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Preface 
This document is based on a set of lecture notes prepared in 2007-2010 for the U.C. Berkeley 
graduate course “CE259-Public Transportation Systems”--a course targeted to first year graduate 
students with diverse academic backgrounds.   

The document is different from other books on public transportation systems because it is 
informal, has a narrower focus and looks at things in a different way. Its focus is the planning, 
management and operation of public transportation systems. Important topics such as financing, 
governance strategies and urban transportation policy are not covered because they are not 
specific to transit systems, and because other books and courses already treat them in depth. The 
document is also different because it deemphasizes facts in favor of ideas. Facts that constantly 
change and can be found elsewhere, such as transit usage statistics and transit system 
characteristics, are not covered.   

The document’s way of looking at things, and its structure, is similar to the author’s previous 
book “Logistics systems analysis” (Springer, 4th edition, 2005) from which many basic ideas are 
borrowed. (Transit systems, after all, are logistics systems for the movement of people.) Both 
documents espouse a two-step planning approach that uses idealized models to explore the 
largest possible solution space of potential plans. The logical organization is also similar: in both 
documents systems are examined in order of increased complexity so that generic insights 
evident in simple systems can be put to use as knowledge “building blocks” for the study of 
more complex systems.  

The document is organized in 8 modules: 5 on planning (general; shuttle systems; corridors; two-
dimensional systems; and unconventional transit); 2 on management (vehicles; and employees); 
and 1 on operations (how to keep buses on schedule). The planning modules examine those 
aspects of the system that are usually visible to the public, such as routing and scheduling. The 
management and operations modules analyze the more mundane aspects required for the system 
to work as designed. Two more modules are in the works: management of special events (e.g., 
evacuations; Olympics); and operations in traffic.  

Although the document includes new ideas, which could be of use to academics and 
professionals, its main aim is as a teaching aid. Thus, a companion document including 7 
homework exercises and 3 mini-laboratory projects directly related to the lectures is also made 
available. It can be obtained by visiting the Institute of Transportation Studies web site and 



looking for a publication entitled: “Public Transportation Systems: Mini-Projects and Homework 
Exercises”. Versions of these exercises and mini-projects were used in the 2009 and 2010 
installments of CE259: a 14-week course with two 1-hour lectures and one 1-hr discussion 
session per week. Sample solutions to the mini-projects and exercises can be obtained by 
university professors by writing to the ITS publications office and requesting a third document 
entitled: “Public Transportation Systems: Solution Sets”. 

The various modules were originally compiled by PhD students Eric Gonzales, Josh Pilachowski 
and Vikash Gayah, directly from the lectures. Subsequently, my colleague Prof. Mike Cassidy 
used them in an installment of CE259 and offered many comments. This published version has 
been edited and reflects the input of all these individuals. Their help is gratefully acknowledged. 
The errors, of course, are mine. The financial support of the Volvo Research and Educational 
Foundations is also gratefully acknowledged.  

 

 
Carlos F. Daganzo 
September, 2010 
Berkeley, California 
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Module 1: Planning—General Ideas 
 

(Originally compiled by Eric Gonzales and Josh Pilachowski, January 2008) 
(Last updated 9-22-2010) 

 

Outline 
• General course info (admin) 
• Course substance and organization 
• Transit Planning 

o Definitions 
o How to account for politics 
o How to account for demand 
o The shortsightedness tragedy 
o Planning and design approaches 

Course Substance and Organization 

Goal of the Course 
• What transit can and can’t do realistically 
• How to do it (large/small scale) 
• How to make it happen practically (focus on engineering) 

Brief Explanation of Syllabus (see Appendix) 
• The planning part of the course explores what is possible and how to do it with building 

blocks of increasing realism and complexity; it shows the limits of transit systems and 
gives you the tools to develop systematic plans.  

• The management and operations part explores the “plumbing” of transit systems. This 
includes management items that are hidden from the user’s view such as fleet 
sizing/deployment and staffing plans, as well as more visible operational items such as 
adaptive schedule control and traffic management.  

• Planning ideas will be reinforced with two lab projects and five homework exercises. 
Management/operations ideas will be reinforced with one lab project and two exercises. 

 

Imagine public transit in a linear city. Many people travel between different origins and 
destinations at different times (thin arrows in the time-space diagram below).  Note how people 
have to adapt their travel in space to the location of stops and in time to the scheduled service in 
order to use transit (thick arrow), and how this adaptation could be reduced by providing more 
transit services (more thick arrows).  Unfortunately, the thick arrows cost money; and this 
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competition between supply costs versus demand adaptation turns out always to be at the heart of 
transit planning.  It will be a central theme in this course. 

ci
ty

transit 
veh trip

User desired

x

t

stop

stop

adaptation

 

 

Transit Planning 

Definitions 
• Guideway – fixed parts of a transportation system, modeled as links and nodes 

(infrastructure) 
• Network – set of links and nodes, uni- or multi-modal 
• Path – a sequence of links and nodes 
• Origin/Destination – beginning and end of a path through a network 
• Terminal – node where users can change modes 
• Planning – art of developing long term/large scale schemes for the future 
• Mobility – the distance people can reach in a given time (e.g. VKT/VHT) 
• Accessibility – the opportunities people can reach in a given time (depends on land use) 

We can improve accessibility by improving mobility and/or by changing the distribution of 
opportunities.  But if the opportunities are fixed in space, then a change in mobility is equivalent to 
a change in accessibility. 

As shown in the previous figure, there is a trade-off inherent in public transportation because users 
give up flexibility (suffering a “level of service” penalty) for economy.  To strike this balance 
between level of service (LOS) and supply cost in networks for individual modes (e.g. highway, 
bike-lanes, and sidewalks), planners can only change the infrastructure.  But in collective 
transportation, planners also have control over the vehicles’ routes and schedules. 
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The goal of planning is to achieve efficiency, measured as a combination of LOS and supply costs.  
Costs come in different forms, such as time, T, comfort, safety, and money, $, and should be 
reduced to some common units.  The result is called a generalized cost or disutility, which can be 
defined both for individuals and groups, and is usually expressed as a linear combination of 
component costs; e.g. for one individual experiencing time T and cost $ it could be: 

Generalized Cost = βTT + β$$ 

How to Take into Account Politics 

Note that βT and β$ will vary between individuals, so even though an individual may have a well-
defined generalized cost, the choice of appropriate weights to represent a diverse group is always a  
political decision that cannot be resolved objectively. 

Note too that transit systems involve costs to non-users—energy, pollution, noise, etc.—and that 
since people also disagree about how these should be valued, they further complicate the decision-
making picture. 

Clearly, we need to simplify things! (but without ignoring the effects of politics). 

To this end, we will assume in this course that there is a political process that has converged to the 
establishment of some standards, which would apply to all the non-monetary outputs of the transit 
system; e.g., 

T – Door-to-door time (no more than a standard, T0) 
E – Energy consumed (no more than E0) 
M – Mobility (at least M0) 
A – Accessibility (at least A0) 

And our goal will be minimizing the cost, $, of meeting the standards; i.e., 

 Mathematical Program (MP): min{ $: T ≤ T0; E ≤ E0; M ≥ M0; A ≥ A0 … } 

Note how each standard is associated with an inequality constraining the value of the performance 
output in question.  Since these outputs are usually directly connected to 4 key measures of 
aggregate motion: VHT, VKT, PHT, PKT, we can often reformulate the standards in terms of 
passenger time (distance) and vehicle time (distance). 

Alternatively, since all variables in this MP (both monetary and non-monetary), which we 
collectively call y = ($, T, E, M, A), are functions of the system design, x, (i.e., the routes and 
schedules used for the whole system) and the demand, α (which we assume to be given), we can 
express the MP in terms of x and α. 
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To make this formulation more concrete, let us define these relations by means of a vector-valued 
function Fm: 

y = Fm(x, α) 

where, 
y – performance outputs for the entire system (both monetary and non-monetary) 
m – mode 
x – design variables for the entire system 
α – demand 

We then look for the value of x that minimizes the $-component of y while the other components 
satisfy the standards constraints.  The result is as a best design, x*(α), which if implemented would 
yield y*(α) = Fm(x*(α),α) = Gm(α).  This function represents the best performance possible from 
mode m with given demand α.  We will, in this course, compare the Gm(α) for different modes. 

To see all this more concretely, consider a simple transit system where all users are concentrated at 
two points. 

 
In this case we have: 

x – frequency of service (a single design variable: buses/hr) 
α – demand (a single demand variable: pax/hr) 

Define now the components of Fm.  We assume that each vehicle dispatch costs cf monetary units.  
Thus we have: 

$ = Fm
$(x,α) = cf x/α [$/pax] 

 
Note: we have defined $ as an average cost per passenger.  We could instead have defined $ as the 
total system cost per hour.  Both definitions lead to the same result since they differ by a constant 
factor: the demand, α.  If we now assume that headways are constant but the schedule is not 
advertised, we have: 

 
T = Fm

T(x,α) = 1/x [hrs] (out of vehicle delay assumes ½ headway at origin and ½ headway 
at the destination) 

 
And finally, if each vehicle trip consumes ce joules of energy we also have: 

 
E = ce x/α [joules/pax] 
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If the political process had ignored energy and simply yielded a standard T0 for T, and if we choose 
the monetary units so cf = 1, the MP would then be: 

min{ x/α: 1/x ≤ T0 }. 
 

Note that the OF is minimized by the smallest x possible.  Thus, the constraint must be binding, 
and we have: 

 
x* = 1/T0 

 
Therefore the “optimum” monetary cost per passenger would be: 

 
$* ≡ Gm

$(α) = 1/(αT0) 

We call the above the “standards approach” to finding efficient plans. 

There is another approach, which we call the “Lagrangian approach.”  It involves choosing some 
shadow prices, β, and minimizing a generalized cost with these “prices” without any constraints.  
Although the selection of prices cannot be made objectively, one can always find prices that will 
meet a set of standards (see your CE 252 notes).  So the Lagrangian approach is equivalent to the 
standards approach.  For example, we can formulate: 

minx { $+βT ≡ x/α + β(1/x) } 
 

The solution is: 
 

x* = αβ  
 

You can verify that the “standards” solution (x* = 1/T0 and $* = x*/α = 1/(αT0)  is achieved for 
. So no matter what standard you choose, there is a price that achieves it.  )/1)(/1( 2

0 αβ T=

In summary, there are 2 approaches to obtain low cost designs that satisfy policy aims: 

1. Standards: min { $ s.t. T ≤ T0, E ≤ E0… } 

This minimizes the dollar cost subject to policy constraints, e.g. for trip time, energy 
consumption and possibly other outputs. Usually, as shown in the example, constraints 
become binding when solved → T = T0, E = E0  

2. Lagrangian: min { $(x,α) + βT(T(x,α)) + βE(E(x,α)) } 
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This minimizes the generalized cost, and gives the same solution as the standards method 
when suitable shadow prices, βT and βE, are chosen. The shadow prices can be found by 
solving the Lagrangian problem for some prices, finding the optimum T and E and then 
adjusting the prices until T and E meet the standards. In simple cases, such as the above 
example, this can be done analytically in closed form. 

How to Account for Demand: Some Comments about Demand Uncertainty and Endogeneity 

So far, we have assumed that the demand, α, is given, and critics could say that this is not realistic.  
However, if we are lucky and the design one provides happens to be optimum for the demand that 
materializes, then the issue is moot.  Suppose we design x for a chosen level of demand, α, that is 
expected to materialize at some point in the future.  Normally, we expect realized demand to 
change with time, and for a well-designed system that provides improved service this demand 
should be increasing. Then, the question of whether the system design is optimal in reality (given 
that we assumed a demand   α0) is less a question of if, but of when, since the demand α0 will 
eventually be realized.  Furthermore, we will learn later in the course that the cost associated with 
a design, x*, that is optimal for α0 is also near-optimal for a broad range of values of α (within a 
factor of 2 of α0).  Thus, if the realized demand does not change quickly with time, the system 
design is likely to produce near optimal costs for a long period of time. 

Furthermore, we should remember that demand is difficult to predict in the long run. So, building 
complicated models that endogenize α in order to predict precise values is not a worthwhile 
activity in my opinion. Rough estimates of future demand are sufficient for design purposes. This 
is not to say that a vision for the future is not important; only that it does not need to be anticipated 
precisely. The following example illustrates what happens if one ignores the vision. 

The Shortsightedness Tragedy 

This example shows that when demand changes with time, then incrementally chasing optimality 
with short-term gain objectives in mind can lead us to a much worse state than if we design from 
the start with foresight and long term objectives. 

Now, consider the investment decisions for a system with potential for 2 modes: 

automobile – divisible capacity with cost per unit capacity, cg 
subway – indivisible and very large capacity with cost for a very large capacity, c0 

Politicians, who make decisions about how much money to invest in transportation infrastructure, 
tend to focus on short-run returns because of the relatively short political cycle.  If elections for 
city leaders occur every couple of years, then politicians have incentives to look at costs only in 
the near future.  This can be “tragic.” 

Suppose that demand for transportation in a city is growing over time and is expected to continue 
growing long into the future (this tends to be the case in nearly all cities around the developing 
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world).  Suppose too that the goal is supplying (at all times) enough capacity to meet demand. The 
politicians must decide whether to invest a large amount of money, c0, in digging tunnels and 
laying track for a subway that will have enormous capacity to handle demand for decades into the 
future or to incrementally expand road infrastructure to handle the demand αi expected over the 
next political cycle, i.  This would cost ci = cgαi monetary units and will be the decision made if ci 
< c0 (assuming cost is the main political issue.)  The result of this “periodic review” decision 
making is shown by this figure: 

$

t

$auto(t)
periodic review based on 

political cycles

now

c0

ci = cgαi

$subway(t)

t’  

If the decision rule for investing in infrastructure is to chose the lowest cost over the next political 
cycle and demand increases gradually, “automobile” will always win because with gradual 
increases in demand: ci < c0.  In the long run, however, the cost of investment in automobile 
infrastructure is unbounded.  Had decisions been made with a view to the long run 

(t > t’), the subway (i.e. the less costly investment) would have been chosen. 

Another point pertaining to “the future demand vision” is that systems often create their own 
demand; and this should be recognized (even exploited) when developing design targets.  Planning 
actions that have long-term consequences should be made with a long-term horizon and long term 
vision. 

Planning and Design Approaches 

Comparative Analyses – This is planning by looking at what similar cities have done and trying to 
copy it. Although this is useful, “safe” and often done, it can exclude opportunities to come up 
with innovative solutions that may only be appropriate for the case of concern.  (We will not do 
this in this course; we will instead create designs from scratch, systematically.) 
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Step-wise Approach – This is how systematic planning must be done -- problems are too big to be 
explored in one shot. We first plan generally for the big picture; then fill in the design/engineering 
step. 

In order to conduct broad planning for the large scale, it is useful to simplify the analyses.  
Decision variables, such as number of buses, number of stops, and number of bus routes are 
integer values in reality, but we will treat them as divisible (continuous) variables. This greatly 
simplifies matters, for example turning integer programming problems into linear programs, so 
that complex problems can be solved much more easily.  This will work if the simplification does 
not introduce large errors. 

 Decision Methods 

1. Planning Large/Long scale Simplified/Broad 

2. Design  Detailed/Specific 

 

Example 

Consider a simple mathematical (integer) program, e.g. for maximizing personal mobility subject 
to a budget constraint: 

max { z = 22x + 18y } 
s.t. 2.1x + 1.9y ≤ 2 

x, y ∈ Z (integer valued) 

This is so simple that the solution can be obtained graphically (try it); the solution is: 

x* = 0, y* = 1, z* = 18. 

Now, if we start with the planning approach and simplify the problem by treating x and y as 
continuous variables.  We are now solving a linear program which has the (optimistic) solution: 

x* = 0.952, y* = 0, z* = 20.95, 

(The solution is optimistic because it is the optimum for a problem with fewer constraints.)  To 
obtain a feasible solution the LP solution can be rounded up or down.  Because of the constraint, 
we must round down and we obtain: 

x* = 0, y* = 0, z* = 0. 
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This solution will be pessimistic since it is feasible, but not necessarily optimal.  In fact, this is 
much worse than the optimum solution! So, the simplifying assumptions of the step-wise approach 
do not work so well for this small scale problem. 

Now, if we do the same problem on a much larger scale (e.g. for a budget that would cover a 
whole city) we would solve instead the mathematical program, 

max { z = 22x + 18y } 
s.t. 2.1x + 1.9y ≤ 200 

x, y ∈ Z (integer valued) 

Starting with a planning step, assuming the variables can take non-integer values (linear program), 
the (optimistic) solution is 

x* = 95.2, y* = 0, z* = 2095. 

Rounding to the nearest integer value (the design step) gives a pessimistic final objective function 
value: 

x* = 95, y* = 0, z* = 2090 

Now the pessimistic value associated with the integer solution we obtained with the step-wise 
approach is very close to the optimistic value, and therefore should be even closer to the real 
optimum that could have been obtained. So, simplifying the problem for large-scale planning 
purposes, as we will do in this course, is not detrimental to the results of the analysis. 
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Appendix: Class Syllabus (spring 2010) 

The schedule below lists the topics covered in 1-hr lecture periods in the spring semester (2010) 
and how they were coordinated with the homework exercises and the mini-project activities. Not 
listed, a 1-hr weekly discussion session was also scheduled to cover the homework exercises and 
the mini-projects.  
 
───────────────────────────────────────────────────────────────── 
Period   Date         Lecture subject                                         Problems        Mini-project 
───────────────────────────────────────────────────────────────── 
 1 1/19 Introduction: general ideas, politics     
 2        1/21     Introduction: standards, demand uncertainty     
───────────────────────────────────────────────────────────────── 
 3 1/26 Planning: shuttle systems, fixed demand 1 (EOQ) 
 4 1/28 Planning: shuttle systems, adaptive demand 1 
───────────────────────────────────────────────────────────────── 
   5        2/5     Planning: modal comparisons, idealized corridors 2 (Vickrey)    
 6 2/4 Planning: idealized corridor hierarchies 2   
───────────────────────────────────────────────────────────────── 
   7 2/9 Planning: corridors (detailed analysis, standards)   
 8 2/11 Planning: corridors (standards vs. generalized costs)        
───────────────────────────────────────────────────────────────── 
 9 2/16 Planning: inhomogeneous corridors   3 (spacing only CA) 1 
 10 2/18 Planning: idealized grid systems (issues) 3  1 
───────────────────────────────────────────────────────────────── 
 11 2/23 Planning: realistic grid systems (no hierarchy)   1 
 12 2/25      Planning: grid systems (practical issues)    1 
───────────────────────────────────────────────────────────────── 
 13 3/2  Planning: hybrid systems (modal comparisons) 4 (modal competition) 2 
 14 3/4  Planning: hierarchical systems, adaptation 4  2 
──────────────────────────────────────────────────────────────── 
 15 3/9 Planning: paratransit (general concepts; taxis) 5 (hierarchy design) 2 
 16 3/11 Planning: paratransit (dial-a-ride)  5  2 
───────────────────────────────────────────────────────────────── 
 17 3/16 Planning: paratransit (car-sharing)    2 
 18 3/18 Management: vehicle fleets (1 route)    2 
───────────────────────────────────────────────────────────────── 
 SPRING BREAK  
───────────────────────────────────────────────────────────────── 
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───────────────────────────────────────────────────────────────── 
Period   Date         Lecture subject                                          Problems        Mini-project 
───────────────────────────────────────────────────────────────── 
 19 3/30 Management: vehicle fleets (n routes)  6 (feeder DAR) 
 20 4/1 Management: methodology (meta-heuristics) 6  
───────────────────────────────────────────────────────────────── 
 21 4/6    Management: staffing (1 run)    3 
 22 4/8 Management: staffing (n runs)    3 
───────────────────────────────────────────────────────────────── 
 23 4/13    Operations: vehicle movement (theory, systems of systems)  3 
 24 4/15 Operations: vehicle movement (pairing)   3  
───────────────────────────────────────────────────────────────── 
 25 4/20 Operations: vehicle movement (pairing avoidance) 7 (bus pairing) 
 26 4/22 Operations: right-of-way (issues, nodes)  7 
───────────────────────────────────────────────────────────────── 
 27 4/27 Operations: right-of-way (links, systems) 
 28 4/29 Operations: special events (capacity management)  
───────────────────────────────────────────────────────────────── 
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Module 2: Planning--Shuttle Systems 
 

(Originally compiled by Eric Gonzales and Josh Pilachowski, February, 2008)  
(Last updated 9-22-2010) 

 

Outline 
• Overview 
• Shuttle Systems 

o Individual Transportation 
 Time-independent Demand 
 Time-Dependent – Evening (Queuing), Morning (Vickrey) 

o Collective Transportation 
 Time-Independent 
 Time-Dependent 

o Comparisons and Competition 

Overview 

Recall from Module 1 that public transportation can be thought of as a system that consolidates 
individual trips in time and space to exploit economies of scale that result from collective travel.  
Since this course is about developing insights as well as recipes, we will analyze simple systems 
starting with point-to-point shuttles, then expand to transit in corridors, and finally build up to 
the more realistic case of organizing public transportation in 2 dimensions. 

1. Shuttle Systems – Assume the population is already consolidated at two points (an origin 
and destination) so that there is no spatial consolidation of trips. Collective transportation, 
in this case, will involve temporal consolidation as individuals adjust their departure 
times to match the scheduled departure of transit vehicles from the shared origin to the 
shared destination. 

 

 

2. Corridors – Assume now that the population is spread along a corridor so that all travel is 
made in 1 dimension along which transit service is provided.  Here, collective 
transportation must involve spatio-temporal consolidation as individuals must travel to 
discrete stations where they can board transit vehicles which depart at discrete times. 
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3. Cities – Finally we consider the more realistic case of a population spread across 2 
dimensions.  Now transit services must be aligned in a route structure to cover the 2-D 
space, and this routing adds circuity to travel as transit systems carry individuals out of 
the way of their shortest path in order to consolidate trips spatially. 

 

 

 

 

 

 

 

Shuttle Systems 

We start by analyzing point-to-point shuttle systems.  For comparison purposes we will do this 
for both, individual and collective transportation modes.  In both cases we look first at the time-
independent case where we assume steady state conditions (supply and demand are constant over 
time).  This is the way many economic models treat transportation. We then look at the (more 
interesting) time-dependent case. Individual modes, like private automobiles, incur significant 
guideway costs in proportion to the capacity provided, which cannot be easily adapted to a time-
dependent demand.  Public transit modes without extensive guideways will be shown to be more 
flexible, because a significant part of their costs come from vehicle operations. 

Individual Transportation Modes 

Time-Independent Demand 

In order for individuals to travel in private vehicles (such as automobiles) without much delay, 
some amount of capacity, μ (pax/hr), must be provided to serve the demand, λ (pax/hr).  For 
private modes, there is a roughly constant infrastructure cost, cg, per unit of capacity provided.  
There is also a cost per vehicle trip, cf, that each driver perceives as a fixed cost of making a trip 
by private car.  Assuming as an approximation that there is no delay whatsoever when the 
capacity exceeds demand (μ ≥ λ), the cost per passenger of a private vehicle system is 

f
g c+=
λ

c μ
$  ,       for μ ≥ λ. 
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cc

In order to minimize this cost, we would always choose to provide the least possible capacity, 
which means μ = λ.  Therefore the minimum cost per passenger is given by 

= fg +$  

which is independent of demand, so there are no economies of scale in our idealization of private 
transportation; i.e., the total cost accrues at rate λ$.  Doubling the number of drivers on the road 
would double the total cost of transportation when just enough capacity is provided to serve 
demand. We now look at the time-dependent case, both for the evening and morning rush hours, 
which are different. 

Time-Dependent Demand –The Evening Commute with Known Demand (Queuing Analysis) 

Until now, we have assumed that demand is time-independent so that as long as capacity 
matches demand there is no delay, but in reality travel demand rises and falls over the course of a 
day.  Below is a cumulative plot of demand showing the difference between the daily average 
demand,λ , and the maximum demand in the peak of rush hour, λm.  We assume that the demand 
curve is given and (for simplicity only) that the day has a single rush instead of two.  Note that 
λm ≥ λ , and that in a time-independent system where the demand rate does not fluctuate over 
the course of the day, λm would equal λ . 

t

#

TD = 24 hours

λ

λm μ

V(t)

D(t)

 
Figure 1. 

The minimum monetary cost of providing service subject to a travel delay standard, T0, can take 
a range of values depending on the standard and the capacity it requires.  This range can be 
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easily identified. A lower bound for the cost is obtained by relaxing the standard and simply 
assuming, T < ∞.  This relaxed standard is achieved by providing just enough capacity to meet 
the average daily demand (μ = λ ) such that there are no unserved vehicles carrying over from 
day to day.  This yields a lower bound equal to the monetary cost of the time-independent case: 
cg + cf.  An upper bound for the cost is obtained by tightening the standard to T0 = 0. This 
standard is achieved by providing sufficient capacity so that there is never congestion: μ = λm. 
The upper bound is therefore as shown below: 

f
m

gfg ccTTcc +⎟
⎠
⎞

⎜
⎝
⎛≤≤≤+
λ
λ

}:min{$ 0  

Note that these bounds apply whether we interpret T as the average delay experienced by drivers, 
or as the maximum delay experienced in the worst case.  The choice of which standard to use is a 
political decision.  But these bounds show that a rush hour can only make costs worse than in the 
time-dependent case because the cost of serving uniform demand is the lower bound of this 
expression.  So, we still do not see economies of scale. 

Aside (showing how to calculate the actual values T* and $*): If desired, one can also 
estimate T* and $* (not just the bounds) by using a cumulative plot diagram and/or a 
spreadsheet.  For example, if T and T0 are averages across drivers, we would evaluate the 
total time delay, TT(μ), for a given capacity, μ, as the area between the arrival curve described 
by V(t) and the departure curve, D(t), determined by the capacity, μ.  The average time delay 
per driver, T(μ), is thus given by 

λ
μ

)()( TT =
μT . 

Note from the picture that the area between V(t) and D(t), and therefore T(μ) declines with μ; 
and since the monetary cost of private transportation always increases with capacity, $(μ) ≡ 
cg μ/λ , the constraint of our mathematical program must be binding.  Thus, 

0*)( TT =μ  

which yields μ* (and $*).  

Time-Dependent Demand –The Morning Commute (Vickrey Model with Endogenous Demand) 

In our idealization of the morning commute the times at which people leave their homes and 
would arrive at our mythical bottleneck are not given. Instead, the demand is driven by work 
appointments characterized by a cumulative curve of desired departure times through the 
bottleneck, which we call the wish curve, W(t).  If the slope of the wish curve, s, is less than the 
capacity of the bottleneck, μ, all drivers can pass through the bottleneck exactly when they would 
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Le

like; then there would be no delay.  Curves V(t), D(t) and W(t) would match. However, if the s 
exceeds capacity, some drivers would have to depart the bottleneck earlier or later than their 
wished time and the three curves could not match. 

To see what could happen as drivers adjust their home departure times (over days) in response to 
their delays, we suppose that each driver values time in queue at a rate β ($/hr), time arriving 
early at rate eβ and time late at a rate Lβ.  The constants e and L are dimensionless and such that: 

≤≤ 1

NNN

 

According to Vickrey (1969), if s exceeds μ and drivers minimize their generalized costs 
including delay, earliness, and lateness, an equilibrium curve of arrival times to the bottleneck 
arises in which the order of arrivals to the bottleneck is the same as the order of wished 
departures. 

The equilibrium principle is that no driver should be able to decrease its generalized cost by 
changing their arrival time.  In Vickrey’s equilibrium, shown in Fig. 2, there is a critical driver, 
numbered Nc in the sequence of arrivals and departures, who experiences no earliness or lateness 
and whose entire cost is time in queue. (Note how the departure curve D(t) crosses W(t) for the 
ordinate of this driver.) All drivers who arrive before Nc will depart the bottleneck before their 
wished departure time.  We will define Ne as the count of such drivers.  All drivers who arrive 
after Nc will depart the bottleneck after their desired departure time.  We will define NL as the 
count of such drivers.  If there are a total of NR drivers then the following is true: 

RLe =+  

You can convince yourselves that the queuing diagram for the equilibrium is uniquely defined if 
you are given T, Ne and NL. It can be shown (see Appendix) that: 

)( eL
LeN

T R

+
=
μ

;    
eL

LNN R
e +
= ;  and  

eL
eNN R

L +
= . 

It also turns out that if s >> μ, the generalized level of service cost (including both queuing delay 
and unpunctuality cost) is nearly the same for all commuters, approximately βT.  When L >> e, 
this generalized cost is βNR/μ. 
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t

#

s

NR

μ

D(t)

W(t)

V(t)

T

NL/μ

TD = 24 hours

Nc

Ne

NL

Ne/μ  
 

Figure 2. 

The total cost of congestion in this morning commute is the sum of total queuing delay (the area 
between V(t) and D(t)), the total earliness penalty (e times the area between D(t) and W(t) where 
D(t) > W(t)), and the total lateness penalty (L times the area between W(t) and D(t) where D(t) < 
W(t)).  This calculation can be most easily done based on the geometry of the figure. 

A little reflection shows that if we choose a bottleneck capacity that minimizes the out-of-pocket 
cost per person $ required to cover the cost of said capacity subject to a time standard (say for 
the critical commuter), we obtain the same bounds as in the evening rush:1 

fgfg cscTTcc +⎟
⎠
⎞

⎜
⎝
⎛≤≤≤+
λ

}:min{$ 0 , 

where DR TN /=λ

                                                

.  

So, in the morning rush we continue to be worse-off than in the time-independent case; and 
economies of scale still do not appear. 

 

1 This is true because the practical range of μ  is [λ , s] and λμ /$ gf cc += .  
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Collective Transportation 

We now repeat this analysis for public transit and find that the results are quite different (and 
encouraging). 

Time-independent Demand 

Consider now a shuttle service provided on an existing guideway from a common origin to a 
common destination, where the frequency of service is the decision variable that the transit 
agency can determine.  

 

We assume that shuttle vehicles (e.g., trains) are large enough to carry any number of passengers 
that may show up and define: 

H – headway between vehicle dispatches [hours] 

x – frequency of vehicle dispatch [number of vehicles per hour] 
H
1

=  

cf – cost per vehicle dispatch of providing shuttle service [dollars per vehicle] 
λ – demand [number of passengers per hour] 

So, the monetary cost per passenger, $, of providing shuttle service is given by the cost per hour 
of dispatching the transit vehicles divided by the total number of passengers using the system. 

λ
f=$  
xc

The out-of-vehicle delay experienced by passengers in the system (ignoring the time in motion 
between the origin and destination, which is the same for every traveler) is always proportional 
to the headway of service. For example, if people know the headways but not the schedule and 
they have specific appointments at the destination (as in the morning commute), they will leave 
home with at least one headway of slack, which they will spend either at the origin or at the 
destination. Combined, their total delay would be H. If people do not have specific appointments 
(as happens for many people in the evening commute) their delay would be ½H on average. 
Thus, for the worst-case situation (with appointments) the average delay T is: 

x
T =

1  

So if we apply a standard T0 (as we did for individual modes) we have to solve: 
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⎭
⎬
⎫

⎩
⎨
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≤≡ 0
1:min T
x

xc
$ f

λ
 

and since the constraint is binding, we find: 

0

$*
T

c f

λ
=  

Note: There are economies of scale in providing collective transportation because the monetary 
cost, $*, decreases with the demand!  This is the promise of public transportation vis a vis 
individual transportation. In reality the contrast is not so pronounced because as we shall see 
there exist compensating complications, but the promise is real. The reason is that with more 
demand more individuals can consolidate their travel onto each vehicle without changing the 
number of vehicle runs; and this lowers the cost of providing transportation per person. We now 
show that economies still arise if we allow the demand to vary with time. 

Time-Dependent Demand 

The analysis above assumes that the demand is uniformly spread throughout the course of the 
day, but in reality the demand for travel is concentrated into rush hours.  Let us now evaluate the 
cost of providing collective transportation for this case, assuming that the passenger arrivals are 
given.2 

Consider now a simplified case of a day with two demand periods: a peak demand, λp, for a 
period of Tp hours of the day, and an off-peak demand, λo, for the remaining TD – Tp hours.  The 
cumulative plot of Fig. 3 shows this demand profile and that Np passengers travel in the peak, 
leaving ND – Np passengers for the off-peak hours. 

                                                 
2 This assumption can now be used for both the evening and morning commutes (with and without appointments) 
because with our large-vehicles, passengers do not have to compete for limited system capacity. 

 



Public Transportation Systems: Planning—Shuttle Systems 

 

2-9 

t

#

TD = 24 hours

λp

λo

ND

Np

Tp  
Figure 3. 

To design a transit system for this demand, we can break up the day into two regimes and choose 
a peak period headway, Hp, and an off-peak headway, Ho, to minimize the cost in providing 
transit service over the course of the whole day.  This can be done by minimizing the total 
generalized cost by the Lagrangian approach with the two decision variables, Hp and Ho: 

{ ( ) ( )}dispatches bus ofNumber  time waitingofamount  Totalmin cZ f+β  =
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The headways that minimize the generalized cost are 

p
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Using these optimal headways gives a minimum total generalized cost of 

( )))((2* pDpDppf NNTTNTcZ −−+= β . 
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Note that for a given ratio Np/ND this total generalized cost is proportional to DN , so the 

generalized cost of collective transportation per person is proportional to 1/ DN ; i.e., it 
decreases with increasing ridership, ND, and therefore with the average daily demand λ = ND/TD.  
So even with time-dependent demand, public transit displays economies of scale. 

Technical aside:  Note that the optimum cost does not change much if the demand is spread 
evenly across the whole day.  Suppose, for example, that the coefficient 12 =fcβ  and 30% 
of the trips are made in 4 of the 24 hours in a day (i.e., there is quite a bit of peaking).  If we 
use a dummy value ND = 10 in the formula, we find that the total generalized cost for this 
time-dependent case is 

( ) 30.15)310)(424(341 =−−+× . 

Using the same logic we see that if the ND = 10 trips had been spread uniformly across the 
entire 24 hrs, the generalized cost would have been:  (24×10)½ = 15.49.  

Note the very small difference, and that peaking actually reduces the cost to society, which 
was not the case for individual modes!  You can also convince yourself that the relative 
difference between these two costs is independent of ND. The relative difference is so small 
because we can adapt the provision of transit service to match demand. The small and 
favorable relative error suggests that to plan collective transportation systems with dominant 
vehicle costs (as in our examples) one can assume a time-independent demand as a 
simplification. Infrastructure costs, on the other hand, must be provided in a time-invariant 
(non-adaptable) way, so the same cannot be said when guideway costs are important, as 
happens for transportation by individual modes and some collective kinds (e.g., subways). 

Comparison between Individual and Collective Transportation Modes 

In many cases, individual modes are used in parallel with public transit lines, and an equilibrium 
is reached in which some trips are made by individual modes and the rest by transit. If a 
traveler’s decision of which mode to take is based only on the level of service (LOS) cost (i.e. 
the delay time), the equilibrium will be reached when the level of service costs are the same for 
both choices. 

We have seen from Vickrey’s model that the generalized cost of delay for automobile commuters 
is approximately βNR/μ, when L >> e and s >> μ.  Note that this cost increases proportionally 
with the number of individuals using the roadway, NR, and decreases as capacity, μ, is expanded. 

For collective transportation, by contrast, the level of service cost is always proportional to the 
service headway, H, and is independent of the number of individuals using the transit system.  It 
is βH if everyone has appointments. Assuming the vehicles are sufficiently large, this makes 
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sense because the time cost of riding a transit shuttle depends only on how long a rider must wait 
for the vehicle, not on how many other people are sharing the vehicle. 

So the following diagram plotting general cost vs. number of users helps explain what happens 
when the two modes provide competing shuttle services for a population of NR travelers and we 
have to decide where to allocate funds for increased capacity. The increasing lines correspond to 
“automobile” and the horizontal lines to “public transit”. 

NCar

Generalized
Cost

cf
(car) + βN/μ , low μ

cf
(car) + βN/μ , medium μ (initial value)

cf
(car) + βN/μ , high μ

cf
(transit) + βH, high H

cf
(transit) + βH, medium H

(initial value)
cf

(transit) + βH, low H

NR

Initial 
Equilibrium

1

2

NCar NTransit

Improvement in 
generalized cost

 
Figure 4. 

Assume now that the automobile and public transit systems are initially described by the two 
curves labeled “medium” in the figure. If people choose shuttle service based on generalized 
cost, then the intersection of these two curves is the initial equilibrium. The total generalized cost 
is then the sum of the total cost for all modes (which is the same for all trips, regardless of 
mode), depicted by the shaded area: NR(cf

(transit) + βH). 

Now, suppose some public funds become available and we can choose whether to invest in 
public transit or individual modes.  We can choose to improve the headway for transit service, H, 
(option 2 in the figure) or the roadway capacity, μ, (option 1); so… where should we spend the 
money? 

An investment in automobile infrastructure lowers the cost of driving which will cause a shift in 
mode share to more drivers (point 1).  The user cost (shaded area), however, remains unchanged 
because drivers fill the new road capacity until the time delay is equivalent to the time cost of 
taking transit. 
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Investing in public transit, however, lowers the user cost for transit riders by reducing the 
headway, and this creates a mode share shift towards transit (point 2). In this case the 
improvement benefits both transit riders and drivers (by taking drivers off the road).  Therefore, 
in this idealized example everyone benefits from investing more funds in collective 
transportation, even those people who never set foot on a transit vehicle.   

Related Reading 

Vickrey, W.S. (1969). “Congestion theory and transportation investment.” The American 
Economic Review, 59(2) 251–260. 

  

Appendix A: Vickrey Model of the Morning Commute 

We look for an equilibrium where the critical driver is indifferent to any arrival time, and the 
first and last drivers to the bottleneck experience no delay.  Thus, given a fixed slope, μ, of D(t), 
we can find this equilibrium (see Figure 2) by setting the delay experienced by the critical driver, 
T, equal to the earliness cost experienced by arriving first or the lateness cost experienced by 
arriving last: 

μ
eN

T e=     and   
μ

LNT L= . 

With these two equalities and the relation Ne + NL = NR we can solve for T, Ne + NL, with the 
result of the text: 
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So this shows that the critical driver would not have an incentive to change its arrival position. 
But for the curves of Figure 2 to be in equilibrium, other drivers—whether their wished times are 
before or after the critical time—would also have to lack an incentive to change their arrival 
positions. A good way to verify this is in two steps:  

(a) Draw an “indifference curve” for a generic non-critical driver (with a given wish time) 
showing for each possible arrival position from 0 to NR the time at which the driver would have 
to join the virtual queue when arriving in this position to achieve the generalized cost currently 
experienced. (Note that each arrival position has a given earliness or lateness for this driver.) 
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(b) Noting that the latest time at which the queue can be joined for any position is given by 
V(t); and that V(t) is never to the right of the indifference curve; i.e., the indifference times are 
not feasible and the driver cannot improve his or her position.  

Step (a) requires some care. The following references can perhaps help. They are not required 
reading, but they contain more detail and additional applications. 

Related Reading 

Daganzo, C.F. (1985). “The uniqueness of a time-dependent equilibrium distribution of arrivals 
at a single bottleneck.” Transportation Science. 19(1) 29–37. 

Daganzo C.F. and Garcia, R.C. (2000). “A Pareto improving strategy for the time-dependent 
morning commute problem.” Transportation Science. 34(3) 1–9. 
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Module 3: Planning—Corridors 
(Originally compiled by Eric Gonzales and Josh Pilachowski, February, 2008) 
(Last updated 9-22-2010) 

 

Outline 
• Idealized Analysis 

o Limits to The Door-to-Door Speed of Transit 
o The Effect of Access Speed: Usefulness of Hierarchies 

    
• Realistic Analysis (spatio-temporal) 

o Assumptions and Qualitative Issues 
o Quantitative formulation  
o Graphical Interpretation 
o Dealing with Multiple Standards 
o No transfers 
o Transfers and Hierarchies 
o Insights 
o Standards-Revisited 
o Space- and Time-Dependent Services 

 Average Rate Analysis 
 Service Guarantee Analysis 

 

In the previous module we looked at the special case where all trips originate at one point and 
end at another point.  Now, we consider demand spread along a corridor, so trips must be 
consolidated both in time and in space.  The design of transit service in a corridor requires 
choosing a stop spacing, S, and service headway, H. 

We will first focus exclusively on S in order to isolate the effect of spatially distributed demand 
from that of its temporal distribution, which we saw in Module 2. Whereas temporal 
consolidation involved a trade-off between out-of-vehicle (waiting) time and vehicle operating 
cost, which had huge economies of scale as demand increased, we will now see that in the spatial 
case the trade-off is between out-of-vehicle (access) time and in-vehicle time, and that this trade-
off is less favorable to public transit: it imposes a severe limit on door-to-door speed even if we 
make the most favorable assumptions possible for collective transportation. 
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Idealized Analysis 

Limits to Door-to-Door Speed 

Consider a very long transit corridor serving customers that travel from left to right. Customer 
origins are continuously distributed anywhere along the corridor and their trips can take any 
length up to a maximum ℓ.  The stops are separated by distances, s ≤ ℓ. We are interested in the 
tightest door-to-door travel time guarantee that can be extended to all customers. 

s

ℓ  

Now we will make a number of optimistic (although unrealistic) assumptions in order to identify 
this guarantee while accounting for the fact that passengers must access the transit stop and then 
ride vehicles which make periodic stops to pick up and drop of passengers. This bound will be 
independent of demand and many other parameters, so it is very general. 

• Assume vehicles are dispatched so frequently that once a passenger arrives at a stop, he 
or she does not wait at all for the next vehicle; i.e., H = 0. 

• Assume the doors of the vehicle open and close instantly, and passengers take no time to 
get in or out of the vehicles. 

• Finally assume that there is no upper bound to the speed that can be achieved by a transit 
vehicle while traveling between stops, so that vmax = ∞. 

Although we would agree that these conditions would favor operation extremely, the transit 
system will still be limited by: 

• A maximum acceleration above which passengers will feel physical discomfort from the 
force (a0 ≈ 1 m/s2). 

• The average walking speed at which passengers travel to access their nearest transit stop 
(va ≈ 1 m/s). 

There are two components of travel time in this case: access time, ta, and riding time, tr.  In the 
worst case, the access time results from a passenger walking half of a stop spacing from the 
origin and another half stop spacing to the destination.  So: 

a
a v

t =
s  
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Riding time is the consequence of the commercial speed of transit (the average speed of the 
vehicle vv) which is affected by the stop spacing.  If there is no maximum speed, then the transit 
vehicle will accelerate as it departs a stop until it is half way between stops.  Then the vehicle 
will decelerate to make the next stop (see figure below).  Under these conditions, the riding time 
ts for a trip between stops can be decomposed into two equal parts of length: s/2 = ½a0(ts/2)2.  
From this we find: 

0

2
a
sts = ,  

and the riding time tr for a trip of length ℓ >> s will be approximately ℓ/s times longer; i.e.: 

0sa
tr

l
≈

2 . 

Note that the commercial speed is therefore: 

2
0sa

tr

≈
l . 

t

x

vv = ℓ/ tr

s

x(t)

 
Figure 5. 

We assume that people walk to the nearest station. Then, you can verify that for any spacing s 
you choose, there always is an unlucky passenger who would have to walk a distance s and then 
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ride for a distance s⎡ℓ/s⎤.1  As a result, the total door-to-door time for this worst-case passenger 
is: t = ta + tr = s/va + 2s⎡ℓ/s⎤/(sa0)½ . This function increases with s except and declines only 
when s is a sub-multiple of ℓ. At these points it takes on the form: 

0sav
t

a

l
+=

2s . 

So we look for the minimum of this expression, and as (a very good) approximation we ignore 
the fact that s should be a sub-multiple of ℓ. There is a trade-off here for choosing the stop 
spacing s.  On the one hand, a longer stop spacing increases the distance passengers must walk to 
access the mode, so the access time increases with s.  However, a greater space between stops 
allows vehicles to accelerate to higher speeds so that riding time decreases with s.  Therefore, an 
optimal stop spacing, s*, can be chosen to minimize the door-to-door travel time.  The result of 
this optimization is: 
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Of course, this result is valid only if s* ≤ ℓ, as we assumed; i.e., only if ℓ ≥ va

2/a0.  Fortunately, 
since realistic values of va

2/a0 are comparable with 1 m, this requirement is comfortably satisfied 
for the trip lengths that interest us. Since the unluckiest passenger has a trip length close to ℓ we 
can approximate the speed of this passenger by: 
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This expression can also be interpreted as the door-to-door speed that can be guaranteed to all 
passengers with trips of length close to ℓ.  

Let us plug in some numbers to see how this upper bound of door-to-door speed changes with 
the length of trips made.  If passengers walk with speed va = 1 m/s and the maximum allowable 

                                                 

1  To see this, draw a picture with an unlucky trip as follows: (i) an origin displaced by an infinitesimal amount ε 
toward the left of a mid-point between stations, and (ii) a trip length, y = ℓ if s = ℓ; or else, y = s⎣ℓ/s⎦+2ε  if s < ℓ. 
(This is an admissible choice, since for sufficiently small ε the trip length is valid: y < ℓ.) Now note that in both 
cases the trip length is a multiple of s, so both the origin and the destination are near a mid-point and access distance 
is s.  Note too that both cases involve severe backtracking with total in-vehicle distance s⎡ℓ/s⎤ ≥ ℓ.  You can also 
convince yourselves that s⎡ℓ/s⎤ is also an upper bound to the in-vehicle distance traveled by any passenger; and that 
therefore, our unlucky passenger is actually the unluckiest. 
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acceleration is a0 = 1 m/s2, the figure below shows the fastest door-to-door speeds that can be 
guaranteed. 

ℓ2 km

v̂

8 km 50 km

4.2 m/s

6.7 m/s

12.28 m/s

~ 1 mi ~ 5 mi ~ 30 mi

7.5 mph

15 mph

27.5 mph

 

This result is very slow, even with all the favorable assumptions we have made for transit 
(including vmax = ∞).  Why?  We are minimizing total travel time including the access time (i.e. 
maximizing door-to-door travel speed) which relies on passengers walking to the stops.  Since 
people walk very slowly, the stops must be spaced closely enough to limit the time passengers 
spend accessing transit.  This spacing, along with the limit of acceleration, prevents the vehicles 
from achieving high speeds. With individual transport modes the results are better.2 Is there a 
way of improving collective transportation so it can be more competitive? The answer, as we 
shall see next day, is yes.   

(Hint: the door-to-door speed of public transit depends on the access speed; and if we could 
increase this speed by some means, the door-to-door speed would increase.) We will explore this 
issue next, and how to exploit it. We will also study how to plan real corridor systems without 
the simplifying assumptions we have made – fully recognizing spatiotemporal effects. 

The Effect of Access Speed: Usefulness of Hierarchies 

For the moment we continue with our idealized and favorable scenario for public transit service.  
So far, our goal has been to understand how transit door-to-door service speed depends on ℓ.  We 

                                                 
2  If we made similar favorable assumptions for individual transportation modes on uncongested guideways, their 
commercial speed would be close to the mode’s maximum speed for all l; i.e., much better than for public transit. 
The reason is that by being individual these modes do not require much of an access displacement: a great virtue. 
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made a couple of assumptions, shown below, in order to obtain an optimistic but very simple 
upper bound of door-to-door time.  The demand, λ, does not matter for this bound. 

 

∞=
=
≅

max

0
0

v
t
H

s  

 
Recall that the door-to-door travel time for the unluckiest passenger was shown to be: 
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By minimizing this expression with respect to s we obtained the following approximate formulae 
for the door-to-door travel time and speed of the unluckiest passenger with trip length ℓ: 
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Note how if we could increase the speed of access the situation would improve. We can do this 
by using another transit service to provide access! 
 

ℓ

s0

s1  
Let’s reexamine our logic assuming this is done.  By providing a local transit service with stop 
spacing, s0, to access an express service with stop spacing, s1, the access speed would now be: 
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where vw is the speed of walking.  The derivation of this would actually be slightly different so 
we do not double-count access time, so for simplicity we will assume some small transfer time 
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equal to 
wv

s
2

0 .  This will allow us to continue using the same equation.  The improved door-to-

door travel time is then: 
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You can verify that: 
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)( 1stl  will be the best travel time for a fixed s1, assuming that you have optimized s0 already. 

 
Note:  you can notice that this equation is in the form: 
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which we will be analyzing in more detail in Homework #2.  You will find that the optimum 

solution 
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After we optimize tl with respect to s1 we find the result to be: 
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This equation shows that tl is of order 7
4
l and 

lt
v l
∝ˆ is of order 7

3
l and of order 7

1

wv .  By 

plotting v with respect to ℓ with and without a hierarchy we can see for which trip lengths it is 
optimum to provide a local service.   

ˆ
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ℓ

v̂
hierarchy

no hierarchy

ℓ*

below this you do not 
need any hierarchy  

 
 

 
 
 
Realistic Analysis with Spatio-Temporal Effects 
 
We have so far made a number of favorable and unrealistic assumptions about our transit system 
in order to derive generic insights about the effects of the spatial dispersion of passengers along a 
corridor.  So with these insights in mind we now turn our attention to the development of specific 
plans introducing more realism. The analysis will include both, the spatial and temporal effects 
of dispersed demand; combining the ideas we have so far seen with those of Module 2. We shall 
see that in addition to ℓ, two other important variables affect a corridor system’s structure: the 
trip generation rate, λ, and the “user’s value of time” β.  
 
Assumptions and Qualitative Issues 
 
 
Here are the improvements to realism we now consider: 
 

1) Remove the assumption that vmax = ∞; for example define vmax = vauto (for buses) 
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maxv) where

x x(t) where vmax = ∞

x(

maxv

t

t 

v= auto

s 

            
t a /2 s/v ta/2max

 
2) Remove the assumption that ts = 0.  If we approximate the trajectory of the bus with 

piecewise linear segments of vmax and stop time then we can define ts as the dwell time at 
a stop plus the loss time due to acceleration and deceleration.  The total travel time will 
then be: 

 

ststops
v
distt )(#
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+=  

 
3) Remove the assumption that H = 0 

 
 
Before starting quantitative analysis, let us compare the spatio-temporal accessibility provided by 
different modes with a plot showing the area that a person can reach in a given time depending 
on their mode of transportation. 
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vauto

vtransit

vwalk
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We can look at the area covered by a single stop spacing and headway.  Notice how a person, 
depending on their origin in space and time, will choose a bus stop based on their accessibility: 
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Quantitative Formulation 
 
Let’s try to design a realistic corridor without any hierarchy.  We propose choosing the H*and s*  
that minimize the cost of service given some door-to-door travel time standard. For example: 
 

min {cost of service} 
s.t. t(ℓ) ≤ T0 

 
We assume for now that we focus on a single “ℓ “; e.g. the longest trips people make.  To do this, 
we need formulae for the cost of service and the constraint in terms of our decision variables: 
 

Cost of service = 
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Note: λ is the average demand density in the corridor (trips/time·dist) and λsH is the number of 
customers associated with one stop and one vehicle.  The constants cs and cd are unit costs for a 
bus stop and a bus-mile.  How would you derive these? 
 
To solve the problem we can write the Lagrangian as below.  Can you associate the four terms 
with specific passenger activities? 
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which (ignoring the “cs“ term) has the solution: 
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Note: the UB solution is obtained by sticking H* and s* into the neglected term and adding the 
result to $*. 
 
 
Graphical interpretation:   
 
This picture shows how the solution depends on λ, ℓ, and β. 
 

 
 

Where WD represents waiting delay, AIVD represents access and in-vehicle-delay, and LH 
represents line haul time. 
 
Note: “β”is a proxy for the wealth of a city and the diagram illustrates the kind of system that 
cities of wealth might use to satisfy a demand characterized by λ and ℓ. 
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β

s* H*

s*

H*

 
 

 
Dealing with Multiple Standards 
 
A more realistic situation would require adherence to level of service for more than a single trip 
length.  Let’s examine the situation where we our constraint is: 
 

lll ∀≤ );()( 0Tt  
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}

 
 
We end up with a minimization problem that looks like: 
 

{ ),(cosmin
,

Hstagency
Hs

  (1) 

s.t. lll ∀≤ );(),,( 0THsT   (2) 
 

Note:  There will always be at least one binding constraint when the problem is minimized.  We 
will call this (unknown) binding trip length ℓc. If we knew it and we knew this length provided 
the only binding constraint (a reasonable assumption), we could formulate the problem as a 
single-constraint problem and solve it: 
 

                             { }),$(min
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s.t. 0),,()(0 == cc HsTT ll    
 

This would be an easy task because it can be done with the Lagrangian method we have just 
seen. Note that the remaining constraints would be satisfied as strict inequalities. If we don’t 
know the critical length, this property of the optimal solution of the single-constraint problem 
can be used to see if a test value for ℓ is the correct one. So to solve the problem we can solve the 
single-constraint Lagrangian problem for different ℓ until we find one that exhibits this property. 
 
No Transfers 
 
For our specific corridor formulae and assuming no transfers, this procedure can be simplified 
even more and the result is intuitive.  This is now explained. 
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Given our assumptions, the mathematical program corresponding to (1) and (2) is: 
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Notice that the cost function omits the component related to making a stop ( sHcs λ ) because 
this value is small, and the objective function here gives a lower bound. Notice too that the 
constraint separates into a part that depends only on the choice of headway, H; we call this the 
waiting delay (WD).  The rest of the constraint depends only on the choice of stop spacing, s; 
this will be called the access and in-vehicle time (AIVT ≡ T(ℓ|s)). 

When we plot the expression T(ℓ|s) for a fixed s the result is a straight line: the vertical intercept 
is the fixed maximum access time (s/va), and the slope the vehicle’s average pace (1/vmax + ts/s). 

The minimum vertical distance between the travel time standard, T0(ℓ), and an AIVT line for a 
given s, T(ℓ|s), represents the fixed amount of waiting delay that can be added to every trip and 
still keep the travel time with the constraint. Note that this minimum vertical distance is the 
maximum vertical displacement of our AIVT line until it becomes tangent from below to the 
T0(ℓ) curve.  This vertical displacement is the maximum headway, H, that can be chosen for a 
given s and still meet the standard, thus minimizing the cost of providing transit service.  Now, 
the AIVT line can be changed by our choice of s, so let’s choose the s that gives us the maximum 
displacement so we can choose the greatest possible H and therefore achieve the lowest possible 
operating cost.  This is the sought result. 
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This optimization can be done in one shot by considering the lower envelope (LE) of travel time 
across all choices of s. 

Lower Envelope of ( ) ( ){ } ( )lll Ls
TsTsT == |min|  

To this end, note that when an AIVT line is displaced it cannot possibly touch T0(ℓ) in an upward 
bulge; so we only need to look for points of tangency on the convex hull (CH) of T0(ℓ).3 So, we 
propose the following: slide TL(ℓ) up until it touches (and is tangent to) the convex hull of the 
time standard T0(ℓ).4 Then, the displacement is the optimum headway H*, and the tangent to the 
envelope at the point of contact (ℓ = ℓ*) is the optimum AIVT line (with s = s*).5 

Applying this result, 
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To summarize, we have split the optimization into two parts: (i) a spatial step to find a stop 
spacing, s, that minimizes the access and in-vehicle time and (ii) a temporal step to find the 
headway, H, to minimize the cost of meeting the service constraint. 

This is approximate and works neatly because we left out the cost of the stopping.  So the 
analysis above gives us a lower bound of cost.  If the stopping cost were left in the analysis, the 
mathematical program can still be solved with brute force in a spreadsheet, but this gives us very 
little insight.  If we solve the simplified formulation and then plug the resulting TL(ℓ) and s* into 
the cost function, we will get an upper bound for the cost.  No further analysis is necessary when 
the lower bound and upper bound are close. 

What if buses run in both directions along a corridor? 

                                                 
3 The CH is the highest convex curve that can be drawn without exceeding T0(ℓ).)  

4 Note that this point of tangency does not have to be on T0(ℓ), as occurs on the figure. 

5 Why is this true? (i) You see from the geometry of the picture that the displacement of the optimum AIVT line 
(which is straight) to first contact with T0(ℓ), i.e. the optimum headway H(s*) for the s = s*, is always equal to the 
displacement of the LE to first contact with the CH; thus, the displacement we propose is the optimum headway for 
s*.  And (ii) s* is the optimum spacing because no other AIVT line can be displaced by a greater amount. 
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ℓ

s

 

The stop spacing will remain unchanged, because s is chosen only to minimize travel time, and 
the demand plays no role in the travel time expression.  The cost of operating service will 
double, however, because twice as many buses are needed to serve the same demand per unit 
length. 

Exercise: Consider transit service in a loop demand uniformly distributed between all points. 

 

Would we want to serve trips with bi-directional transit routes or is it better to reduce 
headways by putting all vehicles in service in the same direction?  You should be able to 
convince yourself that if the route has 4 buses or more, it is always better to operate bi-
directional service. (Hint: If you had only one bus, it should be obvious that it is most time 
efficient to operate service in one direction.  Likewise, if you had an infinite number of 
buses, it should be obvious that buses should be deployed in both directions to serve the 
demand.  Where is the tipping point where it becomes more efficient to operate buses in the 
both directions?) 

Transfers and Hierarchies 

Now, what if we introduce transfers to an express service operating in parallel to the local 
service with frequent stops.  There are couple ways this service could be structured.  So far, we 
have been looking at translationally symmetric route patterns, but this need not be the case.  We 
could run offset local-express services as shown below. 
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A B

local express

 

The disadvantages of such a network design outweigh the benefits for cases where the demand is 
spread out because for trips between points such as A and B we would require multiple transfers.  
But if all the trips have a common destination (e.g., for feeder systems that collect passengers 
from many destinations and deliver them to a single hub) the strategy has merit.  For spread-out 
(many-to-many) service it makes sense to consider a local bus service that is paralleled by an 
express service where passengers can transfer from one service to the other at designated transfer 
stops. 

ℓ

s0

s1  

Assume that the headways are synchronized with the same H for local and express services, but 
the local buses stop with spacing, s0, and the express buses make less frequent stops with spacing 
s1.  Even this structure of service can be operated in different ways. 

Strategy 1: Express buses are scheduled at consistent headways, and the local feeders are 
dispatched in to depart in both directions along the corridor every time an express bus reaches a 
transfer station.  At some point between transfer stations, the local buses wait and then begin a 
return trip, bringing passengers to the transfer station just in time for the arrival of the next 
express bus. 
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Strategy 2: Express buses are again dispatched at a scheduled headway.  Instead of running 
feeder buses in both directions, a bus is dispatched from the transfer station after the arrival of an 
express bus, and a second feeder is dispatched in the same direction to collect passengers and 
drop them off at the downstream transfer station in time to catch the next arriving express bus.6 

                                                 
6 If service is not synchronized there is no need for “dead-times” and buses can both collect and deliver passengers.  
The two bus systems can even have different headways, H0 and H1. Could you draw a picture such as those above? 
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Both of these operational strategies tessellate across time and space and require two local bus 
dispatches for each express bus dispatch. Therefore they require the same number of vehicle 
kilometers of service, and a lower bound to the cost of providing service based on vehicle-km is 

H
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λ
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$ =  

for both timed-transfer strategies. (Convince yourselves that the coefficient would be “2” for un-
synchronized service with H0 = H1 = H). To be complete we must account for bus-hrs while 
stopping. Then, the cost in a system with timed transfers is 
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The unsynchronized case with H0 = H1 = H would have a very similar form except for some of 
the coefficients: “3” would be “2”, the next ‘2” would be “1” and the final “2” would be “0”. 
Test yourselves and see if you can derive the unsynchronized expression for H0 ≠ H1. 

The door-to-door travel time T is composed of the following components: 

 H = waiting delay 
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wv

s0  = access time 

 v0 = average speed of local vehicle including stops but not dead time 

 
0

1

v
s  = local in-vehicle travel time 

 v1 = average speed of express vehicle including stops but not dead time (v1 > v0) 

 
1v
l  = express in-vehicle travel time 

 ∆ = transfer time 
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So the door-to-door travel time is given by7 
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and we can optimize the system with a mathematical program of the familiar form: 
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The lower bound of the cost is now 3cd/λH, and the door-to-door time, 
( ) ( )sTHHssT v

l |,, 10 += .  The maximum possible H can be determined by the same method 
described for a system with only local service, although here we determine a lower envelope of 
travel time in 2 parameters, s0 and s1. 
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Example: Considering s1 for the time being as a constant, find the optimal s0*. 

wsvtss 10 * =  

                                                 
7 The only changes for the unsynchronized cases involve the coefficient of H (or of H0 and H1 , if H0 ≠ H1). 
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The s1/vmax term is typically much less than ws vt2  so we can ignore s1/vmax and get an 
approximate solution. 
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Insights (Comparisons across Countries) 

Imagine combining the cost and time into a Lagrangian expression of generalized cost when we 
value time at a rate of β dollars per unit time. If we neglect the (small) effects of dead times and 
transfer times, the result is:  
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Three of the parameters that appear in this expression (λ, β and ℓ) can vary by orders of 
magnitude across cities and countries, and the others vary much less. Therefore, (λ, β and ℓ) can 
be thought of as the main drivers of system structure or design.  Now, if we divide through the 
above expression by β so that the generalized cost (GC) is always expressed in units of time, 
then λβ always appear together so z*(λ, ℓ, β)/β is really a function of only two drivers of design: 
(λβ and ℓ).  This generalized cost in units of time is the total time required to make a trip 
including the time people must spend working to afford system. We can think of the λβ driver as 
the “wage generation rate per unit time and distance” because λ is the trip generation rate and β 
the value of time associated with each trip generated, which should be similar to the wage rate. 

It is nice to use intrinsic units that are independent of a currency or country.  We can express 
wages β in any equivalent units we want.  For example we could use units of ct (where ct is the 
operating cost per unit time of running a bus), using β/ct as our wage metric. Note that this ratio 
is the number of buses that can be continuously operated with the wages of one person. (In rich 
countries the ratio can be close to 1 and in poor countries much, much less.) Thus, we can think 
of λβ/ct as the “bus generation rate”.  

Whether one uses intrinsic units or not, the fact that demand and wealth can be combined into a 
single driver means that low-density wealthy neighborhoods in developed countries and poor 
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dense neighborhoods in developing countries (with the same bus-generation rates) should have 
approximately the same system structure. And they should also share the time-based GC. (This 
happens because as we have seen the time-based GC depends only on the combined value of 
λβ.)  Isn’t it nice that we can say this even before optimizing the system?  

Example: Plugging some numbers into this model helps illustrate the difference between transit 
competitiveness in wealthy versus poor countries.  Using extrinsic units of hrs, km, $: 

 vw ≅ 3 km/hr 
 vmax ≅ 36 km/hr 
 ts ≅ 5 x 10-3 hr 

• β ~ 1 → 20 $/hr 
 cd ≅ 1 $/km 
 cs ≅ 10-1 $/stop 
 ct ≅ 20 $/hr 

• ℓ ~ 2 → 40 km 
• λ  ~ 1, 2.5, 10, 20, 50, 200 trips/km2 

The values with the greatest range of values (marked with • ) are our drivers of design. The 
figure below shows how the generalized cost (in units of time) relates to the length of a trip for 
transit serving neighborhoods of different values of λβ and the cost of making the trip by car in a 
wealthy or poor country.  More accessibility is associated with greater trip length for a 
generalized cost. 

ℓ

Time, z*/β

λβ = 200 λβ = 50 λβ = 20
50 km

15 km

100 min

car (wealthy)

car (poor)

140 min  
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Standards–Revisited (Two Additional Points) 
 
The first point is that every length-based standard can be reduced to a “simple standard”.  Recall 
from the earlier discussion how, for a defined “political” standard T0(ℓ) for door-to-door trip 
time, we were able to find the critical length of trip and critical headway to satisfy that standard 
with the graphical construction below. 

ℓ

t
)(0 lT

convex hull of 

*H

)(0 lT

*
0T

*l

AIVD line s*

LE

simple 
standard

 

Note that if we replace T0(ℓ) with the simple standard shown with its corner at point (ℓ*, T0
*) we 

arrive at the same solution! This simple standard can be interpreted such that all trips shorter than 
a certain length (ℓ*) must be completed within a certain time (T0

*) and longer trips can be 
ignored.  

The simplification is useful because it involves just two parameters (ℓ* and T0
*). Therefore, by 

exploring the structure of optimum transit systems for all possible values of these two parameters 
one would have explored all possible optimum solutions.  Note too from the figure that ℓ* must 
be the binding length and therefore we can treat it as the only (equality) constraint. As a result, 
there is a 1:1 relationship between (ℓ*, T0

*) and (ℓ*, β), and we see that we can alternatively 
explore the space of all solutions by plotting the Lagrangian solution for all values of (ℓ*, β), as 
we had suggested earlier.  
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$min

 The second point is that there is a neater way of eliminating the socioeconomic drivers (λ and β) 
from the formulation of the problem, simply by working with the total system costs per day, 
rather than the unit cost per passenger carried. In the standards formulation we wrote formulas 
for $(s, H) and T(s, H) with units per passenger. But if instead we had (equivalently) used 
$T(s, H) ≡  λ$(s, H), with units of cost per unit time and length, then you can see from the earlier 
notes that the parameter λ would not appear in any of our formulas for $T(s, H). In fact, the 
mathematical program: 

ll ∀≤ );(.. 0TTts
T  

would not include either of our socioeconomic drivers (λ or β) in its formulation! This allows 
you to find the optimum yearly cost and the system structure by defining a standard and nothing 
else. The socioeconomic variables enter the picture only when a city chooses the standards it can 
afford. The average cost per passenger carried expressed in units of local wages, which is 

)/($/$ β T λβ≡

)( PT +=

, should be an important factor in any such decision.  

 

Example: (optional problem for students to solve to understand these two ideas) 

Show that the equivalent simple standard to the linear standard T  for the 
lower bound formulation of the case with no transfers is: 

ll 000
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and that: 
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Note how the solution does not involve λ or β.  Then, use the Lagrangian approach to 
show that the shadow price that would achieve the above is: 

2
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To repeat: The importance of this is that standards are connected to total costs, and you don’t 
need anything else to determine this cost. 

Space- and Time-Dependent Service 

Assuming we have a corridor, we want to see how performance is affected by changing the 
design variables in space and time.  Of our two decision variables, s and H, spacing is a physical 
aspect of the route, and so is only a function of space: s(x), while headway will remain constant 
as buses travel the route, and so is only a function of time: H(t).  The (t, x) area of concern can be 
partitioned into space (i) and time (j) slices as shown below and we can find the cost of 
delivering service for si and Hj.  We will do this first for average-case analysis (which you should 
know) and then for the service guarantee (standards) approach.   

Average Case Analysis 

For average case analysis, demand plays an important role, so we start by defining an OD matrix 
of trip selection rates.  The OD matrix can be represented as λi i' j., where i is the origin, i’ the 
destination and j the time (the units of λ would be pax/time·dist2). We shall find that it is not 
necessary to use the entire OD matrix, only the relevant parts for which we want standards. 
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t

x

i

j  

If we ignore the cost of stops, the total cost of service is: 

∑=
j

j
j

d
T T

H
$  

Lc

Note: it does not depend on the OD matrix. 

The generalized cost of waiting delay, where λ·j is the total number of trips generated per unit 
time along the complete corridor during time slice j (units of pax/time), is: 

∑ ⋅
j

jjj TH )(λβ  

Similarly, the generalized cost of inbound access is: 

∑ ⋅
i

ii
a

i L
v

)(1
4

λβ
s

 

where λi is the total number of trips generated per unit distance with destinations for the whole 
corridor during the course of a day (units = pax/dist).  Since the cost of egress should be the 
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same, we can multiply this equation by 2 to account for the total access cost.  Finally, if we let Λi 
be the number of people crossing a screen-line in region i during the course of a day 
(units=pax/hr), we can express the generalized cost of stops as: 

∑ Λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i
is

i

i t
s
L

β  

As you can see, we don’t need to know the whole OD matrix, only the summary information 
embodied in {λi·, λ·j, and Λi}. 

Also note that the optimization is very simple.  The first two equations are functions of Hj and 
not si and can be optimized alone and separately for each time period.  Likewise, the last two 
equations are functions of si and not Hj and can be optimized alone and separately for each 
location. 

Service Guarantee Analysis 

Instead of optimizing for the average case with a choice of β, we can choose a set of time 
standards T0(i, i’, j) for selected origin and destination pairs and times of day.  Then, there is no 
need to know the demand to estimate the optimum cost.  It would be the job of policy-makers to 
decide on a reasonable standard.  The objective function is the same as above, and the standards 
would simply introduce constraints of the form: 

jiiii HIVTTATATjiiT + + +≥),',(  ''0

for relevant sets of (i, i’, j).  Note that the four terms of the RHS have simple subscripts.  This 
MP can often be solved by introducing shadow prices and decomposing the Lagrangian into 
parts that can be optimized separately.  If this does not work we can resort to a numerical 
solution. 

Further Readings 

The following readings may be useful to reinforce the concepts you have learned in this module.  

 Clarens, G. and Hurdle, V. (1975) “An operating strategy for a commuter bus system”, 
Transportation Science 9, 1-20. (Average-case analysis of non-hierarchical many-to-one 2-D systems 
with inhomogeneous demand.)  

 Wirasinghe, C.S., Hurdle, V.F. and Newell, G.F. (1977) “Optimal parameters for a coordinated rail 
and bus transit system” Transportation Science 11, 359-74. (Average-case analysis of a 2-mode 
hierarchy serving 1-D, many-to-one demand.) 
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Module 4: Planning—Two-Dimensional Systems 
 

(Originally compiled by Eric Gonzales and Josh Pilachowski, March, 2008) 
(Last updated 9-22-2010) 

 

Outline 
• Idealized Case (New 2-D Issues)  

o Systems without Transfers 
o The Role of Transfers in 2-D Systems 

• Realistic Case (No Hierarchy) 
o Logistic Cost Function (LCF) Components 
o Solution for Generic Insights 
o Modifications in Practical Applications 
o General Ideas for Design 

• Realistic Case (Hierarchies--Qualitative Discussion) 
• Time Dependence and Adaptation 
• Capacity Constraints 
• Comparing Collective and Individual Transportation 

 

Remember from previous modules the types of systems we have analyzed.  Shuttle systems had 
one decision variable, H, and could only be optimized temporally.  Corridors had two decision 
variables, H and s, and could be optimized temporally and spatially. These design decisions 
defined all the passengers travel choices; i.e., when and where to board a transit vehicle. Think 
now about a two-dimensional system and the new travel choices available to passengers. This 
should illuminate the extra issues that must now enter into the analysis. They include 
considerations of total route length and layout, the role of transfers and travel circuity. As before 
we start with an idealized analysis that isolates the new issues and then proceed with a more 
realistic treatment that combines them all. 

Idealized Case 

We will perform the idealized analysis in a similar manner as the corridor analysis.  We consider 
a system with a single line with no transfers allowed and bi-directional service.  We assume H=0 
and ts=0.  For the two-dimensional system we will also assume that a0=∞, which removes all 
penalty for stopping meaning that v=vmax at all times.  We make this assumption because if we 
had allowed a0=∞ in the shuttle and corridor analysis then the door-to-door speed would be vmax. 
Yet, this turns out not to be true in the two-dimensional case.  So, this set of assumptions allows 
us to isolate the new effect introduced by the second spatial dimension.  Let us see… 
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Systems without Transfers 

Consider a square city with sides φ, area R=φ2 and an infinitely dense grid of streets; see figure 
below.  No matter how long a transit line is, it cannot cover all points.  Therefore, we anticipate 
that coverage and access become important issues in 2-D, and that our new decision variable will 
be route length and placement.  To minimize worst-case access time in 2-D we should place 
stops on a (square) grid, with spacing s to be determined.  The worst-case access time would then 
be 2s/vw since there is an access distance of s at both the origin and destination.  What then about 
travel time?  Note that since stops don’t matter it will be the maximum distance a person spends 
in a vehicle, divided by vmax.  And since service is bi-directional, the maximum distance is ½ of 
the length of the line, which we denote L.  Thus, IVTT=L/2vmax, and we minimize IVTT by 
choosing the shortest route to cover our lattice of stops.  The problem of shortest-path routing for 
pre-existing points is a famous and complex problem known as the Traveling Salesman Problem.  
Fortunately for us, the solution for a two-dimensional lattice structure with an even number of 
points, such as the one shown above, is easy and efficient since there always is a path where the 
distance between any two consecutive stops along the route is s (you can convince yourself of 
this.) 

s

s

φ

φ

R
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If you now imagine cutting the grid between parallel route lines then the area can be imagined as 
a corridor with length L and width s 

           

s

L  

where L is the total length of the route. Thus, the area can be expressed as: 

RLs , =

and the in-vehicle travel time for the worst case person would be: 

maxmax 22 sv
R

v
IVTT =

L
= . 

The door-to-door travel time guarantee is then: 

maxw 2
2

sv
R

v
st +=  

Note: This is an EOQ expression with respect to the lattice spacing.  When optimized the 
solutions is: 

max

2
1

max

* 22
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⎝

⎛
=  

This gives a door-to-door travel speed for the worst-case person: 

max
1 vvw=≈ * 2

ˆ
t

v φ  

If we assume values of vw=3kph and vmax=36kph, then the resulting door-to-door speed is 
5.5kph, which is not much faster than walking speed.  The underperformance arises because 

to achieve low access time the route needs to be very winding.  And buses in a windy route 
entrap passengers unfortunate to go a long distance.  So, how can we improve the system?  If we 
allow for transfers then passengers are no longer entrapped, and all we have to do is look for 
routings that give good coverage while providing good travel options to passengers that can 
transfer.  So what are these routings?  To get an understanding of this issue, we look at some 
idealized systems with one transfer. 

≈v̂
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The Role of Transfers in 2-D Systems 

Two extreme possibilities are considered here. A hub and spoke system (H) with only one 
transfer point; and a grid system that allows for transfers at every stop. See the illustrations 
below.  Note that for the same route spacing, the grid system requires more route-kilometers; so 
it should be more expensive to cover with vehicles.  

Another disadvantage of the grid system relative to the hub is that coordination is more difficult. 
An advantage is that users can always choose a direct route without backtracking.  We now 
compare the performance of these two systems (and of the no-transfer, single-line system (O)) 
for different values of L.  This is reasonable because if one holds H and the commercial speed of 
vehicles invariant across scenarios, then L is the most important driver of cost. 

 

s

φ

φ

 

     A Hub and Spoke System (H) 
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s

φ
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A square grid system (G) 

 

We now change notation and use L to denote the kilometers of undirected service provided.  A 
little bit of reflection shows that the total lengths of service for the three cases are:1 

s
L

s

G

H

24φ
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L
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L
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2

φ
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=

 

For the same L, the three services provide different coverage, as represented by s: 

4-5 

L
s

L
s

L
s GHO

222 4;3;2 φφφ
===

                                                

 

 

1 To get these simple expressions, it is assumed that it takes 1 spacing to turn the buses at the end of each route. 
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These values represent the sideways spacing between lines achieved by the three system types.  
Thus, the worst-case sideways access times are: , , and .  If we 
ignore the longitudinal access times (which should be the same for the three systems) and focus 
on cross-town trips (of length 

wLv/2 2φ wLv/3 2φ wLv/4 2φ

φ≈l ), the worst-case door-to-door travel times are then: 
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If we now choose 10~max

v
v

w

then we can compare the three cases based on the dimensionless 

variable 
φ
L . The formulae become: 
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These expressions can be expressed graphically as follows: 

 

 

 

 

 

 



Public Transportation Systems: Planning—Two Dimensional Systems 

 

4-7 

 

2

20 30 40

4

6

8

φ
maxvT ⋅

φ
L

10

O

H

G

 

 

This illustrates that “short systems” with few stops, whose total length is not much greater than 
the perimeter of their service region do not require transfers. The figure also illustrates that long 
systems with many stops do benefit, and that in these cases the longer the system the greater the 
benefit. 

Just so you get a feel for the meaning of 
φ
L  we look at four common routing examples and their 

φ
L values: 
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Campus periphery
4≈

φ
L  

 Small metro/small town bus 12≈
φ
L Large system 20≈

φ
L  

We find that the optimal routing layout depends on the value of 
φ
L and, if we add a 25% access 

penalty to the grid system to reflect the added cost of an uncoordinated transfer, we find that the 
critical points are as follows: 

L/φ
O H G

≈10 ≈20  

This explains why systems in real-life often have the structures shown in the above figures.  
Also, note that when we allow one transfer, then maxˆ vv =  as ∞→L  for the grid system. So, 
transfers really do help with performance in 2-D. 
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Realistic Case – No Hierarchies 

We could do a realistic analysis for each case we introduced earlier, however in the interest of 
time we will be concentrating on the grid case since it is the most useful for larger networks.  
Since we are dealing with worst case analysis we will also only concentrate on square grids.  A 
rectangular grid would introduce directionality and add unneeded complexity. 

First we will introduce stop spacing, s, within route spacing, S, such that s<S.  We will also use S 
as a decision variable instead of L.  We need to make assumptions about how people travel.  In 
this case, we will assume that people only make one transfer and they choose their origin and 
destination stops in order to minimize their access distance. 

We will then develop formulas for agency cost and passenger time (access + waiting + in-vehicle 
travel time) 

Logistic Cost Function (LCF) Components 

Recall that the transit service in 2 dimensions can be described by 3 decision variables: stop 
spacing s, line spacing S, and service headway H. 

s

S  

The total cost for such a system is cost of driving and stopping a bus multiplied by the number of 
buses operating per unit area. 
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Notice this is very similar to the case for a corridor, the only difference being a factor 4/S, 
expressing the fact that cost depends on the number of lines. 

The travel time is composed of access time (AT), waiting time (WT), and in-vehicle travel time 
(IVTT) just as we saw for corridors.  For the worst case passenger whose trip starts and ends as 
far as possible from transit service (the middle of the square), 

ww vv
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where ∆ represents time required to make a transfer, such as walking time from one stop to 
another.  The number of headways included in WT depends on the assumptions we make about 
the synchronization of schedules (H if services are perfectly synchronized so that passengers 
only wait at the first stop where they board; 2H if services are not coordinated and passengers 
have to wait when they transfer, or else if service is coordinated but passengers have 
appointments at the destination; etc…). 
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where the longest possible trip length is ℓ0 ≈ 2φ.  So, the worst case time for a 2-D system is 
given by the sum, 
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Notice again that this is very similar to the time associated with transit service in a corridor.  The 
difference is the waiting time, 2H + ∆, and an additional component of access time, S/vw. 

Solution for Generic Insights 

If we consider the lower bound of cost, assuming that the cost of stopping is small, the standards 
approach is described by the following mathematical program: 
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where ( ) ⎟⎟
⎞

⎜⎜
⎛
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. 

The constraint will be an equality at optimality because for any T(ℓ|s) the cost is minimized by 
choosing the highest values of S and H.  Therefore, the lower envelope method (explained in 
Module 3) can be used to solve for s*, and with TL(ℓ) we can determine ℓ*.  The mathematical 
program can thus be obtained with pencil and paper. 

Alternatively, we can use the Lagrangian approach, expressing the generalized cost in dollars per 
person as 
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which decomposes so that the stop spacing, s, is isolated. Solving for s* and substituting, 
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The optimal headway, H*, and line spacing, S*, can be solved in closed form. 
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We now compare this cost to the generalized cost for corridors, assuming the same values as in 
module 3: 

vw ≅ 3 km/hr 
 vmax ≅ 36 km/hr 
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 ts ≅ 5 x 10-3 hr 
 cd ≅ 1 $/km 

In 2-D, the generalized cost is 
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⎠
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compared to a generalized cost in a corridor of 
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Note that the universal generalized cost per person declines with demand, λ, and wealth, β, more 
slowly in the 2D case than in the 1D case.  In other words, the second dimension somewhat 
dilutes the economies of scale in collective transportation.  Note too that the effect of distance is 
the same in both cases. 

Remember, however, that λ is expressed in demand per area in the 2-D case, and demand per 
distance in the corridor case, so these expressions cannot be compared for the “same” λ. 

For the hypothetical case of long trips in a relatively poor city (ℓ0 = 40 km, β = $1 / hour, and λ = 
103 pax / hr⋅km2), the generalized cost zL/β = 2.1 hours which decomposes to 0.17 hours of work, 
0.9 hours of delay (access, waiting, and in-vehicle stopping), and 1.11 hours of travel time (like 
in a car). 

Modifications for Practical Applications 

1) Some lines may require fixed infrastructure (BRT, rail, etc.), so the cost of construction, 
bond finance, etc. should be amortized over the life of the infrastructure.  Convince 
yourselves that for an infrastructure cost rs $/hr⋅stop, this contributes 
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sS
s

λ

HsS

r
 

 to the objective function. 

2) Stops may be skipped if the demand is low.  In this case we work with expectations. 

E(time stopped per unit length) = E(# pax boarding/alighting moves per distance)tm 
      + E(# stops per distance) ts 

 where tm is the marginal time for one passenger move and ts is the marginal time for a 
vehicle stop.  The expectations are now given.  First, note that 

E(# of pax moves per stop) = λ2  

Therefore, since there are 1/s stops per km; 

E(# pax moves per distance) = 
s
1 HSE(# pax moves per stop) = λ2 , 

and 

s
1 Pr{stopping}, E(# stops) = 

where 

Pr{stopping} = ( )HsSe λ21 −−  

if the demand for stops follows a Poisson process with the given mean. 

3) Cities have centers, so we may want to orient our grid towards the center.  Notice that if 
we zoom in on a part of a ring-radial network it looks like a grid.  Nothing prevents us 
from making a constant density of service in a ring-radial network by adding radial lines 
as we move out from the city center. 
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We can also use this strategy if we want to have the flexibility to have different densities 
of service and headways in different parts of the city as shown in the figure below.  To do 
this systematically, we can set different standards for trips in different parts of the city.  
For example, 

T0
(A)(ℓ) for all trips in A 

T0
(B)(ℓ) for all trips in B (or, even better, B ∪ A) 

T0
(AB)(ℓ) for all trips between A and B 

B

A

SB, sB, HB

SA, sA, HA

 

General Ideas for Design 

1) Think of a family of design concepts, qualitatively – e.g. grid system, ring-radial 
network, etc. 

2) Identify members of the family by list of decision variables – e.g. stop spacing s, line 
spacing S, and headway H. 
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3) Estimate the cost and translate the specific concept into a detailed plan – e.g. 

OR

 

Considering all regions (r = A,…) and time periods of the day (j = 1, 2,…) solve the 
following mathematical program for the decision variables: {…, (sr, Sr), …} and {…, Hrj, 
…}: 

( )∑
=
=

=

,...2,1
,...

)( ,$$min
j

Ar
rjr

r
TT HS  

( ) AjAjA THS 0,T AA s , , j = rush, off-peak, night s.t. ≤

( ) BjBjB THS 0,,BAAB sSsT ,, ≤ , j = rush, off-peak, night 
( ) ABjAAB sT 0, BjAjBBA SsS ,, THH ,, ≤ , j = rush, off-peak, night 

 You may want to include separate constraints for access time or waiting time, depending 
on what the city wants, but you should always use your judgement.  Anything is possible, 
but the more complicated the problem, the more difficult it is to solve the problem 
exactly. 

Lagrangian decomposition can help us solve this mathematical program.  It may be 
possible to simplify the problem and eliminate many of the decision variables.  So, we 
can use shadow prices to simplify these complicated mathematical problems by assigning 
a different β to each of the constraints.  Increasing the values of β will reduce the left side 
of the constraint when the Lagrangian is optimized, so we start with an estimated value of 
β and then increase it until the constraints are met.  If we have a closed form for the 
optimal decision variable values in terms of β, it is easy to adjust the solution by 
changing the shadow price. 

Note: This approach can be used to solve (6.1,2) by working instead with (6.3).  All you 
should have to do is plug in (6.4,5,6) into (6.2) and find the β that solves (6.2) as an 
equality. 
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2-D Systems: Realistic Case (Hierarchies) 

Until now, we have looked only at local systems in 2-D.  However, we could introduce a 
hierarchy with the same method as for corridors (see module 3).  There are now decision 
variables for the stop spacing and line spacing of both the local and express services. 

Express Line

Local Line

 

The introduction of hierarchies also gives us the flexibility to design non-isotropic systems.  For 
example, a grid may serve as a basis for local buses guaranteeing a length-based but uniform 
standard for short-medium trips.  A radial express service may be overlaid to provide better 
service for inter-zonal travel (e.g. Chicago).  Such an express network may be described in as 
few as 3 additional decision variables: # of radial lines, # of ring lines, service headway. 

Express Line

Local Line

 

Perhaps one system can be designed to act a radial network outside of the city center and look 
more like a grid in the city center (e.g. Washington DC, London).  The possibilities are many, 
but in all cases the goal is to reduce these concepts to as few descriptors as possible which will 
describe the shape and design that the system should have once the variables are chosen. 
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2-D Systems: Time-Dependence and Adaptation 

Over time, demand for transportation in a city changes.  Some of the decision variables are easier 
to change over time than others.  The headway, H, can be varied very easily even within the 
course of a day.  The stop spacing, s, can be changed with a little more effort, and line spacing, S, 
is relatively fixed. 

Suppose we have a linear city of length one, and we place a station to minimize access distance.  
A single station divides the city into two halves and should be placed in the center to minimize 
worse case and average access distance; S* = 1/2. 

S = 1/2 S = 1/2
 

As demand grows over time, we may want to add stations incrementally to the city, one at a 
time.  If we can pull up old stations and always re-optimize, the placement should make the 
spacing follow the progression, S* = 1/2, 1/3, 1/4, 1/5, etc.  However, if the stations are fixed 
once they are placed, subsequent placement of stations will not always give us the minimum 
access cost. 

For a worst case analysis, imagine that we have the city above with n = 2 spacings (S* = 1/2) and 
we add one more station. Only half of the city benefits, so the worst case access is unchanged.  
The worst case access cost is only improved when symmetry is established at n = 2, 4, 8, …  The 
incremental addition of stations following this naïve approach is shown below: 
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S = 1/4 S = 1/2

S = 1/2 S = 1/2

S = 1/4

S = 1/4 S = 1/4 S = 1/4 S = 1/4

1/8 S = 1/4 S = 1/4 S = 1/41/8

1/8 S = 1/4 S = 1/41/8 1/8 1/8

1/8 S = 1/41/8 1/8 1/8 1/8 1/8

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
 

Is there a way to place stations so that each incremental addition of a station improves the worst 
case access?  In fact there is! 

If stations are placed so that for n+1 stations, the placement results in spacings of length 

( ) ( )1loglog 22
)( −+−+= ninix n

i

) =−
n

11 )(
1

)1()1( nn
n

n
n xx =+ ++

 for i = 1, 2, … n 

Note that this always satisfies , and also x .  

The latter equation shows that the largest spacing becomes the sum of the smallest two (after the 
split).  This is in fact how the equation is derived. 

( ) (∑
=

+−+
i

nini
1

22 loglog

The incremental addition of stations would now look like the progression below. 

0.263 0.415

0.585 0.415

0.322

0.263 0.322 0.2220.193
 

If we plot the worst case access distance against number of stop spacings, this asymmetric 
approach is better than the symmetric naïve approach most of the time. 
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n

Access 
Distance

Naïve Approach

Asymmetric Approach

0.0625

0.125

0.25

2 4 8  

For average case analysis, the average access distance when station expansion follows this 
specific asymmetric recipe is 1.04/4n.  If the stations could be picked up and re-placed optimally 
every time the system is expanded, the average access distance would be 1/4n.2   So the penalty 
for not being able to move transit lines once they are placed can be as low as 4%.  This is good 
news, because it means fixed infrastructure that is extremely costly to change (such as subway 
tunnels) are always near optimal! 

Capacity Constraints 

One additional point that can be added to this module is the idea of ridership (i.e., the number of 
passengers in a bus).  This can be useful in planning because it allows for the addition of vehicle 
size (capacity) constraints to the design.  For a grid system with spacing S, the average ridership 
can be roughly approximated by: 

Ridership 
S
HS

4

2 lλ
≈

                                                

. 

This expression arises from considering a single S×S cell of our grid. The numerator is the 
number of pax-km generated in the cell in a single headway, and the denominator is the number 

 
2 As an exercise, derive the average case analysis cost for the naïve case where the stations cannot be moved.  The 
result may surprise you! 
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of bus-km traveled per cell in one headway.  Assuming optimal design parameters developed in 
eqs. 6.5 and 6.6 the result is: 

Ridership l3
2

3
13

1
2 −

⎟⎟
⎞

⎜⎜
⎛

≅ βλwd vc
16 ⎠⎝

. 

If we adopt the typical numbers we have been using, we see that for a wealthy city (β ~ 10) with 
ℓ ~ 10 km, a demand of 1~λ pax/km2-hr would yield an average ridership of about 1 pax per 
bus. So, we would not expect collective transportation (CT) to be a feasible option for delivering 
mobility if λ was much smaller than 1 pax/km2-hr.  And what to do in this case will be the topic 
of the next module. 

Comparing Collective and Individual Transportation 

Recall from the equation immediately following (6.6) that our average cost function for 2-D 
systems with no hierarchies and allowing for transfers could be expressed as: 
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       (7.1)                                                        

The RHS is the extra cost of CT over and above the unavoidable (time) cost of overcoming 
distance.  We can see that CT has nice economies of scale.  Demand and extra cost are inversely 
related, so as demand rises, the cost per passenger decreases. (In fact, if Δ and ts are neglected, 
the extra cost tends to 0 as λ → ∞; it can be virtually eliminated.)  This is the beauty of CT.  
However, in cases of low demand (λ  the cost can become quite substantial. This is 
expected, because the system is there regardless of the ridership it generates. In these cases, 
collective transportation isn’t very efficient. 

As a point of comparison, consider the cost function for individual transit (IT), something like a 
taxi, which looks like this: 

ββ
ll

Ic
v

z
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

*

.0→

 

where cI is the cost per unit distance of providing IT.  Notice that the extra cost of IT no longer 
declines with increasing demand (as it did with CT); and that it does not go to infinity in cases of 
low demand (as it did with CT).  To further understand the source of this difference we now 
show a more detailed comparison between the two systems with one vehicle, assuming λ  
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MT

 

We consider a square of area R with an underlying grid of streets and assume that buses stop on 
demand.  With CT, the decision variable is length of route and we use the idealized analysis of 
2D-systems at the start of this module to evaluate the optimum trade-off between access time and 
in-vehicle travel time.  With an optimal length of route, L*, the expected door-to-door time is3: 

w
m vv

RtE =)( . 

IT

 

With IT, the route can be directed where the people are, removing all access time.  Assuming 
that the vehicle starts from a central location every time a request is made, the expected door-to-
door time can be shown to be: 

v
RtE I 6

7)( =

                                                

. 

 

23 The result differs from our earlier result by a factor of because (by stopping on demand) the current system 
eliminates the access distance parallel to the transit route. 
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The ratio of expected time between the two systems is approximately 3. Note that the cost of 
both systems is similar since both use one vehicle and one driver.  So, in cases of low demand, 
IT will outperform CT by a large margin.  This is due to its flexibility in routing.  Therefore the 
next module will explore possible ways of delivering this flexibility for systems with higher 
(albeit still low) demand. 

Further Readings 

The following readings may be useful to reinforce the concepts you have learned.  

 Holroyd, E. M. (1967) "The optimum bus service: a theoretical model for a large uniform 
urban area” in Vehicular Traffic Science (L.C. Edie, R. Herman and R. Rothery, editors) 
Proc. 3rd ISTTF pp. 308-328, Elsevier. (Average-case analysis of non-hierarchical many-to-
many grid systems with uniform demand. The passenger routing model in this beautiful 
reference is complex; unfortunately this complicates the formulae, obscuring possible 
insights.) 

 Daganzo, C.F. (2009) “Structure of competitive transit networks” Transportation Research 
Part B (in press). (This reading is of interest because it generalizes the ideas in this module 
by exploring a general family of systems that includes the hub-and-spoke and the grid 
concepts as special cases. The simple formulas it gives, are used to compare the performance 
of different technologies  (Bus, BRT, LRT and Metro) in different urban contexts.)  
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Module 5: Planning—Flexible Transit 
(Originally compiled by Eric Gonzales and Josh Pilachowski, March, 2008) 
(Last updated 9-22-2010) 

 

Outline 
• Ways of delivering flexibility 
• Taxis 
• Dial-a-Ride (DAR) 
• Car-Share 

 

We saw in the last module that conventional forms of collective transportation with fixed access 
points and routes deliver better service than individual transportation when one or more of the 
following factors are high: the demand rate, the typical trip length and/or the time value of 
money. When this happens travelers gain if they trade-off the flexibility in routing and timing of 
individual transportation for the lower costs of collective transportation. Since there is also a 
grey area where the choice is not so clear, one may ask whether collective transportation can be 
made more flexible so it can better compete with individual transportation in situations like 
these.  This is the question addressed in this module. 

 

Ways of Delivering Flexibility with Public Transportation 

We divide public transportation concepts depending on whether or not people share rides. 

Individual Public Transportation (IPT) 

Taxi – A driver takes passengers directly from their origin to their destination 

Car-share – Users pick up a vehicle at one of many predetermined locations (pods), then return it 
to any pod when finished 

Driverless Taxi (futuristic) – Same as taxi, only without a driver required. The military is 
currently developing these types of vehicles for urban warfare, but they could also be used 
during peace time. See http://www.darpa.mil/grandchallenge/overview.asp for more information. 

Personal Rapid Transit (PRT) (futuristic) – Small occupancy vehicles would travel along existing 
guideways. See http://en.wikipedia.org/wiki/RUF_%28dual_mode_transit%29 for more 
information. 

 

http://www.darpa.mil/grandchallenge/overview.asp
http://en.wikipedia.org/wiki/RUF_%28dual_mode_transit%29
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Collective Transportation (CT) 

Dial-a-ride (DAR) – Same as a taxi, but with multiple users sharing the vehicle.  FIFO is not 
guaranteed. 

Long Distance DAR with transfer on-the-fly (futuristic) – Train with passengers in cars grouped 
by destination.  Cars would couple and decouple without slowing the train and then drop off and 
pick up individuals as DAR.  Passengers would walk in the train to the appropriate car.  This 
could be useful as a substitute to long distance trains.  A t-x diagram can be used to estimate 
feasible stop spacings. 

 

Dest. 4

Dest.      1          2          3

Dest. 1-3
(would become 
Dest.4 after pax
redistribute)  

 

The main advantage of flexible IPT over the automobile is that public service cars are shared; by 
being used most of the time they require less parking infrastructure.  The added promise of 
flexible CT is that perhaps it can reduce cost with only a small degradation in LOS, and also 
provide some economies of scale with respect to demand.  So, with this in mind, we now 
examine what existing flexible concepts can do. 

 

Taxis 

Consider a region of area R in which we provide radio-taxi service to customers with demand 
density λ and expected trip length ℓ.  We will assume that we provide enough taxis, m, to ensure 
that every call immediately gets assigned a taxi. 
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Rl,λ

- Random call for a taxi  

The fleet size, m, can be divided into three types of taxis: ni idle taxis, na assigned taxis, and ns 
servicing taxis.  The cost of the system will be roughly proportional to m.  We measure LOS by 
the waiting time a user experiences between requesting a taxi and being picked up.  The 
following diagram shows the rate at which taxis switch from one state to another. 

na ns

μaλR μs

 

Using Little’s Formula, and using Ta for the expected customer waiting time, we see that: 
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where 
i

is the expected distance the closest idle taxi to a request will have to travel. An 
expression for this expectation is obtained by imagining a region of area R, with ni points and a 
circular disk with diameter 2x.  Because the ni taxis are randomly distributed we can write: 
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From this distribution function we find (the proof for this can be found in the appendix at the end 
of this module): 
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Also using Little’s Formula, and using Ts for the expected customer service time, we see that: 
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If the system is in equilibrium, then: 
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This gives us two equations with three unknowns: ni, na and ns. To get a third equation we 
assume a target service level with average waiting time T0: 
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Using this as the third equation, and neglecting ts as a reasonable first approximation, we find 
that the equilibrium solution is: 
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which gives the minimum fleet size required to achieve the target level of service: 
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Notice that m declines with T0 up to a point, and then starts rising again.  The rising branch is 
undesirable. 
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undesirable!

 

The shape of the curve means that there is a minimum fleet size required, m* ≈ 1.2Rλ2/3v−2/3 + 
λR /v, to ensure that incoming calls are assigned a taxi without delay, and that the worst LOS 
this kind of system should provide, , is also bounded. 

l
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We see that the least possible extra generalized cost (in universal units) of delivering this type of 
service is: 
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where γ is a taxi’s cost per unit time (which should be greater than β).  Note that the extra cost is 
at least ℓ/v even for λ .  So taxis do not have significant economies of scale. 

Example: 
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 such a low number of idle taxis is bad for new users. 
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*Note, for this system , so we should be able to reduce 1.00 ≈T both T0 and m.  So, if we instead 
change T  then the new result is: hrs08.0=0
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A better level of service and less taxis needed!  Clearly, operating with  should be 
avoided.  If T0 is too large the trip times to collect passengers will be long, requiring many taxis 
in collection mode, and the equilibrium becomes unstable.

00 TT >

1 

 

Dial-a-Ride 

If taxis can have more than one passenger, then you can remove idle vehicles from the system 
and reduce cost.  Service calls would then go directly to vehicles currently in service.  To 
analyze this system, we again consider a region of area R with demand density λ.  We will 
assume that origins and destinations are uniformly distributed throughout the region. 

R

λ

nw waiting 
passenger requests

m vehicles with nr
passengers each

 
                                                 
1 A surge in demand would: further increase the number of taxis in collection mode; reduce the number of idle taxis, 
thereby increasing distance to new users and their collection times.  With larger collection times, the number of taxis 
in collection mode would increase some more, etc… 
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Passengers will be divided into those waiting at home, nw, and those inside vehicles, nr.  The 
fleet size is m.  The following diagram shows the flow of passengers from one state to another: 

nw m x nr

μwλR μr

 

We use the following assumptions (favorable to DAR): 

• After achieving a desired passenger load, nr, buses alternate between pickup and drop-off 
• Buses pickup the passenger closest to them 
• Buses drop of the passenger with the closest destination 

Using Little’s Formula, equilibrium assumptions, and the expected distance equations from 
before we can assume that: 

                                                           R
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where pt and dt are average time to pickup and drop-off respectively, and the distances for each 
are: 
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For any choice of m and nr (decision variables) we can use (7.2) and (7.3) to find nw(nr, m).  We 
then choose the value of nr that would minimize the number of people in the system: 

),( mnnmnp rwr += . 

A little bit of algebra shows that the result is: 
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Note: c has the meaning of number of requests that the system would receive in the time it takes 
a bus to travel across the region (dimensionless demand). 
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The generalized cost per unit time for the system would then be: 

*pm βγ + , 

where γ and β are the costs per unit time of one bus and one passenger.  On a “per passenger” 
basis the cost is: 
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Optimizing this EOQ expression gives us: 
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Note: λ does not appear in this equation.  So DAR has no economies of scale.  Recall however 
that the cost of taxi service would have been: 

v
RT )(~$ ** γβ +

+ . 

So, particularly when β <<γ (poor populations), (7.5) is a significant improvement over taxi 
service. 

Could there be a form of DAR with economies of scale? We suspect that introducing transfers 
may produce a positive answer to this question because, after all, fixed route CT does not have 
economies of scale without transfers – but it does with transfers.2  So, perhaps by introducing 
transfers into the DAR concept economies could be achieved.  One possibility is as follows.  
Remember our 2D network where we had to trade-off between number of stops and commercial 
speed.  We introduced some flexibility by not stopping at every stop and showed how this could 
be studied.  We can generalize this by allowing buses to detour and serve passengers at their 
origins and destinations as shown in the figure. (The figure shows an N-S route; if a similar 
pattern is used for E-W routes then the whole space is covered.). Users could activate a stop near 
their origin and the bus would detour through the region to pick up each passenger. 

                                                 
2 You can convince yourselves of this by introducing demand into the idealized analysis of Module 4.  
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S

area served by 
N-S buses

 

A trade-off would arise between the detour to pick up passengers and the elimination of access 
time.  For any given detour the served passenger (or “customer”) would gain the benefit of zero 
access time, while passengers on the bus would be penalized by the extra travel distance.   

The average access distance saved by the customer (assuming all his/her locations are equally 
likely) can be shown to be:3 S/6. Thus, the average time benefit is: 

time benefit of a detour 
wv

S
6

≈ . 

Now let us examine the penalty. If the demand is so low that buses rarely make more than one 
stop per interval, S, then the bus would return to its original route after each detour, and the 
distance added by a detour would be twice as large as that saved by the customer; i.e., 2(S/6) on 
average. But this situation is pessimistic. If buses make multiple stops they do not have to return 
to the mainline after every detour (see figure) and this reduces the average detour distance. In the 
most optimistic case, where buses make a very large number of detours, the average detour 

                                                 
3 By symmetry, it suffices to consider customers in the bottom half of the shaded square. Let y∈(0, S/2) be any such 
customer’s vertical distance from the bottom of the square, and x his/her access distance. Since all locations are 
equally likely E(x⏐y) = y/2. Now, note that the p.d.f. of y is triangular because the number of possible locations is 
proportional to y. As a result E(y) = S/3. It then follows that E(x) = E(E(x⏐y)) = E(y/2) = S/6. 
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distance turns out to be:4 2S/9. So splitting the difference between the pessimistic and optimistic 
cases, we estimate the distance added by a detour as 5S/18, and the collective time penalty as: 

time penalty of a detour 
v

S
18
5

≈ (# of passengers in the bus). 

So setting the penalty equal to the benefit we see that the number of passengers in the bus should 
be no greater than (3/5)v/vw; e.g., 6 passengers if v/vw~10. The second equation at the outset of 
this module shows when this condition may be met but, clearly, this is a strategy for low demand 
systems. There are many unresolved practical issues with this type of system, but they would be 
worth some study. 

 

Public Car-Sharing 

We now consider a region of area R in which to provide car-share service, with demand density 
λ and expected trip time τs.  Pods where users can pick up cars will be distributed through the 
region. The density of pods is Δ. 

Rsτλ,

- Pod  

                                                 
4 The argument here parallels the one just given for the access distance, after recognizing that when there are very 
many customers, consecutive customers have nearly the same y.  With this in mind, we see that the average distance 
added by serving a customer near y is approximately equal to the average distance between two random points in a 
segment of length 2y; i.e., E(x⏐y) = 2y/3. Thus, again, since the expected number of customers is proportional to y 
so that E(y) = S/3, we find: E(x) = E(E(x⏐y)) = E(2y/3) = 2S/9. 
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The fleet will have m cars, which are to be repositioned evenly after time h; say one day.  We 
need to make sure that there are enough cars at each pod so it is rare that one would run out. For 
simplicity of explanation, we assume no rush hour. There are three important costs for this 
system: fleet costs; vehicle repositioning costs; and user access costs. 

We propose that the required fleet size is: 

RhRRm ss Δ
Δ

++≥
λτλτλ 22)(2 2

1

 

which can be broken down as: [the # of cars in use] + [95% CI (assuming Poisson arrivals) of 
cars in use] + [95% CI for net change of cars for a pod in a repositioning interval, multiplied by 
the number of pods].  The first two terms are a probabilistic upper bound to the number of cars in 
use. As such, these terms express the required fleet size for an ideal best case scenario with h = 
0; i.e., where cars could be constantly and instantaneously reassigned across pods. (This is a 
logical conclusion because with h = 0 a pod would run out of cars only if all pods did; i.e. if the 
demand for cars in circulation exceeded the total available.) The third term expresses the safety 
stock that pods must collectively have to compensate for the fact that they are only rebalanced 
every h time units. This third term is the product of the number of pods and twice the standard 
deviation of the difference between cars requested and cars returned at a pod in a rebalancing 
interval. (This is why the demand rate is multiplied by 2 inside the square root.5) So if pods are 
given this extra safety stock the expression can be simplified to: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ

++≥
sss

s
h

R
Rm

τλττλ
τλ 8.221  

The repositioning costs in one h will be the product of the number of vehicle moves per pod, 
which is a number close to the standard deviation of the net change in a pod; i.e.: 

Δ
hλσ 2~  

the number of pods ΔR, and the distance to reposition the cars (a problem famously known as 
“the transportation problem of linear programming” (TLP)).  Research shows (see references) 
that for this type of problem: 
                                                 
5 This is quite accurate if we assume that customers can return cars to any pod in the system, and somewhat 
conservative if we assume that cars must be returned to the pod from which they were checked out—as existing 
systems operate.  
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repo dist 
Δ

≈Δ+
Δ

≈
1.1))log(078.01(1 R . 

The last approximation is reasonable unless the number of pods is huge. 

Thus, the repositioning costs per unit time will be: 

Rhc
h

Rhc dd
2
1

5.111.12 −
≈⎟

⎠
⎞

⎜
⎝
⎛⎟

⎠

⎞
⎜
⎝

⎛
Δ

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ
λλ . 

The access (LOS) costs are proportional to: 

2
1

−
ΔRλ . 

Therefore, in summary we see that our cost components depend on h and Δ as follows: 

• Fleet costs  ∼ (hΔ)1/2  
• Vehicle repositioning costs  ∼ h−1/2 
• User access costs ∼ Δ−1/2 

 
The sum of these terms (appropriately weighted) is a GEOQ expression that has a unique h* and 
Δ* and would yield the least possible cost of a car-sharing operation.  Test yourselves and see if 
you can do it.  Notice how car-sharing beats taxi for large λ. 
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Appendix: Determination of Expected Distance to a Taxi 

We start with the probability of zero taxis within a disc of radius x: 

≡≥ }Pr{ xdn Pr{zero points in the disc}
in

R
x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

1 π . 

By integrating this over the range of possible radii, we can calculate the expected distance from a 
point to the closest taxi as: 

dx
R
xdE

n

ni ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

π π

0

2

1)( .

R

 

With a change of variable x
R

y π
= , the integral can be changed to a simpler form: 

( ) dyRy n

π∫ −
0

21
1

. 

( ) θθ sincos1 =−With another change of variable θcos=y , and using the identity 22 , the 
integral can be further simplified to a known form: 

( )
)(

)(
2

sin
2
1

2

0

12

+Γ
Γ

=∫ =

n
nRdR n π

π
θθ

π

π

. 

For values of n>>3, a reasonable assumption for a region that would employ a fleet of taxis, we 
can use the approximation: 

nn )( 2
1

≅
+Γ
n 1)(Γ , 

which results in an answer of: 

n
RdE

in 2
1)( ≅ . 
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For a region with where vehicles move along a rectilinear grid, the same method can be followed 
with a couple of substitutions: 

dx
R
xdE

n

ni ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

0
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R
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With a final result of: 
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Module 6: Management—Vehicle Fleets 
(Originally compiled by Eric Gonzales and Josh Pilachowski, April, 2008) 
(Last updated 9-22-2010) 
 

Outline 
• Introduction 
• Schedule Covering 1 Bus Route 

o Fleet Size: Graphical and Numerical Analyses 
o Determination of Terminus Locations and Bus Runs 

• Schedule Covering N Bus Routes 
o Single Terminus Close to a Depot 
o Multiple Termini and Deadheading Heuristics 

• Discussion: Effect of Deadheading 
• Appendix: The Vehicle Routing Problem and Meta-Heuristic Solution Methods 

 

The block diagram below illustrates that a transit agency is in essence a mechanism (the middle 
box) for transforming money inputs from both, government and users into transportation service. 
In this course we focus on the workings of this mechanism, treating the arrows pointing into the 
middle box as constraints and those pointing out as the objective function. We have just finished 
a set of (planning) modules that explore the ideal structure of this mechanism, focusing on the 
long term.  

We are now about to start a set of modules that will explore what needs to be done in the short 
and medium term to execute the long term plans. This involves medium-term investment and 
deployment decisions of the transit agency’s manageable resources, which mainly consist of 
vehicles and personnel. Invisible to the public, we call these actions “management decisions”. 
This module deals with vehicle fleet management. Module 7 will deal with personnel 
management. A transit agency also needs to make other medium-term and short-term operational 
decisions that are visible to the public. Module 8 will deal with these.  

Although our attention will continue to be focused in the middle box we should not lose sight 
that it is only part of the whole picture. A transit agency is also concerned with the arrows. The 
issues of finance and governance (inbound arrows) and public relations and information 
dissemination (outbound arrows) are of much importance to the success of a transit operation. 
These issues, however, are not transit-specific and will therefore not be addressed in these notes. 
So let us now return to the inside of the box, with a focus on management. 
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Government 

 

 

Introduction 

To this point, in the planning part of the course, we have assumed that agency costs (including 
operating costs and amortized capital costs) are proportional to the vehicle hours and vehicle 
kilometers of service provided.  This would be exact if vehicles could be rented for only the time 
that they are needed for use in service, and drivers could be hired and fired so that people only 
worked the hours that buses are in operation.  In reality, vehicles are purchased or leased for 
more than a few hours at a time and labor unions place restrictions on the number of hours that 
drivers can work. In this and the next module we will develop vehicle operating plans and driver 
staffing plans recognizing these limitations. Homework exercises will compare these more 
realistic operating costs experienced by the agency and those assumed in the planning stage. We 
will find that the assumptions made during the planning part of the course were not bad 
approximations. 

Definitions 

These definitions will be used in the two management Modules. 

Schedule – set of routes and scheduled services advertised by the transit agency. 

Depot – location where buses are stored without drivers. 

$ 

Transit Agency: 
• Experts 
• Labor 
• Infrastructure 
• Vehicles 

Users 

Service 
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Run – time-space path of one specific transit vehicle from and returning to a depot.  The 
vehicle needs a driver during the entire run.  The run may include coverage of more than 
one transit line. 

Terminus – part of a transit line (i.e., route) where buses can be changed. 

Loop – part of the run between consecutive visits to a route’s terminus; it must be covered by 
the same bus. 

Driver Task – indivisible part of a run that must be covered by the same driver—to be 
specified later. 

Job – set of tasks covered by one specific worker in a single day. 

Worker Type – common work pattern characterized by pay rate and properties of their shift. 

Allocating vehicles and drivers to provide the schedule promised by the transit agency is a two 
step process: 

1) Find a fleet operating plan to cover the schedule  {# of vehicles, specific runs}.  To do 
this, some vehicles may have to sit unused for part of the time. 

2) Find a staffing plan to cover the runs  {# of workers by type, specific jobs}.  This 
involves cutting the given runs into tasks and then allocating workers to cover the tasks. 

These steps are parallel in structure.  Both answer the question: how many items are required to 
cover a set of requirements? This Module is concerned with step 1. 

 

Schedule covering: 1 bus route 

The data for this problem (the schedule) can be represented in a time space diagram showing 
each of the buses traveling along a route from a terminus (at x = 0) and looping back to the 
terminus.  Each bus requires a cycle time T to make a full loop of length L and return to the 
terminal.  Then, N(t, 0) is the cumulative number of dispatches from the origin over time (also 
denoted D(t)), and N(t, L) is the cumulative number of returns, which is D(t–T) if the cycle time 
is fixed. 
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t

x
N(t,L)

N(t,0)

L

H, headway

T, cycle time

n=1 n=2

# buses returned  ≡ D(t–T), 
if cycle time is fixed

# buses returned  ≡ D(t)

 

 

Fleet Size: Graphical Analysis 

We analyze this system as a queuing system from the perspective of the terminus—imagining for 
the time being that the depot is on top of the terminus and that the depot supplies buses when 
needed.  What is the minimum number of buses needed to sustain the schedule? 

Each bus can be classified as waiting in reserve at the terminal until dispatch or circulating in 
service.  The transitions between reserve and circulation are the dispatches and returns. 

 

# buses in 
reserve

# buses in 
circulation

returns

dispatches

Terminus Route  
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A cumulative plot of buses available A(t), buses dispatched D(t), and returned R(t) shows 
graphically how the number of buses in reserve and service evolves over time. See below. The 
curve D(t) is given and the other two are derived.  The number of available buses is equal to 
those initially available, M, and those returned: A(t) = M + D(t – T).  Note how  for this closed 
queuing system the sum of reserve and circulating buses is the total number of vehicles, M, 
which remains constant over the course of the day.  Note: curve A is obtained from curve R with 
a vector shift (T, M). 

Since the number of buses in reserve has to be positive, we require: A(t) ≥ D(t); so the minimum 
fleet size is obtained when A(t) and D(t) are tangent, as shown. 

Note: The tangency point is where the cumulative dispatch and cumulative return curves are 
maximally separated; i.e., where the number of circulating buses, U(t) is maximum.  So, we 
have: 

{ ( )}tUM max . =

As an exercise, you can prove that this formula reduces in the time-independent case to the result 
we know: 

( ) ⎥⎥
⎤

⎢⎢
⎡=⇒⎥⎥

⎤
⎢⎢
⎡=

H
TM

H
ttD . 

 

t

#

M

T

M

D(t) = N(t, 0)

R(t) = D(t – T) = N(t – T, 0)

A(t) = # available

# in reserve

# in circulation, U(t)T

M

shift 
vector
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Fleet Size: Numerical Analysis 

Given a cumulative dispatch curve D(t) with (tentative) fleet size j, we see from the picture 
below that if Tn+j – Tn ≥ T for all n, then A(t) is always to the left of D(t) for all t.  The condition 
is a precedence condition ensuring that every bus is available before it is dispatched. 

 

t

#

D(t)

Tn Tn+j

n

n+j
j

T

j

T

 

 

The minimum fleet size can be easily determined with a spreadsheet that checks the precedence 
condition for different tentative fleet sizes, j.  The lowest value of j corresponding to column 
with all values greater than or equal to 0 is the minimum fleet size which ensures that the reserve 
of buses is never empty. 

 

  j = 1 j = 2  
n Tn 01 ≥−−+ TTT nn  02 ≥−−+ TTT nn  … 
0 time data    
1 time data    
2 time data    
M  M     
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TT

 

Terminus Location 

So far, we assumed that the terminus was at x = 0.  Could it be possible to reduce the number of 
buses by locating the terminus in a different place along the route?  The answer is no if bus 
trajectories are the same through the day.  Here is why: Let ∆n be the travel time of bus n from 
the old to the new terminus (see figure) and note: nnn = + Δ Δ' .  Now, if =

TTTTT ≥−=− ''
Δ , then 

 because ∆ cancels out and we can put the terminus wherever we want 
without a penalty.  This is good because it gives us the feasibility to put the termini at favorable 
locations (e.g. where buses are nearly empty). 

n

njnnjn ++

 

t

#

old terminus

new terminus

∆1

∆2

Tn

T’n

 

 

Run Determination 

The bus scheduling problem is to determine which bus is associated with each loop; i.e. figuring 
out what each bus will do: the bus runs.  We discuss two heuristic methods for determining the 
specific run for each vehicle, but there are many more.  In method 1 we use the last-in-first-out 
(LIFO) strategy; new buses are only introduced when absolutely necessary.  This method steps 
through time, so when a loop is scheduled to start the most recent bus that returned is dispatched.  
If there is no such bus a bus is selected from the initial pool.  This strategy is good because it 
keeps some individual buses running while others experience long periods of idling.  The latter 
can be returned to the depot for driver relief. 
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An alternative strategy with the same goal is a greedy strategy that steps through buses, assigning 
to each bus as many loops as possible.  After each bus, the loops covered by the bus are removed 
and the next bus again covers as many loops as possible.  To do this, each bus is redeployed as 
early as possible after returning to the terminus.  This can be performed graphically by hand by 
plotting each scheduled loop from the route’s terminus against time as shown below.  Could you 
organize this in a spreadsheet? 

t

loop

veh 1

veh 2

veh 3

veh 4

veh 5

veh 1

veh 2

veh 1idle time
 

 

It is perhaps intuitive, and can be proven, that both the LIFO and greedy methods are feasible 
with the minimum fleet size we calculated earlier: 

{ ( )}tUM max  =

 

Example: Qualitative difference between LIFO and Greedy Methods 

The simple three-run, two-bus system below shows why the two methods differ: 

Bus 1

Bus 2

Bus 2

LIFO
Bus 1

Bus 2

Bus 1

Greedy
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The LIFO method assigns the third loop to the bus returning most recently (Bus 2). The Greedy 
method assigns it to the lowest indexed available bus (Bus 1). The methods only differ in the bus 
that is selected from the pool of idle buses for the next run. Since we are assuming that all buses 
are identical, the choice has no future repercussions on the availability of buses. In fact, one 
could have selected the bus at random, or with any other rule, and the strategy would perform 
similarly. Thus, the specific bus choice can be made with other (non-bus) criteria in mind. 

 

Schedule covering N bus routes 

Imagine a map of many routes all passing converging at a centrally located terminus.  We could 
imagine this is a bus station in the center of a city or at a busy rail transfer station.  The terminus 
may be close or far from the depot.  We imagine for now that it is close. 

depot

shared terminus

 

 

Single Terminus Close to the Depot 

We could treat each route independently as before, but on the other hand, it may be possible to 
reduce the fleet size by sharing buses between routes.  On the left below is the model for 
dedicating bus fleets to separate routes in isolation.  On the right, this model is modified so that 
rather than a reserve of buses for each route, the terminus holds a reserve of available vehicles 
for all routes.  Each route, i, is characterized by loops of different cycle times, T(i), so the time 
until a dispatched bus returns is no longer uniform but depends on which route the bus has been 
dispatched. 

 

 



Public Transportation Systems: Management—Vehicle Fleets 

 

6-10 

# buses in 
reserve for 1

# buses in 
circulation on 1

D1(t)

# buses in 
reserve for 2

# buses in 
circulation on 2

D2(t)

   

# buses in 
circulation on 1

D1(t)

# buses in
shared reserve

# buses in 
circulation on 2

D2(t)

 

 

The aggregated cumulative count of dispatched and returned vehicles is now expressed as 

( ) ( )tDtD
i

i∑=  

( ) ( )i
i

i TtDtR −= ∑  

And since the fleet (M) is shared, the cumulative number of buses made available for collective 
use is still: 

( ) ( )tRMtA  = +

Curves D(t), R(t), and A(t) can be plotted as before to determine the minimum fleet size, and the 
formula M = max{D(t)–R(t)} continues to hold.  The only difference is that R(t) is no longer 
related to D(t) by a shift. 

 

Dispersed Termini and Deadheading Heuristics 

Consider now the case where the termini and depot are dispersed.  Perhaps the termini are at 
ends of the lines, and there may be some cost, ckk’, of moving a bus from loop k to loop k’.  To 
include deadheading from the depot, we use k = 0 for the depot and k = 1, 2,… for the loops. 
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k

k’

ckk’

depot

c0k

 

A simple heuristic method can be used to solve this problem approximately. This method is good 
if ckk’ << T(k).  Otherwise, it produces solutions that may need improvement.  We imagine that all 
buses on route k are requested a time 

{( ) }max c≥ '' kkkkΔ  

ahead of their real dispatch time, recognizing that they could be coming from any other terminus.  
If we build this slack into the schedule, i.e. we define: 

( ) ( ) ( )kkk TT = + Δ'  

We can treat this new problem (with T’(k)) as previously (ignoring deadheading).  This is a way 
to obtain a tentative fleet size and set of bus runs which can be improved using a computer. 

Fortunately, the problem we are solving is analogous to the vehicle routing problem (VRP); a 
famous problem that has been extensively studied.  So, we don’t have to do this from scratch.  
(The appendix gives some background on the VRP and a simple computer method that can be 
used to improve tentative solutions.)  The VRP is analogous to the schedule covering problem 
that we want to solve because we are looking for the least costly way to cover a set of 
requirements.  The analogy is presented in the table below. 

The penalty can be defined by any function that maps idle time between loops to a penalty.  This 
may be a function that increases as the idle time wastes money until some point when the bus can 
be returned to the depot. 
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Vehicle Routing Problem (VRP) Schedule Covering Problem 
points i,j loops k, k’ 
distance, cij 

penalty, pkk’     
⎪
⎩

⎪
⎨

⎧

>

∞

0
0

0but  feasible, if
0 if

impossible if

' >
=

kk

kk'

c
c

vehicle Bus 
vehicle load loops covered by a bus; i.e., the bus run 
capacity ∞ 

 

Discussion: Effects of Deadheading 

To illustrate the potential benefits of deadheading, suppose we have two bus lines with different 
peaking patterns, such as a commuter route running heavily in the morning and evening, paired 
with a route that is run most heavily during the middle of the day for something like an athletic 
event. The figure below displays these patterns by means of two solid curves. The dotted line 
(not drawn to scale) is the sum of these curves. 

 

t

Ui(t)

U1(t)

U2(t)

max{U1(t)}

max{U2(t)}

max{U1(t)+U2(t)}

 

Compare the fleet requirement if the routes were considered separately (the sum of the maximum 
route requirements considering each route individually) to the fleet requirement if the two routes 
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share resources even if deadheading is required (the maximum of the sum of route requirements 
given by the dotted curve).  It always happens that: 

{ ( )} { ( )}∑∑ ≥
i

iti
it

tUtU maxmax  

So, some savings are possible with deadheading, but these are offset against the cost of 
deadheading itself.  The greatest benefit is from routes that peak at different times. 

 

 

Appendix: Introduction to the “Vehicle Routing Problem” and 
Meta-Heuristic Solution Methods. 

Here we describe some combinatorial optimization concepts that are useful for scheduling public 
transportation workers and vehicles. 

Local Search Methods and Meta-Heuristics 

The basic idea behind local search methods is to guess solutions that get increasingly better as 
the procedure develops. Solutions are characterized by a “state” which is a string of numbers. 
This can be illustrated with the TSP. Given are N points (or cities), i = 1, 2…. N, and a matrix of 
distances {eij} between every pair of points. In the TSP, we look for a tour that visits all the 
points with the least total distance (or “cost”). Since the positions in which the cities appear in a 
tour are uniquely defined by an ordering of the first N integers (a permutation), any such 
ordering is a state of the TSP problem. Example 3 below shows 2 possible states for a 6 point 
TSP problem: (1, 2, 3, 4, 5, 6) and (1, 6, 3, 4, 5, 2).  It is assumed in this example that costs are 
given by the Euclidean distances of the links. Thus, the cost of each state is the length of the tour 
one would measure with a ruler.  

Any “local search” is based on perturbations that transform a state into a similar state, hopefully 
with lesser cost. For the TSP, a perturbation could be choosing 2 consecutive cities and swapping 
their order. For example, from (1, 2, 3, 4, 5, 6) we could go to (1, 3, 2, 4, 5, 6,) and from this to 
(1, 3, 4, 2, 5, 6). The set of states that can be reached in one step (one perturbation) is the state’s 
local neighborhood. Perturbations should be simple (so they are easy to make and evaluate), but 
also comprehensive, in the sense that they should allow the system to reach any state from any 
other state. Consecutive city swaps have these two properties and are therefore acceptable 
perturbations for the TSP. 
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Given a current state, a “greedy” local search would evaluate the cost of all the states in its 
neighborhood and move to the one with the least cost if such a state exists; otherwise the search 
ends. This procedure is then repeated using this new state as the current state, and then repeated 
iteratively until the search ends because no improvement can be found.  The termination point is 
called a “local” optimum. Local optima are generally not unique for the TSP. For example, you 
can verify that the two tours of Example 3 are locally optimal, even though tour (1, 6, 3, 4, 5, 2) 
on the right is quite bad.  

In view of this, people have created “meta-heuristic” methods that in theory can avoid being 
trapped in local optima and converge to the global optimum. The simplest meta-heuristic method 
is called simulated annealing (SA). It differs from the greedy method in that it randomly chooses 
a single perturbation from the current state to identify a single new state. A coin is then flipped to 
see whether the new state is accepted and becomes the new current state, or one stays put. The 
probability of success “p” is chosen to be the following function of the change in cost, Δe, and 
the iteration number, n:  p = 1, if Δe ≤ 0; but if Δe > 0 then p = exp{-Δe/(n+a)}, where “a” is a 
positive constant.  Note that at the start of the search (n = 1) there can be a significant probability 
of accepting a more costly state (with Δe > 0) but this probability declines as the simulation 
progresses. This probabilistic feature of SA allows the algorithm to jump out of local optima and, 
given enough time, to converge to the global optimum. Unfortunately convergence is slow for 
problems with more than (say) 100 points. Even in these cases, though, the method can be used 
to fine tune solutions obtained with other methods. A large value of “a” is normally chosen for 
this type of application.  

 

The Vehicle Routing Problem (VRP) 

The VRP arises in practice more often than the TSP, and many variants of it exist (e.g. with route 
length restrictions, time-windows, etc.). In its most basic forms it seeks vehicle routes to serve a 
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set of N customers distributed in space. Customers have items to be carried, which take up 
vehicle space. Vehicles have finite capacity.  

Given are:  

N points, i = 1, 2… N 

M vehicles, m = 1, 2… M 

A deport at i = 0 

A matrix of distances, eij 

A demand di for every point (city) (in units of “quantity”) 

A vehicle capacity, Vm for every vehicle (also in units of quantity) 
 

We look for:  

An allocation of points to vehicles and a set of vehicle routes ending and beginning at the deport 
that minimizes either vehicle distance, number of vehicles or a combination of the two. 

The VRP can also be attacked with meta-heuristics such as simulation annealing (SA), and these 
techniques still give reasonable results for problems with up to (about) 100 points. Instead of a 
single permutation, a “state” now consists of an ordered allocation of cities to vehicles. Note, 
some of these states may be infeasible--if the total demand for vehicle m exceeds Vm.  

The SA algorithm would work as before. One defines perturbations, which can be swaps of 
points (also called “customers”) within a tour, or swaps of groups of customers among tours. 
Example 1 shows the result of swapping the last customer of the tour on the left with the middle 
customer of the tour on the right. It should be clear that any state whatsoever can be reached 
from any other state if one uses a proper sequence of swaps. Therefore, the SA approach with 
random swaps should (theoretically) work. In practice, experience with the VRP has been good 
with problems as large as ~100 points.  For larger problems SA can be used as a fine-tuning tool 
with a large value of its parameter “a”.  A demonstration of this approach can be found in 
Robuste, et al. (1990), which applied the SA annealing algorithm to a problem with about 200 
points). 
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As is explained in the text, many transit problems can be cast in the form of a VRP-like problem 
that can be solved or fine-tuned with SA.  This technique can be quickly mastered and applied. 
The case study in Robuste et al (1990) took less than 1 week from conception to completion.  

 

More Information:  

The following elementary readings could be of use. Section 10.9 of “Numerical Recipes: The Art 
of Scientific Computing” by W. Press et al., Cambridge 1987, pp. 326-334, describes simulated 
annealing in the context of the Traveling Salesman Problem (TSP), and shows some computer 
code. A short description can also be found in Appendix B of Daganzo (2005), Logistics Systems 
Analysis, Springer. Section 4.5.2 of this reference (Fine-tuning Possibilities) summarizes the 
case study in Robuste et al, (1990). 
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Module 7: Management—Staffing 
 

(Originally compiled by Eric Gonzales and Josh Pilachowski, May, 2008) 
(Last updated 9-8-2010) 

 

Outline 
• Recap 
• Staffing a Single Run 

o Effect of Overtime 
o Effect of Multiple Worker Types 

• Staffing Multiple Runs 
o Run-Cutting 
o Covering 

• Choosing Worker-Types 
• Dealing with Absenteeism 
• What is Still Left to be Done 

 
 

 

Recap 

Recall from last lecture the 2-step process we used to cover a schedule: 

Route schedule : Bus Loops : Bus Runs

Cutting 
problem

Covering 
problem

Bus 
Types

 

We start with a route schedule and cut it into loops that can be covered by the buses.  Buses, 
categorized by speed, capacity, etc… are then assigned so that each loop is covered.  This can be 
solved as a Vehicle Routing Problem (VRP).  The solution consists of all the runs for each bus.  
If buses were automated vehicles this would be the end of the problem.  However, since they are 
not, we must figure how to cover the bus runs with drivers.  To do this we consider the drivers 
and the constraints they add, using the following sequence: 
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Bus Runs : Driver Tasks : Driver Jobs

Cutting 
problem

Covering 
problem

Worker 
Types

 

Notice the similarities between the two formulations.  The bus runs obtained from the fleet 
scheduling step are now cut into elementary driver tasks and drivers, categorized by shift length 
and wage rate, are then assigned to feasible sets of tasks (jobs) so that each task is covered.  This 
is what the focus of this lecture will be. 

Because of the similarities between the schedule covering and staffing problems we can analyze 
them in a similar way: first by considering each run separately and then by pooling them, 
allowing drivers to cover multiple runs. 

 

Staffing a single run 

The result of the schedule-covering analysis from last lecture is a series of runs, r, each with a 
beginning time, Br, an ending time, Er, and a duration Sr.  We also take as given the (continuous) 
work interval for workers of type i, wi.  Normally, wi < Sr for  many runs. 

 

Br Er

Sr
wi

 

 

We also assume that we know the wage rate of drivers of type i, as well as the premium added to 
their wage rate for working overtime.  To simplify the formulas we use monetary units so that 
the wage is 1.  In those units, we define the overtime premium as π, and the overtime wage as 
(1+π). 

Consider now the extra cost of wages over the lower bound (LB) obtained by assuming that π = 
0 (i.e. that drivers can be hired and paid only when needed.  We will examine how this extra cost 
depends on the types of shifts that are used - assuming that the transit agency has the flexibility 
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to ask workers to start their shifts at any time. First we look at a single run of length Sr and set w 
= 8 hrs and π = ∞ (no overtime offered). Then the extra cost over the LB, $w, is described by the 
following curve, which is our base case; see figure below. 

 

8 16

8

$w
extra cost 

over LB

Sr

exact points with 
zero waste

-1 -1

 

You can see that the largest cost, w, is paid for runs with lengths slightly longer than a multiple 
of w.  Over multiple runs of random duration, the average wasted cost should be about w/2. We 
waste about one half of a shift per run. 

 

Effect of Overtime 

By allowing for overtime (and hiring short-term drivers at the overtime rate), a new extra cost 
curve with slope π becomes possible, see figure below.  The least cost is then the minimum of 
the two curves.  One would use overtime only when the overtime curve is beneath the regular 
curve (i.e., where the latter is dotted.) 

Simple algebra reveals that the maximum cost is now: ⎟
⎠
⎞

⎜
⎝
⎛
+ π1

w π .  Thus, the excess (wasted) cost 

per run should be about ⎟
⎠
⎞

⎜
⎝
⎛
+π12

w π  on average. Note how overtime reduces waste. 
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$w
extra cost 

over LB

Sr

-1 -1

π π

⎟
⎠
⎞

⎜
⎝
⎛
+π
π

1
w

w

overtime 
curve

 

 

 

Effect of Multiple Worker Types 

If we introduce more worker types to the system we can further reduce our cost.  For example, 
by offering a shorter shift, w2 = 3 hrs, we can find exact points of zero extra cost for runs with 
the following lengths: 3, 6 = (3 + 3), 8, 9 = (3 + 3 + 3), 11 = (8 + 3), 12 = (3 x 4), 14 = (8 + 3 + 
3), 15 = (3 x 5) … (continuing for all integer values greater than 15).  You can see from the 
figure below that the resulting extra should be about 0.5 without overtime and about 0.25 if 
overtime with 1≈π  is allowed. 

If we know the cumulative distribution, F(x), of all runs, the extra expected cost across all runs 

can be expressed more precisely as: E  .   ∫=
0

)()($)($ xdFxww

24
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$w
extra cost 

over LB

Sr

-1π

w2 = 3 w1 = 8  

Staffing Multiple Runs 

As in the case of the fleet scheduling problem, the situation can still be improved by pooling: 
considering all runs together and allowing drivers to serve more than one run. 

Run-Cutting 

To do this, we first cut the runs into elementary tasks, p, that can be covered by different drivers 
- although each task must be done by the same driver. These tasks should be as short as possible, 
recognizing the practical constraints that apply to the agency. (Perhaps, for example, drivers can 
only be switched at certain points on the routes.)  The results of the cutting process can be 
expressed graphically as in the fleet scheduling problem: 

tasks, p

time, t

tp  
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Covering 

Data for the problem would include the task duration, tp, the times, tpp’, between the end of tasks 
p and the beginning of p’, and the real cost of moving a driver from task p to task p’, cpp’ (this 
cost is set to ∞ whenever the move is infeasible; e.g., for all moves where tpp’ < 0). 

This covering problem can also be formulated as a VRP, albeit a variant with different 
constraints.  The analogy from the previous lecture is continued below: 

 

Vehicle Routing 
Problem (VRP) 

Schedule Covering 
Problem 

Staffing Problem 

depot depot worker home (or depot) 
points i,j loops k, k’ tasks p, p’ 
vehicle bus worker 
vehicle load loops covered by a bus; 

i.e., the bus run 
tasks covered by a worker; 
i.e., a job 

capacity ∞ ∞ 
time for a stop, ti n/a tp
time between stops ti, j n/a tpp’
distance for a leg, ci,j pkk’ cpp'
time constraint, T n/a wi 

 

Despite the complications, the SA method can still be used.  We would use the same “state” as in 
the previous lecture (I.e., ordered strings of numbers, p, for each worker), and would treat runs 
independently. We could also use the same set of perturbations.  Only the cost evaluation step 
would be slightly different since violation of the time constraint would imply an infinite cost. 

The SA approach can be used even if worker types are characterized by specific beginning and 
ending times of their shifts, and not only by their shift durations. 

 

Simplified estimation of cost 

We can use a graphical method in order to obtain a quick estimate for a LB of total cost.  To do 
this we assume that workers can start their shifts at any time and can be reallocated across runs 
without a time penalty.  This allows us to focus on the number of runs, ignoring specific runs and 
where they take place in space.  By graphing the number of active runs over time, the problem 
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simply becomes one of covering the area under the graph with “strips” representing a work shift, 
with a height of one bus and a length, w. 

 

w w

w

cover by 
reallocating some 
of the idle time

t

# active 
runs

D2

D1

≈w

 

 

In the above figure, D1 is the number of active runs during the morning peak, and D2 is the 
number of active runs during the afternoon peak.  The least possible number of strips have been 
used to cover the area under the graph.  The darker parts of the curve mark the beginning of the 
strips.  The shaded portion of the graph represents the wasted time such that a driver is employed 
without having a bus to drive.  The small portion at the end of the day can be covered by idle 
workers from the afternoon peak.   

Note:  The two peaks are separated by the length of a workday which of course is close to w.  
This presents a problem, since drivers who start their shifts at the beginning of the peaks must be 
idle most of their shift.  From the picture you can see that there will be (D1 + D2)w driver-hours 
hired. 

By allowing some shorter shifts of duration (w/2 = 4) in addition to the regular shifts (w = 8) we 
could use the following solution: 
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w
w

cover by 
reallocating some 
of the idle time

t

# active 
runs

D2

D1
w/2

w/2

 

 

This results in no driver being idle for more than 4 hours even though most of the shifts are of 
regular length.  This is very interesting: a large cost reduction is achieved by hiring just a few 4-
hr workers. If we continue this idea by allowing shorter shifts and overtime, the amount of waste 
can be reduced even more.  The homework illustrates this effect. 

 

Choosing Worker Types 

We have shown that it is beneficial to have shorter shifts; however there is the question of how to 
induce workers to choose these shifts.  There is the possibility of paying higher wages, but we 
can possibly provide an incentive other than money.  You could offer a shift schedule such that a 
driver can work 9 hours a day for four days, and then have a 4-hour shift on their fifth day.  By 
partitioning 4-hour shifts for each weekday over all the workers, each day would have a 4-hour 
shift for every four 9-hour shifts.  The normal and 9/4 rotations are shown in the table below: 
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 M T W Th F 

rot 1 8 8 8 8 8 

rot 2.1 9 9 9 9 4 

rot 2.2 9 9 9 4 9 

rot 2.3 9 9 4 9 9 

rot 2.4 9 4 9 9 9 

rot 2.5 4 9 9 9 9 

 

 

You could then allow drivers to choose their preferred rotation, in order of seniority, with the 
standard 8-hour shift being the default.  This strategy has not been put into practice regarding 
transit staffing, however it exists in other fields1.  Research suggests that the idea could have 
merit for transit systems2. 

 

Dealing with Absenteeism 

The above analysis assumes that drivers show up for work reliably.  It does not take into account 
sick leave, vacation time, or absenteeism.  Given m, the number of jobs needed, we assume a 
probability, f, that people will show up to work.  We will also assume that absentees are paid.  In 
the best-case scenario, with the same number of absentees every day, we would need to hire  n = 
⎡m /f ⎤ drivers; e.g., if m = 60 and f = 0.9, we would need ⎡ ⎤ 679.0/60 = drivers. 

                                                 
1 Coleman, R. M. (1995) “The 24 hr business”, AMACOM, N.Y. 

2 Muñoz, J. C. (2002) “Driver shift design for single-hub transit systems under uncertainty” PhD thesis, Dept. of 
CEE, U. C. Berkeley, CA. 
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If we leave n as a decision variable but the number of people who show up to work, N, is 
random; and if the on-call workers who come in last minute to cover a shift, are paid at a higher 
rate ($0>$), then the expected cost would be: 

E(cost) = $n + $0E(m-N)+ 

Here, N is a binomial random variable B(n, f).  For large n, N can be approximated as a normal 
random variable with mean (m-nf) and variance nf(1-f).   

Note:  The selection of n presents a tradeoff similar to the well-known “newsboy problem” in 
which a newsboy maximizes his expected profit by buying just enough newspapers to balance 
the risks of either running out or having some unsold inventory at the end of the day. 

The formula for the expected cost is: 

E(cost) = $n + $0 dx
fnf
nfmx

∫
∞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+−

Φ−
0 )1(

1  

where n is a decision variable, m and f are data, and x is a dummy argument.  Here we have used 
the well known result for the mean of a random variable in terms of its cdf: 

E(x) = ; see Figure. ∫∫
∞−

−+−
0

))(1()( dxxFdxxF XX

∞0

There exists a closed form solution to expected cost integral above in terms of Φ  and φ’s, 
exploiting the fact that ∫ . However since the cost can be found 
numerically, the formula is omitted. 

Φ+=Φ )()()( xxxdxx φ

 

)(xf X

c.d.f., F(x)

+

-

E(x) = difference 
in shaded area
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Since for our application the area to the left of the axis in the above figure is small, we will take 
the mean to be the area to the right of the axis.  For the case given at the beginning of this section 
with m = 60, f = 0.9, and a cost ratio of on-call drivers $/$0 = 2/3, the optimal solution would be 
n = 64.  This would give an expected cost of 67.1 drivers, which is only marginally higher than 
our best-case scenario!  Of course, worse results would be obtained with smaller pools of drivers.  
So, having a flexible workforce that can do many tasks is better than having many small pools of 
specialized workers. The formula we have given quantifies these effects. 

 

What is still Left to be Done 

Besides vehicle fleets and personnel, a transit agency also needs to manage other medium- and 
short-term problems. Some are quite visible to the public and may have to be handled adaptively 
in real time. We call them operational decisions. They will be examined in the last Modules, 
albeit not exhaustively. They include: 

Real-Time Control of Vehicle Schedules and Response to Service Disruptions (Module 8) 

Throughout this course we have dealt mainly with the assumption that buses run on schedule.  In 
reality there are many possible disruptions that can prevent this from happening.  These include 
vehicle breakdowns, delays caused by signals and congestion, and passengers with special needs, 
all of which can cause buses to divert from schedule.  We need to know how best to recover from 
these disruptions.  For example, using GPS and communications technology it is possible to 
introduce real-time controls which can minimize the effect of these disruptions. 

Interaction between Transit and Other Modes (Module 9—in the works) 

Because many forms of transit exist within the traffic stream, there are many interactions 
between transit and other modes.  We need to learn how better to manage all modes together. We 
should learn when and how to segregate different modes on the surface streets so the available 
street space is better used. 

Special events (Module 9—in the works) 

Transit can be useful for special events such as the Olympics or emergency evacuations and we 
need to know how to plan ahead for these. 
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• Reliability 
• System of Systems (books on classical dynamics and non-linear oscillations) 
• Uncontrolled Bus Motion (references 1, 2) 
• Conventional Schedule Control (references 3, 7) 
• Dynamic/Adaptive Control (references 4-8) 
• List of References 

 

 

Reliability 

Reliability in a transit network refers to consistency in vehicle headways, arrival times, and 
schedules. When transit users are asked about the most important issues relating to transit, the 
number one response is the reliability of the system. Therefore, it is important for agencies to 
design systems that have consistent headways and vehicle arrival times.  

As will be shown here, most transit system are inherently unreliable – vehicles tend to bunch or 
pair, creating gaps in service. For an animation that explains why, see:  

http://www.ce.berkeley.edu/~daganzo/Simulations/Bus_Bunching.html  

We will learn in this module how to overcome this difficulty. 

 

Systems of Systems 

Transit systems can be analyzed as a “system of systems” (SoS). A system of systems is a group 
of interconnected systems (known as agents) that interact with decentralized agent-specific rules. 
Our goal will be to understand the macroscopic behavior of the SoS based on the individual rules 
governing the agents. The rules governing the behavior of a particular agent (݅) depend on the 
current (and past) state, ݔ, of the particular agent, outside factors (representing the world) and 
the state of other agents with which the agent interacts. The figure below graphically displays the 
generic structure of a 2-agent system: Agent 1 is on the left and agent 2 on the right; arrows 
denote the inputs and outputs of each agent’s rules. A SoS is characterized by the mathematical 
function embodying these rules (called the dynamic equations of the system). 
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Although the number of possible interactions in these systems increases quadratically with the 
number of agents, in transportation applications we typically encounter systems in which each 
agent only interacts with a limited number of agents. In this case, the number of interactions is 
comparable to the number of agents. Can you think of examples of SoS’s in the transportation 
field and what the agents and rules would be for them? E.g., cars in traffic, airplanes nearing an 
airport, etc. 

Since SoS’s are decentralized, we need to understand their behavior over time. An important 
question to ask about such systems is: if the world is fixed at a steady state, does the system have 
an equilibrium state which is invariant in time? And if so, is this equilibrium unique? And is it 
stable? Stability means that the system tends to the equilibrium state when the overall state 

 is close to it. ࢞ ൌ ሺݔଵ, ,ଶݔ … ሻ

ሻݐ

ݔ         ݐ  1 ൌ ݔ ݐ  1,000 െ  ሻ.       (1)ݐሺݔ0.1

This is the dynamic equation.  

These questions can usually be answered in three steps: 1) determine the dynamic equations for 
the system; 2) determine if one or more equilibrium states exist, and find them; and 3) determine 
which equilibria are stable. 

To get some insight into the meaning of stability and this type of analysis, some examples of 
SOS are now presented.  

 

Example 1 – A stable single-agent SoS: A parking lot with a fixed demand of vehicles entering 
the lot (λ = 1000 vehicles per time period) where 10% of the vehicles in the lot at the beginning 
of each time period leave by the end of the period. Here, the agent is the parking lot, the world is 
the entity supplying the demand and the state of the system is the number of vehicles in the 
parking lot at the beginning of any time period ݔ ,ݐሺݐሻ.  

Step 1: the dynamic equation describes how ݔሺ  changes. It can be written using the given 
demand and supply rules. Note: the number of vehicles parked in the lot at the beginning of time 
period ݐ  1 is simply equal to the number of vehicles in the lot at the beginning of time period ݐ, 
plus the number that enter during the time period, minus the number that leave. Therefore,  

ሺ ሻ ሺ ሻ
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Now on to Step 2: at equilibrium, the number of vehicles in the lot will not change with time. 
Therefore, the equilibrium solution can be found by setting ݔሺ ሻݐ  . ൌ ݐሺݔ  1ሻ ൌ ݔ 

ݔ         ൌ ݔ   1,000 െ ݔ 0.1

  ൌ 10,000

10,000. To graphically see what happens, plot the sta
of the state of the s

 

agine now that the system is perturbed by a value ߝ from the equilibrium state as in the figure. 

by performing the same steps algebraically. To do 
this, define the residual perturbation after ݐ steps: ߝሺݐሻ ൌ ሻݐሺݔ െ  . The dynamic equation canݔ
then be rewritten in terms of ߝሺݐሻ by subtracting (2) from (1). The resulting equation is: 

ݐሺߝ          1ሻ ൌ  ሻ.         (3)ݐሺߝ0.9

                  (2) 

Solving this for ݔ , we find ݔ . This solution is unique. So we are now done with 
step 2 and now check for stability. 

Step 3: to determine if the equilibrium is stable, we need to examine what happens when 
ݔ ് 10,000 but ݔ ൎ 10,000 , i.e., ݔ ൌ ݔ  ݔ The equilibrium will be stable if .ߝ ՜ ݔ ൌ

te of the system at time ݐ  1 as a function 
ystem at time ݐ. This is the dark line below, given by (1): 

 

 

Im
Using the dynamic equation along with the dotted line ݔሺݐሻ ൌ ݐሺݔ  1ሻ, we can see how the 
system evolves through time. A moment of thought reveals that it follows the grey arrows in the 
figure above. Clearly, the system moves back to the equilibrium state. This is also true if ߝ ൏ 0. 
(Check it for yourself.) Therefore, we say that this equilibrium is stable since the system returns 
to ݔ after any minor initial perturbation, ߝ.  

Stability can also be determined analytically 
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The reason for doing this is that we remove the independent constant from (1) and then the 
resulting equation becomes homogeneous and easier to analyze. Note, ߝሺݐሻ ൌ 0.9௧ߝሺ0ሻ. Thus, it 
is now clear that the perturba n decreases with time and tends to zero no matter the 

ሺ ሻ. Therefore, any perturbation will be reduced in subsequent time steps and the system wil
tio value of 

ߝ 0 l 
move back towards the 

leng
rocess 2,000 െ  ሻ customers in each time step, whereݐሺݔ0.1

 For this SoS, the server is the unique .ݐ ሻ is the number in queue at the beginning of time stepݐሺݔ
gent, the world supplies the demand and the state is ݔሺݐሻ. 

ݔ         ሺݐሻሿ ൌ ሾ1.1ݔ

dynamic equation as a function of the residual perturbations from 
equilibrium as we did for (3). To do this (4) must be “linearized”; i.e. we m
truncation and eliminate the independent constant. The truncation has no effect close to  ݔ ൌ

ment is about 10
 (this is alwa  done); i.e., we rewrite (4) for the equilibrium 

 in size with time, and the system will move further and further 
away from the equilibrium state. Therefore, this equilibrium is unstable. This is also confirmed 
with the graphical construction of the state of 
below, the equilibrium state  ݔ ൌ 10,000 is unstable. Minor perturbations move the system 

equilibrium. 

 

Example 2 – an unstable single-agent SoS: The second example is a queuing system where the 
customers’ service times increase with queue length. (This could happen, for example, if the 

th of the queue reduced the server’s efficiency.) In our example, customers arrive at a rate of 
1,000 per time step. The server can p

a

Step 1: noting that the number of customers in the system cannot be negative, we see that the 
dynamic equation is simply: 

ሺݐ  1ሻ ൌ ሾݔሺݐሻ  1,000 െ 2,000  ݔ0.1 ା ሺݐሻ െ 1,000ሿା.  (4) 

Step 2: Now, replace ݔሺݐሻ and ݔሺݐ  1ሻ with  ݔ and solve this equation. The system is found to 
have two equilibria:  ݔ ൌ 0 and  ݔ ൌ 10,000. 

Step 3: the stability of all the equilibria should now be checked. Start with ݔ ൌ 10,000. As a 
first sub-step we rewrite the 

ust remove the ሾ · ሿା 

10,000 since its argu ,000. Thus, it is omitted. To eliminate the constant, we 
repeat the same step of example 1 ys
solution of interest: 

ݔ         ൌ ݔ1.1ൣ െ 1000൧ା ൌ ݔ1.1 െ 1000       (5) 

and subtract from (4). The result, in terms of ߝሺݐሻ ൌ ሻݐሺݔ െ  : isݔ

ݐሺߝ          1ሻ ൌ  ሻ.          (6)ݐሺߝ1.1

The second sub-step is analyzing (6). In this case, ߝሺݐሻ ൌ 1.1௧ߝሺ0ሻ. Thus, it is clear that any 
perturbation will continue to grow

the system. As seen in the graphical construction 


away from the equilibrium.  
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This whole analysis would have to be repeated for ݔ ൌ 0, but we don’t do it here. The figure 
clearly shows that the system moves towards the equilibrium  ݔ ൌ 0 when close to it, so this 
particular equilibrium is stable. 

 

demand
ue lengths as follows: ߤଵ ൌ ଵݔߚ  γሺݔଵ െ ଶߤ ଶሻ andݔ ൌ ଶݔߚ െ

ሺݔଵ െ ,ߚ ଶሻ whereݔ ߛ  0. The ߛ terms indicate that work processing resources are constantly 
eing moved from the small pile to the large pile, presumably to balance them. In this case, the 

Since we have 2 agents, the graphical solutions we have given cannot be used. Therefore, we 
analyze the system algebraically. The method used can be applied to any number of agents. For 
our example, we normalize the units so that ߚ ൌ 1 and assume that in this system of units γ ൌ λ. 

ic equations of the system become: 

ݐଵሺݔ          1ሻ ൌ ሻݐଵሺݔ  λ െ ଵߤ ൌ െλݔଵሺݐሻ  λݔଶሺݐሻ  λ,         if ݔଵሺݐ  1ሻ  0,  (7a) 

ݐଶሺݔ          1ሻ ൌ ሻݐଶሺݔ  ଵߤ െ ଶߤ ൌ ሺ1  2λሻݔଵሺݐሻ െ 2λݔଶሺݐሻ,  if ݔଶሺݐ  1ሻ  0. (7b) 

Example 3 – 2 agents: This is an example with multiple (2) agents. The system being studied is 
a system of two queues in series as shown below where the  λ is a constant and the 
service rates depend on the que
γ
b
queues are the agents, the world supplies the demand and the states are the queue lengths, ݔଵ and 
 .ଶݔ

 

 

Step 1: the dynam
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Step 2: from these equations, an equilibrium solution of the system with ݔଵ,, ݔଶ,  0 is: 

ଵ,ݔ         ൌ ଶ,ݔ ൌ λ. 

Step 3, sub-step 1: the dynamic equations are now re
from equilibrium. The equilibrium version of (7) is: 

written as a function of the perturbations 

ଵ,ݔ         ൌ െλݔଵ,  λݔଶ,  λ,         (8a) 

ଶ,ݔ         ൌ ሺ1  2λሻݔଵ, െ 2λݔଶ,.        (

  ,

ݐଵሺߜ          1ሻ ൌ െλߜ ሻݐ  λߜଶሺݐሻ,                   (9a) 

We are done with sub-step 1 and must now check for stability. Note, we cannot draw a picture of 
(9) and it is not immediately o
Fortunately, linear algebra comes to the rescue! Equation (9) can be rewritten in matrix form as: 
 

ൌ ࡸ ሻ whereݐሺࢾࡸ ൌ 1  2λ െ2λ   (10) 

 

and in this form, the equation is very simil ௧

in the previous cases, if ࡸ௧ ՜  ൌ ቂ0 ቃ as ݐ ՜ ∞, then the equilibrium is stable. This 

 
reater than one, however, the perturbations will grow with time and the equilibrium will be 

unstable. As an exercise, check what happens for λ ൌ 1. You will find that the system is 
unstable. Also, see if you can determine for whic an 
answer this second question, you have reached a very good understanding of this method.) 

n  

Now, letting ߜ ሺݐሻ ൌ ݔ ሺݐሻ െ ݔ  and subtracting (8) from (7) we find: 

8b) 

ଵሺ

ݐଶሺߜ          1ሻ ൌ ሺ1  2λሻߜଵሺݐሻ െ 2λߜଶሺݐሻ.       (9b) 

bvious what happens to ߜሺݐሻ if the equations are iterated. 

ݐሺࢾ          1ሻ ቂ െλ λ ቃ,    

ar to (3) and (6). In this case ࢾሺݐሻ ൌ ࡸ   ሺ0ሻ. Thus, asࢾ
0

0 0
condition can be checked by analyzing the eigenvalues of the matrix ࡸ. If the absolute values of 
all the eigenvalues are less than 1 then, as you may recall from linear algebra, ࡸ௧ ՜  and 
perturbations will shrink with time. Thus, the equilibrium will be stable. If any of the eigenvalues
are g

h values of λ the system is stable. (If you c

 

Uncontrolled Bus Motio 1

We now apply these ideas to study an uncontrolled bus system, as shown below. In this system, 
the bus travels between points (…,s-1,s,s+1,…) known as control points.  

                                                            
1 Much of what follows is based on [7] 
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The ideal motion can be defined by the bus schedule in terms of arrival times at succeeding 
control points. This can be written in the following form: 

,௦ାଵݐ         ൌ ,ݐ  ܪ݊  ∑ 
௦
ୀ ,      ݊,  (11)     …0,1,2 = ݏ

here ݊ is the bus number, ݏ is the control point, ܪ is the target headway, and  is the travel 

 first bus arrives at the control point at 
the origin. The second term is  time s ௧

origin. The last term is the bus tra e f

a
e s We want to see if the ܽሺݏሻ stay close to the 

ݐ  as the buses proceed forward (with ݏ ՜ ∞). We shall use the notation ܽ  instead of ܽ ሺݏሻ 

s th quilibrium conditions of the 
liminary step, note that 

௦ is the headway ahead of bus ݊ at control point ݏ, ܿ௦ is the target 
travel time including stops at equilibrium and ߚ௦ is an experimentally determined constant 
(typically between 0.01-0.1 if the distance between stops is 1km). This constant captures the 

w
time from control point ݅ to ݅  1, including stops. 

The first term on the RHS of (11) is the time at which the
the eparation between the first and the ݊  buses at the 
vel tim rom the origin to ݏ  1. 

We tre t the buses, ݊, as agents, the control points, ݏ, as “time” and the actual arrival times, 
which we denote ܽሺݏሻ, as th tate of the agents. 

,௦ ,௦ 
for consistency with [7].  

We are now ready to start the analysis. Equation (11) define e e
system. However, the dynamic equations still need to be derived. As a pre
the uncontrolled travel time for bus ݊ between stops ݏ and ݏ   :,௦, should obeyݑ ,1

,௦ݑ          ൌ ܿ௦  ௦൫݄,௦ߚ െ ൯ܪ ൌ ܿ௦  ௦൫ܽ,௦ߚ െ ܽିଵ,௦ െ  ൯     (12)ܪ

where ݄,௦ ൌ ܽ,௦ െ ܽିଵ,
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extra time that boarding and alighting passengers add to the bus trip. Since ܽ,௦ାଵ ൌ ܽ,௦ 
,௦ݑ   ,௦ାଵ is a random noise due to traffic or the type and number of passengersߛ ,௦ାଵ, whereߛ
arriving at ݏ, it follows that the actual arrival time for bus ݊ oin  is:  at p t ݏ

      ܽ,௦ାଵ ൌ ܽ,௦  ܿ௦  ௦൫ܽ,௦ߚ െ ܽିଵ,௦ െ ൯ܪ     ,,௦ାଵߛ

re our dynamic eq

ߝ        

௦ ,௦ ௦ ିଵ,௦ ,௦ାଵ 0,1,2, …                         (14) 

Consider now the stability of bus ݊, treating ߛ,௦ାଵ and ିଵ,௦ as exogenous puts. re 

1

which is unstable since ሺ1  ௦ሻߚ  1. 

Therefore, uncontrolled bus systems are inherently unstable! When one bus gets behind, even 
just a little bit, the bus will tend to get further and further behind un l it be he 
bus behind it. The opposite happens if the bus runs ahead of schedule. Let us now see what can 

Conventional Schedule Control 

This section will examine a typically used
ontrol. In t  type of control, slack is added to the bus schedule at 

ses are held at these control points if they 

tradeoff. 

To recognize explicitly that the addition of slack changes the travel time between control points, 
time as ௦ ൌ ௦ݑ  ݀௦, where ݀௦ is the amount of “slack”. The 

  ݊, ݏ ൌ 0,1,2, …  (13) 

These a uations. Note, (13) includes our exogenous noise term contributed by 
the “world”. So now we proceed with the linearization step. As before, we subtract (11) from 
(13) to get the DE in terms of perturbations away from the equilibrium, ߝ,௦ ൌ ܽ,௦ െ  ,௦. Theݐ
result after a little algebra is: 

,௦ାଵ ൌ ,௦ߝ  ,௦ߝ௦൫ߚ െ ିଵ,௦൯ߝ                               ,௦ାଵߛ

                    ൌ   ሺ1  ߚ ሻߝ െ ߚ ߝ  ߛ ,          ݊, ݏ ൌ

ߝ in We a
hoping that if these inputs are turned off, then ߝ,௦ ՜ 0 as ݏ ՜ ∞. We see from (14) that ߝ,௦ and 
 :,௦ାଵ satisfyߝ

,௦ାଵߝ          ൌ ሺ1  )         , ,௦ߝ௦ሻߚ 5) 

ti comes paired with t

be done. 

 

 method to reduce the bus pairing phenomenon: 
conventional schedule c his
predetermined control points along the bus route. Bu
arrive early to get them back on schedule. Nothing is done to buses that arrive late, but the 
system is designed so that this is a rare event. There is a tradeoff in applying schedule control, 
however. The slack added to the schedule reduces the commercial speed of the buses, increasing 
the in-vehicle travel time that passengers experience to their destinations. So let us examine this 

let us write the scheduled travel 

8‐8 
 

value of ݀௦ should be selected to be greater than typical disturbances that arise in the bus 
movement. For example, if ߛ,௦ାଵ~ܰሺ0,  ௦ so that the bus will be ableߪ௦ሻ then ݀௦ can be set to 4ߪ
to arrive on schedule over 99% of the time. 

Since the slack has been added, the equilibrium bus travel times are given by (11) with ௦ ൌ ܿ௦ 
݀௦. They satisfy:  
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,௦ାଵݐ         ൌ ,௦ݐ  ܿ௦  ݀௦ ,   ݊, ݏ ൌ 0,1,2, …      (16) 

We assume that buses are allowed to run free between control points but are held immediately 
before the control points so they will not pass through them ahead of schedule2. With this control 

ൌ

s of deviations he  d
lt is: 

Now remember that ݑ,௦ is related to the deviations by: 

,௦ݑ         ൌ ܿ௦  ௦൫ܽ,௦ߚ െ ܽିଵ,௦ െ ൯ܪ ൌ ܿ௦  ,௦ߝ௦൫ߚ െ ,݊ ,,௦ାଵ൯ߝ ݏ ൌ 0,1,2, …  (19) 

,௦ାଵ ௦ ,௦ ௦ ିଵ,௦  ,௦ାଵߛ െ ݀௦ሿା. ݊, ݏ ൌ 0,1,2, …   (20) 

This expression is very similar to (4) if we tre not just ߛ,௦ାଵ bu ିଵ,௦

 the term ሾ · ሿ  equals zero if ߝ,௦ is small. This 
means that bus ݊ returns to schedule immediately. This is good. However, like (4) equations (20) 
also have an unstable equilibrium, ߝ, ൌ ݀௦/ߚ௦  0 is instability me
arriving by more than ݀ ߚ/ , then it cannot recover and it forever loses time. This result shows 

e perturbations, such as those caused by 
bus breakdowns. It explains why it is so difficult for transit agencies to keep buses on schedule, 
despite the agencies’ best effects, and why improved methods are necessary.  

mine how ݀௦ and the length of the 
control intervals should be chosen for schedule control. 

 

strategy the dynamic equations are: 

        ܽ,௦ାଵ max൛ݐ,௦ାଵ, ܽ,௦  ,௦ݑ  ,݊  ,,௦ାଵൟߛ ݏ ൌ 0,1,2, …    (17) 

We now express (17) in term from t  schedule as we id in the derivation of (14). 
To do this, subtract (16) from (17). The resu

,௦ାଵߝ         ൌ max൛0, ,௦ߝ  ,௦ݑ  ,௦ାଵߛ െ ሺܿ௦  ݀௦ሻൟ ,  ݊, ݏ ൌ 0,1,2, …   (18) 

and substitute this expression into (18). The final result is:   

ߝ         ൌ ሾሺ1  ߚ ሻߝ െ ߚ ߝ

at t also ߝ  as input from the 
“world”.  Like (4), equations (20) have a stable equilibrium at ߝ, ൌ 0. In fact, even if we 
allow for small perturbations in ߛ,௦ାଵ and ߝିଵ,௦

ା

. Th ans that if a bus is late 
௦ ௦

that conventional schedule control is not resilient to larg

Before we look at these methods, however, let us now exa

Optimizing the Slack 

In implementing conventional sc a pertinent question becomes: how far apart (in 
number of stops) should the control points be placed? We now assume that the control points are 
spaced ݉ stops apart where ݉ is a decision variable. 

The travel time between control points is now written as ሺ݉ሻ ൌ ܿሺ݉ሻ   ሺ݉ሻ to stress theߪ4
dependence on ݉. Recall ߪሺ݉ሻ is the variation in travel times between control points (not 
between stops). If all the stops are similar we expect ܿሺ݉ሻ ൌ ݉ܿ, where ܿ is the time per stop. 
Now, let ߪଶ be the variance of the travel time noise between successive stops

hedule control, 

. If the noise was 
independent across stops and all the stops were similar, we would also expect ߪଶሺ݉ሻ ൎ  ଶ andߪ݉

                                                            
2 If the control point is a stop, the slack can be introduced at the stop itself while the bus doors are open. 
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ሺ݉ሻߪ  ൎ  This independence assumption breaks down for large ݉ s buses would begin to .݉√ߪ
pair), but simulations in reference [7] show that it is go

(a
od as long as ݉   We now use .ߚ/0.25

these formulae to evaluate the bus average inter-stop travel time,  ൌ  ሺ݉ሻ/݉, as a function of
. The result is: 

ሺ݉ሻ/݉ ൌ ܿ  ݉√/ߪ4

݉

          ൌ ܿሺ݉ሻ/݉  ߪ4 ,  if ݉   (21)   .ߚ/0.25

 erience in the bus. Users also experience 
waiting time for the bus, and this needs to be accounted for. Let ߪଶ

′ ൎ  ଶ be the variance ofߪ′݉

 

To get the ave

  

w െ  .ଶሻܪ/ଶߪ

 a passenger rides for ݎ stops, the average trav tim

If the constraint is violated,  will be greater.  

Note,  is the inter-stop travel time passengers exp

the bus arrival at stop ݉′ after a control point. Since a headway involves two buses, the 
headways vary at that stop with variance ൎ ଶߪ2

′ ൎ  ଶ. Then, the average waiting time forߪ2݉′
random arrivals at this bus stop, ݓഥ′, can be written as:

′ഥݓ         ൌ 2ሾ1/ܪ   ଶሿ.         (22)ܪ/ଶߪ2݉′

rage wait across all stops, ݓഥ , average the above formulae across all integer ݉′ 
contained in the interval [0, ݉ െ 1]. The result is: 

ഥݓ          ൎ 2ሾ1/ܪ  ሺ݉ െ 1ሻߪଶ/ܪଶሿ ൌ ܥ   ሻ,    (23)ܪଶ/ሺ2ߪ݉

here ܥ ൌ 2ሺ1/ܪ

If el e including riding and waiting is: 

        ܶ ൌ ݎ  ഥݓ ൌ ሺܿݎ  ሻ݉√/ߪ4  ܥ  ݉ ሻ,  ifܪଶ/ሺ2ߪ݉   (24)   ߚ/0.25

e use the co

form of the math
he result is: 

ݖ         ൌ min൛െܣ  ݉√/ݎ8

Although this can be optimized for ݉, we also wish to prevent the buses from catching up with 
each other just by chance. To ensure that this is extremely rare, w nstraint: 4ߪሺ݉ሻ 
ଶ݉ߪwhich in terms of ݉ becomes 16 ,ܪ  ݉ ,.ଶ; i.eܪ  ሺߪ/ܪሻଶ/16. 

To reduce one degree of freedom in the ematical program resulting from the 
combination of this constraint and (24), let ܣ ൌ ሺߪ/ܪሻ. T

 ܣ

g
rained ൌ 2.52ሺܣ/ݎሻ . Thus, the actual solution 

כ݉ ൌ ଶሻ, ሽߚ/0.25 , 2.52ሺܣ/ݎሻଶ/ଷሻ. For small 
 and ܣ ൌ 0.1 (an intermediate value), the ratio ܪ/כݖ 

ݎ ൌ 20. So it looks like travel time has to be increased by 1 or 2 headways for reasonable values 
we want to achieve regularity. This indicates that conventional schedule control achieves 

regularity with a large travel time premium. And we saw earlier that it is not resilient to large 
are some 

ideas in this respect.  

 

݉ൟ .ݏ  .ݐ 1  ݉  1/ሺ16ܣଶሻ,  ߚ/0.25

The solution of this mathematical program ives the optimal length of the control segment. You 
can verify that the unconst  solution is: ݉௨

כ ଶ/ଷ

recognizing the constraints is mid ሺ1,  minሼ1/ሺ16ܣ
ߚ is: 0.5 for ݎ ൌ 3, 1.1 for ݎ ൌ 7 and 3.2 for 

of ݎ if 

disturbances. Therefore, a better control scheme would be appealing. The following 
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Dynamic (Adaptive) Control 

Schedule control is rigid. Buses are oblivious to what other buses are doing. But recent advances 
in GPS and communication technology have allowed the possibility of information-sharing and 
adaptive control schemes. Perhaps this can improve performance. There are two approaches that 
can be used: 

ution. This is like a D
rse f

a  depen
preven

• Forward looking headway control (reference [7]): it is adaptive so it will not ask a bus to 
slow down unnecessarily if the bus ahead is also ahead of schedule. Results in higher 
commercial speeds but still susceptible to the “escape” problem (low resiliency).  

• Two-way looking spacing control (reference [8]): buses respond to their front and back 
spacing; buses can cooperate by slowing down to help following buses. Remedies escape 

Approach 1 (e.g., reference [6]) – optimize the holding times and total travel times based on the 
current state of the system and its expected evol P with recourse approach. 
Lots of literature on this topic but it is heuristic because nobody knows the recou unction and 
ctions d on assumptions about demand. Proofs have not been given that this approach 

ts bus bunching.  

Approach 2 – Control theory approach. Does not optimize travel time; instead it focuses on 
guaranteeing standards of headway variance and commercial speed. Proofs can be given showing 
that it prevents bus bunching and the standards are met. Some examples are: 

problem. More difficult analysis.  

 

Forward looking method 

Recall from the analysis of (14) that the motion of bus number ݊ is unstable (perturbations 
grow), if |1  ߚ |  1. Clearly, if ߚ ߳ሺെ1,0ሻ this problem would be eliminated. But in car-

atrix is infinite). Instead of dealing with eigenvalues, we use a more 
specialized result that applies to equations of the form (25) given below: 

ଵ ଶ , then the maximum 

Proof:

௦ ௦
following theory, this does not guarantee that perturbations could not grow across buses.  

To establish this result we would have to express (14) in matrix form and then look for 
eigenvalues, as we did with (10). This is difficult to do in this case because ݊ is unbounded (so 
the dimension of our m

,௦ାଵߝ         ൌ ଵߙ,௦ߝ  ,݊  ,ଶߙିଵ,௦ߝ ݏ ൌ 0,1,2, …          (25)  

The result says that if |ߙ |  ߙ| |  1 and (25) is iterated with increasing ݏ
error across all buses at any control point, ܯ௦ ൌ  ,௦หൟ, is bounded and cannot increaseߝ൛ห ݔܽ݉
with ݏ. 
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where ݊כ is the worst bus at location ݏ  1 and the last inequality holds due to the triangle 
inequality. Clearly, the last member of (26) cannot exceed ݉ܽݔ ൛หߝכ,௦ห, หߝିכଵ,௦หൟሺ|ߙଵ|   ଶ|ሻߙ|
and since |1ߙ|  |2ߙ|  1 it follows that ݉ܽݔ ൛หߝכ,௦ห, หߝିכଵ,௦หൟሺ|ߙଵ|  ଶ|ሻߙ|  .௦ܯ  ז

 view of this result, we see that (14) would be well behaved if there was no noise and we could 
߳ሺെ1,0ሻ because then we would have ߙଵ ൌ 1  ௦ߚ  ଶߙ ,0 ൌ െߚ௦ 

ଵ ଶ …. Therefore, the worst deviation in the noiseless system would 

[7] shows that how this analysis is e

 headways is uniformly 
bounded by this simple formula: 

ሺ݄ݎܽݒ         ሻ  ఙమ

In
find a way of choosing ߚ௦
ߙ ,0  ߙ ൌ 1 for ݏ ൌ 0,1,2,3,
not grow!  

Reference xtended if there is noise; i.e., if the equation is of 
the form:  

,௦ାଵߝ         ൌ ,௦ሺ1ߝ െ ሻߙ  ିଵ,௦ߝߙ   ,௦ାଵ.       (27)ߛ

In this case, reference [7] shows that the variance of the perturbations from the schedule grows 
but does so very, very slowly. And more importantly, the variance of the

௦ ఈሺଵିఈሻ          (28) 

e if ߚ௦ can actually
is, we introduce slack into the travel times of the buses so buses can be accelerated when 

ays (and, therefore, their workloads) are high and vice versa.  

,௦ : ൌ ,௦ݑ   :,௦ whereܦ

,௦ܦ         ൌ ൣ݀௦ െ ሺߚ௦  ሻ൫݄,௦ߙ െ ൯൧ାܪ
         (29) 

,௦
 below. 

When (29) is truncated, buses run uncontrolled. We assume we choose a large enough ds to 

ܽ,௦   ଵ. Now use (19
and (29) to write: 

݀௦  ሾߚ௦ െ ሺߚ  ሻሿ൫݄,௦ߙ െ ൯ܪ   ,௦ାଵߛ

,௦ ௦ ௦ ,௦ ିଵ,௦ ,௦ାଵ

 

Since ݐ,௦ାଵ ൌ ,௦ݐ  ܿ௦  ݀௦ at equilibrium, we subtract this from the above and get: 

,௦  ,݊  ,,௦ାଵߛ ݏ ൌ 0,1,2, …    (31) 
 

Note this matches (27). Thus, the bound (28) applies to control law (29).  

So armed with this knowledge, we need to se  be changed to a value in ሺെ1,0ሻ. 
To do th
their headw

Propose

is the extra delay added. Equation (29) is truncated because buses cannot take less time than ݑ . 
This control law can be displayed graphically as in the figure

ensure that this rarely happens. Thus, we now write the dynamic equations assuming no 
truncations. Note that ܽ,௦ାଵ ൌ ,௦  ,௦ାଵߛ ൌ ܽ,௦  ,௦ݑ  ,௦ܦ  ,௦ାߛ ) 

        ܽ,௦ାଵ ൌ ܽ,௦  ܿ௦ 

                    ൌ ܽ  ܿ  ݀ െ ߝ൫ߙ െ ߝ ൯  ߛ ,  ݊, ݏ ൌ 0,1,2, …   (30) 

 

,௦ାଵߝ        ൌ ሺ1 െ ,௦ߝሻߙ  ିଵߝߙ
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Recall from the figure above that the maximum feasible deviation one should allow for the 
control to be in force is ௗೞ

ఈାఉೞ
. Since the headway standard deviation is ߪ/ඥߙሺ1 െ  ሻ, we shouldߙ

set ௗೞ
ఈାఉೞ

 ሺ1ߙඥ/ߪ3 െ  ሻ to assure that the system remains in the controllable regime most ofߙ

the time. Therefore, set ݀௦ ൌ ሺఈାఉೞሻଷఙ
ඥఈሺଵିఈሻ

. This is the expected holding time; i.e., the in-vehicle 

delay riders experience for every control segment.  

Now the average waiting time will be  ு
ଶ

ሼ1  ሺ1ߙଶ/ሺߪ െ  ଶሻሽ and the average riding timeܪሻߙ

will be ݎ ൬ܿ௦  ሺఈାఉೞሻଷఙ
ඥఈሺଵିఈሻ

൰. With these functions, the average travel time can be minimized with 

respect to ߙ. 
 

It is shown in [7] that the added holding delay can be cut by a factor of 3 in a typical case. So this 
method is promising.  
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Two-way looking (cooperation) 

Reference [8] contains an analysis. It introduces a spacing-based, two-way looking, linear 
control law (as if buses were attached to each other through springs) similar to the model in the 
homework with space as the state, and time as the parameter. The following are some key points: 

• The coefficients of (25) are a Bernoulli pdf and the denominator of (28) is the variance of 
said pdf. This result is also true for versions of (25) with more terms and pdf coefficients. 

• Physics: a control law that looks forward and backward leads to a dynamic equation like 
(27) but with 3 terms. The coefficients form a pdf with larger variance  better control 
under small disturbances, 

• It can also introduce cooperation  no critical gap and no “escape” problem. 
• It can reduce ݀௦ slightly relative to headway-based laws but provides continuous 

monitoring with GPS; therefore, it recognizes large problems sooner.  
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