UC San Diego

UC San Diego Electronic Theses and Dissertations

Title

Hardening Cloud and Datacenter Systems against Misconfigurations: Principles and Tool
Support

Permalink
https://escholarship.org/uc/item/46h596p3
Author

Xu, Tianyin

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/46h596p3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Hardening Cloud and Datacenter Systems against Misconfigurations:
Principles and Tool Support

A dissertation submitted in partial satisfaction of the

requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Tianyin Xu

Committee in charge:

Professor Yuanyuan Zhou, Chair
Professor Pamela C. Cosman
Professor William G. Griswold
Professor Scott R. Klemmer
Professor Stefan R. Savage
Professor Geoffrey M. Voelker

2017

Copyright
Tianyin Xu, 2017

All rights reserved.

The Dissertation of Tianyin Xu is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

il

DEDICATION

To those who gave me a chance when no one else would.

v

TABLE OF CONTENTS

Signature Page 1ii
Dedicationt e v
Table of CONENtSttt e e e v
List Of Figureso e viii
Listof Tables X
Acknowledgements e xiii
VI XViii
Abstract of the Dissertation i XX
Chapter 1 Introductiono .ot 1
1.1 A Systems Perspectiveo, 4

1.2 Dissertation Contributions 6
1.2.1 Anticipating Misconfigurations with SPEX 7

1.2.2 Enforcing Early Detection with PCHECK 8

1.2.3 Simplicity-oriented Configuration Design................... 9

1.3 DiSSertation SCOPEo v vttt ettt e e e e e 10
Chapter 2 Anticipating Misconfigurations, 11
2.1 INtroductionttt 12

2.2 Background 13

2.3 Configuration Constraint Inference 15
2.3.1 What Constraints Can Be Inferred? 16

2.3.2 How to Infer Constraints?t 19

2.3.3 Discussion and Limitation............. ..., 26

2.4 Use Cases of Configuration Constraintscoeuu.... 27
2.4.1 Harden Systems against Configuration Errors................ 27

2.4.2 Detect Error-Prone Design and Handling 31

2.5 Evaluation 35
25.1 OverallResults 35

2.5.2 Benefits to Real-World Configuration Problems.............. 40

2.5.3 Configuration Constraint Inference 42

2.6 Experience and Practicet 43
2.6.1 Interaction Experience with Developers 43

2.6.2 PractiCecouuiiuiiin et 45

2.7 SUMMATY ..ttt et e e e e e e e e e e e e 46

Chapter 3 Early Detectiont 48

3.1 Introductiont 49
3.2 Background 50
3.2.1 Severity of Latent Configuration Errors..................... 51

3.2.2 Limitation of Existing Detection Approaches 54

3.3 Understanding Latent Configuration Errors 55
3.3.1 Methodology.......ovuiii 56

332 FIndings.oouiiii 57

333 Implicationoiiiiii i 61

3.4 PCHECK Design and Implementation............................. 62
34.1 Emulating Execution i, 65

3.4.2 Preventing Side Effects L. 69

343 Capturing Anomalies, 71

34.4 Invoking Early Checkers i, 72

3.5 Experimental Evaluation........... i 74
3.5.1 Methodology.........cooiiii 74

3.5.2 Detecting Real-world LCErrors........................... 76

3.5.3 Checking Real-world Configuration Files 78

3.54 Checker Generationuuiiiniiinneennneenn.. 79

3.5.5 CheckingOverhead 80

3.5.6 False Positiveso 81

3.6 LAMIGAtIONS .« ..ottt ettt e e e e e e 82
37 SUMMATY ..ottt e e e e e 83
Chapter 4 Simplicity-oriented Design 85
4.1 Introductiont e 85
4.2 Background 87
4.3 Methodology 90
4.3.1 Target Software. 90
4.3.2 Real-world Configuration Settings 91

4.3.3 Real-world Configuration Issues 92
434 Threatsto Validity i 93

4.4 Understanding Configuration Settings inthe Field 94
4.4.1 Do Operators Really Need So Many Configuration Knobs? 95
4.4.2 Should We Offer More Choices in Configuration Knobs?. 97

4.4.3 What Is The “Cost” of Too Many Knobs?................... 99
4.4.4 What Kinds of Knobs Are Most Utilized?................... 102

4.5 Configuration Simplification 104
4.5.1 Simplification Guidelines, 104
4.5.2 Effectiveness of Simplification 106

4.6 Configuration Navigationt eneenn.n. 108
4.6.1 Methodology........oviiiiiii i i e 108

vi

4.6.2 Effectiveness of Navigation.......................oovin... 110

A7 DISCUSSION .. v ettt ettt e e e e e e e e e 116
4.7.1 Implications and Incentives............ 116

4.7.2 Further Simplification, 117

4.7.3 Intent-based Configurationcciuin... 118

4.8 SUMMATY . ..ottt e e e e 118
Chapter 5 Related Work 120
5.1 Automating Configurationc.iiiiiiiniinnneenn.. 120
5.1.1 Tuning Performance Configurations 121

5.1.2 Reusing Configurationsouiriineineennenn.. 122

5.1.3 DiSCUSSION . . vttt ettt 124

5.2 Checking COrreCtnessvuvtt ettt e 125
5.2.1 Detecting Misconfigurationscooeuvennen... 125

5.22 Online Testingiiiinen i 128

5.2.3 DISCUSSION . . vttt ettt 130

5.3 Dealing with Misconfiguration-Induced Failures.................... 130
5.3.1 Troubleshooting Misconfigurations 130

5.3.2 Failure Recoveryo 134

5.3.3 DISCUSSION . . o ettt ettt ettt e e e 134

5S4 SUMMATY ...ttt e e e e e 135
Chapter 6 Conclusion and Future Work 136
Appendix A Operation Disciplines and Implications 139
Bibliography 141

vii

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 4.1.

Figure 4.2.

Figure 4.3.

LIST OF FIGURES

A real-world example from a commercial company. The config-
uration constraint was too strict and multiple operators made the
same mistake despite two documents explainingit..............

A real-world example from OpenLDAP. The LDAP server crashes
when “1istener—-threads”is set to be larger than 16.

Real-world examples to illustrate the types of configuration con-
straints SPEX infers i

Examples of three mapping conventions and the corresponding an-
notations to get the mapping information

Real-world examples to illustrate the configuration error genera-
tion of SPEX-INJ and the exposed misconfiguration vulnerabilities

Real-world examples of error-prone configuration design and han-
dling ...

Examples of different types of misconfiguration vulnerabilities ex-
posed by SPEX-INT ..ot e

A real-world LC error from Squid [142]
A real-world LC error from MapReduce [59]..................

New LC errors discovered in the latest versions of the studied
software, both of which are found to have caused real-world fail-
ures [147, 148 . ..o

[lustration of PCHECK’s checker generation (using a real-world
LC error example [105])o oo

Locations to invoke the checkers in Squid and HDFS NameNode .

The increasing number of configuration parameters with software
EVOIULION . . . oot

A real-world example of less useful configuration parameters from
HDES

How many parameters are used in the field by the operators?

viii

14

15

17

22

28

33

37

53

53

59

64

73

88

95

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Usage of enumerative parameters with different number of options
(percentages of used options among all the provided options)

A real-world example of configuration errors caused by the opera-
tors’ incorrectly staying with default values.

Two examples of configuration parameters that are seldom set by
any operator in the MySQL dataset.

Real-world usages of configuration parameters with explicit, visi-
ble external impact (“explicit”) versus parameters specific to inter-
nal implementation (“internal™),

The performance of NLP-based navigation using different infor-
MALION SOULCES & . .ottt ettt et e ettt ie e e

ix

99

101

102

103

107

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 2.5.

Table 2.6.

Table 2.7.

Table 2.8.

Table 2.9.

Table 2.10.

Table 2.11.

Table 2.12.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

LIST OF TABLES

Mapping from configuration parameters to program variables in 26
SOftWAIE PrOJECES. . . vttt ettt et et e e e

SPEX-INJ’s generation of misconfigurations for different types of
constraints inferred by SPEX oL,

The categories of bad systemreactions
Software systems used in the evaluation

The number of exposed misconfiguration vulnerabilities and the
corresponding source-code locations.

Case-sensitivity requirements of different configuration parameters
Different units of size- and time-related configuration parameters .
The other types of error-prone configuration design and handling . .

Real-world misconfiguration cases that can be potentially avoided
among all sampled historiccases.............................

The breakdown of misconfigurations that cannot benefit from SPEX
Configuration constraints inferred by SPEX
Accuracy of constraintinference

Severity of latent versus non-latent errors among the customers’
configuration issues of COMP-A

Diagnosis time of latent versus non-latent errors among customers’
configuration issues of COMP-A

The systems and the RAS parameters in the study

The number of configuration parameters that do not have any initial
checking code (“missing”) and that only have partial checking and
thus cannot detect all potential errors (“incomplete™).

The studied configuration parameters whose values are not used at
the system’s initialization phase.

21

29

31

35

36

39

39

40

41

42

43

52

52

56

57

60

Table 3.6.

Table 3.7.

Table 3.8.

Table 3.9.

Table 3.10.

Table 3.11.

Table 3.12.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

Table 4.8.

Table 4.9.

The number of configuration parameters that are subject to LC er-
rors in the studiedones i

The number of LC error cases used in the evaluation, and the setup
efforts (the lines of specifications for identifying starting points, c.f.,
§3.4.1 and annotations of invocation location, c.f., §3.4.4).

Types and examples of LC errors used in the evaluation.

The number (percentage) of the LC errors detected by the early
checkers generated by PCHECK

Configuration errors detected by applying the generated checkers
to real-world configurationfiles

The number of parameters with checkers generated by PCHECK
and the total number of generated checkers (each represents a dis-
tinct parameter Usage SCENATIO). . . . v v v v e e e eeneenns

Checking overhead (time needed to run the auto-generated checkers).

The average number of added, renamed, and removed configuration
parameters per versionrelease,

The target systems software inthe study.......................
Configuration setting datasets used in the study.................
Real-world configuration-related issues included in the study..

The percentage (number) of parameters that were set by 0% and by
fewer than 1% of the operators, respectively.

The percentage (number) of parameters that were set by more than
50% and 90% of the operators, respectively.

The percentage of numeric parameters with no more than five dis-
tinct settings used by 90% or 100% of the operators.

The distribution of user-reported configuration issues across the cat-
BEOTICS. + t vttt et e e e e e e e e e

The number of error cases caused by the operators’ incorrectly stay-
ing with default parameter values, and their percentages among all
the eITOr Casest

xi

61

75

76

77

79

80

81

89

90

91

93

96

96

97

100

101

Table 4.10.

Table 4.11.

Table 4.12.

Table 4.13.

Table 4.14.

Table 4.15.

Guidelines for simplifying configuration design. 105

User-reported “difficulties” cases in finding configuration knobs
versus setting the values i, 109

The percentage (number) of queries for which the keyword search
returns pages containing the target parameter(s)................. 111

The average number of returned pages per relevant page by key-

word search 111
Effectiveness of Google search 112
Breakdowns of the sources that host the useful Web pages. 113

xii

ACKNOWLEDGEMENTS

The journey of a Ph.D. is a voyage across the Narrow Sea. One cannot arrive the
Seven Kingdom without the guidance and support from advisors, mentors, colleagues,
friends, and family. At this moment of landing and resailing, I am incredibly grateful to
all the individuals who helped me along this journey.

First and the foremost, I want to thank my advisor, Yuanyuan (YY) Zhou, for
her unwavering guidance, support, and inspiration throughout my Ph.D. study, without
which I could never have dreamed my dream. I don’t know how to express my grateful-
ness to her—she completely changed my life! YY is the best advisor I can ever dream
of. She guided me to walk down the roads to be called a Ph.D.; she enlightened all
the technical insights that form the fundation of this dissertation; she exposed multiple
career choices and created the opportunities for me to experience. In fact, what I learned
from her is far beyond a degree, a dissertation, and a job, but the way to think, to learn,
and to do research; most importantly, to be someone I want to be. I can only hope to
emulate (or at least imitate) her creativity, vision, and professionalism, and mostly her
caring about students’ happiness and success, as I myself start being an advisor.

I would like to thank Geoff Voelker for doing so many special things for me.
Geoff always helps me and saves me when I am in trouble—he helped all my important
talks and gave me countless advice on presentation, teaching, and research. 1 cannot
forget that he revised every slide of my job talk and encouraged me to practice, when
I was extremely frustrated and intimidated. Geoff exemplifies what means to be a true
professor who sets the goal of helping students; who explains complex materials in an
incredibly graceful way; who always makes classes and labs fun. My goal as a professor
is to be an educator like him to focus on and make positive impact to the next generation.

I am also extremely grateful to (and honored by) the other members of the com-

mittee. Stefan Savage has always been the lighthouse I look up to. I have learned so

Xiii

much from him and been so much inspired by the way he picks (often crazy) research
problems, articulates the fundamental questions, and makes impact through perspectives
and solutions that can make a difference. Stefan wrote my letter (for job search) during
his honeymoon, which I can never forget. Scott Klemmer shaped my understanding on
Human Computer Interaction (HCI) and taught me how to look at misconfigurations
from an HCI perspective. I am significantly influenced by his style of thinking and ar-
ticulating. I learned Software Engineering from Bill Griswold, which has influenced
my philosophy of engineering software systems. I should have failed to propose my
disseration (let alone complete it), if Pam Cosman was not willing to try me out.

I did two fruitful summer internship at NetApp working with Shankar Pasupa-
thy. Shankar is the best mentor and collaborator I can imagine, who always gives me
the freedom of exploration, as well as data and systems support. We have extensively
collaborated in the past six years, which constructs the major parts of this dissertation.

I was extremely lucky to work with many exceptional people in the Operating
Systems Group (Opera) during my time at UCSD. It is difficult to imagine undertaking
this dissertation effort without the experiences I shared with them. I want to thank
Ding Yuan, Soyeon Park, Xiao Ma, Weiwei Xiong, Tianwei Sheng, Jiaqi Zhang, and
Ryan Huang for setting up great examples and for the mentoring I received from them.
I want to thank Ding, Ryan, Shan Lu, and Lin Tan for sharing their experiences of
being a faculty, and most importantly, paved the way for me as such great examples in
academia. Shan called me when I was about to quit (to join a startup). Her perspective
of learning and self-improvement is inspirational. Ding and Ryan gave me countless
advice on almost everything about research and career. Never a single time they turn
me down when I have questions or doubts. Weiwei and Tianwei have always been
my big brothers who look after me and my family. I also want to thank Xinxin Jin

for being such a wonderful fellow. The peer pressure we gave each other turns out to be

Xiv

incredibly beneficial. We together experienced the up and down, and eventually survived
and strived. It has been a privilege to collaborate with Ding, Jiaqi, Ryan, Jing Zheng,
Tianwei, Xuepeng Fan, Long Jin, Xinxin, Tao Cai, Ligiong Yang, Le Lu, and Han Min
Naing from Opera. None of my projects could be accomplished without their incessant
and selfishless contributions. I also thank other members in Opera, including Zuoning
Yin, Michael Lee, Robert Liu, Rishan Chen, Gen Liu, Zhuoer Wang, Chengcheng Xiang,
and Yudong Wu. They and all the other members make Opera a family for me and my
wife, even outside UCSD. Rishan looked after me when I was evicted by a landlord. 1
always look up to his courage to honestly and bluntly pursue dreams.

I am also thankful to many other people at UCSD for teaching me, enlighten-
ing me, and helping me, especially Sanjoy Dasgupta, Philip Guo, Sorin Lerner, Alex
Snoeren, Aaron Schulman, and George Varghese. Sanjoy took the risk on me when I
applied for Teaching Assistant (TA) for the first time (clearly I was an awkward TA at
that time). I learned so much from Sanjoy who demonstrated the magic of explaining
complex algorithms neatly. Alex always asks sharp questions to push me to think more
and deeper. Sorin, Philip, and Aaron helped me shape my job talk, which composes the
flow of this dissertation. Specially, I want to thank Geoff, Stefan, Alex, and other sysnet
faculties for making sysnet a caring family. I want to thank Julie Conner and Jennifer
Folkestad for always being so helpful and patient on tedious administrative stuffs.

I want to thank all my other friends at UCSD for making my Ph.D. journey so
enjoyable, especially Nathan Farrington, Yupeng Fu, Danny Huang, Yanqin Jin, Rishi
Kapoor, Vector Li, Zack Lipton, Lonnie Liu, Feng Lu, Kian Win Ong, Vineet Pandey,
Quentin Pleplé, Matus Telgasky, Malveeka Tewari, Shelby Thomas, David Wang, Jian-
guo Wang, Zhaomo Yang, and Yiying Zhang. In particular, Matus has always been a
mentor and given me many meta-level advice on research and teaching. I am so happy

that we will continue to be colleagues at UIUC. Kian Win helped me estabalish the con-

XV

nection with Facebook where I will spent my “prebbatical.” I enjoyed TA for eight quar-
ters and had the privileges to work with and learn from many excellent fellow TAs, es-
pecially Matus, Quentin, Xinxin, Kacy Espinoza, Karthikeyan Balasubramaniam, Kabir
Gogia, Daniel Knapp, Hung Nguyen, Saurabh Chandra, and Zhaomo.

I want to thank my other colleagues at NetApp and Whova where I did sum-
mer internships, especially Lakshmi Bairavasundaram, Congming Chen, Yuelu Duan,
Daniel Fryer, Art Harkin, Raghavan Kalkunte, Deepak Kenchammana-Hosekote, Xing
Lin, Laurent Nicolas, Kevin Nomura, Anusha Perumal, Gokul Soundararajan, Sethura-
man Subbiah (my buddy), Rukma Talwadker, Suli Yang, and Junji Zhi.

I want to thank all my other collaborators outside UCSD whom I had the priv-
iledge to work with. Specially, I want to thank Zhenhua Li for trusting me and teaching
me so many things. Our collaboration is fruitable, and more than that is the joy and
bitterness we have gone through together, with Schopenhauer and Nietzsche.

I want to thank Martha Stacklin at Center for Teaching Development. 1 benefit
tremendously from her classes where I developed my taste and style of teaching and
public speaking. Martha later encouraged me to participate the Grad Slam completition
and taught me how to present in front of non-CS audience. I thank Carolyn Passeneau for
being my English tutor who helped me improve my English as an international student
with terrible TOEFL scores. She is well deserved the EIA Tutor of the Year in 2012.

Last but not the least, I am deeply grateful to my family. I want to thank my
parents for their unconditional love and support. My mom has always been my inspi-
ration from whom I learned passion and work ethics. I do not talk to them often but I
know they love me. I thank my wife Fei for her boundless and unfading love. She is
everything to me. Not a single day goes by that I am not reminded of how lucky I am to
have her as a partner and a best friend. We share every piece of life together and always

love it for what it is. I also thank my parents-in-law for their understanding and support.

Xvi

My Ph.D. study is supported by grants from NSF and NetApp.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the
24th ACM Symposium on Operating Systems Principles, 2013. Xu, Tianyin; Zhang,
Jiaqi; Huang, Peng; Zheng, Jing; Sheng, Tianwei; Yuan, Ding; Zhou, Yuanyuan; Pasu-
pathy, Shankar. The dissertation author was the primary investigator and author of this
paper.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation, 2016.
Xu, Tianyin; Jin, Xinxin; Huang, Peng; Zhou, Yuanyuan; Lu, Shan; Jin, Long; Pasu-
pathy, Shankar. The dissertation author was the primary investigator and author of this
paper.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of the
the 10th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 2015. Xu, Tianyin;
Jin, Long; Fan, Xuepeng; Zhou, Yuanyuan; Pasupathy, Shankar; Talwadker, Rukma.
The dissertation author was the primary investigator and author of this paper.

Chapter 5, in part, is a reprint of the material as it appears in ACM Comput-
ing Surveys, Vol. 47, No. 4, Article 70, 2015. Xu, Tianyin; Zhou, Yuanyuan. The

dissertation author was the primary investigator and author of this paper.

Xvii

VITA

2000-2007 Bachelor of Science, Computer Science
Nanjing University, China

2007-2010 Master of Engineering, Computer Engineering
Nanjing University, China

2011-2017 Doctor of Philosophy, Computer Science
University of California, San Diego

PUBLICATIONS

Tianyin Xu, Han Min Naing, Le Lu, and Yuanyuan Zhou. How Do System Adminis-
trators Resolve Access-Denied Issues in the Real World? In Proceedings of the 35th
Annual CHI Conference on Human Factors in Computing Systems (CHI’17), Denver,
CO, May 6-11, 2017.

Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and Shankar
Pasupathy. Early Detection of Configuration Errors to Reduce Failure Damage. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’16), Savannah, GA, Nov. 2-4, 2016.

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma
Talwadker. Hey, You Have Given Me Too Many Knobs! Understanding and Dealing
with Over-Designed Configuration in System Software. In Proceedings of the 10th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE’15), Bergamo, Italy,
Aug. 31-Sep. 4, 2015.

Tianyin Xu and Yuanyuan Zhou. Systems Approaches to Tackling Configuration Errors:
A Survey. ACM Computing Surveys, Volume 47, Number 4, Article 70, Jul. 2015.

Tianyin Xu, Jiagi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan, Yuan-
yuan Zhou, and Shankar Pasupathy. Do Not Blame Users for Misconfigurations. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13),
Farmington, PA, Nov. 3-6, 2013.

Peng Huang, Tianyin Xu, Xinxin Jin, and Yuanyuan Zhou. DefDroid: Towards a More
Defensive Mobile OS Against Disruptive App Behavior. In Proceedings of the 14th
International Conference on Mobile Systems, Applications, and Services (MobiSys’16),
Singapore, Singapore, Jun. 26-30, 2016.

Xviii

Xinxin Jin, Peng Huang, Tianyin Xu, and Yuanyuan Zhou. NChecker: Saving Mobile
App Developers from Network Disruptions. In Proceedings of the 11th ACM European
Conference on Computer Systems (EuroSys’16), London, UK, Apr. 18-21, 2016.

Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong, Xiang-Yang Li, Yunhao Liu,
Christo Wilson, and Ben Y. Zhao. Exploring Cross-Application Cellular Traffic Op-
timization with Baidu TrafficGuard. In Proceedings of the 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’16), Santa Clara, CA, Mar.
16-18, 2016.

Zhenhua Li, Christo Wilson, Tianyin Xu, Yao Liu, Zhen Lu, and Yinlong Wang. Offline
Downloading in China: A Comparative Study. In Proceedings of the 15th ACM Internet
Measurement Conference (IMC’15), Tokyo, Japan, Oct. 28-30, 2015.

Qinhui Wang, Baoliu Ye, Bin Tang, Tianyin Xu, Song Guo, Sanglu Lu, and Weihua
Zhuang. ALETHEIA: Robust Large-Scale Spectrum Auctions against False-Name Bids.
In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing (MobiHoc’15), Hangzhou, China, Jun. 22-25, 2015.

Zhenhua Li, Cheng Jin, Tianyin Xu, Christo Wilson, Yao Liu, Linsong Cheng, Yunhao
Liu, Yafei Dai, and Zhi-Li Zhang. Towards Network-level Efficiency for Cloud Storage
Services. In Proceedings of the 14th ACM Internet Measurement Conference (IMC’14),
Vancouver, Canada, Nov. 5-7, 2014.

Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth
Bala, Tianyin Xu, and Yuanyuan Zhou. EnCore: Exploiting System Environment and
Correlation Information for Misconfiguration Detection. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’14), Salt Lake City, UT, Mar. 1-5, 2014.

Xix

ABSTRACT OF THE DISSERTATION

Hardening Cloud and Datacenter Systems against Misconfigurations:
Principles and Tool Support

by

Tianyin Xu
Doctor of Philosophy in Computer Science
University of California, San Diego, 2017

Professor Yuanyuan Zhou, Chair

Misconfigurations (a.k.a., configuration errors from a system’s standpoint) are
among the dominant causes of today’s catastrophic system failures that turn down cloud-
scale services and affect hundreds of millions of end users. Despite their wide adoption,
traditional fault-tolerance and failure-recovery techniques are not effective in dealing
with configuration errors, especially in large-scale software systems deployed in cloud
and datacenters. To make the matters worse, even the tolerance and recovery mecha-
nisms themselves are often misconfigured in the real world, which impairs the immune

system of the entire cloud and datacenters.

XX

This dissertation explores two fundamental questions towards the solutions for
the inevitable misconfigurations—how to build reliable cloud and datacenter systems
in the face of configuration errors; moreover, how to prevent misconfigurations in the
first place by better configuration design. The goal is to enable software systems to
proactively anticipate and defend against misconfigurations, rather than reacting to their
manifestations and consequences.

This dissertation presents three key principles of systems design and implementa-
tion for hardening cloud and datacenter systems against misconfigurations—anticipating
misconfigurations, early detection of configuration errors, and simplicity-oriented con-
figuration design. The dissertation demonstrates that applying these principles can ef-
fectively defend cloud and datacenter systems against misconfigurations. Moreover, the
dissertation presents the corresponding techniques and tool support that can automati-
cally and systematically apply these principles to existing systems software.

The main technical insight is that configurations are essentially used by the sys-
tems, while configuration errors are mostly manifested through the faulty execution that
uses erroneous configuration values. Therefore, by analyzing the system’s code that uses
configuration values, one can understand and make use of system-level information of
configurations to build defense against potential errors. This dissertation first presents
SPEX that enables systems to anticipate misconfigurations. SPEX automatically infers
configuration constraints from a system’s source code, and then leverages the constraints
to test the system’s resilience to misconfigurations and detect error-prone configuration
design/handling. On step further, the dissertation introduces PCHECK to automatically
generate checking code which captures configuration errors at the system’s initialization
phase to prevent their late manifestations and the corresponding failure damage.

Going beyond, this dissertation presents simplicity-oriented configuration design

towards more usable and less error-prone software configuration. The key idea is to ap-

Xxi

ply the user-centric philosophy to design configuration as an interface—configurations
are essentially the interface for controlling and customizing system behavior, but have
rarely been treated as it is. The dissertation shows that configurations in today’s systems
software can be significantly simplified and effectively navigated, with the understand-

ing of how they are actually used in the field.

xxii

Chapter 1

Introduction

b

“To err is human; to forgive, divine.’
—Alexander Pope
Misconfigurations (a.k.a., configuration errors from a system’s standpoint) are
among the dominant causes of today’s catastrophic system failures that turn down cloud-
scale services and affect hundreds of millions of end users. Barroso et al. show that
misconfigurations are the second largest cause of service disruptions at one of Google’s
main services [20]. Maurer reveals that misconfigurations are among the most com-
mon “pathologies” that amplify failures and cause them to widespread in Facebook [97].
Specifically, misconfigurations haven been reported as one major cause of failures in
a variety of system components deployed in cloud and datacenters, including storage
systems [12,77,185], data-intensive computing frameworks [56, 125, 187], database sys-
tems [56, 112, 185], and network infrastructure [87,96, 151]. In recent years, almost
every cloud company (e.g., Google, Facebook, Microsoft, Amazon, LinkedIn) has expe-
rienced outages and downtime induced by misconfigurations, affecting millions of their
customers and causing massive revenue loss [32,57,94, 152,155, 158].
Note that almost all the aforementioned systems are built with the mindset of
fault tolerance and failure recovery, as component failures (e.g., due to hardware faults

and software defects) are a norm in today’s large-scale, rapid-changing software sys-

tems deployed in cloud and datacenters [20,97]. Fault tolerance is mostly achieved by
redundancy. For example, RAID and erasure code are commonly used to cope with ma-
chine/disk failures [52,70, 82]; backup and replication are widely deployed to deal with
software component failures upon which fail-over would be triggered [11, 34, 36, 55];
redundant paths and fallback protocols are designed to handle path/route failures [29,
40, 54]. In terms of recovery, rebooting and rollback based techniques are commonly
adopted [35, 116]. Unfortunately, these mechanisms are less effective in handling mis-
configurations [97, 113]. In cloud and datacenter systems, a single configuration error
is often replicated to hundreds or even thousands of nodes, which significantly enlarges
the impact of the error and makes redundancy-based fault tolerance ineffective. More-
over, as the errors typically reside in persistent configuration files or databases, they are
resistant to rebooting-based recovery techniques. To make matters worse, even fault tol-
erance and recovery themselves are often misconfigured in the real world, which impairs
the immune system of the entire cloud and datacenter and thus lead to catastrophes, as
reported by many newsworthy outages [32, 142,152,157, 158].

Given the severity and prevalence of misconfigurations, there has been a wealth
of literature that aims at tackling misconfigurations introduced in the field, mostly with
the focus on detecting misconfigurations in the field [22,41,50,71,92,115,118,131,189,
190] and troubleshooting their consequences in terms of failures and anomalies [6, 16—
18,101,123,149,150, 165,168,170, 186, 191]. While these efforts provide useful, effec-
tive remedies for misconfigurations and/or their consequences, they share the following

fundamental limitations:

e they are reactive to misconfigurations and thus can hardly prevent failures in the first
place. In fact, despite the progress in misconfiguration troubleshooting, diagnosing
failures in cloud and datacenter systems still remains one of the most challenging

tasks and the effectiveness largely relies on the skills and experiences of human ad-

ministrators, operators, and engineers.1 Often, when a failure occurs in the field, it is
even hard to determine if the root cause is a configuration error or a bug or something
else [172,174]. As shown in Chapter 2, configuration errors could lead to similar
symptoms as bugs such as crashes, hangs, and dysfunctions. It is not uncommon that

diagnosis can take hours or even days [29, 54, 169].

e they fix symptoms instead of roots. As revealed in Chapter 2, the same configuration
error could be introduced again and again by different operators in different systems
and scenarios (Figure 2.1 is such an example). As pointed out by Lampson, unlike
code which is written once, configurations could be different for different use cases
and could be done by less skilled people (c.f., Appendix A) based on documentation

that is usually voluminous, obscure, and incomplete [88].

e they are not designed for cloud and datacenter systems. Many of the proposed de-
tection and troubleshooting approaches are based on applying machine learning with
the requirements of large configuration datasets [6,22,41,101,115,131,165,168,186,
189, 190], which does not fit the cloud and datacenter model (refer to §3.2.2 for the
detailed discussion); some other approaches require instrumenting source code in or-
der to record runtime execution traces [16, 18,191, 192] which could be challenging

when being applied to distributed cloud and datacenter systems at scale.

Today, misconfigurations are still being treated among the most thorny systems prob-
lems. For example, Welsh advocates “an escape from configuration hell” as the first
problem among what he wishes systems researchers would work on [169]. Gunawi et

al. call for research in the cloud community to deal with configuration issues [56].

'In different operation disciplines (e.g., traditional system administration, DevOps, and site reliabil-
ity engineering), different types of personnel are responsible for managing configurations. Appendix A
discusses these operation disciplines and their implications to this dissertation. In the rest of this disser-
tation, we use “operators” to refer to personnel who operate cloud and datacenter systems and thus are
responsible for system configurations despite their actual job titles.

This dissertation proposes the perspective of hardening software systems’ own
defense against misconfigurations, as a more fundamental solution. Instead of relying on
external tools and procedures, this dissertation investigates how to build reliable cloud
and datacenter systems in the face of configuration errors and how to prevent miscon-
figurations in the first place by better configuration design. The goal of this dissertation
research is to enable software systems to proactively anticipate and defend against mis-

configurations, rather than reacting to their manifestations and/or consequences.

1.1 A Systems Perspective

From a system’s view, the manifestation of configuration errors are not too much
different from other types of systems errors, such as software bugs that have been ex-
tensively studied in the past decades. At a high level, configuration errors are erroneous
values residing in the configuration files or databases (e.g., Windows Registry). These
values are read into the software systems at the system’s startup time and stored in the
corresponding program variables or data structures [Chapter 2 (§2.3.2) provides detailed
descriptions and examples of this process]. When the system needs to apply a configu-
ration value, it directly uses the program variable that stores the value. For example, if
the configuration value specifies the path of a file £ on the local file system, which is
stored in a program variable p, the system would open (p) when it needs to read or
write £. However, if the value is erroneous, the usage would fail. In this example, if
f does not exist on the file system due to misspelling or the program cannot access f
due to lack of privileges, the open call would return —1 with errno encoding the root
cause. Chapters 2 and 3 give a number of examples that demonstrate how configurations
are used in source code and how the errors are manifested during the runtime execution.

Note that configuration errors cannot be detected or diagnosed using traditional

bug detection or diagnosis techniques. This is because they are not defects in the code

introduced by developers; instead, they are erroneous settings in the configuration files
introduced by operators in the field. Given the enormous configuration space (Chapter 4
quantifies the complexity in details), it is challenging for traditional bug detection or in-
house testing approaches to enumerate all potential misconfigurations. Nevertheless, as
discussed in Chapters 2 and 3, certain “correct” system behavior in the traditional sense,
such as crashing and fail-stop, is not acceptable when dealing with misconfigurations.

The impact of configuration errors depends on how a system treats its configu-
rations. If the system proactively checks its configuration values at the startup time and
reports errors in log messages that pinpoint the bad configuration values, operators can
fix the errors in time and prevent failures. On the other hand, if the system assumes cor-
rect configurations and directly uses the value on demand (when it absolutely needs it),
the configuration errors would lead to disasters, as revealed in Chapter 3. Furthermore,
even the system does capture a configuration error; if it fails to provide pinpointing
messages but crashes or terminates silently (which is not uncommon as shown in Chap-
ter 2), it is extremely difficult for operators to understand the root causes and to fix the
misconfigurations efficiently. In terms of the manifestations, there is no fundamental
difference between configuration errors and software bugs because both of them could
be manifested through crashes, hangs, exceptions, error code, etc.

On the other hand, software developers’ attitude towards misconfigurations is
often quite different from how they treat bugs. For software bugs, the developers typi-
cally take a responsible and active role. This is reflected in many ways, such as various
choices of bug-tracking databases, patch releases, unit/regression tests, and bug check-
ers. In contrast, developers often take laid-back roles in handling misconfigurations,
because “they are operators’ faults.” Such an attitude is reflected in two main aspects:
(1) misconfigurations are much less rigorously tracked; (2) after a misconfiguration is

identified as the root cause, developers often do not take any further actions, such as

changing the code or releasing patches to avoid the same misconfiguration being in-
troduced by other operators (which is often the case). In fact, taking an active role in
handling misconfigurations benefits developers themselves. For example, enabling sys-
tems to detect and pinpoint misconfigurations can reduce the number of issues reported
to the developers, saving their precious time. Essentially, different from software bugs,
misconfigurations can be directly fixed by operators in the field.

Thinking about (mis)configurations from the systems perspective also brings
tremendous opportunities for the solutions. As any configurations are essentially used by
the systems; hence, by analyzing the system’s code that uses configuration values, one
can automatically and systematically obtain a lot of system-level knowledge of configu-
rations, such as systems constraints of configuration values and manifestation patterns of
configuration errors. Such knowledge is extremely valuable—it enables evaluating con-
figuration handling, exposing misconfiguration vulnerabilities inside the systems, and
generating configuration checking code for the systems, as demonstrated in Chapters 2
and 3. Furthermore, thinking and designing configurations as a system’s interface (for
controlling and customizing systems behavior) can significantly improve the usability
and reduce the error-proneness of configurations, as shown in Chapter 4. After all, many

misconfigurations are derived from human errors and mistakes.

1.2 Dissertation Contributions

This dissertation presents three key principles of systems design and implemen-
tation for hardening cloud and datacenter systems against misconfigurations. These
principles include anticipating misconfigurations (Chapter 2), early detection of configu-
ration errors (Chapter 3), and simplicity-oriented configuration design (Chapter 4). The
dissertation demonstrates that these principles can effectively help cloud and datacen-

ter systems defend against real-world misconfigurations. Furthermore, the dissertation

presents the corresponding techniques and tool support that automatically and systemat-
ically applies these principles to enable the defense for existing systems software. The

following outlines how this dissertation addresses the contributions.

1.2.1 Anticipating Misconfigurations with SPEX

Chapter 2 reveals that many of today’s mature software systems widely deployed
in cloud and datacenters do not anticipate and thus are vulnerable to misconfigurations.
As a result, misconfigurations could often lead to disastrous system behavior such as
crashes, hangs, and silent termination. Failure diagnosis is often misled by such per-
plexing behavior, causing unnecessarily long repair time.

To enable cloud and datacenter systems to anticipate and defend against miscon-
figurations, Chapter 2 presents SPEX to automatically infer configuration requirements
(termed constraints) from source code and then use the inferred constraints to (1) expose
misconfiguration vulnerabilities (bad system reactions such as crashes, hangs, and silent
failures); and (2) detect certain types of error-prone configuration handling.

SPEX’s insight is that many configuration constraints are reflected in the sys-
tem’s source code, and can be automatically inferred via static code analysis, based on
the properties of operations and system/library APIs that use configuration values. SPEX
tracks the data-flow of configuration values in the source code, and looks for patterns of
various kinds of configuration constraints, including data types, data ranges, control de-
pendencies, and value relationships. With the inferred constraints, a testing tool is built
based on configuration-error injection to expose misconfiguration vulnerabilities—it in-
tentionally violates the inferred constraints to generate misconfigurations, and tests how
the system reacts (bad reactions are recorded and reported to developers). Moreover,
the inferred constraints can be analyzed to detect error-prone configuration handling,

namely including inconsistency, silent overruling, and unsafe behavior.

SPEX has uncovered 743 misconfiguration vulnerabilities of various types and
112 error-prone configuration handling cases in both commercial and open-source sys-

tems. So far, about half have been fixed or confirmed by the corresponding developers.

1.2.2 Enforcing Early Detection with PCHECK

Chapter 3 shows that misconfigurations of fault tolerance and error handling are
particularly dangerous. Since these configurations are not needed at initialization or dur-
ing normal operations, many systems do not check their values early but directly use the
values under critical circumstance (when encountering faults/errors). Thus, the errors
become latent until their manifestations cause catastrophes. For such latent errors, early
detection is the key to reducing failure damage. However, Chapter 3 reveals that even
in widely-deployed cloud and datacenter systems, many critically important configura-
tions (e.g., those for fault tolerance) do not have any initial checking code to validate the
correctness of the settings, and thus are subject to latent errors.

To enable early detection of configuration errors, Chapter 3 presents PCHECK
to automatically generate configuration checking code and invoke the checking at the
system’s initialization phase. PCHECK exploits the fact that the actual code that uses
configuration values (which already exists in source code) can serve as an implicit form
of checking (e.g., opening a file path specified by a configuration value implies a ca-
pability check). Such usage-implied checking precisely captures how the configuration
values should be used in actual program execution. PCHECK generates checking code by
emulating the late execution that will use the configuration values; meanwhile capturing
any anomalies exposed during the emulated execution as the evidence of configuration
errors—same anomalies would occur in real execution, if the errors are not fixed.

The key challenges of PCHECK is to make the checking code effective and safe.

PCHECK statically extracts instructions that transform, propagate, and use configuration

values from the system program. To execute the extracted instructions, PCHECK makes
the best effort to determine the values of dependent variables and produce self-contained
execution context. To ensure that the checking code is safe to invoke, PCHECK sand-
boxes the emulated execution by instruction rewriting to prevent any side effects on the
running system or its environment. Furthermore, PCHECK inserts instructions to cap-
ture the anomalies that may occur during the emulated execution, based on which it
reports errors. PCHECK can detect over 75% of real-world latent configuration errors at
system initialization time, and is generally applicable to cloud and datacenter systems

because it does not rely on any predefined rules or external datasets.

1.2.3 Simplicity-oriented Configuration Design

One fundamental reason for today’s prevalent misconfigurations is the tremen-
dous but still-increasing complexity of configuration, reflected by hundreds or even thou-
sands of configuration parameters (‘“knobs’) exposed by cloud and datacenter systems.
Many knobs have various constraints, consistency requirements, and dependencies with
other knobs. Such complexity makes it daunting and error-prone for operators to config-
ure cloud and datacenter systems.

Chapter 4 presents design principles and disciplines to make configuration more
usable and less error-prone, with a user-centric design philosophy. It starts by ques-
tioning whether the complexity is indeed necessary based on the study of real-world
configuration usage characteristics: Do operators really need so many knobs? Can they
manage the complexity? What are their common difficulties and mistakes? The answers
to these questions conclude that configurations are commonly over-designed—only a
small percentage of configuration knobs are set by the majority of operators in the field,
while the majority of knobs are seldom touched. Many knobs are neither necessary nor

worthwhile—they make configuration more complex but produce little benefit. On the

10

other hand, complexity does come with a cost: operators often have difficulties in find-
ing the right knob(s) to achieve intended system behavior or performance goals; worse,
the excessive complexity prevents operators from understanding the configurations thor-
oughly and examining the settings carefully.

Based on these understandings, Chapter 4 presents a few concrete, practical de-
sign guidelines which could significantly reduce the configuration space and thus sim-
plify configuration design, with little impact on the flexibility desired by operators. To
help navigate the vast configuration space in existing software, the chapter also intro-
duces COX to help operators find the right knobs by expressing their intent based on
natural language processing, and shows that leveraging the field characteristics of con-

figuration usage can greatly improve the effectiveness of configuration navigation.

1.3 Dissertation Scope

This dissertation focuses on systems software deployed in cloud and datacen-
ters, such as server software, storage software, and computing infrastructure. It does
not touch configurations of network devices [23, 24,51, 54, 151], desktop software [26,
78, 86], or mobile apps [73, 76, 80,93, 160]. Misconfigurations of such are also impor-
tant problems; however, they have fundamentally different characteristics from those
in cloud and datacenter software and thus require different solutions. Moreover, this
dissertation primarily focuses on misconfigurations that violate the correctness of the
software with less concerns on performance and security (unless they cause severe us-
ability issues). Lastly, similar as prior work, it focuses on misconfigurations of parame-
ters rather than those of software components or hardware. It is reported that parameter

misconfigurations account for the majority of real-world configuration issues [185].

Chapter 2

Anticipating Misconfigurations

“Perfection is achieved on the point of collapse.”

—C. N. Parkinson

The first and foremost principle towards building reliable software systems in

the face of configuration errors is to anticipate misconfigurations and accept that they
are inevitable. Unfortunately, while we software developers are often trained and edu-
cated to implement our systems to tolerate hardware faults and network errors, there is
less emphasis on tolerating or reacting gracefully to misconfigurations in the field. In
fact, just like hardware faults, misconfigurations (many of which stem from human er-
rors and mistakes) are a force of nature, too. In reality, developers often unconsciously
assume correct configurations. As a result, many configuration errors lead to system
crashes, hangs, incorrect results, etc. Such disastrous and perplexing behavior leaves op-
erators clueless, unnecessarily increasing the difficulties of troubleshooting and failure
diagnosis. On the other hand, if the system could explicitly pinpoint the configuration
errors with clear log messages, guided by such messages, operators can directly fix their
misconfigurations by themselves, without resorting to developers. Essentially, different
from software bugs, misconfigurations can be directly fixed by operators themselves if

precise error messages are provided by the system.

11

12

2.1 Introduction

This chapter presents the principles and tool support that enable software sys-
tems to anticipate and defend against misconfigurations. Specifically, it aims at im-
proving configuration design and implementation of today’s software systems by (1)
enabling the systems to react gracefully to configuration errors (e.g., pinpointing the er-
roneous configuration parameters and their values); (2) improving configuration design
and handling to make them more usable and less error-prone.

Achieving the above goals would need the specifications of configuration re-
quirements, referred to as configuration constraints. A constraint of a configuration
parameter specifies the data type, format, value range, dependency and correlation with
other parameters, etc., which forms the correctness definition of its value. Since large-
scale systems usually contain hundreds or even thousands of configuration parameters,
it is time-consuming and error-prone to let developers specify each constraint manu-
ally [84]. One potential solution is to leverage documentation (e.g., user manuals). Un-
fortunately, documentation is written in natural languages, and thus is hard to analyze
automatically. Moreover, documentation is often incomplete and outdated, as reported
in prior studies [88, 124].

As source code always contains up-to-date information, the idea is to automati-
cally infer configuration constraints, including types, ranges and cross-parameter depen-
dencies from source code, by analyzing how the values of configuration parameters are
actually read and used. This idea is grounded in a tool called SPEX. Furthermore, SPEX
leverages the automatically inferred constraints to build two use cases: (1) exposing bad
system reactions to configuration errors (e.g., crashes, hangs, and dysfunctions) through
injecting misconfigurations that violate the constraints; (2) detecting certain types of

error-prone configuration design and handling.

13

2.2 Background

One of the reasons that today’s software systems do not anticipate misconfigu-
rations well is our (software developers’) attitude towards misconfigurations, which is
quite different from how we treat software bugs. For bugs, developers typically take a
responsible and active role. This is reflected in many ways, such as various choices of
bug-tracking databases, patch releases, unit/regression tests, and bug checkers. In con-
trast, developers often take much laid-back roles in handling misconfigurations, because
“they are operators’ faults.” Such an attitude is reflected in at least two main aspects: (1)
misconfigurations are less rigorously tracked; (2) after a misconfiguration is discerned
as the root cause, developers often do not take further actions, e.g., changing code or
releasing patches to avoid the same misconfigurations being introduced again (which is
often the case in reality).

In most cases, even though it is the operators who introduced the erroneous val-
ues, they should not take all the blame. After all, a misconfiguration is referred to as
an “error” simply because it does not match our (software developers’) requirements for
configuration. Therefore, before blaming operators for configuration errors, we need
to question whether we have the right requirements in the first place. Are we assum-
ing too much from operators? Operators do not write our code and sometimes cannot
read our code. How could they have the same level of accurate understanding of the re-
quirements and impact of various configuration values as we do? Are our configuration
requirements too strict or too confusing? After all, operators are also human beings, and
just like us, also make mistakes, especially when the requirements are error-prone.

In fact, misconfigurations affect not only operators, but also software developers,
because they need to spend time and effort in troubleshooting and correcting them. A

recent study [185] shows that configuration issues account for 27% of customer support

14

Misconfiguration: . .
InitiatorName: ign.time.domain:TARGET | Diagnosis Efforts

Symptom: 75 rounds of communication
The storage share cannot be recognized. | 10 collections of system logs
Root Cause:

InitiatorName only allows lowercase letters, while the user sets the name
with the capital letters "TARGET".

Figure 2.1. A real-world example from a commercial company. The configuration
constraint was too strict and multiple operators made the same mistake despite two
documents explaining it.

cases in a major storage company. Regardless of the root causes (software bugs or
misconfigurations), the system often misbehaves with similar symptoms (e.g., crashes,
missing functionalities, and incorrect results). This leaves operators no choice but to
report the problems to the technical support. When support engineers are misled by
such ambiguous symptoms, the diagnosis often takes unnecessary long time [185].

Figures 2.1 and 2.2 give two real-world examples to further illustrate the above
points. As shown in Figure 2.1, a commercial system' required operators to type all
lowercase letters for the configurations of the initiator names (“InitiatorName”)
of iSCSI adapters. This requirement is too strict. As a consequence, several operators
made the same mistakes and had to call the company to help troubleshoot the problem.
In this particular case, the diagnosis took over 75 rounds of communication with the
customer, as well as 10 rounds of debugging message collection. It resulted in not only
the customer’s downtime but also high supporting cost.

The second example, as shown in Figure 2.2, is from the latest version of OpenL-
DAP. With the parameter “1istener—threads” being configured to be larger than
16, the LDAP server would crash after startup, with “segmentation fault.” The crash
symptom misled at least two operators to report it as a software bug. This problem is de-

tected by our tool. Unfortunately, after we reported this problem, the developer refused

"'We are required to keep the company and the product anonymous.

15

Misconfiguration:

listener-threads 32 The user manual does not
Symptom: mention this limit.
Crash after server startup with the only

log message: "Segmentation fault". Developer's Response:
Root Cause: Refused to change the source
OpenLDAP only supports a hard-coded ~ code and the manual because
maximum of 16 listener threads. the setting is not valid.

Figure 2.2. A real-world example from OpenLDAP. The LDAP server crashes when
“listener—-threads”is set to be larger than 16.

to take any action, such as changing the configuration design, editing the manual entry,
or adding some code to check the value and print out explicit error messages. This was
mainly due to the common attitude many developers have towards misconfigurations:
“It is not a bug, but an invalid setting.”

Of course, not all developers are like this. Some developers have a more re-
sponsible attitude to handling misconfigurations. For example, after we reported the
misconfiguration vulnerabilities (bad system reactions to configuration errors, such as
crashes, hangs, incorrect results) and error-prone constraints to Squid (an open-source
Web proxy and cache server), Squid developers fixed the reported problems immediately.
Also, the large U.S. commercial company we worked with has been very cooperative,

including allowing us to publish our evaluation results of their system.

2.3 Configuration Constraint Inference

This section describes the design and implementation of SPEX, a tool that au-
tomatically infers configuration constraints (i.e., rules that differentiate correct configu-
rations from misconfigurations) from source code. In the next section, we will discuss
how SPEX uses such constraints to expose misconfiguration vulnerabilities, and to detect

error-prone configuration design and handling.

16

SPEX requires the target software’s source code and simple annotations as a
starting point to help identify and analyze configuration parameters in source code. This
section first describes what kinds of configuration constraints SPEX can infer, and then
discusses how to infer them. Finally, we discuss the limitations, in particular, what kinds

of constraints cannot be inferred by SPEX.

2.3.1 What Constraints Can Be Inferred?

Many configuration requirements are reflected in the software’s source code.
Examples include data types, format, value ranges, multi-parameter dependencies, etc.
Some of them can be automatically inferred via static code analysis by leveraging the
properties of various operations, and system/library APIs when accessing configuration-
related variables. Certainly, as we will discuss in §2.3.3, not all configuration constraints
are reflected in source code or can be automatically inferred via static analysis. This
chapter provides a first step in this direction. §2.5.1 shows promising results, with even
a modest real-world impact on both commercial and open-source software.

SPEX analyzes source code and infers constraints that manifest through concrete,
recognizable program patterns. These constraints can be classified into attributes and
correlations. The former define the correct settings of a parameter, while the latter
specify the correlations among multiple parameters. Figure 2.3 gives several concrete
real-world examples of various kinds of configuration constraints SPEX infers. The
following describes each kind in more detail and §2.3.2 will explain in detail how SPEX

infers them, starting from how it identifies configuration variables in source code.

Data type. To set a configuration parameter correctly, operators first need to
know the expected data type. We call such constraints type constraints. There are two

categories of types for a configuration parameter: basic types and semantic types. The

17

“PALIQJUI QIR SJUTBIISUOD 3SAY) Moy sure[dxa 7'¢ 7§ ‘popeys 2Ie sigjowered oy} 210)s
je) so[qerreA weadoid ay) pue a3y oyy ur pajonb are sivjowered uoneIN3yuo) SISA[EUR MO[-BIEP OP 01 XAdS S9IBAJOW YoIym
‘MO[J-BIBP AU} MOYS SMOIIE AU, "SIQJUI XddS SIUIensuod uoneindyuod Jo sadA) oy ayensny[l o) sodwexa pIom-[edy *¢°g N3

Jures;suod diysuoneai-anjep (1) JureJsuod Aouspuadap-joauo)) (9) Juressuod abuel-eyeq (p)
WUe| piom Uy, '0/8Z se Jes Jou S| '6GZ 0} ¢ SI ,Usjjul” xepul, Jo 8bue pifea oy
uey) Jajealb aq pinoys , usj piom xew y, || .OUAS}, usym Ajuo joaye saxey ,sbulqis jiuwoo, :paJlaju] JUIRIISUOD
. patia eljsuo
patiajuj jJuresjsuo) am— palisju] jurensuon |2 BIU0OGpdEfs/SIaNS .ﬂ
[, 9'Jesied)jwesiAw/ebeiors ,/ { [+ 1IE9"0un; 8y} SpISul &l _ -
{ sebesn s, , sbulqIs ywLwoo, |1V { 'GGC = Jul 8njeA<-0
suonelado e}y eeememeoes :.-:.@% fonuoy .- (GGz|< Jurenjea<-o) Ji as|e
} ((UBTpIOMTXEUTY > yibus)| ((sBunaiShwwog)spusyoegaAloYLLNIUIN ‘y = JUIBN[eA<-0
=+ 0 U PIOM UILTYY =< ypbua])y b 99 Qufselqeus)y _ (7> renjea<-o) 4
Ay (+)piomTIeB Ty Jeyon ., SBUIjqIS Jiwtwog, ** } ()ywionuonoesuel | pioday || ,Usfui-xepul, -y
#US| piom xew Jj, -s10ddiuc 500 wOUAS}, pjuonoesuel] dels (0, sbayBruo)ousush Biuoa, Jui oiels
v piomuiTy, -SYAGIUS BP0 | 5oexjwesuensseace) :sjeddiug apod :sjaddiug apo9
62'G'S-TOSAN 1''6-T0S8Bis0d £€'¥'¢-dvaiuado
(1¥0d) wiensuod adA-onuewss (9) (3713) rensuod adA-opuewss (q) Juiesisuod adAy-oiseg (e)
"140d e S! ,,Hod dpn, jo adA) auewss ay| || . - -
:paliaju] Juiesysuo) i & 515 Eo\sqew. tw.mwwmﬁwe om p_\M._EMm:m%.N Jequinu Jebajui
9T IPPENO0s JNIS "PRLIBJUIJUIBHSUOD || 426 & 51, 821581 Bo, Jo a0y Bjep aiseq oy
jo podgurs 8y} 0} mwmmmo_ siyd ,/ o { /, 9'uado AwyshsAw ,/ A :paJJau] Jules3suo)
.At&m\coz = J0d~QuIS'SSaIpPY)ex00S W (sBe|q ‘aweNalid (, Jeyo))uado = py
1 (ud poys paubisun)uodies::ssalppy::d| odA} sebojul J1g-z¢ 0 {
[, 90'sSeuppy//difois uoys paubisun } (- ‘aweNaji4, Jeyd ysuod)uado Aw a)i4 adfy Jeyo woyy Buuiojsues
[00°gA doljaIs ,/ —{ || /+ 9'spsomdois Y wesikw/ebelols ,/ { (0 ‘71NN _‘Bae)jj0M1S = _w>4E_
‘(Wod)uod1eS |ea0|<-uuonbuiwosu|dal = (- ‘g~ pJomdors i) uadoAw = py ")
“ 1 ()suo n_cmaoao_..v_g =} (-+)spiomdoys yuryqur || (7 ‘Ble, seyo “)sebuel”xew}es, Jeyo ojels
«Hod"dpn, :syaddiug opo9 || 8l Piomdoisy, :sjeddiug apo) JozsajyBo, :syeddiug 8po9

G'Z'¢-pinbg 62'G'S-TOSAN v-obelo)g

18

basic-type constraint specifies the parameter’s value by low-level data representations,
including integers, characters, boolean, floating-point numbers, strings, etc.

However, basic types alone may not be sufficient. For example, a string pa-
rameter may refer to either a file path or an IP address. Each such semantic type has
its own specific requirements. For example, a file path has a specific path-like format
and should represent a valid file in the file system. In addition to the “file path” and “IP
address” types, there are many other types such as user name, port number, timeout, etc.
In SPEX, we support the high-level semantic types of most standard libraries.

Figures 2.3(a), (b), and (c) show three real-world examples of type constraints
inferred by SPEX. In the first example, via static code analysis, SPEX infers the parame-
ter, “log.filesize”, to be a 32-bit integer number. Figure 2.3(b) gives an example

of the £i1le type, and Figure 2.3(c) shows an example of the port type.

Value range. Configuration parameters may be further constrained by some
acceptable ranges of valid values, such as minimum and maximum values, or a list
of acceptable values as in the enumerative type. Figure 2.3(d) shows a value range
constraint inferred by SPEX from OpenLLDAP, in which, as the code indicates, the value

of “index_intlen” needs to be between 4 and 255.

Control dependency. Multiple configuration parameters might have depen-
dencies. Often times, the resolution to problems like, “Why does my setting of param-
eter P not work?” is simply “Turn on parameter Q.” When such dependencies are
neither documented in the manual, nor pinpointed explicitly by log messages, it is dif-
ficult for operators to figure them out. Such constraints are typically manifested as
control dependencies in source code. Formally, we define the control dependency of

two parameters as (P,C,o) — Q which means that the usage of parameter Q relies on

19

the setting of parameter P, under the condition of P ¢ C, where ¢ € {<,>,=,#,> <},
and C is a constant value. Figure 2.3(e) shows an example from PostgreSQL, where

“commit_siblings” takes effect only when “fsync” is non-zero.

Value relationship. Besides the control dependency between two parameters,
the relationship of their values may also impose constraints. In Figure 2.3(f), the value

of “ft_max_word_len” should be greater than that of “ft_min_word_len”.

2.3.2 How to Infer Constraints?

To infer configuration constraints, SPEX first needs to identify configuration
variables (program variables that initially store the values of configuration parameters
loaded from configuration files) in source code. It then tracks the data-flow of each pro-
gram variable corresponding to the configuration parameter, meanwhile recording any
constraints that are discovered along the data-flow paths.

SPEX’s analysis is implemented to be inter-procedural, context-sensitive, and
field-sensitive. Inter-procedure is necessary, because configuration parameters are com-
monly passed through function calls. SPEX also needs to be field-sensitive, because
configuration parameters could be stored in composite data types. SPEX is built on top
of the LLVM compiler infrastructure [5]. As a design choice, we do not use symbolic
execution for SPEX. Symbolic execution is able to explore all the possible code paths in
the program, for the given input. However, it suffers from path explosion when applied
to large systems such as Storage-A. Moreover, as shown in §2.3, SPEX looks for con-
crete code patterns on the data-flow paths of each configuration parameter, which does
not fit the strength of symbolic execution.

SPEX scans the source code twice. In the first pass, it infers the data-flow path of

each parameter, and looks for data-type and data-range constraints for each parameter.

20

To further infer constraints involving multiple parameters (i.e., control dependencies and
value relationships), SPEX scans the code again, but this time only on the program slice

containing the data-flow of each parameter.
Mapping Parameters to Variables

To start constraint inference, SPEX has to know the program variables that ini-
tially store the values of configuration parameters loaded from configuration files. Dif-
ferent software projects may have different conventions. We observe that developers of-
ten use well-defined interfaces to manage configurations. By examining 26 widely-used
software projects (c.f., Table 2.1), we find that all but one of them map configuration pa-
rameters into program variables via one of the three interfaces: structure, comparison,
and getter. Correspondingly, SPEX provides three template-based toolkits to extract the
mapping information with minimal annotation efforts.

In structure-based mapping, data structures are used to directly map each config-
uration parameter to the corresponding variable in source code [c.f., Figure 2.4(a)], or
to the parsing function [c.f., Figure 2.4(b)]. In the former case, developers only need
to provide the structure variable’s name and each specific field. For Figure 2.4(a), three
lines of annotations are sufficient to extract the mapping information of 82 parameters
in PostgreSQL. In the latter case, developers need to further annotate which parameter
in the parsing function is the configuration variable [e.g., arg in Figure 2.4(b)]. We
observed that structure-based mapping is the most common pattern in C/C++ programs.

Comparison-based mapping, as shown in Figure 2.4(c), uses string comparison
functions (e.g., st rcasecmp) to match parameters. It further assigns values to the vari-
ables in the branch blocks. SPEX recognizes standard string comparison functions. In
this case, developers need to annotate the parsing function, and the initial input variables

holding the parameter names and values.

21

Table 2.1. Mapping from configuration parameters to program variables in 26 software
projects. All of them fall into one of the three conventions, termed structure, getter and
comparison, or their combinations.

Software ‘ Desc. ‘ Type H Software ‘ Desc. Type
Storage-A storage struct Hypertable database getter
MySQL database struct MongoDB database getter
PostgreSQL database struct AOLServer web server getter
Apache httpd web server struct MapReduce computing getter
lighttpd web server struct YARN scheduler getter
Ngnix web server struct HBase database getter
OpenSSH SSH struct Accumulo database getter
Postfix email struct HDFS storage getter
VSFTP FTP struct Alluxio storage getter
Squid proxy comparison || Oozie scheduler getter
Redis KV store comparison || ZooKeeper coordinator | getter
ntpd NTP comparison OpenStack cloud getter
memcached caching comparison || Spark computing getter

Getter-based mapping, exemplified in Figure 2.4(d), stores all the configuration
parameters in a central container, and uses common getter functions to retrieve the
value. In such cases, developers need to annotate the getter functions (typically only
a few). Getter-based mapping is the standard approach to manage configurations in both
Java and Python programs, with the library support java.util.Properties and
configparser respectively.

By asking developers to annotate the mapping interfaces rather than every map-
ping pair, the toolkits require limited amount of information from developers. In the
evaluation, the number of annotations needed for most software is less than 10, as
shown in Table 2.4. Note that the annotation only requires modest understanding of
source code. The configuration-related code is usually modularized and can be found
by simply searching parameter names in source code (e.g., using grep).

Starting from the annotations, the SPEX toolkits infer the mapping information in
the form of key-value pairs: (‘“parameter name”, variable name). For example, the key-

value pair in Figure 2.4(a) is (“deadlock_timeout”, DeadlockTimeout). Inthe

PostgreSQL-9.2.1
Code Snippets:
struct config_int ConfigureNamesint[] =
{{ "deadlock_timeout"™.,

&DeadlockTimeout; ™, 3
82 mapping in this structure

§ I* src/backend/utils/misc/guc.c */

Apache-httpd-2.4.1
Code Snippets:
static command_rec core_cmds[] = {

AP_INIT_TAKE1("DocumentRoot",
set_document_root, ...),

% 103 mapping in this structure

char* set_document_roof(..., char * arg) {
P I* server/core.c */

Annotation:

{ @STRUCT = ConfigureNamesint
@PAR = [config_int, 1]
@VAR = [config_int, 3] }

Annotation:
{ @STRUCT = core_cmds
@PAR = [command_rec, 1]
@VAR = ([command_rec, 2], $arg) }

(a) Structure-based mapping (direct)

(b) Structure-based mapping (function)

Redis-2.4.17
Code Snippets:
void loadServerConfig(...) { ...
if (strcasecmp(argv[0],"timeout")) {
server.maxidletime = atbi(argv[1]);

Veise)

} = 51 mapping in the function
I* src/config.c */

......

Hypertable-0.9.6.4
Code Snippets:

void obtain_master_lock(...) { ...
uint32_t retry_interval =
context->props-> ‘\,
get_i32("Connection.Retry.Interval")

} the getter function

[* srclce/Hypertable/Master/main.cc */

Annotation:

{ @PARSER = loadServerConfig
@PAR = $argv[0]
@VAR = $argv[1] }

Annotation:

{ @GETTER = get_i32
@PAR =1
@VAR = $RET}

(c) Comparison-based mapping

(d) Container-based mapping

22

Figure 2.4. Examples of three mapping conventions and the corresponding annotations
to get the mapping information

remainder of this section, we refer to the variables storing the configuration parameters’
values as “parameters,” to simplify our description.

Since SPEX was published [179], this approach has become a common practice
for code-base configuration analysis to map configuration parameters to the correspond-
ing program variables that store their values [26, 44,79, 123,124,179, 191, 192]. More
sophisticated approaches that leverage machine learning [197] and string analysis [43]

have also been proposed, which can be directly plugged into SPEX.

23

Data Type Inference

Basic type. SPEX infers each configuration parameter’s basic type from its type
information in the source code. On the data-flow path of a parameter, its type might
be casted (changed) multiple times. In such cases, SPEX records the type after the first
casting as the basic type, because it is common for a parameter to be first stored as a
string (e.g., a char array), before being transformed into its real type. Figure 2.3(a)
shows an example from the commercial software Storage-A, in which the configuration
parameter is converted from a string to a 32-bit integer. Thus, the basic type constraint

of “log.filesize” is inferred as 32-bit integer.

Semantic type. SPEX infers semantic-type constraints by searching the follow-
ing patterns along a parameter’s entire data-flow path: (1) the parameter is passed to
a known function call (e.g., system- and library-call) or a known data structure; or (2)
the parameter is compared with or is assigned with the return value of a known func-
tion call (e.g., the return value of the t ime syscall). Figure 2.3(b) shows an example
from MySQL of the first pattern. In this example, SPEX infers the semantic type of
“ft_stopword_file” to be a file path because it is used in the open syscall. Note
that SPEX searches such patterns along the entire data-flow path, even after the parame-
ter is modified, because the modification seldom affects the semantic type. For example,
a file path after canonicalization is still used as a file path.

SPEX supports the standard library APIs and data types. We also allow devel-
opers to import their own library APIs and data types by pointing to their header files.
For example, for the commercial storage software used in the evaluation, we also im-
ported its proprietary library APIs. For constraint inference, the library APIs included
in . h files are enough, but for misconfiguration injection described in §2.4.1, SPEX

needs developers to provide types of configuration errors to inject, for customized data

24

types. Note that they do not need to provide such information for types defined in stan-
dard libraries (in the evaluation, customization is used only for the commercial storage

system).
Data Range Inference

SPEX infers range constraints when the parameter is compared with constant val-
ues in conditional branches. SPEX infers two types of ranges: numeric and enumerative.
For numeric comparison, SPEX treats the constant numbers as thresholds of the data
range. Enumerative ranges are inferred if the parameter is used in switch statements
orif..else if..else logic.

For each range inferred, SPEX further decides whether the range is valid or not
by analyzing the program behavior within the corresponding branch blocks. The rea-
son for inferring such information is to guide misconfiguration injection to expose bad
system reactions. If in the branch block, the program exits, aborts, returns error code,
or resets the parameter, SPEX treats the range as invalid. Otherwise, it is valid. Fig-
ure 2.3(d) shows an example of range inference from OpenLDAP, in which the range
of “index_intlen” is divided into (—o0,4), [4,255], and (255,+00). Both (—o0,4) and
(255, +00) are invalid because the parameters are reset in those ranges. The default
in a switch statement or the last else in if..else if..else logic is also
treated as invalid. Please note, since such information is used to guide misconfigura-
tion injection (c.f., §2.4.1), some false positives are not a major concern.

As a good practice, range constraints should be explicitly documented, but this is
not always the case. As shown in Figure 2.3(d), OpenLDAP limits index lengths within
[4,255]. However, this constraint is not documented. If operators set out-of-range values,

the system misbehaves with no warning, leaving operators clueless.

25

Control Dependency Inference

To infer control dependencies, SPEX starts from the usage statements of a param-
eter Q, and looks for conditional branches that dominate these statements in a bottom-
up manner. If the condition involves the variable that is part of the data-flow of an-
other parameter P, SPEX records a control dependency between P and Q in the form
of (P,C,¢) — Q. Figure 2.3(e) gives an example of a control dependency from Post-
greSQL. Starting from the usage statement of “commit_siblings” inside a function
call (omitted in the figure), SPEX goes backwards to check the conditions that allow the
execution of this usage, and infers (“fsync”,0,#) — “commit_siblings” as the
control dependency. Note that passing a parameter to a function and modifying its value
are not considered as usage, because they do not change program behavior [144]. To be
considered as usage statements, they have to be used in branches, arithmetic operations,
or as system-/library-call arguments.

However, if we blindly treated every such occurrence of control dependencies
as constraints, there would be many false ones. For example, VSFTP has three settings:
“listen” (foripv4), “listen_ipv6”,and “listen_port”. “listen_port”is
used after the check of “1isten” and the check of “1isten_ipv6”. If we blindly
generated two configuration constraints: (“listen”,1,=) — “listen_port” and
(“listen_ipv6”,1,=)+— “listen_port”, both would be too strict. To handle this
problem, SPEX aggregates all the inferred control dependencies for each configuration
parameter from all control-flow paths, and calculates the MAY-belief confidence of each
dependency in a way similar to [48]. Only if the confidence exceeds a predefined
threshold (currently set to 0.75), the control dependency will be reported. In the above
example, each dependency will have a confidence of 0.5, not exceeding the threshold.

Therefore, both of them are filtered out.

26

Value Relationship Inference

Similar to control-dependency inference, the value relationship also involves
multiple parameters. SPEX looks for comparison statements in parameters’ usage. If
two variables from different parameters’ data-flow paths are compared with each other,
SPEX infers the value relationship of the two parameters in the form of P ¢ Q. In addition,
the value relationship is transitive, which means it can be transited through intermediate
variables. Figure 2.3(f) gives such an example from MySQL that the min-max relation
is transited by a local variable. In the current prototype of SPEX, we only check one
intermediate variable for transitivity, which is fast and captures common cases. SPEX
further tries to decide whether the inferred relationship indicates a valid setting or not,

in a manner similar to that in range-constraint inference.

2.3.3 Discussion and Limitation

No tool is perfect, and SPEX is no exception. SPEX cannot infer all configuration
constraints and it also has false positives, even though the evaluation with commercial
and open-source software has shown good results.

Currently, the constraint inference of SPEX is limited within the scope of a single
program’s source code. However, when we study real-world misconfiguration issues
(c.f., §2.5.2), we find that cross-software configuration correlations also account for a
considerable number of misconfiguration cases. Inferring these constraints requires new
techniques to consider the software stacks as a whole, which remains future work.

Even within a single program, SPEX does not infer all constraints. Some con-
straints are program-specific, without common, concrete program patterns. For example,
itis hard for SPEX to understand the complicated string manipulation logics used in pars-
ing certain parameters (e.g., nesting and semi-structured rules), which might appear in

software providing services of networking and access controls (e.g., Bind9, Netfilter).

27

Moreover, SPEX cannot infer all the possible semantics of parameters.

The constraints inferred by SPEX are basic, and cannot capture certain compli-
cated constraints (e.g., dependencies involving complicated compositions of boolean or
arithmetic operations). On the other hand, according to our inspection, systems seldom
have these complicated constraints on their configurations, possibly because most oper-
ators cannot handle such complexity.

Not every constraint inferred by SPEX is a true constraint. §2.5.3 provides the
evaluation results for false positives. SPEX’s inference accuracy is above 90% for most
evaluated software. To further improve accuracy, we would need developers to manually
examine each constraint and prune out the 10% false ones.

The analysis of SPEX works on LLVM’s intermediate code representation (IR)
which is a generic assembly language in the static single assignment (SSA) form. Thus,
SPEX is applicable to software programs in programming languages that can be com-
piled into LLVM IR. In the implementation, we use Clang as the front-end tool to com-

pile C/C++ source code into LLVM IR.

2.4 Use Cases of Configuration Constraints

We build two use cases to demonstrate that the constraints inferred by SPEX
provide useful information for developers to help systems anticipate and defend against

misconfigurations in terms of both configuration design and implementation.

2.4.1 Harden Systems against Configuration Errors

Given the configuration constraints inferred by SPEX, we take one step further.
We build a misconfiguration injection-based testing tool called SPEX-INJ, to expose
misconfiguration vulnerabilities. SPEX-INJ automatically generates misconfigurations

by violating the constraints inferred by SPEX. Then, it injects these misconfigurations

28

"SW)SAS PAJBN[BAD) JO SUOISIIA JSAJR] AU} UI [NI-XHdS £q PIOAP AIB SINI[IQRIAUNA AU} [[V "¢ 231 Ul UMOYS
st sojdurexa 9say) WOIJ PALIdJUI Ik SJUTBNSUOD) MOH *(SUOTIORAI WAISAS peq) SanI[IqeIdu[nA uoneInsyuodsiu pasodxa oy pue

‘

(T'C QI9eL Ul S9[nI 9y} uo paseq) [NI-XAdS JO UONRISUAS JOIIQ uoneIn3yuod oy aensn[[r o) sojdurexa prom-1eay °s°z dansig

uonejoin diysuonejal-anjep (1) uonejoin Aouspuadap-josuo) (8) uonejoin abuel-eleq (p)
"4oJeas Jxa)-||Iny Aq paulnal SNsal J08.100U]| 108440 ou saye) Apua|is ,sBuljgis Hwwod,, || (jenuew Jasn ul pajuSWINOOP JOU SI JUIRLSUOD BY})
:pasodx3 uoijoeay peg pasodx3 uonoeay pegq || siasn Buihyou Jnoym gez o) Bumaes ayy abueyn
0l = Us[piom xew G = sBuIjqIS JIWWo9 :pasodx3 uonoeay peg
GZ = Ug| piom ulw™ Y 10 = UAs} 00€ = Usjul xapul
(62°'5'6-10SAN) :s309[u] Xads || (}°z'6-1059:61504) :s309u| xads :s300(u| Xads
WU3|"PJOMXBW Y, > US| pJoM UL, JSBUIIGIS W09, <(# ‘0 *,0UAs},,) (€€'v'z-dvaiuedo) [SSz 'v] :.uspul xepul,
(140d) uoneloip adA-opuewsg (o) (3714) uonejoip adAr-onuewss (q) uonejoin adAi-oiseq (e)
Hod d9| uado jouue) Ty 1v4, (e uonesWBes Aq pasnen) juseso wejsks 9ZIS 8} Se SalAq 6 Jaquinu pamojIano
.obessaw Ho| Buipessiw sy} yum Logy :pasodxg uonoeay peg Buisn ‘yun ay; se g aloub) ay 0} Bumes sy} abueyn
:pasodx3 uoijoeay pegqg B B | B :pasodx3 uopoeay peg | :pasodx3 uonoeay peg
podpaidnoooue = poddpn Yred Aioj08up™e = Bl piomdols Y 96 = az1sa)yBo| | 000°000°000°6 = 82is8]y Bo|
:s)09(u] Xads :s)09[u| xads :s)o9lu] xads :s)o9lu| xads
(G'¢'z-pinbs) 140d :.Hoddpn, (62'G'G-TOSAN) 3114 2814~ plomdols Y, (v-abei0)S) YIDILNI Ng-2¢ :,92is3)ly 6ol

29

Table 2.2. SPEX-INJ’s generation of misconfigurations for different types of constraints
inferred by SPEX

Constraint ‘ Generation Rules

Basic type Generate parameter values with invalid basic types
Semantic type Generate invalid values specific to different semantic types
Range Generate out-of-range values

Control dependency | Generate (P & C) AQ for (P,C,0) — Q

Value relationship Generate invalid value relationships

to the configuration settings, and tests how the system reacts. If the system does not re-
act well (e.g., crashes, hangs, and dysfunctions), SPEX-INJ reports the bad reactions to
the developers. By fixing these vulnerabilities, e.g., adding checks and log messages to
detect and pinpoint the error, developers can harden systems against potential misconfig-
urations introduced in the field, and allow operators to quickly find their configuration

errors so as to fix the errors by themselves.

Misconfiguration generation and injection. Table 2.2 summarizes how SPEX-
INJ generates configuration errors by intentionally violating the inferred constraints.
Each misconfiguration includes one or several erroneous parameter values that violate a
specific constraint. SPEX-INJ may generate several misconfigurations in various aspects
for a parameter: violating the constraints of its data type, its data range, its dependen-
cies and correlations with other parameters. Every generation rule is implemented as a
plug-in. It is easy to be extended to customize generation rules. Figure 2.5 lists several
real-world examples for each rule along with the exposed vulnerabilities.

SPEX-INJ injects the misconfigurations by replacing the default parameter val-
ues with the generated erroneous values in configuration files. We use the configuration
file parser in ConfErr [83] to parse a template configuration file into an abstract represen-
tation (AR), and transform the modified AR with error injected to a usable configuration

file for testing; other configuration file parsing tools such as Augeas can also be used.

30

Categories of misconfiguration vulnerabilities. When a misconfiguration oc-
curs, the system should pinpoint either the misconfigured parameter’s name/value or its
location information (e.g., line numbers in the file). Otherwise, SPEX-INJ considers the
system reaction as a misconfiguration vulnerability.

Table 2.3 categorizes different types of misconfiguration vulnerabilities. The
first category, system crashes and hangs, is considered as severe vulnerabilities, es-
pecially for server applications where availability is crucial. Such symptoms would
mislead operators and support engineers to suspect it as a software bug. The second
category, early termination without pinpointing message, is also undesirable. In this
case, the system terminates itself but does not give useful feedback for operators to fix
the problems by themselves. Similarly, function failures without pinpointing error mes-
sages can also confuse operators, as shown in the MySQL example in Figure 2.5(f). As
for the last two categories, it can still be unacceptable (maybe less severe) to silently
violate or ignore the operator’s intention, which might cause the operator’s confusion
or sophisticated problems (e.g., performance issues, feature not activated), as shown in
Figure 2.5(a) and (d). Note that we do not consider performance issues caused by mis-
configurations, mainly due to the difficulties in objectively judging if the performance is
acceptable. Unless the performance degradation affects the system usability (belonging

to “hang”), we consider it acceptable as long as the functionality is correct.

Testing and analysis. SPEX-INJ leverages each software’s own test infrastruc-
ture including test cases and oracles for accepting/rejecting test results. For each gen-
erated configuration file (containing one misconfiguration), SPEX-INJ first launches the
target system. If the system successfully starts, SPEX-INJ will further apply existing
functional test cases one by one and monitor the system status and output. During test-

ing, SPEX-INJ records all the system and console logs. If the test results fail to pass the

31

Table 2.3. The categories of bad system reactions

Reaction | Description

Crash/Hang The system crashes or hangs’

The system exits abnormally without pinpointing the injected
configuration error.

The system fails functional testing without pinpointing the
injected configuration error.

The system changes the input configurations to different values
without notifying the operators.

The system ignores the input configurations (mainly due to
control-dependency violation).

Early termination

Functional failure

Silent violation

Silent ignorance

test oracles, SPEX-INJ checks the logs to see whether the system pinpoints the miscon-
figuration. If not, it generates an error report for the developers.

The error report (i.e., the output of SPEX-INJ) contains the constraint, the in-
jected error, and the failed test cases, associated with all the log messages. Therefore,
the developers can know what misconfigurations caused what problems. SPEX-INJ re-
ports silent violation/ignorance if the system does not pinpoint errors but passes testing.

This process can be slow, as N x T, where N is the number of misconfigurations
SPEX-INJ generates, and 7 is the time to run all input test cases once. To shorten the
time, we apply two optimizations. First, for each misconfiguration, SPEX-INJ stops
immediately after the first failed test case. Second, we sort the running time of each test
case, and run the shortest test case first. By using these optimizations, the testing time of
SPEX-INJ on the evaluated software is under 10 hours. Note that this is a one-time cost
because SPEX-INJ can be made incrementally. It only needs to retest those constraints

affected by code modification during each revision.

2.4.2 Detect Error-Prone Design and Handling

Configuration settings which are expected to be performed by operators, should

be intuitive and less prone to errors. Carefully-designed configuration constraints can

32

prevent operators confusion and mistakes. More specifically, since configuration setting
is also one type of software interface exposed to the operators, it should follow the
interface design principles [98, 111].

We expect the configuration design to be (1) consistent in constraints of different
parameters, (2) explicit to operators when changing their configuration settings, and (3)
complete in documenting the requirements of parameters (i.e., their constraints). In this
section, we show how to leverage the constraints to detect error-prone configuration

design and handling that break the three principles.

Design inconsistency. Consistency is a primary interface design principle to
prevent operator mistakes. The inferred constraints provide opportunities for detecting
two types of configuration inconsistency: (1) case sensitivity, and (2) unit granularity.
Such inconsistency is error-prone because operators are likely confused by the contra-
dictory requirements for parameters of same types.

Figures 2.6(a) and (b) show two real-world examples of the two types of in-
consistency. In Figure 2.6(a), different from most string case-insensitive configuration
parameters in MySQL, the values of parameter “innodb_file_format_check”
are case sensitive. In Figure 2.6(b), different from the other size parameters in Apache
that use Bytes as the unit, “MaxMemFree” uses KBytes as the unit. Therefore, operators
can easily make mistakes here due to the inconsistency. As shown in § 2.5.1, we find
that more than half of the evaluated systems have these two kinds of inconsistency.

The inconsistency is detected based on SPEX’s inference of semantic-type con-
straints (remember that SPEX records the API calls that use the parameters). The case
sensitivity is inferred by identifying string comparison functions. If the parameter is
used in comparison functions like st rcasecmp, it is case insensitive. Otherwise it

is sensitive when used in functions like st rcmp. Similarly, the unit information is in-

33

MySQL-5.5.29 || ,, . Apache httpd-2.4.3
"innodb_file_format_check” MaxMemfFree
if (\stremp(method, "fsync")) { value = strtol(arg, NULL, 10);
unit: "Kilobyte"

} else if (\stremp(method, "O_DSYNC")) { || -
ap_max_mem_free = value *|1024;

Most enum options in MySQL Most size parameters in Apa-

are insensitive (strcasecmp)!

[* storage/innobase/srv/srvOstart.c */

che use "byte" as the unit.

[* server/mpm_common.c */

(a) Inconsistency of case sensitivity

(b) Inconsistency of parameter units

input from users Squid-2.3.5 . Squid-2.3.5
if (Istrcasecmp(token, "on")) { inti; - input from users

*var=1; sscanf(token, "%i", &);
}else { "ves" and "enable” are | || //use the value * src/Parsing.cc */

var=0: | treated as "off" silently The return value of invalid

input is undefined.

}

[* srcicache_cf.cc */
(c) Silent Overruling

(d) Using unsafe API

Figure 2.6. Real-world examples of error-prone configuration design and handling

ferred according to the API’s unit. For example, parameters used in sleep have the
unit second, while parameters used in usleep are of unit microsecond. We also con-
sider the transformation of the parameter, along its data-flow path before it falls into the

API call, as shown in Figure 2.6(b).

Silent overruling. Silent overruling refers to the case that the system changes
an unacceptable setting into the default value, without notifying the operator. This may
cause silent violation of operator intention, as one type of the misconfiguration vulnera-
bilities. As shown in Figure 2.6(c), Squid silently treats any boolean parameter as “of £”
as long as it is not set to “on”, even if it is set to “yes” or “enable”. Such design can
easily confuse operators because the system behavior would not match their expectation.

To detect silent overruling, for data range constraints detected in switch or

if...else if...else logic, if the parameter’s value is silently overwritten in the

34

default case or the else block, we flag it as silent overruling. In Squid and Apache,
we detected many silent overruling cases that affect 74 parameters. All of them have
been fixed by developers after we reported them.

We do not consider static initialization of configuration parameters as silent over-
ruling. It is mainly used to assign default values that would be overwritten by operator

settings. Thus, it is not relevant to operator configuration.

Unsafe APIs. Using unsafe APIs in configuration handling can also create
confusing behavior. For example, unsafe string-to-number transformation APIs, includ-
ing atoi, sscanf and sprint f are vulnerable to erroneous operator inputs. Taking
atoi as an example, there is no way to check unexpected characters (e.g., atoi (100)
returns 1) and overflow issues (e.g., atoi (INT_MAX) returns -1). These APIs are
handy in controlled contexts but should be avoided in configuration parsing since opera-
tor inputs may not be trustworthy and can easily be misspelled. Instead, a good practice
is to use safe APIs such as st rtol and check errors through errno and end pointers.
Most bug detection tools do not report these vulnerabilities because they do not know
whether a variable stores a configuration value. SPEX can detect them exactly, because
it is starting from the value of configuration parameters. Our evaluation shows that
many systems use unsafe transformation APIs, affecting large numbers of configuration

parameters, as exemplified in Figure 2.6(d).

Undocumented constraints. The inferred constraints are also useful for devel-
opers to check whether some constraints are documented in any form, including opera-
tor manuals, error messages, or even accurate parameter naming. Our evaluation shows
that some configuration constraints have never been documented in any form. As the

consequence, operators can easily make mistakes with them.

35

Table 2.4. Evaluated software systems. “LoA” represents lines of annotations.

Software | Proprietary | LoC | #Parameter | LoA
Storage-A Commercial confidential 5
Apache Open source 148K 103 4
MySQL Open source 1.2M 272 29
PostgreSQL Open source 757K 231 7
OpenLDAP Open source 292K 86 4
VSFTP Open source 16K 124 5
Squid Open source 180K 335 2

2.5 Evaluation

We evaluate the effectiveness of the tools using one commercial system and
six open-source systems as listed in Table 2.4. The commercial system, Storage-A, is
from a major storage vendor in the U.S. It is a distributed storage operating system
used for managing network attached storage devices. Storage-A serves storage over
networks using both file-based protocols, including NFS, CIFS, FTP, HTTP, and block-
based protocols, including FC, FCoE, iSCSI. The system provides operators with a large
number of configuration parameters. The open-source systems are mature, widely-used
server applications with considerable numbers of configuration parameters. The test
cases we use to drive SPEX-INJ are from the test suites shipped with the software or
provided by the developers. To collect related warning and error log messages, we set
sufficient logging verbosity.

Table 2.4 shows the numbers of annotations we added in each software so that
SPEX can use them as the starting points to identify and analyze configuration-related

variables. As shown in the table, the annotation efforts in terms of lines is acceptable.

2.5.1 Overall Results

We first present the end results of SPEX—the misconfiguration vulnerabilities

(bad system reactions) exposed by SPEX-INJ, as well as error-prone configuration de-

36

suoneso[apod “dsa11o)) (q)

(suornoeal wWAsAs peq) SeNI[IqeISU[NA UONBINIHUOISIA (B)

(L6) 8bF [e10L, WoerL | Wice | wose | nes | @se | (oo | [e10L,
(12) 29 pmbg (6L1) 122 (D 1 (ELT) €LT (1) 6T @€ @7 pmbg
(T1) LOT dLASA (T 971 (0) 89 0) €T (0) 81 (XY (TD 1 dLASA
) L1 dvauedo 0) LY 00 0 L 09 0 € 01 dvauedo
(©) ¥v TOS2131504 (€) 6¥ (0) s¢ o1 (k4 (D o1 1 TOS2131504
1) 9% TOSAN (T8) P11 (0) 91 0L 1L () C1 (©) o1 ©¢ TOSAN
(1) cs syoedy (Im zs (s (D) 6¢ ©6 © ¥ @¢ oyoedy
(t€) 611 NACEIAUIN (LL) ¥91 (0) €8 (TL) vL ©)L 0 0 0 0 V-95810)S

uornedo| “10u31 uorjeoia Injrey *JeuIuLId) Suey
AIeM)JoS [e10L, AIeM)JosS

Ppo) RIS RIS [euonouny Apey /qser)

[°9°Z§ UI PassSnOSIP aIe PAULIJUOD Udq JOU dARY JBY) SASLD Ay], "Wway) payiodar om 19yJe srodojoaap
o) £Qq $9sBO PaxXy JO PAWLIZUOD JO sIdquuinu oy re (), Ul SIoquunu 9y], "senIfiqerau[na aydnnu Xy Jysiu uoneso] Spod-3dInos
Quo J10J yojed Y ‘SUONIBIO] 9p0I-30In0s SUIPUOdSalIod oY) pue SANI[IqeIou[nA UONeINIYUodsTw pasodxa Jo Jaquinu Y[, ‘S dqeL

37

"INI-XAdS Aq pasodxa (¢ 7 9[qeL Ul PazZ11039)ed) SANI[IqeIdu[nA UoneIN3YuodsTW Jo sadA) Juaroyip Jo sopdwrexy ° g 9Ingi]

(92ueIOUG] JUBYIS) (uonejoin yuayis) abessaw bunuioduid abessow Buipessiw (Bueyyyse)
sindui Jasn aioubl Apusjig (8) sindui Jesn abueyo ApuajiS (p) Inoyum ainjie} [euonoun4 (o) Yum uoneuiwlsl Ae3 (q) yses weysAg (e)
607 waysAs ON (350 UOOBUUOY) PBSOJO XX=UU09 || (in|ie} AJowsw paieys snouwiAuoue) (padwnp
- o wayshg oN || XXX X=dI WOy 1 dFDV XX=UU0D || pIe0GBI00S SSEOTE Bjesld 0} Blqeur) 8102) }ne} uonejUsWBag
- Gm&o ou sy ,SAd” [oo) 1607 waysAg || :4,00p0HY :Alowaw 81ed0||e Jouue) :607 waysAg
\"asn"jenuia, jo bues ayL || 921 sod se (jun ::Emmv (1) JoAIas 4y 1081U09 Jue), 1607 wayshs ysel)
:pasodx3 uonoesy peg || 89ZIG 9SN pue gy 8ioub)] :0) spea| }senbai Juaip Auy dnpeys Buunp poqy :pasodx3 uonoeay peg

sof = apowsse20.dBu0
sof = sAud™|e20] asn” [enyIA
:s309fu| Xxads

¢'0'¢-dL4SA

:pasodx3 uoljoeay peg

gqnzLs = az1s'sod
:syoafu] xads
v-96eli0)s

:pasodx3 uoijoeay peg

| Buiwooui xew jngyoos

:s3)09fu| Xads
£¢'¥'2-dvaiuedo

:pasodx3 uonoeay peg
000001 = HuwipealyL
:sjo0lu| Xads
€'y'Z-pdny syoedy

0 = 8zIS” AIojSIy~siem
\ TSJUsAS BWaYDS souewlIopad
:s309fu] Xads
62'G'G-TOSAN

38

sign and handling. We then show the intermediate results, the configuration constraints

inferred by SPEX in §2.5.3.

Misconfiguration vulnerabilities. Table 2.5(a) shows the number of miscon-
figuration vulnerabilities (bad system reactions) exposed in the latest versions of the
evaluated systems. SPEX-INJ exposes a total of 743 vulnerabilities (they are true vul-
nerabilities verified by us). To this day, 364 of them have been confirmed or fixed by
the developers. The vulnerabilities exposed by SPEX-INJ are of various kinds in all the
evaluated systems. Most notably, all the open-source systems experienced bad reactions
such as crashes, hangs, and early terminations under some misconfigurations. In addi-
tion, silent violation and ignorance are more prevalent compared with terminations and
failures. This once again reflects that developers pay less attention to defending against
misconfigurations, as long as they do not affect the system’s own execution. Figure 2.7
gives five additional examples for each type of vulnerabilities exposed by SPEX-INJ.

Since one source-code location could affect the constraints of several configu-
ration parameters, Table 2.5(b) further shows the number of unique code locations that
cause these vulnerabilities. The 743 vulnerabilities are caused by 448 locations in source

code, and the 364 confirmed bad reactions can be fixed by 97 code patches.

Error-prone configuration design and handing. Table 2.6 shows the distribu-
tion of the case-sensitivity requirements for string parameters in each system. We can
see that more than half of the systems have inconsistent case-sensitivity requirements.
The inconsistent requirements of 80 parameters in Apache, MySQL, and Squid have
been confirmed and fixed after we reported them.

Table 2.7 shows the unit requirements for size and time parameters. More than

half of the systems have inconsistent size and time units. For example, in Storage-A,

Table 2.6. Case-sensitivity requirements of different configuration parameters

39

Case sensitivity Developers’

Software — Py

Sensitive | Insensitive fixes
Storage-A 32 (7.1%) 453 (92.9%) being investigated
Apache 3 (11.5%) 26 (88.5%) all sens.—insens.
MySQL 1 (1.7 %) 58 (98.3%) all sens.—insens.
PostgreSQL 0 (0.0%) 92 (100.0%) N/A
OpenLDAP 0 (0.0%) 9 (100.0%) N/A
VSFTP 0 (0.0%) 73 (100.0%) N/A
Squid 85 (52.8%) 76 (47.2%) all insens.—sens.

Table 2.7. Different units of size- and time-related configuration parameters

Software Size Time

B | KB | MB | GB us | ms | S | m | h
Storage-A 20 1 1 1 2 10 53 12 4
Apache 20 1 0 0 0 1 26 0 0
MySQL 29 0 0 0 2 2 13 0 0
PostgreSQL 1 3 0 0 1 12 9 1 0
OpenLDAP 2 0 0 0 0 0 3 0 0
VSFTP 1 0 0 0 0 0 6 0 0
Squid 18 2 0 0 1 6 33 0 0

20 size parameters use Bytes as their units except three parameters, each of which uses

different unit size, namely KBytes, MBytes, and GBytes. Storage-A mitigates the incon-

sistency via naming: including the unit information in parameter names (c.f., §2.6.2).

However, none of the open-source systems makes such efforts, so the inconsistencies

may confuse operators and cause mistakes.

Table 2.8 shows other types of error-prone constraints. SPEX detects 74 pa-

rameters with silent overruling in Apache and Squid, all of which were fixed by the

developers after we reported them. In addition, more than half of the systems use unsafe

transformation APIs for large numbers of parameters. Moreover, a number of inferred

constraints are not documented in any form.

However, it might be arguable whether the cases in Table 2.7 and 2.8 are con-

fusing and error-prone to operators. To be conservative, we did not report them to the

40

Table 2.8. The other types of error-prone configuration design and handling

Silent Unsafe Undoc. Constraints
Software over- trans- Data Ctrl Val.

ruling form. range dep. rel.
Storage-A 0 28 2 0 2
Apache 1 27 0 1 0
MySQL 0 0 4 3 1
PostgreSQL 0 0 3 3 2
OpenLDAP 0 0 2 0 0
VSFTP 0 20 3 47 1
Squid 73 115 3 4 4

developers. For the same reason, we did not include them in the results presented in the

abstract and introduction section.

2.5.2 Benefits to Real-World Configuration Problems

It is hard to predict the benefits of SPEX in avoiding future misconfiguration
reports and in reducing misconfiguration diagnosis time. To provide some estimation
of the end benefits, we have to leverage past misconfiguration cases committed by real
operators and evaluate how many customer reports could have been avoided, if the tools
had been used. Note that the results in this section are from the perspective of system
vendors. We do not consider the customers downtime and frustration.

We study real-world historical misconfiguration cases from four systems: the
commercial system (Storage-A), Apache, MySQL, and OpenLLDAP. For Storage-A, we
randomly sampled 246 parameter misconfiguration cases from the company’s customer
issue database. For open-source applications, we randomly collected 177 parameter
misconfigurations from official forums, mailing lists, and ServerFault.com (a popular
system administration forum). The data have been presented in [185].

As shown in Table 2.9, 24%-38% of the misconfiguration cases could have been

potentially avoided if SPEX had been used to improve the configuration design and

41

Table 2.9. Real-world misconfiguration cases that can be potentially avoided among all
sampled historic cases

Software Parameter Bad reactions that could be
misconfig. potentially avoided by SPEX

Storage-A 246 68 (27.6%)

Apache 50 19 (38.0%)

MySQL 47 14 (29.8%)

OpenLDAP 49 12 (24.5%)

Table 2.10. The breakdown of misconfigurations that cannot benefit from SPEX

Software Inference incapability Conform to Good
Single-SW Cross-SW constraints reaction
Storage-A 19 (7.7%) 51 (20.7%) 76 (30.9%) 32 (13.0%)
Apache 5 (10.0%) 12 (24.0%) 9 (18.0%) 5 (10.0%)
MySQL 1 (2.1%) 12 (25.5%) 18 (38.3%) 2 (4.3%)
OpenLDAP 9 (18.4%) 4 (8.2%) 12 (24.5%) 12 (24.5%)

harden system against misconfigurations. The results may not sound impressive. How-
ever, if we consider the total number of configuration issues encountered in today’s
server systems, it is significant to eliminate around one third of the issues. Here, we con-
sider all parameter-related configuration errors as the denominator. The percentages will
be larger if we consider only one subtype such as illegal misconfigurations [185]. As a
first step in the direction of improving configuration design, we believe that 24%—-38%
is a promising result.

To guide future research in this direction, Table 2.10 further breaks down the
misconfiguration cases that cannot benefit from the tools. First, as discussed in §2.3.3,
SPEX cannot infer all constraints. In addition, a configuration setting might conform to
the constraints, but does not match the operators’ intention. For example, a permission
setting might be valid from the constraints’ perspective, but insufficient for the operator
to access files. Finally, even if the system already provides “good reactions” by our
criteria (i.e., printing log messages containing the faulting parameters), operators might

still report the problem because the semantics of the text messages might be confusing.

42

Table 2.11. Configuration constraints inferred by SPEX

Data type Data Ctrl Value

Software - :

Basic | Semantic range dep. rel.
Storage-A 922 111 490 81 20
Apache 103 22 42 1 9
MySQL 272 74 213 35 10
PostgreSQL 231 52 186 44 6
OpenLDAP 75 15 20 0 2
VSFTP 130 34 84 68 1
Squid 258 46 120 14 9
Total | 1991 | 354 | 1155 | 243 | 57

2.5.3 Configuration Constraint Inference

Table 2.11 breaks down different kinds of constraints inferred by SPEX. It infers
a total of 3800 constraints from the evaluated systems. We can see that basic types can
be inferred for most configuration parameters. In comparison, the number of semantic
type is much smaller. SPEX cannot extract the semantic type for every parameter. It can
only infer the semantic type if the parameter interacts with known APIs. Data range and
inter-parameter correlations, especially control dependencies, are also common in the
evaluated systems.

Table 2.12 shows the accuracy of constraint inference. We manually and care-
fully examined all of the 3800 constraints inferred by SPEX. SPEX achieves over 90%
inference accuracy in most cases. We find that the inaccuracy is mainly caused by
pointer aliasing. If a configuration parameter is pointed by aliased pointers, and/or there
are complicated pointer arithmetic logic, SPEX may lose the correct mapping from the
configuration parameter to the program variable, and thereby infer constraints that do
not belong to the right parameter. Currently, SPEX does not perform any pointer-alias
analysis. This explains why OpenLDAP has the lowest accuracy: many of its param-
eters are referenced through pointers. However, the overall accuracy is still over 90%,

because most of the configuration parameters are not aliased.

43

Table 2.12. Accuracy of constraint inference

Data type Data Ctrl Value

Software - :
Basic | Semantic range dep. rel.

Storage-A 97.0% 95.7% 87.1% 84.1% 94.1%
Apache 96.1% 91.7% 94.6% 100.0% 81.8%
MySQL 100.0% 98.7% 99.1% 94.7% 71.4%
PostgreSQL 100.0% 96.3% 97.3% 91.7% 85.7%
OpenLDAP 88.2% 93.7% 73.1% N/A 50.0%
VSFTP 100.0% 100.0% 100.0% 63.9% 100.0%
Squid 77.0% 100.0% 100.0% 77.8% 100.0%

2.6 Experience and Practice

This section presents our experiences of reporting the misconfiguration vulnera-
bilities and error-prone configuration design and handling, as well as the good practices

of configuration design and handling when we study the target software systems.

2.6.1 Interaction Experience with Developers

We reported the detected vulnerabilities and error-prone constraints to develop-
ers through the official bug reporting systems. To this day, 364 of the our reported
vulnerabilities and 80 inconsistent constraints have been confirmed or fixed by the de-
velopers. The others are ignored or rejected by the developers, or being investigated.

Here, we share our experience in interacting with developers.

Positive experience. We are encouraged by the positive feedback from many

developers of the evaluated systems, and we appreciate the help from them.

e Storage-A. Misconfigurations account for one-third of the customer cases of Storage-
A in this major U.S. storage company. It has imposed significant financial cost for
troubleshooting these issues. Therefore, they actively investigate solutions to miscon-

figurations, and have been very supportive to our work, including providing us with

44

source code, test cases, and allowing us to include Storage-A’s results in this disser-
tation. All the exposed issues have been sent to the corresponding developing teams.

Many of them have been fixed (c.f., Table 2.5), and others are under investigation.

e Squid. The developers immediately paid great attention to our reported misconfigu-
ration vulnerabilities. We worked together and improved their configuration parsing
library—adding more checks for configuration errors and more logging in reporting
errors. Moreover, Squid developers applied our patches to make the case sensitivity

consistent for 76 configuration parameters.

Negative experience. Not all interaction with developers is positive. Some of
our reports and patches so far have been rejected or ignored by developers. The follow-
ing summarize the typical negative responses. (1) Some developers think the informa-
tion is clearly described in the document, so there is no need for systems to check or to
pinpoint the configuration errors in log messages—*“The manual states, near the top...”
However, operators may not read manuals line by line, especially given that manuals
for large systems are usually lengthy (e.g., MySQL-5.5’s manual has 4502 pages). Also,
operators may have problems understanding manual contents, because many operators
come from a different background (c.f., Appendix A). (2) Some open-source developers
tend to assume that operators read the source code (since it is open sourced) when they
configure the system. In the response to one of our patches, the developer wrote, “Most
operators never adjust these values. Those who do read the code.” Note that operators
can read open-source code, but it does not mean that, operators have time, or are willing
to read the code. (3) Some developers optimistically assume that operators would not
make mistakes, “If you work exactly and carefully it does not matter, if not, you should
not maintain the server at all.” As a result, it is not uncommon that developers closed

the report with comments like “This is not a bug.” The implication is that “the opera-

45

tor must be a novice or not thinking.” However, such optimistic assumptions are often
proved unrealistic, as partially demonstrated in this dissertation and previous work on
misconfiguration.

The negative experiences indicate that the battle to have developers take active
roles in misconfiguration handling is challenging. The main impediment is the contro-
versial responsibilities of the misconfiguration between operators and developers. Often
times, it is only until the system suffers considerable support cost or failures (caused
by misconfigurations) will the importance of active handling be appreciated by develop-
ers. We believe one way to raise this awareness is through education on user-friendly
configuration design, hopefully leveraging the trend and attention in good user-interface
design raised by Apple’s success. As articulated in [113], developers should view sys-

tem operators as their first-class users.

2.6.2 Practice

We highlight some of the good practices we observed from the evaluated soft-

ware projects, and advocate adoption towards user-friendly configuration design.

Hiding critical configurations. Despite the trend that systems expose more and
more configuration knobs, some systems choose to hide advanced and critical configura-
tion parameters or options from operators, in order to avoid careless mistakes. Storage-A
provides two levels of configuration interfaces: one for normal operators and the other
for advanced ones. The former only exposes the common configurations while the latter
exposes all the knobs. Moreover, it does not allow operators to directly modify system
configuration files. The configuration settings from operators are enforced to go through
the interfaces which perform basic checking. In fact, we observe that developers some-

times are struggling with the configurability. For example, eight Squid parameters have

46
the following warning in their manual entries:

“Heavy voodoo here. I can’t even believe you are reading this.
Are you crazy? Don’t even think about adjusting these unless

you understand the algorithms in comm_select. c first!”

A good practice should hide such esoteric parameters from operators, or forewarn op-
erators with clear log messages when they are trying to configure these parameters.
Chapter 4 discusses in detail on balancing the configurability (flexibility) and usability

through user-centric configuration design.

Handling inconsistency. We observed two efforts in Storage-A in handling
unit inconsistency. First, the unit information is included in the name of configuration
parameters, e.g., “cleanup.msec” and “takeover. sec”, which serves as both de-
scriptions and mnemonics for operators. Second, some configuration parameters enforce

operators to specify unit suffixes to help them express their intention explicitly.

Leveraging structural design. One idea is to provide systematic support to
enforce configuration checking. Storage-A, MySQL, and PostgreSQL use global data
structures to enforce developers to specify the data type and the min/max value for each
configuration parameter. Based on these data structures, the systems easily enforce uni-
form validity checking of configuration settings. Consequently, they have fewer miscon-

figuration vulnerabilities that violate type and range constraints, as shown in Table 2.5.

2.7 Summary

In this chapter, we advocate the importance for software systems to anticipate
and defend against misconfigurations. It makes a concrete useful step by providing

tool support for developers to expose misconfiguration vulnerabilities, and detect error-

47

prone configuration design and handling. SPEX has exposed 743 vulnerabilities and at
least 112 error-prone constraints in both commercial and open-source systems. To this
day, 364 vulnerabilities, together with 80 inconsistent constraints, have been confirmed
or fixed by developers after we reported them. Our results have influenced the Squid
Web proxy project to improve its configuration parsing library towards a more usable
design. The original paper [179] has inspired research on improving system reactions
to misconfigurations [92, 177, 193] and extracting configuration information through
source code analysis [43, 132,181, 196].

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the
24th ACM Symposium on Operating Systems Principles, 2013. Xu, Tianyin; Zhang,
Jiaqi; Huang, Peng; Zheng, Jing; Sheng, Tianwei; Yuan, Ding; Zhou, Yuanyuan; Pasu-
pathy, Shankar. The dissertation author was the primary investigator and author of this

paper.

Chapter 3

Early Detection

b

“The early bird catches the worm.’

—Proverb

Chapter 2 demonstrates that many misconfiguration vulnerabilities can be effec-

tively exposed by testing the system’s resilience through injecting configuration errors.

However, vulnerabilities related to certain types of configurations, such as those of fault

tolerance and error handling, are extremely hard to expose through testing. This is be-

cause these configurations are not needed at the initialization time or even during normal

operations, but only used under critical circumstance (e.g., when the system encounters

and has to deal with faults or failures). Therefore, errors in such configurations are often
latent until their manifestations cause disasters.

One practical approach to tackling the dangerous latent configuration errors is

to detect them as early as possible in order to minimize their failure damage rather than

handling their consequences (similar to how we deal with fatal diseases like cancer).

The following summarizes the importance of early detection of configuration errors:

e Early detection before configuration roll-out can prevent the same error from being

replicated to thousands of nodes, especially in the data-center environment.

e Unlike software bugs, configuration errors, once detected, can be fixed by operators

48

49

with no need to go through developers. Therefore, if detected earlier, the errors can

be corrected immediately before the configurations are put online for production.

e For many configurations that control the system’s failure handling, early detection of
errors in their settings can prevent the system from entering an unrecoverable state
(before any failures happen). Often, the combination of multiple errors (e.g., a con-
figuration error together with a software bug) can bring down the entire service, as

shown in many newsworthy outages [32, 152, 155, 158].

3.1 Introduction

This chapter explores the feasibility and efficacy of enabling early detection as
an engineering practice through tool support to defense software systems against config-
uration errors, especially those latent ones.

It starts by understanding the root causes and characteristics of latent config-
uration (LC) errors. We study the practices of configuration checking in six mature,
widely-deployed software systems, including HDFS, YARN, HBase, Apache, MySQL,
and Squid. The study reveals that (1) many (14.0%-93.2%) of the critically important
configuration parameters (those related to the system’s reliability, availability, and ser-
viceability) do not have any special code for checking the correctness of their settings.
Instead, the correctness is verified (implicitly) when the configuration values are being
actually used in operations; (2) many (12.0%-38.6%) of these configurations are not
used at all during system initialization; (3) resulting from (1) and (2), 4.7%—-38.6% of
these critically important configuration parameters do not have any early checks and are
thereby subject to LC errors that can severe impair the system’s dependability.

To help systems detect LC errors early, we present a tool named PCHECK that an-

alyzes the source code and automatically generates configuration checking code (termed

50

checkers) for validating a system’s configurations at its initialization phase. PCHECK
takes a unique and intuitive method to check each configuration setting—emulating the
late execution that uses the configuration value; meanwhile capturing any anomalies
exposed during the execution as the evidence of configuration errors. PCHECK does not
require developers to manually implement checking logic. The checkers generated by
PCHECK are generic: they are not limited to any specific, predefined rule patterns, but
are derived from how the program uses the parameters.

PCHECK shows that it is feasible to accurately and safely emulate late execution
that uses configurations. It statically extracts the instructions that transform, propagate,
and use the configuration values from the system program. To execute these instruc-
tions, PCHECK makes a best effort to produce the necessary execution context (values
of dependent variables) that can be determined statically. PCHECK also ‘“sandboxes”
the emulated execution by instruction rewriting to prevent side effects on the running
system or its environment.

More importantly, emulating the execution can expose many configuration errors
as runtime anomalies (e.g., exceptions and error code) and the emulated execution runs
in a short period. PCHECK inserts instructions to capture the anomalies that may occur
during the emulated execution, as the evidence to report configuration errors.

As an enforcement, PCHECK encapsulates the emulated execution and error cap-
turing code into checkers for every configuration parameter, and invokes the checkers at
the system’s initialization phase. This can minimize potential LC errors, and compen-

sate for the missing and incomplete configuration checks in real-world systems.

3.2 Background

Unlike software bugs that typically go through various kinds of testing before

releases (such as unit testing, regression testing, stress testing, system testing, etc.), op-

51

erators often do not perform extensive testing on configurations before rolling them out
to other nodes and putting the systems online [104]. Besides the lack of skills [104] and
the temptation of convenience [97], the more fundamental reason is that operators do
not have the same level of understanding on 2ow and when the system uses each config-
uration value internally [103, 177]. Thus, they are limited to simple black-box testing
such as starting the system and applying a few small workloads to see how the system
behaves. Due to time and knowledge limitations, operators typically do not perform
a comprehensive suite of test cases against configuration settings, especially for those
hard-to-test ones (e.g., configurations related to fault tolerance and error-handling) that
may require complex setups and even fault injections.

Therefore, early detection should inevitably fall onto the shoulder of the system
itself—the system should automatically check as many configurations as possible at its
early stages (the startup time). Unfortunately, many of today’s systems either skip the
checking or only check configurations right before the configuration values are used, as
shown in our study (c.f., §3.3). Typically, at the startup time, only those configuration
parameters needed for initialization are checked (or directly used), while many other
parameters’ checking is delayed much later until when they are used in special tasks.
Since such configuration parameters are neither used nor checked during normal oper-
ations, errors in their settings go undetected until their late manifestation, e.g., under
circumstances like error handling and fail-over. For simplicity, we refer to such errors

as latent configuration (LC) errors.

3.2.1 Severity of Latent Configuration Errors

LC errors can result in severe failures, as they are often associated with config-
urations used to control critical situations such as fail-over [157], error handling [152],

backup [142], load balancing [32], mirroring [158], etc. As explained above, their detec-

52

Table 3.1. Severity of latent vs. non-latent errors among the customers’ configuration
issues of COMP-A. LC errors contribute to 75% of high-severity configuration issues.

Severity level | Latent | Non-latent
All cases 47.6% 52.4%
High severity 75.0% 25.0%

Table 3.2. Diagnosis time of latent vs. non-latent errors among customers’ configuration
issues of COMP-A. The time is normalized by the average time of all the reported issues.

Error class ‘ Mean ‘ Median
Latent 1.14 1.70
Non-latent 0.87 0.41

tion or exposure is often too late to limit the failure damage. Take a real-world case as
an example (c.f., §3.3: Figure 3.3a), an LC error in the fail-over configuration settings
is detected only when the system encounters a failure (e.g., due to hardware faults or
software bugs) and tries to fail-over to another component. In this case, the fail-over
attempt also fails, making the entire system unavailable to all the clients.

Tables 3.1 and 3.2 compare the severity level and diagnosis time of real-world
configuration issues caused by LC errors versus non-latent configuration errors (detected
at system startup) of COMP-A!, a major storage company in the US. Although there
have been fewer LC errors than non-latent ones, LC errors contribute to 75% of the high-
severity issues and take longer to diagnose, indicating their high impact and damage.

Figure 3.1 shows a real-world LC error from Squid, a widely used open-source
Web proxy server. The LC error resided in diskd_program, a configuration parame-
ter used only during log rotation. Squid did not check the configuration during initializa-
tion; thus, this error was exposed much later after days of execution. It caused 7+ hours
of system downtime and cost 48 hours of diagnosis efforts. After the error was finally
discerned, the Squid developers added a patch to proactively check the setting at system

startup time to prevent such latent failures.

'We are required to keep the company and its products anonymous.

53

Configuration error:

.) Diagnosis (48 hrs)
diskd_program = a non-existent path

- 26 rounds of diagnostic
conversations;

Parse config files; Use the setting of - 5 collections of logs &
store the settings diskd_program runtime traces;
in program vars. for log rotation. - 2 incorrect patches.
'
Initialization Serving requests “Hogging the CPU for 7+ hrs”

[Patch] Check existence of diskd_program during initialization

Figure 3.1. A real-world LC error from Squid [142]. The error caused system hanging
for 7+ hours, and resulted in 48 hours of diagnosis efforts. Later, a patch was added
to check the existence of the configured path during initialization. Unfortunately, the
patched check is still subject to LC errors such as incorrect file types and permissions.

1. Configuration error: 3. Code snippets: /* TaskTracker.java*/

mapred.local.dir // no check at initialization

= directory path w/ wrong owner . .

while (running) {
(mapred.local.dir is not used try { .
until exec. of MapReduce jobs) Infinite loops

access mapred.local.dir

2. Impact cen Throw
The TaskTrackers were trapped } catch(Exception e) { Exception
into infinite loops (“When | ran LOG.log(“Retrying!?”);

jobs on a big cluster, some map } Too late to avoid
tasks never got started.”) } the failure!

User requests: “TaskTracker should check whether it can access
to the local dir at the initialization time, before taking any tasks.”

Figure 3.2. A real-world LC error from MapReduce [59]. When the exception handler
caught the runtime exception induced by the LC error, it was already too late to avoid
the downtime. After this incident, the reporter requested to check the configuration “at
the initialization time.”

Figure 3.2 shows another real-world example in which an LC error failed a large-
scale MapReduce job processing. This LC error was replicated to multiple nodes and
crashed the TaskTrackers on those nodes. Specifically, the configuration error caused a
runtime exception on each node. The TaskTracker caught the exception and restarted

the job. Unfortunately, as the error is persistent in the configuration file, restarting the

54

job failed to get rid of the error but induced infinite loops. Note that when the exception
handler caught the error, it was already too late to avoid downtime (the best choice is to
terminate the jobs).

Preventing above LC-error issues would require software systems to check con-
figurations early during the initialization time, even though the configuration values are
only needed in much later execution or during special circumstances. This is indeed
demonstrated by the developers’ postmortem patches. As revealed in Facebook’s recent
study [155], 42% of the configuration errors that caused high-impact incidents are “obvi-
ous” errors (e.g., typos), indicating the limitations of code review and system testing in
preventing LC errors. These errors might be detected by early checks (only if developers

are willing to and remember to write the checking code).

3.2.2 Limitation of Existing Detection Approaches

Most of the existing detection tools check configuration settings against apriori
correctness rules (known as constraints). However, as large software systems usually
have hundreds to thousands of configuration parameters, it is time-consuming and error-
prone to ask developers to manually specify every single constraint, not to mention that
constraints change with software evolution [192].

So far, only a few automatic configuration-error detection tools have been pro-
posed. Most of them detect errors by learning the “normal’ values from large collections
of configuration settings in the field [115, 131, 189, 190]. While these techniques are ef-
fective in certain scenarios, they have the following limitations, especially when being
applied to cloud and data centers.

First, most of these works require a large collection of independent configura-
tion settings from hundreds of machines. This is a rather strong requirement, as most

cloud and data centers typically propagate the same configurations from one node to

55

all the other nodes. Thereby, the settings from these nodes are not independent, and
thus not useful for “learning”. Second, they do not work well with configurations that
are inherently different from one system to another (e.g., domain names, file paths, IP
addresses) or incorrect settings that fall in normal ranges. They also cannot differentiate
customized settings from erroneous ones. Furthermore, most of these tools target on
specific error types (encoded by their predefined constraint templates) and are hard to
generalize to detect other types of errors. A recent work learns constraints from KB
(Knowledge Base) articles [118]. However, this approach has the same limitations dis-
cussed above. Specially, KB articles are mainly served for postmortem diagnosis and
thus may not cover every single constraint.

There are very few configuration-error detection approaches that do not rely on
constraints specified manually by developers or learned from large collections of inde-
pendent settings (or KB articles). The only exception (to the best of our knowledge)
is CONF_SPELLCHECKER which detects simple errors based on type inference from
source code. While this technique is very practical, it is limited in the types of configu-

ration errors that can be detected, as shown in our experimental evaluation (§3.5).

3.3 Understanding Latent Configuration Errors

To understand the root causes and characteristics of LC errors, we study the prac-
tices of the configuration checking and error detection in six mature, widely-deployed
open-source software systems (c.f., Table 3.3). They cover multiple functionalities and
languages, and include both single-machine and distributed systems.

We focus on configuration parameters used in components related to the sys-
tem’s Reliability, Availability, and Serviceability (known as RAS for short [140]). For
each system considered, we select all the configuration parameters of RAS-related fea-

tures based on the software’s official documents, including error handling, fail-over, data

56

Table 3.3. The systems and the RAS parameters studied in §3.3.

.. # Parameters
Software Description Lang. Total | RAS
HDFS Dist. filesystem Java 164 44
YARN Data processing Java 116 35
HBase Distributed DB Java 125 25
Apache Web server C 97 14
Squid Proxy server C/C++ 216 21
MySQL DB server C++ 462 43

backup, recovery, error logging and notification, etc. The last column of Table 3.3 shows
the number of the studied RAS parameters. Compared with configurations of other sys-
tem components, configurations used by RAS components are more likely to be subject
to LC errors due to their inherently latent nature; moreover, the impact of errors in RAS
configurations is usually more severe.

Note: LC errors are not limited to RAS components. Thus, the reported numbers
may not represent the overall statistics of all the LC errors in the studied systems. In
addition, PCHECK, the tool presented in §3.4, applies to all the configuration parameters;

it does not require manual efforts to select out RAS parameters.

3.3.1 Methodology

We manually inspect the source code related to RAS configuration parameters
of the studied systems. First, for each RAS parameter, we study the code that checks the
parameter setting at the system’s initialization phase? (if any) and the code that later uses
the parameter’s value. Then, we compare these two sets of code (checking vs. usage)
and examine if the initial checking is sufficient to detect configuration errors. If an error
can escape from the initialization phase and break the usage, it is a potential LC error.

We verify each LC error discovered from source code by exposing and observing

2 A system’s initialization phase is defined from its entry point to the point it starts to serve user requests
or workloads.

57

Table 3.4. The number of configuration parameters that do not have any initial checking
code (“missing”) and that only have partial checking and thus cannot detect all potential
errors (“incomplete”).

Deficiency of initial checking # Studied
Software —
Missing | Incomplete parameters

HDFS 41 (93.2%) 3 (6.9%) 44
YARN 29 (82.9%) 5 (14.3%) 35
HBase 18 (72.0%) 5 (2.0%) 25
Apache 4 (28.6%) 2 (14.3%) 14
Squid 9 (42.9%) 4 (19.0%) 21
MySQL 6 (14.0%) 6 (14.0%) 43

the impact of the error. We first inject the errors into the system’s configuration files
and launch the system; then we trigger the manifestation conditions to expose the error
impact. For example, to verify the LC errors in the HDFS auto-failover feature, we start
HDFS with the erroneous fail-over settings, trigger the fail-over procedure by killing the
active NameNode, and examine if the fail-over can succeed. As all the LC errors are

verified through their manifestation, there is no false positive in the reported numbers.

3.3.2 Findings

Finding 1: Many (14.0%-93.2%) of the studied RAS parameters do not have any spe-
cial code for checking the correctness of their settings. Instead, the correctness is veri-
fied (implicitly) when the parameters’ values are actually used in operations.

Table 3.4 shows the number of the studied RAS parameters that rely on the
usage code for verifying correctness, because their initial checks are either missing or
incomplete. Most of the studied RAS parameters in HDFS, YARN, and HBase do not
have any special code for checking the correctness of their settings. These systems adopt

the lazy practice of using configuration values’>—parsing and consuming configuration

3This is a bad but commonly adopted practice in Java and Python programs which rely on libraries
(e.g., java.util.Properties and configparser) to directly retrieve and use configuration val-
ues from configuration files on demand, without systematic early checks.

58

settings only when the values are immediately needed for the operations, without any
systematic configuration checking at the system’s initialization phase.

With such a practice, even a trivial error could result in disastrous impact on the
system’s dependability. Figure 3.3a exemplifies such cases using the new LC errors we
discovered in our study. In HDFS, any LC errors (such as a naive type error) in the auto-
failover configurations could break the fail-over procedure upon the NameNode failures
(as the values are not checked or used early). As a consequence, the entire HDFS service
would become unavailable.

Apache, MySQL, and Squid all apply specific configuration checking proce-
dures at initialization, mainly for checking data types and data ranges. However, for
more complicated parameters, some checking is incomplete. Figure 3.3b shows an-
other new LC error we discovered. In this case, though the initial checking code covers
file existence and types, it misses other constraints such as file permissions. This leaves
Apache subject to permission-related LC errors (which is reported as one common cause
of core-dump failures upon server crash [148]).

As shown by Figure 3.3b, one configuration parameter could have multiple sub-
tle constraints depending on how the system uses its value. For example, a config-
ured file path used by chdir has different constraints from files accessed by open;
even for files accessed by the same open call, different flags (e.g., O_RDONLY versus
O_CREAT) would result in different constraints. Implementing code manually to check

such constraints is tedious and error-prone.

Finding 2: Many (12.0%-38.6%) of the studied RAS configuration parameters are not
used at all during the system’s initialization phase.
Table 3.5 counts the studied configuration parameters that are not used at the

system’s initialization phase, but are consumed directly in late execution (e.g., when

59

Auto-failover configuration parameters: HDFS-2.6.0
dfs.ha.fencing.ssh.connect-timeout
dfs.ha.fencing.ssh.private-key-files

1. LC Errors:
lll-formatted numbers (e.g., typos) for ssh timeout;

Invalid paths for private-key files (e.g., non-existence, permission errors).

2. Initial checks: None.
3. Late execution: Parse the timeout setting to an integer value;
Read the file specified by the key-files setting.
public boolean tryFence(...) {

int timeout = getInt(“dfs.ha.fencing.ssh.connect-timeout”);

session.createSession(); . .
- getString(“dfs.ha.fencing.ssh

} 0‘9// .private-key-files”)

/* hadoop-common/. . . /ha/ :\A;))

SshFenceByTcpPort.java */ fis = new FileInputStream(prvFile);
4. Manifestation:

lllegalArgumentException (when parsing timeout to an integer)

IOException (when reading the key file)

5. Consequence:
HDFS auto-failover fails, and the entire HDFS service becomes unavailable.

(a) Missing initial checking

Error-handling configuration parameter: Apache httpd-2.4.10
CoreDumpDirectory

1. LC Errors:
The running program has no permission to access coredump directory .

2. Initial checks: Check if the path points to an existent directory.

if (apr_stat(&finfo, fname, APR_FINFO_TYPE) != APR_SUCCESS)
return "CoreDumpDirectory does not exist";

if (finfo.filetype != APR_DIR)
return "CoreDumpDirectory is not a directory”;

3. Late execution: Change working directory (chdir) to the path.

static void sig_coredump(int sig) { “CoreDumpDirectory”

apr_filepath_set(ap_coredump_dir, ...);

}

Ce/ i i h) I=
/% server/mpm_unix. c */ 7 a if(chdir(rootpath) != 0)

return errno;
4. Manifestation:

Error code returned by the chdir call
5. Consequence:

Apache httpd cannot switch to the configured directory, and thus fails to
generate the coredump file upon server crashing.

(b) Incomplete initial checking

Figure 3.3. New LC errors discovered in the latest versions of the studied software,
both of which are found to have caused real-world failures [147, 148]. For all these
LC errors, the correctness checking is implicitly done when the parameters’ values are
actually used in operations, which is unfortunately too late to prevent the failures.

60

Table 3.5. The studied configuration parameters whose values are not used at the sys-
tem’s initialization phase.

Software | Not used during initialization | # Studied parameters

HDFS 17 (38.6%) 44
YARN 9 (25.7%) 35
HBase 3 (12.0%) 25
Apache 4 (28.6%) 14
Squid 4 (19.0%) 21
MySQL 6 (13.9%) 43

dealing with failures). Figure 3.3a is such an example. Since all these parameters are
from RAS features, it is natural for their usage to come late on demand.

Some Java programs put the checking or usage code of the parameters in the
class constructors, so that the errors can be exposed when the class objects are created
(specially, this is used as the practice for quickly fixing LC errors [65,66,182]). However,
this may not fundamentally avoid LC errors if the class objects are not created during
the system’s initialization phase.

Note: RAS configurations can be implemented with early usage at the system’s
initialization phase. As shown in Table 3.5, the majority of RAS configurations are
indeed used during initializaiton. For example, all the studied systems choose to open
error-log files at initialization time, rather than waiting until they have to print the error

messages to the log files upon failures.

Finding 3: Resulting from Findings I and 2, 4.7%—-38.6% of the studied RAS parame-
ters do not have any early checks and are thereby subject to LC errors which can cause
severe impact on the system’s dependability.

Table 3.6 shows the number of the RAS configuration parameters that are subject
to LC errors in each studied system. The threats are prevalent: LC errors can reside
in 10+% of the RAS parameters in five out of six systems. As all these LC errors

are discovered in the latest versions, any of them could appear in real deployment and

61

Table 3.6. The number of configuration parameters that are subject to LC errors in the
studied ones. 11 of these parameters have been confirmed/fixed by the developers after
we reported them.

Software # RAS Parameters
Subject to L.C errors | # Studied parameters

HDFS 17 (38.6%) 44

YARN 9 (25.7%) 35

HBase 3 (12.0%) 25

Apache 3 (21.4%) 14

Squid 3 (143%) 21

MySQL 2 (4.7%) 43

Total ‘ 37 (20.3%) ‘ 182

would impair the system’s dependability in a latent fashion. Such prevalence of LC
errors indicates the need for tool support to systematically rule out the threats.

Among the studied systems, HDFS and YARN have a particularly high percent-
age of RAS parameters subject to LC errors, due to their lazy evaluation of configuration
values (refer to Finding 1 for details). HBase applies the same lazy practice as HDFS
and YARN, but has fewer parameters subject to LC errors, because most of its RAS
parameters are used during its initialization. We also find LC errors in the other studied

systems, despite their initial configuration checking efforts.

3.3.3 Implication

In summary, even mature software systems are subject to LC errors due to the de-
ficiency of configuration checking at the initialization time. While relying on developers’
discipline to add more checking code can help, the reality often fails our expectations,
because implementing configuration checking code is tedious and error-prone.

Fortunately, we also observe from the study that except for explicit configuration
checking code, the actual usage of configuration values (which already exists in source
code) can serve as an implicit form of checking, for example, opening a file path that

comes from a configuration value implies a capability check. Such usage-implied check-

62

ing is often more complete and accurate than the explicit checkers written by developers,
because it precisely captures how the configuration values should be used in the actual
program execution. Sadly, in reality these usage-implied checking is rarely leveraged to
detect LC errors, because the usage often comes too late to be useful. A natural ques-
tion regarding the solution to LC errors is: can we automatically generate configuration

checking code from the existing source code that uses configuration values?

3.4 PCHECK Design and Implementation

PCHECK is a tool for enabling early detection of configuration errors for a given
systems program. The objective of PCHECK is to automatically generate configuration
checking code (termed checkers) based on the original program, and invoke them at the
system initialization phase, in order to detect LC errors.

PCHECK tries to generate checkers for every configuration parameter. It is not
specific to RAS configurations and has no assumption on the existence of any LC errors.
The checker of a parameter emulates how the system uses the parameter’s value in the
original execution, and captures anomalies exposed during the emulated execution as
the evidence of configuration errors.

PCHECK is built on top of the Soot [3] and LLVM [5] compiler frameworks
and works for both Java and C system programs. PCHECK works on the intermediate
representations (IR) of the programs (LLVM IR or Soot Jimple). It takes the original
IR as inputs, and outputs the generated checkers, and inserts them into bitcode/bytecode
files (which are then built into native binaries). This may require prepending the build
process by replacing the compiler front-end with Soot or Clang [167].

PCHECK faces three major challenges: (1) How to automatically emulate the
execution that uses configuration values? (2) Since the checkers will be inserted into

the original program and will run in the same address space, how does one make the

63

emulation safe without incurring side effects on the system’s internal state and exter-
nal environment? (3) How to capture anomalies during the emulated execution as the
evidence of configuration errors (the emulation alone cannot directly report errors)?

To address the first challenge, PCHECK extracts the instructions that transform,
propagate, and use the value of every configuration parameter using a static taint track-
ing method. PCHECK then makes a best effort to produce the context (values of de-
pendent variables) necessary for emulating the execution. The extracted instructions,
together with the context, are encapsulated in a checker.

For the second challenge, PCHECK “sandboxes” the auto-generated checkers by
rewriting instructions that would cause side effects. PCHECK avoids modifications to
global variables by copying their values to local ones, and rewrites the instructions that
may have external side effects on the underlying OS.

To address the third challenge, PCHECK leverages system- and language-level
error identifiers (including runtime exceptions, system-call error codes, and abnormal
program exits) to capture the anomalies exposed during the emulation, as the evidence
to report configuration errors.

Figure 3.4 illustrates PCHECK’s checker generation for a MySQL configuration
parameter, 1og_error, which is subject to LC errors [105]. PCHECK extracts the
instructions that use the configuration value and determines the values of the other de-
pendent variables (e.g., mode) as the context. To prevent side effects, it rewrites some
call instruction. It detects errors based on the return value. Lastly, PCHECK inserts the
generated checkers into the system program, and invokes these checkers at the end of
the system initialization phase (annotated by developers). To detect TOCTTOU errors®,

PCHECK supports running checkers periodically in a separate thread.

4A TOCTTOU (Time-Of-Check-To-Time-Of-Use) error occurs after the checking phase and before
the use phase, e.g., inadvertently deleting a file that had been checked early but will be used later on.

64

1. Source code: parameter: “log_error” MySQL 5.7.6
bool flush_error_log() { ‘(/,/’ »
tU Instruction
r?qirect_std_streams(1og_error_file); to execute
¥ /*src/10g.cC*/ aemmemnnee- >
Context
static bool redirect_sfd_streams(char* file) { needed
T??pen_fstream(file, ..., stderr); Context
} /* spc/log_cc */ unneeded

my_bool reopen_fgtream(char* filename, ..., FILE *errstream) {

Q

, errstream);
/*src/log.cc*/

-V

my_freopen(filename, ™

}

FILE *my_freopen(chyr *pafh, char: *mode, FILE *stream) {
result = freopen(path, mo‘de, stream);

} /*mysys/my_fopen.c */

2. Generated checker (simplified for clarity):

bool check_log error() {
char* mode = “a”;
bool cr = cﬁeck_u%il_freopen(log_error_file, mode) ;
if (cr == false) {
fprintf(stderr, "log error is misconfigured.");

}

/* Predefined utility function that checks
return cr;

the arguments based on the call semantics
} without executing the call (§3.2). */

bool check_util_freopen(char *path, char *mode);

Figure 3.4. Illustration of PCHECK’s checker generation (using a real-world LC error
example [105]). PCHECK replaces the original call (freopen) with check utilities
based on access and stat to prevent side effects (§3.4.2). To execute the instructions,
the necessary execution context needs to be produced. Note that we illustrate the checker
using C code for clarity; the actual code is in LLVM IR or Soot Jimple.

Usage. PCHECK requires two inputs from developers: (1) specifications of the
configuration interface to help PCHECK identify the initial program variables that store
configuration values, as the starting points for analysis (§3.4.1); (2) annotations of the
system’s initialization phase where the early checkers will be invoked (§3.4.4).

In addition, PCHECK provides the tuning interface for developers to select and

remove any generated checkers, as per their preference and criteria (e.g., after standard

65

software testing of the enhanced system programs). Similarly, PCHECK provides an op-
erational interface that allows operators to enable/disable the invocation of the checkers

of any specific parameters in operation.

3.4.1 Emulating Execution

To emulate the execution that uses a configuration parameter, PCHECK first iden-
tifies instructions that load the parameter’s value into program variables (§3.4.1). Start-
ing from there, PCHECK performs forward static taint analysis to extract all the instruc-
tions whose execution uses the parameter’s value, and hence are the candidates to be
included in the checkers (§3.4.1). It then analyzes backwards to figure out the values
of dependent variables in these instructions, as the execution context (§3.4.1). Finally,
PCHECK composes checkers using the above instructions and their context (§3.4.1).

Note that the emulation does not need to include the conditions under which the
configurations are used. Instead, it focuses on executing the instructions that consume
the configuration values—the goal is to check if using the configuration would cause
any anomalies when its value is needed. With this design, PCHECK is able to effectively
handle large, non-deterministic software programs, without the need to inject/simulate

hard-to-trigger error conditions under which LC errors are exposed.
Identifying Starting Points

As the configuration-consuming execution always starts from loading the config-
uration value, PCHECK needs to identify the program variables that initially store the
value of each parameter, as the starting points. PCHECK adopts the common practices
described in §2.3.2 (Chapter 2) to obtain the mapping from configuration parameters

to the corresponding variables. As a recap, the basic idea is to let developers specify

66

the interface’ for retrieving configuration values, and then automatically identify pro-
gram variables that load the values based on the interface. As discussed in §2.3.2, most
mature systems have uniform configuration interfaces for the ease of code maintenance.
For instance, to work with HDFS, PCHECK only needs to know the configuration get-
ter functions (e.g., get Int and get St ring in Figure 3.3a) declared in a single Java
class; identifying them only requires several lines of specifications using regular expres-
sions. In general, specifying interface requires little specification efforts, compared to
annotating every single variable for a large number of configuration parameters. In the

evaluation, the specifications needed for most systems are less than 10 lines (§3.5).
Extracting Instructions Using Configurations

For each configuration parameter, PCHECK extracts the instructions that propa-
gate, transform, and use the parameter’s value using a static taint tracking method. For
a given parameter, the initial taints are the program variables that store the parameter’s
value (§3.4.1). The taints are propagated via data-flow dependencies (including assign-
ments, type casts, and arithmetic/string operations), but not through control-flow depen-
dencies to avoid overtainting [144]. All the instructions containing taints are extracted,
and will be encapsulated in a checker.

Note that one parameter could be used in multiple execution paths, and thus have
multiple checkers. We explain how multiple checkers are aggregated in §3.4.1.

Ordinarily, the extracted instructions from data-flow analysis do not include
branches. However, if a tainted instruction is used as a branch condition whose branch
body encloses other tainted instructions, PCHECK performs additional control-flow anal-
ysis to retain the control dependency of these instructions. One pattern is using a con-

figuration value p after a null-pointer check, in the form of, if (p != NULL) { use

5The interface could be APIs, data structures, or parsing functions (c.f., §2.3.2). As discussed in
§2.3.2, only three types of interfaces are commonly used to store/retrieve configurations.

67

p; }. PCHECK recovers the conditional branch and ensures that if p’s value is NULL,
the instructions using p inside the branch would not be reached. Moreover, PCHECK
checks if a tainted branch condition leads to abnormal program states, for which it in-
serts error-reporting instructions (see §3.4.3).

The taint tracking is inter-procedural, context sensitive, and field sensitive. Inter-
procedure is necessary because configuration values are commonly passed through pro-
cedure calls, as illustrated in Figure 3.4. We adopt a summary-based inter-procedural
analysis, and assemble the execution based on arguments/returns. PCHECK maintains
the call sites; thus it naturally enables context sensitivity which helps produce context
by backtracking from callees to callers (c.f., §3.4.1). Field sensitivity is needed as con-
figuration values could be stored in data structures or as class fields. PCHECK scales
well for real-world software systems, as configuration-related instructions form a small
part of the entire code base. We do not explicitly perform alias analysis (though it is

easy to integrate), as configuration variables are seldom aliased.
Producing Execution Context

Some of the extracted instructions that use configuration variables may not be
directly executable, if they contain variables that are not defined within the extracted
instruction set. To execute such instructions, PCHECK needs to determine the values
of these undefined variables (which we refer to as “dependent variables”) in order to
produce self-contained context.

PCHECK will include a variable and the corresponding instructions in the emu-
lated execution, only when this variable’s value stems from configuration values (e.g.,
path in Figure 3.4) or can be statically determined along the data-flow paths of the
configuration value (e.g., mode and st ream in Figure 3.4). PCHECK does not include

dependent variables whose values come from indeterminate global variables, external

68

inputs (from I/O or network operations such as read and recv), values defined out of
the scope of the starting point, etc. For such dependent variables, PCHECK removes the
instruction that uses them as operands, together with the succeeding instructions. Those
variables’ values may not be available during the initialization phase of the system exe-
cution; using them would lead to unexpected results.

To produce the context, PCHECK backtracks each undefined dependent variable
first intra-procedurally and then inter-procedurally (to handle the arguments of proce-
dure calls). The backtracking starts from the instruction that uses the variable as its
operand, and stops until either PCHECK successfully determines the value of the vari-
able or gives up (the value is indeterminate). In Figure 3.4, PCHECK backtracks mode
used by the tainted instruction and successfully obtains its value "a".

PCHECK only attempts to produce the minimal context necessary to emulate
execution for the purpose of checking. As an optimization, PCHECK is aware of how
certain types of instructions will be rewritten in later transformations (e.g., for side-
effect prevention, §3.4.2). In Figure 3.4’s example, PCHECK knows how the f reopen
call will be rewritten later. Therefore, it only produces the context of mode which is
needed to check the file access; the other dependent variable st ream is ignored as it is
not needed for the checking.

Sometimes, the dependent variables come from other configuration parameters.
PCHECK can capture the relationships among multiple configurations, e.g., one param-

eter’s value has to be larger or smaller than another’s.
Encapsulation

For each configuration parameter, PCHECK encapsulates the instructions that
consume configuration values together with their context into a checker, in the form of

a function. PCHECK clones the original instructions and their operands. For local vari-

69

ables used as operands, PCHECK clones a new local variable and replaces the original
variable with the new one. If the instructions change global variables, PCHECK gener-
ates a corresponding local variable and copies the global variable’s value to the local
one (to avoid changing the global program state). When it involves procedure calls,

PCHECK inlines the callees.

Handling multiple execution paths. For configuration parameters whose val-
ues are used in multiple distinct execution paths, PCHECK generates multiple checkers
and aggregates their results. The configuration value is considered erroneous if one of
these checkers complains. PCHECK needs to pay attention to potential path explosion
to avoid generating too many checkers. Fortunately, in our experience, configuration
values are usually used in a simple and straightforward way, with only a small number
of different execution paths to emulate.® This makes the PCHECK approach feasible.

Moreover, PCHECK merges two checkers if they are equivalent or if one is equiv-
alent to a subset of the other. PCHECK does this by canonicalizing and comparing the
instructions in the checkers’ function bodies. Additionally, PCHECK merges checkers
which start with the same transformation instruction sequence by reusing the intermedi-
ate transformation results.

Note that the checkers with no error identifiers (§3.4.3) or considered redundant
(§3.4.4) will be abandoned. As shown in §3.5.4, the number of generated checkers are

well bounded, and executing them incurs little overhead.

3.4.2 Preventing Side Effects

PCHECK ensures that the generated checkers are free of side effects—running

the checkers does not change the internal program state beyond the checker function

®The emulated execution paths are not the original execution paths (they only include the
configuration-related instructions).

70

itself, or the external system environment (e.g., filesystems and OSes). Therefore,
PCHECK cannot blindly execute the original instructions. For example, if the checker
contains instructions that call exec, running the checker would destruct the current pro-
cess image. Similarly, creating or deleting files is not acceptable, as the filesystem state
before and after checking would be inconsistent.

Internal side effects are prevented by design. PCHECK ensures that each checker
only has local effects. As discussed in §3.4.1, PCHECK avoids modifying global vari-
ables in the checker function; instead, it copies global variable values to local variables
and uses the local ones instead. The checker does not manipulate pointers if the pointed
values are indeterminate.

External side effects are mainly derived from certain system and library calls
that interact with the external environment (e.g., filesystems and OS states). In order
to preserve the checking effectiveness without incurring external side effects, PCHECK
rewrites the original call instructions to redirect the calls to predefined check utilities.
A check utility models a specific system or library call based on the call semantics. It
validates the arguments of the call, but does not actually execute the call. PCHECK
implements check utilities for standard APIs and data structures (including system calls,
1libc functions for C, and Java core packages defined in SDK). The check utilities are
implemented as libraries that are either statically linked into the system’s bitcode (for C
programs), or included in the system’s classpath (for Java programs). In Figure 3.4,
the check utility of freopen checks the arguments of the call using access and
stat which are free of side effects (the original f reopen call will close the file stream
specified by the third argument).

PCHECK skips instructions that read/write file content or send/recv net-
work packets, in order to stay away from external side effects and heavy checking over-

head. Instead, PCHECK performs metadata checks for files and reachability checks for

71

network addresses. This helps the generated checkers be safe and efficient, while still
being able to catch a majority of real-world LC errors. For any library calls that are not
defined in PCHECK or do not have known side effects (e.g., some library calls would in-
voke external programs/commands), PCHECK defensively removes the call instructions
(together with the succeeding instructions) to avoid unexpected effects.

One alternative to preventing external side effect is to running the checkers inside
a sandbox or even a virtual machine at the system initialization phase. This may save the
efforts of implementing the check utilies and rewriting system/library call instructions.
However, such approach would impair the usability of PCHECK, because it requires

additional setups from operators in order to run the PCHECK-enhanced program.

3.4.3 Capturing Anomalies

As the checker emulates the execution that uses the configuration value, anoma-
lies exposed during execution indicate that the value contains errors—the same problem
that would occur during real execution. In this case, the checker reports errors and
pinpoints the parameter.

PCHECK captures anomalies based on the following three types of error iden-
tifiers: (1) runtime exceptions that disrupt the emulated execution (for Java programs);
(2) error code returned by system and library calls (for C programs); and (3) abnormal
program termination and error logging that indicate abnormal program states.

For Java programs, PCHECK captures the runtime anomalies based on Java’s
Exception interface, the language’s uniform mechanism for capturing error events.
PCHECK places the body of the checker function in a t ry/cat ch block. The abnormal
execution would throw Except ion objects and fall into the cat ch block. In this case,
the checker reports errors and prints the stack traces.

C programs do not have the uniform error interfaces. Thus, PCHECK leverages

72

the error identifiers defined by specific system-/library-call semantics, i.e., the return
values and errno. For example, if the access call returns -1, it means the call
failed when accessing the file (with the reason being encoded in errno). In PCHECK,
we predefine the error identifiers for commonly-used system and 1ibc calls to decide
whether a call succeeded or failed. If the call fails, the checker reports errors.

In addition to the anomalies exposed by system and library APIs, a program
usually contains hints of abnormal program states. Such hints are instructions such as
exit, abort, throw, false assertion, error logging, etc. PCHECK treats these hints
as one type of anomalies. If an instruction is post-dominated by any anomaly hints, the
instruction itself indicates an abnormal state of execution. Thus, PCHECK reports con-
figuration errors when the checker emulates such error instructions. PCHECK records
these hints during the code analysis in §3.4.1, and inserts error-reporting instructions
into the checker at the corresponding locations.

PCHECK abandons the checkers that do not contain any of the three types of
error identifiers discussed above. In other words, running such checkers cannot expose

any explicit anomalies (no evidence of configuration errors).

3.4.4 Invoking Early Checkers

Once the checkers are generated, PCHECK inserts call instructions to invoke the
checkers at the program locations specified by developers. The expected location is at
the end of the system initialization phase to make the checkers the last defense against
LC errors. Figure 3.5 shows the locations annotated for PCHECK to invoke the auto-
generated checkers for Squid and HDFS. For server systems like Squid, the checkers
should be invoked before the server starts to listen and wait for client requests. For
distributed systems like HDFS, the checkers should be invoked before the system starts

to connect and join the cluster. As all the evaluated systems fall in these two patterns,

73

int SquidMain(...) { Squid 3.4.10
mainParseOptions(...);
Initialization parseConfigFile(...);

mainInitialize();
Invoke T
checkers mainLoop.run();

} /*src/main.cc */

public static void main(...) { HDFS 2.6.0

Initialization '{: NameNode namenode = createNameNode();

Invoke

checkers namenode.join(); /*hadoop-hdfs/.../
} NameNode. java */

Figure 3.5. Locations to invoke the checkers in Squid and HDFS NameNode. The auto-
generated checkers are expected to be invoked at the end of the initialization phase.

we believe that specifying the invocation locations is a simple practice for developers.

Some C programs may change user/group identities. Typically, the program
starts as root and then switches to unprivileged users/groups (e.g., nobody) at the
end of initialization before handling user requests. In Figure 3.5, the switch is performed
insidemainInitialize. As the checkers are invoked in the end of the initialization,
the checking results are not affected by user/group switches.

To capture the TOCTTOU errors, PCHECK also supports running the generated
checkers periodically in a separate thread. Periodical checking is particularly useful for
catching configuration errors that occur after the initial checking (e.g., due to environ-

ment changes such as remote host failures and inadvertent file deletion).

Avoiding redundant checking. PCHECK abandons the redundant checkers
which are constructed from instructions that would be executed before reaching the
invocation location—any configuration errors reported by such checkers should have
already been detected by the system’s built-in checks, or have been exposed when the

configuration value is used, before the checker is called.

74

Creating standalone checking programs. Another option to invoking early
checkers is to create a standalone checking program comprised of the checkers, and run
it when the configuration file changes. This approach eliminates the need to deal with
internal side effect; on the other hand, the checking program is still prohibited to have
external side effect. Note that the generated checkers start from the instructions that
load configuration values (§3.4.1); therefore, the checking program needs to include the
procedures that parse configuration files and store configuration values. This is straight-
forward for the software systems with modularized parsing procedures’, but could be
difficult if the parsing procedures cannot be easily decoupled from the initialization

phase (the initialization may have external side effects).

3.5 Experimental Evaluation

3.5.1 Methodology

We first evaluate the effectiveness of PCHECK using the 37 new LC errors dis-
covered in our study. As discussed in §3.3, all these new LC errors are from the latest
versions of the systems; any of them can impair the corresponding RAS features such
as fail-over and error handling.

As the design of PCHECK is inspired by the above LC errors, our evaluation
contains two more sets of benchmarks to evaluate how PCHECK works beyond these
errors. First, we evaluate PCHECK on a distinct set of 21 real-world LC errors that
caused system failures in the past. These LC errors are collected from the datasets in
prior studies related to configurations [18,56,175,185,190]; all of them were introduced
by real operators and caused real-world failures. Some of these cases have different code

patterns from the ones we discovered in §3.3. Table 3.7 lists the number of these LC

"We implement this approach for HDFS, YARN, and HBase which use modularized getter functions
to parse/store configuration values.

75

Table 3.7. The number of LC error cases used in the evaluation, and the setup efforts
(the lines of specifications for identifying starting points, c.f., §3.4.1 and annotations of
invocation location, c.f., §3.4.4).

Software ‘ Historical ‘ New ‘ Setup effort
HDFS 7 17 6
YARN 6 9 7
HBase 3 3 6
Apache 2 3 6
Squid 2 3 4
MySQL 1 2 31
Total \ 21 \ 37 \ N/A

errors in each system. Furthermore, we apply PCHECK to 830 configuration files of the
studied systems (except Squid) collected from the official mailing lists of these systems
and online technical forums such as ServerFault and StackOverflow [1]. This simulates
the experience of using PCHECK on real-world configuration files (§3.5.2). Moreover,
it helps measure the false positive rate of the checking results (§3.5.6).

Note that we evaluate PCHECK upon all types of LC errors, instead of any spe-
cific error types. Therefore, the evaluation results indicate the checking effectiveness of
PCHECK in terms of all possible LC errors. Table 3.8 categorizes and exemplifies the
LC errors used in the evaluation based on their types.

Also, the evaluation does not use synthetic errors generated by mutation or
fuzzing tools (e.g., ConfErr [83]). Most of the synthetic errors are not LC errors—they
are manifested or detected by the system’s built-in checks at the system’s initialization
time. Thus, using such errors would make the results less meaningful to LC errors.

For each system, we apply PCHECK to generate the early checkers and insert
them in the system’s program. Table 3.7 lists the setup efforts for the each system
evaluated, measured by the lines of specifications for identifying the start points (c.f.,
§3.4.1) and annotations of the invocation locations (c.f., §3.4.4). Then, we apply the

auto-generated checkers to the configuration files that contain these LC errors. We eval-

76

Table 3.8. Types and examples of LC errors used in the evaluation.

Type 1: Type and format errors (14 cases)

Ex. 1: Il format settings, e.g., with untrimmed space [61, 63];

Ex. 2: Invalid type settings, e.g., 0.05 for integer [60];

Type 2: Undefined options or ranges (6 cases)

Ex. 1: Deprecated compression codec class set by operators [62];
Ex. 2: Unsupported HTTP protocol settings [64];

Type 3: Incorrect file-path settings (19 cases)

Ex. 1: Non-existent paths which will be opened or executed [142];
Ex. 2: Wrong file types, e.g., set regular files for directories [106];
Type 4: Other erroneous settings (19 cases)

Ex. 1: Negative values used by sleep and thread join [65,182];
Ex. 2: Invalid mail program [143] and unreachable emails [143];

uate the effectiveness of PCHECK based on how many of the real-world LC errors can
be reported by the auto-generated checkers.

We compare the checking results of PCHECK with CONF_SPELLCHECKER®, a
state-of-the-art static configuration checking tool built on top of automatic type infer-
ence of configuration values [124]. For each defined type, CONF_SPELLCHECKER im-
plements corresponding checking functions which are invoked to check the validity of

the configuration settings.

3.5.2 Detecting Real-world LC Errors

PCHECK detects 70+% of both historical and new LC errors (as shown in Ta-
ble 3.9), preventing the latent manifestation and resultant system damage imposed by
these errors. The results are promising, especially considering that we evaluate PCHECK
using all types of configuration errors instead of any specific type. Indeed, PCHECK is
by design generic to any types of configuration errors that can be exposed through ex-
ecution emulation. Many of these LC errors cannot be detected by the state-of-the-art

detection tools, as discussed below and in §3.5.3.

8https://github.com/roterdam/jchord/tree/master/conf_spellchecker

https://github.com/roterdam/jchord/tree/master/conf_spellchecker

77

Table 3.9. The number (percentage) of the LC errors detected by the early check-
ers generated by PCHECK. PCHECK detects 7 (33.3%) and 11 (29.7%) more LC
errors among the historical and new LC-error benchmarks respectively, compared to
CONF_SPELLCHECKER, a state-of-the-art configuration-error detection tool.

(%) LC errors detected
Types of LC errors Historical | New
Type and format error 1/1 (100.0%) 13/13 (100.0%)
Undefined option/range 2/2 (100.0%) 4/4 (100.0%)
Incorrect file/dir path 9/12 (75.0%) 5/7 (71.4%)
Other erroneous setting 3/6 (50.0%) 7/13 (53.8%)
Total ‘ 15/21 (71.4%) ‘ 29/37 (78.4%)

Among the different types of LC errors, PCHECK detects all the errors violat-
ing the types/formats and options/ranges constraints. These two types of errors usually
go through straightforward code patterns and do not have dependencies with the sys-
tem’s runtime states. For example, most type/format errors in HDFS and YARN are
manifested when these systems read and parse the erroneous settings through the get-
ter functions. As the auto-generated checkers invoke the getter instructions, it triggers
exceptions and detects the errors.

PCHECK detects the majority of LC errors that violate file-related constraints
(including special files such as directories and executables). We observe that the ma-
jority of the file parameters fall into recognized APIs, such as open, fopen, and
FileInputStream. The undetected file-related LC errors are mainly caused by (1)
unknown external usage and (2) indeterminate context. The former prevents the gen-
erated checkers from being executed, and the latter stops generation of the checkers.
For example, some errors reside in parameters whose values are concatenated into shell
command strings, used as the argument of system () (to invoke /bin/sh to execute
the command). As PCHECK has no knowledge of any shell commands, it removes the
system () call because the side effects are unknown. The other undetected errors are

in directories or file prefixes which are merged with dynamic contents from user re-

78

quests which cannot be obtained statically; thereby, the corresponding checkers cannot
be generated. These two causes (unknown external usage and indeterminate context)
also account for the undetected errors in the “other” category.

In general, PCHECK is effective in checking errors that are manifested through
execution anomalies with error identifiers defined in §3.4.3, such as those failing at
system/library calls or throwing exceptions in the controlled branch. Whereas, it is hard
for PCHECK to detect errors defined by application-specific semantics, such as email
addresses, internal error code, etc.

We apply CONF_SPELLCHECKER on the same sets of LC errors. Compared with
PCHECK, CONF_SPELLCHECKER detects 7 (33.3%) and 11 (29.7%) less LC errors in
the historical and new error benchmarks, respectively. The main reason for PCHECK’s
outperformance is that the execution emulation can achieve fine-grained checking to-
wards high fidelity to the original execution. For example, CONF_SPELLCHECKER can
only infer the type of a configuration setting to be a “File”. However, it does not under-
stand how the system accesses the file in the execution. Thus, it reports errors if and only
if “the file is neither readable nor writable”. This heuristic would miss LC errors such
as read-only files to be written by the system. Furthermore, type alone only describes
a subset of constraints. CONF_SPELLCHECKER misses the LC errors that violate other

types of constraints such as data ranges.

3.5.3 Checking Real-world Configuration Files

We apply the checkers generated by PCHECK to 830 real-world configuration
files. PCHECK reports 282 true configuration errors and three false alarms (discussed
in §3.5.6). As shown in Table 3.10, many (37.5%-87.8%) of the reported configura-
tion errors can only be detected by considering the system’s native execution environ-

ment. These configuration settings are valid in terms of format and syntax (in fact,

79

Table 3.10. Configuration errors detected by applying the checkers on real-world con-
figuration files. Many of the errors can only be detected by considering the system’s
native environment (§3.5.3).

(%) detected configuration errors
Software # config files All | Environment specific
HDFS 245 40 15 (37.5%)
YARN 81 49 32 (65.3%)
HBase 405 139 95 (68.3%)
Apache 65 41 36 (87.8%)
MySQL 34 13 10 (76.9%)

they are likely to be correct in the original hosts). However, they are erroneous when
used on the current system because the values violate environment constraints such as
undefined environment variables, non-existent file paths, unreachable IP addresses, etc.
Since PCHECK emulates the execution that uses the configuration values on the sys-
tem’s native execution environment, it naturally detects these errors. On the other hand,
such configuration errors are not likely to be detected by traditional detection meth-
ods [115,118,131,165,189] that treat configuration values as string literals, and thus are

agnostic to the execution environment.

3.5.4 Checker Generation

Table 3.11 shows the number of configuration parameters that have checkers
generated by PCHECK and the total number of generated checkers for the evaluated
systems (multiple checkers could be generated for a parameter).

PCHECK generates checkers for every recognized parameter of HDFS, YARN,
and HBase. Each emulated execution in these systems starts from the call instructions
of getter functions, so the checkers are able to capture all the errors starting from the
parsing phase to the usage phase. For Apache, MySQL and Squid, PCHECK generates
fewer checkers. As these systems parse and assign parameter settings to corresponding

program variables at the initialization stage, PCHECK bypasses the parsing phase and

80

Table 3.11. The number of parameters with checkers generated by PCHECK and the
total number of generated checkers (each represents a distinct parameter usage scenario).

Software ‘ # checked parameters (# checkers) ‘ All parameters
HDFS 164 (252) 164
YARN 116 (200) 116
HBase 125 (201) 125
Apache 18 41) 97
Squid 45 (74) 216
MySQL 32 (51) 462

directly starts from the variables that store the configuration value. Since a large number
of the Boolean and numeric variables are only used for branch control with no error
identifier (both branches are valid), PCHECK does not generate checkers for them (c.f.,
§3.4.3). Moreover, many of the variables are only used at the initialization phase before
reaching the invocation location, so their checkers are considered redundant and thus
are abandoned (c.f., §3.4.4).

The other issues that prevent checker generation include dependencies on the
system’s runtime states and uses of customized APIs (e.g., Apache uses customized
APR string operations which heavily rely on predefined memory pools). Fortunately,
as shown in §3.5.2, the majority of the LC errors have standard code patterns and can
be detected using PCHECK’s approach. Generating checkers for the rest of the errors
require more advanced analysis and program-specific semantics.

Also, we can see that the total number of checkers are well bounded, which is

attributable to the execution merging (§3.4.1) and redundancy elimination (§3.4.4).

3.5.5 Checking Overhead

The checkers are only invoked at the initialization phase or run in a separate
thread, thus they have little impact on the systems’ runtime performance. We measure

their overhead to be the time needed to execute these checkers, by inserting time coun-

81

Table 3.12. Checking overhead (time needed to run the auto-generated checkers).

Software ‘ Time for running the checkers (millisec.)

HDFS [NameNode] 408 [DataNode] 311
YARN [ResourceMgr] 243 [NodeMgr] 486
HBase [HMaster] 780 [RegionServer] 777
Apache [httpd] 0.6 _ —
Squid [squid] 93.8 _ —
MySQL [mysqld] 1.7 _ —

ters before and after invoking all the checkers. Table 3.12 shows the time in milliseconds
(ms) to run the checkers on a 4-core, 2.50GHz processor connected to a local network
(for distributed systems like HDFS, YARN, and HBase, the peer nodes are located in
the same local network). The checking overhead for Apache and MySQL is negligible
(Iess than 5ms); Squid needs around 100ms because it has a parameter that points to
public IP addresses (announce_host). The overhead for the three Java programs is
less than a second. The main portion of the time is spent on network- and file-related
checking. Since PCHECK only performs lightweight checks (e.g., metadata checks and
reachability checks), the overhead is small. Note that the checkers are currently exe-
cuted sequentially. It is straightforward to invoke multiple checkers in parallel to reduce

overhead, as all the checkers are independent.

3.5.6 False Positives

We measure false positives by applying the checkers generated by PCHECK to
both the default configuration values of the evaluated systems and the 830 real-world
configuration files, and examine whether or not our checkers would falsely report errors.
We also manually inspect the code of the generated checkers in LLVM IR and Jimple to
look for potential incorrectness.

Among all the configuration parameters in the evaluated systems, only three

of them have false alarms reported by the auto-generated checkers: two from YARN

82

and one from HBase. All these false positives are caused by the checkers incorrectly
skipping conditional instructions affected by the configuration value (§3.4.1), due to
unsound static analysis that misses control dependencies. This results in emulating the
execution that should never happen in reality—certainly, the anomalies exposed in such
execution are unreal. The overall false positive rates are low. YARN has the most
configuration parameters with false checkers, with the false positive rate of 1.7% (2
over 116 parameters). Note that checkers with false positives can be removed by the

developers or disabled by the operators in the field (c.f., §3.4: Usage).

3.6 Limitations

No tool is perfect. PCHECK is no exception. Like many other detection tools
for bugs and misconfigurations, PCHECK is neither sound nor complete for its checking
scope and the design trade-offs.

PCHECK targets on the scope of configuration errors manifested through explicit,
recognizable instruction-level anomalies (c.f., §3.4.3). It cannot detect legal misconfigu-
rations [185] that have valid values but do not deliver the intended system behavior. The
common legal misconfigurations include inappropriate configuration settings that vio-
late resource constraints or performance requirements (e.g., insufficient heap size and
too small timeout). Such misconfigurations are notoriously hard to detect and are often
manifested in a latent fashion as well, such as runtime out-of-memory errors [49] (re-
sources are not used up immediately). However, detecting resource- and performance-
related misconfigurations would need dynamic information regarding resource usage
and performance monitoring [68, 161], which is beyond the static methods of PCHECK.

In addition, PCHECK cannot emulate the execution that depends on runtime in-
puts/workloads, or does not have statically determinate context in the program code

(c.f., §3.4.1). Thus, it would miss the configuration errors that are only manifested dur-

83

ing such execution. Nevertheless, indeterminate context (e.g., those derived from inputs
and workloads) can potentially be modeled with representative values, which could sig-
nificantly improve the capability of checker generation.

One design choice we make is to trade soundness for safety and efficiency—
PCHECK aims to detect common LC errors without incurring side effects or much over-
head. For example, PCHECK does not look into file contents but only checks if the
file can be accessed as expected. Similarly, PCHECK only checks the reachability of a
configured IP address or host instead of connecting and sending packets to the remote
host. It is possible that certain sophisticated errors can escape from PCHECK (e.g., the
configured file is corrupted and thus has wrong contents). As the first step, we target on
basic, common errors, as they already account for a large number of real-world LC er-
rors [97,155,185]. Efficiently detecting sophisticated errors may require not only deeper

analysis but also application semantics.

3.7 Summary

This chapter advocates early detection of configuration errors to minimize failure
damage, especially in cloud and data-center systems. Despite all the efforts of validation,
review, and testing, configuration errors (even those obvious errors) still cause many
high-impact incidents of today’s Internet and cloud systems. We believe that this is
partly due to the lack of automatic solutions for cloud and data-center systems to detect
and defend against configuration errors (the existing solutions are hard to be applied, due
to their strong reliance on datasets). We envisage that PCHECK is the first step towards
a generic and systematic solution to detect configuration errors. PCHECK does not
require collecting any external datasets and is not specific to any specific rules. It detects
configuration errors based on how the system actually uses the configuration values.

With PCHECK, we demonstrate that such detection method can effectively detect real-

84

world LC errors, with little runtime overhead and setup effort. The original paper [176]
has been used to support proactive configuration checking in existing software systems.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation, 2016.
Xu, Tianyin; Jin, Xinxin; Huang, Peng; Zhou, Yuanyuan; Lu, Shan; Jin, Long; Pasu-
pathy, Shankar. The dissertation author was the primary investigator and author of this

paper.

Chapter 4
Simplicity-oriented Design

9

“Everything should be made as simple as possible, but no simpler.’

—Albert Einstein

While Chapter 2 and 3 provide practical solutions that enable existing software
systems to defend against configuration errors, the ultimate solution is re-thinking and
re-designing configuration to prevent (or at least significantly reduce) potential miscon-
figurations in the first place. One fundamental reason for today’s prevalent configuration
issues (including misconfigurations) is the tremendous and still increasing complexity of
configuration, as revealed by the previous studies [27, 38, 134, 180] (we will discuss the
configuration complexity special for systems software in §4.2). This chapter explores
the feasibility and efficacy of simplifying configuration design, as an attempt to make

software configuration more usable and less error-prone.

4.1 Introduction

The key towards usable configuration is to understand the difficulties and the re-
sulting mistakes/errors from the perspective of users!—human operators, as many mis-

configurations are essentially introduced by human mistakes and errors [178]. Therefore,

'In this chapter, we sometimes use “user” instead of “operators” to emphasize the perspective of
treating configuration as an interface and treating operators as the users.

85

86

before jumping onto the simplification track of configurations, we strive to understand
a fundamental question: “Do operators really need so many configuration ‘knobs’, and
how do they configure the systems in the field? The chapter starts with a quantitative
study of real-world configuration usage characteristics based on the configuration set-
tings collected from many thousands of real operators of a commercial system from a
major storage company in the U.S., and also the settings of hundreds of operators of two
widely-used open-source server software projects. The study also includes the analysis
of 620 user-reported configuration issues (from both the commercial and open-source
software projects), in order to understand the configuration problems caused by the com-
plexity of current configuration design.

The study provides quantitative evidence that we (software developers) are pro-
viding more configurations than what the majority of operators need or know how to
set. Many configuration knobs are neither necessary nor worthwhile—they make con-
figuration more complex for common operators, but produce little benefit as flexibility
desired by operators. Unfortunately, complexity does come with a cost. It prevents
operators from understanding every configuration thoroughly and examining its settings
carefully. For example, a significant percentage of user-reported configuration problems
are about their difficulties in finding or setting the correct configurations to achieve the
desired system behavior; also, many operators’ incorrectly keeping the default values
for parameters that need to be set based on the runtime environments.

These findings drive us to tackle the over-designed configuration complexity.
First, we propose a number of concrete, practical design guidelines which could signifi-
cantly reduce the configuration space of existing systems software, thus simplifying the
inherent complexity of configuration design. We show that these guidelines incur little
impact on the flexibility desired by the operators. Second, we measure the efficacy of

existing configuration navigation solutions, including COX [2] (our solution that helps

87

operators find the right knobs by expressing intent, based on natural language process-
ing). Based on this, we provide practices for building tool support to help operators

navigate the vast configuration space in existing software systems.

4.2 Background

One fundamental reason for today’s prevalent configuration issues is the ever-
increasing complexity of configuration, especially in systems software. This is reflected
by the large and still increasing number of configuration parameters (“knobs”), as well
as various configuration constraints and consistency requirements [85, 107, 124, 179]
(known as complexity of interaction and tightness of coupling in human error stud-
ies [117,127]). For example, MySQL 5.6 database server has 461 configuration pa-
rameters; 216 of them are not with simple data types (e.g., Boolean or enumerative) but
rather more complex ones. These parameters control different buffer sizes, timeouts,
resource limits, etc. Setting them correctly requires domain-specific knowledge and ex-
perience. Other server software is similar. For example, Apache HTTP server 2.4 has
more than 550 parameters across all the modules. Moreover, many of these parame-
ters have dependencies and correlations [126, 190], which further worsens the situation.
Such high complexity level makes system configuration a daunting and error-prone task,
with prevalent misconfigurations being the after-effects.

Figure 4.1 depicts how the number of configuration parameters increases with
software evolution of one commercial storage system? and three popular open-source
server software projects. Take Hadoop MapReduce as an example, its first release in
Apr. 2006 had only 17 parameters, but the release in Oct. 2013 already had 173, an
increase of more than nine times. In accordance with this trend, the configuration space

will continue to increase. The situation is further worsened by the growing number of

2We are required to keep the company and the products anonymous.

88

700 : : : : 500 : : : x
@ A Storage-A A 2
15 600 & 8 400
2 500 2
a1 <
5 400 1 & 3004
o o
S 3001 1 B 2004
))
2 2001 { 8
g £ 100 |
2 100 1 2
0 : : : 0 x : :
7/2006 7/2008 7/2010 7/2012 7/2014 1/1999 1/2003 1/2007 1/20111/2014
Release time Release time
600 200 : : :
£ 500 . Hadoop
2 ko 1.0.0
£ 4001 g
s £ 1204
g g
£ 300 s
S o 80- A
_“;j 2004 E
g g 404 g |
2 100+ £ —e— MapReduce
0 0 —=— HDFS
171998 1/2002 1/2006 1/2010 1/2014 1/2006 1/2008 1/2010 1/2012 1/2014
Release time Release time

Figure 4.1. The increasing number of configuration parameters with software evolution.
Storage-A is a commercial storage system from a major storage company in the U.S.

machines that replicate multiple software instances in data centers, and the increasing
cost of human resources for managing them.

Typically, a configuration parameter is introduced when the developers want to
provide flexibility for operators. As one type of system interfaces, configuration needs
to be balanced between flexibility and simplicity. This raises the question if it is worth
satisfying a few advanced operators or even imaginary operators, while confusing the
majority of ordinary operators. Often, we (software developers) seem to be biased to-
wards “advanced” operators instead of focusing on the ease of use. Figure 4.2 shows
an example where the Hadoop developers exposed a parameter in case some advanced
operators want it. However, since the parameter is specific to the internal system imple-

mentation, few operator has set it.

89

Configuration Parameter: dfs.namenode.tolerate.heartbeat.multiplier

Developers' Discussion:
"Since we are not sure what is a good choice, how about making it
configurable ?"

"We should add a configuration option for it. Even if it's unlikely to
change, if someone does want to change it they'll thank us that they
don't have to change the code/recompile to do so."

Real-World Usage:
- No usage found by searching the entire mailing lists and Google.
- No usage reported in a survey of 15 Hadoop users in UCSD.

Figure 4.2. A real-world example of less useful configuration parameters from HDFS.
This parameter is specific to internal system implementation and seldom set by any op-
erator. Such parameters should not be exposed to operators (at least not to the common
operators).

Table 4.1. The average number of added, renamed, and removed configuration parame-
ters per version release. The numbers are obtained from the official user manuals.

Software ‘ Addition ‘ Renaming ‘ Removal
Storage-A 13.65 0.26 1.87
Apache 5.19 0.23 0.61
MySQL 2.54 0.06 0.53
Hadoop 4.14 1.60 0.39

It is worth noting that many configuration parameters are added with new soft-
ware versions released, but are removed at a much slower rate. The slow rate is probably
due to backward compatibility concerns, or developers’ lack of sufficient knowledge or
confidence in removing parameters introduced by someone else. Table 4.1 shows the
number of parameter changes during software evolution. The parameter removal rate
is almost 7x slower than the rate of addition (Storage-A has a faster rate than the open-
source software because its release cycles are longer). Following such trends, we will
be presented with more configuration parameters in the future releases, unless we take
serious actions to simplify them.

Many desktop and mobile applications adopt GUI-based methods such as prefer-

ence menus [79] to reduce user-perceived complexity caused by large preference space

90

Table 4.2. The target systems software in the study

Software | Proprietary | Language | Dev. history | # parameters
Storage-A Commercial — 22 years 412
Apache Open source C 21 years 587
MySQL Open source C++ 21 years 461
Hadoop Open source Java 9 years 312

(e.g., colors, fonts, and layouts). Unfortunately, due to the scalability and accessibility
issues [162], the primary and de facto configuration interfaces of systems software are
text files (e.g., in xml and .ini formats). GUIs are not widely used for systems software
configuration [19, 58,81, 153, 162], making GUI-based methods hard to apply.

In fact, some software developers have already sensed that today’s configuration
is overly complex and should be simplified to some degree. For example, Rob Pike, the
developer of Unix and the Go programming language recently commented, “There is
too much configuration. There are too many options. There are too many dot files. Stuff
should just work.” This chapter intends to systematically understanding and dealing

with the over-designed configuration in existing systems software.

4.3 Methodology
4.3.1 Target Software

We study four systems software projects, including the software of one commer-
cial storage system and three open-source systems software, as shown in Table 4.2. The
commercial system, Storage-A, is from a major storage company in the U.S. It runs dis-
tributed storage software to manage network-attached storage devices. The open-source
software includes Apache HTTP server, MySQL data- base server, and Hadoop (includ-
ing MapReduce and HDFS). All these software projects are mature (with 9~21 years of
development history) and widely used, representing different types of systems software

(storage, Web, database, and data processing).

91

Table 4.3. Configuration setting datasets used in this study. Note: The numbers of
parameters for Apache and MySQL are different from those in Table 4.2, as we only
study the common parameters of the selected versions and exclude parameters of spe-
cific OS/modules (§4.3.2).

Software ‘ Version ‘ # parameters ‘ System instances
Storage-A a.b.c 412 many thousands
Apache 2.2.x 90 168
MySQL 5.x 221 260

Note that all the studied software projects fall into the category of systems soft-
ware, which is used to provide services for client-side application software (e.g., Web
browser, file manager). The users of systems software are mostly system operators who
usually have higher level of technical background and skills than ordinary end users.
This is particularly true for the commercial storage systems which are mainly purchased

and used by enterprise customers (instead of individuals).

4.3.2 Real-world Configuration Settings

We collect configuration settings of real operators of Storage-A, Apache, and
MySQL. The Hadoop dataset we collected is not large enough to be statistically signifi-
cant. Thus, we exclude Hadoop from the first part of our study on configuration settings.
Table 4.3 summarizes the configuration setting datasets.

The dataset of Storage-A includes the configuration settings of all the customers
using the same version of Storage-A (anonymized as “a.b.c”). It contains many thou-
sands of customers’ settings spanning one and a half years (from Jun. 1, 2012 to Dec.
31, 2013). The data was collected by a support system which recorded the customers’
configuration settings on a weekly basis. In our study, we use each customer’s most
recent configuration settings. Note that this dataset provides the exhaustive ground truth
of the configuration settings of Storage-A, version-a.b.c in the field, and is used as the

primary data source in our study.

92

As the complimentary data references to verify the findings discovered from
the Storage-A dataset, real-world configuration settings for Apache and MySQL are
also collected from the Internet. We crawl configuration files attached by users from
well-known online forums (including ServerFault®, StackOverflow?, Webmasters®, and
Database Administrators(’), and the entire archives of the official mailing lists of the two
software projects. We only collect complete configuration files attached by users who
posted the questions, and exclude any partial configuration snippets included in postings,
because partial snippets does not reflect all the settings made by operator (we cannot
know the settings of the parameters not occurring in the snippets); including them would
cause bias to the appeared parameters. Moreover, we only collect one configuration file
per user (identified by user IDs/emails) to ensure the representativeness of our datasets.

We use the configurations of the same major version for each software project
so that we do not need to deal with the difference across versions. To make sure the
studied parameters were presented to all the operators, we exclude parameters designed
for specific plugins or OS (e.g., OS/2, BeOS) that are not the default OS and software

modules of the studied software and are not needed for the majority of the users.

4.3.3 Real-world Configuration Issues

We collect 620 real-world cases of user-reported configuration issues related to
the studied systems software. Table 4.4 shows the numbers of collected cases of each
software project. The cases of Storage-A are collected from the commercial company’s
customer-issue database which records the issues reported by the customers. We ran-
domly sampled 1,000 cases labeled as “configuration related” by technical support en-

gineers, and only selected those that have been resolved and confirmed by the original

3http://serverfault.com/
“http://stackoverflow.com/
>http://webmasters.stackexchange.com/
®http://dba.stackexchange.com/

http://serverfault.com/
http://stackoverflow.com/
http://webmasters.stackexchange.com/
http://dba.stackexchange.com/

93

Table 4.4. Real-world configuration-related issues included in the study.

Software | Studied cases
Storage-A 329
Apache 97
MySQL 96
Hadoop 98

users. For the open-source software, we collect user-reported configuration issues from
two sources: the software’s official mailing lists and the well-known online forums (the
same as in §4.3.2). This study focuses on issues related to parameter configuration, as

they account for the majority of real-world configuration problems [185].

4.3.4 Threats to Validity

As with all characteristic studies, there is an inherent risk that our findings may
be specific to the studied software and may not apply to other software. While we
cannot establish representativeness categorically, we have taken care to select diverse
software with different proprietary licenses, functionalities, and languages of implemen-
tation (c.f., Table 4.2). As all the studied software projects are mature and widely used,
we believe that their configuration accurately represents the configuration design prac-
tices of today’s systems software. However, our study only focuses on systems software;
we do not intend to draw any conclusion about other types of software, such as desktop
software and mobile applications.

Another potential source of bias is in the collection of configuration settings of
the open-source software. The configuration files of Apache and MySQL are collected
from online forums and mailing lists. Many of them are associated with configuration
problems encountered by operators; some of these files may have a few erroneous set-
tings. Although these settings (including the erroneous ones) are configured and applied

by real operators, we acknowledge that the datasets may be biased to operators who

94

encountered configuration problems. To avoid the impact of the potential biases, we
only use the datasets as complimentary references to the Storage-A dataset (which does
not have such bias). We do not draw any conclusion directly from the open-source
datasets. All the reported findings are discovered in Storage-A and then verified in the
open-source datasets. As described in §4.3.2, the Storage-A dataset contains all the set-
tings of Storage-A customers of the same version, which is exhaustive without bias to
any special type of operators.

Another concern is the representativeness of configuration issues. We collect
only user-reported issues. It is possible that operators do not report easy-to-solve prob-
lems. Also, novice operators are more likely to report problems, compared with experts.
Unfortunately, it is hard to objectively judge whether an operator is a novice or an expert.
In fact, with new or major revisions of software being deployed in the field, there are
always novice operators. Therefore, our findings are still valid. Note: Our study mainly
focuses on the configuration difficulties and mistakes caused by existing configuration
design, instead of general characteristics of configuration errors.

Finally, we still remind readers to interpret our findings and results in the context

of our studied software and datasets.

4.4 Understanding Configuration Settings in the Field

In this section, we first study how the configuration parameters are set by real
operators. Then, we examine how operators handle the increasing configuration com-
plexity. Note that we only study the configuration parameters exposed to operators inten-
tionally, instead of those to developers or technical-support engineers. All the studied
parameters are documented in the official user manuals, we exclude hidden parameters
that are not visible to the common operators. Therefore, all the reported findings in this

section are only applicable to configuration design for the operator’s interface.

95

100 T T ‘
—e— Apache
—— MySQL

80 - —5— Storage-A

Percentage of operators (%)

100

Percentage of parameters (%)

Figure 4.3. How many parameters are used in the field by the operators? Each data
point (X, y) on a curve indicates that “x% of the parameters were set by fewer than y%
of the operators.” Table 4.5 and 4.6 further zoom into the parameters set by 0%/1-% of
operators and 504+%/90+% of operators.

4.4.1 Do Operators Really Need So Many Configuration Knobs?

Finding 1(a): Only a small percentage (6.1%~16.7%) of configuration parameters
are set by the majority of operators, a significant percentage (up to 54.1%) of parame-
ters are rarely set by any operator. It seems that many parameters (at least those rarely-
set ones) are not necessary to most of the operators. They enlarge the configuration
space (adding more complexity) without producing much benefit (in terms of the desired
flexibility) to the common operators. We discuss the problems of “too many knobs” in
§4.4.3. The rarely-set parameters should be separated from the commonly used ones.
Figure 4.3 plots the real-world usages of configuration parameters, measured by
the percentage of operators whose settings are different from the defaults in the studied
systems. Table 4.5 shows the percentage of the parameters that are seldom set (by fewer
than 1% of operators); Table 4.6 gives the percentage of the parameters set by the ma-

jority (more than 50%) of operators. These results give quantitative evidence that we

96

Table 4.5. The percentage (number) of parameters that were set by 0% and by fewer
than 1% of the operators, respectively.

Software % (#) of parameters Total
% of operators = 0% | % of operators < 1% (€3]
Storage-A 23.3% (96) 54.1% (223) 412
Apache 23.3% (21) 31.1% (28) 90
MySQL 33.0% (73) 49.8% (110) 221

Table 4.6. The percentage (number) of parameters that were set by more than 50% and
90% of the operators, respectively.

Software % (#) of parameters Total
% of operators > 50% | % of operators > 90% #
Storage-A 6.1% (25) 2.4% (10) 412
Apache 16.7% (15) 7.8% (7) 90
MySQL 10.0% (22) 1.8% (4) 221

(software developers) seem to have provided more configuration knobs than what the
majority of operators need or know how to use. The configuration parameters, rarely
set by operators, should be either hidden (informing operators by requests) or removed
from common operators, to avoid blowing up the user-perceived configuration space.
One may argue that operators do not set these parameters only because the de-
fault settings are good. First, this may not always be true. As we will show in §4.4.3,
many times operators do not change the default settings because they do not understand
the meaning or impact of the parameters and thereby do not know how to set them ap-
propriately. Second, even the above statement is true, if almost all the operators never
need to set the parameters to be different from the defaults, what is the need to expose
these knobs to operators? We can keep them hidden or completely remove them so that

operators can focus on the parameters that need to be changed.

Finding 1(b): A small percentage (1.8%~7.8%) of parameters are configured by more
than 90% of the operators. Many of these parameters provide necessary information of

the system runtime which is hard to have default values in advance.

97

Table 4.7. The percentage of numeric parameters with no more than five distinct set-
tings used by 90%/100% of the operators. We exclude operators who did not set the
parameters.

Software % of parameters with five distinct values
Covering 90% operators | Covering 100% operators

Storage-A 65.8% 47.4%

Apache 60.0% 10.0%

MySQL 26.7% 12.2%

These parameters should be exposed or recommended to the operators as the
“first-class” knobs. Software developers should provide simple tutorials, guidebooks,
and templates, to explain in more details about these parameters. This can help operators
to focus and have an easier, quicker start, instead of skimming through a thick manual

[e.g., MySQL’s reference manual (version 5.6) has a length of 3,989 pages’].

4.4.2 Should We Offer More Choices in Configuration Knobs?

Finding 2(a): Software developers often choose more “flexible” data types for con-
figuration parameters to give operators more flexibility of settings (e.g., using numeric
types instead of the simple Boolean or enumerative ones). However, operators seem
not to take full advantage of such flexibility. A significant percentage (up to 47.4%) of
numeric parameters have no more than five distinct values among all the settings.

Once again, this implies that the developers’ goodwill in providing operator with
flexibility is not fully appreciated by them. Reducing the value space of these parameters
can simplify their settings, without sacrificing much flexibility. Developers can convert
the complex types into Boolean or enumerative types which are more expressive and
easier for operators to configure.

Table 4.7 shows the similarity of operators’ settings for numeric parameters in

the studied systems. For each numeric parameter, we select the five most popular val-

http://downloads.mysql.com/docs/refman-5.6-en.pdf

http://downloads.mysql.com/docs/refman-5.6-en.pdf

98

ues, and measure their coverage among all the settings. We exclude operators staying
with default values (they did not set these parameters), in order to avoid the dominating
coverage of the default values (including the default values would make the percentages
even higher, because most operators go with the defaults for many numeric parameters).
Note that the majority numeric parameters have a large range. Many parameters
do not have specified min/max values, so their ranges depend on their data types. For ex-
ample, the data range of parameters represented by unsigned intis[0, UINT_MAX].
We do not normalize the results in Table 4.7 by the numeric ranges (as denominators),
because large ranges (e.g., [0, INT_MAX] and [0, LONG_MAX]) seldom have meanings
to operators and thus do not impact their settings (making normalization nonsensical).
One reason of the small number of settings is the distribution of templates among
the user communities. For example, the communities of the configuration management
tools (e.g., Puppet and Chef) have the tradition of sharing recipes for a variety of com-
mon software. The results indicate that the majority of operators do not need large
value space for configuration parameters. Providing operators with a few representative

options covering typical usage scenarios is simpler and more efficient.

Finding 2(b): For enumerative parameters with many options, typically only two to
three of the options are actually used by the operators, indicating once again the over-
designed flexibility. Figure 4.4 shows the number of used options among all the options.

Compared with numeric ones, enumerative parameters have less options with
more representative values. However, if there are too many options with ambiguous
semantics, operators tend to stay on a few safe options. For example, the LogLevel
parameter in Apache has 16 options, corresponding to 16 different logging verbosity

levels.® Though the user manual explains each level using log examples, only six options

8http://httpd.apache.org/docs/2.4/mod/core.html#loglevel

http://httpd.apache.org/docs/2.4/mod/core.html#loglevel

99

1.0

I Storage-A [Apache [MySQL

usage
(=]
(o]
)

i

o

o
!

- —
8 2
15} 5%
g £
E <
3 3
a, &
o °
Z Z

Normalized option
e @

2 3 4 5 6
OpthI]S 1n enumerative parameters

Figure 4.4. Usage of enumerative parameters with different number of options (percent-
ages of used options among all the provided options)

appear in our datasets. The log levels for specific debugging purposes (e.g., t race1-8)
should not be exposed to the common operators. In fact, even the developers themselves

are often confused by the verbosity levels, not to mention the operators [188].

4.4.3 What Is The “Cost” of Too Many Knobs?

Some software developers may argue that most of the parameters have default
values; also, operators can learn about these parameters by referring to user manuals.
Thus, there is no real harm in introducing a large number of configuration parameters or
providing many options for them. However, this argument is somewhat refuted by our

study of real-world configuration issues reported by operators.

Finding 3: Too many knobs do come with a cost: operators encounter tremendous
difficulties in knowing which configuration parameters should be set among the large

configuration space. This is reflected by the following two facts:

e a significant percentage (up to 48.5%) of configuration issues are about the difficulties

in finding or setting the parameters to obtain the intended system behavior;

e a significant percentage (up to 53.3%) of configuration errors are introduced due to

operators’ staying with default values incorrectly.

100

Table 4.8. The distribution of user-reported configuration issues across the categories.

Software | Difficulties | Errors | Others | Total
Storage-A | 17.3% (57) | 70.5% (232) | 122% (40) | 329
Apache 48.5% (47) | 443% 43) | 7.2% (7) 97
MySQL 34.4% (33) | 47.9% 46) | 17.7%(17) | 9
Hadoop 35.7% (35) 42.9% (42) 21.4% (21) 98

To understand configuration problems faced by operators in the real world, we
categorize the user-reported issues into “difficulties,” “errors,” and ‘“others.” The diffi-
culties refer to cases where operators do not know what or how to configure to obtain
their intended system functionalities or performance goals. The errors refer to erroneous
settings that caused system misbehavior, such as crashes, hangs, or performance degra-
dation. The operators failed to reason out the misconfigurations as the root causes, and
thus called support engineers or posted the problems on online forums and mailing lists.
There are other configuration-related issues such as inquiries about general practices and
internal usages, categorized as “others.”

Table 4.8 shows the distribution of the collected configuration issues across the
categories. Remarkably, a significant percentage (17.3%~48.5%) of issues fit into the
“difficulties” category. This indicates that operators face tremendous difficulties to find
the right knobs from the large configuration space. It is totally understandable, given
the large quantity of parameters as well as the inefficiency of common navigation prac-
tices (discussed in §4.6). Compared with open-source software, Storage-A has a lower
percentage of “difficulties” issues (probably because Storage-A operators are mostly
professional personnel with better configuration experience). However, 17.3% still
means a large financial cost, considering the human cost of configuration-related sup-
port calls [156, 185].

Similarly, “too many knobs” may prevent operators from understanding the pa-

rameters thoroughly and tuning them carefully. Operators tend to keep the settings (e.g.,

101

Problem: Two major data losses on a dozen machines. [*Hadoop*/
Cause: Stayed with the default values of the data-path parameters
(e.g., dfs.name.dir, dfs.data.dir) which point to locations in /tmp.
Thus, after the machines reboot, data losses occur.

"One of the common problems from users." (from Cloudera)

Figure 4.5. A real-world example of configuration errors caused by the operators’ in-
correctly staying with default values.

Table 4.9. The number of error cases caused by the operators’ incorrectly staying with
default parameter values, and their percentages among all the error cases. Most of these
parameters were set by more than 5% of operators. We exclude the cases in which
operators did not their settings; the last column only includes parameters in our dataset.

Incorrect Set by
Software Total (#) defaults <5% operators
Storage-A 207 45.4% (94) 3.2%
Apache 40 17.5% (7) 0.0%
MySQL 45 53.3% (24) 0.0%
Hadoop 40 30.0% (12) N/A

the default values) that work for the first run, instead of carefully, thoroughly examin-
ing the setting of every parameter. As a result, they may incorrectly miss parameters
that need to be set according to the runtime environments, thus violating constraints of
workloads, resources, cross-component correlations, etc. The consequence could be se-
vere, such as failures and data losses. Figure 4.5 gives an example where the operator’s
incorrect staying with default values led to major data losses.

In fact, such cases (as the one in Figure 4.5) are not rare. As shown in Table 4.9,
a significant percentage (17.5%~53.3%) of the configuration errors were caused by op-
erators’ incorrectly staying with the default values, rather than setting wrong values.’
We manually examined the operators’ settings reported in the issues (the cases without

enough information about operators’ settings are excluded). Note that very few of these

parameters are those rarely-set ones.

9We acknowledge the possibility of operators’ intentionally setting the default values wrongly,
but we believe that it is not the common case.

102

Parameter: optimizer_prune_level (Boolean) "MySQL*/

Desc.: Controls the heuristics applied during query optimization to prune
less-promising partial plans from the optimizer search space.

Values: Oor1

Usage: No user set the parameter in our dataset.

(a) Empirical, heuristic usages

Parameter: key_cache_block_size (Numeric) "MySQL*/
Desc.: The size in bytes of blocks in the key cache.

Values: [512, 16384]

Usage: All the users stay with the default value 1024 in our dataset.

(b) Control internal data structures

Figure 4.6. Two examples of configuration parameters that are seldom set by any oper-
ator in the MySQL dataset.

We cannot draw conclusions that smaller configuration space will definitely re-
duce the error-proneness of configuration activities, as the current datasets do not allow
us to study the correlation between the size of the configuration space and the number
(or rate) of configuration errors. However, as reducing the configuration space surely
simplifies the configuration process, we believe it to have positive effect on the error-

proneness of configuration.

4.4.4 What Kinds of Knobs Are Most Utilized?

Finding 4: Configuration parameters with explicit semantics, visible external impact
are set by more operators, in comparison to parameters that are specific to internal
system implementation. Thus, software developers should avoid exposing configuration
parameters specific to internal implementation—operators cannot or may not have time
to read the source code.

The distinct usages of different parameters drive us to think about the rationale
behind how operators set configuration parameters. To understand the rationales be-

hind the distinct usage of different configuration parameters, we comparatively examine

103

100 T T 100 —— \
—=— Explicit £ go| —* Explicit
< —a— Implicit g 60 —o- Implicit
 80f P g
% S 40 .
= © MySQL
E m o 20 ySQ Awf’f
[60 [1 0
5 0 20 40 60 80 100
S Storage-A % of parameters
& 40 100 —
g 2 g —s— Explicit j
) = —o— Implicit
: |
A S 40 .
°© Apache
s 20 p
0
0 20 40 60 80 100
Percentage of parameters (%) % of parameters

Figure 4.7. Real-world usages of configuration parameters with explicit, visible external
impact (“explicit”) versus parameters specific to internal implementation (“internal’)

the parameters set by the majority of operators and those seldom set. This compari-
son reveals remarkable differences among these parameters. Most of the frequently-set
parameters have explicit semantics or visible external impact, e.g., enabling functionali-
ties, switching between policies, enabling backup services. Thus, it is easy for operators
to understand and observe the effect of their settings. On the contrary, many seldom-
set parameters are specific to internal system implementation or protocol details (e.g.,
controlling data structures or library/system calls) and empirical/heuristic usages. Fig-
ure 4.6 gives two examples of such knobs from MySQL.

Since most operators have limited knowledge about system internals (even for
the open-source ones), it is difficult for them to understand the semantics and potential
impact of those internal parameters. As a result, most operators do not have the confi-
dence to touch these parameters, especially for systems software running in production
systems whose availability and performance are critical. To validate our hypothesis, we
manually annotate every studied parameter as “internal” or “explicit,” based on whether

or not it controls internal implementation specific to the software. To minimize the

104

subjectiveness during annotation, two inspectors separately labeled the parameters and
compared the results with each other before consensus was reached. For some tough
cases, we consulted with the developers to make decisions on the labeling. Figure 4.7
shows the usages of “explicit” and “internal” parameters in the studied software. It con-
firms that the configuration parameters specific to internal implementation are seldom
set by operators.

Note that the usages of parameters are not strongly correlated with their data
types. For example, Boolean parameters are usually more simple to set, compared with
numeric parameters. However, if they are specific to internal implementation, they are

still seldom set by operators, as exemplified in Figure 4.6a.

4.5 Configuration Simplification

We study the opportunity and effectiveness of simplifying configuration by re-
ducing the parameter and value space, as the fundamental approach to dealing with “too

many knobs.” We discuss other aspects of configuration simplification in §4.7.

4.5.1 Simplification Guidelines

The findings in §4.4 lead to a set of concrete, practical guidelines for simplify-
ing configurations. Table 4.10 summarizes these guidelines, which mainly include the

following two aspects:

e Vertical. Hiding or removing unnecessary configuration parameters and promoting
the important ones (which are usually a small set), so that operators can efficiently,

correctly find the knobs.

e Horizontal. Reducing the value space of the parameters and providing meaningful,

expressive options to help operators set the parameters correctly and efficiently.

105

Table 4.10. Guidelines for simplifying configuration design.

Guideline | Support | Ref.

1. Hide or remove configuration parameters that are sel-
dom set by any operator. This requires building operator- | Finding 1(a) | §4.4.1
feedback loops for configuration settings.

2. Promote parameters set by most operators to be the
“first-class” ones. Include them in tutorials/guidebooks | Finding 1(b) | §4.4.1
to let operators focus on these parameters first.

3. If possible, convert numeric parameters into enumera-
tive or Boolean types with expressive, representative val- | Finding 2(a) | §4.4.2
ues to make the settings simple.

4. Avoid enumerative parameters with too many options.
Typically, five options should be sufficient in terms of op- | Finding 2(b) | §4.4.2
erator flexibility.

5. Only expose the configuration parameters with explicit
semantics and/or visible external system impact.

Finding 4 §4.4.4

Note: These guidelines are only applicable to configuration design for the operators of
the software, not for developers or support engineers. For example, hiding parameters
should not prevent test engineers from finding or setting them. We discuss the implica-
tions of simplification to testing and debugging in §4.7.

The proposed guidelines in Table 4.10 are general and do not consider system-
or domain-specific information (which may provide opportunities to further simplify
configuration). In this study, we judge the necessity of a configuration parameter based
on its setting statistics in the field. It is absolutely possible that even the configuration
parameters set by many operators can be eliminated, e.g., by automatically inferring or
generating values from runtime environments (e.g., [13,37,45,194]), formal models and
specifications (e.g., [100,133,154,166]), historical settings (e.g., [195]), etc. We discuss
the other aspects of configuration simplification in §4.7.2

Software vendors may raise the concern that simplifying configuration would
hurt the advanced operators who do need more flexibility compared with ordinary oper-

ators; specially, some parameters are still under use even though by few operators (e.g.,

106

1%). In fact, this problem can be gracefully addressed by decoupling the advanced
configuration from the basic ones. For example, the advanced parameters can be hid-
den from the common operators and only be informed by requests; arbitrary parameter
values are still allowed to be set if the operator insists. Nevertheless, such advanced con-
figuration should be introduced to operators in separate manuals, templates, and files.
Please note that we do not mean to prevent operators from fine-tuning the config-
uration. Instead, we advocate better design to facilitate operators’ configuration tuning
by making it simple and less prone to errors. As we have demonstrated, the current
design of configuration clearly does not consider operators in the design process but

assume that they need and can handle the level of complexity.

4.5.2 Effectiveness of Simplification

Finding 5: The configuration of the studied software can be significantly simplified by
reducing the configuration space both vertically and horizontally. For Storage-A, 51.9%
of the original configuration parameters can be hidden or removed, and 19.7% of the
remaining ones can be further converted into simpler types, with the impact on fewer
than 1% of the operators. Similar reduction rates are also observed in the other two
open-source software.

We apply Guideline 1, 3, and 4 to the configuration of the studied software,
allowing an impact on fewer than 0%, 1%, and 5% of the existing operators, respec-
tively. For Guideline 3, we convert a numeric parameter into an enumerative one if the
parameter can be represented by no more than five options. Similarly, we convert an
enumerative parameter into a Boolean if two options are sufficient to cover the settings
in the field. We call the operators being “impacted” by the simplification if their current
settings would be changed to slightly different settings. Note: It does not necessarily

mean that the new settings would result in failures or performance degradation.

107

‘A[oAnoadsaz
‘paroedwr Sureq siojerado SunsIxa Y JO 9,G PUB ‘951 ‘95() UBY) JOMIJ YIIM ‘([2[qeL, Ul { pue ‘¢ ‘] saurjopinn Ajdde om 1oyje
pue 210J9q sodA) ejep J1oy) pue siojowered uoneIn3yuod Jo Rquinu Ay, juonein3yuod AJiiduwrs oam ued yonw moH °‘§°f 3Insig

%S %]l %0 [eUISLIQ %S %]1 %0 [euISuQ %S %]l %0 [euISlQ
-0 =0 =0
z | Loz & 05 Z
- -0S .
2 2 Foor £
g oy 2 -os1 8
i -00T 2 o I o
g | 0o 2 F00C
) 09 2
= = o -0ST)
r -0ST m m L g
sutns & r sutns F08 & f sutns [F00€ @
| omdunN a 00z m ouownN [m [ouounN [Cose m
QANRIWNUH _H_ reANRIdWNUY _H_ FOOT -o>ﬁm.5§5cm D | 00%
uespoog [| uedoog [] uedjoog [| L
Il 1 Il Il OWN 1 Il 1 1 ON ﬁ L n L L L L 1 OW.V
TOSAN yoedy v-o3e101S

108

Figure 4.8 quantifies the effectiveness of the proposed configuration simplifica-
tion methods. It shows the number of parameters and their data types after we apply the
guidelines. As a first step in the direction of simplifying configuration, the results are

promising, which also reflects the degree of the over-designed configuration.

4.6 Configuration Navigation

To deal with too many knobs, many software projects rely on the navigation
feature to help operators find the right configuration parameters and their value settings.
In this section, we conduct measurement study to understand the effectiveness of the
navigation methods using real-world cases.

As discussed in §4.4.3, many operators encounter difficulties in finding or setting
configuration parameters. As shown Table 4.11, the majority of these “difficulties” cases
are about finding the configuration knobs rather than setting values. When an operator
knows which knob to set, it is relatively easy to find the information from the manual
pages or using the Unix man command), and to learn how to set it. Thus, configuration

navigation should focus more on helping operators find the correct knobs.

4.6.1 Methodology

Navigation methods. We study three navigation methods—keyword search,

Google search, and NLP-based navigation.

e Search by keywords. Search by keywords on top of manuals is a pervasive nav-
igation practice. Many software projects provide build-in search utilities tied into
documentation (e.g., the search box in MySQL online documents'?). Even without
specific support, operators can always rely on the search features offered by file read-

ers/browsers to search keywords in PDF/HTML manuals.

10http://dev.mysql.com/doc/refman/5.6/en/index.html

http://dev.mysql.com/doc/refman/5.6/en/index.html

109

Table 4.11. User-reported “difficulties” cases in finding configuration knobs versus
setting the values. The closed “finding knobs” cases (e.g., the target knobs exist) are

used for studying navigation methods in §4.6.

Software

‘ Finding knobs ‘ Setting knobs ‘ Total

Storage-A
Apache
MySQL
Hadoop

82.5% (47)
89.4% (42)
84.8% (28)
82.9% (29)

17.5% (10)
10.6% (5)
15.2% (5)
17.1% (6)

57
47
33
35

e Search on Internet. Google search (or using other search engines such as Microsoft

Bing) is another common practice to find the configuration knobs [19, 81]. Many

software projects also provide search boxes that redirect users’ queries to Google in

their online manuals (e.g., Apache’s online documentation'!).

e NLP-based navigation.

Recently, to help users find the right parameters, NLP-

based navigation methods have been proposed [2,78]. The idea is to build indexes for

parameters based on their descriptions; users’ queries are matched to indexed contents

and the best matched parameters are recommended to the users.

Datasets. We select out “finding knobs” cases from the real-world cases stud-

ied in §4.4.3. These cases are the “finding knobs” ones shown in Table 4.11 We exclude

cases of Storage-A because the case reports were written by the company’s support engi-

neers, and thus do not contain users’ original questions/queries. In most of the “finding

knobs” cases, the operators did find the target parameter(s) with the help of support en-

gineers, or peer users from the online forums. We focus on these “closed” cases in our

study and exclude the cases in which the target knobs do not exist. The number of the

closed cases for Apache, MySQL, and Hadoop is 39, 25, and 26, respectively.

For each case, we use the original user-posted question as the original query.

Every query is then filtered by common stop words which help remove meaningless

http://httpd.apache.org/docs/2.4/

http://httpd.apache.org/docs/2.4/

110

words, such as interrogative words, personal pronouns, articles, etc. Then, we convert
each word in a query string to the root forms of the word based on WordNets [102]. The
final query strings are used for studying all the three methods. For example, the original
question, “How do I configure the proxy to forward all requests” is transformed into the

query, “‘proxy forward request.’

4.6.2 Effectiveness of Navigation

In this section, we measure the effectiveness of different navigation methods in
dealing with the complexity of configuration. Note that these methods are not originally

proposed for configurations in systems software.
Search by Keywords

Today’s operators mainly rely on “greping” manual pages to navigate configu-
ration parameters. Since no prior work has evaluated these two methods, we conduct

measurement study to quantitatively understand their effectiveness as the starting point.

Finding 6(a): Searching user manuals by keywords is not efficient to help operators
identify the target parameter(s) to achieve the desired system behavior.

As a user’s query often contains multiple keywords (e.g., “proxy forward re-
quest’), she can first search for “proxy” and obtain all the pages containing it, and then
search for “forward” and “request.” Each keyword may be associated with multiple man-
ual pages. We assume that an operator can find the target parameter(s) as long as she
reads the page that contains the parameter (referred to as a relevant page). We study two
search strategies: (1) union (U): returning all the pages contains at least one keyword,
or (2) intersection (N): only returning the pages that contain all the keywords.

As shown in Table 4.12, the intersection approach is not effective. It returns rel-

evant pages for only 15.4%~25.6% of the queries. The main reason is that the strategy

111

Table 4.12. The percentage (number) of queries for which the keyword search returns
pages containing the target parameter(s).

Software % (#) of navigation cases Total
N{returned pages} | U{returned pages} Cases
Apache 25.6% (10) 79.5% (31) 39
MySQL 24.0% (6) 88.0% (22) 25
Hadoop 15.4% (4) 69.2% (18) 26

Table 4.13. The average number of returned pages per relevant page by keyword search

Software Avg. number of returned pages
N{returned pages} | Ufreturned pages}
Apache 2 0
MySQL 15 102
Hadoop 9 139

is too strict. It strictly requires every keyword to appear on the manual pages of the
parameters. On the contrary, the union approach returns relevant pages for the majority
of cases; however, it also returns many irrelevant pages. As shown in Table 4.13, the
average number of returned pages per relevant page can be as large as one hundred (in
these cases, the user’s query contains certain “common’ keywords). It is impractical to
read through these many pages to find the target parameter(s).

Some commercial management tools adopt the intersection method to provide
navigation support on top of user manuals, e.g., Cloudera Manager (a commercial tool
for Hadoop administration)'?. As demonstrated above, they are too strict and thus lim-

ited in finding configuration parameters.
Google Search

We study Google search by sending the queries via Google search APIs. Then,
we download the Web pages whose URLSs are returned by Google. To make the searches

explicit, we include the software name as a part of the query keywords. We analyze the

Zhttp://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-
manager.html

http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html

112

Table 4.14. Effectiveness of Google search. The percentage (number) of queries for
which Google returns useful Web pages in top-five search results. “At the time” excludes
pages posted after the original cases to emulate the situation when operators encountered
navigation issues.

% (#) of queries w/ useful Web pages
Software Atthetime | Postmortem Total
Apache 35.9% (14) 74.4% (29) 39
MySQL 40.0% (10) 80.0% (20) 25
Hadoop 26.9% (7) 46.1% (12) 26

top-5 Web pages returned by Google and examine if they are useful (existing studies
show that the top-5 results attract most clicks [135,136]). A useful Web page must meet
the following two criteria: (1) containing the target parameter(s) (the recall metric); and

(2) containing no more than five other parameters (the precision metric).

Finding 6(b): Google search can provide useful information for 46.1%~80.0% of
the historical configuration navigation issues. However, it is less efficient in navigation
parameters of less popular software or new issues. The majority of resources on the Web
that host useful information for navigation are the contents contributed by operators,
such as Q&A forums and blog articles.

Table 4.14 shows the effectiveness of Google search for configuration navigation.
Google returns useful pages in the top-5 results for 46.1%~80.0% of the queries. In
other words, if these historical navigation issues are encountered by the new operators,
46.1%~80.0% of them could be resolved by Google search. Hadoop has a remarkably
low number (more than half of the historical cases cannot resolved by Google), mainly
for two reasons. First, Hadoop has a much smaller user base with less online resources,
compared with Apache and MySQL. Second, the primary Q&A sites of Hadoop is its of-
ficial user mailing list. However, mailing list archives have very low page ranks, making

them less “visible” by Google search.

113

Table 4.15. Breakdowns of the sources that host the useful Web pages.

Source | Example | Percentage
Q&A forums ServerFault.com 37.4%
Blogs & articles Articles on Blogger.com 22.8%
Official docs MySQL online docs 22.8%
Third-party docs Hortonwork’s Hadoop docs 8.1%
Docs of other SW PHP’s docs on MySQL conn. 5.7%
Others Wiki, Bugzilla 3.2%
Mailing lists Hadoop’s mailing-list archive 0.0%

Also, we emulate the situation when the operator encountered a navigation issue
and searched Google, by excluding Web pages posted after the original user question.
As shown in Table 4.14, no more than 40% of these issues can be resolved by Google.
Many of the returned Web pages “at the time” are online manuals and tutorials that
include too many configuration information, which has similar efficiency as searching
keywords on top of manuals (c.f., §4.6.2).

To understand what types of Web pages are useful for configuration navigation,
we classify the useful Web pages returned by Google based on their types, as shown
in Table 4.15. Remarkably, user-generated pages contribute to more than 50% of these
useful pages, such as Q&A posts, blogs articles. These Web pages usually record the
operators’ experience and solutions to specific configuration problems, and only con-
tains a small set of relevant parameters, which is more useful for navigation (compared
with online manual pages that list parameters one by one). Therefore, methods to lever-
age user-generated contents, especially those with low page ranks (e.g., mailing-list

archives) is desired for configuration navigation.
NLP-based Navigation

To help operators get the right configuration knob (preference), NLP-based nav-
igation methods have been proposed (e.g., PrefFinder [79] and CoX [2]). These NLP-

based navigation methods take a user’s query in natural languages as the input, and

114

return the configuration parameters relevant to the query. This is achieved by parsing,
analyzing, and indexing the information of every parameter (e.g., from its manual en-
tries) using NLP techniques, such as stemming, stop-word filtering, text normalization,
synonym expansion, etc. To return the relevant parameters, the navigation engine ranks
the parameters by scoring how well they match the query.

We study the efficacy of NLP-based navigation based on COX (PrefFinder is not
open sourced). COX is a configuration navigation library on top of Apache Lucene [4].
It provides utilities to extract the texts for every configuration parameter by breaking
manual pages, and allows us to change the parsing, analyzing, and scoring methods.

In addition to indexing and matching, we also take the field configuration statis-
tics into account. The original match score is boosted by the popularity of the parameter,
defined as the percentage of operators who set the parameter among all the operators
(same as in §4.4.1). The idea is to boost popular parameters with higher ranks if they
match users’ queries. Also, we assign a lower scale 0.4 to contents from manual entries

while parameter names have scale 1.0.

Finding 6(c): Well-engineered NLP-based navigation can return the target configu-
ration parameter for more than 60% of the historical navigation issues. Boosting the
results with the statistics of configuration settings in the field can significantly improve
the performance of NLP-based navigation.

Figure 4.9 shows the results of the NLP-based navigation using different com-
bination of information sources (parameter names, statistics of configuration settings in
the field, and manual pages). We observe that the navigation only based on parameter
names has poor performance (much worse than the dataset in [79]'3). The reason is that

in our dataset of systems software, many of the queries do not contains any keyword

Bhttp://cse.unl.edu/~myra/artifacts/PrefFinder_2014/

http://cse.unl.edu/~myra/artifacts/PrefFinder_2014/

115

70 , . : ' .
=] |
2 60l 2 Apache ;
S 501 EESMysQL]
£ ° 1 B8 Hadoop
o 40+]
e]
§ 30—_]
= 204 1
<]
< 10 V ;
7] 4
O /H
g ° I ' name ' name
2 fame +stats +stats
= +manual

Figure 4.9. The performance of NLP-based navigation using different information
sources. We consider a case can be resolved if the target parameter can be returned
in the top-5 navigation results.

appearing in the parameter name, which is different from queries to desktop software
configuration [79]. In desktop software, users are usually able to specify useful key-
words like “color,” “tab,” “cache” (which are parts of the target parameter’s name),
while the queries here are higher level intentions such as “speedup insert performance”
(target parameter: max_heap_table_size and there are more than 80 size-related
configuration parameters in total). In this case, applying the statistics of field configura-
tions brings significant performance improvement, because a configuration parameter
that is used by many operators are likely to be needed by the current operator. In addi-
tion, the results show that leveraging contents from manual entries are useful—manual
entries bring additional information about the parameter.

Overall, our NLP-based navigation implementation resolves more than 60% of
the real-world cases. We manually examine the unresolved queries and find most of
them indeed miss the keywords in the contents of the target parameter. First, some
queries are vague or misleading (even for human experts). For example, a1 ias-related
parameters are returned for the query, “alias url without use host,” but the target one
is related to virtual hosts. Second, some queries require domain-specific knowledge

beyond the information base. For example, it fails to associate SSL with “encrypt,” and

116

fails to return SSL-related parameters for “encrypt network channel.” This limitation can
potentially be addressed by using word-cluster based techniques to capture “concepts”

instead of “keywords.”

4.7 Discussion
4.7.1 Implications and Incentives

Although motivated by operators’ configuration problems, reducing configura-
tion space and simplifying configuration not only help operators’ configuration difficul-
ties and problems, but also would bring tremendous benefits for software vendors by
relieving their burden of testing, error detection and troubleshooting.

Testing software with large configuration space is extremely challenging. The
number of possible configuration settings is an exponential function of the number of
parameters and their value space, which makes it infeasible to test exhaustively. This is
known as configuration space explosion [99, 184]. To address this problem, a series of
pioneer works have been proposed, including pruning the configuration space [75, 128,
141], selecting typical configuration values [46, 121, 184], prioritizing certain important
configurations [121, 145], and reducing the number of test cases [120].

As shown in our study, many configuration parameters are not in real use, i.e., a
large portion of the existing configuration space is not touched by operators. Removing
the unused configuration can significantly relieve the burden of software testing in the
context of configuration space explosion, as complementary to the existing testing meth-
ods. Prioritization becomes natural, considering the actual configuration usage statistics
in the field—the parameters/values set by more operators should have higher popularity
than the ones set by few operators.

The smaller configuration space also benefits operators and support engineers

117

for misconfiguration detection and troubleshooting. Small configuration space comes
with small error space, which not only makes it easy for operators to examine and find
the errors, but also make the automatic detection and troubleshooting procedures more
efficient. Also, with smaller error space, the detection and troubleshooting tools can be
more focused and targeted. Most importantly, with simplified configuration, operators
are likely to have less configuration difficulties and problems, which in turn results in
lower support cost for software vendors and developers.

With these incentives, we advocate software vendors to take actions in simplify-
ing existing configuration and providing new configurations more cautiously with user-

centric design philosophy.

4.7.2 Further Simplification

This chapter mainly investigates the feasibility and opportunity of simplifying
configuration in the aspect of reducing the configuration space (including both the pa-
rameter space and the value space). However, it is important to note that the configura-
tion space is not equivalent to the entire configuration complexity. In other word, the
efforts to simplifying configuration should not be limited to reducing the configuration
space (which is only our first step towards addressing this problem).

Besides the large configuration space, other known root causes of configuration
complexity include ambiguity and inconsistency of configuration semantics [56, 178],
dependencies among multiple parameters and software components [39, 89, 126, 132,
173,190], and poor system guidance and feedback [74,177,179]. It remains as our future
work to understand and address these aspects of configuration complexity perceived by
operators, with the goal of making configuration simple, efficient, and less prone to
errors. Similar as the study in this chapter, we believe the key towards addressing these

problems is to follow the user-centric philosophy—to understand operators’ difficulties

118

and problems in the field and to design configuration from the operators’ perspectives.
After all, configuration is one type of user interface that are used by operators to control

and customize the system behavior.

4.7.3 Intent-based Configuration

One promising direction to simplify configuration is intent-based configuration
design where operators only express high-level configuration intent which will be trans-
lated into concrete values of low-level configuration knobs. Intent-based configuration
design can free operators from setting thousands of tedious knobs and thus focus on
declaring the intended system behavior. In fact, prior work has shown that intent-based
configuration can be achieved for network configurations where network-wide routing
policies can be automatically translated into device-level configurations [25, 110, 151].

However, it is not clear how to build intent-based configuration for cloud and
datacenter systems. The main challenge towards a generic solution is that unlike net-
work configurations (e.g., those specifying routing paths) that have well-defined se-
mantics and have direct links from the value settings to the system behavior (forward-
ing/dropping packets), the configurations of software are much more diverse and the
impact of configuration values (in terms of system behavior such as performance, relia-
bility) is more subtle. It remains our future work to explore intent-based configuration

for common types of configurations in cloud and datacenter systems.

4.8 Summary

The configuration of system software has become increasingly complex. To
advocate cautious and disciplined thinking in configuration design, this chapter has pro-
vided quantitative evidence for the over-delivered (or under-exploited) flexibility repre-

sented by configuration parameters. By studying the large-scale configuration settings

119

of real operators, we have revealed a number of findings, leading to a few guidelines for
simplifying configuration. We also studied configuration navigation as an intermediate
solution, if the simplification process takes time.

We hope that our work can inspire developers to design system configuration
with the user-centric design philosophy, and carefully balance simplicity (usability) and
flexibility (configurability). Similar to UI/UX design, it is important for developers to
collect feedback from operators and think from their perspectives, before introducing
yet another knob. Feedback loops should be initiated and followed to help develop-
ers improve the usability of their software systems. The original paper [175] has been
widely quoted within the company of Storage-A and used to make decision on improv-
ing configuration design for reducing their customer’s misconfigurations.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of the
the 10th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 2015. Xu, Tianyin;
Jin, Long; Fan, Xuepeng; Zhou, Yuanyuan; Pasupathy, Shankar; Talwadker, Rukma.

The dissertation author was the primary investigator and author of this paper.

Chapter 5
Related Work

“To learn without thinking is blindness; to think without learning is idleness.”

—Confucius

This dissertation research stands on the shoulder of prior work in a number of

ways. This chapter describes prior work, how it has inspired this dissertation, and the

contributions that this dissertation offers beyond existing research. §5.1 discusses auto-

configuration that aims at fundamentally ruling out potential mistakes. §5.2 discusses

approaches and practices that check correctness of configurations in the field. §5.3 dis-
cusses how to deal with misconfiguration-induced failures and anomalies.

As stated in Chapter 1, this dissertation fundamentally differs from the prior

work discussed in this chapter in terms of its perspectives—it focuses on hardening the

internal defense of software systems through better design and implementation, while

the prior work mostly targets on building external tools and practices.

5.1 Automating Configuration

One ambitious solution to misconfigurations is to free operators from configu-
ration by eliminating the need of manual configuration efforts, which prevents human
mistakes in the first place. On the other hand, completely automating configurations is

not trivial. For example, it is hard for a system to automatically determine the configura-

120

121

tions that requires information outside the system itself (e.g., connection configurations
of backup services); it is also controversial whether systems should automate critical
configuration settings that may permanently change system states or data [164]. We

discuss two main approaches that aim at automating certain types of configurations.

5.1.1 Tuning Performance Configurations

One specific class of hard-to-set configuration parameters are those related to
system performance. Large systems usually include a large number of performance-
related parameters (e.g., memory allocation, I/O optimization, parallelism levels, etc).
Their impact on performance is often poorly understood due to inexplicit correlations
and interactions both inside the system and across multiple system components and run-
time environments. Consequently, tuning performance configurations is challenging,
especially for operators with limited knowledge of system internals. Also, with the ex-
plosive configuration space, it is prohibitively difficult and costly to test out every value
combination and then select the best ones. Mature systems provide default values for
these configuration parameters. The default values are usually carefully selected by the
developers based on their experience and/or in-house performance testing results. Ide-
ally, good default values can satisfy common workloads and system/hardware settings.
However, given dynamic workload and system runtime, it is hard for the static default
values to deliver optimized system performance [97,161].

There is a wealth of literature on performance tuning by selecting configuration
values. The basic idea is to model the performance as a function of configuration set-
tings, as the following equation’,

p = Fy(V), where V.= (vi,vy,...,v) (5.1

I'This model can be extended to include other factors. For example, [67] models the performance

-

of one MapReduce job W as p = Fy (V,7,d) where 7 is the allocated resources and d represents other
statistical properties of data processed by W.

122

Here, Fy is the performance function of a workload type W; vV is the configuration
value set consisting of the value of each i-th configuration parameter (the number of
parameters is denoted as n); p is the performance metric of interest (e.g., execution time,
response latency, throughput). With such a model, the performance tuning problem is to

find the value set v * that achieves the best performance (i.e., argmax),
V" = argmax Fy (V) (5.2)

Since the performance function Fy is often unknown or does not have a closed form,
a number of black-box optimization algorithms have been proposed, including a vari-
ety of sampling and searching algorithms [114, 171, 183, 198], gridding [67], Bayesian
optimization [8], and machine learning [7, 109, 139]. Other studies try to capture the
performance characteristics using specific models. For example, Duan et al. use Gaus-
sian process to represent the response surface of Fy in relational database systems [45];
Zheng et al. apply dependency graphs to describe the performance impact of different
parameters for web applications [194].

These studies provide theoretical guidance for modeling performance impact of
configuration settings. However, it is fundamentally difficult to precisely model the
system performance in the field due to many unexpected and confounding factors [161].
Consequently, some of the models are limited to certain workloads and environments,

making them less appealing in practice.

5.1.2 Reusing Configurations

As configuration is difficult, the experience and efforts towards the correct con-
figuration solutions should be shared and reused. Often, a configuration task that is diffi-
cult for an operator has been encountered and solved by others before. Most importantly,
the previous working solutions are likely to be helpful (and even directly applicable) to

the new systems under configuration.

123

Configuration file templates. The basic form of reusing configurations is via
templates. A typical configuration file template is a working solution for one particular
use case. Templates can also be made for different hardware or environment conditions.
For example, MYSQL once provided five templates for servers with different memory
sizes, ranging from less than 64 MB to larger than 4 GB. These templates save operators’
efforts of tuning memory-related configuration parameters which is difficult but critical
to performance. Templates not only can be provided by system vendors, but also can be
distributed by third-party tool providers or among user communities. For example, the
user communities of configuration management tools (e.g., PUPPET and CHEF) have the

tradition of sharing configurations for a variety of common software systems.

Record-and-replay systems. Static configuration file templates have two major
limitations. First, they cannot capture configuration actions, for example, setting file
permissions, installing software packages, creating new users and groups. These actions
can be a necessary part of the configuration solution. Second, the solution provided by
the templates may not work for the new system; applying a wrong solution may have
side effects—changes of the system states. In this case, the changes need to be undone.
Manually undoing system changes is not only tedious but also difficult as operators may
not be aware of some implicit changes of system states.

Record-and-replay systems are proposed to address the above two limitations
and to make configuration reuse fully automated. The basic idea is to record the traces
of a working configuration solution on one system, and then replay the traces on other
systems under configuration. If the replay fails (e.g., not passing predefined test cases),
the system will be automatically rolled back to its original state. Since the traces for the
same configuration problem may differ (e.g., due to system and environment settings),

multiple raw traces could be merged to construct the canonical solution.

124

AUTOBASH [149] and KARDO [86] are two representative record-and-replay
systems designed for different use cases. AUTOBASH is designed for recording and
replaying configuration tasks performed in Bash (or other UNIX-style shells). It lever-
ages kernel speculation to automatically try out solutions from the solution database
one by one until it finds a working one. The kernel speculator ensures that the spec-
ulative state is never externalized, i.e., it isolates AUTOBASH’s replay activities from
other non-configuration tasks. AUTOBASH requires operators to provide test cases and
oracles (called predicates) in order to decide whether or not the configured system is
correct. Later, Su et al. [150] further propose automatic generation of predicates by ob-
serving the actions of troubleshooting processes. KARDO is designed for automating
GUI-based configurations on personal computers. It records the window events when
configuration tasks are performed based on OS-level accessibility support. KARDO an-
alyzes the raw traces and identifies the window events specific to the task and the events
for state transition events. It then constructs the canonical solution for a configuration

task; the canonical solution works for systems with different internal states.

5.1.3 Discussion

In addition to automating configuration, Chapter 4 studies a more aggressive
approach—simplifying configurations based on how they are used in the field. Essen-
tially, configurations are introduced for the purpose of providing flexibility, with the
tradeoff as increasing complexity. If the flexibility is not needed or appreciated, the
complexity is not worthwhile. Unfortunately, Chapter 4 shows that many of today’s
configuration knobs are neither necessary nor worthwhile. Such configurations should
be eliminated. Chapter 4 also discusses other approaches for simplifying configurations

(e.g., intent-based configurations), which shares the same goal as auto-configuration.

125

5.2 Checking Correctness

The main approaches that check the correctness of configuration settings in the

field include static misconfiguration detection and dynamic online testing.

5.2.1 Detecting Misconfigurations

As discussed in Chapter 3 (§3.2.2), today’s misconfiguration detection methods
are mostly rule based—the detector checks the configuration values against a set of
predefined correctness rules (also known as constraints). If a configuration value does
not satisfy these rules, it will be flagged as a misconfiguration. The key challenge of

rule-based detection is to define and manage useful rules.

Defining rules. Most mature systems implement built-in configuration check-
ing logic to detect syntax and format errors against basic rules. As observed by [108],
the checking is useful in detecting operators’ configuration mistakes. Certain domain-
specific rules have been proposed in different system domains. For example, RANGE-
Fix [173] model the data-range rules among multiple parameters, which helps detect
and fix invalid settings. Feamster et al. [50] define two general correctness rules for
BGP (Border Gateway Protocol) configurations: the path visibility and the route valid-
ity. Based on the two rules, their tool RCC detects BGP misconfigurations by statically
analyzing BGP configurations. CONFVALLEY [71] provides a simple, domain-specific
language called CPL (Configuration Predicate Language) for operators to write con-
figuration checking logic in a compact, declarative fashion. Compared with traditional
imperative languages, CPL can significantly reduce the efforts of writing checking code.

Generally, manually specified rules face the following two problems. First, it is
hard to make predefined rules complete [84]. In the study of [108], though Apache’s

checker detected a number of misconfigurations based on predefined rules, it did not

126

check a misconfigured file path, causing mod__jk to crash. Second, it is costly to keep
the rules updated with the software evolution, since it requires repeating the manual

efforts. As shown in [192], configuration rules could be obsolete with code changes.

Learning rules. To address the problems derived from the manual efforts of
defining rules, a number of research proposals provide automatic approaches to learning
configuration rules. The basic idea is to learn the “common patterns” from large volumes
of configuration settings collected from a large number of healthy system instances. The
patterns shared by most of the healthy instances are assumed to be correct, and will be
used as the correctness rules for misconfiguration detection. A configuration setting that
does not follow these patterns is likely to be misconfigurations.

With this idea, a variety of machine learning techniques are applied to learn con-
figuration rules from different types of configuration data. CODE [189] learns access
patterns of Windows Registry configurations which indicate the appropriate configura-
tion events that should follow each context (a series of events). Based on these patterns,
CODE can sift through a sequence of configuration events and detect the deviant ones as
misconfigurations. Palatin et al. [115] propose a distributed outlier detection algorithm
to detect misconfigured machines (i.e., the outlier machine) in grid systems based on
log messages, resource utilizations, and configuration settings. Kiciman et al. [85] ap-
ply unsupervised clustering algorithms on Windows Registry configurations in order to
learn configuration constraints based on the Registry-specific structures and semantics.

One concern of automatic learning is the accuracy. Inaccuracy results in false
rules which cause false positives in detection. False positives do matter. Bessy et al. [28]
report that in reality, operators ignore the tools if the false-positive rate is more than 30%.
Note that misconfiguration detection is performed before system failures and anoma-

lies. At the time, operators tend to be optimistic. This psychological issue fundamen-

127

tally makes misconfiguration detection different from the postmortem failure diagnosis
(when operators or support engineers are desperate and willing to look at any hints).
Unfortunately, learning-based approaches often cannot provide sufficient accuracy and
are difficult to tune. Many of the learning-based approaches discussed above also re-
quire manual intervention. To address the inaccuracy of learning, ENCORE adopts a
template-based learning approach [190]. In ENCORE, learning is guided by a set of pre-
defined rule templates which enforce learning to focus on patterns of interests. In this
way, ENCORE filters out irrelevant information and reduces the false positives.

As discussed in Chapter 3 (§3.2.2), the more fundamental limitations of machine-
learning based approaches derived from their requirement of a large collection of inde-
pendent configuration settings deployed at hundreds of machines. Such deployment
works where a piece of software is distributed and install on the customers’ machines.
However, in the modern cloud era where cloud and datacenter systems providing ser-
vices (rather than software itself), configurations are typically propagated from one node
to all the other nodes. Thus, the settings from these nodes are not independent, and thus
not useful for learning. Furthermore, learning-based approaches do not work well with
configurations that are inherently different from one system to another (e.g., environ-
ment configurations such as domain names, file paths, and IP addresses) or incorrect
settings that fall in normal ranges. In general, they also cannot differentiate customized
settings from erroneous ones.

In addition, we have to confront the fact that misconfigurations are still hard be
ruled out. Besides the limitations of the existing approaches, certain misconfigurations
can hardly be detected even by static rules without understanding the runtime informa-
tion or global policies. Such misconfigurations are referred to as legal misconfigura-
tions [185], which are not rare. Among the 434 real-world parameter-misconfiguration

cases studied in [185], “a large portion (46.3%~61.9%) of the parameter misconfig-

128

urations have perfectly legal parameters but do not deliver the functionality intended
by operators. These cases are more difficult to detect by automatic checkers and may
require more training or better configuration design.” Misconfigurations related to re-

source allocation, performance, access control and security are such examples.

5.2.2 Online Testing

Online testing is complementary to static misconfiguration detection discussed
in §5.2.1. The basic idea is to observe the effect of the configuration settings by testing
them out in a separate testing environment or one part of the production system [155],
before rolling out the configuration settings and making them visible to the entire pro-
duction systems. Online testing is especially useful when the effect of configuration
settings is not well understood or hard to model. It allows operators to apply the trial-
and-error methods on different settings. Moreover, performing online testing, as a re-
hearsal, is necessary for configurations that are mission critical or cannot be rolled back,
for example, formatting disks that will remove customers’ data.

The main challenge of online testing is to create an environment that has the
same (or similar) characteristics of the production systems including the workloads, the
execution environments, and the underlying infrastructure. If the testing environment
cannot capture these characteristics, the testing results are less trustworthy. However,
such construction is very challenging because of resource constraints and the separa-
tion from the production environments, especially for large-scale systems. Welsh once
shared his experience at Google [169], “Of course we have extensive testing infrastruc-
ture, but the ‘hard’ problems always come up when running in a real production en-
vironment, with real traffic and real resource constraints. Even integration tests and
canarying are a joke compared to how complex production-scale systems are.” As sum-

marized in [30], online testing needs to be comprehensive for determining whether or

129

not the configuration settings are valid, isolated to the production environments, and
efficient in terms of resource usage.

Nagaraja et al. [108] propose to integrate such testingi (they used the word “val-
idation”) as an extension of the production systems, which addresses the separation
between the validation and the production environments. In their prototype designed for
web services, the system is divided into two logical slices: the online slice that hosts the
production services and the validation slice which validates new configuration settings.
The two slices are connected through a proxy that duplicates user requests from the pro-
duction services to the validation components. In this way, the validation components
can test new configurations under real workloads. The same idea is applied in [112] for
database systems.

However, setting a separate testing environment into production could be too
costly and thus not affordable for systems at scale, especially today’s cloud and data-
center systems. Therefore, techniques that apply the tests directly on the production
systems are proposed and adopted in recent years. KRAKEN [161] is Facebook’s load
testing framework that continuously shifting live traffic to test systems ranging in size
from individual servers to entire data centers. Such load tests can effectively identify
regressions, address load imbalance and resource exhaustion across Facebook’s infras-
tructure (many of these issues are caused by misconfigurations [161]). CHAOS MON-
KEY and the Simian Army [21, 159], MOLLY [9, 10], and other chaos engineering tech-
niques [90, 130] are used as failure drills in which faults are deliberately injected in
the production system to expose the system’s vulnerabilities related to failure resilience.
Note that load testing and chaos engineering are not specific to misconfigurations. The

goal is to expose the problem regardless of the root causes of the problems.

130

5.2.3 Discussion

PCHECK in Chapter 3 is greatly influenced by both misconfiguration detection
and online testing. On one hand, we prefer to have a light-weighted detection approach
that can be run cheaply and regularly. On the other hand, we want to keep the advan-
tage of online testing that can validate the configuration values on the native system
environment and find problems that cannot be covered by traditional machine learning
based approaches. Since PCHECK is designed specific for configurations, we do not
need to execute the entire system programs but only the program “slices” that will use

the configuration values in later execution.

5.3 Dealing with Misconfiguration-Induced Failures

When misconfigurations escape from all the defenses and cause failures, the
operators or engineers have to deal with the failures by (1) troubleshooting the mis-
configurations based on the failure symptoms; and (2) recovering the failed systems.
Theoretically, recovery should be done after the root causes are discerned. However, in
practice, as the diagnosis can take hours [54], recovery and fallback is typically done in
parallel in order to minimize the downtime short. One common approach is to recover

to a previous configurations (and corresponding code) that is known to be good [97].

5.3.1 Troubleshooting Misconfigurations

Today’s misconfiguration troubleshooting still mostly relies on manual efforts
involving examining configuration settings, analyzing log messages, checking system
states, searching knowledge base articles, etc. If operators cannot successfully diagnose
the problem by themselves, they have to call support engineers for assistance. This often
falls into more costly diagnosis cycles, including collecting site information and remote

debugging. Therefore, it is highly desired to have automatic solutions and tool support

131

to facilitate the troubleshooting process based on the failure-site information (e.g., log
messages, stack traces, coredumps, etc).

Troubleshooting misconfigurations has to address the following two challenges.
First, since operators may not have debugging information (e.g., source code) or the
expertise of debugging complex systems, troubleshooting cannot follow the similar in-
teractive process as software debugging, which asks developers to examine the program
runtime execution and reason out the root causes (e.g., using GDB). Second, the goal
of misconfiguration troubleshooting is to pinpoint the erroneous configuration settings
rather than the bugs inside the software. Thus, existing diagnosis support (e.g., recon-
structing the execution paths and reproducing the failures) may not be sufficient or use-
ful for helping operators find the misconfigurations. Troubleshooting misconfigurations

needs to go extra steps from errors in the program to errors in the configurations.

Causality analysis. Several troubleshooting approaches attempt to automati-
cally identify the erroneous setting as root causes of the failures, analyzing the causal
relationships between the settings and the failures. From the system’s perspective, con-
figuration settings are one type of system inputs that are read and stored in the system
variables, and then used during the runtime execution. As they deviate from the nor-
mal executions, misconfigurations lead to the failure executions, i.e., executions ended
with system failures. Causality analysis attempts to reason out the causality between the
configuration settings (cause) and the failure execution (effect).

CONFAID [18] is a representative misconfiguration troubleshooting tool based
on causality analysis. To troubleshoot a misconfiguration, CONFAID first instruments
the program binaries to insert the monitor code which will record the information flow
during the program execution. Then, it re-runs the program in order to reproduce the

failures using the instrumented binaries. Based on the recorded execution information,

132

CONFAID identifies the causal dependencies between each configuration setting and
the failure. The configuration setting with stronger dependency to the failure is more
likely to be the root cause of the failure. On top of CONFAID, X-RAY [16] is built for
troubleshooting performance related misconfiguraitons. X-ray records the performance
summarization of each configuration setting during the program execution, quantifying
the performance impact caused by the setting. The settings with the bigger impact are
considered to have stronger causality with the performance anomaly.

Different from CONFAID, CONFANALYZER [123] and CONFDEBUGGER [44]
are static approaches that precompute the causal dependencies between configuration
parameters and potential failure points. Thus, it does not require instrumenting the
binaries and reproducing the failures. These approaches analyze the data- and control-
flow of each configuration parameter on each potential execution paths in the program.
It stores the mapping from the potential failure paths to the configuration parameters in
a table. To diagnose a failure, they first reconstruct the failure execution path based on
log messages and stack traces; then it queries the table using the failure path to obtain

the dependent configuration parameters whose settings are suspected to be erroneous.

Signature-based approaches. In the early 2000, Microsoft investigated a series
of signature-based troubleshooting approaches, striving to automatically reason out the
misconfigurations by comparing the signature of failure executions with the reference
signatures.” Reference signatures are usually recorded from executions with known sys-
tem behavior (mainly WINDOWS): they can be either normal executions or the known
failure executions recorded from previous troubleshooting efforts.

PEERPRESSURE [165] and its predecessor STRIDER [168] compare the failure

%A signature refers to the information recorded at the system runtime. Its semantics depend on the
signature collector of the troubleshooting approach. For example, the signature could be the configuration
settings [168], system call traces [186], and dependency set [17].

133

signature with signatures of normal executions. Upon a failure, a client-side TRACKER
captures the configurations as the signature of the failure execution and sends it to PEER-
PRESSURE. These configurations are treated as misconfiguration suspects. Next, PEER-
PRESSURE queries a centralized signature database and fetches the respective settings of
the configurations that were collected from the sample machines. Then, it uses Bayesian
estimation to calculate the probability of an configuration value to be erroneous and out-
puts the ranks of every configuration.

Differently, Yuan et al. [186] propose to compare the signature of the failure
execution with other known failure signatures. If a match is found, the previous trou-
bleshooting efforts can be reused to address the current misconfigurations. In their pro-
posed tool, a TRACKER collects system call traces as the signature at the client side.
SVM (Support Vector Machine) is used to match the signature with the category gener-
ated from the signatures of known problems. The solutions of known problems will then
be returned to operators. The idea of signature-based analysis has also been applied in

a number of other tools, such as NETPRINTS [6] and CONFDIAGNOSER [191].

Checkpoint-based approaches. Checkpointing can be used to record how a
system transitioned from the working state to the failure state when a failure occurs.
To troubleshoot the configuration error that causes the failure, the operator can com-
pare the state of the system immediately before and after the failure using the UNIX
diff command [170]. CHRONUS [170] automates the search for the time when the
system transitions from a working state to a failure state. It only checkpoints the per-
sistent storage based on a time-travel disk that has relatively low overhead compared
with whole-system checkpointing. CHRONUS uses a virtual machine monitor to instan-
tiate, boot, and test historical snapshots of the system in order to determine if a system

snapshot represents a working state. SNITCH [101] leverages FDR [163] to construct

134

the timeline views of the system states. The timelines are useful for validating the root

cause hypothesis that the decision tree-based troubleshooting procedures suggest.

5.3.2 Failure Recovery

Recovering from failures is non-trivial. Common recovery techniques such as re-
booting based ones (e.g., MICROREBOOT [35]) that reclaims system resources and clear-
ing runtime states, is less helpful because misconfigurations typically reside in persistent
configuration files or databases. Rebooting cannot get rid of them. Rolling the system
back to a recorded healthy state (snapshot) could be a potential solution based on tech-
niques such as application checkpointing, backup/restore, and system-wide UNDO [33];
however, the runtime overhead and storage overhead could be expensive.

In industry, there are two major practices of recovering failures induced by mis-
configurations. First, if the root cause is likely to be caused by configurations (e.g.,
the failure occurs after a configuration change), the recovery reverts the change and
rollback to an old configuration that is known to be good [54,97]. The hard part is
the dependencies—the configuration change could (and often) have dependencies with
changes of code and system states. Simply reverting the configuration values does not
work. Second, to avoid degraded user experience during the recovery process, operators
traffic is often redirected from the failing components to other healthy components in
levels of nodes, clusters. data centers, and regions [29,54]. This requires diversity in the

entire systems and carefully designed configuration/code rollout process [29, 155].

5.3.3 Discussion

Dealing with failures is hard, especially those with misconfigurations. Such
bitterness is the motivation that drive the theme of this dissertation. Fundamentally, we

hope to avoid paying the cost for dealing with failures caused by configuration errors, but

135

to build more reliable systems that can anticipate and defend against misconfigurations,
and to prevent misconfigurations in the first place by better design methods. As we have
demonstrated in the previous chapters, even for legacy systems, this can be achieved
systematically and automatically via exposing the vulnerabilities (Chapter 2), enabling

early detection (Chapter 3), and simplifying configuration space (Chapter 4).

5.4 Summary

This chapter discusses prior work closely related to this dissertation, including
eliminating the need of configurations, checking correctness of configuration settings,
and dealing with misconfiguration-induced failures. Note that there are many other top-
ics and work that are also critically important to configurations. Examples include con-
figuration management and deployment [14,15,42,47,137,138,155] and configuration
languages/APIs [53,95,122]. More are discussed in the original survey article [180].

Chapter 5, in part, is a reprint of the material as it appears in ACM Comput-
ing Surveys, Vol. 47, No. 4, Article 70, 2015. Xu, Tianyin; Zhou, Yuanyuan. The

dissertation author was the primary investigator and author of this paper.

Chapter 6

Conclusion and Future Work

This dissertation presents the principles of systems design and implementation
for building reliable cloud and datacenter systems in the face of misconfigurations. We
demonstrated that enabling the principled systems design and implementation can (1)
proactively detect real-world, high-impact configuration errors; (2) effectively assist op-
erators to fix misconfigurations in the field; and (3) significantly reduce the complexity
and error-proneness through configuration design. These principles are grounded in our
experience building the tool support that that can automatically and systematically apply
these principles to existing cloud and datacenter systems.

Specifically, this dissertation has shown that understanding how configuration
values are used inside the software systems opens tremendous opportunities for build-
ing the hardening techniques against misconfigurations. SPEX demonstrates that the
constraints of configuration values required by a system can be inferred automatically
through static code analysis, and can be leveraged to expose misconfiguration vulnerabil-
ities through misocnfiguration-inject testing. This enables developers to fix the vulnera-
bilities and enable systems to react gracefully to misconfigurations in the field. PCHECK
shows that it is feasible to emulate late execution that will use configuration values by
extracting the corresponding instructions, and more importantly to detect latent configu-

ration errors early based on their manifestations exposed in the emulated execution.

136

137

This dissertation also shows that by treating configuration as a user interface and
applying user-centric design philosophy, one can significantly improve the usability and
reduce error-proneness of software configuration. We present configuration simplifica-
tion, as well as navigation techniques and tool support (COX), based on the characteris-
tics of how configurations are actually used in the field.

Still, the contributions of this dissertation present the first step towards hardening
software systems’ own defense against misconfigurations. More work needs to be done
to build complete, solid defense in depth. First, SPEX and PCHECK only focuses on
misconfigurations that compromise the correctness of software programs. For example,
PCHECK reports configuration errors based on anomalies manifested during emulated
execution. On the other hand, as reported in prior work [155, 169, 185], a larger per-
centage of real-world misconfigurations are legal. Legal misconfigurations have correct
syntax and semantic, but do not deliver intended system behavior (e.g., security guaran-
tee, resource constraints, or performance goals). Unfortunately, there is few understand-
ing in proactively defending software systems against them. The key to tackling legal
misconfigurations is to (1) specify the intended system behavior and check configura-
tions against it, and (2) understand potential impact of configuration changes. The open
question is that how to achieve these systematically and automatically and incorporate
application-specific information to make the results useful.

Moreover, the current defending techniques (including SPEX and PCHECK) stop
when the misconfigurations are discerned. After a configuration error is detected or man-
ifested, operators need to fix the errors. The efficiency and correctness of fixing miscon-
figurations significantly impact the time to recovery. An open question is the feasibility
of automatically correcting misconfigurations by altering the values of configuration pa-
rameters in configuration files. This is non-trivial given the enormous space of potential

values. To go one step further, it would be useful to reload the modified configuration

138

values into the system and re-execute the related code, in order to recover the abnor-
mal execution, in a similar way as how re-execution based approaches (e.g., [119, 129])
recover other types of system errors like memory errors.

In fact, the fundamental challenges in addressing misconfigurations are less
about finding a decent value in the configuration space, but more about understanding
complex, dynamic systems at scale. As cloud and datacenters systems typically consist
of large numbers of heterogeneous components across stacks and nodes, the impact of
configurations often manifests through indirect component interactions and thus cannot
be determined by per-component testing or even small-scale canaries [91]. Moreover,
configuration errors may not be manifested through independent anomalies, but being
correlated with other errors such as bugs and even gray failures [72]. Understanding
the interactions and dependencies between multiple software components are the key to

foreseeing the impact of configuration changes, which remains a grand challenge.

Appendix A

Operation Disciplines and Implications

This appendix explains different operation disciplines including traditional sys-
tem administration, DevOps, and site reliability engineering. It also discusses the impli-
cations to this dissertation.

Historically, configurations are managed by system administrator (sysadmins)
who are responsible for managing software systems. Unlike software developers, sysad-
mins are known to have a diverse background due to the lack of education programs [31].
According to Wikipedia.org, “there is no single path to becoming a sysadmin [...] a
sysadmin usually has a background of related fields such as computer engineering, in-
formation technology, information systems, or even a trade school program [...] many
sysadmins enter the field by self-taught.” A recent survey from StackOverflow.com
shows that sysadmins do not commonly have systemic training of programming—352%
of the surveyed sysadmins learn programming on their own [146].

It is well recognized that sysadmins are very different from software developers
for the lack of understanding of system internals and debugging support for production
systems [69]. Unlike developers who implement the systems software and can debug the
software programs, sysadmins did not write the code and are not familiar with the code;
instead, they configure the systems based on documentation that is usually voluminous,

obscure, and incomplete [88], which significantly impairs their understanding of the

139

140

systems and the offered configurations. Moreover, sysadmins often cannot debug the
systems in production in the same way as developers. Typically, if the sysadmins fail to
address an issue, the issue will be escalated to the corresponding support engineers or
developers who wrote the code.

In recent years, the concept of “DevOps” has emerged in industry with the core
principles being the involvement of IT function in each phase of a system’s development,
heavy reliance on automation, and the application of engineering practices and tools to
operations [29]. In the DevOps model, a team play both developer (“Dev”) and operator
(“Ops”) roles. Despite being developed independently by Google, site reliability engi-
neering can be viewed as a specific implementation of DevOps with some idiosyncratic
extensions focusing on reliability of the services [29].

Although DevOps and site reliability engineering significantly change the land-
scape of system administration and operations by making operation an engineering dis-
cipline, they do not fundamentally address the dilemma faced by traditional sysadmins.
Despite an engineering background, DevOps or site reliability engineers still need to
manage code written by other teams/engineers. As a result, their understanding is lim-
ited [103]. Specially, with the massive scale of configurations across thousands of soft-
ware components and stacks in cloud and datacenter systems, it is not possible to rely
on manual efforts for managing configurations and ensuring their correctness. In fact,
misconfigurations still remain a major cause of failures and outages in cloud-based com-
panies that adopt DevOps and site reliability engineering such as Google and Facebook,
as discussed in Chapter 1. Therefore, we believe that the principles and tool support
presented in this dissertation are applicable to all different operation disciplines.

In this dissertation, we use the term “operators” to refer to people who play the
role of system administration and operation and thus are responsible for configurations,

despite their actual position, title, or education and work background.

Bibliography

(1]
(2]

(3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

Configuration Datasets. https://github.com/tianyin/configuration_datasets.

Cox: A configuration navigation tool and library for a thousand of knobs. https://
github.com/tianyin/cox.

Soot: a Java Optimization Framework. http://sable.github.io/soot/.
The Apache Lucene Project. https://lucene.apache.org/.
The LLVM Compiler Infrastructure Project. http://llvm.org/.

AGGARWAL, B., BHAGWAN, R., DAS, T., ESWARAN, S., PADMANABHAN,
V. N., AND VOELKER, G. M. NetPrints: Diagnosing Home Network Miscon-
figurations Using Shared Knowledge. In Proceedings of the 6th USENIX Sympo-
sium on Networked System Design and Implementation (NSDI’09) (Boston, MA,
2009).

AKEN, D. V., PAVLO, A., GORDON, G. J., AND ZHANG, B. Automatic
Database Management System Tuning Through Large-scale Machine Learning.
In Proceedings of the 2017 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’17) (Chicago, 1L, May 2017).

ALIPOURFARD, O., Liu, H. H., CHEN, J., VENKATARAMAN, S., YU, M.,
AND ZHANG, M. CherryPick: Adaptively Unearthing the Best Cloud Configura-
tions for Big Data Analytics. In Proceedings of the 14th USENIX Symposium on
Networked System Design and Implementation (NSDI’17) (Boston, MA, March
2017).

ALVARO, P., ANDRUS, K., SANDEN, C., ROSENTHAL, C., BASIRI, A., AND
HOCHSTEIN, L. Automating Failure Testing Research at Internet Scale. In
Proceedings of the 7th ACM Symposium on Cloud Computing (SoCC’16) (Santa
Clara, CA, October 2016).

ALVARO, P., ROSEN, J., AND HELLERSTEIN, J. M. Lineage-driven Fault In-
jection. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data (SIGMOD’15) (Melbourne, Victoria, Australia, May 2015).

141

https://github.com/tianyin/configuration_datasets
https://github.com/tianyin/cox
https://github.com/tianyin/cox
http://sable.github.io/soot/
https://lucene.apache.org/
http://llvm.org/

142

[11] AMVROSIADIS, G., AND BHADKAMKAR, M. Identifying Trends in Enterprise
Data Protection Systems. In Proceedings of 2015 USENIX Annual Technical
Conference (ATC’15) (Santa Clara, CA, July 2015).

[12] AMVROSIADIS, G., AND BHADKAMKAR, M. Getting Back Up: Understanding
How Enterprise Data Backups Fail. In Proceedings of 2016 USENIX Annual
Technical Conference (ATC’16) (Denver, CO, June 2016).

[13] ANDERSON, E., HOBBS, M., KEETON, K., SPENCE, S., UYSAL, M., AND
VEITCH, A. Hippodrome: Running Circles Around Storage Administration. In
Proceedings of the 1st USENIX Conference on File and Storage Technologies
(FAST’02) (Berkeley, CA, January 2002).

[14] ANDERSON, P., GOLDSACK, P., AND PATERSON, J. SmartFrog meets LCFG:
Autonomous Reconfiguration with Central Policy Control. In Proceedings of
the 17th USENIX Large Installation System Administration Conference (LISA’03)
(San Diego, CA, October 2003).

[15] ANDERSON, P., AND SMITH, E. Configuration Tools: Working Together. In
Proceedings of the 19th Large Installation System Administration Conference
(LISA’05) (San Diego, CA, December 2005).

[16] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Automating Root-Cause
Diagnosis of Performance Anomalies in Production Software. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation
(OSDI’12) (Hollywood, CA, October 2012).

[17] ATTARIYAN, M., AND FLINN, J. Using Causality to Diagnose Configuration
Bugs. In Proceedings of 2008 USENIX Annual Technical Conference (ATC’08)
(Boston, MA, June 2008).

[18] ATTARIYAN, M., AND FLINN, J. Automating Configuration Troubleshooting
with Dynamic Information Flow Analysis. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI’10) (Van-
couver, BC, Canada, October 2010).

[19] BARRETT, R., KANDOGAN, E., MAGLIO, P. P.,, HABER, E., TAKAYAMA,
L. A., AND PRABAKER, M. Field Studies of Computer System Administra-
tors: Analysis of System Management Tools and Practices. In Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work (CSCW’04)
(Chicago, IL, November 2004).

[20] BARROSO, L. A., CLIDARAS, J., AND HOLZLE, U. The Datacenter as a Com-

puter: An Introduction to the Design of Warehouse-scale Machines, 2 ed. Morgan
and Claypool Publishers, 2013.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

143

BASIRI, A., BEHNAM, N., DE Roo1J, R., HOCHSTEIN, L., KOSEWSKI, L.,
REYNOLDS, J., AND ROSENTHAL, C. Chaos Engineering. IEEE Software Mag-
azine 33, 3 (June 2016), 35-41.

BAUER, L., GARRISS, S., AND REITER, M. K. Detecting and Resolving Policy
Misconfigurations in Access-Control Systems. ACM Transactions on Information
and System Security (TISSEC) 14, 1 (May 2011), 1-28.

BECKETT, R., GUPTA, A., MAHAJAN, R., MILLSTEIN, T., AND WALKER, D.
A General Approach to Network Configuration Verification. In Proceedings of
2017 Annual Conference of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM’17) (Los Angeles, CA, August 2016).

BECKETT, R., MAHAJAN, R., MILLSTEIN, T., PADHYE, J., AND WALKER,
D. Don’t Mind the Gap: Bridging Network-wide Objectives and Device-level
Configurations. In Proceedings of 2016 Annual Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM’16) (Florianépolis, Brazil,
August 2016).

BECKETT, R., MAHAJAN, R., MILLSTEIN, T., PADHYE, J., AND WALKER, D.
Network Configuration Synthesis with Abstract Topologies. In Proceedings of
the 38th Annual ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’17) (Barcelona, Spain, June 2017).

BEHRANG, F., COHEN, M. B., AND ORSO, A. Users Beware: Preference Incon-
sistencies Ahead. In Proceedings of the 10th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE’15) (Bergamo, Italy, August 2015).

BENSON, T., AKELLA, A., AND MALTZ, D. Unraveling the Complexity of Net-
work Management. In Proceedings of the 6th USENIX Symposium on Networked
System Design and Implementation (NSDI’09) (Boston, MA, 2009).

BESSEY, A., BLOCK, K., CHELF, B., CHOU, A., FULTON, B., HALLEM, S.,
HENRI-GROS, C., KAMSKY, A., MCPEAK, S., AND ENGLER, D. A Few Bil-
lion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Communications of the ACM 53, 2 (February 2010), 66-75.

BEYER, B., JONES, C., PETOFF, J., AND MURPHY, N. R. Site Reliability
Engineering: How Google Runs Production Systems. O’Reilly Media Inc., 2016.

BIANCHINI, R., MARTIN, R. P., NAGARAJA, K., NGUYEN, T. D., AND
OLIVEIRA, F. Human-Aware Computer System Design. In Proceedings of the
10th Workshop on Hot Topics in Operating Systems (HotOS X) (June 2005).

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

144

BORDER, C., AND BEGNUM, K. Educating System Administrators. USENIX
;login: 39, 5 (October 2014), 36-39.

BRODKIN, J. Why Gmail went down: Google misconfigured load balanc-
ing servers. http://arstechnica.com/information-technology/2012/12/why-gmail-
went-down-google-misconfigured-chromes-sync-server/.

BROWN, A. B., AND PATTERSON, D. A. Undo for Operators: Building an
Undoable E-mail Store. In Proceedings of the 2003 USENIX Annual Technical
Conference (ATC’03) (San Antonio, TX, June 2003).

BURROWS, M. The Chubby lock service for loosely-coupled distributed systems.
In Proceedings of the 7th USENIX Conference on Operating Systems Design and
Implementation (OSDI’06) (Seattle, WA, November 2006).

CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIEDMAN, G., AND FOX, A. Mi-
croreboot — A Technique for Cheap Recovery. In Proceedings of the 6th USENIX
Conference on Operating Systems Design and Implementation (OSDI’04) (San
Francisco, CA, December 2004).

CASTRO, M., AND LISKOV, B. Practical Byzantine Fault Tolerance. In Proceed-
ings of the 3rd USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI’99) (New Orleans, LA, February 1999).

CHASE, J. S., ANDERSON, D. C., THAKAR, P. N., VAHDAT, A. M., AND
DOYLE, R. P. Managing Energy and Server Resources in Hosting Centers.

In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP’01) (Chateau Lake Louise, Banff, Canada, October 2001).

CHAUDHURI, S., AND WEIKUM, G. Rethinking Database System Architecture:
Towards a Self-tuning RISC-style Database System. In Proceedings of the 26th
International Conference on Very Large Data Bases (VLDB’00) (Cairo, Egypt,
August 2000).

CHEN, W., Wu, H., WEI, J., ZHONG, H., AND HUANG, T. Determine Config-
uration Entry Correlations for Web Application Systems. In Proceedings of the
40th IEEE Computer Software and Applications Conference (Georgia, GA, June
2016).

CHOW, M., VEERARAGHAVAN, K., CAFARELLA, M., AND FLINN, J.
DQBarge: Improving data-quality tradeoffs in large-scale Internet services. In

Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16) (Savannah, GA, November 2016).

DAs, T., BHAGWAN, R., AND NALDURG, P. Baaz: A System for Detecting
Access Control Misconfigurations. In Proceedings of the 19th USENIX Security
Symposium (USENIX Security’10) (Washington, DC, August 2010).

http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

145

DELAET, T., JOOSEN, W., AND VANBRABANT, B. A Survey of System Configu-

ration Tools. In Proceedings of the 24th Large Installation System Administration
Conference (LISA’10) (San Jose, CA, November 2010).

DONG, Z., ANDRZEJAK, A., Lo, D., AND COSTA, D. ORPLocator: Identi-
fying Read Points of Configuration Options via Static Analysis. In Proceedings

of the 27th IEEE International Symposium on Software Reliability Engineering
(ISSRE’16) (Ottawa, ON, Canada, October 2016).

DONG, Z., ANDRZEJAK, A., AND SHAO, K. Practical and Accurate Pinpointing
of Configuration Errors using Static Analysis. In Proceedings of the 2015 IEEE
International Conference on Software Maintenance and Evolution (Bremen, Ger-
many, September 2015).

DUAN, S., THUMMALA, V., AND BABU, S. Tuning Database Configuration
Parameters with iTuned. In Proceedings of the 35th International Conference on
Very Large Data Bases (VLDB’09) (Lyon, France, August 2009).

DuUMLU, E., YILMAZ, C., COHEN, M. B., AND PORTER, A. Feedback Driven
Adaptive Combinatorial Testing. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA’11) (Toronto, ON, Canada, July 2011).

ENCK, W., MCDANIEL, P., SEN, S., SEBOS, P., SPOEREL, S., GREENBERG,
A., RAO, S., AND AIELLO, W. Configuration Management at Massive Scale:
System Design and Experience. In Proceedings of 2007 USENIX Annual Techni-
cal Conference (ATC’07) (Santa Clara, CA, June 2007).

ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND CHELF, B. Bugs
as Deviant Behavior: A General Approach to Inferring Errors in Systems Code.

In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP’01) (Chateau Lake Louise, Banff, Canada, October 2001).

FANG, L., NGUYEN, K., XU, G., DEMSKY, B., AND LU, S. Interruptible
Tasks: Treating Memory Pressure As Interrupts for Highly Scalable Data-Parallel

Programs. In Proceedings of the 25th Symposium on Operating System Principles
(SOSP’15) (Monterey, CA, October 2015).

FEAMSTER, N., AND BALAKRISHNAN, H. Detecting BGP Configuration
Faults with Static Analysis. In Proceedings of the 2nd USENIX Symposium on
Networked Systems Design and Implementation (NSDI’05) (Boston, MA, May
2005).

FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M., GOVIN-
DAN, R., MAHAJAN, R., AND MILLSTEIN, T. A General Approach to Net-
work Configuration Analysis. In Proceedings of the 12th USENIX Symposium on

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

146

Networked System Design and Implementation (NSDI’15) (Oakland, CA, May
2015).

ForD, D., LABELLE, F., Popovicl, F. 1., STOKELY, M., TRUONG, V.-A.,
BARROSO, L., GRIMES, C., AND QUINLAN, S. Availability in Globally Dis-
tributed Storage Systems. In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI’10) (Vancouver, BC, Canada,
October 2010).

Fu, W., PERERA, R., ANDERSON, P., AND CHENEY, J. uPuppet: A Declara-
tive Subset of the Puppet Configuration Language. In Proceedings of the 31st Eu-
ropean Conference on Object-Oriented Programming (ECOOP’17) (Barcelona,
Spain, June 2017).

GOVINDAN, R., MINEI, I., KALLAHALLA, M., KOLEY, B., AND VAHDAT,
A. Evolve or Die: High-Availability Design Principles Drawn from Google’s
Network Infrastructure. In Proceedings of 2016 Annual Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM’16) (Florian6polis,
Brazil, August 2016).

GRAY, J. Why Do Computers Stop and What Can Be Done About It? Tandem
Technical Report 85.7 (June 1985).

GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T., PATANA-ANAKE, T.,
Do, T., ADITYATAMA, J., ELIAZAR, K. J., LAKSONO, A., LUKMAN, J. F.,
MARTIN, V., AND SATRIA, A. D. What Bugs Live in the Cloud? A Study of
3000+ Issues in Cloud Systems. In Proceedings of the Sth ACM Symposium on
Cloud Computing (SoCC’14) (Seattle, WA, November 2014).

GuNAwl, H. S., HAO, M., SUMINTO, R. O., LAKSONO, A., SATRIA, A. D.,
ADITYATAMA, J., AND ELIAZAR, K. J. Why Does the Cloud Stop Computing?
Lessons from Hundreds of Service Outages. In Proceedings of the 7th ACM
Symposium on Cloud Computing (SoCC’16) (Santa Clara, CA, October 2016).

HABER, E. M., AND BAILEY, J. Design Guidelines for System Administration
Tools Developed through Ethnographic Field Study. In Proceedings of the 2007
ACM Conference on Human Interfaces to the Management of Information Tech-
nology (CHIMIT 07) (Cambridge, MA, March 2007).

HADOOP ISSUE #134. JobTracker trapped in a loop if it fails to localize a task.
https://issues.apache.org/jira/browse/HADOOP-134.

HADOOP ISSUE #2081. Configuration getlnt, getLong, and getFloat replace

invalid numbers with the default value. https://issues.apache.org/jira/browse/
HADOOP-2081.

https://issues.apache.org/jira/browse/HADOOP-134
https://issues.apache.org/jira/browse/HADOOP-2081
https://issues.apache.org/jira/browse/HADOOP-2081

147

[61] HADOOP ISSUE #6578. Configuration should trim whitespace around a lot of
value types. https://issues.apache.org/jira/browse/HADOOP-6578.

[62] HADOOP-USER MAILING LIST ARCHIVES. Compression codec
com.hadoop.compression.lzo.LL.zoCodec not found. http://goo.gl/NOXFvt.

[63] HBASE ISSUE #6973. Trim trailing whitespace from configuration values.
https://issues.apache.org/jira/browse/HBASE-6973.

[64] HDFS ISSUE 5872#. Validate configuration of dfs.http.policy. https://issues.
apache.org/jira/browse/HDFS-5872.

[65] HDFS ISSUE #7726. Parse and check the configuration settings of edit log to
prevent runtime errors. https://issues.apache.org/jira/browse/HDFS-7726.

[66] HDFS ISSUE #7727. Check and verify the auto-fence settings to prevent failures
of auto-failover. https://issues.apache.org/jira/browse/HDFS-7727.

[67] HERODOTOU, H., AND BABU, S. Profiling, What-if Analysis, and Cost-based
Optimization of MapReduce Programs. In Proceedings of the 37th International
Conference on Very Large Data Bases (VLDB’11) (Seattle, WA, August 2011).

[68] HOFFMANN, H., SIDIROGLOU, S., CARBIN, M., MISAILOVIC, S., AGARWAL,
A., AND RINARD, M. Dynamic Knobs for Responsive Power-Aware Computing.
In Proceedings of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XVI) (Newport
Beach, CA, March 2011).

[69] HREBEC, D. G., AND STIBER, M. A Survey of System Administrator Mental
Models and Situation Awareness. In Proceedings of the 2001 Special Interest
Group on Computer Personnel Research Annual Conference (SIGCPR’01) (Van-
couver, BC, Canada, 2001).

[70] HuaNGg, C., SimITtcl, H., XU, Y., OGus, A., CALDER, B., GOPALAN, P,
L1, J., AND YEKHANIN, S. Erasure Coding in Windows Azure Storage. In
Proceedings of 2012 USENIX Annual Technical Conference (ATC’12) (Boston,
MA, June 2012).

[71] HUANG, P., BOLOSKY, W. J., SIGH, A., AND ZHOU, Y. ConfValley: A Sys-
tematic Configuration Validation Framework for Cloud Services. In Proceedings
of the 10th ACM European Conference in Computer Systems (EuroSys’15) (Bor-
deaux, France, April 2015).

[72] HUANG, P., GUuo, C., ZHOU, L., LORCH, J. R., DANG, Y., CHINTALAPATI,
M., AND YAO, R. Gray Failure: The Achilles” Heel of Cloud-Scale Systems. In
Proceedings of the 16th Workshop on Hot Topics in Operating Systems (HotOS
XVI) (Whistler, British Columbia, Canada, May 2017).

https://issues.apache.org/jira/browse/HADOOP-6578
http://goo.gl/N9XFvt
https://issues.apache.org/jira/browse/HBASE-6973
https://issues.apache.org/jira/browse/HDFS-5872
https://issues.apache.org/jira/browse/HDFS-5872
https://issues.apache.org/jira/browse/HDFS-7726
https://issues.apache.org/jira/browse/HDFS-7727

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

148

HuAaNG, P., XU, T., JIN, X., AND ZHOU, Y. DefDroid: Towards a More De-
fensive Mobile OS Against Disruptive App Behavior. In Proceedings of the 14th
International Conference on Mobile Systems, Applications, and Services (Mo-
biSys’16) (Singapore, Singapore, June 2016).

HUBAUX, A., XIONG, Y., AND CZARNECKI, K. A User Survey of Config-
uration Challenges in Linux and eCos. In Proceedings of 6th International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS’12)
(Leipzig, Germany, January 2012).

HwaN, C., KiM, P., MARINOV, D., KHURSHID, S., AND BATORY, D. SPLat:
Lightweight Dynamic Analysis for Reducing Combinatorics in Testing Config-
urable Systems. In Proceedings of the 9th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE’13) (Saint Petersburg, Russia, August
2013).

JHA, A. K., LEE, S., AND LEE, W. J. Developer Mistakes in Writing An-
droid Manifests: An Empirical Study of Configuration Errors. In Proceedings
of the 14th International Conference on Mining Software Repositories (MSR’17)
(Buenos Aires, Argentina, May 2017).

JIANG, W., HU, C., PASUPATHY, S., KANEVSKY, A., LI, Z., AND ZHOU, Y.
Understanding Customer Problem Troubleshooting from Storage System Logs.
In Proceedings of the 7th USENIX Conference on File and Storage Technologies
(FAST’09) (San Francisco, CA, February 2009).

JIN, D., COHEN, M. B., Qu, X., AND ROBINSON, B. PrefFinder: Getting
the Right Preference in Configurable Software Systems. In Proceedings of the
29th IEEE/ACM International Conference on Automated Software Engineering
(ASE’14) (Visteras, Sweden, September 2014).

JIN, D., Qu, X., COHEN, M. B., AND ROBINSON, B. Configurations Every-
where: Implications for Testing and Debugging in Practice. In Proceedings of the
36th International Conference on Software Engineering (ICSE’14) (Hyderabad,
India, 2014).

JIN, X., HUANG, P., XU, T., AND ZHOU, Y. NChecker: Saving Mobile App De-
velopers from Network Disruptions. In Proceedings of the 11th ACM European
Conference on Computer Systems (EuroSys’16) (London, UK, April 2016).

KANDOGAN, E., AND HABER, E. M. Security Administration Tools and Prac-
tices. Security and Usability, O’Reilly Media, Inc. (August 2005).

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

149

KEETON, K., SANTOS, C., BEYER, D., CHASE, J., AND WILKES, J. Designing
for Disasters. In Proceedings of the 3rd USENIX Conference on File and Storage
Technologies (FAST 04) (San Francisco, CA, March 2004).

KELLER, L., UPADHYAYA, P., AND CANDEA, G. ConfErr: A Tool for Assess-
ing Resilience to Human Configuration Errors. In Proceedings of the 38th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’08) (Anchorage, AK, June 2008).

KENDRICK, S. What Takes Us Down? USENIX ;login: 37, 5 (October 2012),
37-45.

KiciMAN, E., AND WANG, Y.-M. Discovering Correctness Constraints for Self-

Management of System Configuration. In Proceedings of the Ist International
Conference on Autonomic Computing (ICAC’04) (New York, NY, May 2004).

KUSHMAN, N., AND KATABI, D. Enabling Configuration-Independent Automa-
tion by Non-Expert Users. In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI’10) (Vancouver, BC, Canada,
October 2010).

LAaBovVITZ, C., AHUJA, A., AND JAHANIAN, F. Experimental Study of Internet
Stability and Backbone Failures. In Proceedings of the 29th Annual International
Symposium on Fault-Tolerant Computing (FTCS’99) (June 1999).

LAaMPSON, B. W. Computer Security in the Real World. IEEE Computer 37, 6
(June 2004), 37-46.

LARSSON, M., AND CRNKOVIC, I. Configuration Management for Component-
based Systems. In Proceedings of the 23rd International Conference on Software
Engineering (ICSE’01) (Toronto, Ontario, Canada, May 2001).

LEESATAPORNWONGSA, T., AND GUNAWI, H. S. The Case for Drill-Ready
Cloud Computing. In Proceedings of the 5th ACM Symposium on Cloud Comput-
ing (SoCC’14) (Seattle, WA, November 2014).

LEESATAPORNWONGSA, T., STUARDO, C. A., SUMINTO, R. O., KE, H., LUK-
MAN, J. F., AND GUNAWI, H. S. Scalability Bugs: When 100-Node Testing is
Not Enough. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems (HotOS XVI) (Whistler, British Columbia, Canada, May 2017).

L1, W., L1, S., Liao, X., XU, X., ZHOU, S., AND Ji1A, Z. ConfTest: Generat-
ing Comprehensive Misconfiguration for System Reaction Ability Evaluation. In
Proceedings of the 21th International Conference on Evaluation and Assessment
in Software Engineering (Karlskrona, Sweden, June 2017).

150

[93] LI, Z., WANG, W., XU, T., ZHONG, X., LI, X.-Y., Liu, Y., WILSON, C.,
AND ZHAO, B. Y. Exploring Cross-Application Cellular Traffic Optimization
with Baidu TrafficGuard. In Proceedings of the 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI’16) (Santa Clara, CA, March
2016).

[94] LiaNG, L. Y. Linkedin.com inaccessible on Thursday because of server
misconfiguration. http://www.straitstimes.com/breaking-news/singapore/story/
linkedincom-inaccessible-thursday-because-server-misconfiguration-2013.

[95] LUTTERKORT, D. Augeas—a configuration APL. In Proceedings of the 10th
Linux Symposium (Ottawa, Ontario, Canada, June 2008).

[96] MAHAJAN, R., WETHERALL, D., AND ANDERSON, T. Understanding BGP
Misconfiguration. In Proceedings of 2002 Annual Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM’02) (Pittsburgh, PA, August
2002).

[97] MAURER, B. Fail at Scale: Reliability in the Face of Rapid Change. Communi-
cations of the ACM 58, 11 (November 2015), 44-49.

[98] MAYHEW, D. J. Principles and Guidelines in Software User Interface Design.
Prentice Hall, October 1991.

[99] MEINICKE, J., WONG, C.-P.,, KASTNER, C., THUM, T., AND SAAKE,
G. On Essential Configuration Complexity: Measuring Interations in Highly-
Configurable Systems. In Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’16) (Singapore, Singapore,
September 2016).

[100] MICHEL, R., HUBAUX, A., GANESH, V., AND HEYMANS, P. An SMT-based
Approach to Automated Configuration. In Proceedings of the 10th International
Workshop on Satisfiability Modulo Theories (SMT’12) (Manchester, UK, June
2012).

[101] MICKENS, J., SZUMMER, M., AND NARAYANAN, D. Snitch: Interactive De-
cision Trees for Troubleshooting Misconfigurations. In Proceedings of the 2nd
USENIX Workshop on Tackling Computer Systems Problems with Machine Learn-
ing Techniques (SYSML’07) (April 2007).

[102] MILLER, B. P., KosK1, D., LEE, C. P.,, MAGANTY, V., MURTHY, R., NATARA-
JAN, A., AND STEIDL, J. Fuzz Revisited: A Re-examination of the Reliability of
UNIX Utilities and Services. Tech. Rep. 1268, University of Wisconsin-Madison,
Computer Sciences Department, April 1995.

http://www.straitstimes.com/breaking-news/singapore/story/linkedincom-inaccessible-thursday-because-server-misconfiguration-2013
http://www.straitstimes.com/breaking-news/singapore/story/linkedincom-inaccessible-thursday-because-server-misconfiguration-2013

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

151

MoguL, J. C., IsaAcs, R., AND WELCH, B. Thinking about Availability in
Large Service Infrastructures. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems (HotOS XVI) (Whistler, British Columbia, Canada, May
2017).

MOSKOWITZ, A. Software Testing for Sysadmin Programs. USENIX ;login: 40,
2 (April 2015), 37-45.

MYSQL BUG #74720. No warn/error message if "log-error" is misconfigured
(causing latent log loss). http://bugs.mysql.com/bug.php?id=74720.

MYSQL BuG #75645. Runtime Error Caused by Misconfigured Backup-
DataDir. http://bugs.mysql.com/bug.php?id=75645.

NADI, S., BERGER, T., KASTNER, C., AND CZARNECKI, K. Mining Configu-
ration Constraints: Static Analyses and Empirical Results. In Proceedings of the
36th International Conference on Software Engineering (ICSE’14) (Hyderabad,
India, 2014).

NAGARAIJA, K., OLIVEIRA, F., BIANCHINI, R., MARTIN, R. P., AND
NGUYEN, T. D. Understanding and Dealing with Operator Mistakes in Internet
Services. In Proceedings of the 6th USENIX Conference on Operating Systems
Design and Implementation (OSDI’04) (San Francisco, CA, December 2004).

NAIR, V., MENZIES, T., SIEGMUND, N., AND APEL, S. Using Bad Learners
to Find Good Configurations. In Proceedings of the 11th Joint Meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’17) (Paderborn, Germany,
September 2017).

NARAIN, S., LEVIN, G., KAUL, V., AND MALIK, S. Declarative Infrastruc-

ture Configuration Synthesis and Debugging. Journal of Network and System
Management 16, 3 (2008), 235-258.

NORMAN, D. A. Design Rules Based on Analyses of Human Error. Communi-
cations of the ACM 26, 4 (April 1983), 254-258.

OLIVEIRA, F., NAGARAJA, K., BACHWANI, R., BIANCHINI, R., MARTIN,
R. P., AND NGUYEN, T. D. Understanding and Validating Database System
Administration. In Proceedings of 2006 USENIX Annual Technical Conference
(ATC’06) (May 2006).

OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A. Why Do Inter-
net Services Fail, and What Can Be Done About It? In Proceedings of the 4th
USENIX Symposium on Internet Technologies and Systems (USITS 03) (Seattle,
WA, March 2003).

http://bugs.mysql.com/bug.php?id=74720
http://bugs.mysql.com/bug.php?id=75645

152

[114] OsoGgAaMmi, T., AND ITOKO, T. Finding Probably Better System Configura-
tions Quickly. In Proceedings of the Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS/Performance’06) (June
2000).

[115] PALATIN, N., LEIZAROWITZ, A., SCHUSTER, A., AND WOLFF, R. Mining
for Misconfigured Machines in Grid Systems. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’06) (Philadelphia, PA, August 2006).

[116] PATTERSON, D., BROWN, A., BROADWELL, P., CANDEA, G., CHEN, M.,
CUTLER, J., ENRIQUEZ, P., Fox, A., KICIMAN, E., MERZBACHER, M.,
OPPENHEIMER, D., SASTRY, N., TETZLAFF, W., TRAUPMAN, J., AND
TREUHAFT, N. Recovery-Oriented Computing (ROC): Motivation, Definition,
Techniques, and Case Studies. Tech. Rep. UCB//CSD-02-1175, University of
California Berkeley, March 2002.

[117] PERROW, C. Normal Accidents: Living with High-Risk Technologies. Basic
Books, 1984.

[118] POTHARAJU, R., CHAN, J., HU, L., NITA-ROTARU, C., WANG, M., ZHANG,
L., AND JAIN, N. ConfSeer: Leveraging Customer Support Knowledge Bases for
Automated Misconfiguration Detection. In Proceedings of the 35th International
Conference on Very Large Data Bases (VLDB’15) (Kohala Coast, HI, August
2015).

[119] QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU, Y. Rx: Treating Bugs As
Allergies—A Safe Method to Survive Software Failure. In Proceedings of the
20th Symposium on Operating System Principles (SOSP’05) (Brighton, United
Kingdom, October 2005).

[120] Qu, X., ACHARYA, M., AND ROBINSON, B. Impact Analysis of Configuration
Changes for Test Case Selection. In Proceedings of the 22nd IEEE International
Symposium on Software Reliability Engineering (ISSRE’11) (Hiroshima, Japan,
November 2011).

[121] Qu, X., COHEN, M. B., AND ROTHERMEL, G. Configuration-Aware Regres-
sion Testing: An Empirical Study of Sampling and Prioritization. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA’08)
(Seattle, WA, July 2008).

[122] RAAB, M., AND BARANY, G. Challenges in Validating FLOSS Configuration.
In Proceedings of the 13th International Conference on Open Source Systems
(Buenos Aires, Argentina, May 2017).

[123]

[124]

[125]

[126]

[127]
[128]

[129]

[130]

[131]

[132]

[133]

153

RABKIN, A., AND KATZ, R. Precomputing Possible Configuration Error Diag-
nosis. In Proceedings of the 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’11) (Lawrence, KS, November 2011).

RABKIN, A., AND KATZ, R. Static Extraction of Program Configuration Options.
In Proceedings of the 33th International Conference on Software Engineering
(ICSE’11) (Honolulu, HI, May 2011).

RABKIN, A., AND KATZ, R. How Hadoop Clusters Break. IEEE Software
Magazine 30, 4 (July 2013), 88-94.

RAMACHANDRAN, V., GUPTA, M., SETHI, M., AND CHOWDHURY, S. R. De-
termining Configuration Parameter Dependencies via Analysis of Configuration
Data from Multi-tiered Enterprise Applications. In Proceedings of the 6th Inter-
national Conference on Autonomic Computing and Communications (ICAC’09)
(Barcelona, Spain, June 2009).

REASON, J. Human Error. Cambridge University Press, October 1990.

REISNER, E., SONG, C., MA, K.-K., FOSTER, J. S., AND PORTER, A. Using
Symbolic Evaluation to Understand Behavior in Configurable Software Systems.
In Proceedings of the 32th International Conference on Software Engineering
(ICSE’10) (Cape Town, South Africa, May 2010).

RINARD, M., CADAR, C., DUMITRAN, D., Roy, D. M., LEU, T., AND
WILLIAM S. BEEBEE, J. Enhancing Server Availability and Security Through
Failure-Oblivious Computing. In Proceedings of the 6th USENIX Conference on
Operating Systems Design and Implementation (OSDI’04) (San Francisco, CA,
December 2004).

ROBBINS, J., KRISHNAN, K., ALLSPAW, J., AND LIMONCELLI, T. Resilience
Engineering: Learning to Embrace Failure. ACM Queue 10, 9 (September 2012),
1-9.

SANTOLUCITO, M., ZHAI, E., AND PISKAC, R. Probabilistic Automated Lan-
guage Learning for Configuration Files. In 28th International Conference on
Computer Aided Verification (CAV’16) (Toronto, Canada, July 2016).

SAYAGH, M., KERZAZI, N., AND ADAMS, B. On Cross-stack Configuration
Errors. In Proceedings of the 39th International Conference on Software Engi-
neering (ICSE’17) (Buenos Aires, Argentina, May 2017).

SAYYAD, A. S., INGRAM, J., MENZIES, T., AND AMMAR, H. Scalable Product
Line Configuration: A Straw to Break the Camel’s Back. In Proceedings of the
28th IEEE/ACM International Conference on Automated Software Engineering
(ASE’13) (Silicon Valley, CA, November 2013).

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

154

SCULLEY, D., HOLT, G., GOLOVIN, D., DAvYDOV, E., PHILLIPS, T., EBNER,
D., CHAUDHARY, V., AND YOUNG, M. Machine Learning: The High-Interest
Credit Card of Technical Debt. In Proceedings of the 1st Workshop on Software
Engineering for Machine Learning (Montreal, Canada, December 2014).

SEARCH ENGINE WATCH. How Much is a Google Top Spot Worth? http://

searchenginewatch.com/article/205086 1/How-Much-is-a-Google-Top-Spot-
Worth.

SEARCH ENGINE WATCH. 53% of Organic Search Clicks Go to First
Link. http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-
Top-Spot-Worth.

SHAMBAUGH, R., WEISS, A., AND GUHA, A. Rehearsal: A Configuration
Verification Tool for Puppet. In Proceedings of the 37th Annual ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’16)
(Santa Barbara, CA, June 2016).

SHERMAN, A., LISIECKI, P., BERKHEIMER, A., AND WEIN, J. ACMS: Aka-
mai Configuration Management System. In Proceedings of the 2nd USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI’05) (Boston,
MA, May 2005).

SIEGMUND, N., GREBHAHN, A., APEL, S., AND KASTNER, C. Performance-
Influence Models for Highly Configurable Systems. In Proceedings of the
10th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’15) (Bergamo, Italy, August 2015).

SIEWIOREK, D. P., AND SWARZ, R. S. Reliable Computer Systems: Design and
Evaluation, 3 ed. A K Peters, Ltd, 1998.

SONG, C., PORTER, A., AND FOSTER, J. S. iTree: Efficiently Discovering
High-Coverage Configuration Using Interaction Trees. IEEE Transactions on
Software Engineering (TSE) 40, 3 (March 2014), 251-265.

SQUID BUG #1703. diskd related 100% CPU after ’squid -k rotate’. http://bugs.
squid-cache.org/show_bug.cgi?id=1703.

SQUID BUG #4186. The mail notification feature is buggy and does not deal
with configuration errors. http://bugs.squid-cache.org/show_bug.cgi?id=4186.

SRIDHARAN, M., FINK, S. J., AND BoODIK, R. Thin Slicing. In Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI’07) (San Diego, CA, June 2007).

http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://bugs.squid-cache.org/show_bug.cgi?id=1703
http://bugs.squid-cache.org/show_bug.cgi?id=1703
http://bugs.squid-cache.org/show_bug.cgi?id=4186

155

[145] SRIKANTH, H., COHEN, M. B., AND QU, X. Reducing Field Failures in System
Configurable Software: Cost-Based Prioritization. In Proceedings of the 20th
IEEE International Symposium on Software Reliability Engineering (ISSRE’09)
(Mysuru, Karnataka, India, November 2009).

[146] STACKOVERFLOW. 2015 Developer Survey. http://stackoverflow.com/research/
developer-survey-2015#profile-education, 2015.

[147] STACKOVERFLOW QUESTION #21253299. Hadoop sshfence (permis-
sion denied). http://stackoverflow.com/questions/21253299/hadoop-sshfence-
permission-denied.

[148] STACKOVERFLOW QUESTION #7732983. Core dump file is not generated.
http://stackoverflow.com/questions/7732983/core-dump-file-is-not-generated.

[149] Su, Y.-Y., ATTARIYAN, M., AND FLINN, J. AutoBash: Improving Configura-
tion Management with Operating System Causality Analysis. In Proceedings of
the 21st ACM Symposium on Operating Systems Principles (SOSP’07) (Steven-
son, WA, October 2007).

[150] Su, Y.-Y., AND FLINN, J. Automatically Generating Predicates and Solutions
for Configuration Troubleshooting. In Proceedings of 2009 USENIX Annual Tech-
nical Conference (ATC’09) (San Diego, CA, June 2009).

[151] Sung, Y.-W. E., TIE, X., WONG, S. H., AND ZENG, H. Robotron: Top-down
Network Management at Facebook Scale. In Proceedings of 2016 Annual Confer-
ence of the ACM Special Interest Group on Data Communication (SIGCOMM’16)
(Floriandpolis, Brazil, August 2016).

[152] SVERDLIK, Y. Microsoft: Misconfigured Network Device Led to Azure
Outage. http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-
misconfigured-network-device-led-azure-outage, 2012.

[153] TAKAYAMA, L., AND KANDOGAN, E. Trust as an Underlying Factor of Sys-
tem Administrator Interface Choice. In CHI ’06 Extended Abstracts on Human
Factors in Computing Systems (CHI EA’06) (Montréal, Québec, Canada, April
2006).

[154] TAMURA, G., CASALLAS, R., CLEVE, A., AND DUCHIEN, L. QoS Contract
Preservation through Dynamic Reconfiguration: A Formal Semantics Approach.
Science of Computer Programming 94, 3 (November 2014), 301-332.

[155] TANG, C., KOOBURAT, T., VENKATACHALAM, P., CHANDER, A., WEN, Z.,
NARAYANAN, A., DOWELL, P., AND KARL, R. Holistic Configuration Manage-
ment at Facebook. In Proceedings of the 25th Symposium on Operating System
Principles (SOSP’15) (Monterey, CA, October 2015).

http://stackoverflow.com/research/developer-survey-2015#profile-education
http://stackoverflow.com/research/developer-survey-2015#profile-education
http://stackoverflow.com/questions/21253299/hadoop-sshfence-permission-denied
http://stackoverflow.com/questions/21253299/hadoop-sshfence-permission-denied
http://stackoverflow.com/questions/7732983/core-dump-file-is-not-generated
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage

156

[156] THE ASSOCIATION OF SUPPORT PROFESSIONALS. Technical Support Cost Ra-
tios (2000).

[157] THE AVAILABILITY DIGEST. Poor Documentation Snags Google. http://www.
availabilitydigest.com/public_articles/0504/google_power_out.pdf.

[158] THOMAS, K. Thanks, Amazon: The Cloud Crash Reveals Your Im-
portance. http://www.pcworld.com/article/226033/thanks_amazon_for_making_
possible_much_of_the_internet.html.

[159] TSEITLIN, A. The Antifragile Organization. Communications of the ACM 56, 8
(August 2013), 40—44.

[160] VECCHIATO, D., VIEIRA, M., AND MARTINS, E. The Perils of Android Secu-
rity Configuration. IEEE Computer 49, 6 (June 2016), 15-21.

[161] VEERARAGHAVAN, K., MEzA, J., CHou, D., KiMm, W., MARGULIS, S.,
MICHELSON, S., NISHTALA, R., OBENSHAIN, D., PERELMAN, D., AND
SONG, Y. J. Kraken: Leveraging Live Traffic Tests to Identify and Resolve
Resource Utilization Bottlenecks in Large Scale Web Services. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI’16) (Savannah, GA, November 2016).

[162] VELASQUEZ, N. F., WEISBAND, S., AND DURCIKOVA, A. Designing Tools
for System Administrators: An Empirical Test of the Integrated User Satisfaction
Model. In Proceedings of the 22nd Large Installation System Administration
Conference (LISA’08) (San Diego, CA, November 2008).

[163] VERBOWSKI, C., KicIMAN, E., KUMAR, A., DANIELS, B., LU, S., LEE,
J., WANG, Y.-M., AND ROUSSEV, R. Flight Data Recorder: Monitoring
Persistent-State Interactions to Improve Systems Management. In Proceedings
of the 7th USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI’06) (Seattle, WA, November 2006).

[164] VERBOWSKI, C., LEE, J., L1U, X., ROUSSEV, R., AND WANG, Y.-M. LiveOps:

Systems Management as a Service. In Proceedings of the 20th Large Installation
System Administration Conference (LISA’06) (December 2006).

[165] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND WANG, Y.-M. Au-
tomatic Misconfiguration Troubleshooting with PeerPressure. In Proceedings of

the 6th USENIX Conference on Operating Systems Design and Implementation
(OSDI’04) (San Francisco, CA, December 2004).

[166] WANG, T., HARMAN, M., JiA, Y., AND KRINKE, J. Searching for Better
Configurations: A Rigorous Approach to Clone Evaluation. In Proceedings of
the 9th Joint Meeting of the European Software Engineering Conference and

http://www.availabilitydigest.com/public_articles/0504/google_power_out.pdf
http://www.availabilitydigest.com/public_articles/0504/google_power_out.pdf
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

157

the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’13) (Saint Petersburg, Russia, August 2013).

WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND SOLAR-LEZAMA, A.
Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behav-
ior. In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI’ 14) (Broomfield, CO, October 2014).

WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y., WANG, H. J.,
YUAN, C., AND ZHANG, Z. STRIDER: A Black-box, State-based Approach to
Change and Configuration Management and Support. In Proceedings of the 17th
Large Installation Systems Administration Conference (LISA’03) (San Diego, CA,
October 2003).

WELSH, M. What I wish systems researchers would work on. http://matt-welsh.
blogspot.com/2013/05/what-i-wish-systems-researchers-would.html.

WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configuration Debugging as
Search: Finding the Needle in the Haystack. In Proceedings of the 6th USENIX
Conference on Operating Systems Design and Implementation (OSDI’04) (San
Francisco, CA, December 2004).

X1, B., LIU, Z., RAGHAVACHARI, M., XIA, C. H., AND ZHANG, L. A Smart
Hill-Climbing Algorithm for Application Server Configuration. In Proceedings
of the 13th International World Wide Web Conference (WWW’04) (May 2004).

XI1A, X., Lo, D., Qru, W., WANG, X., AND ZHOU, B. Automated Configura-
tion Bug Report Prediction Using Text Mining. In Proceedings of the 38th IEEE
Computer Software and Applications Conference (Visteras, Sweden, June 2014).

XIONG, Y., ZHANG, H., HUBAUX, A., SHE, S., WANG, J., AND CZARNECKI,
K. Range Fixes: Interactive Error Resolution for Software Configuration. /[EEE
Transactions on Software Engineering (TSE) 41, 6 (June 2015), 603—-619.

Xu, B., Lo, D., XIA, X., SUREKA, A., AND LI, S. EFSPredictor: Predict-
ing Configuration Bugs With Ensemble Feature Selection. In Proceedings of the
22nd Asia-Pacific Software Engineering Conference (New Delhi, India, Decem-
ber 2015).

Xu, T., JIN, L., FAN, X., ZHOU, Y., PASUPATHY, S., AND TALWADKER,
R. Hey, You Have Given Me Too Many Knobs! Understanding and Deal-
ing with Over-Designed Configuration in System Software. In Proceedings of
the 10th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’15) (Bergamo, Italy, August 2015).

http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-would.html
http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-would.html

158

[176] Xu, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND PASUPATHY, S.
Early Detection of Configuration Errors to Reduce Failure Damage. In Proceed-
ings of the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’16) (Savannah, GA, November 2016).

[177] Xu, T., NAING, H. M., Lu, L., AND ZHOU, Y. How Do System Administra-
tors Resolve Access-Denied Issues in the Real World? In Proceedings of the
35th Annual CHI Conference on Human Factors in Computing Systems (CHI’17)
(Denver, CO, May 2017).

[178] Xu, T., PANDEY, V., AND KLEMMER, S. An HCI View of Configuration Prob-
lems. CoRR abs/1601.01747 (January 2016).

[179] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG, T., YUAN, D., ZHOU, Y.,
AND PASUPATHY, S. Do Not Blame Users for Misconfigurations. In Proceedings
of the 24th Symposium on Operating System Principles (SOSP’13) (Farmington,
PA, November 2013).

[180] Xu, T., AND ZHOU, Y. Systems Approaches to Tackling Configuration Errors:
A Survey. ACM Computing Surveys (CSUR) 47, 4 (July 2015).

[181] Xu, X., LI, S., Guo, Y., DONG, W., L1, W., AND L1AO, X. Automatic Type
Inference for Proactive Misconfiguration Prevention. In Proceedings of the 29th
International Conference on Software Engineering and Knowledge Engineering

(Pittsburgh, PA, June 2017).

[182] YARN ISSUE #2166. Timelineserver should validate that yarn.timeline-
service.leveldb-timeline-store.ttl-interval-ms is greater than zero when level db
is for timeline store. https://issues.apache.org/jira/browse/ YARN-2166.

[183] YE, T., AND KALYANARAMAN, S. A Recursive Random Search Algorithm for
Large-Scale Network Parameter Configuration. In Proceedings of the Interna-
tional Conference on Measurements and Modeling of Computer Systems (SIG-

METRICS’03) (June 2003).

[184] YiLmAz, C., COHEN, M. B., AND PORTER, A. A. Covering Arrays for Ef-
ficient Fault Characterization in Complex Configuration Spaces. IEEE Transac-
tions on Software Engineering (TSE) 32, 1 (January 2006), 1-15.

[185] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUNDARAM, L. N., AND
PASUPATHY, S. An Empirical Study on Configuration Errors in Commercial and
Open Source Systems. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP’11) (Cascais, Portugal, October 2011).

[186] YUAN, C., LAao, N., WEN, J.-R., L1, J., ZHANG, Z., WANG, Y.-M., AND MA,
W.-Y. Automated Known Problem Diagnosis with Event Traces. In Proceedings
of the 1st EuroSys Conference (EuroSys’06) (Leuven, Belgium, April 2006).

https://issues.apache.org/jira/browse/YARN-2166

159

[187] YuAN, D., Luo, Y., ZHUANG, X., RODRIGUES, G., ZHAO, X., ZHANG, Y.,
JAIN, P. U., AND STUMM, M. Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed Data-intensive Systems. In
Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’ 14) (Broomfield, CO, October 2014).

[188] YUAN, D., PARK, S., HUANG, P, LIU, Y., LEE, M. M., TANG, X., ZHOU, Y.,
AND SAVAGE, S. Be Conservative: Enhancing Failure Diagnosis with Proactive
Logging. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI’12) (Hollywood, CA, October 2012).

[189] YUuAN, D., XIE, Y., PANIGRAHY, R., YANG, J., VERBOWSKI, C., AND KU-
MAR, A. Context-based Online Configuration Error Detection. In Proceedings
of 2011 USENIX Annual Technical Conference (ATC’11) (Portland, OR, June
2011).

[190] ZHANG, J., RENGANARAYANA, L., ZHANG, X., GE, N., BALA, V., XU, T.,
AND ZHOU, Y. EnCore: Exploiting System Environment and Correlation Infor-
mation for Misconfiguration Detection. In Proceedings of the 19th International

Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS’ 14) (Salt Lake City, UT, March 2014).

[191] ZHANG, S., AND ERNST, M. D. Automated Diagnosis of Software ConinnAgu-
ration Errors. In Proceedings of the 35th International Conference on Software
Engineering (ICSE’13) (San Francisco, CA, May 2013).

[192] ZHANG, S., AND ERNST, M. D. Which Configuration Option Should I Change?
In Proceedings of the 36th Internationl Conference on Software Engineering
(ICSE’14) (Hyderabad, India, May 2014).

[193] ZHANG, S., AND ERNST, M. D. Proactive Detection of Inadequate Diagnostic
Messages for Software Configuration Errors. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis (ISSTA’15) (Baltimore, MD,
July 2015).

[194] ZHENG, W., BIANCHINI, R., AND NGUYEN, T. D. Automatic Configuration of

Internet Services. In Proceedings of the 2nd EuroSys Conference (EuroSys’07)
(Lisbon, Portugal, March 2007).

[195] ZHENG, W., BIANCHINI, R., AND NGUYEN, T. D. MassConf: Automatic Con-
figuration Tuning By Leveraging User Community Information. In Proceedings
of the 2nd ACM/SPEC International Conference on Performance Engineering
(Karlsruhe, Germany, March 2011).

[196] ZHou, S., LL, S., L1u, X., XU, X., ZHENG, S., L1AO, X., AND XIONG, Y. Eas-
ier Said Than Done: Diagnosing Misconfiguration via Configuration Constraints

[197]

[198]

160

Analysis: A Study of the Variance of Configuration Constraints in Source Code.
In Proceedings of the 21th International Conference on Evaluation and Assess-
ment in Software Engineering (Karlskrona, Sweden, June 2017).

ZHou, S., L1u, X., L1, S., DONG, W., L1AO, X., AND XIONG, Y. ConfMapper:
Automated Variable Finding for Configuration Items in Source Code. In Proceed-
ings of the 2016 IEEE International Conference on Software Quality, Reliability,
and Security (Vienna, Austria, August 2016).

ZHu, Y., L1u, J., Guo, M., BAO, Y., SONG, K., AND LIU, Z. BestConfig:
Tapping the Performance Potential of Systems via Configuration Adjustment. In
Proceedings of the 8th ACM Symposium on Cloud Computing (SoCC’17) (Santa
Clara, CA, September 2017).

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	A Systems Perspective
	Dissertation Contributions
	Anticipating Misconfigurations with Spex
	Enforcing Early Detection with PCheck
	Simplicity-oriented Configuration Design

	Dissertation Scope

	Anticipating Misconfigurations
	Introduction
	Background
	Configuration Constraint Inference
	What Constraints Can Be Inferred?
	How to Infer Constraints?
	Discussion and Limitation

	Use Cases of Configuration Constraints
	Harden Systems against Configuration Errors
	Detect Error-Prone Design and Handling

	Evaluation
	Overall Results
	Benefits to Real-World Configuration Problems
	Configuration Constraint Inference

	Experience and Practice
	Interaction Experience with Developers
	Practice

	Summary

	Early Detection
	Introduction
	Background
	Severity of Latent Configuration Errors
	Limitation of Existing Detection Approaches

	Understanding Latent Configuration Errors
	Methodology
	Findings
	Implication

	PCheck Design and Implementation
	Emulating Execution
	Preventing Side Effects
	Capturing Anomalies
	Invoking Early Checkers

	Experimental Evaluation
	Methodology
	Detecting Real-world LC Errors
	Checking Real-world Configuration Files
	Checker Generation
	Checking Overhead
	False Positives

	Limitations
	Summary

	Simplicity-oriented Design
	Introduction
	Background
	Methodology
	Target Software
	Real-world Configuration Settings
	Real-world Configuration Issues
	Threats to Validity

	Understanding Configuration Settings in the Field
	Do Operators Really Need So Many Configuration Knobs?
	Should We Offer More Choices in Configuration Knobs?
	What Is The ``Cost'' of Too Many Knobs?
	What Kinds of Knobs Are Most Utilized?

	Configuration Simplification
	Simplification Guidelines
	Effectiveness of Simplification

	Configuration Navigation
	Methodology
	Effectiveness of Navigation

	Discussion
	Implications and Incentives
	Further Simplification
	Intent-based Configuration

	Summary

	Related Work
	Automating Configuration
	Tuning Performance Configurations
	Reusing Configurations
	Discussion

	Checking Correctness
	Detecting Misconfigurations
	Online Testing
	Discussion

	Dealing with Misconfiguration-Induced Failures
	Troubleshooting Misconfigurations
	Failure Recovery
	Discussion

	Summary

	Conclusion and Future Work
	Operation Disciplines and Implications
	Bibliography

