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Abstract

Contributions to Directional Statistics Based Clustering Methods

by

Brian Dru Wainwright

Statistical tools like the finite mixture models and model-based clustering have been used
extensively in many fields such as natural language processing and genomic research to inves-
tigate everything from copyright infringement to unraveling the mysteries of the evolutionary
process. In model-based clustering, the samples are assumed to be realizations of a mixture
distribution consisting of one or more mixture components, and the model attempts to discern
what this original model is, given the observed data. In our investigation we explore directional
distributions on the circle, the sphere, and the hypersphere, where the component distributions
are themselves respectively the von Mises distributions in 2-dimensions, the von Mises-Fisher
distributions in 3-dimensions, and p-dimensional von Mises-Fisher distributions for large p. In
each case, the observations lie on the circle, the unit-sphere, or the hypersphere Sp−1 embed-
ded in ℝp, due to the inherent structure of the data, or by normalizing the curves. We look
specifically at clustering curves around the unit circle S1, treating them first as mixture distri-
butions, and in an alternate approach, as functional data that can be explored via their Fourier
coefficients. We also investigate clustering high-dimensional, extremely sparse textual data, by
looking at twitter data from the day of the 2016 United States presidential election as document
vectors on the unit hypersphere. Finally, we introduce and discuss a broad family of spherical
distributions that we call the “Generalized Fisher-Bingham family," and present details of a
software package that we developed to simulate and visualize members of this family.
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Chapter 1

Introduction

1.1 Overview of Directional Statistics

In many scientific disciplines, when researchers are collecting data, that data comes in the
form of directions, or unit vectors, in either the plane (for 2-dimensional data), the sphere (for
3-dimensional data), or the hypersphere for dimension greater than 3. Directional statistics
is the study and development of statistical theory and methodology used to analyze and draw
inference from such data. It may be that an ornithologist is interested in flight directions of some
species of bird, as it leaves a particular area. Or perhaps, it is the geologist who is researching
the movement of the earth’s magnetic poles, or the astronomer tracking heavenly bodies as they
make their way across the sky. All of these investigations generate data that can be considered
directional, and we need appropriate tools to extract any real meaning, as well as to quantify
the uncertainty of both the observations and the conclusions.

Unlike much of the linear analogues, directional data requires special treatment due to the
unique constructs and features. As an example, the 2-dimensional observation on the unit circle
can be represented as a unit vector, or simply as an angle, but neither representation is neces-
sarily unique, as both depend on the selection of some appropriate zero from which to measure,
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Introduction Chapter 1

as well as the orientation of rotation [1]. Similarly points on the unit sphere (or hypersphere)
can be described in terms of two (or more) angles or as appropriately dimensioned unit vec-
tors, and are equally dependent on the choice of the zero-direction and sense of rotation. All
of this is to say, that much care must be taken when measuring distance between directional
observations, and distance or similarity between directional distributions. In this dissertation,
we will explore these ideas of distance and similarity between directional data and directional
distributions, with the goal of finding effective measures to group or cluster such observations
or curves defined on these spaces.

1.2 What to expect

In Chapter 2, we look at clustering curves around the unit circle. These curves are modeled
as mixtures of von Mises (vM) distributions, and the measures we look at are the L2 distance
and at the standard as well as symmetric variants of the Kullback-Liebler (KL) divergence.
We provide a visual comparison of the L2 and symmetric KL-divergence in Section 2.2.3, and
compare their performance by looking at simulated data in Section 2.4. Section 2.5 concludes
the chapter by taking a real data example where no ground truth is known, and compare the
clusters so obtained by looking at clustering agreement between the two methods, via various
ultrametric measures of the induced hierarchies.

In Chapter 3 we look at clustering curves about the unit circle through the functional data
lens. In this chapter, curves around the circle are given a functional representation, and a func-
tional clustering algorithm named FUNfem [2] is used, after appropriate tuning parameter selec-
tion. We compare the resultant clustering corresponding to different tuning parameters, against
those generated by our L2 and symmetric KL-divergence Chapter 2, via the adjusted Rand
index. We also compare the clustering hierarchies induced by implementing a functional Ma-
halanobis distance as well as the more traditional multivariate Mahalanobis distance, with those

2



Introduction Chapter 1

obtained in the earlier Chapter 2 using distance and divergence measures.
In Chapter 4, we look at clustering high-dimensional observations on the unit hypersphere,

where the data is vectorized textual data normalized to unit length. We illustrate the ideas by
using Twitter data (tweets) collected on November 8th, 2016 regarding the US presidential elec-
tion, where relevance is established by restricting to documents that satisfy a range of keywords
associated with the election. We compare theL2 and symmetric KL-divergence measures, after
appropriate generalizations of the lower dimensional case.

Chapter 5 is in a slightly different spirit compared to the rest of this dissertation. It describes
a broad family of spherical distributions, called the “Generalized Fisher-Bingham" family, and
develops a a MATLAB package 3D-Simulation-Visualization [3], that helps in the simulation
and visualization of these spherical distributions. This package is in support of the theoretical
work [4]. In this chapter, we give the details, algorithms, and examples for simulating and vi-
sualizing spherical distributions from this Generalized Fisher-Bingham family of distributions.
Also highlighted are new and improved methods for simulation and visualization of spherical
data and models, which includes a 3-dimensional analogue of the classical rose diagram for
circular data.

3



Chapter 2

Clustering Curves around the Unit Circle

2.1 Introduction

The von Mises (vM) distribution, also known as the Circular Normal (CN) distribution, is
one of the most commonly used models for circular data, and has the density function,

f (�;�, �) = e� cos(�−�)

2�I0(�)
, 0 ≤ � < 2�

where Ip(�) is the modified Bessel function of the first kind, and order p, and 0 ≤ � < 2� and
� ≥ 0 are the mean direction and concentration parameter respectively. Although this distribu-
tion is unimodal, an appropriate mixture of such distributions can be used to model curves with
multiple peaks. Indeed, similar to a corresponding result on the real line which says that any
probability distribution on the real line can be approximated by a countable mixture of Normal
distributions (see references [5],[6]), one can use a countable mixture of vM distributions to
approximate any probability distribution on the circle.

Given that each curve can be approximated by such a mixture, the task of clustering these
curves becomes one of defining an appropriate “distance" or a “divergence measure" between

4



Clustering Curves around the Unit Circle Chapter 2

any two curves. To that end, as a fist step, we consider such distance or divergence measures
between any two vM models in the next section.

2.2 Measures of distance and divergence between two vM

models

In this section, we describe two different measures to find the dissimilarity between two
such vM models, one an actual L2 distance, and the other, a measure based on symmetrized
Kullback-Liebler divergence. We show later on, that either of these measures provides a good
tool to cluster curves around a circle, and that they yield very similar results. We start with the
following useful basic result.

Lemma 2.2.1. For any two vM distributions f ∼ vM(�1, �1) and g ∼ vM(�2, �2),

∫

2�

0
f (�)g(�)d� =

I0(�)
2�I0(�1)I0(�2)

(2.1)

where

� =
√

�21 + �
2
2 + 2�1�2 cos(�1 − �2) (2.2)

Proof:

∫

2�

0
f (�)g(�)d� = 1

2�I0(�1)I0(�2) ∫

2�

0
e�1 cos(�−�1)+�2 cos(�−�2)d�

= 1
2�I0(�1)I0(�2) ∫

2�

0
e(�1 cos�1+�2 cos�2) cos �+(�1 sin�1+�2 sin�2) sin �d�

= 1
2�I0(�1)I0(�2) ∫

2�

0
eA cos �+B sin �d�

5
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where

A = �1 cos�1 + �2 cos�2

B = �1 sin�1 + �2 sin�2.

Rewriting A = � cos�, B = � sin�, where

� = arctan B
A

and

�2 = A2 + B2

= �21 cos
2 �1 + �22 cos

2 �2 + 2�1�2 cos�1 cos�2

+ �21 sin
2 �1 + �22 sin

2 �2 + 2�1�2 sin�1 sin�2

= �21 + �
2
2 + 2�1�2 cos(�1 − �2),

we have

∫

2�

0
f (�)g(�)d� = 1

2�I0(�1)I0(�2) ∫

2�

0
e� cos� cos �+� sin� sin �d�

= 1
2�I0(�1)I0(�2) ∫

2�

0
e� cos(�−�)d�

=
I0(�)

2�I0(�1)I0(�2)

proving the result.
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2.2.1 L2 distance between two vM models

Using Lemma 2.2.1, the L2 distance between any two vM distributions is obtained in the
following,

Proposition 2.2.1. For any two vM distributions f ∼ vM(�1, �1) and g ∼ vM(�2, �2), the L2

distance is given by

L2(f, g) =
1
2�

(

I0(2�1)
I0(�1)2

+
I0(2�2)
I0(�2)2

−
2I0(�)

I0(�1)I0(�2)

)

(2.3)

where � is defined as in Equation 2.2.

Proof: By Lemma 2.2.1,

∫

2�

0
f 2(�)d� =

I0(
√

�21 + �
2
1 + 2�1�1 cos(�1 − �1))

2�I0(�1)I0(�1)

=
I0(2�1)

2�(I0(�1))2
,

and similarly

∫

2�

0
g2(�)d� =

I0(2�2)
2�(I0(�2))2

.

Thus,

L2(f, g) = ∫

2�

0
(f (�) − g(�))2d�

= ∫

2�

0
f 2(�)d� + ∫

2�

0
g2(�)d� − 2∫

2�

0
f (�)g(�)d�

= 1
2�

(

I0(2�1)
(I0(�1))2

+
I0(2�2)
(I0(�2))2

−
2I0(�)

I0(�1)I0(�2)

)

giving us the desired result.
7
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2.2.2 Kullback-Liebler (KL) divergence between two vM models and its

symmetric version

Kullback-Liebler (KL) divergence between two vM models

Before considering the symmetrized version of KL divergence, we first look at the closed
form solution to the standard KL divergence between any two vM models.

Proposition 2.2.2. For any two vM distributions f ∼ vM(�1, �1) and g ∼ vM(�2, �2), the

Kullback-Liebler divergence measure is given by,

KL(f, g) = log I0(�2) − log I0(�1) + �1A(�1) − �2 cos(�1 − �2)A(�1)

whereA(�) is the ratio of modified Bessel functions of the first kind, given byA(�) = I1(�)∕I0(�).

Proof: Let f (�;�1, �1) and g(�;�2, �2) be two independent vM distributions. Then the
KL divergence between f and g is given by,

KL(f, g) = ∫

2�

0
log

(

f (�)
g(�)

)

f (�) d�

= ∫

2�

0

(

log
(

I0(�2)
)

− log
(

I0(�1)
)

+ �1 cos(� − �1) − �2 cos(� − �2)
) e�1 cos(�−�1)

2�I0(�1)
d�

= log
(

I0(�2)
)

− log
(

I0(�1)
)

+ �1
I1(�1)
I0(�1)

− �2 ∫

2�

0
cos(� − �2)

e�1 cos(�−�1)

2�I0(�1)
d�.

Writing the integrand in the last term as,

cos(� − �2) = cos(� − �1 + �1 − �2)

= cos(� − �1) cos(�1 − �2) − sin(� − �1) sin(�1 − �2)

8
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and using the relations (see e.g. Jammalamadaka and SenGupta (2003), p.36),

1
2� ∫

2�

0
cos(p�) exp(� cos �) d� = Ip(�) and 1

2� ∫

2�

0
sin(n�) exp(� cos �) d� = 0,

the last term gives us

− �2 ∫

2�

0
cos(� − �2)

e�1 cos(�−�1)

2�I0(�1)
d�

= −�2 ∫

2�

0

[

cos(�1 − �2) cos(� − �1) − sin(�1 − �2) sin(� − �1)
] e�1 cos(�−�1)

2�I0(�1)
d�

= −�2 cos(�1 − �2)∫

2�

0
cos(� − �1)

e�1 cos(�−�1)

2�I0(�1)
d�

+ �2 sin(�1 − �2)∫

2�

0
sin(� − �1)

e�1 cos(�−�1)

2�I0(�1)
d�

= −�2 cos(�1 − �2)
I1(�1)
I0(�1)

giving us the desired result.

Remark 1. Note that when �1 = �2, say a common �, the DKL divergence between two vM

distributions becomes symmetric, and reduces to

�A(�)
(

1 − cos(�1 − �2)
)

where A(�) = I1(�)∕I0(�).

This behaviour can be seen graphically below in Figure 2.1.

9
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Figure 2.1: KL-Div. vs |�1 − �2|, for fixed �1, �2.

A Symmetrized Kullback-Liebler distance between two vM models

Although this KL divergence becomes symmetric i.e. KL(f, g) = KL(g, f ) when the con-
centration parameters �1 and �2 are the same, in general it is well known that the KL measure
lacks symmetry of this kind.

We will consider a simple symmetric version of the KL divergence namely

SKL(f, g) = DKL(f, g) +DKL(g, f ).

We will refer to this as the symmetric KL-divergence or SKL. From the preceding Proposition,
it is easy to check

Proposition 2.2.3. The symmetric KL divergence SKL, between two independent vM distribu-

tions f ∼ vM(�1, �1) and g ∼ vM(�2, �2) is given by

SKL(f, g) = �1A(�1) + �2A(�2) − cos(�1 − �2)
(

�2A(�1) + �1A(�2))
)

10
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whereA(�) is the ratio of modified Bessel functions of the first kind, given byA(�) = I1(�)∕I0(�).

Remark 2. Jensen-Shannon divergence:

One may also consider a slightly more general symmetrized version, called the Jensen-

Shannon divergence given by

SKLJS(f, g) =
DKL(f,

f+g
2
) +DKL(g,

f+g
2
)

2

noting that mixtures of vM distributions are known to be identifiable (see eg. Frazer et al

(1981)). But we will stick with the simpler SKL mentioned above.

2.2.3 A visual comparison of the L2 and SKL measures

Figures 2.2 and 2.3 compare the two measures side-by-side in terms of how they change for
varying |�1 − �2|, or �2 − �1, or both. Although the parameters in vM models are the same,
the magnitudes of the two measurements are different, with SKL nearly 10 times the numerical
value of the L2 distance. Apart from this differences in scale, they provide comparable results
as judged by the similarities in the shapes of the line plots and 3D plots between the two.

11
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Figure 2.2: Top: L2 distance (left) and SKL distance (right) vs |�1 − �2|, for fixed �1, �2.
Bottom: L2 distance (left) and SKL distance (right) vs �2 − �1, for fixed �1 = �2 = � and �1.
Note that the y-axis scales are different for L2 and SKL distance.

12
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Figure 2.3: 3D plots for L2 distance (left) and SKL distance (right) vs |�1 − �2| and �2 − �1
for fixed �1. Note that the color scales are different for L2 and SKL distance.

13
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2.3 L2 distance and the SKL divergence for Mixtures

As suggested earlier, we plan to approximate any curve around the circle via vM mixtures
with an appropriate number of components.

For any 2 mixtures, say ℎ1 and ℎ2 given by

ℎ1(�) =
k
∑

i=1
pifi(�) and ℎ2(�) =

l
∑

j=1
qjgj(�)

with the usual restrictions on the mixture proportions, {pi ≥ 0,∑i pi = 1}, and
{qj ≥ 0,

∑

j qj = 1}. For the L2 distance between two such mixtures of vM distributions, we
have

L2(ℎ1, ℎ2) = ∫

2�

0

(

k
∑

i=1
pifi(�) −

l
∑

j=1
qjgj(�)

)2

d�

=
k
∑

i=1

k
∑

i′=1
pipi′ ∫

2�

0
fi(�)fi′(�)d� +

l
∑

j=1

l
∑

j′=1
qjqj′ ∫

2�

0
gj(�)gj′(�)d� −

2
k
∑

i=1

l
∑

j=1
piqj ∫

2�

0
fi(�)gj(�)d�

We would like to also extend our single component SKL divergence measure to mixtures
of vM distributions, but must proceed carefully as no closed form expression exists, as we had
for the single components, although it is calculable. To that end, will make use of numerical
integration techniques to approximate the divergence,

KL(ℎ1, ℎ2) = ∫

2�

0
log

(

ℎ1(�)
ℎ2(�)

)

ℎ1(�) d�.

14
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2.4 Clustering curves around the circle—aSimulation study

The simulation procedure starts with a given vM mixture with a fixed numbers of compo-
nents, and with specified parameter values for each component. Our goal is to assess how the
distance/divergence measures perform in identifying the known clusters, under varying distri-
butional conditions. The chosen parameter values are given in Table 2.1 below, and we briefly
discuss the rationale behind the parameter selection case-by-case.

Each of the four designated cases consist of 3 vMmixture distributions— two 2-component
mixtures and one 3-component mixture—with different parameter values. Case 1 contains vM
mixtures that have equal mixture weights p, moderately high �’s, and with differences between
�’s that are large enough such that the number of components k equals the number of modes.
Cases 2, 3 and 4 are variants of Case 1. Case 2 has smaller �′s, Case 3 has smaller � differences
such that its 2-component vMmixtures is indeed unimodal, and Case 4 has unequal p’s and thus
unequal heights for each mode. These cases aim at discovering how sample-based parameter
estimation and component selection results are affected by the underlying mixture distributions.

15
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Case Mixture Component � (rad.) � p

Case 1

vM-mix 1 f1(�;�, �) 0 4.0 0.5
f2(�;�, �) 2�∕3 (≈ 2.09) 4.0 0.5

vM-mix 2 f1(�;�, �) � (≈ 3.14) 3.0 0.5
f2(�;�, �) 5�∕3 (≈ 5.24) 3.0 0.5

vM-mix 3
f1(�;�, �) 0 5.0 0.333
f2(�;�, �) 2�∕3 (≈ 2.09) 5.0 0.333
f3(�;�, �) 4�∕3 (≈ 4.19) 5.0 0.333

Case 2

vM-mix 1 f1(�;�, �) 0 2.0 0.5
f2(�;�, �) 2�∕3 (≈ 2.09) 2.0 0.5

vM-mix 2 f1(�;�, �) � (≈ 3.14) 2.0 0.5
f2(�;�, �) 5�∕3 (≈ 5.24) 2.0 0.5

vM-mix 3
f1(�;�, �) 0 4.0 0.333
f2(�;�, �) 2�∕3 (≈ 2.09) 4.0 0.333
f3(�;�, �) 4�∕3 (≈ 4.19) 4.0 0.333

Case 3

vM-mix 1 f1(�;�, �) 0 4.0 0.5
f2(�;�, �) �∕3 (≈ 1.05) 4.0 0.5

vM-mix 2 f1(�;�, �) � (≈ 3.14) 3.0 0.5
f2(�;�, �) 4�∕3 (≈ 4.19) 3.0 0.5

vM-mix 3
f1(�;�, �) 0 5.0 0.333
f2(�;�, �) 2�∕3 (≈ 2.09) 5.0 0.333
f3(�;�, �) 4�∕3 (≈ 4.19) 5.0 0.333

Case 4

vM-mix 1 f1(�;�, �) 0 4.0 0.75
f2(�;�, �) 2�∕3 (≈ 2.09) 4.0 0.25

vM-mix 2 f1(�;�, �) � (≈ 3.14) 3.0 0.25
f2(�;�, �) 5�∕3 (≈ 5.24) 3.0 0.75

vM-mix 3
f1(�;�, �) 0 5.0 0.20
f2(�;�, �) 2�∕3 (≈ 2.09) 5.0 0.60
f3(�;�, �) 4�∕3 (≈ 4.19) 5.0 0.20

Table 2.1: Parameter Values for the Simulated Data
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Figure 2.4: Estimated Density Curves vs. True Density Curves. The three plots in each row
corresponds to the three vM mixtures in each case. Black dashed lines are the true density
curves and colored solid lines are estimated density curves.

17



Clustering Curves around the Unit Circle Chapter 2

With the given set of parameter values for the mixture distribution, we take n = 5 samples,
each of size m = 100 from each mixture distribution. We use the 100 observations from each
sample to fit a mixture distribution, estimating the mixture model parameters via the EM algo-
rithm proposed by Dhillon and Sra [7] and Banerjee et al. [8], and implemented by Hornik and
Grün in the R statistical software package movMF [9]. 1 Since the parameter estimation method
does not automatically select the number of mixture components, we use the BIC criterion to
select the number of components, say between 2, 3, 4, or 5.

So, from each of the 3 true mixture distributions for each case study, we generate n = 5

estimated mixture distributions using the samples drawn.

Figure 2.4 graphically demonstrates the efficacy of the estimated mixtures in recovering the
truemixture. In the grid of plots, the rows represent the case study and the columns represent the
three different vM mixture distributions within each case. In any particular plot, the weighted
black dashed line is the true density, while the colored solid lines are the five associated density
estimates. Case 1 shows good consistency between true and estimated density curves, except for
the red curve in vM mixture 3 which is flat and gives only k = 1 component. Case 2 shows that
smaller �′s can impair this consistency, as wrong values of k are often chosen. Case 3 shows
that the selected k’s match with the number of modes, if not at their true values. Nevertheless,
the true and estimated density curves are consistent when it is not near the modes. Case 4
shows that the estimation procedure sometimes fails to identify those smaller modes, which
correspond to the components with smaller p’s.

1The algorithm and implementation describe fitting the parameters of vonMises-Fisher (vMF)mixture models,
which is a direct extension of the vM distribution to higher dimensions, where the observations occur on the unit
sphere/hypersphere. The vMF distribution, in two dimensions, reduces to the vM distribution. We will return to
the vMF distribution again in a later chapter.
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2.4.1 Clustering of simulated data with L2 and SKL distances

After estimating vM mixture parameters from simulated samples for each case study, we
compute the L2 or SKL distances between each pair of samples and obtain distance matri-
ces. Then a hierarchical clustering method is used to discover the clusters. We selected the
complete linkage method and demonstrate the clustering results in heatmaps and dendrograms
— heatmaps are to show the magnitudes of distance measures between any given pair of esti-
mated vMmixtures, and dendrograms are to show the structures of clustering hierarchy. Ideally,
what we would like to see are the clustering procedure, when stopped at 3 clusters, completely
separates the estimated density curves, based on which mixture distribution their samples are
generated from, i.e., each of the 3 clusters should contain the 5 densities estimated from the
common true density.

Tables 2.2 and 2.3 show that bothL2-based clustering and SKL-based clustering are able to
recover the correct cluster membership for all the samples. Figure 2.5 and 2.6 display row end
dendrograms and heatmaps for these two clustering metrics. For Case 1, 3, and 4, the between-
cluster L2 distances are much larger than within-cluster L2 distances. The heatmap patterns
suggest that, for arbitrary samples denoted byA,B, C andD, the distanceL2(A,B) ≈ L2(C,D)
as long asA, C are in the same cluster andB,D are in the same cluster. For Case 2, the heatmap
pattern is more fuzzy, mainly due to the less desirable consistency between estimated and true
density curves as discussed earlier. Similar behaviors are observed for the SKL distances.

vM-mix 1 vM-mix 2 vM-mix 3
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

Case 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Table 2.2: L2-based Cluster Membership. V 1, V 2,… , V 15 designate the respective fitted
mixture distribution for each particular case and 100-curve sampling block.
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vM-mix 1 vM-mix 2 vM-mix 3
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

Case 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Table 2.3: SKL-based Cluster Membership. V 1, V 2,… , V 15 designate the respective fitted
mixture distribution for each particular case and 100-curve sampling block.
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Figure 2.5: L2 Clustering Heatmap (Simulated Data)
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Figure 2.6: SKL Clustering Heatmap (Simulated Data)
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2.5 A real dataApplication toNeuroRetinal Rim (NRR) area

2.5.1 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a non-invasive imaging technique that uses a
broadband light source partitioned into a reference beam and sample beam to generate a re-
flectivity versus depth profile that details an approximate in-vivo retinal biopsy. OCT yields
high-resolution cross-sectional images of the retina, retinal nerve fiber layer, as well as the op-
tic nerve head [10], however in this dissertation, we are concerned with only the neuroretinal
rim (NRR) measurements. Figure 2.7 shows a diagram of the retina, with the optic disc, optic
cup, neuroretinal rim labeled, as well as labels of the four quadrants of the eye: superior, nasal,
inferior, and temporal.2
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Figure 2.7: From left to right, NRR Image/Diagram, Example NRR Curve Plotted on the
Circle, Example NRR Curve Plotted on the Flat

2This problem and related data set was introduced to us by Professor Saumyadipta Pyne, School of Public
Health, University of Pittsburgh, and Mr. Hasnat Ali, L.V. Prasad Eye Institute, Hyderabad, India. What we are
using here is a small part of the much larger original data, with the limited aim of illustrating our methodologies.
A more comprehensive analysis and biological implications will be presented in a future work. See also Section
3.4
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2.5.2 General Data Characteristics

Although an NRR measurement for each eye can be taken continuously around the eye,
in practice, it is measured on a discrete grid of regularly spaced angles around the eye. Since
the measurements are taken radially around the circumference of the retina, these curves are
circular in nature, and are amenable to statistical methodologies described earlier for directional
statistics. The middle pane of Figure 2.7 is an example of a randomly selected NRR curve
plotted on the circle, and the third pane is the same curve plotted on a linear scale. Although
both the flat and circular representations are not necessary, they are presented here merely to
illustrate the direct mapping between the two representations.

Domain knowledge experts who specialize in ophthalmology, motivated the idea that the
most relevant features of the OCT curves, as they relate to the health of the eye, are to be found
in the curve shape and not necessarily the curve magnitude. For example, while overall nerve
fiber layer thickness may vary naturally from eye to eye within the normal population, the spatial
distribution of that thickness may be the key determining factor as to the future health prognosis
of the eye. Thus we represent and analyze the NRR curve, as the normalized curve,

Xi(t) =
fi(t)

∫ 2�
0 fi(t) dt

.

It has been suggested that the shapes of clusters formed by these normalized OCT curves found
in the population have biological significance. The statistical task is then, to cluster these circu-
lar curves into K homogeneous groups based on these curve features. This is done by approx-
imating each curve by a vM mixture, and measuring distances between such curves by one of
the measures proposed earlier in this chapter.

The dendrograms in Figures 2.9 and 2.10 are a convenient way to graphically represent the
hierarchical clustering schemes induced by theL2 distance and SKL divergence measures. That
said, natural questionswhen comparing across trees like this, is of cluster quality or performance
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Figure 2.8: Normalized NRR curves, sample size of 100.

of the measures. Because this task is unsupervised, with no ground truth with respect to number
of clusters or cluster membership, we will look at cluster agreement between different schemes
via their respective ultrametrics. Section 2.5.3 gives a brief description of this approach, but
for a full treatment of ultrametrics in hierarchy comparison, see [11] (pg 69-71).

25



Clustering Curves around the Unit Circle Chapter 2

0.05 0.04 0.03 0.02 0.01 0.00

L2 Hierarchical Clustering

L2 Height

C
u

rv
e

s

228878894291399693743092121183793451361555561090314069849523768566026811752120549414433494673987382124996629654863418322835598718751397714416578264237445685478058621001953707733256750728661927

Figure 2.9: L2 induced hierarchy
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Figure 2.10: SKL induced hierarchy

2.5.3 Cluster Analysis via Ultrametrics

Let the collection of subsets induced by a hierarchical clustering scheme be denoted by, Ω.
Below, we compare the total indexed hierarchies by comparing the respective ultrametrics, or
distances ℎij , between elements i and j, defined as the height of the node that generates the
smallest set containing both elements. The collection of heights, {ℎij; for i, j ∈ Ω} satisfies
the ultrametric inequality,

ℎij ≤ max
(

ℎik, ℎjk
)

∀i, j, k ∈ Ω
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There are a variety of metrics that can be employed to compare the respective hierarchy ultra-
metrics, but we will restrict our analysis to looking at four of the metrics that come standard in
the R package clue [12]:

Euclidean: where we take d as the square root of the sum of the squared differences of ultrametrics,
the Euclidean agreement is given as, 1∕(1 + d)

cophenetic: product-moment correlation of the respective ultrametrics, also known as the cophenetic
correlation coefficient

cosine: the cosine of the angle between the respective ultrametrics

gamma: a linear transformation of Kruskal’s gamma, 1 − d, where we take d as the rate of inver-
sions between respective ultrametrics, uij < uklandvij > vkl, for pairs (i, j) and (k, l)

For a complete description of these agreement metrics, see [13].
In principle, looking at the ultrametrics for the respective hierarchies has clear advantages,

in that it does not require a priori knowledge of, normake a posteriori assertions as to, the correct
number of clusters. Table 2.4 gives these values for the L2 and SKL hierarchies represented in
Figures 2.9 and 2.10.

Euclidean Cosine Cophenetic Gamma
0.0337 0.8556 0.2989 0.6126

Table 2.4: L2 and SKL Hierarchy Agreement

In practice, we are looking to find homogeneous groups from the population, so determining
at what level to cut the tree is of interest. In the next chapter, we take a different clustering
approach for this real data example, from a functional perspective.
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Chapter 3

Functional Clustering of Circular

Densities via Fourier coefficients

Circular densities have a natural periodicity that lends itself to a Fourier basis functional rep-
resentation. In this chapter, we explore various schemes to cluster circular densities based on
this functional representation, and compare the resulting clusterings. We will again look at the
NRR curves as our real data example.

3.1 Functional Representation

Suppose we have a collection of curves, f1,… , fn, to be clustered into K groups. Here,
let the fi be considered as representing the original OCT measurements, and Xi represent the
normalized curves, i.e.

Xi(t) = fi(t)∕∫

2�

0
fi(t) dt.

While these curves are actually continuous, in practice, wemeasure it at a discrete grid of angles,
t ∈ [0, 2�) which constitutes our data. Also, since these curves are periodic with period 2�,
they can be expressed in terms of the Fourier coefficients { j(t) = ei2�jt, j ∈ ℕ}. Practically
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speaking, a finite set of basis functions { j}pj=1 will serve to approximate any curve. Suppose
that the curve Xi can be approximated using this set with the curve-specific basis function
coefficients ij . Thus the curves can be represented in the form,

Xi(t) =
p
∑

j=1
ij j(t), i = 1.… , n

where the random vector i =
(

i1,… , ip
)

∈ ℝp, for some p ∈ ℕ.

3.1.1 Discriminative Functional Clustering Models

Charles Bouveyron et al.[14] propose a functional clustering method called “FunFEM",
that employs a discriminative functional mixture model to facilitate the data being clustered in
F [0, T ], a discriminative functional subspace of L2[0, T ], spanned by a set of d basis functions
{'j}j=1,…,d in L2[0, T ]. The d-dimensional basis, {'j}j=1,…,d is related to the Fourier basis
{ j}j=1,…,p through the linear transformation, 'j = ∑p

l=1 ujl l where the matrix {U}ij = uij is
orthogonal and of dimension p × d. This relationship implies that the random vectors Λ ∈ ℝd

and Γ ∈ ℝp are related by the linear transformation,

Γ = UΛ + �,

where � ∈ ℝp is the independent random error term, and Λ represents the latent coefficients on
the d-dimensional discriminative subspace. Here d < min(p,K), since d = K − 1 is sufficient
to discriminate K groups [15]. Clustering proceeds by fitting a Gaussian mixture model to the
coefficients in Λ. This algorithm is implemented in the R package funFEM [14].
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3.2 Tuning Parameter Selection

As is the case with most unsupervised clustering methods, several tuning parameters need
to be specified by the user. In this instance, for the functional clustering model, we must specify
the dimension of the curve data p as well as the set of basis functions, {'j}pj=1, and the number
of clusters,K . The FunFEM algorithm of [14] will internally specify the latent dimension d and
the orthogonal matrix U . Due to the circular nature of the data, the functions Xi are periodic.
Hence, a natural choice is to use the first p Fourier or trigonometric basis functions. As a floor
for the number of basis functions p to use, we require that the finite-dimensional representation
retain at least 95% of the functional variability in the data. This is akin to a cumulative scree-
plot analysis in standard principal component analysis when performing dimension reduction
for multivariate data.

To avoid model overfitting, it is necessary to determine the smallest number of basis func-
tions that recover the shapes of the actual curves sufficiently well, recovering the functional
variability to meet our threshold. To that end, we will look at the “Fraction of Variation Ex-
plained" (FVE) as a function of the number of basis functions [16]. In particular, if we have n
curves, X1(t), X2(t),… , Xn(t), with a sample mean given by,

X̄(t) = 1
n

n
∑

i=1
Xi(t) , t = 1, 2,… , 180

The total variation (TV) is given by,

TV = 1
n − 1

n
∑

i=1
∫

(

Xi(t) − X̄(t)
)2 dt

If  1,  2,… ,  p are basis functions and ij the associated basis coefficients, then the functional
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approximation for the itℎ curve at point t, Xi(t), is given by,

Xi(t) ≈
p
∑

j=1
ij j(t) =∶ X

p
i (t),

The fraction of variation explained (FVE) for a given p is then,

FVE =
TV − 1

n−1

∑n
i=1 ∫

(

Xp
i (t) −Xi(t)

)2 dt

T V

For choosing the number of clusters K , we assess three separate model selection criteria,
namely the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC),
and the Integrated Completed Likelihood criterion (ICL) [17] to balance the competing goals
of interpretability, which one can argue improves as the number of clustersK decreases, against
the within-cluster variability, which improves as the number of clusters increases.

3.3 Functional and non-functional Mahalanobis Clustering

Finally, we consider two additional metrics that make use of the functional representation
described above, to generate a total of four cluster hierarchies, for the purpose of seeing what,
if any cluster agreement can be observed.

The first of these, is the standard multivariate Mahalanobis distance, since it can be defined
as the distance between a distribution and a point, or, as we have here, the distance between two
random vectors, where each curve is represented as an p-dimensional vector comprised of that
curve’s specific Fourier coefficients.

dM (x, y) =
√

(x − y)TS−1(x − y),

where x and y are the p-dimensional vectors for the xth and yth curves respectively, and S is the
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p × p sample covariance matrix. Furthermore, the Mahalanobis distance is unitless and scale-
invariant, measuring the distance between the vectors in standard deviations along the principle
component axes, which effectively accounts for the correlation within the dataset.

The second metric is the functional analogue to the Mahalanobis distance, the Functional
Mahalanobis semi-distance, as described by Gelano et al.[18]. The semi-distance between two
i.i.d. functional random variables 1 and 2, with mean function � , and compact covariance
operator Γ is defined as,

dFM (1,2) = ⟨Γ−1∕2K (1 − 2),Γ
−1∕2
K (1 − 2)⟩,

where Γ−1∕2K is the regularized square root inverse operator of Γ defined as,

Γ−1∕2K (�) =
K
∑

k=1

1
�1∕2k

⟨ k, �⟩ k

where �k and  k are the eigenvalues and (orthonormal) eigen-functions of Γ . In the functional
setting, Γ serves the analogous role of the covariance matrix in the multivariate setting.

3.4 Real Data Example with NRR curves

The FVE values for the NRR sample are given in Table 3.1 and the adjacent Plot 3.1. We
see it takes 11 basis functions to break 0.95% fraction of variance explained, and proceed using
this as our basis set.

Looking at cluster selection criteria in Figure 3.2, BIC, AIC, and ICL across values of K
ranging from two to eight. We see that K = 6 is the best fit, for BIC and ICL. AIC values
continue to climb after, but there is a pronounced knee that does support the findings of the
other two selection criteria, and as such, we settle on this value for our example, and implement
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Nmb of Basis Func. FVE
p = 3 0.2963387
p = 5 0.7766510
p = 7 0.8841013
p = 9 0.9335552
p = 11 0.9623640
p = 13 0.9788576
p = 15 0.9877183
p = 17 0.9924922
p = 19 0.9956720
p = 21 0.9974243
Table 3.1: FVE Values

NRR Sample Curves (n=100), FVE

Nmb of Basis Func.

F
V

E

3 5 7 9 11 13 15 17 19 21

Figure 3.1: Fraction of variance explained

the discriminative functional clustering algorithm. We note that this method does not produce
a clustering hierarchy, but rather partitions the curves intoK groups, which means we will look
at cluster agreement between competing partition schemes, e.g. the adjusted Rand index.

Number of Clusters
Adjusted Rand Index 2 3 4 5 6 7

ARI(SKL,L2) 0.2621 0.2541 0.2520 0.2278 0.3000 0.2994
ARI(funFEM,SKL) 0.1355 0.3512 0.4027 0.2716 0.1804 0.3988
ARI(funFEM,L2) 0.3296 0.3222 0.3408 0.1487 0.1364 0.2288

Table 3.2: Adjusted Rand Index

Knowing that K = 6 is the optimal clustering under the funFEM scheme, but as the al-
gorithm generates partitions we ran it across a range of clusters for the purpose of comparing
against the cluster memberships of the L2 and SKL schemes presented in Chapter 2. To that
end, we cut the respective L2 and SKL trees at the same levels to match the number of clusters
from funFEM and compare the respective cluster memberships. Table 3.2 gives the adjusted
Rand index (ARI) between the funFEM clustering scheme, and those described above.

In comparing the four clustering schemes that yield hierarchies, we can again look to com-
paring the respective ultrametrics. As in Chapter 2, we will compare our clustering hierarchies
by first looking at the respective dendrograms. One thing that we notice immediately is the dis-
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Figure 3.2: Cluster selection criteria

parity in heights of the Mahalanobis and functional Mahalanobis hierarchical clusterings have
heights that are orders of magnitude greater than those induced by the L2 and SKL measures,
so before we can compare the respective ultrametrics, we normalize the heights for all of them
by,

(ℎi − min(ℎu))∕(max(ℎu) − min(ℎu))

where ℎu are the heights of the uth clustering.
Table 3.3 gives the resulting agreement measures for the Euclidean, cosine, cophenetic, and

gamma measures of agreement, as well the average over the four measures.
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L2 SKL Mahalanobis Fun.Mahalanobis

Euclidean
L2 1.0000

SKL 0.0337 1.0000
Mahalanobis 0.0371 0.0398 1.0000

Fun.Mahalanobis 0.0328 0.0342 0.0528 1.0000

Cosine
L2 1.0000

SKL 0.8556 1.0000
Mahalanobis 0.8733 0.8931 1.0000

Fun.Mahalanobis 0.8571 0.8695 0.9517 1.0000

Cophenetic
L2 1.0000

SKL 0.2989 1.0000
Mahalanobis 0.0584 0.1114 1.0000

Fun.Mahalanobis 0.1107 0.0965 0.2748 1.0000

Gamma
L2 1.0000

SKL 0.6126 1.0000
Mahalanobis 0.4117 0.4376 1.0000

Fun.Mahalanobis 0.4651 0.4347 0.4307 1.0000

Average
L2 1.0000

SKL 0.4502 1.0000
Mahalanobis 0.3451 0.3705 1.0000

Fun.Mahalanobis 0.3664 0.3587 0.4275 1.0000
Table 3.3: Agreements using ultrametric distances
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Chapter 4

Clustering Textual Data with Directional

Statistics

4.1 Introduction

In this chapter, we first review various modelling techniques that employ directional statis-
tics as the statistical framework for clustering textual documents into homogeneous groups, and
afterwards, add our contribution to this body of methods. Sections 4.2 and 4.3 begin with an
overview of the vectorization of textual data, clustering on the unit hypersphere. We then de-
fine distance and divergence measures between mixtures of the von Mises-Fisher distribution
(vMF) in Section 4.4, followed by an application in Section 4.5.

4.2 Textual Data: Definitions and Notation

To get started, it is useful to first define a few basic terms and some of the notation we will
be using below.

• Let the collection of unique discrete elements, w1, w2,… , wp, hereafter referred to as
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words, be our vocabulary, which we denote by,

W = {w1,… , wp}

where p ∈ ℕ is the size (cardinality) of the vocabulary, so that when characterizing a doc-
ument as a vector of (possibly weighted) word counts, we will conform to the convention
of working with a vector in p-dimensional space, ℝp.

• Sp−1 is defined as the (p − 1)-dimensional (hyper)sphere embedded in ℝp.

• Individual sets of words are called documents. We denote the dtℎ document as,

dd = {wd1, wd2,… , wNd
}, wdk ∈ W ∀k

whereNd ∈ ℕ is the total number of words (including replicates) in document dd .

• The collection of distinct texts or documents, is called the corpus, and is defined by,

 = {d1,d2,… ,dD}

with D ∈ ℕ denoting the number of texts in our corpus.

• Let njd be the number of occurrences of wordwj in document dd . Then the total number
of words is

Nd =
V
∑

j=1
njd

and this allows us to represent each document as a p-dimensional vector,

vd = [n1d n2d ⋯ npd]T
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where the entry, njd corresponds to the number of occurrences of the jtℎ vocabulary word,
wj , in document d. We make mention here, that for even a moderately sized corpus,
textual data can have an extremely large vocabulary and result in sparse document word-
count vectors predominately populated by zeros.

• For each document d, define our document vector x, as the normalized representation of
the count vector, v, so that,

xd ≡ vd∕‖vd‖ , and xd ∈ ℝp , ‖xd‖ = 1, and thus xd ∈ Sp−1 for d = 1, 2,… , D

• The collection of document word-count vectors for a corpus is called a term-document
matrix (TDM) (or if we were to take the transpose, a document-term matrix (DTM)).
Define A as the (p × D)-dimensional TDM, where each row is one of the terms from
the vocabularyW , and each column is a word-count vector for a specific document with
entries corresponding to the number of occurrences of the term in that document.

A
p×D

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n11 n12 ⋯ n1D

n21 n22 ⋯ n2D

⋮ ⋮ ⋱ ⋮

np1 np2 ⋯ npD

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Again, for a moderate to large corpus, we expect to have a (very) sparse matrix. Also, we note
that the entries may be a transformation of the word-counts by an appropriate weighing scheme,
or composition of weighting schemes. For example, in fields such as textual data analysis or
information retrieval, it is common to weight the terms by the term frequency-inverse document

frequency (tf-idf), where the frequency of a particular word in a particular document is offset by
the frequency of that word across all documents in the corpus, in order to attach some measure
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of importance to that word for that document. 1

4.2.1 Textual Data as Directional Data

With the documents being modeled as unit vectors, this allows for a variety of different
weighting schemes that can help focus on different components of the feature space. Normal-
ization makes long or short documents comparable. Projecting our documents onto the unit
hypersphere is especially useful for sparse and very sparse data, as is typically the case with
textual data whenever dealing with a corpus of any significant size (cardinality). This normal-
ization also allows us to use a weighted cosine distance as a measure of similarity, which has
been demonstrated to be more robust to feature noise, and is commonly used in directional data
clustering and information retrieval.

Taking advantage of the fact that documents are mapped onto the unit hypersphere, one
may fit mixture models based on spherical distributions on the hypersphere. In what follows,
we work with mixtures of von Mises-Fisher (vMF) distribution, which is well suited to this
task. Clustering of such sets of documents can then be done using anL2 norm, details on which
follow.

4.3 Clustering on the hyperspherewithMixture of vonMises-

Fisher Distributions

4.3.1 Topic Models and sentiment analysis

Topic models are probabilistic models for uncovering the underlying semantic structure of
a document collection based on a hierarchical Bayesian analysis of the original documents, by

1Although some weighting schemes may be surrogates for others, where the particular situation or user pref-
erence is the deciding factor of choosing one over the other, all of them serve a specific purpose.
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discovering patterns of word use and connecting documents that exhibit similar patterns. [19]
Specifically, we will be working with Latent Variable Mixture Models, where observed data
interact with unseen, or latent, random variables through a proposed unobserved structure in
the observed data. The nature of that structure is unearthed through inference on the posterior
distribution.

In Chapter 2 and Chapter 3 we reference the movMF package by Hornik and Grün [20]. This
package employs the EM algorithms described by A. Banerjee et al.[8] to estimate the mixture
model parameters. In Section 4.3.3, we give a brief description of these methods, along with
any justifications for choices made when options were available, e.g., why we might prefer the
hard-max clustering scheme over the soft-max clustering scheme.

4.3.2 The von Mises-Fisher (vMF) Distribution in high dimensions

Let x ∈ ℝp be a unit vector such that ‖x‖ = 1. i.e. x ∈ Sp−1, the (p − 1)-dimensional
hypersphere with radius 1, embedded in ℝp. We say that x has a p-variate von Mises-Fisher
distribution (vMF), with mean direction vector � and concentration parameter � ≥ 0 if it has
the probability density function

f (x;�, �) = cp(�) exp (�x ∙ �) ,

where cp(�) is the normalizing constant given by

cp(�) =
�p∕2−1

(2�)p∕2Ip∕2−1(�)

and Ik is the modified Bessel function of the first kind and order k, and x ∙ � is the usual inner
product.
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4.3.3 EM algorithm for a Mixture of vMF distributions

Consider a k-component mixture of vMF distributions denoted by

f (x|Θ) =
k
∑

ℎ=1j
pℎfℎ(x|�ℎ, �ℎ),

where fℎ(x|�ℎ, �ℎ) is a vMF distribution with parameters �ℎ and �ℎ which represent the mean
direction and concentration of the ℎth mixture component, for ℎ = 1, 2,… , k. The parameter
space consists of

Θ = {p1, p2,… , pk,�1,�2,… ,�k, �1, �2,… , �ℎ}

with the usual restriction on the mixture proportions or the probabilities pℎ ≥ 0,∑k
ℎ=1 pℎ = 1.

In the context of a generative mixture model, we suppose that the process is randomly
generated, and to that end, the process of generating a random document vector begins with
first randomly select a particular distribution, or topic, from this mixture distribution. We ran-
domly select the ℎth vMF distribution with probability pℎ, and then, from fℎ(x|�ℎ, �ℎ), sample
a point on Sp−1. The distribution from which the document vector is sampled is a latent ran-
dom variable, but if we suppose that instead, we know which distributions are selected, and
 = {z1, z2,… , zn} is the set of topics, where zi = ℎ if xi was sampled from fℎ(x|�ℎ, �ℎ). The
log-likelihood of the observed data is given by,

logℙ( ,|Θ) =
n
∑

i=1
log

(

pzifzi(xi|�zi , �zi)
)

The true state of nature is one where we do not actually observe the particular topics selected,
and as such, instead of an easily calculable conditional density, we have a random variable that
depends on the distribution of our topics, . This random variable is the complete data log-
likelihood. Now, given observed data and a particular mixture, ( ,Θ), we can formulate the
E-step in the EM algorithm, as the estimate of |( ,Θ).
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Given the constraints, �ℎ ∙ �ℎ = 1 and �ℎ ≥ 0, we get the parameter estimate update
equations,

pℎ =
1
n

n
∑

i=1
p(ℎ|xi,Θ),

rℎ =
n
∑

i=1
xip(ℎ|xi,Θ),

(M-Step)
�̂ℎ =

rℎ
‖rℎ‖

,

Id∕2(�̂ℎ)
Id∕2−1(�̂ℎ)

=
‖

∑n
i=1 xip(ℎ|xi,Θ)‖

∑n
i=1 p(ℎ|xi,Θ)

=
‖rℎ‖

∑n
i=1 p(ℎ|xi,Θ)

.

With these update equations, we update the distributions of|( ,Θ) via two different schemes
for our E-Step, that are the basis for the soft assignment algorithm, soft-moVMF, and the hard
assignment algorithm, hard-moVMF.

As described in Neal and Hinton (1998) and Bilmes (1997), the distribution of the hidden
variables is given by the standard EM machinery,

p(ℎ|xi,Θ) =
pℎfℎ(xi|Θ)

∑k
l=1 plfl(xi|Θ)

.

Collins (1997) shows that the incomplete data log-likelihood, log p(|Θ), is non-decreasing at
each iteration of the parameter and distribution updates. The soft-moVMF algorithm is based on
iterating over these two updates. The second update scheme, the hard-moVMF algorithm, uses
the (unsupervised) hard-assignment heuristic, that yields a distribution of hidden variables,

q(ℎ|xi,Θ) =
⎧

⎪

⎨

⎪

⎩

1, if ℎ = argmax
ℎ′

p(ℎ′|xi,Θ)

0, otherwise.
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The hard assignment maximizes a lower bound on the incomplete data log-likelihood, and iter-
ating over the M-step and the hard assignment rule gives us the hard-moVMF algorithm.

4.3.4 Mixture vMF Models

Hard Assignments

In the most simple mixture vMF model, a hard assignment (winner-take-all) strategy is
employed, where each document belongs to exactly one topic cluster. The cluster assignment
variable, Zi, is drawn from a multinomial distribution with mixing distribution �, and each
document, v, is drawn from exactly one of K topics, with vMF distribution parameterized by
mean direction �zi and concentration parameter �.

The hard assignment algorithm also maximizes a tight lower bound on the incomplete log-
likelihood of the data, and as such, should give an acceptable clustering with respect to the
log-likelihood. Banerjee et al. assert that the advantages of this result are applicable to any
mixture model that uses the EM algorithm, but particularly for mixtures of vMF distributions.
This is again due to the problem of computing the normalization constant cp(�ℎ) which in-
volves Bessel functions. Specifically, in a hard assignment, we do not need to calculate the
partition/mixture function,∑k

l=1 plfl(xi|�l) for every document, xi. This is analogous to reduc-
ing the LDA to a more simple Dirichlet-multinomial model where each document belongs to
one, and only one, topic. It is also worth noting that for the vMF distribution, these computa-
tions must be of sufficiently high-precision to avoid the numerical problems of underflow and
overflow, again due to the Bessel functions. With the hard assignment algorithm, we reduce
the number of computations to something on the order of (k) per iteration to compute cp(�ℎ),
for ℎ = 1, 2,… , k, from the number required per iteration in the soft assignment, which is on
the order of (nk), for all fl(xi|�l), to be able to calculate both the partition function and the
associated probabilities, p(ℎ|xi,Θ).
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Additionally, the hard assignment algorithm only requires storing n integers for the cluster
assignments, while the soft assignment algorithm needs to maintain nk floating point numbers
for all of the conditional probabilities, at the user specified level of precision. For extremely
large data sets and large numbers of clusters, this can create computational issues around avail-
able space. Thus, the hard assignment algorithm lends itself well to scalability and is favored
in terms of computational efficiency.

The authors [8] present arguments as to the choice of q, namely

q(ℎ|xi,Θ) =
⎧

⎪

⎨

⎪

⎩

1, if ℎ = argmax
ℎ′

p(ℎ′|xi,Θ)

0, otherwise

q ∈  ⊂  , where  is the class of probability distributions that assume probability value 1
for some mixture component and 0 for all others, and is a subset of all possible distributions
 . The hard assignment algorithm constrains the latent variables to have distributions that are
members of , and we note that a mixture model following p(ℎ|xi,Θ), as defined above will
not be a member of . It is possible to reasonably bound the incomplete log-likelihood of the
data from below, by using expectations over some optimal distribution q ∈  (see Banerjee
et al. for details). Therefore, we have that the hard assignment clustering algorithm (basically)
maximizes a lower bound on the incomplete log-likelihood.

Banerjee et al. [8] introduce the function F (p̃,Θ) namely,

F (p̃,Θ) = Ep̃[logP (X,Z|Θ)] +H(p̃)

where H(p̃) is the Shannon entropy of a discrete distribution p̃. The EM algorithm alternates
between choosing a distribution p̃ for a fixed Θ that will maximize the function F (p̃,Θ) in the
E-step, and subsequently for that particular choice of p̃, estimate the parameters Θ that will
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again maximize the function F in the M-step. Neal and Hinton (1998) have shown that for a
given Θ,

p = argmaxp̃F (p̃,Θ).

It is the distribution that maximizes the function F given by

F (p,Θ) = Ep
[

logP (X,Z|Θ)
]

+H(p)

= Ep
[

logP (X,Z|Θ)
]

− Ep
[

logP (Z|X,Θ)
]

= Ep
[

log
(

P (X,Z|Θ)
P (Z|X,Θ)

)]

= Ep
[

logP (X|Θ)
]

= logP (X|Θ).

4.4 Measures of distance and divergence between two vMF

models

In this section, we extend the results of Chapter 2, regarding the the L2 distance, and the
symmetrized Kullback-Liebler divergence between two vMF models in any arbitrary higher
dimension p. In following the same approach as in Chapter 2, we begin with Lemma 4.4.1 to
find the inner product of two vMF distributions, similar to the result in Lemma 2.2.1.

4.4.1 L2 distance between two vMF models

Lemma 4.4.1. For any two vMF distributions f ∼ vMF(x;�1, �1) and g ∼ vMF(x;�2, �2)

∫Sp−1
f (x)g(x)dx =

�s1�
s
2Is(�∗)

(2�)s+1Is(�1)Is(�2)
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where �1, �2 ∈ ℝp are the mean direction vectors such that ‖�i‖ = 1, �1 and �2 the concen-

tration parameters for the respective vMF distributions, f (x) and g(x), s = p∕2 − 1, Iv(�) is

the modified Bessel function of the first kind and order v, and �∗ is defined as,

�∗ = ‖

‖

�1�1 + �2�2‖‖

where ‖ ⋅ ‖ is the usual L2 norm.

Proof: For �1,�2, and x ∈ Sp−1,

∫Sp−1
f (x)g(x)dx = ∫Sp−1

�s1
(2�)s+1Is(�1)

exp
{

�1x ∙ �1
} �s2
(2�)s+1Is(�2)

exp
{

�2x ∙ �2
}

dx

= cp(�1)cp(�2)∫Sp−1
exp

{

x ∙
(

�1�1 + �2�2
)}

dx

If we let u = �1�1 + �2�2, and define,

�∗ = ‖u‖ and �∗ =
u
‖u‖

,

then we can write,

∫Sp−1
f (x)g(x)dx = cp(�1)cp(�2)∫Sp−1

exp
{

�∗x ∙ �∗
}

dx

= cp(�1)cp(�2)
(2�)s+1Is(�∗)

�s∗

= cp(�1)cp(�2)
[

cp(�∗)
]−1

=
�s1�

s
2Is(�∗)

(2�)s+1Is(�1)Is(�2)

Using Lemma 4.4.1, we can proceed with finding the L2 distance between our respective
vMF distributions.
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Proposition 4.4.1. TheL2 distance between two vMFdistributions, f (x;�1, �1) and g(x;�2, �2)

with �1,�2, and x ∈ Sp−1, is given by,

∫Sp−1
(f (x) − g(x))2 dx = 1

(2�)s+1

[

�s1Is(2�1)
[

Is(�1)
]2
+
�s2Is(2�2)
[

Is(�2)
]2
− 2

�s1�
s
2Is(�∗)

Is(�1)Is(�2)

]

where �∗ is defined as in Lemma 4.4.1.

Proof:

∫Sp−1
(f (x) − g(x))2 dx = ∫Sp−1

(f (x))2 dx + ∫Sp−1
(g(x))2 dx − 2∫Sp−1

f (x)g(x)dx

=
[

cp(�1)
]2

∫Sp−1
exp

{

2�1x ∙ �1
}

dx+

[

cp(�2)
]2

∫Sp−1
exp

{

2�2x ∙ �2
}

dx−

2cp(�1)cp(�2)
[

cp(�∗)
]−1

= cp(�1) ⋅
Is(2�1)
Is(�1)

+ cp(�2) ⋅
Is(2�2)
Is(�2)

− 2
(

cp(�1)cp(�2)
[

cp(�∗)
]−1

)

= 1
(2�)s+1

[

�s1Is(2�1)
[

Is(�1)
]2
+
�s2Is(2�2)
[

Is(�2)
]2
− 2

�s1�
s
2Is(�∗)

Is(�1)Is(�2)

]

4.4.2 L2 distance between two vMF Mixtures

We finish the L2 distance investigation, by giving said distance between two vMF mixture
models. To accomplish this, we only need the standard calculus machinery and to apply Lemma
4.4.1.

Proposition 4.4.2. Define two vMF mixture distributions by,

ℎ1(x) =
k
∑

i=1
pifi(x;�i, �i) and ℎ2(x) =

l
∑

j=1
qjgj(x;�j , �j), (4.1)

with the usual constraints, pi ≥ 0 for i = 1,… , k, qj ≥ 0, for j = 1,… l,
∑k

i=1 pi =
∑l

j=1 qj = 1,
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and component distributions,

fi(x) = vMF(x;�i, �i) and gj(x) = vMF(x;�j , �j),

for x ∈ Sp−1, �i,�j ∈ Sp−1, �i ≥ 0, �j ≥ 0 for i = 1,… , k and j = 1,… , l respectively.

Then, the L2 distance between ℎ1(x) and ℎ2(x) is given by,

∫Sp−1

(

ℎ1(x) − ℎ2(x)
)2 dx

=
k
∑

i=1

k
∑

i′=1
pipi′

�si �
s
i′Is(�

∗
ii′)

Is(�i)Is(�i′)
+

l
∑

j=1

l
∑

j′=1
qjqj′

�sj�
s
j′Is(�

∗
jj′)

Is(�j)Is(�j′)
− 2

k
∑

i=1

l
∑

j=1
piqj

�si �
s
jIs(�

∗
ij)

Is(�i)Is(�j)

where s = p∕2 − 1, Ip(⋅) is the modified Bessel function of the first kind, order p, and �∗ii′ , �
∗
jj′ ,

and �∗ij are defined in the same way as �∗ in Lemma 4.4.1, for the respective component pairs.

Proof:

∫Sp−1

(

ℎ1(x) − ℎ2(x)
)2 dx

= ∫Sp−1

(

ℎ1(x)
)2 dx + ∫Sp−1

(

ℎ2(x)
)2 dx − 2∫Sp−1

ℎ1(x)ℎ2(x) dx

=
k
∑

i=1

k
∑

i′=1
pipi′ ∫Sp−1

fi(x)fi′(x) dx +
l

∑

j=1

l
∑

j′=1
qjqj′ ∫Sp−1

gj(x)gj′(x) dx−

2
k
∑

i=1

l
∑

j=1
piqj ∫Sp−1

fi(x)gj(x) dx

=
k
∑

i=1

k
∑

i′=1
pipi′

�si �
s
i′Is(�

∗
ii′)

Is(�i)Is(�i′)
+

l
∑

j=1

l
∑

j′=1
qjqj′

�sj�
s
j′Is(�

∗
jj′)

Is(�j)Is(�j′)
− 2

k
∑

i=1

l
∑

j=1
piqj

�si �
s
jIs(�

∗
ij)

Is(�i)Is(�j)

49



Clustering Textual Data with Directional Statistics Chapter 4

4.4.3 KL divergence between two vMF models and its symmetric version

KL divergence between two vMF models

Extending our results above, from the unit circle in two-dimensions, to the vonMises-Fisher
model on the unit hyper-sphere.
Proposition 4.4.3. For any two vMF distributions f ∼ vMF(x;�1, �1) and g ∼ vMF(x;�2, �2),
where, �1, �2, and x ∈ Sp−1, the Kullback-Liebler divergence measure is given by,

DKL(f, g) = s log(�1) − s log(�2) − log(Is(�1)) + log(Is(�2)) + �1 − �2(�2 ∙ �1)

where s = p∕2 − 1, Iv(�) is the modified Bessel function of the first kind.

Proof: Let f (x;�1, �1) and g(x;�2, �2) be two independent vMF distributions, for mean
vectors �1, �2 ∈ Sp−1.
Then the KL divergence between f and g is given by,

DKL(f, g) = ∫Sp−1
log

(

f (x)
g(x)

)

f (x) dx

= ∫Sp−1
log(f (x))f (x)dx − ∫Sp−1

log(g(x))f (x)dx

= s log(�1) − log(Is(�1)) + ∫Sp−1
�1(x ∙ �1)f (x)dx−

s log(�2) + log(Is(�2)) − ∫Sp−1
�2(x ∙ �2)f (x)dx

= s log(�1) − log(Is(�1)) + �1�T1 ∫Sp−1
xf (x)dx−

s log(�2) + log(Is(�2)) − �2�T2 ∫Sp−1
xf (x)dx

= s log(�1) − log(Is(�1)) + �1(�1 ∙ �1) −

s log(�2) + log(Is(�2)) − �2(�2 ∙ �1)

= s log(�1) − log(Is(�1)) + �1 − s log(�2) + log(Is(�2)) − �2(�2 ∙ �1),
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verifying the proposition above.

A Symmetric KL divergence between two vMF models

Extending the simple SKL divergence to the vMF distribution,

Proposition 4.4.4. The symmetric KL divergence, SKL, between any two vMF distributions

f ∼ vMF(�1, �1) and g ∼ vMF(�2, �2), where, �1, �2 ∈ ℝp are of unit length, so that they lie

on the unit hypersphere Sp−1, the SKL divergence measure is given by,

SKL(f, g) = (�1 + �2)
(

1 − (�1 ∙ �2)
)

Proof:

SKL(f, g) = DKL(f, g) +DKL(g, f )

= s log(�1) − log(Is(�1)) + �1 − s log(�2) + log(Is(�2)) − �2(�2 ∙ �1)+

s log(�2) − log(Is(�2)) + �2 − s log(�1) + log(Is(�1)) − �1(�1 ∙ �2)

= (�1 + �2)
(

1 − (�1 ∙ �2)
)

giving us the desired result.

4.5 Data: Into the Expanse of the Twitter world

The data set we are working with is a subset of a larger “Twitter" data collected in real time,
from October 14, 2016 until November 24, 2016. Our subset contains data collected on just one
day, the November 8th, 2016, which was the day of the last United States Presidential election.
Twitter allows free collection of public tweets, provided the collector has an account. All of
the reported data has been anonymized to some extent, as we are only collecting the actual text
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of the tweet. To capture the data, I used the Twitter firehose API, with a list of keywords that
pertained to the 2016 United States Presidential election.

Over the course of the collection period, we managed to capture more than 100 million
tweets, which we have now stored on a MySQL database, for ease of retrieval and scalability.
Given the extremely large corpus size (or even the relatively large corpora sizes, if we consider
the dataset a collection of corpora over time), the data is very...very sparse. This lends itself
well to the spherical representation. Also, one would expect the topics to evolve over time.
Political pundits use the phrase momentum swing, but can we capture such swings in the data?
Is there a statistically significant change in model parameters as the focal point of the national
conversation surrounding the election, changes? Canwe detect andmodel any changes, whether
that is weekly, daily, or hourly, as the news cycle refreshes itself? Can we detect shocks to the
twitter-verse. For example, can we identify the effect of James Comey’s announcement on the
second round of investigations into H. Clinton’s email server, and if so, what were any lasting
effects in the two weeks leading up to the election?

Is the contentious and extremist/nationalistic rhetoric used by the respective campaigns
echoed in the different clusters of tweets. Furthermore, can we identify features of different
clusters that provide statistically significant evidence of affiliation with one campaign or ideol-
ogy over another?

Finally, we ask if we can identify change points in our model that might provide quantitative
evidence regarding the impending election. This last point is interesting from both an empirical
and sociological perspective, as very nearly every prediction about the election results, went
awry.

To assess this, we will look at the L2 distance between the fitted mixtures for successive
hours, over the twenty-four hour period of November 8th. One issue of note is the extremely
large vocabulary of our corpus which contains over 1.2 million terms. However, given the
abbreviations, colloquialisms, and slang terms inherent in twitter data, we need to find terms
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that are meaningful for differentiating documents and identifying groups within the larger set, so
after appropriate pre-processing of the data, we can and do remove many of these uninformative
terms.

Further, for the purposes of this work, we will pare down the vocabulary further to a toy

example size, ensuring the problem is tractable with respect to computational requirements, so
that we are able to run the job on a local machine, instead of on a large cluster of processors. We
were able to remove extremely sparse terms, where we set the sparsity threshold to 0.975, which
means that we only keep vocabulary terms that appear in at least D ∗ (1 − 0.975) documents.
This does result in some documents becoming empty, once their respective vocabulary terms
are excluded, and as such, we remove such documents as well. From our initial 5, 781, 560
documents, we retain 3, 361, 574 tweets, with a vocabulary of size p = 23. In Table 4.1, we give
our final example dictionary and the associated term frequency - inverse document frequency
(tf-idf) weights,

In Figure 4.1, we plot the volume of tweets collected each hour, for both the raw number
of tweets represented by the upper line (gold points and blue line) as well as the volume after
reducing the vocabulary and removing empty documents represented by the lower line (blue
points with the gold line).

We can see that the hour-by-hour trends are nearly identical volume-wise, with the only
difference being the magnitude of the of tweets considered. Finally, in Figure 4.3 we present
the L2 distance between successive hours of tweets, modeled as estimated mixtures of vMF
distributions on the hypersphere, S22.

In Figure 4.2 we see the number of vMF mixture components by hour over the course of
the day. To more fully illuminate how that translates to the mixture formulation, we will use
the zero-hour and first hour, as our ℎ1 and ℎ2 from Equation (4.4.2). For the sake of brevity, we
will not include the 23-dimensional mean direction vectors in the equations, but do include the
mixture proportions and the concentration values, with the mean vectors given in Table 4.2.
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Term tf-idf Weight
amp 3.4896
get 3.9376

election 2.5576
like 3.9635
just 3.1467
think 4.3785
will 3.0584
now 4.0120
can 4.2325

people 3.9808
voted 4.2897
america 0.9622
make 0.9706
today 0.8906

tomorrow 1.0104
day 1.0815

electionday 1.0065
new 4.4971
wins 2.2296
dont 1.7931
voting 3.4751
win 2.8243

president 1.9347
Table 4.1: Selected Vocabulary and tf-idf Weights

ℎ1(x) =
3
∑

i=1
pifi(x; �̂fi , �̂i)

= 0.8099f1(x; �̂f1 , 6.9644)+

0.0759f2(x; �̂f2 , 66.1739)+

0.1142f3(x; �̂f3 , 32.6826)

ℎ2(x) =
2
∑

j=1
qjgj(x; �̂gj , �̂j)

= 0.0825g1(x; �̂g1 , 69.2713)+

0.9175g2(x; �̂g2 , 6.9784)

Notice that the components with extreme concentration values, have small proportion val-
ues. These two elements work to offset each other, in some sense, as a single component vMF
distribution with a concentration value of 60 or 100 would be a near degenerate distribution,
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Figure 4.1: Volume of tweets per hour, upper line is the raw volume, lower line is the post
vocabulary reduced volume

with all of the mass concentrated at the mean.
Keeping in mind that we are working with the 24-hour clock, the first observation in Figure

4.3 of L2 model difference is between the vMF model of the 0-hour tweets collected between
midnight, 00:00:00 and 00:59:59, and the model of the 1-2 a.m. tweets, collected from 01:00:00
and 01:59:59, which produces a 1-hour offset, we see two smaller bumps and one dramatic spike.
The first of the bumps seems to correlate with the start of the day, and when the election polls
were opening on the east coast, while the second seems to coincide with the end of the day on
the east coast, and approximately when the election was called for the eventual winner, Donald
Trump, after the contest was called in his favor in Utah and Iowa. The large spike seems to
coincide with when the results began to come in, with projections favoring a Trump win in
states of Indiana and Kentucky.

One thing to note is that this is still an illustrative subset from the very large data set. Admit-
tedly, with such a small vocabulary, we are looking at election day from a high-level overview,
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Term �̂f1 �̂f2 �̂f3 �̂g1 �̂g2amp 0.4028 0.0001 0.0042 0.0001 0.3447
get 0.2012 0.0007 0.0021 0.0004 0.1861

election 0.1228 0.0342 0.7556 0.0086 0.3190
like 0.2540 0.0064 0.0008 0.0032 0.2085
just 0.1299 0.8692 0.0030 0.8561 0.1231
think 0.1089 0.3545 0.0019 0.3777 0.0973
will 0.1775 0.0011 0.6517 0.0003 0.3579
now 0.1946 0.3428 0.0010 0.3526 0.1723
can 0.2022 0.0002 0.0012 0.0001 0.1740

people 0.2364 0.0001 0.0024 0.0002 0.2225
voted 0.0716 0.0002 0.0006 0.0003 0.0809
america 0.2257 0.0000 0.0035 0.0001 0.2001
make 0.1484 0.0000 0.0278 0.0001 0.1335
today 0.0727 0.0001 0.0010 0.0002 0.0570

tomorrow 0.2949 0.0003 0.0151 0.0000 0.2722
day 0.1247 0.0000 0.0113 0.0000 0.0958

electionday 0.0315 0.0000 0.0009 0.0000 0.0295
new 0.2671 0.0001 0.0005 0.0002 0.2020
wins 0.1163 0.0001 0.0057 0.0001 0.1030
dont 0.2971 0.0006 0.0010 0.0004 0.3003
voting 0.2724 0.0005 0.0053 0.0007 0.2801
win 0.1797 0.0003 0.0556 0.0000 0.1561

president 0.2372 0.0002 0.0061 0.0001 0.2071
Table 4.2: Vocabulary and Estimated vMF Means for Hours 1 and 2

painted with a broad brush. What is interesting however, is that even at this macro level, changes
in our model correlate with events that reflect on-the-ground realities.
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Figure 4.2: Number of vMF Mixture Components by Hour
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Figure 4.3: L2 distance between successive hours of vMF models on November 8th
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Chapter 5

Simulation and Visualization of Spherical

Distributions

5.1 Introduction

In a recent paper titled “Harmonic analysis and distribution-free inference for spherical

distributions" [4], Jammalamadaka and Terdik consider new spherical models and inference for
directional data in 3-dimensions. In this chapter, we consider the simulation, visualization, and
fitting of such spherical distributions, in support of the dictum, “A picture is worth a thousand
words." Here, we provide computational algorithms to simulate several spherical models, and in
selected cases, also provide alternate and improved algorithms for some existing models, so that
a user can compare alternate approaches for generating such random variates. The MATLAB
scripts used to generate the figures contained herein are made available as a MATLAB package
titled “3D-Directional Statistics, Simulation and Visualization" (3D-Directional-SSV).

Vector space representation provides a very efficient method for displaying and analyzing
spherical data, both in the natural world as well as for the theoretical framework. Further practi-
cal exploration and analysis in this area depends on related software and associated algorithms,
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which is our goal here. We consider spherical distributions on the surface of the unit sphere S2
embedded in ℝ3, with the aim of validating and testing the theory presented in [4], as well as
in related papers by others on this topic. We develop the necessary computational tools in the
form of the MATLAB package “3D-Directional-SSV" to achieve this goal, which we believe
will be a valuable resource for scientists interested in statistical analysis of directional data in
3-dimensions.

We start with a broad family of distributions, whichwe call the “Generalized Fisher-Bingham
(GFB) family", and point out the structure and relationship between various subfamilies therein.
We review and reconsider earlier work by [21], [22], and a more recent R-package by [23] for
the simulation of selected distributions belonging to this GFB family. Our MATLAB package
makes appropriate modifications needed for our specific context, taking advantage of recent
developments in software routines. Just to cite two examples, first our methods help increase
the computational efficiency for the equal area projection case of the Kent model in theGFB5,K

family, and second, consider additional parameter scenarios that have not been discussed before.
The main impetus for this computational exploration is in support of the theoretical work

given in [4]. Besides covering the entire GFB family of distributions, our work provides visu-
alization and simulation tools for new spherical distributions characterized by their spherical
harmonics as discussed there. Such visualization of spherical models and plotting of densities
and histograms is made possible on the surface of the unit sphere in high relief, as opposed to
the more typical heatmap representation. The topographical composition of the plots (density,
simulated data, and histogram) provide a much clearer graphical representation.

In Section 2, a brief account of the GFB family of distributions is given, along with a
schematic diagram of the relationships between GFB subfamilies. We then describe the inter-
relationships for the various subfamilies and the background theory needed for later simulations.
Section 3 describes how a histogram for a random sample of observations on the unit sphere
S2, may be plotted. Section 4 includes various algorithms for the simulations and visualization,
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along with requisite explanations. We provide as supplementary material to this chapter, a
comprehensive MATLAB package which contains: (i) MATLAB scripts for the Figures and
Algorithms contained in this chapter (ii)A MATLAB package, called “3D-Directional-SSV"
containing variousMATLAB scripts for generating different spherical models described below,
as well as tools for implementing other manipulations on spherical data such as plotting, etc.

5.2 GFB family of distributions

Let
x̃ = x̃ (#, ') = (sin # cos', sin # sin', cos #)⊤ ,

represent a point on the surface of the unit sphere S2 in ℝ3, with colatitude # ∈ [0, �] and
longitude ' ∈ [0, 2�]. We consider density functions f (

x̃
) on such an S2.

We shall use two alternate notations for a density viz. f (

x̃
) and f (#, '), the main dif-

ference between them being that f (

x̃
) corresponds to the measure Ω (

dx̃
)

= sin #d#d',
while f (#, ') includes sin # in it, and corresponds to the measure d#d' on the set (#, ') ∈
[0, �] × [0, 2�]. For instance, ifX is a random unit vector which is distributed uniformly on S2
(see [24], Section 9.3.1), then the Uniform density f (

x̃
)

= 1∕4�, x̃ ∈ S2 is constant, while at
the same time, in terms of the coordinates (Θ,Φ), the probability density becomes

f (#, ') = 1
4�
sin #,

so that Θ and Φ are independent, with Θ distributed as (sin #) ∕2 on [0, �] and Φ is uniform on
[0, 2�].

A consequence of this to the simulation of random variates on the unit sphere S2 is the
following. One may simulate a random variate (Θ,Φ) according to the density f (#, ') and
then use x̃ (Θ,Φ) = (sinΘ cosΦ, sinΘ sinΦ, cosΘ)⊤ for a random point on S2, or simulate
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Figure 5.1: Relationships Between GFB Family Distributions

directly a random variate X̃ ∈ S2 according to the density f
(

x̃
).

A distribution is considered uni-, bi-, and multi-modal, if it has one, two, or more modes.
In case there are two modes which are diagonally opposite, i.e. there is an axis joining the two
modes, we call this distribution axial or bipolar. If the mass is concentrated around the main
circle, it will be called a girdle distribution. Examples that follow, will make these notions
clear.

One of the earliest and commonly used models for spherical data is the (unimodal) von
Mises-Fisher distribution [25] which can be extended to an antipodally symmetric model, as
given by the Dimroth [26] and Watson [27]. Such antipodally symmetric models were further
generalized by Bingham [28], and these models, belonging to a particular set of exponential
type distributions, shall be called the GFB family. It has several subfamilies according to the
number of parameters, the Figure 5.1 shows a Diagram of Relationships betweenGFB Families
of Distributions.

The most general GFB family, which we shall call FB8, contains 8 parameters, and can be
represented by the density [28],

f8
(

x̃; �̃
0
, �, A

)

≅ exp
(

��̃
0
⋅ x̃ + x̃⊤Ax̃

)

, (5.1)
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where ≅ denotes equality up to a multiplicative constant and where �̃
0
∈ S2, A is a symmetric

3 × 3 matrix and �̃
0
⋅ x̃ denotes the usual inner product. Matrix A has the form A =MZM⊤,

whereM =
[

�̃
1
, �̃

2
, �̃

3

]

is an orthogonal matrix andZ = diag
(

�1, �2, �3
) is a diagonal matrix.

Letting � be an arbitrary constant, we can show that changing thematrixA toA1 =MZ1M⊤

in (5.1), where
Z1 = diag

(

�1 − �, �2 − �, �3 − �
)

, (5.2)

the density (5.1) will not change. To avoid identifiability problems it is necessary to impose
some constraints. Setting � = (

�1 + �2 + �3
)

∕3, one usually assumes that

tr (A) = �1 + �2 + �3 = 0. (5.3)

Under this assumption �3 = −�1 − �2, i.e. Z is given by the two parameters �1 and �2.
The density (5.1) has 8 parameters, namely

1. the parameter �,

2. two angles (#�, '�
), which define �̃

0
=
(

sin #� cos'�, sin #� sin'�, cos #�
)⊤,

3. the two eigenvalues �1, �2, of A, and

4. three Euler angles which define the orthogonal matrixM , considered as a rotation matrix.

Using the terminology of Kent ([22]), this is the GFB8 model, and has the density (5.1) of
the form,

f8
(

x̃; �̃
0
, �, �1, �2,M

)

≅ exp

(

��̃
0
⋅ x̃ +

3
∑

k=1
�k
(

�̃
k
⋅ x̃

)2
)

.

If we set � = (

�1 + �2
)

∕2 in (5.2), an equivalent form of (5.1) can be derived such that the
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density is given by,

f8
(

x̃; �, �, , �̃
0
,M

)

≅ exp
(

��̃
0
⋅ x̃ + 

(

�̃
3
⋅ x̃

)2
+ �

(

(

�̃
1
⋅ x̃

)2
−
(

�̃
2
⋅ x̃

)2
))

. (5.4)

Here we shall consider densities of the form (5.4). In this form, the set of parameters �, �,
and  satisfy: � ∈ ℝ, � ≥ 0,  ∈ ℝ.

Remark 3. Notice that we are allowing for � ∈ ℝ—however a sign change of � is equivalent to

changing either �̃
0
to −�̃

0
, or x̃ to −x̃, since the quadratic form in the density (5.4) is invariant

under the transformation x̃ to −x̃. The sign change of � will interchange hemispheres only,

therefore modulus |�|, in some cases, can be considered as the parameter of concentration. If

� ≤ 0, then

f8
(

x̃; �, �, , �̃
0
,M

)

= f8
(

−x̃; −�, �, , �̃
0
,M

)

= f8
(

x̃; −�, �, ,−�̃
0
,M

)

.

In terms of colatitude and longitude one can use the transformation #→ �−#, and '→ '+�,

to change x̃→ −x̃.

Although we mention the GFB8 distribution here for completeness, in practice convenient
restrictions discussed in the next section, will allow us to reduce the number of parameters
without loss of any generality or flexibility.

5.2.1 Model GFB6

We apply a restriction on theGFB8 by setting either �̃0 = �̃3, or by assuming �̃
0
is collinear

to �̃
3
in (5.4). In this way, we can reduce the number of parameters by two i.e. by the two angles
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(

#�0 , '�0
), which define �̃

0
. The resulting GFB6 model has a density given by,

f6
(

x̃; �, �, ,M
)

≅ exp
(

��̃
3
⋅ x̃ + 

(

�̃
3
⋅ x̃

)2
+ �

(

(

�̃
1
⋅ x̃

)2
−
(

�̃
2
⋅ x̃

)2
))

. (5.5)

We can transform the original xyz system into an orthogonal system defined by M =
[

�̃
1
, �̃

2
, �̃

3

]

, via two rotations. The first rotation,G�̃
3
,Ñ , will rotate the North pole Ñ = (0, 0, 1)⊤

to �̃
3
, i.e. G�̃

3
,ÑÑ = �̃

3
which can be constructed in the following way. The vectors Ñ and

�̃
3
define a plane with normal vector Ñ × �̃

3
(cross product). Now, let Ñ× �̃

3
be the axis of

rotation and rotate Ñ to �̃
3
. This rotation depends solely on �̃

3
, i.e. by the two angles #� and

'� of �̃3. When we rotate the sphere by G�̃
3
,Ñ , the plane of rotated x− and y− axes coincides

with the plane defined by �̃
1
and �̃

2
, since �̃

3
is now perpendicular to both planes. Using �̃

3

as the axis of rotation, next we rotate the sphere by an angle  ∈ [0, 2�] so that �̃
1
coincides

with the rotated x-axis, and �̃
2
coincides with the rotated y-axis. We will denote this rotation

by G�̃
1,2
,xy. These three angles #�, '� and  , called Euler angles, characterize the rotation from

the original orthogonal system to the orthogonal systemM =
[

�̃
1
, �̃

2
, �̃

3

]

.
Note here that the rotations from one system to another one are not unique and in our sim-

ulations we shall apply the above rotation for the densities, their simulations, and histograms.
The six parameters of Model GFB6 are then �, �,  and M . If �̃

3
is known we can apply

G�̃
3
,Ñ and rotate it to the North pole Ñ and (5.5) will have the form

f6
(

x̃; �, �, , Ñ,  
)

≅ exp
(

�x̃3 + x̃23 + �
(

(

�̃1
1
⋅ x̃

)2
−
(

�̃1
2
⋅ x̃

)2
))

,

where again, x̃ = (

x̃1, x̃2, x̃3
), and �̃1

k
are the transformed �̃

k
, by G�̃

3
,Ñ . Applying G�̃

1,2
,xy, the

density in the new coordinate system is

f6
(

x̃; �, �, , Ñ, 0
)

≅ e�x̃3+x̃23+�(x̃21−x̃22) = e� cos #+ cos2 #+� sin
2 # cos 2'.
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For simplicity, if �̃
3
= Ñ and  = 0, we introduce the notation

f6
(

x̃; �, �, 
)

= f6
(

x̃; �, �, , 0, Ñ
)

,

and call it the canonical form.
The mean direction �̃ of the model GFB6, given by (5.5), is characterized by a constant

times �M⊤Ñ , in particular if � = 0, then �̃ is undefined (�̃ = 0, see [4] for details).

Remark 4. The Model GFB6 is rotationally symmetric about the axis Ñ if and only if � = 0

(see [4]). An example of rotational symmetry of GFB6, when � ≠ 0, is given in Remark 7,

where the axis of rotation is the y−axis.

From now on we consider densities in the canonical form and simulate random variates
when �̃

3
= Ñ and  = 0. If we are given a matrix of rotation M =

[

�̃
1
, �̃

2
, �̃

3

]

, then we
apply this rotation as the last step of the simulation. As we have seen above, this rotation can
be given by �̃

3
and angle  , such that we rotate Ñ to �̃

3
, then use �̃

3
as the axis of rotation

and rotate the sphere by angle  . This is the reverse rotation from what we described above.
Formally, we apply the product of the two rotationsGÑ,�̃

3
⋅Gxy,�̃

1,2
. (The product of two rotations

G�̃
3
,Ñ ⋅ G�̃

1,2
,xy is again, a rotation.)

Considering the density under the transformation x = cos# with the derivative −dx =

sin #d#, as is done in [21],

x̃1 =
√

1 − x2 cos', x̃2 =
√

1 − x2 sin', x̃3 = x, (5.6)

we obtain what we will hereafter refer to as, the basic form of the density f6, given by,

g6 (x, '; �, �, ) ≅ e�x+x
2+�(1−x2) cos 2'

= e�(1−x2) cos 2'e�x+x2 . (5.7)
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This is the joint density in x and ', and can be considered as the product of two densities, where
exp

(

�x + x2
) is a density in x, and exp (� (1 − x2) cos 2') is the conditional density of '

given x. More precisely

g6 (x, '; �, �, ) = gΦ|X ('|x; �) g6,X (x; �, ) ,

where

g6,X (x; �, �, ) ≅ exp
(

�x + x2
)

∫

2�

0
e�(1−x2) cos 2'd' = I0

(

�
(

1 − x2
))

e�x+x2 .

It follows from (5.7) that
gΦ|X ('|x; �) ≅ e�(1−x

2) cos 2'. (5.8)

The densities g6,X (x; �, �, ) and gΦ|X ('|x; �) will be called the marginal density, and condi-

tional density respectively. Since this conditional density gΦ|X remains the same throughout
this discussion, we do not refer to the specific subfamily to which it corresponds.

Remark 5. When X = x is given, the conditional density (5.8) follows vMF distribution (see

Section 5.2.6) with parameter �
(

1 − x2
)

and is a function of 2'. It is worth mentioning that

gΦ|X ('|x; �) is not a vMF distribution on the unit sphere S2 since the sin 2' component is

missing from (5.8), but it is vMF distributed on the unit circle S1.

We now consider special cases of ModelGFB6, when one of the basic parameters �, �,  is
zero. Although the densities in these cases follow directly from the densities f6 and g6, we list
them individually in order of decreasing complexity. The algorithms for the simulation of these
models will be given in Section 5.4, in reverse order, incrementally increasing the number of
parameters and model complexity.
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5.2.2 Kent Model GFB5,K

Let  = 0, in (5.5). Then, the number of parameters in f6
(

x̃; �, �, ,M
) is reduced by one

(i.e. by parameter ), and has the form

f5
(

x̃; �, �,M
)

≅ exp
(

��̃
3
⋅ x̃ + �

(

(

�̃
1
⋅ x̃

)2
−
(

�̃
2
⋅ x̃

)2
))

, (5.9)

which defines the five parameter model GFB5,K . The five parameters are �, �, and M , with
canonical form

f5
(

x̃; �, �
)

≅ e�x̃3+�(x̃21−x̃22).

In terms of # and '
f5

(

x̃; �, �
)

≅ e� cos #+� sin
2 # cos 2', (5.10)

see [21]. If we apply transformation (5.6) then the corresponding basic form is

g5 (x, '; �, �) = gΦ|X ('|x; �) g5,X (x; �) ,

where
g5,X (x; �, �) ≅ I0

(

�
(

1 − x2
))

e�x, (5.11)

see (5.8) for conditional density gΦ|X . Furthermore, if 2� ≤ � the distribution is unimodal with
mode at �̃

3
, which is the case Kent originally considered in [22]. If 2� > � the distribution is

bimodal, with modes at longitude ' = 0 and �, with the third coordinate, x̃3, defined by the
equation cos # = �∕2� for both modes.

Remark 6. The MATLAB scripts are all listed in the Supplement, and are part of the package

“3D-Directional-SSV".

When 2� ≤ �, the parameters in this model have the interpretation (see [22])
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Figure 5.2: Kent density, left: bimodal, 2� > �, modes are at # = �∕4, and ' = 0, �; right:
unimodal, 2� ≤ �

1. |�| represents the concentration

2. �̃
3
is the mean direction (pole or mode)

3. �̃
1
and �̃

2
are, respectively, the major and minor axes of constant probability ellipses near

the mode, and are determined only up to sign.

Equal area projection and separability of GFB6

Equal area projection of spherical densities provide some possibility of simulations on a
disk in the plane. As mentioned in [29], in the particular case when 2� ≤ �, model GFB5,K

represents Lambert’s equal area projection of the sphere

y1 = r cos', y2 = r sin', r = sin (#∕2) , (5.12)

68



Simulation and Visualization of Spherical Distributions Chapter 5

and separates the density (5.10) by coordinates y1 and y2. The inverse of this transform

cos # = 1 − 2
(

y21 + y
2
2

)

, (5.13)

sin' =
y22

√

y21 + y
2
2

,

cos' =
y21

√

y21 + y
2
2

,

will be useful in simulations.
The transformed Kent model GFB5,K can be written as

f5
(

y1, y2; �, �1, �2
)

≅ e−2(�−2�)y21−4�y41e−2(�+2�)y22+4�y42 ,

as shown in the Lemma below. The transformed coordinates thus become independent, and in
fact the Lemma also shows that the converse of this statement is true.

Lemma 5.2.1. Consider the model GFB6 with density given in the form

f6
(

x̃; �, �1, �2
)

≅ exp

(

�x̃3 +
3
∑

k=1
�kx̃

2
k

)

. (5.14)

The equal area projection f6
(

y1, y2; �, �1, �2
)

of (5.14) will be separable in y1 and y2 if and

only if f6
(

y1, y2; �, �1, �2
)

corresponds to the Kent model GFB5,K .

Proof: Let us start from the GFB6 density

f6
(

x̃; �, �1, �2
)

≅ exp

(

�x̃3 +
3
∑

k=1
�kx̃

2
k

)

.
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Now, applying the equal area projection (5.12), We have

x̃3 = cos # = 1 − 2r2,

x̃21 = 4
(

1 − r2
)

y21,

x̃22 = 4
(

1 − r2
)

y22,

x̃23 = 1 − 4r
2 (1 − r2

)

so that

f6
(

y1, y2; �, �1, �2
)

≅ exp
(

−2�r2 + 4
(

1 − r2
) (

�1y
2
1 + �2y

2
2 − �3r

2)) , (5.15)

where r2 = y21 + y22. Now, expanding the exponent gives us

− 2�
(

y21 + y
2
2

)

+ 4�1y21 + �2y
2
2 − �3

(

y21 + y
2
2

)

− 4�1y41 − 4�2y
4
2 + 4�3

(

y41 + y
4
2

)

− 4y21y
2
2

(

�1 + �2 − 2�3
)

.

It is clear the density (5.15) will be separable in y1 and y2 if and only if

�1 + �2 − 2�3 = 0. (5.16)

The sum �1+�2−2�3 is invariant under the transformation (5.2), therefore setting � = (

�1 + �2
)

∕2,
in (5.2), (5.16) implies  = �3 −

(

�1 + �2
)

∕2 = 0, in other words the model is the Kent model
GFB5,K .
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5.2.3 Bingham Model GFB5,B

An alternate way of reducing the number of parameters in (5.5) by one, is by setting � = 0.
This yields the density, with canonical form

fB
(

x̃; �, 
)

≅ ex̃23+�(x̃21−x̃22) = e cos2 #+� sin
2 # cos 2'. (5.17)

Application of transformation (5.6) gives the basic form

gB (x, '; �, ) = gΦ|X ('|x; �) gB,X (x; ) ,

where
gB,X (x, �, ) ≅ I0

(

�
(

1 − x2
))

ex2 ,

see (5.8) for conditional density gΦ|X . Here, the marginal density gB,X contains the expres-
sion exp (x2) which corresponds to the Dimroth-Watson (DW) distribution, defined below in
Equation (5.19).

Remark 7. In the special case when � =  , the density (5.17) has the form

fB
(

x̃; �, 
)

≅ ex̃23+�(x̃21−x̃22) ≅ e−2x̃22 . (5.18)

This model (5.18) is a rotation of the DW model (see Equation (5.19)) with negative parameter

(recall that � > 0) and therefore (5.18) is a girdle distribution around the main circle x̃2 = 0.

We now fix � and change  to consider three scenarios: if  < �, then it is bipolar with
modal direction x−axis, if � =  , then it is girdle, finally, if � <  , then the modal direction is
the North pole Ñ , see Figure 5.3.
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Figure 5.3: Bingham model; � = 3.2, for all cases,  = −1.1 < �,  = 3.2 = � and
 = 4.1 > � from left to right respectively, here �̃ = (0, 0, 1)⊤, and  = 0.

5.2.4 Model GFB4,�

We now consider the simplest form when the conditional density gΦ|X is not constant,
namely when the Θ and Φ are not independent random variables. Setting either � = 0 and
 = 0 in (5.5), or � = 0 in (5.9), or  = 0 in (5.17), we get the density function which is a
four-parameter family of distributions, with the canonical form

f�
(

x̃; �
)

≅ e�(x̃21−x̃22) = e� sin
2 # cos 2'.

The basic form
g� (x, '; �) ≅ e�(1−x

2) cos 2'

coincides formally with the conditional density gΦ|X . Nevertheless, the marginal density is not
uniform, since

g� (x, '; �) = gΦ|X ('|x; �) g�,X (x, �) ,

where
g�,X (x, �) ≅ I0

(

�
(

1 − x2
))

,

and as mentioned earlier, gΦ|X follows vMF distribution on the circle see (5.8).
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5.2.5 Model GFB4

Setting � = 0, in (5.5) we reduce the number of parameters by two (�, and angle  ) the
result in canonical form is

f4
(

x̃; �, 
)

≅ e�x̃3+x̃23 = e� cos #+ cos2 #.

This density does not depend on longitude '. Instead, it depends only on cos # and hence, is
rotationally symmetric (see Lemma 4 [4]). Transformation (5.6) provides the basic form

g4 (x; �, ) ≅ e�x+x
2 .

A particular case of Model GFB4 when � = 0, is the following three parameter family:

5.2.6 Dimroth-Watson Model GFB3,DW

The Dimroth-Watson Distribution (DW) [30] distribution is given by the density function,

fW
(

x̃; , �̃
)

= 1
M (1∕2, 3∕2, )

e
(

�̃⋅x̃
)2

= 1
M (1∕2, 3∕2, )

e cos2 #, (5.19)

whereM (1∕2, 3∕2, ) is the Kummer function (not to be confused with the orthogonal matrix
M described above) and where # = arccos

(

�̃ ⋅ x̃
)

, [4]. Either setting  = 0 in Model GFB4,
or � = 0 in the Kent Model GFB5,K , we arrive at the most basic model on the sphere viz. the
von Mises-Fisher distribution.

Model GFB3,vMF The density of this widely used von Mises-Fisher Model (vMF) is given
by

fvMF

(

x̃; �, �̃
)

=

√

�

(2�)3∕2 I1∕2 (�)
e��̃⋅x̃, (5.20)
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with basic form
gvMF (x; �) =

√

�

(2�)3∕2 I1∕2 (�)
e�x.

5.3 A Spherical Histogram

A histogram for a random sample on the unit sphere S2 assumes an equal-area discretiza-
tion of the sphere. We consider the HEALPix (Hierarchical, Equal Area and iso Latitude
Pixelization) discretization, a detailed description of which can be found in [31]. In the first
step of the pixelization the sphere is partitioned into 12 equal-area spherical quadrilaterals (pix-
els), and in each subsequent step, all the existing pixels are divided into 4 equal-area quadri-
laterals. HEALPix is a discretization with the resolution parameter nside (number of steps of
division, which is a power of 2) and total number of pixels equal to npix ∶= 12n2side, such that
∑npix

k=1 nk = n, and each with an area of 4�∕npix.
If we are given a random sample X̃j , j = 1, 2,… n, on the sphere S2, then for each pixel/

quadrilateral Πk, k = 1, 2,… npix we set an integer nk which counts the number of the sample
elements contained in the pixel Πk. We use the nested numbering scheme for ordering pixels,
where Πk is the ktℎ pixel according to this scheme. The nested scheme is appropriate for de-
creasing the resolution, since one can easily accumulate the samples included in 4 ‘neighboring’
pixels.

We define the histogram H
(

x̃
) such that it is constant over a quadrilateral Πk and the

integral over the sphere is 1:
H

(

x̃
)

=
npixnk
4�n

, x̃ ∈ Πk.

We plot the histogram drawing a column with height npixnk∕4�n over each quadrilateral.
For instance, let X̃j , j = 1, 2,… n = 212, be a random sample from the uniform distribution
and nside = 23, so that npix = 768. We plot the sample and the corresponding histogram:
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Figure 5.4: Uniform sample and its Histogram

An important feature of the histogram lies in the plot construction. Mathematically, when
the columns from each quadrilateral are extruded from the surface of the sphere, the height
is measured normal to the center of the pixel, and the volume is given as that height times
the area of the quadrilateral, as described above, and as is as expected. However, graphically
we also extrude all of the pixel edges normal to their respective location on the sphere. This
results in taller columns having larger patches and shorter patches having smaller patches at
their respective termini, and stands in contrast to other methods currently in use, that maintain
pixel surface area at all elevations, which forces adjacent columns to becoming increasingly
separated as column height increases, and results in a pin cushion type histogram.

5.4 Simulation of Random Variates on the Sphere

There will be some common features of all simulations below. These are the following:

1. We consider the case � ≥ 0, in formulae, but also handle the the case � ≤ 0, during
simulation. We simulate a random variate X̃ with |�| and as a final step (but before
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rotation) change the variate X̃ to −X̃ (see Remark 3).

2. All algorithms below concern the case when the frame of reference is xyz, with the
modal/mean direction as the North pole, i.e. �̃ = Ñ .

3. The plots are generated by the following parameters: Sample size is n = 212 = 8, 192,
resolution of the discretized sphere S2 is nside = 23, which yields a total pixel count of
npix = 768. The resolution for theoretical density plots is 101 × 101 of the set of angles
(#, ') ∈ [0, �] × [0, 2�].

4. We characterize a rotation corresponding to M =
[

�̃
1
, �̃

2
, �̃

3

]

, by a vector �̃ and an
angle  , such that �̃

3
represents �̃ and �̃

1
, �̃

2
defines the angle  , see Subsection 5.2.1

for details. See Algorithm 1, in Supplement 7.2 for the case, when a vector �̃ and an
angle  are given.
Note, P (Ψ +  ≤ x) = P (Ψ ≤ x −  ), hence when an angle of a random variate is
changed by  , then the corresponding density is changing by − , see Supplement ?? for
more details.

5.4.1 Acceptance-rejection method

For the simulation of random variates from the various distributions presented here, we
make frequent use of the standard acceptance-rejection method. For a detailed account of this
classic simulation technique, see [32], [33], but a general overview of the method for any par-
ticular distribution is as follows.

We wish to sample random variate X from a calculable target distribution with density
fX(x), for which the simulation process is either exceptionally difficult, or perhaps even un-
known. Because fX(x) is calculable, we can write the density fX (x) = cg (x)ℎ (x), where the
constant c ≥ 1, 0 < g (x) ≤ 1, and ℎ (x) is a probability density function from which we know
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how to sample.
The algorithm of this general method based on testing the inequality U ≤ g (Y ), where U is

uniform on the interval (0, 1), and if it is fulfilled, then Y will be accepted as a random variate
from fX (x). The corresponding algorithm is given in appendix 7.2.3, Algorithm 2.

In practice, we seek a density ℎ (x) such that

fX (x) ≤ c1ℎ (x) ,

where c1 ≥ 1, then set g (x) = fX (x) ∕c1ℎ (x) and denote to the denominator as the envelope,
and use the above algorithm. Optimizing over algorithmic efficiency, the acceptance ratio 1∕c1
should be maximized such that the constant c1 is as close to one as possible, which naturally
depends on the choice of density ℎ (x).

If f̃X coincides with fX except some constant cf , fX ≅ f̃X , and similarly ℎ̃ coincides with
ℎ except some constant cℎ, ℎX ≅ ℎ̃X , and f̃X ≤ ℎ̃, then

cf f̃X (x) = fX (x) ≤ cf ℎ̃ (x) =
cf
cℎ
cℎℎ̃ (x) = c1ℎ (x) ,

where 1∕c1 = cℎ∕cf is the acceptance ratio. Therefore the test can be performed by checking
the inequality

U ≤ g (Y ) =
fX (Y )
c1ℎ (Y )

=
f̃X (Y )

ℎ̃ (Y )
, (5.21)

where again Y and U , are distributed by ℎ (y) and uniform respectively. This method has been
used extensively by Wood [34], [21], and we employ this technique in many ways. Ulrich [35]
proposes a general method for simulating a rotationally symmetric variable.
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5.4.2 Simulation of GFB families

We shall describe the simulation of the canonical variates. The necessary rotation can be
done separately in each case and is included in the appropriate scripts of the MATLAB package
‘3D-Directional Statistics, Simulation and Visualization’ (3D-Directional-SSV).

We shall use the well known basic algorithms for simulation of spherical uniform, vMF and
DW random variates (Sup.C.Alg.3-6).

The inequality (5.21) shows that for the simulation we do not need the normalizing con-
stants, although they are needed for calculating the acceptance ratios. If these constants are not
available analytically, we use numerical integration for calculating the acceptance ratios.

Model GFB4

GFB4 generalizes both the vMF and DWmodels. We use the envelopes proposed by Wood
[21] in the application of acceptance-rejection sampling as described above.

The density in basic form
g4 (x; �, ) ≅ e�x+x

2 ,

implies that the longitude Φ = 2�U , where U is uniform distributed independently from the
colatitude Θ, and hence, we shall concentrate on simulation of X = cosΘ. Also, we assume
that parameters � and  are not identically zero, since otherwise the model is reduced to either
vMF or DW.

We consider three cases according to the relation between the parameters � and  .

1. If  < 0, 0 ≤ � ≤ −2 , complete the quadratic form in the exponent and rewrite g4 as

g4 (x; �, ) ≅ e(x+�∕2)
2
, x ∈ [−1, 1] ,

and use the Gaussian envelope. The acceptance ratio is large if we assume that the mean
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−�∕2 belongs to [−1, 1], which is the case under this assumption.
The algorithm of this case is given in the first part of Algorithm 7, Supplement 7.2.3.

2. If  < 0, � ≥ −2 , then we use vMF gvMF (x, � + 2) on S2, as an envelope

3. If  > 0, an envelope composed of a mixture of gvMF (x, � + ) and gvMF (x, � − ) vMF
distributions is used.

The difference between our method, Algorithm 7, Supplement 7.2.3, and the one described in
[21], is how we partition the case where  < 0. 1

Some particular cases with interesting features arise in the simulation ofmodels in theGFB5

family. In this vein, we consider GFB4,� , which demonstrates the difficulty of combining two
algorithms, as well as the problem of simulation ofΦ according to the conditional density gΦ|X .

Model GFB4,� ,

If � ≠ 0,  = 0, � = 0, the density in basic form is given by

g� (x, '; �, �) ≅ e�(1−x
2) cos 2',

and has marginal
g�,X (x, �) ≅ I0

(

�
(

1 − x2
))

,

and conditional gΦ|X (5.8) densities.
The simulation of the marginal X is based on the inequality

1
cI
I0
(

�
(

1 − x2
))

≤ c
2cI

(

p1fW (x; −�) + p2fW (x; �)
)

.

1Note, [21] Procedure GFB−4 , p. 890 has a misprint. The correct expressions are �1 = 2−�
√

−2
, �2 =

−2−�
√

−2
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Figure 5.5: Model GFB4,�

With the mixture of two DW densities, one is bipolar with � > 0, and the other one is girdle
with −� < 0. where

cI = ∫

1

−1
I0
(

�
(

1 − x2
))

dx.

Now, we use the acceptance-rejection method for simulation ofX = cosΘ, with an acceptance
ratio of 2cI∕c that is decreasing as � is increasing. The corresponding algorithm is Algorithm
8, Supplement 7.2.3,

see Figure 5.5.
The simulation of longitude Φ according to the conditional density gΦ|X is given by simu-

lating 2Φ as a vMF distributed random variate on S1 (see Remark 5). It yields a value in [0, �],
and hence, Φ itself will be an element in [0, �∕2]. The density function g� has the same value
at Φ, −Φ, Φ + �, and −Φ + �, therefore we shall extend the simulated value randomly.

The Algorithm 9, Supplement 7.2.3, will be used in more general cases as well, since the
conditional densities do not change in different sub-families.

Model GFB5,K

Here we consider the Kent modelGFB5,K , and note that the equal-area projection simplifies
the problem of simulating two independent random variates.2

2See subsection 5.2.2 for details.
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Equal-area projection, case 2� ≤ � This part of the simulation of the Kent model GFB5,K

f5
(

x̃; �, �
)

≅ e�x̃3+�(x̃21−x̃22),

has been considered by Kent [29] under the assumption,

0 ≤ 2� ≤ �. (5.22)

This is the case when the exponent of the density is a non-increasing function of # for each ',
and when the model is unimodal (see Figure 5.6). The Kent model,GFB5,K , under transforma-
tion (5.12) has the form

f5
(

y1, y2; �, �
)

≅ e−2(�−2�)y21−4�y41e−2(�+2�)y22+4�y42 ,

which is a product of two densities. Introduce

�1 = � − 2�, �2 = � + 2�,

in this parametrization the density has the form

f5
(

y1, y2; �, �
)

≅ e−2�1y21−4�y41e−2�2y22+4�y42 . (5.23)

If assumption (5.22) holds then
�1 ≥ 0, �2 ≥ 0,

and we use Kent’s algorithm [29], given in Algorithm 10.
We simplify Kent’s algorithm, using a Gaussian envelope instead of the exponential enve-

lope. From Kent’s method, we stop at the first inequality and apply the acceptance-rejection
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Figure 5.6: Model FB5,K , unimodal: 2� ≤ �, from left to right: density, sample, histogram

method right there. The basic inequality is given by,

−1
2
�2w2 ≤ 1

2
�2 − �� |w| , �, � > 0.

Setting � =√

8�, and � = 1, we have

exp
(

−2�1y21 − 4�y
4
1

)

≤ exp
(1
2
− 1
2

(

4�1 +
√

8�
)

y21
)

,

which gives the Gaussian envelop with variance �21 = 1∕
(

4�1 +
√

8�
)

. Similarly

exp
(

−2�2y22 + 4�y
4
2

)

≤ exp
(

−1
2
(

4�2 − 8�
)

y22
)

,

yields a Gaussian envelop as well, with variance �22 = 1∕4�.3. We combine these two and use
acceptance-rejection method in the first part of Algorithm 11, Supplement 7.2.3.

Equal-area projection, case 2� > � We are also interested in the case when the density
increasing and decreasing in # around ' = 0.

0 ≤ � ≤ 2�,
3We have corrected a misprint in [29] in our algorithm
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In this case,

�1 = � − 2� ≤ 0,

�2 = � + 2� ≥ 0.

Let us start with the first component of (5.23), exp (−2�1y21 − 4�y41
). The polynomial

p
(

y1
)

= −�1y21 − 2�y
4
1,

in the exponent is symmetric to zero. We restrict the variable y1 such that |
|

y1|| ≤ 1, hence we
have two maximums at y0 = ±

√

(1 − �∕2�) ∕2, where

p
(

y0
)

=
�
2

(

1 − �
2�

)2

.

Therefore we separate the interval [−1, 1] and use a Gaussian envelope

exp
(

−2�1y21 − 4�y
4
1

)

≤ exp
(

−2
(

�
2

(

1 − �
2�

)

(

y1 − y+0
)2 + p

(

y0
)

))

, (5.24)

on [0, 1]. This envelope will exactly match the target density at the maximum, otherwise it is
greater.

Similarly

exp
(

−2�2y22 + 4�y
4
2

)

≤ exp
(

−
(

2�2 − 4�
)

y22
)

= exp
(

−2�y22
)

, (5.25)

provide a Gaussian envelop as well, with variance �22 = 1∕4�. The second part of Algorithm
11, Supplement 7.2.3, is based on these two inequalities (5.24) and (5.25).

If 2� > �, then the model is bimodal, but not bipolar, and the cosine of the angle, �, between
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Figure 5.7: If 2� > �, then the model GFB5,K , is bimodal

Figure 5.8: Model FB6, � = 1.5; � = 0.61;  = 0.31; � = [1,−1, 1],  = 0;

the modal directions is cos � = �∕2�. We put �∕2� = 1∕2, and hence � = �∕3 (see Figure
5.7).

Model GFB6

The Kent model GFB5,K and the Bingham Model GFB5,B are included here since, as we
shall see, there is only a small difference whether � = 0, or  = 0. If � = 0, we have paid
particular attention to the case  = � ≠ 0, see Remark 7.

We repeat the method applied for the GFB� , � ≠ 0, with � and  , then we use a mixture
of twoGFB4 densities. The corresponding algorithms can be found in Algorithms 9 and 12, in
Supplement 7.2.3.
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5.4.3 Simulation of some spherical distributions via their spherical har-

monics

If a density f (

x̃
) is continuous then it has series expansion in terms of spherical harmonics

Y m
l ,

f
(

x̃
)

=
∞
∑

l=0

l
∑

m=−l
amlY

m
l

(

x̃
)

. (5.26)

The coefficients {aml
} can be considered as a characteristic function, they are complex valued,

am∗l = (−1)m a−ml , and are given by

aml = ∫S2
f
(

x̃
)

Y m∗
l

(

x̃
)

Ω
(

dx̃
)

. (5.27)

Several symmetries of distributions are characterized in terms of coefficients aml , (5.27), see [4].
Notice that the spherical harmonic4 Y 00 = 1∕

√

4�, and hence a00 = 1∕
√

4� is the normal-
izing constant for f (

x̃
) and Ω (

dx̃
)

= sin #d#d' is the Lebesgue element of surface area on
S2. The notation ∗ is defined as the transpose and conjugate of a matrix and just the conjugate
for a scalar. For a detailed account of Spherical Distributions and Harmonic Analysis see [4]

Let x̃ (#, ') be a point on the unit sphere S2, then the spherical harmonics are defined by

Y m
l (#, ') = (−1)

m

√

2l + 1
4�

(l − m)!
(l + m)!

P m
l (cos #) e

im', ' ∈ [0, 2�] , # ∈ [0, �] ,

where P m
l denotes associated normalized Legendre function of the first kind.

Real-valued spherical harmonics. Spherical harmonics are, in general, complex valued,
due to the dependence of longitude ' given by eim'. Now, eim' is a complete orthogonal system
on the circle which is equivalent to the sine-cosine system for real-valued functions. Similarly,

4Some of the first spherical harmonics are listed in [4].
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Figure 5.9: Square of real spherical harmonics, L = 4, m = 1, 2, 3

real-valued spherical harmonic functions are defined as

Yl,m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
√

2

(

Y m
l + (−1)

m Y −ml
)

m > 0

Y m
l m = 0

1
i
√

2

(

Y −ml − (−1)m Y m
l

)

m < 0

(5.28)

The harmonics with order m > 0 are said to be of cosine type, and those with m < 0 of sine
type.

Figure 5.9 contains three densities among Y 24,m, when m = 1, 2, 3 5.
Exponential family class of distributions [30],

g
(

x̃
)

= exp
M
∑

l=0

l
∑

m=−l
bmlY

m
l

(

x̃
)

,

where bm∗l = (−1)m b−ml . The normalizing constant corresponds to b00 and depends on the rest of
the bml parameters, such that the integral is necessarily 1. The likelihood of observations often

5One may plot densities according to module square of complex and real spherical harmonics for any given
L and all m ∈ [−L,L] by the command dx = Density_SphHarm_All(L, m, Real,resolution); if m ∉ [−L,L]
then all Y 2L,m will be plotted, see our MATLAB package ‘3D-Directional Statistics, Simulation and Visualization’
(3D-Directional-SSV) for details.

86



Simulation and Visualization of Spherical Distributions Chapter 5

has this form. In the case of rotational symmetry around axis x̃0

fe
(

x̃
)

= exp

(

M
∑

l=0
blPl (cos #)

)

where # is the angle between x̃ and x̃0, and Pl denotes the Standardized Legendre polynomial
(P0 (x) = 1).

Another useful class of density functions is given by,

f
(

x̃
)

=
|

|

|

|

|

|

∞
∑

l=0

l
∑

m=−l
dml Y

m
l

(

x̃
)

|

|

|

|

|

|

2

,

where ∑∞
l=0

∑l
m=−l

|

|

|

dml
|

|

|

2
= 1. This class of distributions are of interest in, amongst other

topics, the modeling of atoms.
In quantum mechanics, Yl,m

(

x̃
)2 is considered as a probability density function, and plays

an important role in the modeling of the hydrogen atom. The module square ||
|

Y m
l

(

x̃
)

|

|

|

2 is also
a density function that serves as an example of a rotational symmetric density function on the
sphere, as it only depends on cos #.

Simulation of modulus-square of complex harmonics

Consider the density |

|

|

Y m
l

(

x̃
)

|

|

|

2 on S2 with respect to Lebesgue measure sin #d#d'. We
have

|

|

|

Y m
l

(

x̃
)

|

|

|

2
= 2l + 1

4�
(l − m)!
(l + m)!

P m
l (cos #)

2 ,

where P m
l is associated normalized Legendre function of the first kind.

|

|

|

Y m
l

(

x̃
)

|

|

|

2 is rotational symmetric and 2� ||
|

Y m
l
|

|

|

2 will be a density on [−1, 1]. More precisely,
the function

fml (x) = c
m
l P

m
l (x)

2 ,
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where
cml =

2l + 1
2

(l − m)!
(l + m)!

,

is a density on [−1, 1]. We have ||
|

Y m
l

(

x̃
)

|

|

|

2
= fml (cos #)

2 ∕2�. For convenience (MATLAB)
we use the fully normalized associated Legendre function pml , such that fml (x) = pml (x)2.

For general l and m and pml (x)2, one can use Forsyth’s method [36], with intervals defined
by the zeros of pml (x)2 and Beta envelopes, say. In particular, let l = 3, m = 2. then p23 (x)2 has
a root at 0 and is symmetric around zero. For generating X, we apply the Neumann Theorem
for 2f 23 (x), Algorithm 14, since the Beta distribution with shape parameters � = 3.08 and
� = 2.5249, proved to be an efficient envelope for the density 2f 23 (x) (see Figure ??).

The beta density is given by the function b (x, �, �) = x�−1 (1 − x)�−1 ∕B (�, �), and the
above shape parameters (� = 3.08 and � = 2.5249) were found with the following steps:

1. let �, � > 1,

2. use the relation (� − 1) ∕ (� + � − 2) = xM , between � and �, where xM is the maximum
point (modus) of 2f 23 (x),

3. find the set of � and � under the (simultaneous) constraints:

i) max
x

(

2f 23 (x) ∕b (x, �, �)
)

≥ 1

ii) max
�

(

min
x

(

2f 23 (x) ∕cb (x, �, �)
)

)

≤ 1

4. choose a pair � and �, such that min
�

(

max
x

(

2f 23 (x) ∕b (x, �, �)
)

)

is achieved

We then have,

2f 23 (x) =
2f 23 (x)
b (x, �, �)

b (x, �, �)

= cg23 (x)ℎ
2
3 (x) ,
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Figure 5.10: Simulation of density ||
|

Y ml
(

x̃
)

|

|

|

2

with c = max (2f 23 (x) ∕b (x, �, �)
), ℎ23 (x) = b (x, �, �), and

0 ≤ g23 (x) = 2f
2
3 (x) ∕ (cb (x, �, �)) ≤ 1. We have found that c = 1.074, shows a high accep-

tance ratio.

Simulation of real harmonics Y 23,2

Consider the real spherical harmonics Y3,2 (5.28). The density function Y 23,2 is given by

Y 23,2 =
1
2
(

Y 23 + Y
−2
3

)2 = 1
2
7
4�

1
5!
P 2
3 (cos #)

2 (ei2' + e−i2'
)2

= 2
√

7
4�

1
5!
P 2
3 (cos #)

2 cos2 2'.

This is a multimodal, non-rotationally symmetric distribution. The density function Y 23,2 is the
multiplication of the density of Θ and the density of Φ respectively, which implies that the
angles Θ and Φ are changing independently. The simulation of Θ according to the density ≅
P 2
3 (cos #)

2 sin #, has been solved during the simulation of module square of complex harmonics
above.

The simulation of Φ by the density ≅ cos2 ' is based on the following:
Let B be Beta distributed with � = 3∕2 and � = 1∕2, and defineX = arccos

(
√

B
)

. Then,
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from the equality

FX (x) = P
(

arccos
(
√

B
)

≤ x
)

= P
(

B > cos2 x
)

,

it follows

fX (x) = 2fB
(

cos2 x
)

cos x sin x

= 2
b (�, �)

(

cos2 x
)1∕2 (sin2 x

)−1∕2 cos x sin x = 4 cos2 x
�

(5.29)

Similarly, if B is a Beta distributed variate with � = 1∕2 and � = 3∕2,

fX (x) = 2fB
(

cos2 x
)

cos x sin x

= 2
b (�, �)

(

cos2 x
)−1∕2 (sin2 x

)3∕2 cos x sin x = 4 sin2 x
�

.

The latter of the two formulations for fX(x) is used for the simulation of Y 23,−2.
We conclude that the density of Φ = arccos

(
√

B
)

is ≅ cos2 ', on [−�∕2, �∕2]. Once we
have a random variate on [−�∕2, �∕2] with density function depending on cos' we can easily
transform its values periodically to the interval [0, 2m�],say. Algorithm 14, Supplement 7.2.3,
works for the density

f
(

x̃
)

≅ P 2
3 (cos #)

2 cos2 2',

in this case we choose m = 2, since the longitude ' should have values on [0, 2�], and we have
the random variate 2Φ on [−�∕2, �∕2]. One can generalize this method for density ≅ cos2 k',
where k is an integer.
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Figure 5.11: Simulation of density Y 23,2

5.4.4 Simulation of U−distribution

Finally, we examine what we call the “U−distribution" which is not to be confused with the
uniform distribution on the sphere. This is a very simple and interesting example of a spherical
distribution that is antipodal, but not isotropic or rotationally symmetric.

Consider U1, U2, U3 uniform on [0, 1], independent variates. Then we define
Z̃ =

[

Z1, Z2, Z3
]

=
(

U1, U2, U3
)⊤ ∕

√

U 2
1 + U

2
2 + U

2
3 , Z̃ ∈ S2.

We may write Z̃ = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) , where

tan (Φ) =
Z2

Z1
=
U2
U1

P (Φ < ') = P
(

U2
U1

< tan (')
)

=

⎧

⎪

⎨

⎪

⎩

tan (')
2

if 0 ≤ ' < �∕4

1 − 1
2 tan (')

if �∕4 ≤ ' < �∕2
,

and see formally that it is not the uniform density function since

fΦ (') =

⎧

⎪

⎨

⎪

⎩

1
2 cos2 (')

if 0 ≤ ' < �∕4

1
2 sin2 (')

if �∕4 ≤ ' < �∕2.
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Figure 5.12: U−distribution.

Now consider the conditional density fΘ|Φ (#|') for a fixed Φ = ':

tan (Θ) cos (Φ) =
Z1
Z3

=
U1
U3
;

P (Θ < #|Φ = ') = P
(

U1
U3

< cos (') tan (#)
)

=

⎧

⎪

⎨

⎪

⎩

cos (') tan (#)
2

if ' ∈
[

0, �∕4
]

, # ∈
[

0, �∕2
]

, cos (') tan (#) ≤ 1

1 − 1
2 cos (') tan (#)

if ' ∈
[

0, �∕4
]

, # ∈
[

0, �∕2
]

, cos (') tan (#) > 1
,

fΘ|Φ (#|') fΦ (') =

⎧

⎪

⎨

⎪

⎩

cos (')
16 cos2 (#) cos2 (')

if ' ∈
[

0, �∕4
]

, # ∈
[

0, �∕2
]

, cos (') tan (#) ≤ 1

1
16 sin2 (#) cos3 (')

if ' ∈
[

0, �∕4
]

, # ∈
[

0, �∕2
]

, cos (') tan (#) > 1
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this investigation, we have seen the application of the L2 distance and SKL divergence
between von Mises and von Mises-Fisher models, across a variety of scenarios, as a means to
quantify model similarity. Both measures performed well in the lower dimensional case, where
they were able to recover the correct groupings of the simulated data in chapter 2.

When looking at the NRR curves as the target data, where no ground truth was known,
their efficacy was measured by comparative cluster agreement, where we took various ultra-
metric measures to comparing the hierarchies induced by the respective measures. Again, there
seemed to be substantive agreement, which would lead us to believe there is some underlying
structure that both theL2 and SKLmeasure are detecting. These same ultrametrics corroborated
the findings, even when changing our viewpoint to look at the data from a functional perspec-
tive. We also included implementations of the Mahalanobis distance as well as the functional
Mahalanobis semi-distance, and found that all of these were in agreement, at various levels.

Increasing dimension, to work with textual data, the L2 distance was able to detect, at least
at some rudimentary level, changes in successive models that would seem to correspond with
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changes in the public conversation, via twitter, and the 2016 U.S. Presidential election. A posi-
tive contribution is that we can write both measures in a closed form, but the drawback to both
is the curse of dimensionality. In the case of the L2 distance, we need to calculate the values
for the modified Bessel functions for extremely high values of � and even higher orders. This
can lead to numerical issues, which may mandate some form of dimensionality reduction.

6.2 Future Directions

6.2.1 Commander-in-Tweet, and the 2020 U.S. Presidential Election

With the 2020 U.S. Presidential election rapidly approaching, there is ample opportunity
to turn our work towards the upcoming contest. In addition to the Presidential election itself,
there is also the Democratic primary contest to observe and quantify, with respect to improving
prediction by adding additional feature vectors to current methods. We aim to extend the cur-
rent results by incorporating additional distributions within the Generalized Fisher-Bingham
family of distributions, to model the spherical data. In addition, we will be looking to add other
social media platforms to the collection of data under inspection. We will also be looking to
develop computationally efficient methods for dealing with ultra-high dimensional L2 distance
approximation, as well as additional methods for dimension reduction, to better manage the
data without loosing features or meaning.

6.2.2 Early Glaucoma Detection

The NRR curves are part of a much larger and richer data set that was introduced to us by
Professor Saumyadipta Pyne, School of Public Health, University of Pittsburgh, andMr. Hasnat
Ali, L.V. Prasad Eye Institute, Hyderabad, India. Wemade use of a small part of the much larger
original data, with the limited aim of illustrating our methodologies. A more comprehensive
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analysis and biological implications is forthcoming, where we intend to investigate the potential
for improved early glaucoma detection, in addition to various other eye related phenomenon.
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Appendix and Supplementary Material
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7.1 Chapter 4: Supplementary Material

Mixture von Mises-Fisher (Hard Assignment):

• The parameters,  = {�, �,�} are treated as unknown, but fixed constants, and the only latent variables
are the topic assignments Z = {z1, z2,… , zD}

1. Draw cluster assignment,

Zi ∼ Multinomial(�), for i = 1, 2,… , D

where zi ∈ {1, 2,… , K}.

2. Draw document vector,
vi ∼ vMF(�zi , �), for i = 1, 2,… , D

We employ the EM algorithm, where we alternate between the

- E-Step: Find E[Z] for fixed 

- M-Step: Maximizing the likelihood over  for fixed E[Z]

EM update equations, for the ktℎ topic are:

• E-Step
E[Zi,k] =

�kvMF(vi|�k, �)
∑K
j=1 �jvMF(vi|�j , �)

• M-Step

Rk =
D
∑

i=1
E[Zi,k]vi �k =

D
∑

i=1

E[Zi,k]
D

, �k =
Rk
‖Rk‖

, r̄ =
K
∑

k=1

‖Rk}
D

, � = r̄d − r̄3

1 − r̄2
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7.2 Chapter 5: Supplementary Material

The supplementary section is organized as follows:

1. Spherical harmonics description:

Form and basic properties of spherical harmonics, as specified in [4].

2. MATLAB scripts for Figures and Algorithms:

1. Figures: Listing of all theMATLAB scripts for Figures contained in the paper using
the package “3D-Directional-SSV"

2. Algorithms: Listing of all the Algorithms in this paper using the package “3D-
Directional-SSV").

3. 3D-Directional Statistics, Simulation and Visualization (“3D-Directional-SSV")

MATLAB Package to simulate and visualize spherical distributions in 3-dimensions in-
cluding can be found at,
https://github.com/TerdikGyorgy/3D-Simulation-Visualization
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7.2.1 Supplement: Spherical harmonics

Orthonormal spherical harmonics with complex values Y m
l (#, '), l = 0, 1, 2,…, m =

−l,−l + 1,…− 1, 0, 1,… ,l − 1,l of degree l and order m (rank l and projection m)

Y m
l (#, ') = (−1)

m

√

2l + 1
4�

(l − m)!
(l + m)!

P m
l (cos #) e

im', ' ∈ [0, 2�] , # ∈ [0, �] , (7.1)

where P m
l denotes associated normalized Legendre function of the first kind. The spherical

harmonics are eigenfunctions of the square of the orbital angular momentum operator.

Y 0l (#, ') =
√

2l + 1
4�

Pl (cos #) , (7.2)

Y 00 (#, ') =
√

1
4�
,

more over
Y m
l

(

Ñ
)

= �m,0

√

2l + 1
4�

. (7.3)

Y m
l is fully normalized

∫

2�

0 ∫

�

0

|

|

|

Y m
l (#, ')

|

|

|

2
sin #d#d' = 1.

Some detailed account of spherical harmonics Y m
l can be found in [37] and [38].

some authors do not apply 1∕√4� in the definition of Y m
l , also for a sphere with radius R

spherical harmonics are normalized additionally Y m
l (#, ') ∕R. It also follows

Y m∗
l (#, ') = Y m

l (#,−')

= (−1)m Y −ml (#, ') ,

Y −ml (#, ') = (−1)m e−i2m'Y m
l (#, ') .
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Inversion x̃→ −x̃, (#, ')→ (� − #, � + ')

Y m
l

(

−x̃
)

= (−1)l Y m
l

(

x̃
)

. (7.4)

Addition formula (see [39], 8.814,[40], 11.4(8)),
l
∑

m=−l
Y m∗
l

(

x̃1
)

Y m
l

(

x̃2
)

= 2l + 1
4�

Pl (cos #) , (7.5)

where cos # = x̃1 ⋅ x̃2.
l
∑

m=−l
Y m∗
l

(

x̃
)

Y m
l

(

x̃
)

= 2l + 1
4�

, (7.6)

7.2.2 Supplement: MATLAB Scripts for Figures

In this section we list all the MATLAB Scripts of Figures contained in the paper using pack-
age 3D-Directional-SSV.

MATLAB Script of Figure 5.2

pV1 = [ 0 . 1 , 0 . 1 , 0 . 4 3 , 0 . 8 2 ] ; pV2 = [ 0 . 5 , 0 . 1 , 0 . 4 3 , 0 . 8 2 ] ;
P s i =0; Mu= [ 0 , 0 , 1 ] ; r e s o l u t i o n =100; gamm=6.364 ; b e t 1 =4 .5 ; b e t 2 =1 .5 ;
f i g u r e ( ’ P o s i t i o n ’ , [ 1 1 756 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; gx5 = Densi ty_FB5 (gamm, be t1 ,Mu, Ps i , r e s o l u t i o n ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; gx5 = Densi ty_FB5 (gamm, be t2 ,Mu, Ps i , r e s o l u t i o n ) ;

MATLAB Script of Figure 5.3

Mu= [ 0 , 0 , 1 ] ; P s i =0; r e s o l u t i o n =100;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 2 8 , 0 . 8 2 ] ; pV2 = [ 0 . 3 8 , 0 . 1 , 0 . 2 8 , 0 . 8 2 ] ; pV3 = [ 0 . 6 9 , 0 . 1 , 0 . 2 8 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; gx6 = Densi ty_FB6 ( 0 , 3 . 2 , −1 . 1 ,Mu, Ps i , r e s o l u t i o n ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; gx6 = Densi ty_FB6 ( 0 , 3 . 2 , 3 . 2 ,Mu, Ps i , r e s o l u t i o n ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; gx6 = Densi ty_FB6 ( 0 , 3 . 2 , 4 . 1 ,Mu, Ps i , r e s o l u t i o n ) ;
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MATLAB Script of Figure 5.4

n=2^12; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ;
Y = Random_Uni_Inv ( n ) ;
hY = His t2DSphere (Y, nPix ) ;
pV1 = [ 0 . 1 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 5 , 0 . 1 , 0 . 4 3 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 1 1 756 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; P l o t _H i s t 2DSphe r e (hY ) ;

MATLAB Script of Figure 5.5

n=2^12; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ; r e s o l u t i o n =100;
MuB=[1 , −1 ,1 ] ; betB =4.5 ; PsiB= p i / 2 ;
Y = Random_FB4_Beta_GyT ( betB ,MuB, PsiB , n ) ;
hY=His t2DSphere (Y, nPix ) ;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 4 , 0 . 1 , 0 . 2 2 , 0 . 8 2 ] ; pV3 = [ 0 . 6 7 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; dx = Dens i ty_FB4_Beta ( betB ,MuB, PsiB ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; P l o t _H i s t 2DSphe r e (hY ) ;

MATLAB Script of Figure 5.6

n=2^12; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ; r e s o l u t i o n =100;
kappaK = 5 ; betK =2 ; MuK=[−0.9 −1 . 2 ] ; PsiK= 0 ;
Y = Random_FB5_GyT ( kappaK , betK ,MuK, PsiK , n ) ;
hY=His t2DSphere (Y, nPix ) ;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 4 , 0 . 1 , 0 . 2 2 , 0 . 8 2 ] ; pV3 = [ 0 . 6 7 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; gx5 = Densi ty_FB5 ( kappaK , betK ,MuK, PsiK , r e s o l u t i o n ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; P l o t _H i s t 2DSphe r e (hY ) ;
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MATLAB Script of Figure 5.7

n=2^12; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ; r e s o l u t i o n =100;
kappaK = 5 ; betK =5 ; MuK=[− .5 0 . 5 ] ; PsiK= p i / 4 ;
Y = Random_FB5_GyT ( kappaK , betK ,MuK, PsiK , n ) ;
hY=His t2DSphere (Y, nPix ) ;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 4 , 0 . 1 , 0 . 2 2 , 0 . 8 2 ] ; pV3 = [ 0 . 6 7 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; gx5 = Densi ty_FB5 ( kappaK , betK ,MuK, PsiK , r e s o l u t i o n ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; P l o t _H i s t 2DSphe r e (hY ) ;

MATLAB Script of Figure 5.8

n=2^12; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ; r e s o l u t i o n =100;
P s i 6= 0 ; Mu6= [1 , −1 , 1 ] ; kappa6 = 1 . 5 ; b e t 6 = . 61 ; gamm6 = −0.31;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 4 , 0 . 1 , 0 . 2 2 , 0 . 8 2 ] ; pV3 = [ 0 . 6 7 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ;
Y = Random_FB6 ( kappa6 , be t6 , 0 ,Mu6 , Ps i6 , n ) ;
hY=His t2DSphere (Y, nPix ) ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ;
gx6 = Densi ty_FB6 ( kappa6 , be t6 , gamm6 ,Mu6 , Ps i6 , r e s o l u t i o n ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; P l o t _H i s t 2DSphe r e (hY ) ;

MATLAB Script of Figure 5.9

pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 2 8 , 0 . 8 2 ] ; pV2 = [ 0 . 3 8 , 0 . 1 , 0 . 2 8 , 0 . 8 2 ] ; pV3 = [ 0 . 6 9 , 0 . 1 , 0 . 2 8 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 3 4 3 ] ) ; Rea l= t r u e ;
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ;
px = Densi ty_SphHarm (4 , 1 , Rea l ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ;
px = Densi ty_SphHarm (4 , 2 , Rea l ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ;
px = Densi ty_SphHarm (4 , 3 , Rea l ) ;
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MATLAB Script of Figure 5.10

n=2^12; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ;
L=3; m=2; Mu=[1 −1 1 ] ; P s i=p i / 2 ; Rea l= f a l s e ;
Y = Random_Y3_2Compl_square ( Mu, n ) ;
hY=His t2DSphere (Y, nPix ) ;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 4 , 0 . 1 , 0 . 2 2 , 0 . 8 2 ] ; pV3 = [ 0 . 6 7 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; px = Densi ty_SphHarm (L , m, Rea l ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; P l o t _H i s t 2DSphe r e (hY ) ;

MATLAB Script of Figure 5.11

n=2^12; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ;
L=3; m=2; Mu=[1 −1 1 ] ; P s i=p i / 2 ; Rea l= t r u e ;
Y = Random_Y3_2Real_square ( Mu, Ps i , n ) ;
hY=His t2DSphere (Y, nPix ) ;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 4 , 0 . 1 , 0 . 2 2 , 0 . 8 2 ] ; pV3 = [ 0 . 6 7 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; px = Densi ty_SphHarm (L , m, Rea l ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; P l o t _H i s t 2DSphe r e (hY ) ;

MATLAB Script of Figure 5.12

n=2^13; nS ide =2^3; nPix= nS ide2nP ix ( nS ide ) ; Mu=[0 0 1 ] ; P s i= p i / 2 ;
pV1 = [ 0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ; pV2 = [ 0 . 4 , 0 . 1 , 0 . 2 2 , 0 . 8 2 ] ; pV3 = [ 0 . 6 7 , 0 . 1 , 0 . 3 , 0 . 8 2 ] ;
Y = Random_U_Distr (Mu, n ) ;
hY=His t2DSphere (Y, nPix ) ;
f i g u r e ( ’ P o s i t i o n ’ , [ 3 0 0 300 1300 343 ] )
s u b p l o t ( ’ P o s i t i o n ’ , pV1 ) ; gx = Densi ty_U (Mu, P s i ) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV2 ) ; Plot_DataRandomS2 (Y) ;
s u b p l o t ( ’ P o s i t i o n ’ , pV3 ) ; P l o t _H i s t 2DSphe r e (hY ) ;
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7.2.3 Supplement: Algorithms

In this section we list all the algorithms of our paper implemented in a MATLAB package
’3D-Directional Statistics, Simulation and Visualization’ (3D-Directional-SSV). We introduce
the indicator function 1A = 1 if A is true otherwise it is 0.
Algorithm 1 Rotation
Require: �̃ ∈ S2 and  ∈ [0, 2�] are given
Ensure: Rotated frame of reference
1: Calculate Ñ× �̃ the #1 axis of rotation
2: Rotate Ñ to �̃
3: Use �̃ = Ñ for the #2 axis of rotation and rotate the sphere by the angle  .

{ If only �̃ is given, this algorithm simplifies to steps 1. and 2 or set  = 0.}

Algorithm 2 Rejection
Require: fX (x) (evaluable), ℎ (y) (samplable), and proportionality constant c are given
Ensure: Variate X is distributed according to density fX (x)
1: Generate two random variates Y and U , from ℎ (y) and Unif (0, 1) respectively
2: if U ≤ g(Y ) = fX(Y )∕ (c ⋅ ℎ(Y )) then

3: return

X = Y as a variate generated from fX

4: else

5: reject Y and go to 1
6: end if
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Algorithm 3 Random_vMF_Inv
Require: � ∈ ℝ is given
Ensure: Variate Ỹ is distributed according to the von Mises-Fisher distribution, vMF(�)

1: Generate independent U1, U2 from Unif (0, 1)

2: Calculate X = cosΘ, by
X =

log
(

2U1 sinh � + e−�
)

�

3: Calculate longitude Φ = 2�U2

4: return

Ỹ =
(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤.
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Algorithm 4 Random_vMF_Wood
Require: � and d ≥ 2 are given
Ensure: Variate X̃ is distributed according to the von Mises-Fisher distribution, vMF(�)on Sd−1
1: Set

b =
−2� +

√

4�2 + (d − 1)2

d − 1
,

x0 =
1 − b
1 + b

,

c = �x0 + (d − 1) log
(

1 − x20
)

2: Generate variate B from Beta(�, �) with shape parameters given by

� = (d − 1) ∕2, � = (d − 1) ∕2,

3: Calculate
X =

1 − (1 + b)B
1 − (1 − b)B

,

and generate U from Unif (0, 1)

4: if �X + (d − 1) log
(

1 − x0X
)

− c < logU then

5: go to step 2.
6: else

7: Generate a d − 1−dimensional spherical uniform vectorW ,
8: return

X̃ =
(
√

1 −X2W ⊤, X
)⊤.

9: end if
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Algorithm 5 Random_Watson_Fish
Require:  ∈ ℝ is given
Ensure: Variate Ỹ is distributed according to the Dimroth-Watson distribution, DW()
1: if  > 0 , (Bipolar) then
2: Set c = 1∕ (e − 1)
3: Generate independent U1, U2 and U from Unif (0, 1)

4: Set X =
(

log
(

U1∕c + 1
))

∕

5: if U2 ≤ exp
(

X2 − X
)

then

6: X =
(

1U<1∕2 − 1U≥1∕2
)

X,
{Since X is positive and the density is symmetric to the equator}

7: Φ = 2�U2

8: return

Ỹ =
(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)

9: else

10: go to step 3.
11: end if

12: else { < 0, (Girdle)}
13: Set c1 =

√

||, c2 = arctan c1.

14: Generate independent U1, U2 and U from Unif (0, 1)

15: Set X =
(

1∕c1
)

tan
(

U1c2
)

16: if U2 ≤
(

1 − X2) exp
(

X2) then

17: X =
(

1U<1∕2 − 1U≥1∕2
)

X;
{Since S is positive and the density is symmetric to the equator}

18: Φ = 2�U0,
19: return

Ỹ =
(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤

.

20: else

21: go to step 13.
22: end if

23: end if
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Algorithm 6 Random_Watson_LW
Require:  ∈ ℝ is given
Ensure: Variate Ỹ is distributed according to the Dimroth-Watson distribution, DW()
1: if  > 0 , (Bipolar) then
2: Set

� =
4

2 + 3 +
√

(2 + 3)2 − 16
, r =

(

3�
2

)3
e−3+2∕� ,

3: Generate independent U1 and U2 from Unif (0, 1)

4: Set
S =

U21

1 − �
(

1 − U20
) , V =

rU22
(1 − �S)3

,W = S,

5: if V ≤ e2W then

6: Put Θ = arccos√S
7: Generate U3 from Unif (0, 1)

8: Calculate X = cos 1U3<1∕2 (� − Θ) , Φ = 4�1U3<1∕2U3 + 2�
(

2U3 − 1
),

9: else

10: go to step 3.
11: end if

12: return Ỹ =
(√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤ .

13: else { < 0, (Girdle) }
14: Set b = e2 − 1,

{ Begin, generate variates Xk from trucated normal distribution}
15: Generate independent U1 , U2 from Unif (0, 1)

16: Set V = ln
(

1 + U1b
)

∕ , � = 2�U2 and c = cos �
17: Set S1 = V c2 , and S2 = V − S1
18: if either S1 > 1 or S2 > 1 then

19: go to step 15.
20: else

21: Set X1 =
√

V c, X2 = sin �
22: end if

{End of Generation Xk }
23: Generate independent U4 , U5 from Unif (0, 1)

24: Calculate Φ1 = 2�U4 , Φ2 = 2�U5
25: return

Ỹ 1 =
(

√

1 −X21 cos (Φ) ,
√

1 −X21 sin (Φ) , X1

)⊤
,

Ỹ 2 =
(

√

1 −X22 cos (Φ) ,
√

1 −X22 sin (Φ) , X2

)⊤
,

two independent variates from DW distribution.
26: end if

108



Appendix and Supplementary Material Chapter 7

Algorithm 7 Random_FB4
Require: �,  are given
Ensure: Variate Ỹ is distributed according to the Fisher-Bingham4 (GFB4) distribution
1: if  < 0 then

2: if 0 ≤ � ≤ −2 then

3: Generate Z from normal  (−�∕2,−1∕2)

4: if Z ∈ [−1, 1] then

5: Generate U1 from Unif (0, 1)

6: Set Φ = 2�U1,

7: return Ỹ =
(
√

1 −Z2 cos (Φ) ,
√

1 −Z2 sin (Φ) , Z
)⊤

8: else

9: Reject Z and go to 3
10: end if

11: else

12: Generate U from Unif (0, 1)

13: Generate X from vMF(� + 2)

14: if U ≤ e exp
(


(

X2 − 2X
))

then

15: Generate U2 from Unif (0, 1)

16: Set Φ = 2�U2,

17: return Ỹ =
(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤.

18: else

19: reject X and go to 12
20: end if

21: end if

22: else if  > 0 then

23: Set c� =
�

2�(e−e−x) , p1 =
c�+

c�++c�−
,

24: Generate independent U and U1 from Unif (0, 1)

25: Generate independent X1 and X2 from vMF with parameters � −  , and � +  respectively
26: Calculate the mixture X, X = 1U1≤p1X1 + 1U1>p1X2,

27: if U ≤
(

1 + e−2
) eX2

eX+e−X . then

28: Generate U3 with uniform distribution
29: set Φ = 2�U3,

30: return Ỹ =
(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤.

31: else

32: reject X and go to 24
33: end if

34: else

35:  = 0, generate vMF(�)

36: end if
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Algorithm 8 Random_FB4_Beta
Require: � ≠ 0 is given
Ensure: Variate Ỹ is distributed according to the GFB4,� distribution
1: Calculate

c− = ∫

1

−1
e−�x

2
dx ; c+ = ∫

1

−1
e�x

2
dx

c = e�c− + e−�c+ ; p1 = e�c−∕c

2: Generate independent U1 and U2 from Unif (0, 1)

3: Generate independent V1 and V2 from DW with parameters � and −� respectively
4: Set V =

(

1U1<p1
)

V1 +
(

1 − 1U1<p1
)

V2

5: if U2 ≤ I0
(

�
(

1 − V 2
))

∕ cosh
(

�
(

1 − V 2
))

then

6: Set X = cosΘ, by X = V ,

7: else

8: go to step 2
9: end if

10: Use Algorithm 9 with � (1 −X2) to get Φ
11: return Ỹ =

(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤

Algorithm 9 vMF_Circ_Phi
Require: � ≠ 0 and x
Ensure: Variate Φ distributed vMF on S1 extended to [0, 2�]
1: Generate random variate Φ1 from vMF

(

�
(

1 − x2
)), on S1

2: Generate random variate U uniformly distributed on integers (1, 2, 3, 4)

3: return Φ =
(

1U=1 + 1U=3
)

Φ +
(

1U=2 + 1U=3
)

� −
(

1U=2 + 1U=4
)

Φ + 2�1U=4
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Algorithm 10 Random_FB5_Kent
Require: � ≥ 0, � ≥ 0 are given such that we have the case where, 2� ≤ � (equal-area projection), for � < 0, we use |�| and transform back

in a final step
Ensure: Variate Ỹ is distributed according to the Kent distribution (Model GFB5,K )
1: Set

a = 4� − 8� ; b = 4� + 8� ;  = 8�

�1 =
√

a + 2
√

 ; �2 =
√

b ; c2 = b∕8�

2: Generate independent U1 and U2 from Unif (0, 1)

3: Generate independent R1 and R2 from exponential distribution with parameters �1 and �2 respectively
4: if U1 ≤ exp

(

−
(

aR21 + �1R
4
1
)

∕2 + �1R1 − 1
)

then

5: Accept R1
6: else

7: go to step 3
8: end if

9: if U2 ≤ exp
(

−
(

bR22 − R
4
2
)

∕2 + �2R2 − c2
)

then

10: Accept R2
11: else

12: go to step 3
13: end if

14: if R21 + R
2
2 < 1 then

15: Accept (R1, R2
)

16: else

17: go to step 3
18: end if

19: Using trigonometric identities

cos # = 1 − 2
(

R21 + R
2
2
)

, sin' =
R2

√

R21 + R
2
2

, cos' =
R1

√

R21 + R
2
2

,

calculate
X = 1 − 2

(

R21 + R
2
2
)

; S' =
R2

√

R21 + R
2
2

; C' =
R1

√

R21 + R
2
2

,

20: return Ỹ =
(
√

1 −X2C',
√

1 −X2S', X
)⊤
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Algorithm 11 Random_FB5_GyT
Require: � ≥ 0, � ≥ 0 are given, for � < 0, we use |�| and transform back in a final step
Ensure: Variate Ỹ is distributed according to the Kent distribution (Model GFB5,K )
1: if 2� ≤ � then

2: Set: �1 = � − 2� ; �2 = � + 2� ; �21 = 1∕
(

4�1 +
√

8�
)

; �22 = 1∕4�

3: Generate U1 from Unif (0, 1) and Z1 from normal  (0, �21 )4: if U1 ≤ exp
(

−
(

2�1Z21 + 4�Z
4
1

)

− 1
2 +

(

2�1 +
√

8�
)

Z21
)

then

5: Accept Z1
6: else

7: go to step 2
8: end if

9: Generate U2 from Unif (0, 1) and Z2 from normal  (0, �22 )10: if U2 ≤ exp
(

−
(

2�2Z22 + 4�Z
4
2

)

+
(

2�2 − 4�
)

Z22
)

then

11: Accept Z2
12: else

13: go to step 9
14: end if

15: if Z21 +Z
2
2 < 1 then

16: go to step 37
17: else

18: go to step 2
19: end if

20: else

21: Set �1 = � − 2�; �2 = � + 2�; � = 1 − �∕(2�); y0 =
√

�∕2; py0 = (�∕2)�
2;

�21 = 1∕2�� ; �22 = 1∕4�.22: Generate U1 from Unif (0, 1) and Z1 from normal,  (y0 , �21 )23: if U1 ≤ exp
(

−
(

2�1Z21 + 4�Z
4
1

)

+ ��
(

Z1 − y0
)2 − 2py0

)

then

24: Accept Z1
25: else

26: go to step 22
27: end if

28: Generate U from Unif (0, 1)

29: Set Z1 = Z1
(

1U<1∕2 − 1U≥1∕2
)

30: Generate U2 from Unif (0, 1) and Z2 from normal, (py0 , �
2
2 )31: if U4 ≤ exp

(

−
(

�2R22 + 4�R
4
2

)

+
(

2�2 − 4�
)

Z22
)

then

32: Accept Z2
33: else

34: go to step 27
35: end if

36: if Z21 +Z
2
2 < 1 then

37: Using trigonometric identities, calculate
X = 1 − 2

(

Z21 +Z
2
2

)

; S' = Z2∕
√

Z21 +Z
2
2 ; C' = Z1∕

√

Z21 +Z
2
2 ,

38: return Ỹ =
(√

1 −X2C' ,
√

1 −X2S' , X
)⊤ .

39: else

40: go to step 22
41: end if

42: end if
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Algorithm 12 Random_FB6
Require: � ≥ 0, � ≠ 0, and  ∈ ℝ are given
Ensure: Variate Ỹ is distributed according to the Fisher-Bingham6 distribution (Model GFB6)
1: Calculate

c− = ∫

1

−1
e�x+(−�)x

2
dx; c+ = ∫

1

−1
e�x+(+�)x

2
dx

c6 = e�c− + e−�c+, p1 =
e�c−
c6

2: Generate independent U1 and U2 from Unif (0, 1)

3: Generate independent V1 and V2 from GFB4 distribution on the sphere with parameters (�,  − �) and
(�,  + �) respectively

4: Set V =
(

1U1<p1
)

V1 +
(

1 − 1U1<p1
)

V2

5: if U2 ≤ I0
(

�
(

1 − V 2
))

∕ cosh
(

�
(

1 − V 2
))

then

6: X = V

7: else

8: go to step 2
9: end if

10: Use Algorithm 9 with � (1 − V 2) to get Φ
11: return Ỹ =

(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤.
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Algorithm 13 Random_Y3_2Compl_square
Require: n ∈ ℕ is given (sample size)
Ensure: Variate Ỹ distributed according to the distribution characterized by ||

|

Y 23
(

x̃
)

|

|

|

2

{ Use a Beta envelope for generating X with the density 2f 23 (u) where u ∈ (0, 1) }
1: Generate U1 from Unif (0, 1)

2: Generate variate B from Beta(�, �) distribution with shape parameters given by

� = 3.08, � = 2.5249,

3: if

U1 >
2g23 (B)
b (B, �, �)

.

then

4: go to step 1
5: else

6: Accept X = B with acceptance ratio c−1 = 1∕1.074 = 0.9311.
7: end if

{ End of genereation of X }
8: Generate U from Unif (0, 1)

9: Set X = X
(

1U<1∕2 − 1U≥1∕2
)

10: Generate independent Z1 and Z2 from standard normal,  (0, 1)

11: Calculate variateW , from the uniform distribution on circle, given by

W =
(

Z1∕
√

Z2
1 +Z

2
2 , Z2∕

√

Z2
1 +Z

2
2

)⊤
,

12: return Ỹ =
(
√

1 −X2W ,X
)⊤

.
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Algorithm 14 Random_Y3_2Real_squared
Require: n ∈ ℕ is given (sample size)
Ensure: Variate Ỹ distributed according to the distribution characterized by

f
(

x̃
)

≅ P 23 (cos #)
2 cos2 2'

1: Generate X by as in Algorithm 13,
{ Simulate Φ by density cos2K'. on [0, 2�] }

2: Generate variate B from Beta(�, �) with shape parameters given by

� = 3∕2 , � = 1∕2

with density b(x, �, �)
3: Calculate Φ = arccos

√

B ∈
[

0, �∕2
],

4: Generate variate U from Unif (0, 1)

5: Generate variate K from Discrete Uniform on the set {1, 2, 3, 4}
6: Set

Φ = Φ
(

1K=1 + 1K=2 − 1K=3 − 1K=4
)

+ �
(

1K=2 − 21K=3 + 1K=4
)

+
(

1U<1∕2
)

2�,

Φ = Φ∕2,

7: return

Ỹ =
(
√

1 −X2 cos (Φ) ,
√

1 −X2 sin (Φ) , X
)⊤.
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Algorithm: hard-moVMF
Input:Set of  of data points on Sd−1
Output: A disjoint k-partitioning of 

Initialize all �ℎ,�ℎ, �ℎ, ℎ = 1,⋯ , k

repeat

{The Hardened E-Step of EM }
for i = 1 to n do

for ℎ = 1 to k do

fℎ(xi|�ℎ)← cd(�ℎ) exp{�ℎ�Tℎxi}

end

for ℎ = 1 to k do

q(ℎ|xi,Θ) =
⎧

⎪

⎨

⎪

⎩

1, if ℎ = argmax
ℎ′

p(ℎ′|xi,Θ)

0, otherwise.
end

end

{The M-Step of EM}
for ℎ = 1 to k do

�ℎ ←
1
n

∑n
i=1 p(ℎ|xi,Θ)

�ℎ ←
∑n

i=1 xip(ℎ|xi,Θ)

r̄ ← ‖�ℎ‖∕(n�ℎ)

�ℎ ← �ℎ∕‖�ℎ‖

�ℎ ←
r̄d−r̄3

1−r̄2

end

until convergence
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