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ABSTRACT: Liquid biopsies are an emerging, noninvasive tool for cancer
diagnostics, utilizing biological fluids for molecular profiling. Nevertheless, the
current methods often lack the sensitivity and specificity necessary for early
detection and real-time monitoring. This work explores an advanced approach to
improving liquid biopsy techniques through machine learning analysis of the
Raman spectra measured to classify distinct exosome solutions by their cancer
origin. This was accomplished by conducting principal component analysis
(PCA) of the Raman spectra of exosomes from three cancer cell lines
(COLO205, A375, and LNCaP) to extract chemically significant features. This
reduced set of features was then utilized to train a linear discriminant analysis
(LDA) classifier to predict the source of the exosomes. Furthermore, we
investigated differences in the lipid composition in these exosomes by their
spectra. This spectral similarity analysis revealed differences in lipid profiles
between the different cancer cell lines as well as identified the predominant lipids across all exosomes. Our PCA-LDA framework
achieved 93.3% overall accuracy and F1 scores of 98.2%, 91.1%, and 91.0% for COLO205, A375, and LNCaP, respectively. Our
results from spectral similarity analysis were also shown to support previous findings of lipid dynamics due to cancer pathology and
pertaining to exosome function and structure. These findings underscore the benefits of enhancing Raman spectroscopy analysis with
machine learning, laying the groundwork for the development of early noninvasive cancer diagnostics and personalized treatment
strategies. This work potentially establishes the foundation for refining the classification model and optimizing exosome extraction
and detection from clinical samples for clinical translation.

■ INTRODUCTION
Early diagnosis significantly improves the likelihood of
successful outcomes of cancer treatments such as radiation
and surgery. Despite many improvements in diagnostic
technology, nearly half of all cancer cases are still identified
only at an advanced stage.1−4 Current screening methods like
imaging and biopsies have significant drawbacks as they are
often expensive, labor-intensive, and invasive. Moreover, they
provide limited molecular information for precise character-
ization and staging that limits their use in early stage
diagnosis.5,6 Consequently, there is growing interest in
developing noninvasive cancer diagnostics that can detect the
subtle molecular changes associated with early cancer develop-
ment.
Liquid biopsies present a noninvasive alternative to

traditional biopsies by analyzing cancer-specific biomarkers in
bodily fluids like blood, urine, or saliva. They are cost-effective
and less labor-intensive and allow for repeated testing with
fewer risks and complications. More importantly, they hold the
potential to detect cancer at an early stage by identifying
circulating cancer biomarkers present long before clinical
symptoms or visible tumors develop.5−7 However, challenges
remain, particularly regarding the biomarkers’ specificity. For
instance, the prostate-specific antigen, which was once

considered the gold standard for prostate cancer screening, is
now recognized as unreliable.8,9 Therefore, there is a need for
biomarkers that offer more precise biological insights into
cancer. Promising biomarkers include those derived directly
from tumors, such as circulating tumor DNA, noncoding RNA,
extracellular vesicles (EVs), and metabolites.4,10−12

Exosomes refer to EVs ranging from 40 to 160 nm with
primary functions including cell−cell communication, waste
removal, tissue repair, and immune response modulation.
Exosomes are secreted by all cells, including cancer cells. For
this reason, exosomes released by cancer cells can be valuable
for diagnostics since they harbor tumor-specific molecules
typically overexpressed for tumor progression or other cancer-
related activities.12−15 Lipids are of particular interest as EVs
are structures primarily composed of lipids, and most are also
bioactive molecules with roles in signaling pathway regulation,
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induction of tumorigenesis, metastasis, and conferring chemo-
resistance.16−18 Information on the chemical composition of
these exosomes can be instrumental not only for cancer
detection but also for the characterization of specific cancer
types by their unique biochemical profile.
Raman spectroscopy is a powerful tool for facilitating

biochemical analysis, known for its high molecular specific-
ity.19,20 When light interacts with a sample, most of the
scattered light maintains the same frequency as the incident
light (Rayleigh scattering); however, a small fraction undergoes
a shift in energy, known as Raman scattering. The energy (or
frequency shift) between the incident and scattered light is
unique to the (ro-)vibrational mode of molecular bonds,
providing a detailed chemical fingerprint of the sample.21,22

The Raman spectrum of biological materials is typically divided
into three distinct regions: (1) the fingerprint region (500−
1800 cm−1), (2) the cell-silent region (1800−2700 cm−1), and
(3) the C−H stretching region (2700−3100 cm−1).23,24 In
bioprocessing and biomedical fields, Raman spectroscopy
holds several advantages, including being noninvasive, non-
destructive, and label-free and requiring minimal sample
preparation.21−25 Recent studies have already shown the
usefulness of utilizing Raman spectroscopy to capture cancer-
specific chemical signatures from cells and tissue.26−28

Computational tools can be leveraged to further enhance the
analysis. Machine learning algorithms such as principal
component analysis (PCA) and linear discriminant analysis
(LDA) can discern patterns in high-dimensional data,
improving sensitivity and reducing feature redundancy, given
that Raman spectra consist of hundreds to thousands of data
points, but not all are relevant for biochemical analysis. PCA is
a powerful algorithm that identifies major patterns in data sets
and determines the features that maximize variance.29,30 To
enhance class classification, LDA can be applied following PCA
feature extraction, identifying a linear combination of the
reduced feature set that maximizes between-class variance
while minimizing within-class variance.30,31 Machine learning is
also useful to reduce subjectivity and mitigate bias from both
inter- and intra-analyst variability.
While similar studies have been conducted to distinguish

cancerous and normal tissues through Raman spectroscopy
and PCA-LDA, research focusing on the classification of
different cancer types from Raman spectra is limited.26

Furthermore, much less research has been conducted on
promising biomarkers like exosomes. Existing studies on liquid
biopsies also do not employ Raman spectroscopy, but rely on
techniques like next-generation sequencing and polymerase
chain reaction.32 While these methods are highly effective for
specific genetic or molecular targets, Raman spectroscopy
offers a unique advantage of providing a more comprehensive
molecular fingerprint of the entire biochemical landscape,
enabling the simultaneous analysis of proteins, lipids, nucleic
acids, and other metabolites.33

This study aims to address this gap by utilizing Raman
spectroscopy in conjunction with PCA and LDA to classify
various cancer types based on the spectral data of cancer-
derived exosomes. Furthermore, it explores the lipid
composition in cancer cell-derived exosomes through a spectral
similarity analysis to provide an overview of the biochemical
phenotype of these cancer biomarkers. This innovative
approach, displayed in Figure 1, investigates an opportunity
to enhance noninvasive cancer diagnostics, with the potential

to impact early detection, disease monitoring, and personalized
treatment strategies.

■ EXPERIMENTAL SECTION
Exosome Preparation. Exosomes derived from three

cancer cell lines�COLO205, A375, and LNCaP (CellGS,
EX301, EX302, and EX305)�were purchased and utilized in
this study. COLO205 is a human colorectal adenocarcinoma
cell line, A375 is a human melanoma cell line commonly used
in skin cancer research due to its highly metastatic nature, and
LNCaP is an androgen-sensitive human prostate adenocarci-
noma cell line derived from lymph node metastasis. For each
cell line, approximately 20 μg of the exosome samples was
mounted on a 1 mm thick glass slide, where 5 μL of deionized
(DI) water was then added via a pipet, and then sealed with a
#1 thickness cover glass.
Spontaneous Raman Spectroscopy. Spontaneous

Raman spectra were obtained using a confocal Raman
microscope (XploRA PLUS, Horiba) equipped with a 532
nm diode laser source and a 1800 lines/mm grating. The
acquisition time is 60 s with an accumulation of 2. The
excitation power was approximately 40 mW after passing
through a 0.9 NA, 100× objective (MPLN100X, Olympus).
The spectral range is from 400 to 3150 cm−1. A total of 143
spectra (COLO205 = 43, A375 = 59, and LNCaP = 41) were
collected from the three cell lines. The spectra were
preprocessed utilizing baseline correction with asymmetric
least-squares with a smoothing parameter (λ) of 5 and
asymmetric parameter (p) ranging from 3 to 6. The spectra

Figure 1. Diagram of the workflow for spectral analysis of cancer cell-
derived exosomes. Top to bottom: Spontaneous Raman acquisition of
exosome samples, clustering and feature extraction through PCA,
classification of exosome identity via LDA of extracted features, and
spectral similarity analysis with a library of reference lipid spectra.
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were then interpolated to keep the number of features
consistent and min−max normalized to mitigate differences
due to intensity.
Feature Extraction via PCA. PCA was implemented by

using built-in functions from the scikit-learn library. After the
minimum number of PCs that met the variance threshold was
determined, the weighted sum of loadings for each wave-
number was calculated by multiplying the absolute loading of
each wavenumber by the explained variance of the
corresponding PC and adding these values across all selected
PCs.
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where μ(i) is the weighted average for each wavenumber i, m is
the number of PCs utilized, lk(i) is each wavenumber’s PC
loading, and wk is the PC’s explained variance ratio. This
process enabled the identification of the wavenumbers
contributing the variations in the spectral data set. The top
10% of wavenumbers, based on the weighted sum of loadings,
were identified as the most relevant features for subsequent
analyses.
Classification Using PCA-LDA. As it is a supervised

approach, the data set was divided into training, validation, and
test sets. Specifically, for each cell line, 50% of the spectra were
allocated for training, 10% for validation, and the remaining
40% for testing. LDA was initially applied to the training data
to learn the optimal linear combinations of features for class
separation. This ratio of training/validation/test sets was
chosen due to the size of the total exosome spectra data set
with the aim of maximizing the number of spectra classified
while maintaining high accuracy. The model was trained on
combined data sets from the three cell lines. The analysis was
repeated 15 times with performance metrics (F1 score,
precision, and recall) averaged across these runs to provide a
comprehensive evaluation of the accuracy and robustness of
this approach.
Spectral Similarity Analysis. To identify the predominant

lipids in each exosome sample, spectral similarity analysis was
done using three metrics: (1) mean squared error (MSE), (2)
cosine similarity, and (3) cross-correlation. This analysis was
done on spectra from samples of 25 lipid subtypes and was
restricted to the top 10% of wavenumbers as selected for PCA
feature extraction. Each metric was computed between the
spectra of each exosome sample and the spectra of the lipid
subtypes. The average value of each metric was then calculated
for each cell line to summarize the overall spectral similarity.
The analysis was performed by using functions from the SciPy
and scikit-learn modules.
MSE is calculated as the average squared differences

between intensity values of the exosome spectra and lipid
spectra, with lower error values indicating greater similarity (eq
2).
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where xj is the spectral intensities for PCA-extracted
wavenumbers j of a specific data point and xjL represents the
intensity values of specific lipid L spectra for the same
wavenumbers, and n is the total number of data points. The
MSE is a metric of similarity that is scale-dependent, easily

skewed by outliers and noise, and highly contingent on the
squared Euclidean distance without accounting for differences
in spectral shape that are imperative for chemical information.
For these reasons, other metrics provide a better assessment

of the spectral similarity. In measuring cosine similarity, each
spectrum represents a multidimensional vector and the
alignment of two vectors is quantified by their cosine angle
(eq 3). Unlike MSE, cosine similarity considers spectral shape,
emphasizing similarities in features such as peaks and troughs,
regardless of variations in intensity. The cosine similarity score
ranges from 0 (complete dissimilarity/orthogonality) to 1
(perfect similarity).
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The normalized cross-correlation (NCC) coefficient here
evaluates the similarity by measuring the displacement of one
signal to another independent of intensity using a sliding dot
product. NCC accounts for differences not only in terms of
shape but also in shifts in the spectra, which is useful to
account for shifts due to experimental variations. The NCC
score ranges from −1 (perfectly negatively correlated) to 1
(perfectly aligned and correlated). In eq 4, τ represents the
shift between the signals/spectra.
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■ RESULTS AND DISCUSSION
Feature Extraction via PCA. Approximately 900 features

were acquired upon collecting the spontaneous Raman spectra
of the exosomes�each corresponding to a wavenumber
between 400 and 3150 cm−1, as seen in Figure 2. By reducing
the dimensionality of the exosome spectra data set with PCA,
we were able to ascertain the magnitude at which specific
wavenumbers contributed to the variance between each
individual spectrum. The goal of this was to identify which
wavenumbers, and thereby which vibrational modes, were
significant in clustering and differentiating the cancerous

Figure 2. Raman spectra from each of the exosome origins. Average
spectra (bold line) from spectra acquisition across the different cancer
cell exosomes: COLO205 (red), A375 (blue), and LNCaP (green).
Standard deviation represented by a lighter outline surrounding
average spectra. The Raman peaks corresponding to S−S, C−C, and
CH3 stretching are similarly displayed.
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origins of the exosomes. To optimize the dimensionality
reduction of the exosome spectral data set, the number of PCs
increased until the cumulative explained variance of the
transformed data set was >95%. Clustering showed discernible
separation of COLO205 spectra along the first initial
components compared to spectra from the A375 and
LNCaP exosomes (Figure 3). Conversely, there is a noticeable
overlap in the clusters of LNCaP and A375 spectra, suggesting
similarities in their spectral features compared to COLO205.
After determining the first five PCs that explained

approximately 96% of the data set variance, we then identified
the contribution of each wavenumber to these components,
utilizing the PCA loadings/coefficients. By using a weighted
metric, we quantified the influence of each wavenumber on the
variance explained by each component. This weighted average
was measured by multiplying the magnitude of each
component loading (Figure 4) with the corresponding
explained variance. Wavenumbers in the cell-silent region
(1800−2700 cm−1), a region with little to no Raman signal in
cells and tissues, exhibited almost negligible contribution to the
variance between spectra. Specifically, we found that the first
component was primarily characterized by contributions from
S−S disulfide stretching (532 cm−1) and disulfide conforma-
tions (510−545 cm−1), in particular gauche−gauche−trans
and trans−gauche−trans conformations in cystine.34−36 We
also found high loading values for 2890 and 2893 cm−1, which
correspond to the CH2 asymmetric stretching region.37,38

Meanwhile, the second component expressed greater loadings
from wavenumbers in the CH2 symmetric stretching (2820−
2850 cm−1). Within this band, the peak at 2850 cm−1 is

notable for being commonly used to detect the total lipid
concentration in Raman microscopy.37−43 Similarly, the
wavenumbers that contribute heavily to the third and fifth
component include the 2930 cm−1 peak utilized for measuring
total protein expression37,38,41,42,44 and the CH3 stretching
bands.
By our weighted metric, we measured the greatest

contributions to the variance were from wavenumbers in the
fingerprint and CH stretching regions. Feature extraction
selected the top 10% of wavenumbers utilizing the same
weighted metric. The resulting 87 wavenumbers could be
grouped into three distinct sets: 31 wavenumbers ranging from
425 to 584 cm−1, 15 from 1068 to 1120 cm−1, and 41
wavenumbers accounting for a significant subsection of the CH
stretching region (2808−2957 cm−1). These subsets of the
Raman spectra align with the vibrational modes for S−S
disulfide stretching and conformation in proteins, the C−C
and C−O stretching of saccharides, and the bands for CH2 and
CH3 stretching.35,38,39,45 We thus find that the greatest
contributions to the exosome spectral profile are from the
C−H stretching of lipids, saturated lipids and proteins, changes
in the secondary and tertiary structure of proteins by disulfide
bonds, and the organic backbones of saccharides.46−50

Classification Using PCA-LDA. Using these PCA-
extracted features, we employed LDA for optimal class
separation and classification. The PCA-LDA classification
algorithm was trained with a training/validation/test split of
50%/10%/40% of the exosome spectral data set. Results from
classification were averaged across 15 iterations to account for
randomness in data selection and produce more robust

Figure 3. Results of PCA. (A) Line graphs of the explained variance ratio (blue) and the cumulative explained variance (orange) for each PC. (B)
3D scatterplot of the first three PCs of each exosome spectra, labeled by their source: A375 (blue), COLO2O5 (red), and LNCaP (green). (C) 2D
scatterplot comparing PC1 against PC2 (lef t) and PC2 against PC3 (right).
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findings (Figure 5). Across these iterations, the average
accuracy achieved for the classification approach was 93.3%.
Detailed performance metrics for each cell line were also
determined to reveal important insights into the model’s
classification behavior concerning the three cancer cell lines
(Table 1).
The PCA-LDA approach achieved an average precision of

97.3%, a recall of 99.3%, and an F1 score of 98.2% for
COLO205. For the A375 cell line, a precision of 98.8% meant
that the classification algorithm performed better at reducing
misclassification of exosome spectra from other cell lines as
A375 spectra, reducing the number of false positives. However,
the lower recall of 84.7% indicated that some A375 exosome
spectra were misclassified as belonging to one of the other cell
line spectra. For the LNCaP cell line, the recall of 98.8% score

indicated that LNCaP is more correctly identified as LNCaP
across every iteration; however, an average precision of 84.8%
points to non-LNCaP spectra being misclassified as LNCaP.
This was directly observed across each iteration of the LDA
classifier, with A375 spectra misclassified as LNCaP more
frequently than with COLO205. In summary, classification
metrics indicate that the PCA-LDA classification framework
was highly reliable in predicting COLO205 cells with minimal

Figure 4. Graph of loadings for first five PCs and PCA-extracted
features. Line graphs for the loading per wavenumber in each PC:
PC1 (gold), PC2 (teal), PC3 (dark pink), PC4 (dark red), and PC5
(purple). Black Xs indicate the location of the highest magnitude
loadings from each of the five components before weighted averaging.

Figure 5. Results of PCA-LDA classification. (A) Scatterplot of the
linear determinants of the exosome spectra: A375 (blue), COLO205
(red), and LNCaP (green). Dots represent accurate prediction and xs
represent inaccurate prediction. (B) Confusion matrix of PCA-LDA
predictions, resulting in an F1 score of 96% for A375, 100% for
COLO205, and 94% for LNCaP.

Table 1. Table of Average PCA-LDA Performance Metrics
for Each Cancer Cell Line

Colo205 A375 LNCaP

precision 97.3 98.8 84.8
recall 99.3 84.7 98.8
F1 score 98.2 91.0 91.1
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false positives. The high recall performance suggested that
instances of COLO205 spectra were more correctly classified,
potentially indicating a greater difference in chemical
composition compared to the other two cell lines. Conversely,
the recall and precision scores of A375 and LNCaP exosome
spectra indicate a closer overlap in the PCA-extracted features
between the two. To provide a more comprehensive
understanding of the results from this LDA classification, we
then utilized spectral similarity analysis to examine the
molecular composition of these exosomes.
Spectral Similarity Analysis. To further investigate the

differences between exosome classes, spectral similarity analysis
between exosome and specific molecule spectra was performed
on the features extracted through PCA. In our analysis, we
primarily focused on the lipid composition of these exosomes
due to the significant role that lipids play in vesicle formation
and signaling pathways in cancer progression. Figure 6A
displays the regions of the spectra that are utilized for spectral
similarity from both exosome and lipid data.
This analysis, conducted with the spectra of 25 lipid

subtypes, employed three metrics: MSE, cosine similarity, and
the cross-correlation coefficient. By comparison of the scores
across all three metrics, the contribution of lipid subtypes
could be identified and ranked. Figure 6B displays the metric
scores for specific lipid subtypes that demonstrate higher
similarity across the different metrics and for each cell line
source.
For the COLO205 exosome spectra, phospholipids,

triglycerides, cardiolipins, and cholesterol exhibited the closest
spectral similarity across all metrics. Furthermore, we found
that cosine similarity and cross-correlation yielded identical
rankings for the top 10 lipid similarities for COLO205,
indicating a minimal shift in spectra. These lipids included
cholesterol esters, omega-3 25:5, phosphatidylcholine, phos-
phatidylcholine 18:1, and phosphatidylethanolamine 18:1.
Similarly, for the A375 and LNCaP cell lines, the top 10
lipids were consistent across both cosine similarity and cross-
correlation analyses. The top six lipids�omega-3 25:5,
cholesterol, cardiolipin, cholesterol ester, phosphatidylcholine
18:1, and phosphatidylethanolamine 18:1�were identical in
both cell lines, including their order. Notably, phospholipids
were ranked higher in LNCaP than in A375. This near-
identical lipid spectra similarity profile highlights the
remarkably similar Raman spectra of the two, despite coming
from distinct cell lines as previously noted in the PCA results,
and potentially is a factor in the misclassification by PCA-LDA
classification.
The results of the spectral similarity analysis are in line with

established findings in exosome and cancer cell biology, with
many of the highly ranked lipids reported as being significant
to exosome formation or cancer pathology. Cholesterol
consistently ranked in the top three for all cell lines and
metrics. Lipid composition studies of EVs from different cells
including platelets, PC-3 (prostate adenocarcinoma), and B-
lymphocytes revealed it to be the most predominant lipid
followed by phosphatidylcholine.52 It also plays a crucial role in
maintaining the structural stability and phospholipid bilayer
arrangement of the exosomal membrane.53 By enhancing
exosomal membrane fluidity, cholesterol enables more effective
binding with CD8(+) T cells, allowing exosomes to
temporarily suppress T cell activity for immune evasion, as
seen in glioblastoma-derived exosomes containing pro-
grammed death-ligand 1.54 Disruption of lipid metabolism by

cholesterol in immune cells has been shown to hinder cancer
cell detection.51 Cholesterol ester ranks among the top five for
all cell lines and metrics aligning with prior reports that cite it
as a prevalent cancer marker. It is typically stored in the form
of lipid droplets, which cancer cells utilize for metabolism, as
supported by high levels of acyl-CoA acyltransferase 1
(ACAT1) and lysosomal acid lipase that facilitate its

Figure 6. Results of spectral similarity analysis for phospholipids
(PLS), cholesterol, cholesterol ester, and cardiolipin. (A) Graphs of
Raman spectra from exosomes�A375 (blue), COLO205 (red), and
LNCaP (green)�and four different lipid subtypes�top to bottom:
cholesterol, cholesterol ester, phospholipids, and cardiolipins. Gray
vertical lines indicate PCA-extracted wavenumbers along each
spectrum for comparison. (B) Tables of the scores for each similarity
metric�top to bottom: MSE, cosine similarity, and cross-correla-
tion�for each lipid subtype.
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conversion and breakdown.55,56 The loss of tumor protein 53
(p53) function, due to mutations or deletions in the p53 gene
that are observed in many cancers, has also been shown to be
linked to excessive cholesterol ester biosynthesis and
promotion of hepatocellular carcinoma in mice.57 Further-
more, elevated cholesterol esterification has been linked to
both the proliferation of leukemia and aggressiveness of
prostate cancer cells.58,59

Furthermore, we can also determine specific markers from
each cell line. The high degree of similarity between
COLO205 and phospholipid spectra aligns with previous
findings of glycerophospholipids as the most abundant lipid
class in LIM215 colorectal cancer cells and their exosomes,
comprising 91.5% and 68.3% of the total lipids, respectively,
based on mass spectrometry. Glycerophospholipids, partic-
ularly ether-linked species, function as endogenous antiox-
idants and support membrane fusion, both critical for cancer
cell survival and aggressiveness. High similarity with
triglycerides is consistent with the result of a meta-analysis
linking dyslipidemia (increased triglyceride and cholesterol)
and increased colorectal cancer risk. Although the exact
biological mechanisms remain unclear, triglycerides may serve
as an energy source for neoplastic cells.
The similarity between LNCaP exosome and phospholipid

spectra agrees with findings showing that glycerophospholipids
are abundant in LNCaP cell-derived exosomes. This is likely
due to prostate cancer cells’ reliance on lipid metabolism,
particularly glycerophospholipid metabolism, as well as
autophagy and the ferroptosis pathway, rather than glycol-
ysis.60−62 Additionally, a lipidomic study using quantitative
mass spectrometry on prostate cancer cells reported
heightened levels of all classes of phospholipids including
phosphatidylethanolamine. Phospholipids like phosphatidyle-
thanolamine are closely associated with cancer cell prolifer-
ation through their involvement in Akt-mediated signaling
pathways, further supporting the detection of phosphatidyle-
thanolamine 18:1 in LNCaP exosomes and other cell lines.63

In addition to being one of the most abundant components
of mammalian membranes, phosphatidylcholine, a type of
phospholipid, is produced in large quantities because its
breakdown products are essential for meeting the demands of
rapidly growing cancer cells. These metabolites promote DNA
repair, lipid droplet synthesis, and autophagy, among other
intracellular processes that support drug resistance.64 Oxidized
phosphatidylcholines were also found to facilitate epithelial−
mesenchymal transition (EMT) that increases cancer cells’
metastatic potential.65 Cardiolipin is another lipid suggested to
be present in high amounts in all three of the exosomes based
on similarity metrics. This type of phospholipid is a
characteristic lipid of the mitochondria. Cardiolipin plays an
important role in the biosynthesis of acetyl-CoA, which has
been implicated in several activities for cancer progression.66

Acetylation and activation of the Smad2 transcription factor is
facilitated by an increase in intracellular acetyl-CoA, eventually
resulting in EMT and induction of metastasis in breast cancer
cells.67 Furthermore, global histone acetylation with accumu-
lation of acetyl-CoA also contributes to pancreatic tumori-
genesis.68 High levels of cardiolipins have similarly been
observed in thyroid carcinoma and breast cancer epithelial
cells.66,69

Interestingly, omega-3 25:5 emerges as the most predom-
inant lipid in the A375 and LNCaP cell lines based on spectral
similarity. While most studies have concentrated on the

therapeutic effects of omega-3 fatty acids, their exact
mechanisms remain not fully understood. Furthermore, the
role of omega-3 fatty acids in cancer progression has not been
well-studied. Additional research is needed to validate the
levels of omega-3 fatty acids in cells and exosomes and to
elucidate the potential roles that they may play in cancer
progression. This finding suggests that expanding the lipid
library for analysis, by including even more specific
compounds, could provide additional insights and potentially
shift the prominence of omega-3 25:5 as identified.
The relative composition of these lipids varies significantly

among exosomes, depending on the cell line, subtype,
physiological stage, and associated biological activity, as lipids
are not only key structural components but also integral
constituents of the overall cargo. This variation exemplifies
how metabolic reprogramming is a hallmark of cancer.
Limitations and Future Work. Due to the breadth of this

study, it is important to consider the limitations of our data set
and analysis. The lipid profiles presented in this work are
characterized by spectral similarity to other reference Raman
spectra rather than more direct characterization methods for
lipidomic analysis, and are constrained by the lipid spectral
library that contains only 25 lipid subtypes, which may not
fully represent the complete lipid composition. Exosomes also
consist of a wide range of molecules, including lipids, proteins,
and miRNA, that all contribute to the signals in the Raman
spectrum. This molecular diversity presents challenges as
overlapping signals can make it hard to isolate and accurately
attribute distinct spectral features to lipids. Despite these
limitations, the results offer valuable context regarding which
lipids may be overexpressed in these exosomes, emphasizing
their roles in maintaining the exosomal structural integrity and
supporting cancer-related activities.
While the PCA-LDA classification framework demonstrated

robust overall performance, these results are constrained by the
small sample size used, which may lead to the challenges in
classification, especially for LNCaP and A375. For COLO205,
limited data may lead to an overestimation of the model’s
accuracy. Thus, a larger spectral library is needed to
simultaneously confirm the robustness of these findings and
improve the classification performance for LNCaP and A375.
Nevertheless, the overall high accuracy and robust perform-
ance of the model across all three cell lines underscore the
effectiveness of the approach for classification of cancer
exosomes based on their Raman spectrum.
Future work could explore improving the classification of

A375 and LNCaP exosomes using more advanced machine
learning algorithms such as support vector machines or deep
learning models like convolutional neural networks for better
feature extraction and pattern recognition from the Raman
spectra. Additionally, it is crucial to extend this methodology to
encompass other cancer types, including lung, pancreatic, and
brain cancers, while also focusing on the classification of cancer
subtypes. For instance, breast cancer displays a high degree of
heterogeneity with multiple subtypes and phenotypes.41,70 The
spectra of the five molecular subtypes may present greater
challenges in differentiation, potentially making them even
more difficult to distinguish than the cases of A375 and
LNCaP. Successfully classifying breast cancer molecular
subtypes using Raman spectroscopy combined with machine
learning could significantly enhance the identification of these
subtypes, which currently relies heavily on resource-expensive
immunohistochemistry.71 Raman spectroscopy provides a
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label-free alternative to the current methodology that pairs well
with emerging diagnostic techniques.
Building upon these initial findings for clinical translation,

the next step would be to apply this methodology to exosomes
derived from clinical samples, such as bodily fluids. While this
study utilized commercially purchased purified exosomes,
exploring the processes of exosome extraction and purification
from bodily fluids will be crucial for clinical applications. This
entails optimizing purification methods, Raman spectroscopy,
and machine learning techniques to accommodate the
complexities of these samples, which can significantly impair
sensitivity. Addressing challenges such as the low concen-
trations of exosomes in liquid samples may be achieved
through advanced methods like surface-enhanced Raman
spectroscopy, coherent anti-Stokes Raman spectroscopy, or
stimulated Raman scattering, which amplify spectral signals
and enhance detection capabilities.22,72−75 This integration
could ultimately pave the way for more effective, early
noninvasive cancer diagnostic tools.

■ CONCLUSIONS
The classification metrics and an overall classification accuracy
of 93.3% of the PCA-LDA model indicate that the
classification framework can effectively identify differences
among the latent features of the Raman spectra of the
COLO205, A375, and LNCaP exosomes. Utilizing a more
robust learning algorithm for classification that considers
nonlinearities in the relationship between specific features of
the spectrum and increasing the size and range of samples in
the spectral data set could be made to improve the accuracy
and sensitivity crucial for clinical practice. This study also
provides insights and a comparative analysis of the lipid
composition of COLO205, A375, and LNCaP exosomes for
the first time, addressing the scarcity of studies that explore the
lipid profiles of these cancer cell lines and their exosomes. The
findings from this study have profound implications for
translational research. By elucidating distinct spectral signa-
tures associated with exosomes of specific cancer types, we
have enhanced diagnostic capabilities for cancer detection and
staging. The utilization of exosomes and Raman spectroscopy
for noninvasive diagnostics, particularly for liquid biopsies,
presents a promising approach for early malignancy detection
by revealing subtle biochemical changes linked to cancer
progression and for continuous monitoring and personalized
treatment.
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