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Preface

This document is based on a set of lecture notes prepared in 2007-2010 for the U.C. Berkeley
graduate course “CE259-Public Transportation Systems”--a course targeted to first year graduate
students with diverse academic backgrounds.

The document is different from other books on public transportation systems because it is
informal, has a narrower focus and looks at things in a different way. Its focus is the planning,
management and operation of public transportation systems. Important topics such as financing,
governance strategies and urban transportation policy are not covered because they are not
specific to transit systems, and because other books and courses already treat them in depth. The
document is also different because it deemphasizes facts in favor of ideas. Facts that constantly
change and can be found elsewhere, such as transit usage statistics and transit system
characteristics, are not covered.

The document’s way of looking at things, and its structure, is similar to the author’s previous
book “Logistics systems analysis” (Springer, 4™ edition, 2005) from which many basic ideas are
borrowed. (Transit systems, after all, are logistics systems for the movement of people.) Both
documents espouse a two-step planning approach that uses idealized models to explore the
largest possible solution space of potential plans. The logical organization is also similar: in both
documents systems are examined in order of increased complexity so that generic insights
evident in simple systems can be put to use as knowledge “building blocks™ for the study of
more complex systems.

The document is organized in 8§ modules: 5 on planning (general; shuttle systems; corridors; two-
dimensional systems; and unconventional transit); 2 on management (vehicles; and employees);
and 1 on operations (how to keep buses on schedule). The planning modules examine those
aspects of the system that are usually visible to the public, such as routing and scheduling. The
management and operations modules analyze the more mundane aspects required for the system
to work as designed. Two more modules are in the works: management of special events (e.g.,
evacuations; Olympics); and operations in traffic.

Although the document includes new ideas, which could be of use to academics and
professionals, its main aim is as a teaching aid. Thus, a companion document including 7
homework exercises and 3 mini-laboratory projects directly related to the lectures is also made
available. It can be obtained by visiting the Institute of Transportation Studies web site and
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looking for a publication entitled: “Public Transportation Systems: Mini-Projects and Homework
Exercises”. Versions of these exercises and mini-projects were used in the 2009 and 2010
installments of CE259: a 14-week course with two 1-hour lectures and one 1-hr discussion
session per week. Sample solutions to the mini-projects and exercises can be obtained by
university professors by writing to the ITS publications office and requesting a third document
entitled: “Public Transportation Systems: Solution Sets”.

The various modules were originally compiled by PhD students Eric Gonzales, Josh Pilachowski
and Vikash Gayah, directly from the lectures. Subsequently, my colleague Prof. Mike Cassidy
used them in an installment of CE259 and offered many comments. This published version has
been edited and reflects the input of all these individuals. Their help is gratefully acknowledged.
The errors, of course, are mine. The financial support of the Volvo Research and Educational
Foundations is also gratefully acknowledged.
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Public Transportation Systems: Planning—General Ideas

Module 1: Planning—General Ideas

(Originally compiled by Eric Gonzales and Josh Pilachowski, January 2008)
(Last updated 9-22-2010)

Outline

e General course info (admin)
e Course substance and organization
e Transit Planning

o

@)
o
@)
(@)

Definitions

How to account for politics
How to account for demand
The shortsightedness tragedy
Planning and design approaches

Course Substance and Organization

Goal of the Course

e What transit can and can’t do realistically
e How to do it (large/small scale)
e How to make it happen practically (focus on engineering)

Brief Explanation of Syllabus (see Appendix)

e The planning part of the course explores what is possible and how to do it with building
blocks of increasing realism and complexity; it shows the limits of transit systems and

gives you the tools to develop systematic plans.

e The management and operations part explores the “plumbing” of transit systems. This
includes management items that are hidden from the user’s view such as fleet
sizing/deployment and staffing plans, as well as more visible operational items such as

adaptive schedule control and traffic management.

e Planning ideas will be reinforced with two lab projects and five homework exercises.
Management/operations ideas will be reinforced with one lab project and two exercises.

Imagine public transit in a linear city. Many people travel between different origins and
destinations at different times (thin arrows in the time-space diagram below). Note how people
have to adapt their travel in space to the location of stops and in time to the scheduled service in
order to use transit (thick arrow), and how this adaptation could be reduced by providing more

transit services (more thick arrows). Unfortunately, the thick arrows cost money; and this
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Public Transportation Systems: Planning—General Ideas

competition between supply costs versus demand adaptation turns out always to be at the heart of
transit planning. It will be a central theme in this course.

xl
User desired
/\/ stop
> StOP A
'S
transit
adaptation veh trip
"t
Transit Planning
Definitions
e Guideway — fixed parts of a transportation system, modeled as links and nodes
(infrastructure)

Network — set of links and nodes, uni- or multi-modal

Path — a sequence of links and nodes

Origin/Destination — beginning and end of a path through a network

Terminal — node where users can change modes

Planning — art of developing long term/large scale schemes for the future

Mobility — the distance people can reach in a given time (e.g. VKT/VHT)

Accessibility — the opportunities people can reach in a given time (depends on land use)

We can improve accessibility by improving mobility and/or by changing the distribution of
opportunities. But if the opportunities are fixed in space, then a change in mobility is equivalent to
a change in accessibility.

As shown in the previous figure, there is a trade-off inherent in public transportation because users
give up flexibility (suffering a “level of service” penalty) for economy. To strike this balance
between level of service (LOS) and supply cost in networks for individual modes (e.g. highway,
bike-lanes, and sidewalks), planners can only change the infrastructure. But in collective
transportation, planners also have control over the vehicles’ routes and schedules.
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Public Transportation Systems: Planning—General Ideas

The goal of planning is to achieve efficiency, measured as a combination of LOS and supply costs.
Costs come in different forms, such as time, 7, comfort, safety, and money, $, and should be
reduced to some common units. The result is called a generalized cost or disutility, which can be
defined both for individuals and groups, and is usually expressed as a linear combination of
component costs; e.g. for one individual experiencing time T and cost § it could be:

Generalized Cost = ST + 58

How to Take into Account Politics

Note that Sy and fs will vary between individuals, so even though an individual may have a well-
defined generalized cost, the choice of appropriate weights to represent a diverse group is always a
political decision that cannot be resolved objectively.

Note too that transit systems involve costs to non-users—energy, pollution, noise, etc.—and that
since people also disagree about how these should be valued, they further complicate the decision-
making picture.

Clearly, we need to simplify things! (but without ignoring the effects of politics).

To this end, we will assume in this course that there is a political process that has converged to the
establishment of some standards, which would apply to all the non-monetary outputs of the transit
system; e.g.,

T — Door-to-door time (no more than a standard, 7))
E — Energy consumed (no more than £))

M — Mobility (at least My)

A — Accessibility (at least 4y)

And our goal will be minimizing the cost, $, of meeting the standards; i.e.,
Mathematical Program (MP): min{ $: T<Ty; E<Ep; M>My; A> Ay ... }

Note how each standard is associated with an inequality constraining the value of the performance
output in question. Since these outputs are usually directly connected to 4 key measures of
aggregate motion: VHT, VKT, PHT, PKT, we can often reformulate the standards in terms of
passenger time (distance) and vehicle time (distance).

Alternatively, since all variables in this MP (both monetary and non-monetary), which we
collectively call y = ($, T, E, M, A), are functions of the system design, x, (i.e., the routes and
schedules used for the whole system) and the demand, a (which we assume to be given), we can
express the MP in terms of x and a.
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Public Transportation Systems: Planning—General Ideas

To make this formulation more concrete, let us define these relations by means of a vector-valued
function Fy,:

y = Fn(x, @)
where,

y — performance outputs for the entire system (both monetary and non-monetary)

m — mode
x — design variables for the entire system
o — demand

We then look for the value of x that minimizes the $-component of y while the other components
satisfy the standards constraints. The result is as a best design, X (o), which if implemented would
yield y*(a) = Fi(x (0),00) = G(a). This function represents the best performance possible from
mode m with given demand a. We will, in this course, compare the Gy(a) for different modes.

To see all this more concretely, consider a simple transit system where all users are concentrated at
two points.

o< g

In this case we have:
x — frequency of service (a single design variable: buses/hr)
o — demand (a single demand variable: pax/hr)

Define now the components of F,,. We assume that each vehicle dispatch costs c¢f monetary units.
Thus we have:

$ =Fo’(x,@) = ¢;x/a [$/pax]
Note: we have defined $ as an average cost per passenger. We could instead have defined $ as the
total system cost per hour. Both definitions lead to the same result since they differ by a constant
factor: the demand, a. If we now assume that headways are constant but the schedule is not

advertised, we have:

T=Fn'(x,a) = 1/x [hrs] (out of vehicle delay assumes " headway at origin and % headway
at the destination)

And finally, if each vehicle trip consumes c. joules of energy we also have:

E = c.x/o [joules/pax]

1-4



Public Transportation Systems: Planning—General Ideas

If the political process had ignored energy and simply yielded a standard 7) for 7, and if we choose
the monetary units so ¢,= 1, the MP would then be:

min{ x/a: 1/x< Ty }.

Note that the OF is minimized by the smallest x possible. Thus, the constraint must be binding,
and we have:

x = 1T, )
Therefore the “optimum” monetary cost per passenger would be:
$"=Gn(a) = 1/(al))
We call the above the “standards approach” to finding efficient plans.

There is another approach, which we call the “Lagrangian approach.” It involves choosing some
shadow prices, £, and minimizing a generalized cost with these “prices” without any constraints.
Although the selection of prices cannot be made objectively, one can always find prices that will
meet a set of standards (see your CE 252 notes). So the Lagrangian approach is equivalent to the
standards approach. For example, we can formulate:

min, { $+AT =x/a+ [1/x) }

The solution is:
x = o

You can verify that the “standards” solution (x* = 1/Tp and $ =x"a= 1/(aTy) 1is achieved for
B=(/T})(1/a). So no matter what standard you choose, there is a price that achieves it.

In summary, there are 2 approaches to obtain low cost designs that satisfy policy aims:
1. Standards: min { $s.t. T<T), E<E)... }

This minimizes the dollar cost subject to policy constraints, e.g. for trip time, energy
consumption and possibly other outputs. Usually, as shown in the example, constraints
become binding when solved - 7= Ty, E=E)

2. Lagrangian: min { $(x,a) + S(T(x,)) + fe(E(x,@)) }
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This minimizes the generalized cost, and gives the same solution as the standards method
when suitable shadow prices, Br and Pg, are chosen. The shadow prices can be found by
solving the Lagrangian problem for some prices, finding the optimum 7" and £ and then
adjusting the prices until 7 and £ meet the standards. In simple cases, such as the above
example, this can be done analytically in closed form.

How to Account for Demand: Some Comments about Demand Uncertainty and Endogeneity

So far, we have assumed that the demand, a, is given, and critics could say that this is not realistic.
However, if we are lucky and the design one provides happens to be optimum for the demand that
materializes, then the issue is moot. Suppose we design x for a chosen level of demand, a, that is
expected to materialize at some point in the future. Normally, we expect realized demand to
change with time, and for a well-designed system that provides improved service this demand
should be increasing. Then, the question of whether the system design is optimal in reality (given
that we assumed a demand ay) is less a question of if, but of when, since the demand ay will
eventually be realized. Furthermore, we will learn later in the course that the cost associated with
a design, x*, that is optimal for ay is also near-optimal for a broad range of values of a (within a
factor of 2 of ay). Thus, if the realized demand does not change quickly with time, the system
design is likely to produce near optimal costs for a long period of time.

Furthermore, we should remember that demand is difficult to predict in the long run. So, building
complicated models that endogenize a in order to predict precise values is not a worthwhile
activity in my opinion. Rough estimates of future demand are sufficient for design purposes. This
is not to say that a vision for the future is not important; only that it does not need to be anticipated
precisely. The following example illustrates what happens if one ignores the vision.

The Shortsightedness Tragedy

This example shows that when demand changes with time, then incrementally chasing optimality
with short-term gain objectives in mind can lead us to a much worse state than if we design from
the start with foresight and long term objectives.

Now, consider the investment decisions for a system with potential for 2 modes:

automobile — divisible capacity with cost per unit capacity, ¢,
subway — indivisible and very large capacity with cost for a very large capacity, ¢

Politicians, who make decisions about how much money to invest in transportation infrastructure,
tend to focus on short-run returns because of the relatively short political cycle. If elections for
city leaders occur every couple of years, then politicians have incentives to look at costs only in
the near future. This can be “tragic.”

Suppose that demand for transportation in a city is growing over time and is expected to continue
growing long into the future (this tends to be the case in nearly all cities around the developing

1-6



Public Transportation Systems: Planning—General Ideas

world). Suppose too that the goal is supplying (at all times) enough capacity to meet demand. The
politicians must decide whether to invest a large amount of money, ¢y, in digging tunnels and
laying track for a subway that will have enormous capacity to handle demand for decades into the
future or to incrementally expand road infrastructure to handle the demand o, expected over the
next political cycle, i. This would cost ¢; = c,0; monetary units and will be the decision made if ¢;
< ¢y (assuming cost is the main political issue.) The result of this “periodic review” decision
making is shown by this figure:

S A
periodic review based on
political cycles $auto(t)
! } $subway(t)
CO
C;= Cg04
now t’ t

If the decision rule for investing in infrastructure is to chose the lowest cost over the next political
cycle and demand increases gradually, “automobile” will always win because with gradual
increases in demand: ¢; < c¢yp. In the long run, however, the cost of investment in automobile
infrastructure is unbounded. Had decisions been made with a view to the long run

(t> 1), the subway (i.e. the less costly investment) would have been chosen.

Another point pertaining to “the future demand vision” is that systems often create their own
demand; and this should be recognized (even exploited) when developing design targets. Planning
actions that have long-term consequences should be made with a long-term horizon and long term
vision.

Planning and Design Approaches

Comparative Analyses — This is planning by looking at what similar cities have done and trying to
copy it. Although this is useful, “safe” and often done, it can exclude opportunities to come up
with innovative solutions that may only be appropriate for the case of concern. (We will not do
this in this course; we will instead create designs from scratch, systematically.)

1-7
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Step-wise Approach — This is how systematic planning must be done -- problems are too big to be
explored in one shot. We first plan generally for the big picture; then fill in the design/engineering
step.

In order to conduct broad planning for the large scale, it is useful to simplify the analyses.
Decision variables, such as number of buses, number of stops, and number of bus routes are
integer values in reality, but we will treat them as divisible (continuous) variables. This greatly
simplifies matters, for example turning integer programming problems into linear programs, so
that complex problems can be solved much more easily. This will work if the simplification does
not introduce large errors.

Decision Methods
1. Planning Large/Long scale Simplified/Broad
2. Design Detailed/Specific

Example

Consider a simple mathematical (integer) program, e.g. for maximizing personal mobility subject
to a budget constraint:

max {z=22x+ 18y }
st. 2. 1x+1.9y<2
x, y € Z (integer valued)

This is so simple that the solution can be obtained graphically (try it); the solution is:
x*=0,y*= l,z*= 18.

Now, if we start with the planning approach and simplify the problem by treating x and y as
continuous variables. We are now solving a linear program which has the (optimistic) solution:

x =0.952,y =0,z =20.95,
(The solution is optimistic because it is the optimum for a problem with fewer constraints.) To
obtain a feasible solution the LP solution can be rounded up or down. Because of the constraint,

we must round down and we obtain:

x*=0,y*=0,z*=0.

1-8



Public Transportation Systems: Planning—General Ideas

This solution will be pessimistic since it is feasible, but not necessarily optimal. In fact, this is
much worse than the optimum solution! So, the simplifying assumptions of the step-wise approach
do not work so well for this small scale problem.

Now, if we do the same problem on a much larger scale (e.g. for a budget that would cover a
whole city) we would solve instead the mathematical program,

max { z=22x+ 18y }
s.t. 2.1x + 1.9y <200

x, y € Z (integer valued)

Starting with a planning step, assuming the variables can take non-integer values (linear program),
the (optimistic) solution is

x =952,y =0,z =2095.

Rounding to the nearest integer value (the design step) gives a pessimistic final objective function
value:

x*=95,y*=0, z* =2090

Now the pessimistic value associated with the integer solution we obtained with the step-wise
approach is very close to the optimistic value, and therefore should be even closer to the real
optimum that could have been obtained. So, simplifying the problem for large-scale planning
purposes, as we will do in this course, is not detrimental to the results of the analysis.

1-9



Public Transportation Systems: Planning—General Ideas

Appendix: Class Syllabus (spring 2010)

The schedule below lists the topics covered in 1-hr lecture periods in the spring semester (2010)
and how they were coordinated with the homework exercises and the mini-project activities. Not
listed, a 1-hr weekly discussion session was also scheduled to cover the homework exercises and
the mini-projects.

Period Date Lecture subject Problems Mini-project

1 1/19 Introduction: general ideas, politics

1/21 Introduction: standards, demand uncertainty
3 1/26 Planning: shuttle systems, fixed demand 1 E0Q)
4 1/28 Planning: shuttle systems, adaptive demand 1
5 2/5 Planning: modal comparisons, idealized corridors 2 (Vickrey)
6 2/4 Planning: idealized corridor hierarchies 2
7 2/9 Planning: corridors (detailed analysis, standards)
8 2/11 Planning: corridors (standards vs. generalized costs)

2/16 Planning: inhomogeneous corridors 3 (spacing only CA) 1
10 2/18 Planning: idealized grid systems (issues) 3 1
11 2/23 Planning: realistic grid systems (no hierarchy) 1
12 2/25 Planning: grid systems (practical issues) 1
13 372 Planning: hybrid systems (modal comparisons) 4 (modal competition) 2
14  3/4 Planning: hierarchical systems, adaptation 4 2
15 3/9 Planning: paratransit (general concepts; taxis) 5 (hierarchy design) 2
16  3/11 Planning: paratransit (dial-a-ride) 5 2
17 3/16 Planning: paratransit (car-sharing) 2
18  3/18 Management: vehicle fleets (1 route) 2

SPRING BREAK
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Period Date Lecture subject Problems Mini-project
19 3/30 Management: vehicle fleets (n routes) 6 (feeder DAR)
20 4/1 Management: methodology (meta-heuristics) 6
21 4/6 Management: staffing (1 run) 3
22 4/8 Management: staffing (n runs) 3
23 4/13 Operations: vehicle movement (theory, systems of systems) 3
24 4/15 Operations: vehicle movement (pairing) 3
25 4/20 Operations: vehicle movement (pairing avoidance) 7 (bus pairing)
26  4/22 Operations: right-of-way (issues, nodes) 7
27 4727 Operations: right-of-way (links, systems)
28 4/29 Operations: special events (capacity management)




Public Transportation Systems: Planning—Shuttle Systems

Module 2: Planning--Shuttle Systems

(Originally compiled by Eric Gonzales and Josh Pilachowski, February, 2008)
(Last updated 9-22-2010)

Outline

e Overview
e Shuttle Systems

0 Individual Transportation

* Time-independent Demand

= Time-Dependent — Evening (Queuing), Morning (Vickrey)
0 Collective Transportation

= Time-Independent

* Time-Dependent
0 Comparisons and Competition

Overview

Recall from Module 1 that public transportation can be thought of as a system that consolidates
individual trips in time and space to exploit economies of scale that result from collective travel.
Since this course is about developing insights as well as recipes, we will analyze simple systems

starting

with point-to-point shuttles, then expand to transit in corridors, and finally build up to

the more realistic case of organizing public transportation in 2 dimensions.

1.

Shuttle Systems — Assume the population is already consolidated at two points (an origin
and destination) so that there is no spatial consolidation of trips. Collective transportation,
in this case, will involve temporal consolidation as individuals adjust their departure
times to match the scheduled departure of transit vehicles from the shared origin to the
shared destination.

o »0

Corridors — Assume now that the population is spread along a corridor so that all travel is
made in 1 dimension along which transit service is provided. Here, collective
transportation must involve spatio-temporal consolidation as individuals must travel to
discrete stations where they can board transit vehicles which depart at discrete times.

-0 O O O O o>
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3. Cities — Finally we consider the more realistic case of a population spread across 2
dimensions. Now transit services must be aligned in a route structure to cover the 2-D
space, and this routing adds circuity to travel as transit systems carry individuals out of
the way of their shortest path in order to consolidate trips spatially.

Shuttle Systems

We start by analyzing point-to-point shuttle systems. For comparison purposes we will do this
for both, individual and collective transportation modes. In both cases we look first at the time-
independent case where we assume steady state conditions (supply and demand are constant over
time). This is the way many economic models treat transportation. We then look at the (more
interesting) time-dependent case. Individual modes, like private automobiles, incur significant
guideway costs in proportion to the capacity provided, which cannot be easily adapted to a time-
dependent demand. Public transit modes without extensive guideways will be shown to be more
flexible, because a significant part of their costs come from vehicle operations.

Individual Transportation Modes
Time-Independent Demand

In order for individuals to travel in private vehicles (such as automobiles) without much delay,
some amount of capacity, ¢ (pax/hr), must be provided to serve the demand, A (pax/hr). For
private modes, there is a roughly constant infrastructure cost, cg, per unit of capacity provided.
There is also a cost per vehicle trip, cj, that each driver perceives as a fixed cost of making a trip
by private car. Assuming as an approximation that there is no delay whatsoever when the
capacity exceeds demand (u« > 4), the cost per passenger of a private vehicle system is

7

$= f +c, for > A.
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In order to minimize this cost, we would always choose to provide the least possible capacity,
which means ¢ = A. Therefore the minimum cost per passenger is given by

$ =c, t¢,

which is independent of demand, so there are no economies of scale in our idealization of private
transportation; i.e., the total cost accrues at rate A$. Doubling the number of drivers on the road
would double the total cost of transportation when just enough capacity is provided to serve
demand. We now look at the time-dependent case, both for the evening and morning rush hours,
which are different.

Time-Dependent Demand —The Evening Commute with Known Demand (Queuing Analysis)

Until now, we have assumed that demand is time-independent so that as long as capacity
matches demand there is no delay, but in reality travel demand rises and falls over the course of a
day. Below is a cumulative plot of demand showing the difference between the daily average

demand, A , and the maximum demand in the peak of rush hour, 4,. We assume that the demand
curve is given and (for simplicity only) that the day has a single rush instead of two. Note that

Am > A, and that in a time-independent system where the demand rate does not fluctuate over
the course of the day, 4,, would equal A4 .

#/\

40)

> [
Tp =24 hours

Figure 1.

The minimum monetary cost of providing service subject to a travel delay standard, 7y, can take
a range of values depending on the standard and the capacity it requires. This range can be
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easily identified. A lower bound for the cost is obtained by relaxing the standard and simply
assuming, 7' < oo. This relaxed standard is achieved by providing just enough capacity to meet
the average daily demand (u = A ) such that there are no unserved vehicles carrying over from
day to day. This yields a lower bound equal to the monetary cost of the time-independent case:
¢y + ¢ An upper bound for the cost is obtained by tightening the standard to 7 = 0. This
standard is achieved by providing sufficient capacity so that there is never congestion: u = A,.
The upper bound is therefore as shown below:

. A
c, te, Sm1n{$:TSTO}ch£ Z’”)Jrcf

Note that these bounds apply whether we interpret 7 as the average delay experienced by drivers,
or as the maximum delay experienced in the worst case. The choice of which standard to use is a
political decision. But these bounds show that a rush hour can only make costs worse than in the
time-dependent case because the cost of serving uniform demand is the lower bound of this
expression. So, we still do not see economies of scale.

Aside (showing how to calculate the actual values 7* and $%*): If desired, one can also
estimate 7% and $* (not just the bounds) by using a cumulative plot diagram and/or a
spreadsheet. For example, if T and 7) are averages across drivers, we would evaluate the
total time delay, 77(u), for a given capacity, u, as the area between the arrival curve described
by V(%) and the departure curve, D(¢), determined by the capacity, u. The average time delay
per driver, T(u), is thus given by

T (1)
=

T(p) =

Note from the picture that the area between V(¢) and D(¢), and therefore 7(u) declines with x;
and since the monetary cost of private transportation always increases with capacity, $(u) =

cq 1/ A , the constraint of our mathematical program must be binding. Thus,
T(u*) =T,
which yields x* (and $*).
Time-Dependent Demand —The Morning Commute (Vickrey Model with Endogenous Demand)

In our idealization of the morning commute the times at which people leave their homes and
would arrive at our mythical bottleneck are not given. Instead, the demand is driven by work
appointments characterized by a cumulative curve of desired departure times through the
bottleneck, which we call the wish curve, W(¢). If the slope of the wish curve, s, is less than the
capacity of the bottleneck, x, all drivers can pass through the bottleneck exactly when they would
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like; then there would be no delay. Curves V(t), D(¢) and W(¢) would match. However, if the s
exceeds capacity, some drivers would have to depart the bottleneck earlier or later than their
wished time and the three curves could not match.

To see what could happen as drivers adjust their home departure times (over days) in response to
their delays, we suppose that each driver values time in queue at a rate S ($/hr), time arriving
early at rate eff and time late at a rate LS. The constants e and L are dimensionless and such that:

e<1<L

According to Vickrey (1969), if s exceeds u and drivers minimize their generalized costs
including delay, earliness, and lateness, an equilibrium curve of arrival times to the bottleneck
arises in which the order of arrivals to the bottleneck is the same as the order of wished
departures.

The equilibrium principle is that no driver should be able to decrease its generalized cost by
changing their arrival time. In Vickrey’s equilibrium, shown in Fig. 2, there is a critical driver,
numbered N, in the sequence of arrivals and departures, who experiences no earliness or lateness
and whose entire cost is time in queue. (Note how the departure curve D(¢) crosses W(¢) for the
ordinate of this driver.) All drivers who arrive before N, will depart the bottleneck before their
wished departure time. We will define N, as the count of such drivers. All drivers who arrive
after N, will depart the bottleneck after their desired departure time. We will define N as the
count of such drivers. If there are a total of Ny drivers then the following is true:

N,+N, =N,

You can convince yourselves that the queuing diagram for the equilibrium is uniquely defined if
you are given T, N, and N;. It can be shown (see Appendix) that:

_ Nyle N =LNR
wL+e) ‘ L+e

eN,
L+e

; and N, =

It also turns out that if s >> g, the generalized level of service cost (including both queuing delay
and unpunctuality cost) is nearly the same for all commuters, approximately 7. When L >> e,
this generalized cost is SNg/u.
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> 1
Tp =24 hours

Figure 2.

The total cost of congestion in this morning commute is the sum of total queuing delay (the area
between V(¢) and D(¢)), the total earliness penalty (e times the area between D(¢) and W(¢) where
D(t) > W(¥)), and the total lateness penalty (L times the area between W(¢) and D(f) where D(f) <
W(f)). This calculation can be most easily done based on the geometry of the figure.

A little reflection shows that if we choose a bottleneck capacity that minimizes the out-of-pocket

cost per person $ required to cover the cost of said capacity subject to a time standard (say for
the critical commuter), we obtain the same bounds as in the evening rush:'

¢, te, <min{$:T <T} ch(%}rcf,

where 1 =N, /T,.

So, in the morning rush we continue to be worse-off than in the time-independent case; and
economies of scale still do not appear.

' This is true because the practical range of x is [/T ,s]and$ = ¢ rtc.u / Z
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Collective Transportation

We now repeat this analysis for public transit and find that the results are quite different (and
encouraging).

Time-independent Demand

Consider now a shuttle service provided on an existing guideway from a common origin to a
common destination, where the frequency of service is the decision variable that the transit
agency can determine.

o »O

We assume that shuttle vehicles (e.g., trains) are large enough to carry any number of passengers
that may show up and define:

H — headway between vehicle dispatches [hours]
x — frequency of vehicle dispatch [number of vehicles per hour] = %

cy— cost per vehicle dispatch of providing shuttle service [dollars per vehicle]
A —demand [number of passengers per hour]

So, the monetary cost per passenger, $, of providing shuttle service is given by the cost per hour
of dispatching the transit vehicles divided by the total number of passengers using the system.

The out-of-vehicle delay experienced by passengers in the system (ignoring the time in motion
between the origin and destination, which is the same for every traveler) is always proportional
to the headway of service. For example, if people know the headways but not the schedule and
they have specific appointments at the destination (as in the morning commute), they will leave
home with at least one headway of slack, which they will spend either at the origin or at the
destination. Combined, their total delay would be H. If people do not have specific appointments
(as happens for many people in the evening commute) their delay would be 2H on average.
Thus, for the worst-case situation (with appointments) the average delay 7 is:

1
T=—

X

So if we apply a standard 7y (as we did for individual modes) we have to solve:
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STO}

) { cpx
min<d § = —:
A

S| =

and since the constraint is binding, we find:

c
§r =
AT,

Note: There are economies of scale in providing collective transportation because the monetary
cost, $*, decreases with the demand! This is the promise of public transportation vis a vis
individual transportation. In reality the contrast is not so pronounced because as we shall see
there exist compensating complications, but the promise is real. The reason is that with more
demand more individuals can consolidate their travel onto each vehicle without changing the
number of vehicle runs; and this lowers the cost of providing transportation per person. We now
show that economies still arise if we allow the demand to vary with time.

Time-Dependent Demand

The analysis above assumes that the demand is uniformly spread throughout the course of the
day, but in reality the demand for travel is concentrated into rush hours. Let us now evaluate the
cost of providing collective transportation for this case, assuming that the passenger arrivals are
given.

Consider now a simplified case of a day with two demand periods: a peak demand, 4,, for a
period of T, hours of the day, and an off-peak demand, A,, for the remaining 7p — 7, hours. The
cumulative plot of Fig. 3 shows this demand profile and that N, passengers travel in the peak,
leaving Np — N, passengers for the off-peak hours.

? This assumption can now be used for both the evening and morning commutes (with and without appointments)
because with our large-vehicles, passengers do not have to compete for limited system capacity.

2-8



Public Transportation Systems: Planning—Shuttle Systems

#/\

> 1
T =24 hours

To design a transit system for this demand, we can break up the day into two regimes and choose
a peak period headway, H,, and an off-peak headway, H,, to minimize the cost in providing
transit service over the course of the whole day. This can be done by minimizing the fotal
generalized cost by the Lagrangian approach with the two decision variables, H, and H,:

min {Z = f(Total amount of waiting time)+ ¢ p (Number of bus dispatches)}

_ T T,-T
minyZ =p| H,N,+H,(N,-N,) |+c, H—p+ o -

P o

The headways that minimize the generalized cost are

\/ ,BN \/,H}t
o c (T, -T,) \/c. |
’ BWN,-N,) \ B4,

Using these optimal headways gives a minimum total generalized cost of

z¢=2[pe, (JT,N, + (T, ~T )N, -N,))
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Note that for a given ratio N,/Np this total generalized cost is proportional to /N, , so the

generalized cost of collective transportation per person is proportional to 1/\/N, ; 1e., it

decreases with increasing ridership, Np, and therefore with the average daily demand A = Np/Tp.
So even with time-dependent demand, public transit displays economies of scale.

Technical aside: Note that the optimum cost does not change much if the demand is spread
evenly across the whole day. Suppose, for example, that the coefficient 2,/fc, =1 and 30%
of the trips are made in 4 of the 24 hours in a day (i.e., there is quite a bit of peaking). If we

use a dummy value Np = 10 in the formula, we find that the total generalized cost for this
time-dependent case is

1(V4x3 + /24— 4)(10-3))=15.30.

Using the same logic we see that if the Np = 10 trips had been spread uniformly across the
entire 24 hrs, the generalized cost would have been: (24x10)”=15.49.

Note the very small difference, and that peaking actually reduces the cost to society, which
was not the case for individual modes! You can also convince yourself that the relative
difference between these two costs is independent of Np. The relative difference is so small
because we can adapt the provision of transit service to match demand. The small and
favorable relative error suggests that to plan collective transportation systems with dominant
vehicle costs (as in our examples) one can assume a time-independent demand as a
simplification. Infrastructure costs, on the other hand, must be provided in a time-invariant
(non-adaptable) way, so the same cannot be said when guideway costs are important, as
happens for transportation by individual modes and some collective kinds (e.g., subways).

Comparison between Individual and Collective Transportation Modes

In many cases, individual modes are used in parallel with public transit lines, and an equilibrium
is reached in which some trips are made by individual modes and the rest by transit. If a
traveler’s decision of which mode to take is based only on the level of service (LOS) cost (i.e.
the delay time), the equilibrium will be reached when the level of service costs are the same for
both choices.

We have seen from Vickrey’s model that the generalized cost of delay for automobile commuters
is approximately SNg/u, when L >> e and s >> x. Note that this cost increases proportionally
with the number of individuals using the roadway, Ng, and decreases as capacity, u, is expanded.

For collective transportation, by contrast, the level of service cost is always proportional to the
service headway, H, and is independent of the number of individuals using the transit system. It
is PH if everyone has appointments. Assuming the vehicles are sufficiently large, this makes
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sense because the time cost of riding a transit shuttle depends only on how long a rider must wait
for the vehicle, not on how many other people are sharing the vehicle.

So the following diagram plotting general cost vs. number of users helps explain what happens
when the two modes provide competing shuttle services for a population of Ny travelers and we
have to decide where to allocate funds for increased capacity. The increasing lines correspond to
“automobile” and the horizontal lines to “public transit”.

Generalized 1 ¢l + AN/, low
Cost Initial ¢/ + BN/u, medium y (initial value)
Equilibrium g
g/(ca‘) +‘ PN/, high
AN ——— fms) + BH, high H
. _ L7 ’./, /.é“/ C/(lransil) + ﬁ[_]’ medium H
Improvementin \L 2" (initial value)
generalized cost S aa— cfmsi) + SH, low H
7 o= | ’
== |
|
|
|
| >
‘ , ] ' | > N, Car
Ny
N, Car N, Transit
Figure 4.

Assume now that the automobile and public transit systems are initially described by the two
curves labeled “medium” in the figure. If people choose shuttle service based on generalized
cost, then the intersection of these two curves is the initial equilibrium. The total generalized cost
is then the sum of the total cost for all modes (which is the same for all trips, regardless of
mode), depicted by the shaded area: Nx(c/"™™" + SH).

Now, suppose some public funds become available and we can choose whether to invest in
public transit or individual modes. We can choose to improve the headway for transit service, H,
(option 2 in the figure) or the roadway capacity, u, (option 1); so... where should we spend the
money?

An investment in automobile infrastructure lowers the cost of driving which will cause a shift in
mode share to more drivers (point 1). The user cost (shaded area), however, remains unchanged
because drivers fill the new road capacity until the time delay is equivalent to the time cost of
taking transit.
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Investing in public transit, however, lowers the user cost for transit riders by reducing the
headway, and this creates a mode share shift towards transit (point 2). In this case the
improvement benefits both transit riders and drivers (by taking drivers off the road). Therefore,
in this idealized example everyone benefits from investing more funds in collective
transportation, even those people who never set foot on a transit vehicle.

Related Reading

Vickrey, W.S. (1969). “Congestion theory and transportation investment.” The American
Economic Review, 59(2) 251-260.

Appendix A: Vickrey Model of the Morning Commute

We look for an equilibrium where the critical driver is indifferent to any arrival time, and the
first and last drivers to the bottleneck experience no delay. Thus, given a fixed slope, , of D(?),
we can find this equilibrium (see Figure 2) by setting the delay experienced by the critical driver,
T, equal to the earliness cost experienced by arriving first or the lateness cost experienced by
arriving last:

T=N"e and T =2k
7 I

With these two equalities and the relation N, + N, = Nz we can solve for 7, N, + N, with the
result of the text:

So this shows that the critical driver would not have an incentive to change its arrival position.
But for the curves of Figure 2 to be in equilibrium, other drivers—whether their wished times are
before or after the critical time—would also have to lack an incentive to change their arrival
positions. A good way to verify this is in two steps:

(a) Draw an “indifference curve” for a generic non-critical driver (with a given wish time)
showing for each possible arrival position from 0 to N the time at which the driver would have
to join the virtual queue when arriving in this position to achieve the generalized cost currently
experienced. (Note that each arrival position has a given earliness or lateness for this driver.)
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(b) Noting that the latest time at which the queue can be joined for any position is given by
V(%); and that V() is never to the right of the indifference curve; i.e., the indifference times are
not feasible and the driver cannot improve his or her position.

Step (a) requires some care. The following references can perhaps help. They are not required
reading, but they contain more detail and additional applications.

Related Reading

Daganzo, C.F. (1985). “The uniqueness of a time-dependent equilibrium distribution of arrivals
at a single bottleneck.” Transportation Science. 19(1) 29-37.

Daganzo C.F. and Garcia, R.C. (2000). “A Pareto improving strategy for the time-dependent
morning commute problem.” Transportation Science. 34(3) 1-9.
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Module 3: Planning—Corridors
(Originally compiled by Eric Gonzales and Josh Pilachowski, February, 2008)
(Last updated 9-22-2010)
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e Idealized Analysis
O Limits to The Door-to-Door Speed of Transit
0 The Effect of Access Speed: Usefulness of Hierarchies

e Realistic Analysis (spatio-temporal)
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No transfers
Transfers and Hierarchies
Insights
Standards-Revisited
Space- and Time-Dependent Services
= Average Rate Analysis
= Service Guarantee Analysis
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In the previous module we looked at the special case where all trips originate at one point and
end at another point. Now, we consider demand spread along a corridor, so trips must be
consolidated both in time and in space. The design of transit service in a corridor requires
choosing a stop spacing, S, and service headway, H.

We will first focus exclusively on S in order to isolate the effect of spatially distributed demand
from that of its temporal distribution, which we saw in Module 2. Whereas temporal
consolidation involved a trade-off between out-of-vehicle (waiting) time and vehicle operating
cost, which had huge economies of scale as demand increased, we will now see that in the spatial
case the trade-off is between out-of-vehicle (access) time and in-vehicle time, and that this trade-
off is less favorable to public transit: it imposes a severe limit on door-to-door speed even if we
make the most favorable assumptions possible for collective transportation.
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Idealized Analysis
Limits to Door-to-Door Speed

Consider a very long transit corridor serving customers that travel from left to right. Customer
origins are continuously distributed anywhere along the corridor and their trips can take any
length up to a maximum ¢. The stops are separated by distances, s < £. We are interested in the
tightest door-to-door travel time guarantee that can be extended to all customers.

T

t

Now we will make a number of optimistic (although unrealistic) assumptions in order to identify
this guarantee while accounting for the fact that passengers must access the transit stop and then
ride vehicles which make periodic stops to pick up and drop of passengers. This bound will be
independent of demand and many other parameters, so it is very general.

e Assume vehicles are dispatched so frequently that once a passenger arrives at a stop, he
or she does not wait at all for the next vehicle; i.e., H= 0.

e Assume the doors of the vehicle open and close instantly, and passengers take no time to
get in or out of the vehicles.

¢ Finally assume that there is no upper bound to the speed that can be achieved by a transit
vehicle while traveling between stops, so that v,,,, = .

Although we would agree that these conditions would favor operation extremely, the transit
system will still be limited by:

e A maximum acceleration above which passengers will feel physical discomfort from the
force (ap~ 1 m/s?).

e The average walking speed at which passengers travel to access their nearest transit stop
(va = 1 m/s).

There are two components of travel time in this case: access time, #,, and riding time, #,. In the
worst case, the access time results from a passenger walking half of a stop spacing from the
origin and another half stop spacing to the destination. So:
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Riding time is the consequence of the commercial speed of transit (the average speed of the
vehicle v,) which is affected by the stop spacing. If there is no maximum speed, then the transit
vehicle will accelerate as it departs a stop until it is half way between stops. Then the vehicle
will decelerate to make the next stop (see figure below). Under these conditions, the riding time
t, for a trip between stops can be decomposed into two equal parts of length: s/2 = Ya(#,/2)>.

From this we find:
(=25,
a,

and the riding time ¢, for a trip of length £ >> s will be approximately ¢/s times longer; i.e.:
2/
! =~

. .
\sa,

Note that the commercial speed is therefore:

sa,

2

/g ~
tr

v
~

Figure 5.

We assume that people walk to the nearest station. Then, you can verify that for any spacing s
you choose, there always is an unlucky passenger who would have to walk a distance s and then
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ride for a distance s €/s |.' As a result, the total door-to-door time for this worst-case passenger
is: = t, + t,= s/va + 28 t/s [/(sag)%s . This function increases with s except and declines only
when s is a sub-multiple of £. At these points it takes on the form:

v, sa,

So we look for the minimum of this expression, and as (a very good) approximation we ignore
the fact that s should be a sub-multiple of £. There is a trade-off here for choosing the stop
spacing s. On the one hand, a longer stop spacing increases the distance passengers must walk to
access the mode, so the access time increases with s. However, a greater space between stops
allows vehicles to accelerate to higher speeds so that riding time decreases with 5. Therefore, an
optimal stop spacing, s*, can be chosen to minimize the door-to-door travel time. The result of

this optimization is:
1 1
2,2 \3 2 \3
v, )P
S*: : ; t*(a05va5£):3
a, v,a,

Of course, this result is valid only if s* < ¢, as we assumed; i.e., only if £ > vilay. Fortunately,
since realistic values of v,*/ay are comparable with 1 m, this requirement is comfortably satisfied
for the trip lengths that interest us. Since the unluckiest passenger has a trip length close to £ we
can approximate the speed of this passenger by:

This expression can also be interpreted as the door-to-door speed that can be guaranteed to all
passengers with trips of length close to £.

Let us plug in some numbers to see how this upper bound of door-to-door speed changes with
the length of trips made. If passengers walk with speed v, = 1 m/s and the maximum allowable

' To see this, draw a picture with an unlucky trip as follows: (i) an origin displaced by an infinitesimal amount &
toward the left of a mid-point between stations, and (ii) a trip length, y = £ if s = £; or else, y = sl &/s +2¢& if s < ¢.
(This is an admissible choice, since for sufficiently small ¢ the trip length is valid: y < £.) Now note that in both
cases the trip length is a multiple of s, so both the origin and the destination are near a mid-point and access distance
is 5. Note too that both cases involve severe backtracking with total in-vehicle distance sl ¢/s|> £. You can also
convince yourselves that sl £/s | is also an upper bound to the in-vehicle distance traveled by any passenger; and that
therefore, our unlucky passenger is actually the unluckiest.
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acceleration is ap = 1 m/s’, the figure below shows the fastest door-to-door speeds that can be
guaranteed.

12.28 m/s
27.5mph

6.7m/s
15mph

4.2 m/s
7.5mph

A\
)

2 km 8 km 50 km
~1mi ~5mi ~30mi

This result is very slow, even with all the favorable assumptions we have made for transit
(including vy, = 0). Why? We are minimizing total travel time including the access time (i.e.
maximizing door-to-door travel speed) which relies on passengers walking to the stops. Since
people walk very slowly, the stops must be spaced closely enough to limit the time passengers
spend accessing transit. This spacing, along with the limit of acceleration, prevents the vehicles
from achieving high speeds. With individual transport modes the results are better.” Is there a
way of improving collective transportation so it can be more competitive? The answer, as we
shall see next day, is yes.

(Hint: the door-to-door speed of public transit depends on the access speed; and if we could
increase this speed by some means, the door-to-door speed would increase.) We will explore this
issue next, and how to exploit it. We will also study how to plan real corridor systems without
the simplifying assumptions we have made — fully recognizing spatiotemporal effects.

The Effect of Access Speed: Usefulness of Hierarchies

For the moment we continue with our idealized and favorable scenario for public transit service.
So far, our goal has been to understand how transit door-to-door service speed depends on £. We

2 If we made similar favorable assumptions for individual transportation modes on uncongested guideways, their
commercial speed would be close to the mode’s maximum speed for all /; i.e., much better than for public transit.
The reason is that by being individual these modes do not require much of an access displacement: a great virtue.

3-5



Public Transportation Systems: Planning—Corridors

made a couple of assumptions, shown below, in order to obtain an optimistic but very simple
upper bound of door-to-door time. The demand, A, does not matter for this bound.

H=0
t, =0
1% = 00

max

Recall that the door-to-door travel time for the unluckiest passenger was shown to be:

v, sa,

By minimizing this expression with respect to s we obtained the following approximate formulae
for the door-to-door travel time and speed of the unluckiest passenger with trip length ¢:

EZ

vaaO

3 1
t(f):3( j and 9:%(15%%)3.

Note how if we could increase the speed of access the situation would improve. We can do this
by using another transit service to provide access!

o0+ 0———T0—>
\ J

Let’s reexamine our logic assuming this is done. By providing a local transit service with stop
spacing, sy, to access an express service with stop spacing, s;, the access speed would now be:

1
f80) 1(s, 3
v, =V = |==| Zv,q,
2 302

where v,, s the speed of walking. The derivation of this would actually be slightly different so
we do not double-count access time, so for simplicity we will assume some small transfer time
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So
y

w

equal to . This will allow us to continue using the same equation. The impro