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Abstract

A model is proposed that elegantly unifies the tradi-
tional exemplar and prototype models. These two mod-
els are extreme cases of the proposed varying abstrac-
tion model. The unifying model further makes room
for many new intermediate pseudo-exemplar models. A
preliminary analysis using Medin and Schaffer’s (1978)
5-4 structure pointed to such an intermediate model that
outperformed the prototype and exemplar models.

Introduction
Formal models of categorization can roughly be divided
into two groups: exemplar models and prototype models.
What are they and what are they worth?

Description
Both models share their representation and response se-
lection assumptions. As far as representation is con-
cerned, both models assume that the percept associated
with a single exposure to a certain stimulus can be repre-
sented as a fixed point in a D-dimensional space. In case
the coordinates of the positions of the stimuli are not
predefined by the experimenter, they can be obtained
by for instance multidimensional scaling (Borg & Groe-
nen, 1997; Lee, 2001). The response selection assump-
tion states that the probability that a stimulus i is cat-
egorized in category A is computed from the similarity
choice model, as expressed in equation (1).

The models differ in their retrieval assumption or, sim-
ply put, in how a category is represented. Exemplar
models start from the assumption that memory traces
of individual exemplars are stored, without any abstrac-
tion across these stored exemplars. Prototype models on
the other hand, assume that categories are stored as an
abstract summary representation.1

Performance
Over the last 2 decades, many researchers have compared
exemplar and prototype models. In numerous category
learning studies with artificial stimuli (e.g., Medin, Al-
tom & Murphy, 1984; Minda & Smith, 2001; Nosofsky,
1992; Smith & Minda, 2000, 2002), exemplar and pro-
totype models have been contrasted and compared in

1A far more elaborate comparison between exemplar and
prototype models (as well as decision bound models) can be
found in Ashby and Maddox (1993).

relation to both between-category structure (e.g., cate-
gorization decisions) and within-category structure (e.g.,
typicality ratings). In the majority of these studies (e.g.,
Medin & Schaffer, 1978; Medin, Altom & Murphy, 1984;
Nosofsky, 1992), different versions of the exemplar model
outperformed the prototype model.

In contrast, many studies within the domain of natu-
ral language have proposed a prototype view of seman-
tic concept representation (e.g., Hampton, 1993; Lakoff,
1987; Rosch, 1978). Smits, Storms, Rosseel and De
Boeck (2002), however, applied formal models developed
in the context of artificial category learning experiments
to data from natural language concepts. They found
that, also in the field of natural language, the exemplar
model outperformed the prototype model.

A unifying idea

In all of the above mentioned studies, exemplar and pro-
totype models are tacitly presented as the only two al-
ternatives in a dichotomy. Conceptually and formally
however, both models can be considered as extremes on
a continuum that varies from no abstraction at all (i.e.,
every exemplar is represented separately) to maximum
abstraction (i.e., a single prototype as a summary repre-
sentation). Along this continuum, positions in-between
these two extremes are held by new models, in which
exemplars cluster together.

We present here a generic model that allows varying
levels of abstraction. This varying abstraction model
has two merits. First, it unifies the traditional exem-
plar and prototype models. Both models are reduced to
special (extreme) cases of the generic model. Second,
the varying abstraction model also allows intermediate
levels of abstraction, in which exemplars are not stored
separately, but merge into pseudo-exemplars. These in-
termediate abstraction levels define a set of new models,
called pseudo-exemplar models.

A unifying model

Developing a varying abstraction model within the
framework of the very successful generalized context
model (GCM; Nosofsky, 1984, 1986) is rather straight-
forward.
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GCM framework

Probability The traditional GCM states that, in a
categorization task with two categories A and B, the
probability of responding A given a stimulus i equals

P (A, i) =
βAηiA

βAηiA + (1− βA)ηiB
, (1)

where βA is the response bias towards category A and
ηiJ is the similarity of the stimulus i to the category J .

Similarity A necessary condition to be able to calcu-
late the similarity of the stimulus i to the category J is
a clear specification of what makes up a category. It is
exactly at this specification that exemplar and prototype
models diverge, as will become clear immediately. They
do agree however on the definition of the similarity of
the stimulus i to another stimulus j. It is assumed to be
related to (psychological) distance d via

ηij = exp(−dα
ij). (2)

Two special cases are popular: the one where α = 1,
resulting in the exponential decay function, and the one
where α = 2, resulting in the Gaussian function.

Distance The distance between the two stimuli i and
j in turn is calculated from the coordinates of the two
stimuli. There are several versions of how to compute
a distance from the coordinates. The most common ex-
pression for distance is

dij = c[
D∑

k=1

wk|xik − xjk|r]1/r, (3)

where xik is the coordinate of stimulus i on dimension
k. This is a so-called weighted distance: wk denotes the
proportion of attention allocated to dimension k and so∑D

k=1 wk = 1. The parameter c is a scaling parameter.
This distance is called a city-block distance when r = 1
and Euclidean when r = 2.

Exemplar and prototype models

Both prototype and exemplar models share the above
assumptions and definitions. They differ however in their
exact understanding of what makes up ‘the category J ’.
Therefore, they differ in the way the similarity of the
stimulus i to the category J is calculated.

Exemplar model In the exemplar model, a category
is assumed to be represented by memory traces of all
the encountered exemplars of the category. Hence, the
similarity of the stimulus i to the category J is calculated
by summing the similarity of the stimulus i to all N
stored exemplars of J , that is:

ηiJ ≡
(N)∑

j∈J

ηij , (4)

where N is the number of exemplars of J . Using equa-
tions (2) and (3), we find that

ηiJ =
(N)∑

j∈J

exp(−dα
ij)

=
(N)∑

j∈J

exp(−(c[
D∑

k=1

wk|xik − xjk|r]1/r)α). (5)

Prototype model A prototype model can easily be
formulated within the framework of the GCM. In this
model, a category is assumed to be represented as an
abstract summary representation of all the encountered
exemplars of the category. This abstract summary of the
category is called the category prototype and is denoted
as PJ . Hence, the similarity of the stimulus i to the
category J equals the similarity of the stimulus i to the
category prototype, that is:

ηiJ ≡ ηiPJ
. (6)

The coordinates of PJ are simply the averaged coordi-
nates of all the exemplars within the category J on each
of the underlying coordinate axes:

xPJk =
1
N

(N)∑

j∈J

xjk. (7)

Using equations (2), (3) and (7), we find that

ηiJ = exp(−dα
iPJ

)

= exp(−(c[
D∑

k=1

wk|xik − 1
N

(N)∑

j∈J

xjk|r]1/r)α). (8)

The unifying model
Principle In the above presentation of the exemplar
and prototype models within the GCM framework, the
extreme positions of these models are easily seen: in the
exemplar model, the distance of i towards all N exem-
plars is calculated, while in the prototype model, the
distance of i towards just one single exemplar (i.e., the
category centroid) is calculated. The varying abstraction
model now assumes that the number of items to which
i is compared can vary, in principle, from 1 to N . This
means that the varying abstraction model not only in-
corporates the two traditional models, but also invokes
new intermediate models.

Formalization One can consider a category J as a
set of N elements jn.2 The basic idea is to make up a
partition for each category. A set partition, or simply
a partition, of a set S is defined as a collection of dis-
joint, nonempty subsets of S whose union is S. Each
subset in such a partition is called an equivalence class
or a block. For every block one can easily construct the

2To simplify the notation, the index n is dropped most of
the time.
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prototype of this block by averaging over all the exem-
plars in that block. Such a block prototype is called a
pseudo-exemplar.3

In general, a partition of J consists of Q different
blocks Fq, where q ranges from 1 to Q. Q itself ranges
from 1 (when F equals J , the set of all exemplars) to N
(when every Fq is a singleton). The number of elements
in a block Fq is denoted as Rq. The block prototype in
a block Fq is denoted as eq.4 The set of all the block
prototypes of a certain partition of J , is denoted as E
and has a set size of Q.

How is a category defined according to the varying
abstraction model? In the model, it is assumed that a
category is represented by a number of abstract sum-
mary representations of some of the encountered exem-
plars of the category. These abstract summaries of the
category are called the category pseudo-exemplars and
are denoted as eq. Hence, the similarity of the stimulus
i to the category J is calculated by summing the simi-
larity of the stimulus i to all Q pseudo-exemplars of J ,
that is:

ηiJ ≡
(Q)∑

e∈E

ηie. (9)

The coordinates of eq are simply the averaged coordi-
nates of all the Rq exemplars within the block Fq on
each of the underlying coordinate axes:

xek =
1

Rq

(Rq)∑

j∈Fq

xjk. (10)

Making use of equations (2), (3) and (10), we finally find
that

ηiJ =
(Q)∑

e∈E

exp(−dα
ie)

=
(Q)∑

e∈E

exp(−(c[
D∑

k=1

wk|xik − xek|r]1/r)α)

=
(Q)∑

e∈E

exp(−(c[
D∑

k=1

wk|xik − 1
Rq

(Rq)∑

j∈Fq

xjk|r]1/r)α).

(11)

Model family One specific partition of each category
picks out one specific model. Such a model is called
a pseudo-exemplar model. The two extreme partitions
(i.e. Q = N for each category and Q = 1 for each cate-
gory) correspond to the two extreme pseudo-exemplar
models (i.e. the exemplar model and the prototype
model, respectively). The other, intermediate parti-
tions correspond to intermediate pseudo-exemplar mod-
els. Therefore, the varying abstraction model is not just
a model but it is a family of models.

3Alternative names for pseudo-exemplar are super-
exemplar or sub-prototype. They are all used interchange-
ably.

4To simplify the notation, the index q is dropped most of
the time.

A key role is played by Q: it denotes the number of
blocks and hence the number of block prototypes (or
pseudo-exemplars) that are used to represent a category.
On a conceptual level, Q indexes the level of abstraction
(higher Q means lesser abstraction). Since Q is allowed
to vary from 1 to N for each category and Q counts the
number of prototypes used to represent a category, the
varying abstraction model is a formalization of the idea
that people use multiple prototypes.

The varying abstraction model makes clear that the
exemplar and prototype model are extreme pseudo-
exemplar models and are therefore of the same nature
as the intermediate pseudo-exemplar models. However,
for ease of exposition, the term pseudo-exemplar model
will only be used to refer to the intermediate models, not
to the extreme ones.

The traditional models Formally, the expressions
(4) and (6) can be considered as special cases of the
general expression (9). The same holds for expressions
(5) and (8): they are special cases of expression (11).
The varying abstraction model reduces to the traditional
models when a specific partition is chosen for each cate-
gory.

The exemplar model follows when each category J
with N elements is partitioned in N subsets of one el-
ement each. The block prototypes therefore equal the
exemplars. More formally:

• Q = N

• Fq = {jq} so Rq = 1 for every q

• E = J .

The prototype model follows when each category J
with N elements is partitioned in only one subset of N
elements. There is only one block prototype which equals
the category prototype PJ . More formally:

• Q = 1

• Fq = J so Rq = N for every q

• E = {PJ}.
The pseudo-exemplar models Every partition de-
fines or corresponds to a certain model. How many non-
extreme (i.e. 1 < Q < N) partitions (and hence models)
should one consider when fitting the model to a data set?

In the ideal case, one might explore all possible par-
titions of the N stimuli in a category J . However, this
strategy is not always feasible. The number of possible
partitions of a set of N elements is given by the Bell
number of N (denoted as BN ). This number increases
very rapidly.5 In a categorization task with two cate-
gories A and B with NA and NB exemplars respectively,
this implies fitting BNA × BNB different models. When
more than, say, eight, stimuli per category are used, the
number of possibilities to consider becomes intractable.

5For instance, B6 equals 203 and B10 equals 115975.
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A straightforward way to keep the number of parti-
tions within practically feasible boundaries is to select
at every level of abstraction only one partition. Instead
of blindly considering all partitions, we could limit our-
selves to only one partition for each category for every
value of Q. This partition can for example be selected
through clustering. This reduces the number of different
models to be fit to NA × NB . An application of this ap-
proach in the context of natural language can be found
in Verbeemen, Storms and Verguts (in press).

When practically possible, fitting all possible models
is a fruitful strategy. It has the clear advantage over
the clustering approach that no assumptions have to be
made about spatial representation or about which ex-
emplars should or should not be merged together. What
drives clustering is inferred, not imposed.

The main advantage of the pseudo-exemplar models
is that they allow for sensitive modeling. They allow for
adaptation to category complexity, category experience
and individual skills.

Evaluating the model
A first data set of a category learning experiment with
artificial stimuli has been analyzed using the vary-
ing abstraction model and corresponding Matlab al-
gorithms. This preliminary analysis indicated that a
pseudo-exemplar model outperformed the traditional
prototype and exemplar models.

Matlab fitting algorithms
Determining to what extent the model can account for
category-related behavior is done by fitting all the mod-
els of the varying abstraction model family to a data
set.

A typical categorization experiment consists of a train-
ing phase and a test phase. In the test phase, N stimuli
are presented to S subjects. Each subject classifies every
stimulus as either A or B. In the following, P (A, i | θ) is
the varying abstraction model’s estimate of the proba-
bility of responding A to i, given the parameters θ. The
expression for this probability is obtained by combining
expressions (1) and (11).

We have developed two Matlab algorithms to fit pro-
totype, exemplar and all pseudo-exemplar models and
compare the performance of the different models. Both
least squares and maximum likelihood methods are used
to estimate the model’s unknown parameters.6 These
parameters are the response bias βA, the scaling param-
eter c and D − 1 attention weights wk. All these pa-
rameters are, for the sake of brevity, summarized in the
parameter vector θ.

The least squares algorithm looks for the θ that most
accurately describes the observed responses. The algo-
rithm seeks those parameter values that minimize the
sum of squared errors, that is

SSE(θ) =
N∑

n=1

(pn − P (A,n | θ))2, (12)

6A very useful tutorial on maximum likelihood estimation
is Myung (2003).

where pn is proportion of A responses for stimulus n.
The maximum likelihood algorithm looks for the θ

that most likely have produced the observed responses.
Therefore, it should seek those parameter values that
maximize this likelihood. Assuming a binomial distribu-
tion, this likelihood equals

Lik(θ) =
N∏

n=1

(
S

yn

)
P (A,n | θ)ynP (B, n | θ)S−yn , (13)

where yn denotes number of subjects choosing category
A for stimulus n. For computational efficiency, it is bet-
ter to look for the θ that maximizes the natural loga-
rithm of this likelihood. Hence the function to be maxi-
mized in the maximal likelihood algorithm is the loglike-
lihood7:

Loglik =
N∑

n=1

[yn lnP (A,n | θ) + (S − yn) ln P (B, n | θ)].
(14)

When fitting the varying abstraction model to a data
set, the algorithm seeks, among all possible partitions of
each category, the parameter values that minimize SSE
or maximize Loglik. The partition yielding the smallest
minimal SSE or largest maximal Loglik of all the possi-
ble partitions corresponds to the pseudo-exemplar model
that best accounts for the categorization process.8

Category learning experiment
The proposed model’s performance was tested in a cate-
gorization experiment using the well-known 5-4 structure
(Medin & Schaffer, 1978; Smith & Minda, 2000).

Subjects Twenty-four first year university students
participated for course credit.

Stimuli Stimuli were constructed according to the 5-
4 category structure from Medin and Schaffer (1978).
The stimuli were artificial sheep, varying on four dimen-
sions: eyes (open or closed), fleece (four or five curls),
feet (black or white) and tail (rounded or starred). Dur-
ing the training phase, subjects only encountered the five
stimuli of category A and the four stimuli of category B.
During the transfer phase, all 16 stimuli were presented.

Procedure To motivate the subjects, the categoriza-
tion task was presented as a sheepdog game. The par-
ticipants were asked to drive the sheep to the correct
meadow. A-sheep should be driven to the left and B-
sheep to the right. In each trial, a sheep appeared on

7The additive constant
∑N

n=1[ln S!− ln(S − yn)!− ln yn!]
does not depend on θ and therefore is dropped.

8Both measures only take descriptive accuracy into ac-
count. To avoid overfitting, model complexity should be
taken into account as well. Although all the models of
the varying abstraction model family have the same num-
ber of parameters with the same range, the functional form
of these parameters differ (i.e. the way the parameters are
combined). There are tools available combining goodness-of-
fit with model complexity, such as Bayes factors and mini-
mum description length (Myung & Pitt, 1997; Pitt, Myung
& Zhang, 2002).
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the screen, staring at a certain direction. The partici-
pant had to evaluate the correctness of the initial staring
direction, by pressing button 1 for a correct and button 2
for a wrong direction. Each sheep appeared twice, once
in the correct direction and once in the incorrect direc-
tion. Hence there were 18 trials in the training phase
and 32 trials in the transfer phase. The order of appear-
ance of the sheep was randomized. In the training phase,
every trial was followed by “good” or “false”. Feedback
was omitted in the transfer phase.
Results Both categories are small, so all possible par-
titions/models could be examined. Since there are 16
possible partitions for a set of four elements and 52 for a
set of five, 780 different models were fit to the data. In
principle, four different families of models could be fit-
ted, since both r and α can take the values 1 or 2. In the
preliminary analysis presented here, both r and α were
set to 1. The summary fits are presented in Table 1.

Table 1: Summary fits of the prototype (PM), exemplar
(EM) and the best pseudo-exemplar (PE) model under
the least squares estimation method.

PM EM PE
minimal SSE 0.13 0.09 0.03
r2 0.93 0.95 0.99
parameter βA 0.58 0.52 0.09
parameter c 7.53 6.88 11.31
parameter w1 0.24 0.20 0.17
parameter w2 0.00 0.10 0.14
parameter w3 0.37 0.47 0.24
parameter w4 0.39 0.24 0.44

Discussion This preliminary analysis with small cat-
egories revealed that, as expected, the exemplar model
outperformed the prototype model. More importantly,
it also revealed that a pseudo-exemplar model outper-
formed both traditional models.9 The best pseudo-
exemplar model corresponds to the following partition
of the categories, using the labels as described in Medin
and Schaffer (1978): category A is divided in three clus-
ters (A1 and A4; A2; A3 and A5) and category B re-
mains one simple cluster. It is not surprising at all that
A2 is singled out since A2 is the stimulus that is the least
similar to the prototype of category A.

General Discussion

The model proposed in this paper elegantly unifies two
traditional formal models for categorization. Further, it
gives rise to a set of new models, called pseudo-exemplar
models. All these models, traditional and new, are for-
malized along the continuum of abstraction.

9In fact, there were several pseudo-exemplar models that
outperformed the traditional models. Only the best one is
reported here.

Model performance
Analysis of a categorization experiment indicated that
a pseudo-exemplar model outperformed the traditional
models. It is important to note that this finding does
not lead to the conclusion that the varying abstraction
model outperformed the exemplar and prototype mod-
els. In fact, we would be able to make that conclusion
even before having a look at any data set at all. For,
the varying abstraction model includes both traditional
models, so its performance is at least as good as the per-
formance of the traditional models. Of course, this com-
parison would not be a fair one. We do conclude however
that the varying abstraction model can single out a new
pseudo-exemplar model (or several new pseudo-exemplar
models), that clearly outperforms the traditional ones.
The comparison between this specific pseudo-exemplar
model and the traditional models is a fair one, or at least
as fair as the comparison between the exemplar model
and the prototype model.

Future Directions
Due to the pseudo-exemplar models, the varying abstrac-
tion model allows for sensitive modeling. This sensitiv-
ity makes the varying abstraction model highly useful
for investigating in full detail Smith and Minda’s (1998)
findings that category representation may change during
the learning process. In fact, they found that with large
categories, a prototype model yields better accounts of
the initial phases of categorization, while exemplar mod-
els yield better accounts in later stages of the learning
process. One can expect that, using the varying abstrac-
tion model, better fits will be obtained for models with
more pseudo-exemplars as learning proceeds.

Apart from doing more elaborate modeling of catego-
rization decisions, the varying abstraction model can eas-
ily be extended to account for typicality ratings. Nosof-
sky (1988) contrasted prototype and exemplar accounts
of rated typicalities. Further research will investigate
whether intermediate abstraction levels account better
for rated typicalities than extreme abstraction levels do.

Another extension could be the account of response
times for exemplars in a speeded categorization task, for
instance along the lines of Nosofsky and Palmeri’s (1997)
exemplar-based random walk model.

A theoretical issue is the connection between the pro-
posed varying abstraction model and related models.
The idea of considering the prototype and exemplar
models as extremes along a continuum has been adopted
in other models. The rational model (Anderson, 1991),
SUSTAIN (Love, Medin & Gureckis, 2004) and the mix-
ture model (Rosseel, 2002) share with the varying ab-
straction model the idea that a category is represented
by multiple prototypes, but show clear differences with
the varying abstraction model too. The varying abstrac-
tion model is also closely related to a general-rule-plus-
exception model such as RULEX (Nosofsky, Palmeri &
McKinley, 1994). Investigating exactly how these mod-
els and the varying abstraction model differ in principle,
formalization and performance is important work for the
future.
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