmit, registered pre-

viously. bwowwtrp data transmitcalls ch->HW sendpacket, which points towvlan2 tx. When

wvlan2 tx starts transmitting, it callsbwownotify hw busy and ch->LINK stopqueueis called

by bwownotify hw busyand it points tobwowwtrp stopqueueandbwowwtrp stopqueuecalls

wtrp notify hw busy.

Completion

When transmission is done,bwownotify hw availableis called and it callsch->LINK wakequeue,

which points tobwowwtrp wakequeue. bwowwtrp wakequeuecalls wtrp notify hw available.

72



wtrp notify hw available queueswtrp bh on the immediate queue and marksIMMEDIATE BH.

Kernel scheduler runs task queues and runs immediate task queue:immediatebh that runswtrp bh

andwtrp bhcallstx donehandler, part of the common codebase.

9.5.7 Reception

When the packet is detected at the card.BWOWlayer gets the packet from the physical layer and

directs it into WTRP module. The packet is processed in the WTRP module and sent back toBWOW

layer. TheBWOWlayer sends it to the upper layers ( See Figure 9.2).

Into WTRP

Functionwvlan2 rx does not decode or pull the Ethernet header, setskb->protocol, or callnetif rx.

Functionwvlan2 rx calls ch->LINK rx, which points tobwowwtrp rx. Ethernet header is de-

coded and pulled bybwowwtrp rx. If the protocol isETH P WTRP, then bwowwtrp rx calls

wtrp data received, otherwise it setsskb->protocoland callsnetif rx andwtrp data receivedcalls

processpacket, part of the common codebase.

Out of WTRP

The packet goes to the hookapp rx from the common codebase andbwowwtrp up to network

registered previously is called byapp rx. bwowwtrp up to networksetsskb->protocol and calls

netif rx function.

9.5.8 Overhead

We used 802.11 WaveLAN Silver card in our implementation. Although the control packets are

broadcast, the data packets are unicast. In the card, when operated in the broadcast mode, RTS/CTS
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__________________________________________________________________

/proc/bwow/wavelan0/processing_time
/proc/bwow/wavelan0/max_num_token_pass_try
/proc/bwow/wavelan0/solicit_successor_prob
/proc/bwow/wavelan0/max_token_holding_time
/proc/bwow/wavelan0/transmission_time
/proc/bwow/wavelan0/max_token_rotation_time

__________________________________________________________________

Figure 9.3: User Defined Parameters

is disabled but it is still active in unicast mode. The overhead that RTS/CTS introduces is examined

closely in Section 10.2.

9.5.9 User Interface

Some of the parameters of WTRP can be seen at run time atprocfile system. User can also change

the MIB parameters of the WTRP at run time by writing to these files. Parameters that user can

change are presented in Figure 9.3. User can change these parameters by writing numerical values

to the files at run time. We discussed these and all the other parameters in Section 4.2. Many of

the parameters used by WTRP describe time intervals. All timer values are measured in jiffies. We

explained this unit of time at Section 9.3.

9.6 Summary

Kernel Implementation is a Linux Link Layer module and uses WTRP as the MAC protocol. Linux

manages the device as modules and they can be loaded and unloaded at run time. Each device is

controlled by thedevicestructure. Linux kernel leavesdevicestructure, Link Layer and Physical

Layer control to the device driver.

In the kernel implementation, we separate thedevicestructure andLink Layerfrom the device

74



driver and WTRP module is implemented into Link Layer as the MAC protocol. ABWOW Glue

Layeris introduced that encapsulates thedevicestructure. Data coming from and going to the device

driver first comes to the BWOW Glue layer and is directed to the WTRP module. WTRP module

then controls the usage of medium by the station.

Kernel implementation creates logs for the station parameters in theproc file system. Each

parameter is represented by a file and MIB parameters can be changed at run time by writing into

them.
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Chapter 10

Analysis

10.1 Proof of Stability

10.1.1 Introduction

We will prove that when transmission losses and topological changes of the graph stop at timet,

and stations do not go into theOFFLINE state voluntarily, then the algorithm will come to a stable

state where all stations cluster into rings at sometimes > t. The following is a brief outline of the

proof.

We first prove that interference is cancelled; after the creation of the first ring only that ring is

allowed to transmit and all equivalent tokens are deleted by multiple token resolution protocol in

finite time. Then, we show that the ring becomes stable in a finite time and finally, we prove that

in one ring the bijection that represents correct relationship between predecessor and successor (see

definitions under Section 10.1.3 for the exact definition) increases monotonically to the maximum

number of nodes in the graph in finite time. When all bijections converge, we say that all rings,

operating in different channels, are correct.
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10.1.2 Model

Constants

1. MTRT: Maximum Token Rotation Time. (Defined more precisely in lemma 10.1.6)

2. M: set of all MAC addresses

3. IDLE TIME: the amount of time that a station waits for token in a ring. IDLETIME≥MTRT

4. CLAIM TOKEN TIME: the amount of time that a station waits before regenerating a token

when the medium is quiescent. CLAIMTOKEN TIME≥IDLE TIME

5. INRING TIME: the amount of time that a station waits when the station is not receiving any

acceptable token, before going into the OFFLINE state. INRINGTIME≥IDLE TIME≥MTRT,

INRING TIME < 2 IDLE TIME

6. MAX NoN: maximum number of nodes that is allowed in a ring.

10.1.3 Graph

1. Definitions

(a) The adjacency graph, G(t), is defined by a set of undirected edges, E(t), and a set of

stations, V(t), at time t.

(b) A station represents a data-link layer of a communication station.

(c) The set of edges, E(t), corresponds to the set of transmission links between stations.

e(x,y)∈E(t), if and only if x is in the transmission range of y, x is in the reception range

of y, y is in the transmission range of x, and y is in the reception range of x; we say x

and y are connected.

(d) |E(t)| - the number of the edges in the graph at time t.
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(e) |V (t)| - the number of the stations in the graph at time t.

2. Assumptions

(a) If station x is in transmission range of station y, then y is also in the transmission range

of x.

(b) If station x is in reception range of station y, then y is also in the reception range of x.

(c) No station hears corrupted messages (The physical layer filters out all corrupted mes-

sages.)

Token

1. Attributes

p.type ∈ {SET PREDECESSOR,SETSUCCESSOR,TOKEN,SOLICITSUCCESSOR}

p.ra ∈ M //ring address of the token

p.sa ∈ M //source address of the token

p.da ∈ M //destination address of the token

p.seq ∈ Z //sequence number of the token

p.genseq ∈ Z //generation sequence number of the token

p.non ∈ Z //number of nodes in the ring of token

2. Definitions

(a) ri(t) = a set of nodes in ring i.

(b) ti(t) = a set of tokens inri(t).

(c) Token x and token y are said to be equivalent when their ring addresses are the same.

78



(d) The priority of the token is as follows: Token x is said to have higher priority than y if

its generation sequence number is higher than y. Given that x has the same generation

sequence number as y, x has higher priority if it has the higher ring address.

(e) In this proof, we often refer to the same token in the future. This is not a cause for con-

fusion since a token does not split into multiple tokens as suggested by our assumption

of no transmission error.

Station

1. Attributes

x.genseq(t)∈Z // the generation sequence number of the last token that x accepted.

x.ra(t) ∈M// ring address of x

x.TS ∈M// the MAC address of x

x.NS(t) ∈M// the MAC address of the station to which x forwards tokens.

x.PS(t) ∈M// the MAC address of the station from which x accepts tokens.

x.non ∈Z // the number of nodes in the ring of station.

2. Definitions

(a) x is said to be the owner of token p if x.TS = p.RA.

(b) The priority of a station is the priority of the token that the station last accepted.

3. Assumptions

(a) The MAC address is unique to each station. x.TS6=y.TS if x6=y
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10.1.4 Network

1. Definitions

(a) Network N(t) is defined by a set of directed edges L(t) and a set of vertices V(t), at time

t.

(b) For station x and y, an edge ps(x,y) exists if and only if x.PS = y, and an edge ns(x.y)

exists if and only if x.NS = y.

(c) Set L(t) corresponds to the set of PS and NS mapping between stations. L(t) ={ps(x,y),

ns(x,y)| for all x in V(t)}

(d) For stations x and y, if x.NS = y, y.PS = x, and if y can receive and accepts NORMAL

tokens from x then, we say that x has the bijection with y.

(e) S ={< x.y > | x has the bijection with y}

(f) A set of stations,ri(t), is called a ring if for all x∈ri(t), x has the bijection with its

successor, y.

10.1.5 Proof

Assumptions

1. No transmission error occurs after t. (All transmissions are successful.)

2. Graph G(t) remains constant after t.

3. Stations do not voluntarily go into the OFFLINE state.

Out-Ring Interference Cancellation

Lemma 10.1.1 When a station hears a transmission from another ring, it suspends its transmission.
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If a station hears a transmission from another ring, it goes to FLOATING or OFFLINE state when

it is in a self-ring or normal ring respectively by the implementation.

Lemma 10.1.2 At timek ≤ CLAIM TOKENTIME, a station detects a ring.

For a station, it takes maximum one MTRT to hear a transmission, if there is a ring in the medium.

If there is no ring, it takes maximum one CLAIMTOKEN TIME to hear a transmission since one

of the stations needs to create a self-ring and transmit the token.

Lemma 10.1.3 If there exists a ring operating in a channel, interference at that channel from the

stations out of the ring is eliminated within a CLAIMTOKENTIME.

From lemma 10.1.1 and 10.1.2, we know that a station detects a ring in a finite time and we know

that when a station detects a ring, it suspends its transmission. As a result, only the ring operating it

that channel is allowed to transmit.

In-Ring Interference Cancellation

Lemma 10.1.4 While a station is not in the OFFLINE state, the priority of the station increases

with time.

A station does not accept a token from another station with a equal or lower priority than that

of itself, by the implementation. Also, when a station generates a token upon expiration of the

IDLE TIMER, the station increases its priority by increasing the generation sequence number by 2.

Lemma 10.1.5 Choose any token p at time t =t0, and build an ordered list of paths taken by p,

say< (x0, t0), (x1, t1), (x2, t2), ..., (xm, tm) >, wheretn is the time that token p visits the station

xn, and ti + 1 > ti. If there exists a stationxi = xj in the pair list such that 0≤i < j≤m and

tj − ti < MTRT , then there must be a k such that i≤k≤j, andxk owns p.
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Assume by contradiction that we findxi = xj such that 0≤i,j≤m andtj − ti < MTRT, but we

cannot find the owner of token p,xk, such that i≤k≤j. This means that the generation sequence

numbers of the token when it arrives atxi and the generation sequence number when it arrives atxj

is the same, because no station other than the owner of the token modifies the generation sequence

number.

Also, xj could not have been in the OFFLINE state at any time afterti, becausexi could not

have been able to rejoin another ring after exiting a ring for one MTRT (or more precisely, exiting

of the OFFLINE state for one MTRT), by the implementation. Because a station is not allowed

to receive a token when it is in the OFFLINE state, it could not have received p before timeti +

MTRT. Thus,xi could not have been in the OFFLINE state since timeti. Because of lemma 10.1.4,

the priority of a station can only increase while it is not in the OFFLINE state and thus, it does not

make sense that token p could have survived stationxj .

Lemma 10.1.6 Token p must have visited a station twice if it survives until time t + MTRT.

We define MTRT to be the maximum time it takes for a token to visit a station twice if it survives,

under our assumption of no transmission errors and no topological change. This cannot be longer

than the amount of time for all stations to transmit, because the token must run out of stations that

it can visit and choose among one of the stations that it has already visited to visit.

Lemma 10.1.7 If no multiple equivalent tokens exist at time t, then no multiple equivalent tokens

exist at time s> t.

Suppose that there exist multiple equivalent tokens at time s when there were no multiple equivalent

tokens at time t, such that s> t. Because of our assumption, it is impossible for a station to generate

multiple equivalent tokens from transmission errors. Then a station must have generated a token

when a token that it has previously generated is still in the graph. But the IDLETIME is greater
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than MTRT. And we know that a token dies when it doesn’t see its owner for MTRT. Thus the station

could not have generated the equivalent token when the token that it has previously generated is still

in the graph.

Lemma 10.1.8 No multiple equivalent tokens exist at time t + 2MTRT.

All surviving equivalent tokens will go though the owner of the token in one MTRT as shown in

10.1.6. After one MTRT, the owner will remember the highest priority token among them. Within

the next MTRT, all or all but one equivalent token will be deleted, because the owner will not pass

any token that has a lower priority than the highest priority token that it received.

If the owner of the token leaves the ring at any time, all tokens will be deleted since the owner

is not able to come back to a ring in less than one MTRT.

Lemma 10.1.9 There exist a time s, such that s< t + MTRT and no multiple equivalent tokens exist

any time u> s.

This directly follows from 10.1.7 and 10.1.8. From 10.1.8, we know that no multiple equivalent

tokens exist at time t + MTRT. This means all multiple equivalent tokens must have been removed

at time s before t + MTRT. From 10.1.7, no multiple equivalent tokens exist at u> s.

Lemma 10.1.10At time s> t, then within s + IDLETIME + 3MTRT, there exists one and only one

token in any ring.

There could be multiple tokens in a ring at time s. Either one and only one of these tokens will

survive or none will survive by time s + 2MTRT. Station y in a ring will only accept a token if it

has higher priority than the last token that it accepted. This means that after one revolution, the

priority of all existing tokens must be increasing in terms of its order of visits to station y. All of

these tokens must visit station y within another MTRT, and will be deleted but one token.
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Even if all tokens get deleted at time u> s, within u + IDLE TIME, there exists at least one

token in the ring. From the bijection, we know that if x has the bijection with y, y must accept tokens

from x. This means that the station that holds the token has the higher priority than its successor. The

only station that is an exception to this rule is the owner of the token, because the owner increments

the generation sequence number by one when it passes the token. The only generation sequence

number assignment that will satisfy these constraints is the following. The generation sequence

number of the stations from the successor of the owner to the station with the token has the same

generation sequence number as the token. The generation sequence number from the successor of

the station with the token to the owner is one less than that of the token. This means that when one

or more stations regenerate token during [u, u + IDLETIME], the generation sequence number of

these tokens will be higher than that of any stations at time s. Because these tokens will be passed

around as a NORMAL token, only the highest priority token will survive within one MTRT, and

lower priority tokens will be deleted.

Stability

Lemma 10.1.11A ring will not break after time t + 2MTRT+INRINGTIME, and the number of

stations in the ring will not decrease.

A station updates its NS pointer when it is unable to pass the token to its successor, leaves

the ring, or receives SETSUCCESSOR. Because each station in a ring has the bijections with its

successor, it does not make sense that it is unable to pass the token to its successor. Thus, no

station will be kicked out of the ring. Also, according to our assumption, a station will not leave the

ring voluntarily. When a station receives the SETSUCCESSOR, the NS pointer of the station will

change. However, the ring will still not break since all contending stations must have a connection

with the successor of the soliciting station, according to our assumption.
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A station updates its PS pointer when it accepts a token from a station different from its prede-

cessor. A station may accept the SETPREDECESSOR token from another station, if the station

has the same ring address, causing the ring to break. This situation cannot possibly arise. A station

in the ring could not possibly have received a token from a station in the same ring that is not its

predecessor since each station in the ring has a bijection with its successor and could not have failed

to pass a token to its successor. Moreover, from our assumption, a station is not allowed to leave the

ring voluntarily and induce its predecessor to generate SETPREDECESSOR.

Now we will show after t + MTRT+ INRINGTIME, a station outside a ring cannot possibly

send a SETPREDECESSOR token to a station inside the ring with the same ring address. Let

us suppose that station y, with the ring address B, receives a token from station w, outside of the

ring. Let us label the predecessor of station y as x. From time t + MTRT on, no more multiple

equivalent tokens exist according to lemma 10.1.9. A station cannot possibly remember a token

that did not exist at time t + MTRT, and at time t + MTRT + INRINGTIME, because a station

must have accepted a token during [t + MTRT, t + MTRT + INRINGTIME] or have formed a self-

ring. Thus, by t + MTRT + INRINGTIME, if a station remembers anything about the token with

a particular ring address, B, it is remembering the same token. If a station receives a token from a

station outside the ring, then the token must have made a loop from station y to w and back to y.

This means that there was a breach in the ring that x and y belongs to, because when a token travels

it makes bijection between the sender and the acceptor of the token. For station x and y to be in the

same ring at time t + MTRT + INRINGTIME, a new token must have been regenerated by a station

in the loop after the token with ring address B has passed them by. But this does not make sense

because y must have received the token with the ring address B within MTRT since the last time it

saw it, and all stations in the loop have seen the token after station y accepted it.
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Ring Enlargement

Lemma 10.1.12 If station x has the bijection with its successor y, then the INRINGTIMER of x

goes off before y.

The fact that x has the bijection with y shows that the last token y accepted was from x. Then x must

have reset its INRINGTIMER before y had. Thus, INRINGTIMER of y cannot go off before x.

Lemma 10.1.13When a station goes out of ring (into the OFFLINE state),|S|, the number of the

bijections, remains positive.

Let us say the predecessor of y is x, and the successor of y is z. When station y goes into the

OFFLINE state, it waits for a invitation without changing its channel and changes when it detects a

token p.non=MAXNoN.

We distinguish the two cases where a station can be kicked out. The first case is when the

INRING TIMER expires (Section 4.3). In this case, from the lemma 10.1.8, x could not have the

bijection with y, because if it did, the INRINGTIMER of x would have gone off before y. In this

case, regardless of whether y had bijection with z or not,|S| will not decrease, because in the worst

cases|S| stays the same if y had the bijection with z. The second case is when y is kicked out

because it is not successful in finding a successor. Again regardless of whether x had the bijection

with y or not, |S| will remain positive, because in the worst case we lose the bijection from x to y,

but x creates a bijection with another node or a self-bijection.

Lemma 10.1.14When the number of bijections is positive, after a station accepts a token some

time after t,|S|, the number of the bijections, monotonic increases.

After accepting a token, station y either goes into the OFFLINE state, or attempts to pass the token

to its successor, or sends the SOLICITSUCCESSOR token.|S| is non-decreasing in the first case
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since the station does not go voluntarily into the OFFLINE state according to our assumption. So

we are left to prove that|S| is non-decreasing in the last two cases where station y attempts to pass

the token to its successor, or sends the SOLICITSUCCESSOR token.

Let us see what happens if y decides to pass the token to its successor, z. If y has the bijection

with z, then it will pass the token successfully and there will be no change in the network. In the

case that y does not have the bijection with z, y will try to find a station to form the bijection with.

If y is not successful within a certain window of time, it will go into the OFFLINE state. And we

have already shown in the lemma 10.1.13, that|S| remains positive. Now Let us consider the case

where y successfully finds a station to form the bijection with. U is the station that y finally forms

the bijection with. W is the predecessor of u, before y became its predecessor. Suppose w had

the bijection with u, before y came along. Then|S| is the same as before because we gained one

bijection from x to u, but lost one from w and u. If there was no bijection from w to u to begin with,

then, we would have gained on|S| by one.

Now Let us see what happens if y decides to sends a SOLICITSUCCESSOR token. If no

station wins the contention, then y will proceed to pass the token to its successor. And we have

already shown in the previous paragraph that|S| does not decrease. If station z wins the contention

and successfully sends the SETSUCCESSOR token, then y now has the bijection with z. Station

z inherits the generation sequence number, the ring address, and the PS pointer from y, allowing

successful establishment of the bijection with w the successor of y. If y did not have the bijection

with w, then|S| will likely stay the same. With any luck,|S| will actually increase by one if w and

z has the same ring address and w does not have a higher priority than z. Otherwise, the result will

be the same as the case where a station tries to pass a token to a successor that it does not have the

bijection with, as discussed in the previous paragraph.

Lemma 10.1.15 |S| monotonically increases and will converge to|V | in a finite time.
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From lemma 10.1.13 and lemma 10.1.14, we have proven that|S| is non-decreasing. We have

also shown in lemma 10.1.11 that a ring will not break nor decrease in size after time t + MTRT

+ INRING TIME. In addition a station will not solicit another station to join unless it sees two

successful token rotations. If there is no topological change, a station will not join a node unless it

is part of a ring. This means that the number of stations in a ring does not decrease.

If |S| 6= |V | at some time s such that s> t + 2MTRT + INRING TIME, there exists a station y

that is waiting to join at time t. Station y waits to join until it hears a token that p.non=MAXNoN,

then it changes the channel. In this case, we gained a full ring in one channel and start to create

another ring in another channel. From lemma 10.1.3, the stations operating in the other channel de-

tects a ring in one CLAIMTOKEN TIME. If the station y accepts a token, allowing another station

to form the bijection with y, then we gain in the size of|S|. Since within every INRINGTIME, the

number of bijection that belongs to a ring, or the number of bijections increase,|S| will converge

to |V | in finite time. When|S| finally converges to|V | at time u> s, using the multiple token

resolution lemma 10.1.14, we know that there exists one and only one token in all rings.

10.1.6 Conclusion

For this proof to be applicable, the assumptions must be reasonable. The assumption of this proof

was that after a certain time t, transmission errors and the topological changes stop. One of the things

that we can hope for when using this kind of assumption is that the algorithm reaches the correct

state fast enough when the assumption holds. However, we found that the protocol, in the worst case,

can take time in the order of magnitude of MTRT. One can argue for the first assumption of fixed

topology by supposing that the rate topology changes will probably be slow compared to the rate of

transmission. The assumption that there will be no transmission errors for the duration in magnitude

of MTRT may be valid when considering the fact that wireless link is a type of transmission error-
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free. This is especially true when there are multiple tokens in the ring, or when there are multiple

rings that run on the different channels.

According to this proof, the IDLETIME can be very large if we are unable to effectively put a

bound on MTRT, because we have a constraint — IDLETIME > MTRT. A large IDLE TIME can

significantly degrade the performance of the network because there will be a long duration before

the network regenerates the token in case of loss of token. One way to get around this is to put an

upper bound on the number of stations that can be in the graph. One solution we adopted based on

this idea is maximum number of nodes and ordered list of channel assignments with the distributed

channel assignment protocol where a station shift to next channel when it detects a full ring.

10.2 Saturation Throughput Analysis

10.2.1 Introduction

In this section, we concentrate on the analytical evaluation of the WTRP with the assumption of

ideal channel conditions and finite number of non-mobile terminals, and all terminals belonging to

a single ring. We propose an extremely simple Markov chain model that allows to compute the

saturation throughput performance of WTRP. The key approximation that enables our model is the

assumption of formed-ring, which means that every node in the medium belongs to a single ring

and WTRP works in saturation operating conditions. We followed the approach that is presented in

[11], [14] for saturation throughput analysis for IEEE 802.11.

10.2.2 Model

We present the analytical evaluation of the “Saturation Throughput”. This performance figure is

defined as the limit reached by the system throughput as the offered load increases, and represents

the maximum load that the system can carry in stable conditions [11]. In the analysis, we operate in
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Figure 10.1: Markov Chain model for the Saturation Flow of WTRP.

saturationconditions (See Section 5.3.2), i.e., the transmission queue of each station is assumed to

be always nonempty.

The analysis of studying single station with a Markov model and obtaining the stationary prob-

ability β that the station transmits a packet in a slot time is enough to express throughput of the ring

since when that station has the token the others suspend transmitting (See Figure 3.5).

Consider a fixed number,N , stations in the ring. In saturation conditions, each station has

immediately a packet available for transmission, after the completion of each successful transmis-

sion. Unlike the 802.11, consecutive packets need not to wait for a random backoff time before

transmitting.

Let c(t) be the stochastic process representing the time counter for a given station. A discrete

and integer time scale is adopted:t andt + 1 correspond to the beginning of two consecutive slot

times. Note that this discrete time scale does not directly relate to the system time. In fact, as

illustrated in Figure 10.1, one jiffy is adopted as a slot time sizej since it may include the token
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transmission. Since the value of the token rotation time of the ring depends also on token holding

time and token passing time, for convenience letI, R, H be “Idle Time”, “Maximum Token Rotation

Time”, “Token Holding Time” respectively such thatT0 = I = R − H − 1, T1 = H, T2 = 1.

Token passing time is taken as one slot time. We adopt the notation wherei ∈ (0, 2) is called “state”

asidle state ,havetokenstate andmonitoringstate respectively. Lets(t) be the stochastic process

representing the state(0, 1, 2) of the station at timet.

The key approximation in our model is that there is no station outside the ring and only one

ring. It is intuitive that this assumption results in more accurate results as long as there is no station

waiting to join or leave the ring and as a result, the possible interference from a station is eliminated.

It is possible to model the two-dimensional processs(t), c(t) with the discrete-time Markov

chain depicted in Figure 10.1. In this Markov chain, the only non-null one-step transition probabil-

ities are





P{i, k|i, k − 1} = 1, k ∈ (0, Ti)

P{i, 0|i− 1, k} = 1, k = Ti

P{0, 0|2, 0} = 1

(10.1)

The first equation in (10.1) accounts for the fact that, at the beginning of each slot time, the time

counter is incremented. In particular, as considered in the second and third equation of (10.1), when

timer expires, the protocol changes its state.

Let bi,k = limt→∞P{s(t) = i, c(t) = k}, i ∈ (0, 2), k ∈ (0, Ti) be the stationary distribution

of the chain. We now show that it is easy to obtain the closed form solution for this Markov chain.

First note that at

bi−1,0 = bi,0 = b0,0 i ∈ (0, 2) (10.2)
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Owing to the chain regularities, for eachk ∈ (0, Ti),it is

bi,k =
1

(I + H + 1)
i ∈ (0, 2), k ∈ (0, Ti − 1) (10.3)

Thus, by relation (10.2), all the valuesbi,k are expressed as functions of the valueb0,0 which is

b0,0 =
1
M

(10.4)

We can now express the probabilityβ that a station transmits data in a randomly chosen slot

time. As any transmission occurs when thes(t) = 1, regardless of the counter.

β =
H∑

k=1

b1,k = H × b0,0 =
H

M
(10.5)

However, in general,β depends on the packet size which sometimes affects unused slots in its

have token state because the remaining time is not enough to send a new packet. The assumption

we adopt is that packet transmission time is a multiple of the token holding time,H. And β prob-

ability only involved in fraction of time that the station is transmitting data bits. The packet firing

probability is the probability that the station is in state(1, k) k ∈ (0,K) whereK is the number of

packets that can be transmitted in one token holding time.

10.2.3 Throughput

Let S be the normalized system throughput, defined as the fraction of time the channel is used to

the number of successfully transmitted payload bits. To computeS, let us analyze what can happen

in a randomly chosen slot time. LetPtr be the probability that there is at least one transmission in

the considered slot time. SinceN stations are in the ring, and only one station has right to transmit,

the station transmits data with probability
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Ptr =
β

β + 1
M

(10.6)

Let Pf is the probability that station starts firing a packet in the chosen slot time.

Pf =
K
M

β + 1
M

(10.7)

The probabilityPs that a transmission occurring on the channel is successful is given by the

probability that exactly one station transmits on the channel, conditioned on the fact that at least one

station transmits, i.e.,

Ps = 1 (10.8)

We are now able to expressS as the ratio

S =
E[payload information transmitted when holding the token]

E[length of time]
(10.9)

SinceE[P ] is the average packet payload size, the average amount of payload information

successfully transmitted in a slot time isPfPsE[P ], since a successful transmission occurs in a slot

time with probabilityPfPs. The average length of a slot time is readily obtained considering that,

with probability1− Ptr, the slot time is for token transmission; with probabilityPfPs it contains a

successful transmission, and with probabilityPf (1−Ps) it contains a collision. Hence, (8) becomes

S =
PsPfE[P ]

(1− Ptr)j + PfPsTs + Pf (1− Ps)Tc
(10.10)

Here,Ts is the average time the channel is sensed busy because of a successful transmission,

andTc is the average time the channel is sensed busy by each station during a collision.j is the
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duration of an empty slot time andK is the number of packets a station can transmit during a token

holding time.

Let us first consider a system completely that is managed via the basic access mechanism.

Let H = PHYadr + MAChdr be the packet header, andδ be the propagation delay. As shown

in Figure 10.2, in the implementation (since we implemented on top of 802.11 card and when

broadcasted WaveLAN card operates in basic access mode by disabling RTS/CTS mechanism) and

general WTRP case we obtain





T imp
s = RTS + SIFS + δ + CTS + δ + H + E[P ] + SIFS + δ + ACK + DIFS + δ

T gen
s = H + E[P ]

T imp
c = 0 = T gen

c

(10.11)

The values of the parameters used to obtain numerical results are summarized in Table I. The

system values are those specified for the frequency hopping spread spectrum (FHSS) PHY layer

[26]. The channel bit rate is assumed to be equal to 1 Mbits. This rate is lower than that of wireless

card we used for simulation. This is to compare our result with that of 802.11 presented in [11].

Packet payload size of 8184 bits is considered, which takes one token holding time and that means
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WTRP works in saturation state and when it gets a token if has only one packet to transmit (K = 1).

packet payload 8184bits
MAC header 272 bits
PHY header 128 bits
ACK 112 bits + PHY header
RTS 160 bits + PHY header
CTS 112 bits + PHY header
Channel Bit Rate 1 Mbit/s
Propagation Delay 1 µs
WTRP Slot Time 488µs
802.11 Slot Time 50µs
SIFS 28µs
DIFS 128µs
H 17
M N ∗ (H + 1)

Table 10.1: FHSS System Parameters and Additional Parameters Used to Obtain Numerical Results

Figure 10.31 shows that the analytical results practically coincide with the intuitive results.

WTRP performance is analytically unaffected because unlike the 802.11,Ptr does not dependN .

This is the property of WTRP that synchronizes the stations and allow only one station to transmit

one at a time. On the other hand, 802.11 has collision probability. The figure 802.11 basic represents

the situation when the RTS/CTS mechanism is off. When there is a collision in the basic access, the

whole packet is lost and more time for collision is wasted compared to the RTS/CTS mechanism

where only RTS packet is collided. At a first glance, it might seem that the throughput performance

of the WTRP does not depend on the number of stations. In fact, there is a tradeoff between token

holding time and maximum rotation time. In the analysis, we keep the token holding time constant

and increased the maximum token rotation time that enable a station to transmit the packet even if

the number of stations increase.

Theoretically, this does not affect the performance, but in reality, if there is a failure to transmit

at the first time, or if it exits the ring, the station waits longer and this decreases the performance.

1802.11 values taken from the proof presented in [11], The details of the proof can be found there.
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On the other hand, if we keep the maximum token rotation time constant and decrease the token

holding time, the ring will be as responsive as before while number of stations increases but the

station capacity decreases because ratio of payload bits over transmitted bits will decrease.

10.2.4 Conclusion

We presented a simple analytical model to compute the saturation throughput performance of the

WTRP. Our model assumes a constant Token Holding Time even if the number of stations increases.

This results in a constant throughput for WTRP even as the number of stations increases in the

medium. The better performance is achieved because WTRP eliminates the collision probability by

sharing the slots among the stations and collision probability increases in IEEE 802.11 when the

number of active stations increases.

10.3 Summary

We proved that when transmission losses and topological changes of the graph stop at time t, and

stations do not go into theOFFLINE state voluntarily, then the algorithm will come to a stable state

in which all stations will belong to a ring at times > t. We also proved using a simple Markov

model that in a stable environment, when the station operates in thesaturationconditions, increase

in the network size does not degrade WTRP performance since spectrum usage is fixed and collision

probability is zero.
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Chapter 11

Performance Analysis

11.1 Performance Analysis

We aim to show the effectiveness of WTRP in terms of “bound on latency”, where each station gets

right to transmit in a fixed time, “fairness”, where each station consumes equal amount of band-

width, “robustness”, where ring recovers from node failures without collapsing, “responsiveness”,

where ring responses fast enough to medium changes and “medium utilization” where ring utilize

the capacity of the channel at maximum. Performance of WTRP is analyzed for Constant Bit Rate

(CBR) and FTP traffic.

11.1.1 Scenario

The testbed is constructed by the laptop computers ( 2 Dell Inspiron 5000, 1 Dell Inspiron 8000,

6 Dell Latitude C600). Network structure is shown in Figure 11.1.Si , i ∈ (0, 7) use Lucent

WaveLAN Silver Cards (2Mbit/s), andL1, L2 have Lucent Orinoco Gold Cards(11 Mbit/s). In the

scenario,Si andLi are called “Sender” and “Listener” respectively. Listeners always use 802.11 as

the MAC protocol and senders use WTRP or 802.11. LetterN represent senders and one listener
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Figure 11.1: Simulation Scenario

is assigned for each 3 sender. We choose this scenario in order to eliminate the overhead that is

introduced because of 802.11 protocol embedded to the WaveLAN card (See Section 9.5.8).

11.1.2 Optimum Operating Frequency

WTRP performs better in certain situations because of its deterministic property. We analyzed the

performance of WTRP under variable packet rate and packet size. For Figures 11.2 and 11.3, under

a constant packet size (100bytes) and we changed the packet generation rate. One can see from

Figures 11.2 and 11.3 that WTRP performs better than the 802.11 when the packet inter arrival time

is around MTRT. In the high loaded region where packet generating rate is less than MTRT, WTRP

shows fluctuations because of its fixed THT and packet queue size. In the scenario, THT only allows

a node to transmit one or two packets. This fills the buffer and consequently, stops the upper layer
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with logical link control. These cause delay and degrades the performance. Peaks in the figures

indicate that node transmits more packets than normal in a short period.

Around MTRT, WTRP only sends one packet and one token and performance improvement

compared to 802.11 comes from zero collision probability. On the other hand, 802.11 suffers from

collision. When the 802.11 node detects a collision, it backoffs and waits for the backoff time. In

the low overloaded region, when the packet generating time is bigger than 75ms, WTRP and 802.11

performance are almost exactly the same because the collision probability is reduced with the rare

medium access.

We also tested the protocol under variable packet size as seen in Figures 11.4 and 11.5. Under

constant packet generation rate which is equal to one MTRT, we increased the packet size. WTRP

performance stayed constant as expected but 802.11 showed slightly unstable behavior with the

increase in packet size. This is because, packets large in size occupy the channel for longer time,

and the station in backoff stage samples and senses the channel. In these sampling times, station
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may have chance to detect empty channel even if the channel is not empty since packet inter arrival

time is longer than the sensing time.

11.1.3 Bound on Latency

From Figures 11.6 and 11.7, one can see that token rotation time distribution shows almost zero

variance when THT is set to 1.5ms. This means that every station gets chance to transmit in a

specific bounden time. Token rotation time increases less than one token holding time when a new

node is added and variance still remains close to zero that means that increase in network size does

not cause instability to WTRP.

Latency measurement can also be observed by examining the jitter of packet arrivals. Fig-

ure 11.8 shows the distribution of packet inter-arrivals of the listener when there are 3 senders. Each

sender sends 100bytes in every 50ms and MTRT is set to 50ms. Distribution shows that distribution

is dense at 50ms even if there is overhead of 802.11 Card in terms of introducing backoff interval.
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11.1.4 Robustness and Responsiveness

Recovery from a node failure is our robustness measure. Ring should not collapse when a node

leaves or stops. In the same way, ring should add a joining node in a stable way. When there are 5

nodes in the medium and one of them turns on and off WTRP every second, from upper graph of

Figure 11.9 where “ . ” representssolicit successortoken, one can see that WTRP handles leaving

and joining in a robust way since number of nodes in the ring never drops below 4. Lower graph of

Figure 11.9 is a trace of ring formation when all 5 nodes turn on at the same time. Number of nodes

in the ring is monotonically increasing and reaches maximum.

Responsiveness of the system can also be observed in Figure 11.9. WTRP is responsive to

single node failures and recovers quickly. The responsiveness of the system could be increased by

reducing the latency caused by the token ring protocol computation or using a wireless network

interface card with a higher bandwidth.
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Figure 11.9: Robustness and Responsiveness

11.1.5 Fairness

WTRP provides fairness in terms of equal amount of channel usage. On the other hand, 802.11,

suffers from fairness since the station that made the last successful transition is favored [12]. We

observed the instantaneous throughput when there are 3 senders and 1 listener, and packet size

and generation rate is 100bytes and 50ms respectively. First graph of Figure 11.10 is the WTRP

trace. One can see that each of three stations almost has the same throughput, which is constant

throughout the observation. One of the stations is suspended by the others in 802.11 where it is

represented in the second graph of Figure 11.10. We tested the scenario many times and starting

times of transmission is randomly chosen in order to include performance results of movement since

nodes may come early or late to the medium. Third graph shows the distribution of the standard

deviation of instantaneous throughputs . Increase in the deviation means increase in the unfairness

and deviation of WTRP is closer to zero than that of 802.11. Upper graph of Figure 11.9 also points
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to the fairness behavior of WTRP since even if a station comes late, station gets immediate right to

transmit when it belongs to the ring.

11.1.6 Network Size

In a wireless network without proper organization, each node causes an increase in collision proba-

bility. As a result, network size matters to protocols that suffer from collision such as 802.11. We

increase the number of nodes in the network and each node sends 100bytes with 50ms packet gen-

eration rate. As it can be inferred from the Figure 11.11, WTRP performs better than 802.11 and the

performance difference increases as the network grows in size. We expect higher difference, when

the WTRP is implemented on top of a card that does not use 802.11 protocol. Test is also performed

with Poisson packet generation rate when the parameter is 50ms. Results show that throughput is

higher in WTRP than 802.11 but difference of their performance varies. Since Poisson behavior
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does not affect WTRP but affects 802.11 positively or negatively.

Under heavy load, the token ring implementation performs better than IEEE 802.11. This is

shown in Figure 11.12. In the figure, the aggregate FTP bandwidth is plotted against the number of

simultaneous FTP transfers. Both cases involved number of nodes equal to the number of simulta-

neous FTP transfers. The FTP was done as follows. For the case of two simultaneous transfers, one

transfer goes from station 1 to station 2 and the other from station 2 to station 1. For the case of

three simultaneous transfers, the transfers are from 1 to 2, from 2 to 3, and from 3 to 1.

In Figure 11.8, we observed a decrease following a increase in IEEE802.11. The decrease in the

throughput is expected since the number of collisions increases in a CSMA medium access control

and after the saturation point, performance of IEEE802.11 degrades [14].

The performance intuitively should be constant in Wireless Token Ring case but improves in

the simulation when going from 1 to 3 simultaneous transfers. This can be explained as follows.

Since for all trials in Figure 11.8, theMaximum Token Rotation Timevaries, the nodes can not

operate at saturation point with few nodes in the network. As a result, the nodes can not use all of

the capacity. The need for retransmission of the data due to collisions is eliminated since WTRP

reduces collisions.

11.2 Summary

WTRP in its current implementation is disadvantaged relative to the original 802.11 driver because

WTRP is implemented on top of 802.11 in DCF mode, incurring all the overhead that is associated

with 802.11 plus the overhead from the WTRP. The overhead is the increased computation time and

packet header size.

We observe that WTRP has optimum operating condition when the packet generation rate is

equal to the token rotation time and as long as token holding time is enough , increase in packet size
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does not affect its performance. WTRP responses in a quick and robust way to the possible results

of mobility. We find that WTRP achieves bounded delay and distributes bandwidth fairly among the

stations compared to 802.11. Finally, since collision is affectively reduced, WTRP is not affected

from the network size as long as each station use their THT at maximum.
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Chapter 12

System Extensions

12.1 Introduction

WTRP is a new research topic and can be extended in various ways. In this chapter, we introduce

possible extensions to the WTRP and cite design issues left open.

12.2 Hybrid Schemes

Hybrid Schemes (See Figure 12.1) are the schemes where the centralized approach that uses the star

topology and the distributed approach that uses the ring topology are hierarchically mixed together.

All slave nodes need to have a connection with the master and master nodes are connected to each

other via WTRP. Packets are routed one-hop to the master with centralized protocol, multi-hop

with WTRP to the master of the destination and finally, one-hop to the destination with centralized

protocol.
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12.3 Token Chain

Token chain (See Figure 12.1) creates the ring by bi-directional token passing. Token coming from

the predecessor is passed to the successor and token coming from the successor is passed to the

predecessor. The nodes at the edges have the same station as the predecessor and the successor.

A station gets right to transmit twice in one token rotation and consumes fixed amount of time in

total. In these structure, it is advantageous to communicate with only one node for the joining node

to become a ring member. However this is disadvantageous for the ring since permission to send

invitation belongs to the edge nodes now. The joining advantage leads to a ring that can be formed

in a wide area. These kind of network structures is suitable where the node distribution among the

area is rare.

12.4 Sensor Networks

Sensor networks is a special kind of network where the destination of all packets is the access

point to the backbone network. We can use token ring or token chain in sensor networks where low

performance is enough. All the nodes will belong to one ring and only one node will be transmitting

at a time. The energy consumption at the nodes can be decreased by putting nodes into sleep while

they do not have the token since the nodes predict their possible token reception time by considering

the number of nodes in the ring and token holding time of each node. Each node stores the data

packets coming from its predecessor and transmits all the packet to its successor. Access point may

also involve in multiple rings and may schedule giving right to transmit each ring by transmitting

the token in order.
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12.5 Data Forwarding

WTRP clusters stations into multiple rings. Different channels are assigned to different rings in

order to avoid interference. There are several possibilities for the routing scheme. We will introduce

one of them in which connected network can be created by “gateway” nodes that belong to two rings,

one of them is its own ring and the other is the ring that “gateway” nodes create, named “backbone

ring”. Routing is divided into intra-ring routing, routing between nodes that belong to the same ring

and inter-ring routing, routing between gateway nodes. Gateway node keeps the information of the

nodes. If the destination nodes belongs to another ring, packets are forwarded to the gateway node

and gateway node forwards it to its successor in the backbone ring (See Figure 12.1). When the

gateway node of the destination gets the packet, it sends them to the destination. Backbone ring can

also be formed with token chain.

12.6 Extension to Mobile IP

Mobile IP has been designed within the IETF to serve the needs of the increasing population of mo-

bile computer users who wish to connect to the Internet and maintain communications as they move

from place to place. WTRP provides efficient bandwidth share to the users and provides solutions

to the early detection of attachment points and movement detection of mobile node problems. Both

problems brings concerns in Mobile IP research in order to decrease hand-off time.

In the Mobile IP design with WTRP (See Figure 12.1), resource information can be injected to

the token signal. This token may also contain thecare of addressof the attachment point, which

enables the mobile node to detect the attachment point early without waiting for beacon signals. As

a result, the time that takes for a node to communicate with the base station is equal to the time to get

into the ring. When the mobile node lost the connectivity to the attachment point, attachment point
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can easily detect the movement by checking its connectivity table and execute a smooth hand-off

algorithm. Papers show that hand-off time in Mobile IP is dominated by the beacon period of the

attachment points [17]. Designing Mobile IP with WTRP may eliminate the beacon necessity and

inject beacon information to the periodic token signal.

12.7 Multimedia

Nodes in a ring may access different kind of resources. Resources can range from printer to an

internet access. The resource information can be conveyed by injecting to the token. If a mobile

node requires a resource, it searches for a ring that has the appropriate resource. As an analogy,

WTRP and IEEE 802.11 can be thought as ”Guest enters the appropriate house by checking the

name tag on the door and finds the right house” and ”Guest enters the appropriate house by entering

each house and asking the person to the households” respectively.

12.8 Summary

We presented the possible extensions to the WTRP. WTRP idea is suitable for many wireless net-

works. Networks can leverage token passing identity to use as an information carrier and WTRP is

compatible to work in a hierarchy with other MAC layer protocols.
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Chapter 13

Conclusion

WTRP is inspired from IEEE802.4 token bus protocol. The development of IEEE802.4 was initiated

by people from General Motors and other companies interested in factory automation [16][25].

Features such as bounded latency and robustness against multiple node failures are some of the

reasons for this choice. In addition to bringing the same bounded latency and robustness features to

the wireless medium, WTRP also manages ad hoc topologies.

We deployed the WTRP idea in three implementations: Simulator, User-Space and Kernel Im-

plementations. We created a sharable library and functions that enable the implementations use

the library. Simulator implementation is a simulation tool for WTRP and extendable to any other

network module. It provides interfaces to simulate the implementation code in large wireless net-

works. User-Space implementation is a platform independent implementation in application layer.

This implementation is useful under a controlled application environment when utilized on top of

an arbitrary network interface card. Kernel implementation is a Linux link layer module built on

top of the IEEE802.11 in DCF mode. It incurs all the overhead that is associated with IEEE802.11.

Despite the overhead, we have found that WTRP performs well or even better under heavy load.

We have designed a protocol that is fast in terms of recovery and efficient with zero collision
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probability. The consistency of the token rotation time, regardless of the number of simultaneous

transmissions, is key to bounding the medium access latency. This perhaps is a valuable support for

real time applications, emergency management, and automated highway systems.
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