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A Nonparametric Bayesian Model of Visual Short-Term Memory
A. Emin Orhan (eorhan@bcs.rochester.edu) Robert A. Jacobs (robert.jacobs@rochester.edu)

Department of Brain & Cognitive Sciences, University of Rochester, Rochester NY 14627, USA

Abstract

We present a nonparametric Bayesian model of the organiza-
tion of visual short-term memory based on the Dirichlet pro-
cess mixture model. Our model implements the idea that items
in visual short-term memory can be encoded at multiple lev-
els of abstraction, where the appropriate levels of abstraction
and how much weight should be given to each level can be
automatically determined. A capacity limit is implemented
in this model by favoring small numbers of clusters of items.
We show that various biases and distortions reported in visual
short-term recall and recognition memory literatures can be
quite naturally and elegantly explained by the model.
Keywords: Visual short-term memory; chunking; Dirichlet
process mixture model; nonparametric Bayesian model.

Introduction
In a standard visual short-term memory (VSTM) experiment,
subjects view a display containing multiple items with simple
features (e.g. colored squares or oriented Gabor gratings) for
a brief period of time and, after a delay period, are asked
to report about one of those items. This procedure allows
researchers to address a number of important questions: What
is the exact content of their visual memory for the display at
the end of the delay period and how is this content organized
in VSTM? Are the items encoded independently in VSTM,
or do memories for different items influence one another? If
so, how?

There is substantial evidence suggesting that items in
VSTM are not encoded independently of one another (Brady
& Alvarez, 2010; Huang & Sekuler, 2010; Jiang, Olson, &
Chun, 2000). As a specific form of such dependence between
the representations of different items in VSTM, it has recently
been argued that VSTM is organized hierarchically with each
item being represented at two different scales, a fine scale
(i.e. individually) and a coarse scale through the ensemble
statistics of all items in the display (Brady & Alvarez, 2010;
Brady & Tenenbaum, 2010; although see our discussion of
Brady and Alvarez (in press) below). In this paper, we present
a generalization of this idea based on the Dirichlet process
mixture model (DPMM) (Neal, 2000). DPMM is a popular
nonparametric model that can describe a dataset in terms of
a probability distribution over its different possible partitions.
Through the use of multiple partitions, our model can repre-
sent an item in VSTM not just at two levels of abstraction as
proposed by Brady and Alvarez (2010) and Brady and Tenen-
baum (2010), but at multiple levels of abstraction, including
intermediate levels of abstraction. For instance, in one parti-
tion, an item might form its own group (i.e., a fine-scale rep-
resentation of the item). In another partition, this item might
be grouped with one other item that is highly similar to it (a
moderate-scale representation). And in a third partition, the
item might be grouped with all other items (a coarse-scale

representation). The advantage of DPMM is that it can auto-
matically determine the appropriate partitions for the partic-
ular dataset at hand and the weights that should be alloted to
each partition in the posterior distribution.

Details of the Model
Consider a single trial of a hypothetical VSTM experiment in
which an observer needs to remember the feature values (e.g.
position of a square or orientation of a Gabor grating) of N
items in a display. We denote the actual feature value of item
i by θi. One of the items, called the target item, is then cued
and the observer is asked to report its feature value. The index
of the target item is denoted by t and its feature value by θt .
We model this single trial using a non-conjugate DPMM that
assumes the following generative process (Neal, 2000):

θi|µi,τi ∼ N (θi;µi,τi) (1)
µi,τi|G ∼ G (2)

G ∼ DP(G0,α) (3)
G0(µ,τ) = U(µ;a,b) ·G(τ;ατ,βτ) (4)

Here, µi and τi are the mean and precision of the Gaussian
component (or cluster) that item i is assigned to and they
are identical for different i if the corresponding items are as-
signed to the same component. N (θ;µ,τ) is a normal distri-
bution with mean µ and precision τ, DP(G0,α) is a Dirichlet
process with base distribution G0 and concentration parame-
ter α. Roughly, α acts a capacity parameter in our model: for
small values of this parameter, the model favors a small num-
ber of clusters or groups of similar items (“chunks”), whereas
for large values, it tends to assign each item to its own cluster.
We place a G(αc,1) prior on the concentration parameter α,
treating αc as a free parameter. U(µ;a,b) is a uniform dis-
tribution within the range (a,b) and G(τ;ατ,βτ) is a gamma
distribution with parameters ατ and βτ. We set the range of
the uniform distribution to a large interval including mini-
mum and maximum possible values for the relevant variable
in each experiment below. For the parameters of the gamma
distribution ατ,βτ, we put a G(1,1) prior on βτ and treat ατ

as a free parameter. This reduces the total number of free pa-
rameters to just 2, namely αc for the concentration parameter,
and ατ for τ. We use the same parameter values ατ,αc for all
trials of an experiment. Inference is performed via a Markov
chain Monte Carlo (MCMC) sampling algorithm with auxil-
iary variables (Algorithm 8 in Neal (2000)).

Figure 1 schematically illustrates, in a hypothetical one-
dimensional example, the idea of representing an item at mul-
tiple levels of abstraction with a DPMM. In this figure, fea-
ture values of three different items, θi, shown in a single
trial of a hypothetical VSTM experiment, are represented by
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Figure 1: (Left) p(θ̃t |µt ,τt) at different iterations of
the MCMC algorithm; (Middle) posterior distribution
over the number of clusters; (Right) the proposed
memory representation of target t: p(θ̃t |{θi}i=1,...,N) =∫

p(θ̃t |µt ,τt)p(µt ,τt |{θi}i=1,...,N)dµtdτt .

the dashed lines. At different iterations of the MCMC sam-
pling algorithm, the target item (here the leftmost one) gets
assigned to different Gaussian components. For instance, at
one iteration, the target is assigned to a Gaussian component
of its own (represented by the red line in the leftmost graph
of the figure). In this case, the item is said to be encoded in-
dividually. At another iteration of the sampling algorithm, a
different partition is drawn from the posterior distribution; the
target is now grouped with the nearest item and the two items
together get assigned to a common Gaussian component (rep-
resented by the blue line). In this case, the two items are said
to be encoded together. At yet another iteration, the partition
sampled from the posterior distribution assigns all three items
into a single group and hence they are represented by a sin-
gle Gaussian component (shown by the green line). This last
representation is similar to the coarse representation of items
by their ensemble statistics as in Brady and Alvarez (2010).

Formally, the three distributions shown in the leftmost plot
represent p(θ̃t |µt ,τt), with θ̃t representing an estimate of the
feature value of the target item, for three different samples
µt , τt from the posterior distribution over the Gaussian com-
ponents that the target is assigned to, p(µt ,τt |{θi}i=1,...,N).
The middle plot in Figure 1 shows the posterior distribu-
tion over the number of groups or clusters. This plot shows
that for this particular example, most of the time, all items
get assigned to a single cluster as most of the posterior
weight is on this case and items are rarely individually en-
coded. Finally the rightmost plot shows the posterior pre-
dictive distribution for the target item: p(θ̃t |{θi}i=1,...,N) =∫

p(θ̃t |µt ,τt)p(µt ,τt |{θi}i=1,...,N)dµtdτt , i.e. an infinite mix-
ture of Gaussian components each weighted by its posterior
weight.1 This distribution is also computed via sampling. We
use this last posterior predictive distribution as the memory
representation of the target item t and refer to it as such.

Next, we show that our model can both qualitatively and
quantitatively explain certain biases and distortions previ-
ously reported in visual short-term recall and recognition

1Note that this integral only involves the components µt , τt that
the target is assigned to, and is thus different from the overall poste-
rior predictive distribution, p(θ̃|{θi}i=1,...,N).

memory literatures. Specifically, we focus here on results
from two short-term recall tasks (Brady & Alvarez, 2010;
Wilken & Ma, 2004) and from a short-term recognition task
(Viswanathan, Perl, Visscher, Kahana, & Sekuler, 2009).

Explaining Biases in Short-Term Recall
Brady and Alvarez (2010): Brady and Alvarez (2010)
demonstrated that ensemble statistics of items in a display
influence memory for individual items. In their experiment,
subjects were presented with three red, three blue and three
green circles with different sizes for a brief duration and they
were asked to remember the sizes of red and blue circles only
and to ignore the green circles. After a delay interval, a black
circle appeared at the location of a red or a blue circle in
the original display. Subjects had to indicate the size of the
original (red or blue) circle that was at that location by us-
ing the mouse to resize the black circle. Brady and Alvarez
(2010) showed that the reported size of the target circle was
biased toward the average size of the circles having the same
color as the target. It is important to note that they used pairs
of identical configurations in their design such that the only
difference between trials in a matched pair was that the tar-
get circle and a randomly chosen circle of the opposite color
swapped their colors. They measured subjects’ bias by first
finding, for each matched pair of trials, the colors associated
with the smaller and larger average circle sizes. They, then,
measured the ratio between the mean reported size when the
target circle appeared in the same color as the larger average
size circles and the mean reported size when it appeared in
the same color as the smaller average size circles. The value
of this ratio indicated whether subjects had a bias toward the
average size of the circles appearing in the same color as the
target. A value of 1 would indicate that subjects did not have
any bias toward the average size, as they would be equally
likely to report smaller or larger sizes than the actual size of
the target; whereas a value significantly greater than 1 would
indicate that subjects were more likely to report larger sizes
when the target appeared in the same color as the larger cir-
cles and smaller sizes when it appeared in the same color as
the smaller circles, even though the actual size of the target
was the same between the trials of a matched pair.

Brady and Alvarez (2010) reported an average bias of 1.2
(SEM: 0.05, 6 subjects and 400 trials each), suggesting that
subjects had a bias toward the average size of the circles ap-
pearing in the same color as the target. We simulated 3000
trials of the Brady and Alvarez (2010) experiment to test if
our nonparametric Bayesian model would be able to account
for the experimentally observed bias. Sizes of the blue and
red circles in each trial were generated in accordance with
their procedure: first, the mean sizes of the blue and red cir-
cles for a single trial were randomly chosen from the interval
[0.625°, 3.125°]. The actual sizes of the three red and three
blue circles were then drawn from normal distributions with
corresponding means and standard deviations that were equal
to one-eighth of the corresponding means. After generating
stimuli for 1500 such trials, stimuli for the remaining 1500
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Figure 2: (Top row) feature values of the items (dashed lines,
feature value of the target is represented by the red dashed
line) and the memory representation of the target; (bottom
row) posterior distribution over the number of clusters.

trials were generated by simply swapping, for each trial, the
color of the target circle with that of a randomly chosen circle
of the opposite color. We assumed that subjects would group
the target with other circles of the same color and therefore
considered only those circles while running the model. The
free parameters of the model (αc and ατ) were optimized via a
simple grid search method to fit the experimentally observed
bias as closely as possible. Once the proposed memory repre-
sentation for the target, p(θ̃t |{θi}i=1,...,N), is computed, there
are different ways to generate a response. One possibility is
to take the mean of this distribution as the model’s response.
Instead, we draw a single value from this distribution and
consider this random value, θ̃m

t , to be the model’s response.
Although both of these response generation methods yielded
similar biases on average, the second method provided a bet-
ter fit to standard deviations of subjects’ average absolute er-
ror reported in Brady and Alvarez (2010) (0.5°on average,
SEM: 0.06°). Due to the stochasticity of the responses, the
sampling procedure was repeated 10 times for each trial, each
time drawing different samples from the distribution repre-
senting the memory for the target item. Here we report the
mean biases of these 10 repetitions. The mean bias of the
fitted model was 1.2030 (SEM: 0.0033) and its mean abso-
lute error was 0.4890°(SEM: 0.0018°), both very close to the
experimentally observed values (mean bias: 1.2, SEM: 0.05;
mean absolute error: 0.5, SEM: 0.06).

Figure 2 shows the model results for a typical matched pair
of trials. In this figure, the top row shows the feature values
of the items (dashed lines, feature value of the target is rep-
resented by the red dashed line) together with the memory
representation of the target, p(θ̃t |{θi}i=1,...,N), for the two
matched trials. Note how the memory representation of the

target is shifted toward the mean feature value of the items in
both cases. The bottom row shows the posterior distribution
over the number of clusters for the two trials. These posterior
distributions (and those from other trials not shown here) are
dominated by 1-cluster partitions, suggesting that subjects’
performance can be explained as relying overwhelmingly on
a 1-cluster, global, or ensemble representation of the items.

Wilken and Ma (2004): Using a recall paradigm, Wilken
and Ma (2004) showed that subjects displayed systematic bi-
ases in their judgments in a short-term memory experiment
that used spatial frequency as the relevant feature. In their
Experiment 9, subjects are first briefly shown a number of Ga-
bor stimuli with different spatial frequencies randomly drawn
from 16 spatial frequency values linearly spaced between 4
cycles/degree and 8 cycles/degree. Different set sizes used
in the experiment were N = 2,4,6,8. After a delay interval,
one of the N Gabors is cued and the subjects’ task is to adjust
the spatial frequency of a probe Gabor stimulus using the ar-
row keys so that it matches the frequency of the cued Gabor.
Wilken and Ma (2004) showed that subjects tended to over-
estimate the spatial frequencies of low-frequency Gabors,
but tended to underestimate the spatial frequencies of high-
frequency Gabors, i.e. subjects showed a bias toward the
mean spatial frequencies in their judgments. Wilken and Ma
(2004) also observed that the magnitude of this bias depended
on the set size with smaller set sizes leading to smaller biases
(see Figure 8 in Wilken and Ma (2004); also reproduced in
Figure 3 here).

We sought to determine whether our nonparametric
Bayesian model would be able to explain, both qualitatively
and quantitatively, these observed biases. We first generated a
dataset according to the procedure described above. For each
set size, 3000 trials were simulated. We then ran the DPMM
model on these data. In fitting the model to observed biases,
ατ was allowed to vary across different set sizes, but αc was
fixed across different set sizes; and both parameters were op-
timized to fit the experimentally observed biases as close as
possible.

Biases obtained from the best-fitting DPMM model are
shown in Figure 3 together with the experimentally observed
biases. The model was able to capture the two main patterns
in the observed biases: the linear relationship between the
bias and target frequency and the increase in the magnitude
of bias with set size, as well as providing a good quantitative
fit: root mean squared error, RMSE: 0.2437. Figure 3 also
shows the posterior distributions over the number of clusters
averaged over all trials for different set sizes. These posterior
distributions are dominated by partitions with small numbers
of clusters, suggesting that subjects’ performances can be ex-
plained as relying overwhelmingly on coarse representations
of the items.

Explaining the Inter-Item Similarity Effect
Kahana and Sekuler (2002) showed that inter-item similarity
between stimuli influences subjects’ performances in a stan-
dard old/new recognition task. In their Experiment 1, on each
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Figure 3: The first two plots show the observed biases and bi-
ases predicted by the DPMM for different set sizes (magenta
N = 8, blue N = 6, green N = 4, red N = 2); error bars rep-
resent ∓1 SEM across trials. The remaining four plots show
the posterior distributions over the number of clusters aver-
aged over all trials for different set sizes.

trial, subjects were first successively shown sinusoidal grat-
ings with different spatial frequencies. After a delay interval,
they were shown a test grating (or probe) which, on half of
the trials, had the same spatial frequency as one of the grat-
ings presented on the corresponding trial (OLD) and on the
other half of the trials, had a different spatial frequency than
all the gratings presented on the corresponding trial (NEW).
The task was to decide if the spatial frequency of the test
grating was OLD or NEW. Kahana and Sekuler (2002) then
fit the human data collected from this experiment by a sim-
ple ‘noisy exemplar’ (NEMO) model that included separate
terms for the effects of the similarity between the test probe
and each of the study items and the inter-item similarity be-
tween the study items. They found that the inter-item similar-
ity term had a significant effect on OLD/NEW decisions over
and above the effect of individual probe-item similarities. In
particular, when the probe-item similarities were fixed, larger
inter-item similarities increased the likelihood of a NEW re-
sponse, making the subject more likely to judge the probe to
be a novel item. Note that a model that represented the study
items independently would not be able to show any inter-item
similarity effects, as the inter-item similarity depends on all
the study items simultaneously.

Kahana and colleagues replicated the main inter-item sim-
ilarity effect in later works. Here, we specifically consider
an article by Viswanathan et al. (2009) and focus on one of
their experiments demonstrating that homogeneity or inter-
item similarity influences subjects’ responses. The design of
their experiment was, for our purposes, identical to the de-
sign of the experiments in Kahana and Sekuler (2002) de-
scribed in the previous paragraph. There were two conditions

in the Viswanathan et al. (2009) study: a medium homogene-
ity condition and a high homogeneity condition. These two
conditions are schematically described in the left and mid-
dle plots in Figure 4. In this figure, the spatial frequencies
(in just noticeable difference or JND units) of study gratings
are represented by black dashed lines (at 1, 4 and 8 JND in
the medium homogeneity condition, and at 3, 4 and 8 JND
in the high homogeneity condition) and the spatial frequency
of the probe grating is represented by the green dashed line
(at 2 JND in both conditions). Note that the probe is a NEW
item (or a lure) in both conditions. Also note that the individ-
ual probe-study item similarities are identical in the two con-
ditions so that the only difference between these conditions
is the inter-item similarity of the study items, with the high
homogeneity condition having a higher inter-item similarity
than the medium homogeneity condition. The inter-item sim-
ilarity effect refers to the finding that subjects had a signifi-
cantly higher probability of responding OLD (or YES) in the
medium homogeneity condition than in the high homogeneity
condition (mean P(Y ES) = 0.69 vs. mean P(Y ES) = 0.57).

We applied the DPMM model to the two conditions in
Viswanathan et al. (2009) and optimized the parameters to fit
the experimentally observed probabilities of YES responses.
Since this task is an old/new recognition task, we cannot use
the memory representation of the target p(θ̃t |{θi}i=1,...,N) in-
troduced previously, as unlike in other examples considered
in this paper which are all recall tasks, there is no single target
item in an old/new recognition task. Instead, we use the over-
all predictive distribution, p(θ̃|{θi}i=1,...,N), for this recogni-
tion task, which intuitively quantifies the likelihood that θ̃ was
the value of any one of the study items; whereas the distri-
bution p(θ̃t |{θi}i=1,...,N) that is used elsewhere in this paper,
quantifies the likelihood that θ̃t was the value of the target
item t. In the computation of the predictive distribution for
the target item, only the components that the target is assigned
to (µt and τt ) are considered; whereas in the computation of
the overall predictive distribution, p(θ̃|{θi}i=1,...,N), all com-
ponents in the posterior distribution are taken into account,
regardless of whether the target is assigned to them or not.
The overall predictive distribution, p(θ̃|{θi}i=1,...,N), can be
thought of as a nonparametric density estimator of the given
dataset and it can be easily computed by sampling (see sec-
tion 4 of Görür and Rasmussen (2010) for details).

Since p(θ̃|{θi}i=1,...,N) is a probability density,
we need to transform it into a probability of re-
sponding YES (or OLD). We do this by normaliz-
ing p(θ̃|{θi}i=1,...,N) between 0.2 and 0.8: P(Y ES) =

0.6 ∗ (p(θ̃|{θi}i=1,...,N)/max(p(θ̃|{θi}i=1,...,N))) + 0.2 so
that the maximum probability of responding YES is 0.8 and
the minimum probability of responding YES is 0.2. We
did not normalize probabilities between 0 and 1 because
in these experiments subjects tend to have a relatively high
probability of responding YES even for very dissimilar lures,
and a relatively low probability of responding YES even for
perfect matches or targets. The specific values of 0.2 and 0.8
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Figure 4: (Left) Overall predictive distributions in the
medium and high homogeneity conditions. Spatial frequen-
cies of the study items are shown with black lines and the
probe frequency is represented by the green line. (Right)
Probability of responding YES in the two conditions.

were chosen based on a similar previous study by Kahana,
Zhou, Geller, and Sekuler (2007).

Results are shown in Figure 4. The DPMM was able to
reproduce the inter-item similarity effect: the probability of
responding YES was 0.70 for the medium homogeneity con-
dition and 0.55 for the high homogeneity condition. Also
note that the model predicts that the lure probe (represented
by the green line) will elicit a higher percentage of YES re-
sponses than the rightmost study item in both conditions: for
the rightmost study item the model predicts P(Y ES) = 0.56
and P(Y ES) = 0.53 in the medium and high homogene-
ity conditions, respectively. This prediction is confirmed in
the Viswanathan et al. (2009) study, with observed mean
P(Y ES) = 0.57 and P(Y ES) = 0.52 for the rightmost study
item in the respective conditions. The model was not explic-
itly fit to these last two observed probabilities.

Intuitively, the reason that the DPMM can successfully ac-
count for the inter-item similarity effect is that the posterior
distribution was dominated by 1-cluster or 1-component par-
titions. Since the items in the high homogeneity condition
have a lower variance, this one component, in turn, had lower
variance in the high homogeneity condition. Even though the
probe has roughly the same Euclidean distance to the mean
in both conditions, it has a higher Mahalanobis (or effective)
distance to the mean in the high homogeneity condition, mak-
ing the probe less similar to the study items in that condition.

Accounting for Multiple Levels of Abstraction
More recently, in an experiment similar to the recall exper-
iment of Brady and Alvarez (2010) discussed above, Brady
and Alvarez (in press) showed that items can be represented
at multiple levels of abstractions in VSTM (including inter-
mediate levels), not just at two fixed-resolution levels. Exper-
iment 1 of Brady and Alvarez (in press) replicated the main
result of Brady and Alvarez (2010). They hypothesized that
the fact that color was a task relevant feature in this experi-
ment (subjects had to remember only the red circles and the
blue circles and ignore the green circles) might have increased
the salience of this feature, thereby inducing subjects to use
a color-based encoding for the circles. This implies that in a
similar task where color is not task-relevant, the observed bi-

ases toward the mean size of the same colored circles will dis-
appear. In their Experiment 2, Brady and Alvarez (in press)
tested this prediction by removing the green circles from the
display and presenting only the red circles and the blue circles
in each trial. Subjects were told to remember the sizes of all
circles in the display. Therefore, color was no longer a task-
relevant feature. Consistent with their hypothesis, Brady and
Alvarez (in press) found that subjects did not show any bias
toward the mean size of the same colored circles. However,
they observed a bias toward the mean size of all circles in the
display, suggesting that in different contexts, stimuli might be
represented at different levels of abstraction in VSTM.

To explain this distinctive pattern of biases when color was
a salient feature versus when it was not, Brady and Alvarez
(in press) used a two-level hierarchical model for Experi-
ment 2 and a three-level hierarchical model for Experiment
1. In the two-level hierarchical model, the two levels were
the level of individual circles (individual encoding) and the
overall mean of the sizes of all circles in the display. Since
the color-based grouping of circles is not taken into account
in this two-level hierarchical model, in estimating the sizes of
individual circles only a bias toward the overall mean size is
predicted by the model, in accordance with the results of Ex-
periment 2. On the other hand, in the three-level hierarchical
model, the three levels were the level of individual circles (in-
dividual encoding), the group level means of the sizes of red
and blue circles and the overall mean of the sizes of all circles
in the display. Since the color-based grouping of circles is ex-
plicitly incorporated into the model as a separate level, both
a bias toward group level means and a bias toward the over-
all mean are predicted by this three-level hierarchical model,
largely consistent with the results of Experiment 1 (it is not
clear if the results from their Experiment 1 support a bias to-
ward the overall mean in addition to the observed bias toward
the mean size of the same-colored circles).

Although their three-level hierarchical model allows for
the representation of items at multiple levels of abstrac-
tion (including intermediate levels), there are two problems
with (Brady & Alvarez, in press)’s hierarchical modeling ap-
proach. First, using hierarchical models with different num-
bers of levels in order to account for the pattern of results
observed in different experiments is ad hoc. It is not clear
what determines the number of levels of hierarchy that should
be used for a given experiment and the appropriate ‘grain’ of
those levels. Second, related to the first problem, note that in
their three-level hierarchical model, in the group level repre-
sentation of the circles, the number of groups (i.e. the number
of colors) and the assignment of each circle to a single group
had to be explicitly specified beforehand. Although it is rather
easy to do this in their experiment (as the number of colors
and the color of each circle are clear), it is not clear how to
define groups or how to assign each item to a group in more
ambiguous cases. It would be much better if the model could
determine these automatically.

The DPMM can deal with each of these problems and pro-
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vides a much more parsimonious and elegant explanation of
Brady and Alvarez (in press)’s results. We first represent the
colored circles used in Brady and Alvarez (in press) as two-
dimensional points in the feature space of color and size (for
now using arbitrary numerical values for the blue and red col-
ors). Following Brady and Alvarez (in press), we assume that
the manipulation in Experiment 2 (removing the green cir-
cles) reduces the salience or weight of the color dimension
and consequently the distances along the color dimension
shrink in Experiment 2, effectively making the stimuli one-
dimensional. This is illustrated in Figure 5 in the context of
a hypothetical example. A straightforward two-dimensional
extension of the DPMM presented in this paper, where one
uses bivariate normal component distributions instead of uni-
variate ones and appropriate base distributions, produces ex-
actly the observed results. In Experiment 1, since color is a
salient dimension, color-based partitions of the stimuli, where
the red circles are grouped into a single cluster and the blue
circles into another, are prominent, producing a bias toward
the mean size of the same-colored circles. In Experiment 2,
on the other hand, the stimuli effectively collapse into a sin-
gle dimension (size) and color-based partitions of the stimuli
are no longer prominent or likely under the model. Indeed,
the most likely partition in this case is the partition where
all stimuli are grouped into a single cluster, producing a bias
toward the overall mean size of all the circles. Note that
the DPMM automatically determines the appropriate levels
of abstraction to represent the stimuli and the weights that
should be alloted to each of them without any supervision.

General Discussion
We introduced a computational model of the organization of
VSTM based on the DPMM. The DPMM provides an elegant
implementation of the idea that items in VSTM can be rep-
resented at multiple levels of abstraction. For all the exper-
iments considered here, our model suggested that subjects’
performances in these experiments could be explained as re-
lying on relatively coarse representations of the items.

As illustrated in the previous section, our model can be eas-
ily extended to multi-dimensional features using multivariate
component distributions instead of univariate ones. Future
work might use combinations of feature dimensions consid-
ered in this paper, such as orientation or spatial frequency,
with other features such as spatial or temporal locations of
items.
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