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Abstract: In the present paper I extend the analysis of the 

consequences of dynamic internal equilibrium in crystalline particles 

(A.W. Searcy, J. Chern. Phys., in press) to include the self-adsorption 

layer and vapor phase. Dynamic equilibrium results in a minimum Gibbs 

free energy for the particle-vapor system. The condition found for 

equilibrium is compatible with measurements of capillary rise, capillary 

condensation, and at least some data for particle-vapor equilibrium. 

New tests of the model are suggested. 
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Introduction 

In the course of evaluating a conjecture of Gibbs
1 

about the 

influence that the relatively weak attachments of molecules at crystal 

corners and edges may have on equilibrium crystal shapes, I showed that 

dynamic equilibrium between parts of a crystal, which have different 

bonding environments--for example, crystal edges and adjacent 

surfaces--creates a vacancy distribution different from that which is 

calculated on the assumption that the vacancy concentrations on each 

characteristic kind of site are independent. 2 I further showed that the 

dynamically determined vacancy distribution makes the total Gibbs free 

energy G for the system comprised of the particle and its surface a sy 

minimum at constant temperature T, pressure P, and fixed number of each 

energetically distinguishable kind of site. 

In the present paper I evaluate the pressure that would be 

established by dynamic equilibrium between a one-component particle 

which is at internal equilibrium and its vapor at constant temperature, 

and I show that the vapor pressure so derived makes G a minimum for sy 

the system comprised of the particle, its surface, and its vapor. The 

predicted dependence of vapor pressure on particle size is significantly 

different from that of classical surface thermodynamic theory. The 

difference arises because the classical theory~ as pointed out by 

1 Gibbs, rests on two assumptions; one of these implicitly forbids the v 

consequence of dynamic equilibrium which was demonstrated in Ref. 2. In 

the discussion section, I point out that recent experimental 

observations are incompatible with that classical assumption, 3 •4 and I 

suggest further experiments to test the model. 
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Theory 

There is ample and persuasive evidence that, when crystals are 

undergoing net vaporization or condensation, surface features such as 

terraces, ledges, and kinks and nonequilibrium defects--especially screw 

5 dislocations--play important roles. But our present interest is in 

obtaining an expression for dynamic equilibrium for a crystal which may 

have perfectly faceted surfaces and which has as its only defect its 

equilibrium distribution of vacancies. 

It has long been accepted that equilibrium between a 

one-component condensed phase and its vapor is maintained by a balance 

of molecular. fluxes between the self-adsorption layer of the condensed 

5 6 phase and its vapor. ' Therefore, we can evaluate dynamic equilibrium 

between a particle and its vapor by first obtaining an equation for the 

equilibrium flux. exchange between the self-adsorption layer and the 

remainder of the crystal, and by then incorporating the accepted 

relation for adsorption layer-vapor equilibrium. 

In Ref. 2, the molecular flux J' .. from n'. lattice sites of one 
~J . ~ 

characteristic bonding environment to n'. adjacent sites of a different 
J 

characteristic bonding environment was described by the equation 

(1) 

where v .. is the frequency with which a molecule on ann'. site and a 
~J ~ 

vacancy on an adjacent n'j site are excited to the thermal (i.e., 

* nonconfigurational) transition state free energy G , g' .. is a 
~J 

geometrical factor, Gt is the thermal free energy per i molecule, Gt . 
i VJ 

is the thermal free energy per j-site vacancy, k is the Boltzman 
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constant, Xi is the mole fraction of occupied i-sites, and X . is the 
VJ 

mole fraction of vacant j-sites. When J' .. of Eq. (1) is set equal to 
1J 

J' .. , which is described by the same terms with reversed subscripts, the 
J~ 

nonthermodynamic terms cancel and the relation then found is
2 

= Gt.-Gt .-kT tn(X ./X.) 
J VJ VJ J 

(2) 

As demonstrated in Ref. 2, Eq. (2) can also be derived by 

minimizing the free energy of an i-j system with respect to the 

distribution of vacancies among the total number of sites that would be 

formed by independent minimization of the free energies of the i- and 

j-collections of molecules with respect to vacancy formation. 

In Ref. 2, the self-adsorption layer was not considered. But 

both the kinetic and the thermodynamic analyses should apply to the 

exchange of molecules and vacancies between any two collections of 

molecules (including the collections formed by bulk molecules and a 

surface) for which the regular solution approximation can be used. A 

self-adsorption layer usually has a low concentration of molecules so 

that the regular solution assumption implicit in Eq. (1) is valid for 

the self-adsorption layer, as it is for parts of a crystal with low 

vacancy concentrations. The extent to which the conclusions reached in 

this section depend on modeling assumptions is discussed later. 

When a identifies the dilute adsorption layer on an outermost 

.surface layers in Eq. (2), the equation written in exponential form is 

(X /X ) exp(Gt /kT) a va · a 
t t (X /X ) exp[(G -G )/kT] 

S VS S VS 
(3) 
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Because for a dilute adsorption layer Gt = 0, it does not appear in va 

Eq. (3). The left side of Eq. (3) is identical to the partition 

function calculated for an adsorption layer from statistical 

7 8 
mechanics. ' If the equilibrium crystal has more than one kind of 

surface facet, for example (111) and (100) facets for a face centered 

cubic crystal, each kind of surface and its adsorption layer will 

establish an equilibrium like that described by Eq. (3). The mole 

fraction of occupied sites and the value of G for a (100) 
a 

self-adsorption laye~ are different from the value for a (111) 

self-adsorption layer, but the equilibrium value of (X /X )exp(G /kT) a va a 

is the same for both, just as the right side of Eq. (2) has the same 

value if collections k,l, ..• etc. are substituted for collection j. 

We will make use of the equilibrium relations between the 

self-adsorption layer on a particular surface, and the outermost 

complete layer (except for dilute vacancies) of that surface, and the 

bulk crystal for which 

(X /X )exp[(Gt -Gt )/kT] = 
S VS S VS 

(4) 

If an adsorption layer on an ordered solid is dilute enough so 

that interactions between the adsorbed species can be neglected, the 

desorption flux is 

J' 
ag 

0 * t ~ = P X A exp[-(G -G )/kT] I (2 111IIkT) 
a a 

(5) 

where J is the molecular flux from the adsorption layer to the gas ag 
0 phase, P is the standard pressure, A is the surface area, and m is the 
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molecular mass. The corresponding flux from the gas phase that 

traverses any activation energy barrier to adsorption is when the 

pressure is equal to the fugacity 

J ga 
* 0 ~ = P X A exp[-(G -G · )/kT] I (2 mmkT) , g va g 

(6) 

0 where P is the pressure of the gas and G is the free energy per gas 
g g 

molecule when the gas is at its standard state pressure P0
• 

set equal to Jga' the result can be put in the form 

(X /X ) exp(Gt /kT) = 
a va a 

When J is ag 

(7) 

This same relation can be derived by setting the derivative of the total 

free energy of the gas with respect to the number of gas molecules equal 

to the derivative of the total free energy of molecules adsorbed on a 

fixed number of surface sites with respect to the number of adsorbed 

molecules. 

Equations (2), (4), and (7) show that at dynamic equilibrium 

0 0 (P /P )exp(G /kT) g g = (X./X .)exp[(Gti-G i)kT] = 
~ v~ · v (8) 

The particle shape that, for a constant total number of constituent 

molecules, gives the lowest values of the quantities separated by equal 

signs is the equilibrium shape; other shapes that satisfy Eq. (8) are 

metastable. 

Equation (8) was derived for a particle formed with ordered bulk 

and surface sites and with either the vacancy concentration or, for the 
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self-adsorption layer, the molecular concentration on each 

characteristic kind of site low enough so that the regular solution 

model could be used to calculate configurational entropies. For edges, 

surfaces, and self-adsorption layers at high temperatures, 

concentrations of the minor equilibrium defect may become high arid the 

distributions may become nonrandom. But the conclusion that dynamic 

equilibrium produces a vacancy distribution which minimizes the particle 

free energy can be expected to remain valid. For liquids, the vacancy 

model is inadequate, 9 but the equilibrium distribution of molecules and 

free volume between a liquid and its surface can be expected to be an 

exponential function of the bonding energies in the liquid and surface, 

like that found in Eq. (8). 

We can obtain from Eq. (8) an equation which reveals the 

influence of particle size when edge and corner effects are neglected. 

To do so we assume that all molecules near enough to the surface to have 

average molecular free energies significantly greater than the free 

energies of bulk molecules form a single collection of n molecules of 
s 

the same thermal free energy per molecule Gt • The reference state is 
s 

Pb, the vapor pressure for the solid when the ratio of surface area to 

bulk volume approaches zero. For such a particle, the vapor pressure 

depends on the relation 

t 0 0 
G vb - kT in(X vb/X b) (9) 

where the superscripts on the mole fractions identify them as those for 

the solid in its standard state. When surface effects are negligible, 

Gtvb = kT in X
0
vb' and Eq. (9) becomes 
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where G0 is the standard free energy of the bulk solid. 
b 

For a particle of significant surface area, 

Combining Eqs. (9) and (11) gives, because~ _ X0 b _ 1, 

0 
= X vb/Xvb 

The equilibrium mole fraction of vacancies in an isolated 

collection of i molecules in identical bonding environments is 

t 
Xvi = exp[-G vi/kT]. Therefore, the total number of vacancies, 

(10) 

(11) 

(12) 

generated on bulk and surface sites n , if the difference between mole 
vt 

fraction of vacancies and their mole ratio is neglected, is 

t t 
nvt = ~ exp[-G vb/kT] + ns exp[-G v/kT] (13) 

Dynamic equilibrium redistributes these vacancies according to Eq. (2), 

and leads in the same approximation used in writing Eq. (13) to 
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where the primes indicate that Eq. (14) describes the changed numbers of 

vacancies established by dynamic equilibrium. Combining Eqs. (13} 

and (14) with X b ~ n b/~ and n = n' b + n' gives 
V V b Vt V VS 

t . t 
nb exp[-G vb/kT) + ns exp[-G vs/kT] 

n'vb = ----------------------------------------- (15) 

t t t t 
1 + (ns/a) exp[(G b-G b-G +G )/kT) 

b V · VS S 

0 0 
Thus, because when ns/~ + 0, Eq. (15) reduces to n vb n b 

t . 
exp[-G vb/kt), 

= ------------------------------------ (16) 

1 + (ns/n. ) exp [ (Gt b-Gt ) /kT] 
D V VS 

For ns/~ « 1, Eq. (16) can be put in the form 

- (n /a) {exp[(Gt -Gt -Gtb+Gt b)/kT) 
S D S VS V 

( 17) 

-exp[(Gt b - Gt )/kT)} 
V VS 

But a sample calculation in the Discussion section shows that this 

approximation is unsatisfactory even for particles of -10 ~m cross 

section. 

The dependence of vapor pressure on particle size found in 

Eq. (16) is a consequence of either of the alternate assumptions~ 

(a) from kinetics, that molecular fluxes are balanced between surface 

and bulk, or (b) from thermodynamics, that the total number of vacancies 
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formed in the surface and in the bulk must be so distributed as to 

minimize the total particle free energy. Classical thermodynamic theory 

for particle-vapor equilibrium is a consequence of two assumptions which 

are particular to surface therinodynamics. 

The first assumption, as stated by Gibbs, 1 is that masses of two 

phases separated by a surface S can "be divided into three parts by two 

surfaces, one on each side of S and very near to that surface, although 

at such a distance as to lie entirely beyond the influence of the 

discontinuity in its vicinity." This assumption implicitly denies the 

possibility that a surface can influence the properties of adjacent 

phases by means of molecular motions. But it was shown in Ref. 2 that 

dynamic equilibrium in a crystalline particle makes the vacancy 

concentration in any part of the particle dependent upon the bonding 

.environment of all other parts. The molecules of a liquid are more 

mobile than molecules of the solids from which the liquids are formed, 

so that molecular motions in liquids must produce a similar effect of 

surfaces on the bulk liquid. Unless the demonstrations of Ref. 2 are 

faulty, this first special assumption of classical surface 

thermodynamics must be invalid. 

The second assumption identified by Gibbs was that because his 

Eq. (499), 

·oos- p' ov' - p" ov" = 0 • 

where os is the change in surface area and p' and p" are the pressures 

in the adjacent phases which are subject to the differential volume 

changes ov' and ov", "has evidently the same form as if a membrane 
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without rigidity and with a ten.sion a, uniform in all directions, 

existed at the dividing surface," the surface should be treated as if in 

tension. As long as it is supposed that a plane surface has no 

significant influence on the properties of adjacent bulk phases, some 

such assumption as this one is necessary in order to explain the 

experimental fact that surfaces do influence chemical and physical 

behavior. But as shown below, such an assumption may be unnecessary 

when molecular motions are taken into account. 

Discussion 

The derivation of the condition for maximum stability of a 

crystalline particle which was presented in Ref. 2 is consistent with 

the classical analysis of Gibbs. Gibbs assumed that the most stable 

'shape for a crystalline particle of fixed total number of constituent 

molecules n is the shape which requires the minimum work to form the 
p 

surface, and in a footnote following Eq. (665) he suggested that his 

solution is inexact because it neglects the fact that molecules in edge 

sites are less strongly bonded than molecules in parts of the surface 

away from edges. In making this suggestion, he clearly anticipated the 

concept of dynamic equilibrium. In Ref. 2, I used that concept to 

obtain the conditions for internal particle equilibrium and showed that 

these conditions minimize the Gibbs free energy of formation of a 

particle of fixed n and fixed number of various kinds of sites with the 
p 

absolute minimum work for a particle of fixed n being given by the 
p 

shape that minimizes ~(niGi + nviGvi + nikTinXi + nvikTinXvi). 

In the present paper I have shown that when the principle of 

dynamic equilibrium is extended to include with the particle its 
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self-adsorption layer and its vapor, the equilibrium corresponds to a 

minimum in the free energy of the defined particle-vapor system.=r This 

extension of the analysis of Ref. 2 is necessarily at variance with the 

classical theory because the classical theory rules out the possibility 

that a surface can influence the bulk properties of the phases it 

separates. 

The classical theory has nearly universal acceptance, and some of 

its predictions are markedly different from those of the dynamic model. 

Nonetheless, much of the present data do not appear to be incompatible 

with the dynamic model. The most direct tests of surface thermodynamic 

theory are based on experiment-s-of three general kinds: measurements of 

capillary rise, measurements of the influence of capillary condensation 

on vapor pressures, and measurements of particle-vapor equilibrium. 

These kinds of experiments will be considered in turn. 

Capillary rise experiments are equally consistent with the 

classic and the dynamic model. In a gravitational field gradient, any 

gas phase must approach a steady state distribution in which the field 

11 gradient is balanced by a gas pressure gradient. Consequently, the 

vapor pressure of a liquid is a (very weak) function of height in the 

field. The height to which a liquid will-rise (or fall) from the level 

~Equilibrium between a vapor and a liquid particle at constant 
pressure of the vapor is always unstable in the sense that any increase 
in n that results from a statistical fluctuation yields a particle of 
diffgrentially lower vaporizing flux than that of the parent particle. 
But the explanation given elsewhere for thf0long persistence of 
crystalline particles of metastable shapes also implies that those 
particles which have favorable ratios of constituent molecules to 
low-energy bonding sites can be locally stable to growth as well_ as to 
shape change. 
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of a reservoir can be predicted by minimizing the liquid surface free 

energy with respect to height in the field. 
12 

In the dynamic model, the 

liquid in a reservoir and capillary system would constitute a subsystem 

which is at internal equilibrium. Because the number of surface 

molecules in the liquid in such a system is usually very much less than 

the number of bulk molecules, the vapor pressure throughout the liquid 

would be essentially unchanged from that of the bulk liquid. But that 

vapor pressure is a function of height and must be lower at the meniscus 

than at the reservoir surface by the amount observed. If an identical 

reservoir and capillary system were placed so that its reservoir surface 

stood at the level of the top or bottom of the meniscus, the vapor 

pressure of that second reservoir at its surface would be the same as 

that at the top or bottom of the meniscus of the first reservoir. 

For capillary condensation the classical theory is clearly 

inadequate. 13 The long-standing evidence by Shereshefsky that vapor 

pressure reductions for liquids condensed in -1 l-Im capillaries are as 

much as 90 times those predicted by the classical theory has been 

doubted but never disproved, and similar results have been obtained in 

14 additional studies. It seems now to be widely accepted that in small 

capillaries the vapor pressure lowering must be related not to the 

capillary radius but to an effective radius corrected for the thickness 

4 5 of the film of liquid adsorbed on the capillary walls, ' and perhaps 

for an additional contribution to the reduction from the adsorption 

4 layer. What is particularly interesting about two concordant studies 

is that they provide evidence that the vapor pressure of a layer of 

liquid adsorbed on a plane surface is measurably reduced from that of 

the bulk phase when the liquid is as much as 0.1 l-Im thick. This is 
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direct evidence that the thermodynamic influence of a plane interface or 

of an adjacent phase extends over distances great enough to make the 

first assumption of classical surface thermodynamic theory inadequate 

for analysis of many phenomena now under active study--for example, the 

properties of semiconductor films or of the sintering of submicron 

particles. The dynamic equilibrium model is qualitatively consistent 

with the observations for capillary condensation and adsorption. For a 

solid film on a massive substrate equilibrium between successive layers 

would be characterized by equations like Eq. (?), and if interactions 

with the substrate are strong, its influence could be important in 

relatively thick films regardless of the shape of the interface. I plan 

to develop a quantitative model for dynamic equilibrium in liquids 

condensed on surfaces and/or in capillaries. 

Several studies of particle-vapor equilibrium have been 

considered to confirm the very small increases in vapor pressure 

. 16 17 . 
predicted .by the Kelvin equation, ' but the experiments have required 

interpretations of kinetic measurements or of the nature of approach to 

equilibrium which make the changes calculated in vapor pressure 

sometimes only lower limits and sometimes of problematic value. 

Woodland and Mack18 and Shereshefsky and Steckler19 measured the 

rates of vaporiiation of suspended droplets in air. Fits to the Kelvin 

equation were obtained by assuming that the rate-limiting process was 

diffusion into air from a vapor cloud that was significantly larger than 

the droplets themselves. That diffusion was rate limiting is unproved. 

If it is limiting, a more conventional interpretation would be that the 

equilibrium diffusion source is the particle surface, so that the 
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dependence of vapor pressure on 1/radius in the experiments of Woodland 

and Mack are 103 times-the prediction of the Kelvin equation. 

Interpretation of the experiments of La Mer and Gruen20 involved 

the assumption that droplets ofa nonvolatile liquid which were 

initially too small to scatter light grew by condensation of a more 

volatile liquid to observable dimensions. The droplets were introduced 

into a flask containinga master solution of the two liquids. When the 

flask was shaken, the intensity of light scattering "immediately" 

increased. It is possible that the droplets grew in large part by 

agglomeration and may have contained a much lower concentration of the 

volatile component than has been assumed. 

The interpretation of measurements of the rates of vaporization 

of very small metal particles in an electron microscope by Sambles, 

21 Skinner, and Lisgarten require some assumptions that cannot be 

verified, in particular that the vaporization coefficient is independent 

of particle size. It is possible that as the particles grow smaller 

minor impurities build up on their surfaces to reduce their vaporization 

rates and to make the apparent dependence of vapor pressures on radius 

smaller than the true value. But it is hard to conceive of systematic 

errors large enough to reconcile these particular experiments with the 

predictions of the dynamic model, so they must be considered in 

fundamental disagreement with it. 

Because in the dynamic model vapor pressure changes are 

exponential functions of ns/~, much greater changes are predicted with 

decreasing radius than are predicted by the Kelvin equation. The 

approximate magnitudes can be illustrated with data for metals. For 

several metals, the enthalpies of formation of vacancies average about 
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0.28 6H , and the enthalpy of formation per monolayer of surface average 
g 

b 0 25 AH h AH • h h 1 f . . 22 a out • u , w ere u ~s t e ent a py o vapor~zat~on. 
g g 

The 

entropy of surface formation per mole of monolayer is about 2 k, and the 

entropy of formation of defects in the bulk and surface must be nearly 

equal. The enthalpy of formation of vacancies in metal surfaces is 

probably 2/3 to 3/4 this value, say 0.20 6H • Using these values in 
g 

Eq. (16) with 6G /kT = 31.8, which is approximately the value for gold 
g 

at 1300°K, leads to a predicted increase in vapor pressure of 

-3.7 x 104 n/~. This result implies that particles of 0.1 mm to 1 mm 

diameter would have vapor pressures of the order of 10% higher than 

particles 1 em or greater in diameter. If such a large effect exists, 

and if it were expected by experimenters, it should of course have long 

ago been discovered. But my own experience has been that when 

confronted with the results of very careful measurements of relative 

vaporization rates for which the measured internal consistency appeared 

to justify a claim of only 4% systematic error, I concluded that 
/ 

well-established theoretical principles fixed the actual error as at 

least 11%. 23 Others may have reached similar conservative conclusions. 

It is probably much harder to hold errors in relative pressures 

to the order of 10% in most experiments than the investigator usually 

recognizes. Tests of whether the dynamic model is tenable for particles 

should be based on experiments with particles of 1 )..lm or smaller for 

which the expected pressure increase is more than a factor of ten and 

for which the classical theory predicts less than a 10% increase. 

Sintering of the particles would have to be avoided. An alternate 

approach would be to measure the relative vapor pressures of thin 

unsupported metal sheets. The classical theory predicts that their 
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vapor pressures should be independent of thickness; the dynamic 

equilibrium model predicts that their vapor pressures should increase 

with ns/~. The problem with such an experiment is likely to be that 

the sheets would prove unstable to shape changes. 
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