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Abstract

Bayesian Modeling of Complex-valued FMRI signals

by

Cheng-Han Yu

Detecting which voxels or brain regions are activated by an external stimulus is a

common objective in functional magnetic resonance (fMRI) studies, however, most

studies use magnitude-only fMRI data and discard the phase data. We consider a set

of statistical models for detecting brain activation at the voxel level that make use of

the entire complex-valued fMRI time courses. We develop a regression model on the

Cartesian representation of the complex fMRI time courses and use a complex nor-

mal spike-and-slab mixture prior on the parameters that determine brain activation

at the voxel level. Our model also incorporates autoregressive components to capture

temporal structure in the data. We then develop a general complex-valued expecta-

tion maximization algorithm (C-EMVS) that allows us to detect brain activation in a

computationally efficient manner within this modeling framework.

To further improve detection performance, a computationally efficient Bayesian

spatial model is developed to explicitly capture the spatial dependence across voxels

through kernel convolution. This model encourages voxels to be activated in clus-

ters and is able to eliminate isolated voxels that are incorrectly labeled as active in

models that do not assume a spatial structure. The kernel-based method significantly

reduces the computational burden compared to other spatial approaches, as it leads

to dimension reduction.

x



We then generalize the spatial model mentioned above from a single-subject

to a multi-subject model, and use the information from multiple subjects to infer

brain connectivity. This model is general and practical due to its ability to infer brain

activation and connectivity simultaneously in multi-subject studies.

We illustrate the performance of our statistical models and tools in extensive

and physically realistic simulation studies and also in the analysis of human complex-

valued fMRI data from a task-related study.
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Chapter 1

Introduction

Humans are real and complex, so are data. In many science and engineer-

ing fields, complex-valued data are common and more useful than real-valued data in

describing social and natural phenomena in the world. The main area of application

that motivates the proposed statistical approaches and related computational methods

detailed in this thesis is the analysis of brain images, in particular, functional mag-

netic resonance imaging (fMRI) data. We are interested in models that can describe

brain activation and connectivity patterns from complex-valued fMRI (CV-fMRI) data

recorded in task-related experiments.

FMRI data consist of a sequence of magnetic resonance images (MRI). In a

typical fMRI experiment, three-dimensional (3D) MR images, each consisting of a large

amount of equally spaced volume elements, or voxels, are acquired over time while the

subject lies in the MRI scanner. The measurements of the MR signal can be represented

by the so called k-space which is an array of numbers with spatial frequencies in the MR

1



image. As k-space data correspond to the Fourier transformation (FT) of the nuclear

spin densities, the measurements are complex-valued. It is typically assumed that the

real and imaginary components are measured with independent normally distributed

error (Lindquist, 2008). As a result, the reconstructed voxelwise image data after

inverse FT are also complex-valued with both parts following a Gaussian distribution.

However, most fMRI studies only use the magnitude portion of the signal,

and phase information is discarded as it is usually assumed that the phase information

does not contain any relevant signal information. Therefore, researchers often do not

make use of all information contained in CV-fMRI data. Moreover, if the real and

imaginary parts of the CV-fMRI data at a given time point and at given voxel are

assumed to be two independent Gaussian random variables with the same variance,

the magnitude data, in fact, would follow the so called Ricean distribution, which

cannot be well-approximated by the Gaussian distribution when the signal-to-noise

ratio (SNR) of the data is low, or the noise variance is large (Rowe & Logan, 2004).

Hence, a model that takes both the real and imaginary parts into account is needed

for better inference results.

Detecting which voxels or brain regions are activated by an external stimulus

is one of the most fundamental objectives in fMRI studies. However, even though it is

the first question fMRI researchers usually ask, it has not been fully answered yet, and

there is still much room for improving the performance of currently available methods

that detect activation. In fact, Eklund et al. (2016) pointed out that the most common

software packages for fMRI analysis can lead to false positive rates of up to 70% when

2



detecting activation at the voxel level. In this work we develop novel statistical models

that can utilize both real and imaginary parts of CV-fMRI data and then produce

better activation detection results.

In the context of task-based fMRI experiments, brain activation at the voxel

level can be modeled as a variable selection problem (Xia et al., 2009; Zhang et al.,

2015). More specifically, using a regression model with explanatory variables associ-

ated to the stimuli, a voxel is labeled as active if and only if its corresponding regres-

sion coefficient in the model has a nonzero estimated value. Using a complex normal

spike-and-slab mixture prior, we develop a complex-valued expectation-maximization

variable selection (C-EMVS) algorithm that efficiently and accurately detects fMRI

brain activation at the lowest voxel level. A corresponding complex-valued stochastic

search Markov chain Monte Carlo (MCMC) algorithm is also developed to quantify

the uncertainty of the activation strength at each voxel in the image. We show that

our complex-valued model generates less false positives and less false negatives, leading

to higher accuracy and precision rates, especially when the SNR is low in the data.

Moreover, the complex-valued model can better estimate the activation strength and

noise variance as well. The Bayesian nature of the model avoids multiple testing and

p-value correction issues, and directly provides a probability map of activation. A

model with an autoregressive noise structure is also developed to better capture the

temporal structure in the data.

To further improve detection performance, a Bayesian spatial model is devel-

oped to explicitly capture the spatial dependence across voxels through kernel convolu-

3



tion. This model encourages voxels to be activated in clusters and is able to eliminate

isolated voxels that are incorrectly labeled as active in models that do not assume a

spatial structure, such as voxels outside the brain. The kernel-based model greatly

reduces computational burden as it leads to significant dimension reduction in the pa-

rameter space. Furthermore, the model does not need users to pre-specify pre-specify

the neighboring structure of a voxel as required in models that use Markov random

fields (MRFs).

The proposed models described above have several advantages, as will be

shown later in this thesis, but they can only handle data from a single subject. How-

ever, in practice, most fMRI studies, either resting-state or task-based, involve multiple

participants. Therefore, instead of fitting a single-subject model independently many

times, a more general approach that considers a multi-subject model to borrow in-

formation from all the subjects in the study is desired. Furthermore, in addition to

localizing brain activations, another important topic is inferring brain connectivity, i.e.,

how brain regions interact with each other over the course of an experiment. Changes

in brain connectivity are shown to be related to brain diseases such as stroke and neu-

rodegenerative disease like Alzheimer’s disease (Baldassarre et al., 2016; Iturria-Medina

& Evans, 2015; Pievani et al., 2014). Therefore, we generalize our proposed kernel-

based spatial model to the case of multi-subject data, and then use the information

from the multiple subjects to infer brain connectivity by estimating partial correlation

or conditional dependence structure of different brain regions. This estimation is done

by examining the covariance matrix of subject-specific region-level spatial effects that
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are associated with the probability of activation. The model is general and practical

because it can not only do the multi-subject analysis, but also infer brain activation

and connectivity simultaneously.

In Chapter 2 we give a general introduction to fMRI, including how a typical

fMRI experiment is performed, the characteristics of fMRI data and also provide an in-

troduction and literature review of fMRI activation and connectivity studies. Chapter

3 discusses the statistical techniques and methods on which our proposed models are

based. Chapters 4, 5 and 6 present our proposed models and discuss their application

to synthetic and human data. Chapter 7 concludes with a summary of our contri-

butions and possible extensions to our statistical models and methods for CV-fMRI

analysis.
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Chapter 2

Functional magnetic resonance

imaging

In this chapter, we give an overview about fMRI studies and fMRI data

analysis, including a description of task-based fMRI experiments and the characteristics

of fMRI data. We then provide a review of statistical models and methods for inferring

brain activation and connectivity from fMRI data.

2.1 BOLD fMRI: Experiments and data

Neuronal activation occurs in milliseconds and cannot be easily observed.

However, it is associated with localized changes in metabolism. As an imaging modal-

ity, fMRI is a noninvasive neuroimaging method that indirectly measures neuronal

activity by detecting changes in the blood oxygen level dependent (BOLD) signals.

When neuronal activity of a brain region increases in response to a task, the brain
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area requires more local oxygen consumption, and therefore more oxygen-rich blood

flows to the active brain area. As a result, due to the increased supply of oxygen in the

activated brain regions, the oxyhemogloblin level is increased. As a proxy for neuronal

activation, BOLD signals then measure the contrast between the blood oxyhemoglobin

and deoxyhemoglobin levels arising from changes in local cerebral blood flow (Lazar,

2008; Lindquist, 2008; Zhang et al., 2015).

In comparison to high temporal resolution imaging modalities such as elec-

troencephalography (EEG) and magnetoencephalography (MEG) that measure, re-

spectively, electrical and magnetic activity in the brain, fMRI data are acquired with

high spatial resolution but low temporal resolution due to the slower rate of brain

hemodynamics.

In a typical single subject task-related fMRI experiment, a massive data set

is generated by observing hemodynamic activity or BOLD responses over the entire

brain volume every two to three seconds at several hundreds or thousands of time

points, while a subject performs a series of tasks. In a single session, a full 3D whole

brain fMRI data can be obtained by acquiring many adjacent 2D slices of fMRI data.

The size of an entire 3D fMRI data is roughly 96× 96× 96, i.e., 96 slices of 2D images

each having size 96 × 96. In practice, many fMRI studies focus on analyzing one or

several slices of 2D images. Similarly, our proposed models analyze 2D fMRI slices

that usually contain 96× 96 or 128× 128 voxels, each having a time course of BOLD

signals.

If the experiment is repeated several times for the same subject, or if multiple
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subjects are involved in a fMRI study, a massive collection of data needs to be ana-

lyzed. The fact that fMRI data consist of measurements collected over time suggests

a temporal dependence structure. Moreover, voxels are spatially dependent because a

voxel behaves similarly to its neighbors. Hence, voxels tend to be activated in clusters

or groups (Lu et al., 2003; Lazar, 2008). Another issue of fMRI data is that the signals

are relatively weak in comparison to noises in the data. Therefore, a typical fMRI

experiment results in a large dimensional noisy data set that exhibits a complicated

spatio-temporal correlation structure (Caballero-Gaudes & Reynolds, 2017).

The BOLD fMRI signal does not rise or fall simultaneously with neural re-

action when one performs a task. In general, the positive rise in signal due to the

increase in the inflow of oxygenated blood to active regions of the brain gets started

approximately 2 seconds after the onset of neural activity, and reaches its peak 5− 8

seconds after the neural activity has peaked. After reaching its peak, the BOLD signal

decreases to a level lower than the baseline for about 10 seconds (Lindquist, 2008).

This special hemodynamic response behavior is described by the so called hemody-

namic response function (HRF). A fixed HRF can be used in a fMRI study, or the

HRF can be assumed unknown and estimated by a statistical model. Various HRFs

have been considered in fMRI studies. Figure 2.1 shows two default HRFs in two of

the most commonly used software packages for fMRI analysis, the Statistical Para-

metric Mapping (SPM) and the FMRIB Software Library (FSL) (Pauli et al., 2016;

Wager & Lindquist, 2015). SPM uses the so called canonical HRF (or double-gamma,

gamma difference HRF) as the default HRF. This HRF is obtained as a linear com-
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bination of two gamma functions, and it has a significant “undershoot” effect. The

default HRF used in FSL is a gamma probability density function with mean 6 and

standard deviation 3, or equivalently, a gamma density with shape parameter 4 and

the rate parameter is 2/3. This HRF does not have the undershoot effect. In FSL, the

double-gamma HRF option can be used as well.

Figure 2.1: Default HRF in SPM (left) and FSL (right).

Regarding fMRI task-related studies, there are two major design classes of

fMRI experiments: block designs and event-related designs. A block design separates

experimental conditions into extended time intervals, or blocks. For example, a subject

might perform a task, say finger tapping, for a period of time and then take a rest during

another block of time. In general, block designs have high statistical power to detect

activation and the detecting performance is less sensitive to the shape of the HRF. In an

event-related design, several short discrete external stimuli occur randomly at different

timings, offering a higher flexibility in experimental terms. For instance, a subject is
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seeing pictures of faces or brief light flashes with randomized timing. Event-related

designs can avoid the effects of fatigue, boredom, and systematic thought patterns

that are not related to the task when block time intervals are long. Figure 2.2 gives

examples of a block design and an event-related design.

Figure 2.2: Block design and event-related design.

A widely used method for estimating BOLD signal at a given voxel and time,

denoted as xv(t), is to model it as the convolution of the stimulus function s(t) with

the HRF hv(t) for voxel v (Poldrack et al., 2011; Lindquist, 2008; Wager & Lindquist,

2015), that is,

xv(t) = (s ∗ hv)(t) =

∫ t

0
s(u)hv(t− u) du.

Figure 2.3 shows the expected BOLD signals under a block design and an event-related

design using the default canonical HRF in SPM.

To conduct activation and connectivity studies, researchers usually assume

that hv(t) is known and fixed, and possibly further assume hv(t) = h(t) for all voxels

v. However, the shape of HRF varies across brain voxels, within an individual and

across individuals, and the true hemodynamic response is usually unknown. Recently,
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Figure 2.3: The expected BOLD signals (red) under block design and event-related
design. The HRF is the canonical HRF used in SPM.

estimating HRFs has become an important research topic and several studies that use

different approaches have been conducted to estimate the HRF (Goutte et al., 2000;

Ciuciu et al., 2003; Lindquist et al., 2009; Pedregosa et al., 2015; Yu et al., 2016). In

addition, some studies detect activation with voxel-dependent HRFs or do the detection

and estimate the HRF simultaneously by a general Bayesian spatio-temporal model

(Quiros et al., 2010; Woolrich et al., 2004; Xia et al., 2009; Zhang et al., 2014).

2.2 Complex-valued fMRI

As mentioned in Chapter 1, fMRI data are actually complex-valued, but

most fMRI studies are based on real-valued models that use magnitude data only. In

this thesis, we propose three statistical models and related inferential tools for the

analysis of CV-fMRI data. In MRI and fMRI, images or voxel measurements are

complex-valued due to phase imperfections after Fourier encoding and inverse Fourier

image reconstruction from the k-space frequency domain to the image space and vice
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versa. Each k-space point contains spatial frequency and phase information about

every voxel in the final image. Thus in fMRI, voxel time course measurements consist

of real and imaginary components (Bernstein et al., 1989; Haacke et al., 1999; Macovski,

1996) and these are generally converted to magnitude and phase voxel time courses.

However, most fMRI brain activation studies discard the phase information and rely

on magnitude-only image time courses. When this is done, the original complex-valued

data are unrecoverable as operations that involve magnitude-only reconstruction are

not unique.

Figure 2.4: Images of CV-fMRI signals. From left to right: magnitude, phase angle,
real part and imaginary part. The fMRI data set is generated from a finger-tapping
experiment. The images are produced at time point 400.

Figure 2.4 shows the images of magnitude, phase angle, real part and imagi-

nary part of CV-fMRI signals recorded in a subject who participated in a task-related

experiment at time point 400. This is only a 96 × 96 slice of the full CV-fMRI data.

The entire data set consists of 3D volumes recorded at 510 time points. The data set

is generated from a finger tapping block design of experiment and is used for analysis

in later chapters. Clearly, phase angles are not homogeneous across voxels and hence

provide some other information that the magnitude image cannot capture. Figures

2.5 and 2.6 show time series of magnitude, phase, real and imaginary parts of signals
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for a voxel labeled as activated and for a voxel labeled as non-activated, respectively.

The four time series courses taken from non-activated voxels look closer to white noise,

while the signals from voxels labeled as activated display some patterns that are not

consistent with white noise that may be related to brain activation in such location.

Figure 2.5: Time series of magnitude, phase, real and imaginary parts of signals for a
voxel labeled as activated.

Figure 2.6: Time series of magnitude, phase, real and imaginary parts of signals for a
voxel labeled as non-activated.

We note that CV-fMRI data that jointly consist of magnitude and phase

images are not provided by the scanners as the default output, but they are usually

readily available. For instance, GE scanners typically provide an output file that

contains the raw complex-valued k-space data and other information, as well as the

magnitude images. Magnitude and phase images, or real and imaginary images, can be

easily obtained by simply changing a pre-set control variable in an input file, making

CV-fMRI data available to neuroimaging researchers and practitioners.

13



2.3 fMRI activation and connectivity studies

One main objective of fMRI analysis is localizing which voxels or brain regions

are activated by a task. Bandettini et al. (1992) demonstrated that voxel time courses

can be used as effective tools for localizing brain function in humans. Early common

model-based approaches to the analysis of magnitude fMRI data relied on the general

linear model (GLM), as first proposed by Friston et al. (1994). In this model, the

observed magnitude-only fMRI signal is modeled as the underlying expected BOLD

response plus a noise component. In other words, for each voxel v = 1, . . . , V , the

voxel-wise GLM can be written as

yv = Xvγv + εv, (2.1)

where yv is the T × 1 response vector of magnitude-only fMRI time course for voxel v,

Xv is the T×q design matrix whose components include the expected BOLD responses

for each of p experimental tasks or input stimuli and possibly other regressors such

as trends (and so, p ≤ q), γv is a q × 1 vector of regression coefficients and εv is a

T × 1 error vector, which captures random noises due to scanner artifacts and any

additional subject-related physiological noise. In the absence of intercepts, trends, or

any other covariates that are not task-specific, i.e., when q = p, each of the p BOLD

responses in Xv is the discretized convolution of a stimulus on-and-off signal with the

HRF that models the hemodynamic delay in the magnetic resonance signal (Friston

et al., 2007). In addition, the HRF is often assumed to be the same across voxels,
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resulting in Xv = X for all v.

The GLM described above is for single-subject studies only. To analyze multi-

subject fMRI data, several hierarchical or multi-level models have been providing a

framework for performing mixed-effects analysis and dealing with individual subject

level effect and group level effect in different layers of the model. Friston et al. (2002)

reviews hierarchical models and establishes a connection between classical inference

and parametric empirical Bayes thorough covariance component estimation of the er-

ror term εv in the GLM (2.1). The covariance component estimation can deal with

estimating nonsphericity or variance components in fMRI time series arising from serial

correlations induced by multiple subjects. Beckmann et al. (2003) shows the equiv-

alence between a two-level mixed-effects model and a single complete mixed-effects

model if the covariance at the group level is set equal to the sum of the covariances

in the single-level, using the best linear unbiased estimator with known covariances.

The second-level analysis then can be carried out using only first-level results, with-

out a need to revisit the fMRI time series data. Other sophisticated spatio-temporal

models for detecting brain activation, particularly Bayesian models, will be reviewed

in Chapter 3.

While constructing activation maps is a major interest in fMRI studies, re-

cently, there has been an increased interest in inferring brain connectivity, i.e., studying

how brain regions interact with each other in resting-state fMRI studies, and also in

studying how brain connection structures react to certain experimental conditions.

Functional connectivity and effective connectivity are two main types of connectivity
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defined in Friston (1994). Functional connectivity refers to the undirected association

between fMRI time series, or similar temporal patterns from brain regions that are spa-

tially distant. Effective connectivity, on the other hand, estimates causal dependence

or the directed influence of one brain region on another.

A simple approach to infer functional connectivity is based on estimating

temporal correlations between regions of interests or between a “seed” region and

other voxels throughout the brain. Dimension reduction methods such as Principal

Component Analysis (PCA) in Andersen et al. (1999) and Independent Component

Analysis (ICA) in McKeown et al. (1998), Calhoun et al. (2001) and Calhoun et al.

(2002), are alternative methods to discover spatial patterns that account for most of the

variability in the fMRI time series. Approaches that apply graphical Lasso (GLasso)

to estimate sparse precision matrices of regions of interest in the image have also been

proposed by Varoquaux et al. (2010).

Commonly used approaches for estimating effective connectivity include Struc-

tural Equation Modeling (SEM) by Mclntosh & Gonzalez-Lima (1994), Dynamic Causal

Modeling (DCM) by Friston et al. (2003), vector autoregressive (VAR) models by Har-

rison et al. (2003), Granger causality by Goebel et al. (2003) and Bayesian networks

by Zheng & Rajapakse (2006).

Some complex-valued based connectivity studies have also been conducted,

including complex-valued time series correlation (Kociuba & Rowe, 2016), complex

ICA (Du et al., 2014, 2016), and DCM for complex-valued data (Friston et al., 2012).

However, the approaches mentioned in the previous paragraphs and most of other
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studies are for magnitude fMRI data. Moreover, so far there are no approaches that

detect activation and infer connectivity simultaneously in the complex-valued domain,

and this motivates us to build the models described in Chapter 6.

.
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Chapter 3

Statistical modeling background

This chapter provides some background on the statistical tools and methods

that will be used in later chapters.

3.1 The complex normal distribution and complex-valued

models for CV-fMRI

This section first introduces the complex normal distribution and discusses

some of its properties. We then present the basic assumptions underlying complex-

valued linear regression models in the context of fMRI data analysis as these are the

basic building blocks of the Bayesian models for brain activation that we develop in

subsequent chapters.
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3.1.1 The complex normal distribution

A complex-valued random vector (r.v.) Z ∈ Cn consists of a pair of real

r.v.’s X and Y of Rn so that Z = X + iY , where i2 = −1. The expectation of Z is

defined as E (Z) = E (X) + iE (Y ). Unlike real-valued Gaussian r.v.’s, the covariance

matrix of Z is not enough to fully describe the second order statistical properties of Z.

Another matrix called the relation matrix is needed. Without loss of generality, the

n×n covariance matrix Γ and the n×n relation matrix C are defined, with E (Z) = 0

as Γ := E
(
ZZH

)
and C := E (ZZ ′), where ZH denotes the transpose conjugate of

Z and Z ′ denotes its transpose. The covariance matrix Γ is complex-valued, positive

(semi) definite and Hermitian, i.e., Γ = ΓH . The relation matrix C is complex-valued

and symmetric, i.e., C = C ′ or C∗ = CH , where C∗ denotes the conjugate of C.

Definition 3.1.1 (Complex normal random variable (Picinbono, 1996)). A complex

r.v. Z ∈ Cn is complex normal if its real and imaginary parts X and Y are jointly

(real) normal. That is, an n-dimensional r.v. Z = X + iY is complex normal if and

only if Z has real representation:

X
Y

 ∼ N2n


µx
µy

 ,Σ =

 ΣX ΣXY

ΣY X ΣY


 , (3.1)

where ΣX = E (XX ′); ΣXY = E (XY ′); ΣY = E (Y Y ′).

From Definition 3.1.1, it is possible to deal with problems concerning complex

r.v.’s in Cn by using a real r.v. of dimension 2n, but it is usually more tedious than

using the r.v. Z of Cn directly. Assuming µx = µy = 0, if the 2n× 2n real covariance
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matrix Σ in the real representation (3.1) is positive definite, the real r.v. (X,Y )′ has

density

f (x,y) = (2π)−n |Σ|−1/2 exp

{
−1

2

(
x′,y′

)
Σ−1 (x,y)′

}
.

The corresponding complex representation of a complex augmented r.v. (Z,Z∗)′, as

shown in van den Bos (1995) and Picinbono (1996), has density

f
(
z, z′

)
= (π)−n [|Γ||P |]−1/2 exp


−1

2
(zH , z′)

 Γ C

CH Γ∗


−1 z

z∗




= (π)−n [|Γ||P |]−1/2 exp
{
−zHP−∗z + Re

(
z′R′P−∗z

)}
, (3.2)

where P := Γ∗ − CHΓ−1C which is Hermitian and positive definite, P−∗ := Γ−1 +

Γ−1CΓ−1CHΓ−1 and R = CHΓ−1. Re
(
z′R′P−∗z

)
denotes the real part of z′R′P−∗z.

We write Z ∼ CNn (0,Γ,C). Moreover, real and complex representations are related

to each other by the following equations

Γ = ΣX + ΣY + i (ΣXY − ΣY X) ; C = ΣX − ΣY + i (ΣXY + ΣY X) ,

ΣX =
1

2
Re (Γ +C) , ΣY =

1

2
Re (Γ−C) , (3.3)

ΣXY =
1

2
Im (−Γ +C) , ΣY X =

1

2
Im (Γ +C) .

A special case of a complex normal r.v. Z appears when C = 0, meaning

that the second-order statistics of Z and its rotated variable eiαZ are identical for
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any α. Such variable Z is called is proper or (second-order) circular when Z has

mean zero (Adali et al., 2011). From (3.3), C = 0 if and only if ΣX = ΣY and

ΣXY = −ΣY X . This means that for a circular complex r.v., its real and imaginary

parts have exactly the same covariance structure, and they do not have any correlation.

With this property and the density shown in (3.2), we obtain that the density function

of a circular normal r.v. Z is of the form

f (z) = (π)−n |Γ|−1 exp
{
−zHΓ−1z

}
. (3.4)

This density, therefore, does not contain C and z∗, and the r.v.’s behavior is fully

characterized by Γ. Next, we define independence of two complex normal random

variables.

Definition 3.1.2. Suppose Z = (Z1, Z2)
′ ∼ CN2 (µ,Γ,C). Z1 and Z2 are indepen-

dent if and only if Γ and C are both diagonal.

By this definition, the following corollary is straightforward.

Corollary 3.1.1. Suppose Z = (Z ′1,Z
′
2)
′ ∼ CNn1+n2 (µ,Γ,C), where µ = (µ′1,µ

′
2)
′,

Γ =

Γ1 Γ12

ΓH12 Γ2

 and similarly for C. Z1 and Z2 are independent if and only if

Γ12 = C12 = 0.

Notice that a circular complex r.v. Z can have non-independent elements as

long as ΣX , and hence Γ, is not diagonal. A non-circular complex r.v. Z can also have

independent elements as long as ΣX , ΣY and ΣXY are all diagonal. Hence, circularity

does not imply independence, and vice versa.
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Like real normality, complex normality is preserved under linear transforma-

tions. That is, AZ+b ∼ CNk

(
Aµ+ b,AΓAH ,ACA′

)
for any k×n complex-valued

matrix A and k × 1 complex constant vector b.

Now we summarize the properties of conditional complex normal distribu-

tions. From Picinbono (1996), if Z1 and Z2 are two complex normal r.v.’s with

each mean zero, then (Z ′1,Z
′
2)
′

is jointly complex normal CN ((0′,0′)′,Γ,C), where

Γ =

Γ1 Γ12

Γ21 Γ2

, C =

C1 C12

C21 C2

 and Γj = E
(
ZjZ

H
j

)
, Cj = E

(
ZjZ

′
j

)
, j = 1, 2,

and Γ12 = E
(
Z1Z

H
2

)
, C12 = E (Z1Z

′
2). Moreover, the r.v. Z1 | Z2 also follows a

complex normal distribution CN (m (z2) ,E,F ), where

m1 (z2) = Az2 + Bz∗2 ,

E = Γ1 −AΓH12 −BCH
12; F = C1 −AC ′12 −BΓ′12,

A =
(
Γ12 −C12Γ

−∗
2 C

H
2

)
P−∗2 ; B =

(
C12 − Γ12Γ

−1
2 C2

)
P−12 , (3.5)

P2 = Γ∗2 −CH
2 Γ−12 C2,

and Γ−∗2 =
(
Γ−12

)∗
. Z2 | Z1 has the same distribution structure as Z1 | Z2 with

appropriate indices replaced.

3.1.2 Complex-valued models for CV-fMRI

Many magnitude-only approaches work under the assumption that errors in

the model are normally distributed which may be problematic, resulting in incorrect

standard errors that can produce inaccurate activation results. In fact, if both the real
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and imaginary components of the CV-fMRI signals yvt = yvt,Re + iyvt,Im, have indepen-

dent normally distributed errors with the same variance, the magnitude-only signals

yvt,Mag =
√

(yvt,Re)
2 + (yvt,Im)2 follow a Ricean (Rice or Rician) distribution. Here, aRe

and aIm generically denote the real and imaginary parts of any complex-valued quan-

tity a = aRe + iaIm. The argument or phase, φvt = arg(yvt ), can be determined from

the equation tan(φvt ) = yvt,Im/y
v
t,Re, and

(
φvt | yvt,Mag

)
follows Tikhonov distribution

(O’Donoughue & Moura, 2012).

The Ricean distribution is approximately normal only in the case of large

SNRs (Rowe & Logan, 2004; Gudbjartsson & Patz, 1995; Rice, 1944). However, the

SNRs may not be large enough in practice for this approximate normality to hold. This

is increasingly true in cases with higher voxel resolutions and for voxels with a large

degree of signal drop-out, i.e., those for which the signal is not available or has small

SNR, such as voxels located near air/tissue boundaries. In particular, Adrian et al.

(2013) show that with magnitude-only models, tests derived using Ricean modeling

are superior to Gaussian-based activation tests for SNRs below 0.6. Rowe (2005b) also

shows that Gaussian based activation parameter estimates were biased for SNRs under

10.

Complex-valued modeling has been widely used in several applied areas al-

lowing full utilization of real and imaginary, or equivalently magnitude and phase,

information in certain signals and images, providing a general framework for the anal-

ysis of several classes of processes (see, e.g., Mandic & Goh, 2009). The incorporation of

phase information has proven key in communications and imaging (Oppenheim & Lim,
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1981), as complex-valued modeling simultaneously handles the intensity and direction

when dealing with radar, sonar and wind data.

A number of tools for CV-fMRI data analysis have been proposed in the

literature, including non model-based exploratory ICA (Calhoun et al., 2002), as well

as direct modeling of the complex activation data (Lai & Glover, 1997; Rowe & Logan,

2004, 2005; Rowe, 2005a; Lee et al., 2007; Rowe, 2009; Lee et al., 2009). Approaches

such as those in Rowe & Logan (2004, 2005); Rowe (2005a) and Rowe (2005b) model

the phase to directly estimate the phase angle using a polar coordinates representation,

while the methods in Lee et al. (2007) and Lee et al. (2009) are based on Cartesian

representations. More recently, complex-valued models with temporal correlations

(including autoregressive structures) have also been developed (Adrian et al., 2017;

Kociuba & Rowe, 2016). In particular, Rowe (2005a) specifies the following structure

for the complex-valued image measurement at time t and voxel v, yvt = yvt,Re+ iyvt,Im ∈

C, as

yvt = ρvt cos (φvt ) + iρvt sin (φvt ) + ηvt , (3.6)

where ρvt = βv0 + βv1x1,t + . . . + βvp1xp1,t is the magnitude of yvt with p1 magnitude

regressors, φvt = αv0 + αv1u1,t + . . .+ αvp2up2,t is the phase of yvt with p2 regressors, and

i =
√
−1. All the regression coefficients βv0 , . . . , β

v
p1 and αv0, . . . , α

v
p2 are real-valued.

The noise term ηvt is also assumed to be complex-valued, i.e., ηvt = ηvt,Re + iηvt,Im.

When αv0 6= 0 and αvj = 0 for all j = 1, . . . , p2 we have the Rowe-Logan constant phase

model. Note that when no trends are included, the magnitude and phase regressors
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could be chosen to be identical to the expected BOLD responses associated with the p

experimental tasks, i.e., p1 = p2 = p and xj,t = uj,t for all j = 1, . . . , p. Rowe (2005a)

identifies active voxels using a generalized likelihood ratio test.

Lee et al. (2007) and Lee et al. (2009) propose a method based on a Cartesian

model representation which has the following matrix form

yv = Xγv + ηv, (3.7)

with yv = (yv1 , . . . , y
v
T )′ , γv = γvRe + iγvIm, γ

v
Re =

(
γvRe,1, . . . , γ

v
Re,q

)′
,

γvIm =
(
γvIm,1, . . . , γ

v
Im,q

)′
, with q = p+ 1, X = (x′1, . . . ,x

′
T )′, where xt =

(1, x1,t, . . . , xp,t)
′, t = 1, . . . , T, and complex-valued noise vector ηv = (ηv1 , . . . , η

v
T ) . Lee

et al. (2007) combines this general linear model representation in Cartesian coordinates

with a Hotelling’s T 2-test to detect active sites. Model (3.7) is equivalent to the Rowe-

Logan constant phase complex-valued model (Rowe & Logan, 2004) if p1 = p, γvRe =(
βv0 , . . . , β

v
p

)′
cos (αv0) and γvIm =

(
βv0 , . . . , β

v
p

)′
sin (αv0) . Model (3.7) is also equivalent

to the complex-valued magnitude and phase activation model in Rowe & Logan (2005)

when there is only a single regressor in both, magnitude and phase, corresponding to

a 0/1 vector representing a boxcar block design.

The references cited above show that modeling the complete CV-fMRI data

leads to superior power in detecting active voxels when compared to magnitude-only

approaches, especially for situations in which the SNRs are relatively small. However,

in spite of their advantages, currently available methods for CV-fMRI data rely on

mechanisms that control some notion of error to correct for multiple testing, such
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as Bonferroni corrections, and therefore involve two-step procedures. The first step

provides estimates of the potentially active voxels according to some model, while

the second step involves using one of the standard methods to correct for multiple

testing. Furthermore, available methods for CV-fMRI data assume that the voxels are

independent and do not offer a principled framework for parameter learning through

borrowing information across voxels.

In the next chapters we propose a class of complex-valued Bayesian models

for detecting activation at the voxel level. Our models are based on Bayesian variable

selection methods that do not require additional adjustments for multiple testing. All

the models utilize the real and imaginary information provided by the CV-fMRI data to

obtain a more accurate detection of active voxels. Before providing a description of our

statistical models and inferential tools we review some variable selection approaches

that are widely used in the context of analyzing neuroimaging data.

3.2 Variable selection methods

Detection of brain activation in task-related fMRI can be viewed as a variable

selection problem (Xia et al., 2009; Zhang et al., 2015) in which a voxel is activated

if and only if the corresponding regression coefficient related to the expected BOLD

contrasts in the regression model is nonzero. Tibshirani (1996) provides the variable

selection method “Lasso” (least absolute shrinkage and selection operator) that has

been prevalently used because of its computational efficiency and easy interpretation.

In an ordinary, real-valued, linear regression model of the form yi = γ0+
∑q

j=1 γjxi,j+εi,
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or y = Xγ + ε in matrix form, the lasso estimate coefficient is

γ̂lasso = argmin
γ

‖y−Xγ‖2 + λ

q∑
j=1

|γj |

 ,

where q is the number of tasks and λ ≥ 0 is a penalty or complexity parameter that

controls the amount of shrinkage. The larger value of λ, the more coefficients shrink

to zero. Lasso forces the coefficients to be equally penalized, leading to asymptotic

inconsistency for variable selection under some scenarios. To solve this problem, Zou

(2006) proposed a new version of the lasso, called the adaptive lasso, where adaptive

weights λj are used for penalizing different coefficients in the penalty. That is,

γ̂adaptive = argmin
γ

‖y−Xγ‖2 +

q∑
j=1

λj |γj |

 .

Adaptive lasso is shown to have better asymptotic results than lasso, and it can be

solved by the same efficient algorithm used for solving the lasso.

There are also several different kinds of approaches of Bayesian variable se-

lection methods. O’Hara & Sillanpaa (2009) classifies the approaches to variable selec-

tion into four categories: indicator model selection, stochastic search variable selection

(SSVS), adaptive shrinkage, and model space approach. In this thesis, we do variable

selection by introducing indicator variables that determine whether a voxel is activated

or not. In particular, we develop complex-valued version of SSVS, and add spatial de-

pendence on the indicators to detect activation. Therefore, here we briefly review the
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indicator model selection and SSVS approaches. For details about adaptive shrinkage

methods, including the Bayesian lasso, and model space approaches that use reversible

jump MCMC, please see the discussion in O’Hara & Sillanpaa (2009).

Let ψj be an auxiliary indicator variable where ψj = 1 indicates presence of

covariate j in a linear regression model yi = γ0 +
∑q

j=1 γjxi,j + εi, Kuo & Mallick

(1998) consider the expanded linear regression model

yi = γ0 +

q∑
j=1

ψjγjxi,j + εi,

and assume that indicators ψj and covariate effects γj are independent a priori, i.e.,

π (ψj , γj) = π (ψj)π (γj). The posterior distribution of the indicators is obtained by

means of the MCMC sample. The model does not require tuning parameters, but

when ψj = 0, the updated value of γj is sampled from its prior distribution, which

may lead to poor mixing if the prior distribution is too vague, as the sampled γj may

not fall in the region in which γj has high posterior density value when ψj = 1.

SSVS (George & McCulloch, 1993, 1997) has been widely used in many fields

and extended to various models such as generalized linear models, time series and

factor analysis. SSVS assumes that π (ψj , γj) = π (γj | ψj)π (ψj), and that the spike

part is a narrow continuous distribution centered at zero. Specifically,

γj | ψj ∼ (1− ψj)N
(
0, τ2

)
+ ψjN

(
0, cτ2

)
,

where c > 1 is set large so that if ψj = 1, a non-zero estimate of γj should be
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included in the model. In general, we can write the spike-and-slab prior with two

tuning parameters v0 and v1 as

γj | ψj ∼ (1− ψj)N (0, v0) + ψjN (0, v1) ,

where the hyperparameters v0 and v1 are set small and large respectively. Continuity on

both the spike and slab part makes the Gibbs sampler feasible and easy to implement.

George & McCulloch (1997) provides a “conjugate” version in which the error

variance in the regression model is in the spike-and-slab mixture:

γj | ψj ∼ (1− ψj)N
(
0, v0σ

2
)

+ ψjN
(
0, v1σ

2
)
.

One advantage of using the conjugate prior is that γ and σ2 can be analytically in-

tegrated out from the posterior. George & McCulloch (1997) shows that the non-

conjugate prior generates iterations faster than the conjugate prior, especially when

the number of covariates is large. However, when covariates are correlated or the

multicollinearity exists, the conjugate prior is superior to the non-conjugate prior. In

addition, if v1/v0 is too large, say above 2500, the non-conjugate prior performs poorly,

having higher Monte Carlo standard errors, and very small transition probabilities for

ψj from 0 to 1 and 1 to 0.

More recently Rockova & George (2014) proposes a Expectation-Maximization

variable selection (EMVS) algorithm, a deterministic alternative to stochastic search

based on an EM algorithm, that can quickly identify promising high posterior modes.
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EMVS uses the conjugate version of the spike-and-slab normal mixture. Due to the

continuity of the spike distribution, the EM algorithm has rapidly computable closed

form expressions. For model evaluation, a point mass spike distribution is used to de-

termine which of the discovered submodels is best supported by the data. One of our

proposed algorithms, C-EMVS, uses this type of approach due to its computational

feasibility for massive fMRI data.

Detecting activation can also be viewed as a multiple comparison problem.

Müller et al. (2006) uses a decision theoretic perspective to discuss Bayesian approaches

to multiple comparison problems. In fact, posterior inference adjusts for multiplicities,

and no further adjustment is required if the model includes a positive prior probability

of non-activation for each voxel and includes a hyperparameter that defines the prior

probability mass for non-activation. Müller et al. (2004) showed that under several

loss functions that combine false negative and false discovery counts and/or rates, the

optimal decision rule δ∗v is to declare all voxels with marginal probability beyond a

threshold t as activated, i.e., δ∗v = I (Pr(ψv = 1 | y) > t), where I (·) is an indicator

function. For example, if the loss function is of the type L (δ) = cFD+FN , where FD

and FN are posterior mean of false discoveries and false negatives, respectively, then

the optimal threshold value is given by t∗ = c
c+1 . Therefore, when false discoveries and

false negatives are weighted equally, the optimal threshold is 0.5.
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3.3 Spatio-temporal modeling for fMRI data

The traditional GLM (2.1) performs fMRI data analysis in a univariate set-

ting, assuming that neighboring voxels are independent and there is no time depen-

dence. This is not reasonable since it ignores the fact that voxels tend to be activated in

clusters or groups, and measurements recorded over the time course of the experiment

may induce temporal correlation. Bayesian hierarchical models based on GLM (2.1)

are flexible in modeling temporal and spatial dependence structures of fMRI data.

To capture temporal correlation in fMRI data, one of the most common ap-

proaches is to put an autoregressive structure of order k (AR(k)) on εv, and then assign

prior distributions on the AR coefficients (Lee et al., 2014; Penny et al., 2003, 2005).

Other time dependence sources include low-frequency drift due to slow fluctuations

in the scanner hardware, and physiological noise due to subject motion, heart beat

and respiratory rate. To account for these sources, researchers often perform high-pass

filtering by adding covariates such as a level shift or a deterministic trend, for example,

a pth order polynomial function (Lindquist, 2008).

More sophisticated Bayesian models, including spatial and spatio-temporal

approaches, have been developed for magnitude-only fMRI data. Some approaches

induce spatial dependency by imposing a spatial prior on the regression coefficients.

For example, Gossl et al. (2001) and Quiros et al. (2010) used Gaussian Markov random

field (GMRF) priors on the jth regression coefficient vector γ(j) =
(
γ1j , . . . , γ

V
j

)
, and

Penny et al. (2005) considered a spatial prior on the regression coefficient vector using

the Laplacian operator. Other spatial priors on the regression coefficients include the
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diffusion-based spatial priors of Harrison et al. (2008), the conditional autoregressive

(CAR) priors of Harrison & Green (2010) and the sparse spatial basis function (SSBF)

priors of Flandin & Penny (2007).

Alternative spatial models view the detection activation as a variable selec-

tion problem and impose spatial dependence on the binary indicator variables ψv in the

spike-and-slab mixture priors. Kalus et al. (2014) specified a spatial probit model such

that Pr (ψv = 1) = Φ (αv), where Φ is the standard normal cdf and α = (α1, . . . , αV )

follows a GMRF. Smith & Fahrmeir (2007) propose an Ising prior to smooth spatially

the indicator variables representing whether or not the voxel is activated. Bowman

et al. (2008) consider a two-stage Bayesian hierarchical model with temporal correla-

tions at the first stage and spatial correlations at the second stage. In Lee et al. (2014),

temporal dependence is characterized via autoregressive models, Zellner’s g-priors are

assumed for the regression coefficients, and a binary spatial Ising prior is used to spec-

ify anatomical information and spatial interaction between voxels. In Zhang et al.

(2014) a general error structure is used to capture general dependence, and a Markov

random field prior is used to detect activations in a nonparametric way.

Notice that all the approaches referenced above are for magnitude-only data.

To analyze CV-fMRI data, in this thesis, we develop complex-valued Bayesian variable

selection models that utilize both real and imaginary signals for detecting activation.

In order to keep the model structure as simple and parsimonious as possible, we avoid

introducing spatial dependence on the complex-valued regression coefficients. Instead,

we follow the approach of inducing a spatial structure through the binary indicator
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variables. Note that in this way we also jointly use the information provided by the

real and imaginary data to determine activation. Furthermore, in Chapter 5, we model

spatial dependence through kernel convolution which leads to dimension reduction and

hence computational efficiency. Moreover, unlike MRF models, our proposed spatial

model does not require a specification of the voxel neighboring structure before the

analysis.
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Chapter 4

A Bayesian variable selection

approach yields improved

activation detection from

CV-fMRI

The focus of this chapter is the development of a Bayesian variable selec-

tion approach that efficiently yields improved activation detection from CV-fMRI. As

mentioned above, we develop a model that makes use of the complete magnitude

and phase information provided by the CV-fMRI data. However, unlike previous ap-

proaches (Rowe & Logan, 2004, 2005; Rowe, 2005a,b, 2009; Lee et al., 2007) discussed

in Chapter 2, we utilize a fully Bayesian framework for identifying active voxels via

variable selection in the complex-valued domain.
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We follow the Cartesian coordinates approach of Lee et al. (2007) given in

(3.7) and further assume independent and identically distributed complex-normal error

vectors, i.e.,

yv = Xγv + ηv, ηv ∼ CNT (0,Γv,Cv) , (4.1)

with CNL (µ,Γ,C) denoting a complex normal distribution of dimension L with mean

µ, complex-valued, Hermitian and non-negative definite covariance matrix Γ, and

complex-valued symmetric relation matrix C. As shown below, the linear structure

in this representation is computationally relevant, as it leads to fast Bayesian pos-

terior estimation of active sites. Note also that any complex-valued normal distri-

bution of dimension L has a real-valued normal representation of dimension 2L (see

Chapter 3 and Wooding, 1956; van den Bos, 1995; Picinbono, 1996). Thus, letting

Σv
Re,Re = 1

2Re (Γv + Cv) , Σv
Im,Im = 1

2Re (Γv −Cv) , Σv
Re,Im = 1

2Im (−Γv + Cv) , and

Σv
Im,Re = 1

2Im (Γv + Cv) , model (4.1) also has a real-valued representation as

yvr = Xrγvr + ηvr , (4.2)

with yvr =
(
(yvRe)

′ , (yvIm)′
)′

, Xr = blockdiag (X,X), γvr =
(
(γvRe)

′ , (γvIm)′
)′
, and

ηvr =
(
(ηvRe)

′ , (ηvIm)′
)′
, where ηvr ∼ N2T (0,Σv) with

Σv =

 Σv
Re,Re Σv

Re,Im

Σv
Im,Re Σv

Im,Im

 .
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The simplest possible structure for ηv is that obtained by taking ηv ∼ CNT

(
0, 2σ2vIT ,0

)
or equivalently, setting Σv = σ2vI2T in the real-valued Gaussian representation. This

implies that there is no correlation within the real components and within the imag-

inary components of ηv, and also that there is no correlation between the real and

imaginary components of ηv. These assumptions can be relaxed to include correlations

within the real and imaginary components in order to capture temporal structure (as

illustrated in some of the analysis of synthetic and human CV-fMRI data presented in

Sections 4.3 and 4.4), or correlations between the real and imaginary components for

more structured noise.

Below we describe the priors and the corresponding posterior inference for

the simplest noise structure, focusing on complex-valued priors for γv that lead to

posterior inference of activation in CV-fMRI at the voxel-specific level.

4.1 Priors

In the absence of any trends and intercepts, and without loss of generality,

i.e., for the case in which X in (4.1) contains only the expected BOLD signals for each

of p stimuli/tasks with no baselines or trends, activation can be viewed as a variable

selection problem (Xia et al., 2009; Zhang et al., 2015). In other words, if γvj =

γvRe,j + iγvIm,j 6= 0 for voxel v and task j, such voxel is identified as active under task j.

Note that complex-valued priors must be considered for γvj . Here we develop a complex-

valued analogue of the Bayesian variable selection methods of George & McCulloch

(1993, 1997) and Rockova & George (2014). If trends and/or intercepts are needed
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they can easily be included in the model along with priors on their corresponding

parameters and integrated out, as done in the applications illustrated in Sections 4.3

and 4.4. Thus, we focus the discussion below to the case in which X only consists of

the expected BOLD signals associated to each of the p experimental stimuli/tasks.

Our proposed complex-valued spike-and-slab priors for γvj extend the widely

used real-valued spike-and-slab priors by considering

γvj
∣∣ ψvj ∼ (1− ψvj ) g0 (γvj )+ ψvj g

(
γvj
)
,

with g0 (·) and g (·) complex-valued distributions with mean zero, and ψvj ∈ {0, 1},

where ψvj = 1 indicates that voxel v is active during task j. Therefore, this prior

allows us to determine if a voxel is active by jointly considering the real and imaginary

components of γvj . In general, we consider priors with g0

(
γvj

)
= CN1

(
0, σ2vω0, σ

2
vλ0
)
,

and g
(
γvj

)
= CN1

(
0, σ2vω1, σ

2
vλ1
)
, and their corresponding vectorial representation

given by

γv | ψv ∼ CNp

(
0, σ2vΩv, σ

2
vΛv

)
, (4.3)

with Ωv = diag
(
(1− ψv1)ω0 + ψv1ω1, . . . ,

(
1− ψvp

)
ω0 + ψvpω1

)
,

Λv = diag
(
(1− ψv1)λ0 + ψv1λ1, . . . ,

(
1− ψvp

)
λ0 + ψvpλ1

)
and ψv =

[
ψv1 , . . . , ψ

v
p

]
.

In the data analyses presented below we take g0

(
γvj

)
= CN1

(
0, 2v0σ

2
v , 0
)

and g
(
γvj

)
= CN1

(
0, 2v1σ

2
v , 0
)
, with parameters 0 < v0 < v1, and with smaller values

of v0 favoring the detection of even weakly activated voxels. As shown in Section 4.2,
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this prior structure leads to a closed form complex-valued EMVS algorithm, referred

to as C-EMVS here, that allows for fast identification of active voxels.

We complete the prior specification taking σ2v ∼ IG (aσ, bσ) and

ψvj ∼ Bernoulli (θj) with θj ∼ Beta (aθ, bθ) , for all j = 1, . . . , p and aσ, bσ, aθ, bθ

constants. In particular, as discussed in the examples, we consider aσ = bσ = 1/2

and values of v0, v1, aθ and bθ selected following guidelines similar to those provided in

Rockova & George (2014) and Wang et al. (2015). This prior structure relates voxels

through the common probability that the binary variables for a given task j are equal

to one, i.e., Pr
(
ψvj = 1

∣∣ θj) = θj , for all the voxels v = 1, . . . , V.

4.2 Posterior inference

We summarize the algorithms for posterior inference below. We first describe

a complex-valued EMVS algorithm, C-EMVS, that leads to fast detection of active sites

under the Bayesian model. A similar EMVS algorithm can be derived for magnitude-

only models. We then provide a Markov chain Monte Carlo (MCMC) scheme that

allows us to obtain full posterior inference. The simulations and experimental data

analyzed in Sections 4.3 and 4.4 focus on the performance of the complex-valued and

magnitude-only EMVS algorithms, as full MCMC is usually not computationally effi-

cient for the analysis of large-dimensional voxel-level fMRI and CV-fMRI.
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4.2.1 A C-EMVS algorithm for fast posterior computations

Rockova & George (2014) proposed an expectation-maximization approach

to Bayesian variable selection (EMVS) that takes advantage of the continuity of the

spike distribution to produce rapidly computable closed form expressions. Here we

develop an EMVS-based approach to posterior computation that combines the linear

and complex-valued Gaussian structure in (4.1), the complex-valued spike-and-slab

prior for γv in (4.3), and the priors for the remaining model parameters described

above. More specifically, we now summarize the steps of the C-EMVS algorithm

for the simplest model specification considered in the simulation studies presented in

Section 4.3 (algorithms for general models are detailed in Appendix A). This model is

given by

yv = Xγv + ηv, ηv ∼ CNT

(
0, 2σ2vI,0

)
,

γvj | ψvj ∼
(
1− ψvj

)
CN1

(
0, 2v0σ

2
v , 0
)

+ ψvjCN1

(
0, 2v1σ

2
v , 0
)
, j = 1, . . . , p, (4.4)

σ2v ∼ IG (aσ, bσ) , ψvj | θj ∼ Bernoulli (θj) , θj ∼ Beta (aθ, bθ) .

Note that, for each task j, model (4.4) relates voxels through the common probability

that the binary variables that specify the activation at the voxel-level for such task

are equal to one, i.e., Pr
(
ψvj = 1

∣∣ θj) = θj for all voxels v = 1, . . . , V and each task

j = 1, . . . , p. Letting γ =
[
γ1, . . . ,γV

]
, ψ =

[
ψ1, . . . ,ψV

]
, with ψv =

(
ψv1 , . . . , ψ

v
p

)′
,

θ = (θ1, . . . , θp)
′, σ2 =

[
σ21, . . . , σ

2
V

]
, and y =

[
y1, . . . ,yV

]
, we find that the full
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posterior density is given by

π
(
γ,ψ,θ,σ2 | y

)
∝

V∏
v=1

[
f
(
yv | γv, σ2v

)
π
(
γv | ψv, σ2v

)
π (ψv | θ)π

(
σ2v
)]
π (θ)

∝
V∏
v=1

[
CNT

(
yv | Xγv, 2σ2vI,0

)
CNp

(
γv | 0, σ2vΩv,0

)]
(4.5)

×
V∏
v=1

π (σ2v) p∏
j=1

Bernoulli
(
ψvj | θj

) p∏
j=1

Beta (θj | aθ, bθ) ,

where Ωv = 2× diag
(
(1− ψv1) v0 + ψv1v1, . . . ,

(
1− ψvp

)
v0 + ψvpv1

)
.

An EM algorithm for maximizing the full posterior π
(
γ,θ,σ2 | y

)
for this

complex-valued model, referred to as C-EMVS, is derived by iteratively maximizing

the objective function

Q
(
γ,θ,σ2 | γ(l),θ(l),σ2,(l)

)
= Eψ|·

[
log π

(
γ,ψ,θ,σ2 | y

) ∣∣∣γ(l),θ(l),σ2,(l),y
]
,

at iteration l + 1, where Eψ|· (·) = E
ψ|γ(l),θ(l)

,σ2,(l),y
(·) . Note that at iteration l + 1,

the function Q (·) uses the maxima found at iteration l. Given the form of the log

posterior in this case we can write

Q
(
γ,θ,σ2 | γ(l),θ(l),σ2,(l)

)
= Q1

(
γ,σ2 | γ(l),θ(l),σ2,(l)

)
+Q2

(
θ | γ(l),θ(l),σ2,(l)

)
+KQ,

(4.6)

with Q1

(
γ,σ2 | γ(l),θ(l),σ2,(l)

)
=
∑V

v=1Q
v
1

(
γv, σ2v | γv,(l),θ(l), σ

2,(l)
v

)
and KQ a con-

stant. For the E-step, we compute the conditional expectations Eψv |·[ψ
v
j ] and

Eψv |·

[
1

(1−ψvj )v0+ψvj v1

]
. The M-step solves for

(
γ(l+1),σ2,(l+1)

)
and θ(l+1) by maximiz-

ing Qv1 for v = 1, . . . , V and Q2 in (4.6). The complete details for this C-EMVS
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algorithm, as well as those for algorithms under more general complex-valued priors

(e.g., non-circular priors) can be found in Appendix A.

The C-EMVS algorithm is iterated until ‖γ(l)−γ(l−1)‖ < ε, ‖θ(l)−θ(l−1)‖ < ε

and ‖σ2,(l)−σ2,(l−1)‖ < ε, with ε small. In the analyses of simulated and human exper-

imental data presented in Sections 4.3 and 4.4 we use ε = 10−3. We assess convergence

by monitoring that the log-posterior distribution increases at each step of the algo-

rithm. Once the EM algorithm converges, we obtain estimated posterior modes γ̂, σ̂2,

and θ̂. Then, for each voxel we compute Pr
(
ψvj = 1

∣∣ γ̂, θ̂, σ̂2,y
)

, and we label a given

voxel v active for task j if Pr
(
ψvj = 1

∣∣ γ̂, θ̂, σ̂2,y
)
> δ, where δ is a fixed threshold

value. This is equivalent to saying that a voxel is active if its corresponding strength

is greater than some real-valued threshold γ∗,vj , i.e., |γ̂vj | > γ∗,vj . A common choice of

δ is 0.5, which leads to a local version of the median probability model of Barbieri

& Berger (2004). Some researchers in the fMRI community suggest using δ = 0.8722

for magnitude-only models. Smith & Fahrmeir (2007) gives a clear description of the

motivation for this threshold value in the context of a Bayesian spatial model. Given

that our models do not explicitly incorporate a spatial structure we use δ = 0.5 in the

following analyses. A further alternative that could be considered within a Bayesian

decision theoretic framework is to choose the threshold by minimizing a well defined

loss function, or via Bayesian false discovery rates (see, e.g., Müller et al., 2006 and

Sun et al., 2015).

Finally note that, if desired, the algorithm can also be implemented for the
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real-valued version of the model in (4.4) given by

 yvRe

yvIm

 = Xrγvr + ηvr , ηvr ∼ N2T

(
0, σ2vI2T

)
,

γvr =

 γvRe

γvIm

 ∼ N2p

0, σ2v

ΣRe,Re (ψv) 0

0 ΣIm,Im (ψv)


 ,

and the same priors on σ2v , ψ
v
j and θj specified above.

4.2.2 Posterior inference via Markov chain Monte Carlo

Full posterior inference can be obtained via MCMC. Similar to the C-EMVS

case described above, we generalize the Stochastic Search Variable Selection algo-

rithm (SSVS) proposed by George & McCulloch (1993) to the complex-valued do-

main. Suppose we have a simplified complex-valued model such as (4.4) except that

we now use a “non-conjugate” version of the spike-and-slab prior on γv, i.e., γvj
∣∣

ψvj ∼
(

1− ψvj
)
CN1 (0, 2v0, 0) + ψvjCN1 (0, 2v1, 0) , j = 1, . . . , p. The general vec-

torized form of this prior can be written as γv | ψv ∼ CNp (0,Ωv,0) , with Ωv =

2 × diag
[
(1− ψv1) v0 + ψv1v1, . . . ,

(
1− ψvp

)
v0 + ψvpv1

]
. Then, the posterior full condi-

tional distributions for a Gibbs sampling scheme can be derived as follows:

• For each v, v = 1, . . . , V , γv | yv, σ2v ,ψv ∼ CNp

(
µvγ ,Ω

v
pos,0

)
, with

Ωv
pos =

(
2−1σ−2v X′X + Ω−1v

)−1, and µvγ = Ωv
posX

′yv/σ2v .

• σ2v | yv,γv ∼ IG (av,posσ , bv,posσ ) , with av,posσ = T+aσ and bv,posσ = ‖yv−Xγv‖2/2+

bσ.
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• Pr
(
ψvj = 1

∣∣ yv,γv, σ2, θ,ψv−j

)
=

cvj
cvj+e

v
j
, with

cvj = π
(
γvj
∣∣ yv, ψvj = 1,ψv−j

)
×θj and evj = π

(
γvj
∣∣ yv, ψvj = 0,ψv−j

)
×(1− θj) .

Here π
(
γvj | yv, ψvj = 1,ψv−j

)
and π

(
γvj | yv, ψvj = 0,ψv−j

)
are complex-normal

densities (see Appendix A for details).

• For each j = 1, . . . , p, θj | y,ψv ∼ Beta
(∑V

v=1 ψ
v
j + aθ, V −

∑V
v=1 ψ

v
j + bθ

)
.

In order to decide whether a voxel v is active or not after MCMC convergence is

achieved, we look at the posterior probability of ψvj = 1, for each task-related BOLD

signal j = 1, . . . , p. A detailed derivation of general complex-valued SSVS algorithm

and the corresponding full conditional distributions above can be found in Appendix

A.

4.3 Simulation studies

We show the performance of the proposed complex-valued variable selection

methods for detecting activation in two simulation studies. The first study compares

the C-EMVS algorithm to computationally fast alternatives that are often used in

practice, such as lasso and adaptive lasso (Tibshirani, 1996; Zou, 2006). We also

compare the results obtained by the proposed complex-valued model and priors via

the C-EMVS algorithm with those obtained using a magnitude-only Bayesian model

with the real-valued priors in Rockova & George (2014). The magnitude-only voxel

time series courses are obtained by taking the moduli of the CV-fMRI signals at each
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voxel. The second study considers a physically realistic simulated CV-fMRI dataset.

4.3.1 Simulation study I

We simulated 20 datasets consisting of 48×48 CV-fMRI slices with a constant

baseline signal and a single expected BOLD signal (i.e., p = 1) resulting from the

convolution of a stimulus indicator function and the canonical HRF. Three activation

regions were simulated using the function specifyregion in the R package neuRosim

(Welvaert et al., 2011). More specifically, for v = 1, . . . , 48 × 48, and t = 1, . . . , 200,

the time series for each voxel v were simulated as follows:

yvt,Re = (β0 + β1fvzt) cos (α0) + ηvt,Re, ηvt,Re ∼ N
(
0, σ2

)
yvt,Im = (β0 + β1fvzt) sin (α0) + ηvt,Im, ηvt,Im ∼ N

(
0, σ2

) (4.7)

where fv is the BOLD signal strength or intensity rate of voxel v, with fv = 0 if

voxel v is non-active and fv 6= 0 if voxel v is in an active region. The values of fv for

active voxels were specified using the argument fading in the function specifyregion

in neurosim. Here, the fading of the expected BOLD signal decays exponentially

depending on the distance of the active voxel v with coordinates (i, j), to the center

of the active region with coordinates (i′, j′), i.e., the fading for voxel v is given by

fv (i, j) =
1

4

{
2 · exp

[
−
((
i− i′

)2
+ (j − j′)2

)
· %
]

+ 2
}
,

where % is the decay rate in [0, 1] with 0 and 1 corresponding, respectively, to no decay

and to the strongest decay. zt in (4.7) is the BOLD signal given by the convolution
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of the canonical HRF, denoted as ht, and the stimulus indicator function st, i.e.,

zt = ht ⊗ st.

We used α0 = π/4 and different values of β0 and β1 to examine the per-

formance of the proposed complex-valued models using the C-EMVS algorithm for

posterior computations. These were chosen to set specific values of the SNR and the

contrast-to-noise ratio (CNR) as defined in Rowe & Logan (2004), with SNR = β0/σ

and CNR = β1/σ. Note that active voxels have different CNRs given by CNRv =

(β1fv)/σ, with CNRv ≤ CNR for all v, as fv ∈ [0, 1]. Hence, the largest CNR for

active voxels is β1/σ, computed using no fading, while the smallest CNR is β1fmin/σ,

where fmin = min{v∈A} fv and A is the set of active voxels. The average CNR is∑
{v∈A} β1fv/|A|. In this simulation we used fmin ≈ 0.50 and

∑
{v∈A} fv/|A| ≈ 0.71,

with |A| = 103 active voxels, which accounts for 4.47% of all voxels.

The top left plot in Figure 4.1 shows the experimental block design, with

st = 1 if the stimulus is on and st = 0 otherwise. It consists of five epochs of 20 s on

and 20 s off with an observation interval of 1. The resulting BOLD signal zt is shown in

the bottom left plot. The right plot displays the active regions with the corresponding

fv values. The three active regions are centered at the coordinates (20, 20), (30, 30)

and (40, 10), with radius arguments 3, 2, 1, and fading arguments 0.5, 0.01, and 0.3,

respectively for each region. The bottom-right region is a square and the other two

are circles.

Four different SNRs, 0.5, 1, 5, and 10, and three different CNRs, 0.5, 1, and

1.5, were considered, resulting in 12 different SNR-CNR data types. These are num-
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Figure 4.1: Left: Block experimental design (top); expected BOLD signal obtained
from convolving the stimulus indicator signal with the canonical hemodynamic function
(bottom). Right: activation regions and fv values for active voxels.

SNR 0.5 1 5 10

CNR 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

Data Type 1 2 3 4 5 6 7 8 9 10 11 12

Table 4.1: Twelve data types and thier corresponding SNR and CNR.

bered as shown in Table 4.1. We generated 20 simulated datasets for each SNR-CNR

data type and computed classification performance measures (sensitivity, specificity,

precision and accuracy) to examine how well our algorithm and other methods perform

in the different scenarios.

Four methods are compared in this simulation study, the proposed Bayesian

complex-valued model using the C-EMVS algorithm for posterior computations, (re-

ferred to as CV in the results below), the Bayesian magnitude-only model with the

EMVS algorithm (MO), and the lasso (LA) and adaptive lasso (ALA), both for magnitude-

only data.
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The Bayesian complex-valued model used here has the form

yvt = γ∗1 + γ∗,v2 xt + ηvt , ηvt ∼ CN1

(
0, 2σ2, 0

)
,

with γ∗1 a baseline parameter and γ∗,v2 the complex-valued activation parameters for

each voxel and xt = zt. For the baseline parameter we use a prior of the form π (γ∗1) ∝

1. For the activation parameters and the remaining model parameters we used the

following priors:

γ∗,v2 | ψv ∼ (1− ψv)CN1

(
0, 2v0σ

2, 0
)

+ ψvCN1

(
0, 2v1σ

2, 0
)
,

σ2 ∼ IG (1/2, 1/2) , ψv | θ ∼ Bernoulli (θ) , θ ∼ Beta (1, 1) . (4.8)

The baseline parameter was integrated out before proceeding with the C-EMVS or

MCMC algorithms for posterior inference and detection of active sites, so we used the

algorithms outlined in Section 4.2 and detailed in Appendix A.

We also consider a Bayesian model for the magnitude-only data. The magnitude-

only time courses are obtained as yvt,Mag =

√(
yvt,Re

)2
+
(
yvt,Im

)2
. The MO model used

to analyze these data is essentially the same as the CV model used for the complex-

valued data, except that the linear model is now real-valued and the priors on the
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regression coefficients are real-valued Gaussian spike-and-slab priors. This is

yvt,Mag = γ∗Mag,1 + γ∗,vMag,2xt + ηvt , ηvt ∼ N
(
0, σ2

)
,

γ∗,vMag,2 | ψ
v
Mag ∼

(
1− ψvMag

)
N1

(
0, v0σ

2
)

+ ψvMagN1

(
0, v1σ

2
)
,

σ2 ∼ IG (1/2, 1/2) , ψvMag | θ ∼ Bernoulli (θ) , θ ∼ Beta (1, 1) ,

and π
(
γ∗Mag,1

)
∝ 1.

The tuning parameters in the Bayesian CV and MO models above, v0 and

v1, are chosen as suggested in Rockova & George (2014) and Wang et al. (2015). More

specifically, we fix v1, taking v1 = 1 and choose the optimal v0 in each case, denoted as

vCV0 and vMO
0 , for the CV and MO models respectively, by maximizing the marginal

posterior π0 (ψ | y) that evaluates ψ according to the submodel that contains only

those variables for which ψvj = 1. This marginal can be derived in closed form up to

a normalizing constant. From our experience with the real and simulated datasets

analyzed here, the optimal v0 takes values around 1/
√

100Tp and usually lies in the

interval
(
1/
√

1000Tp, 1/
√

10Tp
)
, where p is the number of tasks. In this simulation

we only have one task so p = 1.

Finally, we also applied the lasso (LA) and adaptive lasso (ALA) methods

(Tibshirani, 1996; Zou, 2006) to the magnitude-only data. Both LA and ALA use

a regularization parameter and ALA uses additional weights to allow for different

penalizations in the regression coefficients (the γ∗,vMag,2 parameters in our case). The

regularization parameter was chosen using a five fold cross validation approach and the

weights in the ALA were set to 1/|γ̂∗,vMag,2|, where γ̂∗,vMag,2 is the ordinary least square
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estimator of γ∗,vMag,2. LA and ALA were implemented using the R package glmnet

(Friedman et al., 2010).

The resulting average performance measures over the 20 simulated datasets

for the four different methods are summarized in Figure 4.2. Note that this simulation

contains 2201 non-active voxels out of a total 2304 voxels, so any model can achieve

95.53% accuracy by simply classifying all voxels as non-active. Hence the accuracy

subfigure is plotted from 0.95 to 1 for clear comparison. Similarly, the specificity is

plotted from 0.997 to 1.

Figure 4.2: Sensitivity (top-left), specificity (top-right), precision (bottom-left) and
accuracy (bottom-right) for four models: complex-valued EM (CV; blue, solid),
magnitude-only EM (MO; red, dash), Lasso (LA; brown, dotted), and Adaptive Lasso
(ALA; green, dash-dotted).

First, we see that both Bayesian variable selection approaches, the one for
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the CV-fMRI and the one for magnitude-only data (MO), dominate the traditional

lasso (LA) and adaptive lasso (ALA) for magnitude-only data in terms of sensitivity

(power), precision and accuracy. The Bayesian approaches are able to eliminate most

of the false positives by borrowing strength across voxels via the common probability

of activation parameter θ. The Bayesian CV and MO methods are comparable to

lasso and adaptive lasso in terms of specificity, while the first provide a more complete

inferential analysis. The main advantage of the Bayesian CV model with respect to

the Bayesian MO model is that the CV model significantly detects more true positives

than the MO when the SNR is small, which leads to higher sensitivity, precision and

accuracy. When the SNR is fairly large, using the information provided only by the

magnitude leads to good activation results in these simulated scenarios. In fact, the

MO model even has a slightly larger sensitivity than the CV model when the SNR is 5

or 10. On the other hand, the CV model leads to higher specificity and precision than

the MO model even when the SNR is 5 or 10. Moreover, the performance of the CV

model is very consistent across different SNRs. Hence, when the CV-fMRI data are

recorded under small SNRs or when researchers are uncertain about the magnitude of

the SNR in their data, the CV model stands out as the best option among the models

considered here. Given that improved MRI technology allows for improved spatial

resolution and therefore reduces SNR, we would expect that complex-valued models

will become an essential tool for detecting active sites in CV-fMRI data.

Figure 4.3 shows the true activation and strength maps for one of the 20

simulated datasets with SNR = 0.5 and CNR = 1 along with the estimated activation
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(a) Activation maps

(b) Strength maps

Figure 4.3: Activation and strength maps for a simulated dataset with SNR = 0.5
and CNR = 1. (a) Activation maps showing the true active sites, and the activation
results obtained from C-EMVS, MO-EMVS, Lasso and Adaptive Lasso. Activated
sites are colored in red. (b) Strength maps: true strength and estimated strengths
from C-EMVS, MO-EMVS, Lasso and Adaptive Lasso.

and strength maps (only for sites labeled as active) obtained from the C-EMVS (CV),

the magnitude-only EMVS (MO), and adaptive lasso (ALA). The strength maps for

lasso are not shown, as lasso detected no active sites. Both activation maps for the

complex-valued and magnitude-only EMVS display activation levels that result from

setting v1 = 1 and choosing the optimal values of v0 for each method as discussed

above. For this dataset and with our prior distribution settings, we found that the

optimal values were vCV0 = 0.0071 and vMO
0 = 0.0056. The C-EMVS approach clearly

outperforms all the other approaches: it has higher power for detecting active voxels

while simultaneously controlling for false positives, and also leads to more accurate

estimation of the activation strength (note that MO and ALA clearly underestimate

the strength). In relation to this point, we computed the mean squared errors (MSEs)
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for this simulated dataset under the C-EMVS, MO and ALA approaches for voxels that

are labeled as active for at least one of the 3 methods and found that the MSEs values

were, respectively, 0.0080, 0.0084, and 0.1162. The complex-valued model also leads to

more accurate inference for σ. Magnitude-only models underestimate σ when the SNR

is small as a consequence of the fact that the MO error distribution is truly Ricean at

low SNRs. This can lead to an increase of false positives when detecting activation (in

fact, we can see that the specificity values obtained with the complex-valued model are

generally higher than those obtained with magnitude-only model as shown in Figure

4.2). For example, for a dataset generated under a true value of σ = 0.5, when SNR

= 0.5, we found σ̂CV = 0.497, while σ̂MO = 0.346. In order to obtain better estimates

of σ with MO models we need to considerably increase the SNR. For instance, for a

simulated dataset with SNR = 10, we obtained σ̂MO = 0.495 which is closer to the

true value 0.5. These results are consistent with the findings of Rowe (2005b).

Finally, we also implemented the MCMC sampling approach outlined in Sec-

tion 4.2 and detailed in Appendix A to achieve full posterior inference for the complex-

valued models. We obtained similar results to those from the C-EMVS algorithm in

terms of the number of active sites and the strength of those sites, but we highlight

that, in addition, the MCMC approach allows us to compute uncertainty measures

related to activation strength and any other functions of the model parameters. For

instance, Figure 4.4 shows posterior mean strength maps and 95% posterior credibil-

ity strength maps for a single dataset obtained from the complex-valued model. As

seen in this figure, the posterior mean estimates for the strength are similar to those
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obtained via the C-EMVS algorithm but the MCMC-based posterior credibility maps

provide additional information about the strength maps. We see that, in general, there

is less uncertainty about activation strength for voxels located in region centered at

(30,30) than for voxels located in the region centered at (40,10). This makes sense

given the true strength maps used to generate the simulated data (see Figure 4.3). In

cases where this Gibbs sampling scheme is not computationally feasible (e.g., when

several large-dimensional images for multiple subjects need to be analyzed) one could

consider a hybrid approach that, say, uses the C-EMVS method to determine which

sites are active and then uses the Gibbs sampling scheme only on regions of the brain

that present active sites to obtain posterior uncertainty measures on strength maps

and/or activation maps for those regions only. Alternative methods based on obtain-

ing approximate inference via variational Bayes could also be considered (see, e.g., Yu

et al., 2016).

Figure 4.4: Strength maps for a simulated dataset with SNR = 0.5 and CNR = 1
obtained from a complex-valued model via MCMC. Left: 2.5% quantile map; Middle:
Posterior mean map; Right: 97.5% quantile map.
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4.3.2 Additional structure: Temporal correlation

We also analyzed synthetic CV-fMRI data simulated under (4.7) but with

errors following an autoregressive structure of order one, i.e., ηvt,Re = ϕηvt−1,Re + ζvt,Re,

with ζvt,Re independent Gaussian for all t, ζvt,Re ∼ N
(
0, σ2

)
, and ηvt,Im = ϕηvt−1,Im +

ζvt,Im, with ζvt,Im also independent Gaussian for all t, ζvt,Im ∼ N
(
0, σ2

)
and ϕ ∈ [0, 1)

the AR coefficient. We considered values of ϕ ranging from 0.1 to 0.9, and the same 12

SNR-CNR scenarios described in the previous simulation, with σ2 = 0.25. We analyzed

these data using two versions of the model yvt = γ∗1 + γ∗,v2 xt + ηvt : one version with

ηvt i.i.d. complex normal, and another version with ηvt following a complex-valued

AR(1) structure in ηvt = ηvt,Re + iηvt,Im as described above. Figure 4.5 displays the

sensitivity, specificity, precision and accuracy for the two versions of the CV model

(independent and autoregressive errors) and 2 types of data (AR errors with ϕ = 0.5

and ϕ = 0.9). Overall we find that the larger the value of ϕ the harder it is to detect

active sites, particularly for small SNR and CNR. This makes sense, as AR(1) errors

with ϕ close to 1 may add a temporal structure that locally resembles a linear trend

and can easily hide/mask the temporal behavior that characterizes active sites due

to increased variability in the observed time series. We also see that while the CV

model with independent errors has higher sensitivity, it also leads to a larger number

of false positives (we only have about 77% specificity for the model with independent

errors while we obtain 100% specificity for the model with AR errors when ϕ = 0.9).

Therefore, the CV model with AR errors is overall a better option in terms of specificity,

precision and accuracy, particularly when ϕ is large.
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Figure 4.5: Sensitivity, specificity, precision, and accuracy plots for synthetic AR(1)
CV-fMRI data with AR coefficients 0.5 (top plots) and 0.9 (bottom plots). The plots
are based on results obtained from analyzing 20 datasets using models that assumed
independent errors (dotted lines) and AR(1) errors (solid lines).

4.3.3 Additional structure: HRF effect and prior sensitivity analyses

We also studied the effects of the HRF choice and the prior distributions.

Regarding the HRFs, we analyzed the simulated and human data presented in Sections

4.3 and 4.4 with 3 different classes of HRF functions, namely, canonical, gamma and

boxcar with different choices for the parameters that define each particular class. For a

given HRF we can select the optimal v0 and then choose the HRF and corresponding v0

that leads to the smallest mean squared error (MSE) for a particular dataset. Overall

we found that the MSEs for the optimal HRFs within each class were comparable.

Furthermore, the results in terms of the number and locations of the sites labeled as

active were also similar across the optimal HRFs within each class.

We studied the sensitivity of our posterior results with respect to the prior
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distributions. In particular, as mentioned above, we generally assume θ ∼ Beta (1, 1) .

In cases where a sparser structure is desired a priori, i.e., when it makes sense biologi-

cally to assume that the number of active sites is just a very small percentage of the

total number of sites, priors of the form θ ∼ Beta (1, b) with b large can be used. In

this simulation study we found that the activation results were essentially the same

for any prior with b ≤ 1000. Priors with values of b > 1000 lead to sparser results

(i.e., less active sites) in the simulated data. For the human data presented in Section

4.4 we found that we are able to detect similar numbers and locations of active sites

for priors with values of b ∈ [1, 100000]. Note that choosing b = 1000 leads to a fairly

informative prior, with about 0.09% of active sites expected a priori and rarely above

0.4% of active sites expected a priori.

Finally, we assessed the effect of using non-circular complex-normal priors

on γv, i.e., priors of the form γv | ψv ∼ CNp

(
0, σ2vΩv, σ

2
vΛv

)
, with Λv 6= 0, so

that there is a non-zero correlation between the real and imaginary components of

γv. As expected, allowing for a correlation structure between the real and imaginary

components of γv leads to improved results when such underlying structure is present

in the data, i.e., having a more flexible prior that accounts for this correlation leads

to higher power for detecting activation and reduces the number of false positives. On

the other hand, such priors also lead to models that are more computationally costly

and may potentially lead to biases in the posterior results. Therefore, we recommend

the use of non-circular priors only when there is a strong indication that there is a

significant correlation between the real and complex components of γv, and that such
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correlation structure is similar for active and non-active voxels. Alternative priors will

be developed and investigated in the future but are out of the scope of this work. We

now illustrate the use of non-circular priors in the analysis of simulated a dataset with

high correlation among the real and imaginary components for both types of voxels,

active and non-active. The data was simulated following

yvt,Re =
(
β0 + βv1,Rezt

)
cos (α0) + ηvt,Re, ηvt,Re ∼ N

(
0, σ2

)
,

yvt,Im =
(
β0 + βv1,Imzt

)
sin (α0) + ηvt,Im, ηvt,Im ∼ N

(
0, σ2

)
,

with α0 = π/4, σ2 = 0.1, SNR = 0.4, β0 = 0.8, and the same zt used in the previous

simulation study. In addition, the parameters βv1,Re and βv1,Im were obtained from

complex-normal distributions as follows. For active voxels we sampled βv1,Re + iβv1,Im

from a complex non-circular normal with mean 0.7 and covariance and relation values

that lead to a correlation of 0.9 between βv1,Re and βv1,Im. For non-active voxels we

sampled βv1,Re+iβv1,Im from a complex non-circular normal with mean 0 and covariance

and relation values that lead to a correlation of 0.9 between βv1,Re and βv1,Im. Note that

ηvt,Re and ηvt,Im are assumed independent for all the voxels and also across time. The

location of the active voxels was determined using the same activation map used in

the previous simulation and displayed in the left plot of Figure 4.3 (a).

Figure 4.6 shows the results obtained from a model that uses a non-circular

prior on γv that captures the induced correlation structure in these coefficients (left

plot) and also shows the results obtained using a circular prior that assumes no cor-

relation structure. Clearly, the model with a non-circular prior leads to much better
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Figure 4.6: Left: Activation results obtained from a model with a non-circular prior.
Right: Activation results obtained with a circular prior. The data were simulated
so that the real and complex components of the activation coefficients are highly
correlated.

results as it adequately identifies the active regions and leads to a much smaller num-

ber of false positives than those obtained under the model with the circular prior. The

model with the non-circular prior also leads to better results in terms of estimation of

activation strength and reduced MSE.

4.3.4 Simulation study II: Physically realistic simulated data

A more realistic simulated dataset was generated using a discrete version of

the magnetic resonance (MR) signal equation after steady state magnetization (Kara-

man et al., 2015). This equation is given by

s(kx, ky | t) =

∫ ∞
−∞

∫ ∞
−∞
ρ(x, y)e−t/T

∗
2 (x,y)

(
1− e−TR/T1(x,y)

)
eiΓH∆B(x,y)te−i2π(kxx+kyy)dxdy,

(4.9)

where s(kx, ky | t) is the k-space location at intra slice time t, ρ(x, y) is the proton spin

density (PSD), T ∗2 (x, y) is the transverse relaxation rate (TRR), T1(x, y) is the longi-

tudinal relaxation rate (LRR), ∆B(x, y) is the magnetic field inhomogeneity (MFI),
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and ΓH is the proton gyromagnetic ratio (Haacke et al., 1999). The k-space points in

(4.9) are defined by the temporal integral of the magnetic field gradients Gx(·) and

Gy(·) :

kx =
ΓH
2π

∫ t

0
Gx(t′)dt′, and ky =

ΓH
2π

∫ t

0
Gy(t

′)dt′.

As input to this data generation process, 3.0 T tissue specific physical parameters

(Peters et al., 2006) for the brain slice as given in Table 4.2 and displayed in Figure 4.7

were utilized. The units of measurement for T ∗2 and T1 are ms. In generating these

data, a simplified version of (4.9) was used where the MFI ∆B(x, y) was not included.

Without the inclusion of ∆B(x, y) MFI, the k-space array after being reconstructed

yielded a real-valued image with a maximum around one. The average value in grey

matter of this image was computed, and the entire image multiplied by a magnitude

SNR SNRM × σ/GM, where σ = 1 is the standard deviation of noise added to the

simulation, SNRM = 25 is the SNR for the simulation, and GM = 0.3545 is the

average grey matter value before scaling. This scaled real-valued image was utilized

as the magnitude of the true images. In order to have nonzero mean phase, baseline

phase as shown in Figure 4.8b was added to each tissue type according to α0,OB = 0

for outside brain, α0,WM = π/12 for white matter, α0,GM = π/6 for grey matter, and

α0,CSF = π/4 for cerebrospinal fluid. The remaining imaging parameters were selected

to mirror those of an experimental dataset with field of view (FOV ) = 240 mm, time

to echo (TE) = 50 ms, flip angle (FA) = 90◦, effective echo spacing (EESP ) = 720

µs, and bandwidth (BW ) = 125 kHz.

The simulated data have slices of dimension 96×96 over T = 490 time points.

59



Grey Matter White Matter Cerebrospinal Fluid Outside Brain

PSD 0.83 0.71 1.00 10−9

T ∗2 59.7 54.6 2200 1010

T1 1331 832 4000 10−6

Table 4.2: Tissue physical parameter values.

(a) PSD, ρ(x, y) (b) TRR, T ∗2 (x, y) (c) LRR, T1(x, y) (d) Time map, t(x, y)

Figure 4.7: Slice physical parameters.

The true activation regions are the two 5 × 5 red squares shown in the left panel of

Figure 4.9. Each active voxel has different intensity and the voxels near the center of

the region have stronger intensities than the ones around the edges of the region. At

each time point, the magnitude contrast (β1) in Figure 4.8c was multiplied by a task

response waveform and then added to the magnitude baseline (β0) in Figure 4.8a to

form the image magnitude. At each time point, the phase contrast (α1) in Figure 4.8d

was multiplied by a task response waveform then added to the phase baseline (α0)

in Figure 4.8b to form the image phase. Independent zero mean and unit variance

normal noise was also added to the real and imaginary parts at each time point. In

this simulation, the maximum magnitude CNR in the center of each ROI was set

to CNRM = β1/σ = 0.5/1 and the maximum phase CNR in each ROI was set to

CNRP = α1/SNRM = (π/120)/25. The contrast values (β1 and α1) in each ROI

were then multiplied by an unnormalized Gaussian kernel with full-width-at-half-max
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(FWHM) = 4 voxels.

(a) Magnitude baseline (b) Phase baseline (c) Magnitude contrast (d) Phase contrast

Figure 4.8: True simulated image values.

We fitted a Bayesian complex-valued (CV) model given by

yvt = γ∗,v1 + γ∗,v2 t/T + γ∗,v3 xt + ηvt , ηvt ∼ CN1

(
0, 2σ2, 0

)
, (4.10)

with γ∗,v1 and γ∗,v2 baseline and trend parameters, and γ∗,v3 the activation parame-

ters for v = 1, . . . , V. Here we set xt to be the BOLD response obtained from the

convolution of the experimental block design and the canonical HRF. We used pri-

ors of the form π
(
γ∗,v1

)
∝ 1 and π

(
γ∗,v2

)
∝ 1 for the baseline and trend parame-

ters. For the activation parameters γ∗,v3 for v = 1, . . . , V we used priors of the form

γ∗,v3 | ψv ∼ (1− ψv)CN1

(
0, 2v0σ

2, 0
)

+ ψvCN1

(
0, 2v1σ

2, 0
)
, and for σ2, ψv and θ

we used the priors given in (4.8). As done in the simulation study I, we also fitted

a magnitude-only version of this model (MO). The posterior results for both models

summarized here were obtained after integrating out the baseline and trend parame-

ters. In both models, we chose the optimal values of v0 by maximizing the marginal

posterior π0 (ψ | y) as described in the previous simulation study. In this case the

optimal v0 values were found to be vMO
0 = vCV0 = 0.006.
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The posterior activation maps for each model are shown in Figure 4.9. First

note that both Bayesian models, the complex-valued model (CV) and the magnitude-

only one (MO), perform reasonably well in terms of detecting active sites, particularly

considering that the CV-fMRI data were not generated from these models and instead

followed a much more complicated physically realistic model, and also considering the

low SNR and CNR in this setting. The main advantage of the Bayesian CV and

MO models is that their linear structure allows us to obtain posterior estimates in

a computationally feasible manner that scales well with the large dimension of the

images. Regarding the comparison between the complex-valued and magnitude-only

models we see that, once again, the CV model shows a better performance than the MO

model. The MO model produces a larger number of false positives without detecting

more true positives than the CV model. Table 4.3 shows the performance measures for

both models. We also see that the mean squared errors are smaller for the CV model.

Model True Positives False Positives Precision Accuracy MSE MSE
(50 active) (9166 non-active) (all) (active)

CV 24 0 1.000 0.9972 0.0046 0.0147
MO 23 5 0.821 0.9965 0.1582 0.0915

Table 4.3: Performance measures obtained from the complex-valued EMVS and
magnitude-only EMVS in simulation study II.

In terms of the strength, the CV model also leads to more accurate results.

Figure 4.10 shows the estimated strengths obtained from the C-EMVS and MO EMVS

approaches with their corresponding optimal v0 values. The magnitude-only model

overestimates the strengths for the true active sites and does not appropriately capture
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Figure 4.9: Left: True activation map. Middle: Activation map from C-EMVS at
optimal v0. Right: Activation map from magnitude-only EMVS at optimal v0.

Figure 4.10: Left: True strength map. Middle: Strength map from C-EMVS at optimal
v0. Right: Strength map from magnitude-only EMVS at optimal v0.

the fading effect observed in the true strength map. Finally, we note that full posterior

results obtained via MCMC (not shown) were similar to those obtained through the

EM approaches for both models.

4.4 Analysis of human CV-fMRI data

We analyzed human data recorded during an fMRI experiment performed on

a single subject on a 3.0-T General Electric SIGNA LX magnetic resonance imager.

The experiment consisted of a unilateral finger-tapping task performed with a visual
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cue indicating whether to tap or rest. A block designed experiment with an initial 20

s of rest followed by 16 epochs of 15 s on and 15 s off was used. The full dataset is

composed of seven 2.5 mm thick axial slices of dimension 96 × 96. A single slice was

used for the analysis presented here. Further details about the experiment, the dataset

and previous analyses of these data are found in Karaman et al. (2014). The original

time series at each voxel had 510 TRs, however, following the approach of Karaman

et al. (2014), we discarded the first 20 observations for the analysis with the C-EMVS

approach. Activation from this finger-tapping experiment is well-studied. However,

the methods that have been used so far could have limitations in detecting activation

– as suggested by the simulation studies. Our goal here is to demonstrate that our

novel Bayesian complex-valued method is able to simultaneously produce activation

results that are consistent with previous results and additionally lead to a reduction

of spurious results, such as activation outside of the brain or in regions that are not

implicated in the finger tapping task.

Karaman et al. (2014) analyzed these data with 3 different models: a complex-

valued constant phase activation model that linearly describes the temporally varying

magnitude (we refer to this model as KBR14-CV), a similar magnitude-only activation

model (KBR14-MO), and a non-linear model referred to as DeTeCT-ING that incorpo-

rates tissue and imaging parameters T1 and T ∗2 into physical magnetization equation to

model magnetic resonance (MR) magnetization. More specifically, the DeTeCT-ING

model considers the physical nonlinear signal equation to model MR magnetization,

uses the first scans of the CV-fMRI data to estimate the parameters T1 and T ∗2 , and
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incorporates these GM (gray matter) parameter values to detect active voxels. Further

details about these models and related activation maps obtained by Karaman et al.

(2014) are included in Appendix B.

We applied the C-EMVS approach to these human CV-fMRI data using mod-

els with baseline, trend and activation parameters and considered different noise struc-

tures. As in the previous examples we used reference priors on the baseline and trend

parameters and the proposed complex-valued spike-and-slab prior on activation pa-

rameters. We also used the canonical HRF to obtain the BOLD signals for all the

voxels. Other classes of HRFs were considered, as explained in Section 4.3, resulting

in similar activation results to those presented here for the canonical HRF. Regard-

ing the noise structure, we considered independent noise and noise with a temporal

correlation modeled in terms of an autoregressive process of order one or AR(1). The

model with AR(1) noise was specified as follows,

yvt = γv,∗1 + γv,∗2 t/T + γv,∗3 xt + ηvt ,

ηvt = ϕvη
v
t−1 + ζvt , ζvt

iid∼ CN1

(
0, 2σ2v , 0

)
,

where ϕv is the AR(1) coefficient for voxel v. For this model we considered a prior

structure with π
(
γ∗,v1

)
∝ 1, π

(
γ∗,v2

)
∝ 1, γ∗,v3 | ψv ∼ (1− ψv)CN1

(
0, 2v0σ

2
v , 0
)

+

ψvCN1

(
0, 2v1σ

2
v , 0
)
, σ2v ∼ IG (1/2, 1/2) , ψv | θ ∼ Bernoulli (θ) , θ ∼ Beta (1, 1) , and

ϕv ∼ U (−1, 1) . In addition, we also considered models with common variance for all

voxels, i.e., σ2v = σ2 for all v and σ2 ∼ IG (1/2, 1/2) and models with common AR

coefficient for all voxels, i.e., ϕv = ϕ with ϕ ∼ U (−1, 1) . All the different models that
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were considered are summarized in Table 4.4.

Error structure common variance voxel-specific variance

independent model (i): σ2 model (iv): σ2v
AR(1), common AR parameter model (ii): σ2, ϕ model (v): σ2v , ϕ

AR(1), voxel-specific AR parameter model (iii): σ2, ϕv model (vi): σ2v , ϕv

Table 4.4: CV models considered for the human CV-fMRI data.

Here we only present the results for models (iii) and (vi). We found that these

two models led to better activation maps (i.e., smaller numbers of clear false positives

in areas outside the brain) than the other models considered. The left and center plots

in Figure 4.11 show the estimated values of ϕv for models (iii) and (vi). These pictures

demonstrate that there is a large variability in the estimated AR coefficients at the

voxel level. The voxels outside the brain essentially show no temporal correlation since

the estimated AR coefficient values are close to zero. We also see that some voxels

have relatively large temporal correlation with ϕ̂v around 0.6, however these voxels

do not lie in the activation areas. Figure 4.11 also shows the estimated values of σ2v

from model (vi) (right plot). It is clear from this plot that the estimated σ2v are larger

for those voxels inside the brain than for those outside. These estimated values are

also able to differentiate gray matter from the rest and are consistent with results in

Karaman et al. (2015). In particular, the right plot in Figure 4.11 shares similarities

with the estimated T1 map in Karaman et al. (2015). This is an important result

given that our proposed models are able to capture a relatively sophisticated brain

structure without incorporating non-linear physically-based components that would

make posterior computations extremely challenging for these large dimensional data.

Figure 4.12 shows the strength maps obtained from models (iii) (left plot)

66



Figure 4.11: Human data: Estimated values of ϕ2
v for the CV model with a single σ2

(model (iii), left plot) and the CV model with voxel-specific σ2v (model (vi), center
plot); estimated values of the ϕvs in model (vi).

and (vi) (right plot). These maps are fairly similar for both models. Comparing these

C-EMVS results with those results obtained from the model of Karaman et al. (2014)

we observe that the C-EMVS models have higher power of detecting active sites than

the magnitude-only KBR14-MO model, and also show a better performance than the

complex-valued KBR14-CV model (KBR14 maps provided in Appendix B). The maps

obtained from models (iii) and (vi) show either no false positives outside of the brain

and also no false positives in the upper left side of the brain close to the no signal

area (model (iii)), or a much more reduced number of false positives (model (vi))

when compared to the activation map obtained from model KBR14-CV. In addition,

The KBR14-MO and KBR14-CV models both use a FWE of 5% and are therefore

procedures that require two steps. The Bayesian C-EMVS approach is a one-step pro-

cedure and does not require additional adjustments for multiple comparisons. The

C-EMVS approach also compares favorably with the more physically realistic non-

linear DeTeCT-ING model. Models (iii) and (iv) identify most of the sites in the left

and supplementary motor region and produce none or a reduced number of the false
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Figure 4.12: Human data: Strength maps obtained from models (iii) (left) and (vi)
right.

positive sites in the anterior left side of the brain than those that were obtained by the

DeTeCT-ING model. These findings are not trivial especially given that, unlike the

DeTeCT-ING model, the proposed Bayesian C-EMVS approach does not incorporate

any physical aspects to model MR magnetization. This example shows that methods

with improved power for detecting activations, such as the one developed here, are es-

sential to increase the understanding of human brain function, particularly in scenarios

that involve CV-fMRI images with low SNR.

4.5 Discussion

We develop a new Bayesian variable selection approach for detection of brain

activation from single or multi-task complex-valued fMRI signals at the voxel-specific

level. Although we focused on circular complex-valued priors and the methods were

only illustrated in the context of CV-fMRI data, the models and algorithms proposed
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here are general, and can be applied to the general case of non-circular complex-valued

priors and to other types of data.

Our simulation studies show that by considering both, real and imaginary

information the Bayesian complex-valued variable selection methods are able to detect

more true positives and less false positives than magnitude-only models, especially

when the SNR is small. We also found that both, the Bayesian complex-valued and

magnitude-only EMVS approaches performed better than lasso and adaptive lasso

and were computationally fast, with run times comparable to those needed by lasso

or adaptive lasso. Finally, we demonstrated that the activation results in the finger-

tapping experiment obtained from the C-EMVS approach compared favorably to those

results obtained from more sophisticated non-linear models that are physically realistic

as they incorporate tissue and imaging parameters. The computational efficiency and

the performance obtained in the analysis of experimental and simulated CV-fMRI

data presented here make the C-EMVS approach a very useful tool for detecting brain

activation.

We note that the new Bayesian complex-valued models considered here do not

use any sophisticated spatio-temporal structure that can more appropriately describe

fMRI data (we only considered an AR(1) temporal structure). Adding spatio-temporal

structure that can better describe the data could potentially lead to further improved

results, but would also lead to more computationally-intensive models that may be

not be feasible for detecting brain activation at the voxel-specific level. Chapter 5

explores computationally efficient Bayesian complex-valued spatial models and Chapter
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6 discusses multi-subject models for CV-fMRI data. The C-EMVS methods presented

here serve as as a highly useful starting point, especially for analyzing high-dimensional

CV-fMRI data.
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Chapter 5

Bayesian spatial models for brain

activation in CV-fMRI

In this chapter, we consider the Cartesian complex-valued model representa-

tion of Lee et al. (2007, 2009) and Yu et al. (2018) and propose a flexible and com-

putationally feasible Bayesian variable selection approach that uses a low-rank spatial

model through kernel convolution (KC) for detecting activation in CV-fMRI at the

voxel level. More specifically, our complex-valued Bayesian variable selection model

assumes a complex normal noise and uses complex-valued g-priors on the regression

coefficients. We then add a spatial structure on the binary indicator variables that

determine if a given voxel is activated. Following Bezener et al. (2017), we first par-

cellate the image into several low-rank second layer spatial regions. However, unlike

Bezener et al. (2017), we describe the spatial structure through a kernel convolution

model rather than a Gaussian process (GP). We are then able to recover the entire
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underlying spatial process at the voxel level by convolving a set of region-specific spa-

tial random effects with voxel and region-dependent kernel functions. The parcellation

allows us to reduce the resolution of the image and consequently leads to faster compu-

tation, while kernel convolution provides increased spatial flexibility as it allows us to

relate a given voxel with neighboring voxels located in the same brain region, and also

with voxels located in other regions that are farther away in the brain. Our approach

uses the CV-fMRI data to infer the parameters that define the spatial kernel functions,

providing a flexible framework for determining the strength and range of the spatial

dependency across voxels in the context of brain activation.

We first present our Bayesian variable selection method with kernel-based

spatial structure for detecting activation at the voxel level in CV-fMRI data. We refer

to this method as the Complex-Valued Kernel Convolution (CV-KC) method. We also

describe a complex-valued Bayesian variable selection method with spatial Gaussian

processes, referred to as CV-GP. This model extends the approach of Bezener et al.

(2017) to the complex-valued domain. We compare both methods in terms of their

power and accuracy for detecting activation in different simulation scenarios. We also

examine how the spatial models improve activation detection relative to the non-spatial

complex-valued approach of our non-spatial complex-valued approach summarized in

Chapter 4 and in Yu et al. (2018). We show that our kernel-based approach signifi-

cantly increases the detection power when activation strength is weak, i.e., in cases of

low CNRs, for both, complex-valued and magnitude-only models. Including a spatial

structure in the model allows us to eliminate or significantly reduce the number of iso-
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lated voxels incorrectly labeled as active voxels. Therefore, this approach encourages

clusters of brain activation without leading to increased false-positives in contrast to

other magnitude-only spatial approaches implemented in common software packages

for fMRI analysis (Eklund et al., 2016). Finally, we also compare the complex-valued

approaches with magnitude-only approches in several simulation studies and in the

analysis of human fMRI data. Section 5.1 describes the Bayesian spatial CV-KC and

CV-GP models. Section 5.2 discusses the MCMC algorithms for full posterior inference

under these models. Section 5.3 illustrates the performance of the proposed methods

in an extensive simulation study. The performance of the complex-valued spatial ap-

proaches are compared to complex-valued approaches and magnitude only approaches

that do not incorporate spatial structure. Section 5.4 discusses the results obtained

from analyzing a human CV-fMRI dataset and Section 5.5 presents a discussion and

future extensions.

5.1 Bayesian spatial models for brain activation in complex-

valued fMRI

We consider two different Bayesian spatial hierarchical models for detect-

ing brain activation at the voxel level in CV-fMRI data. We first extend the model

proposed in Bezener et al. (2017) to the complex-valued domain. This model uses a

standard Gaussian process to describe the spatial random effects that determine the

probability of activation detection for each voxel in the image. We then propose a

novel model that uses kernel convolution to describe the spatial random effects. More
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specifically, the spatial structure on the activation probabilities is induced by writing

the spatial random effects as a convolution of a given kernel function, e.g., a Gaussian

kernel, and Gaussian distributed random variables. As illustrated later via simulation

studies, and also in the analysis of human CV-fMRI data, the proposed kernel-based

model induces dimension reduction as the voxel-level spatial effects are written as a

weighted average of a smaller number of region-specific effects and kernel values that

are voxel and region-specific. Through this smoothing process, each voxel borrows

information about activation from its neighboring voxels. Therefore, the kernel-based

method leads to more accurate activation results than the model that assumes a Gaus-

sian process directly on the random effects.

We begin by providing some background on kernel-convolution processes and

by describing the complex-valued regression model for CV-fMRI data. We then discuss

in detail the spatial structure in the two complex-valued models mentioned above.

5.1.1 Some background on kernel convolution methods

Kernel convolution, or process convolution, has been widely used for spatial

modeling in environmental sciences and geostatistics (Higdon, 1998, 2002; Lee et al.,

2005). It provides a convenient way to construct a Gaussian process over a general

spatial region domain denoted as S, such as a two-dimensional real field. In order

to define a process convolution, consider a kernel function k (s;φ) , where s ∈ S, and

φ is the associated parameter (possibly a vector) that defines the kernel function,

and let w (s) be a white noise process, i.e., E (w (s)) = 0, Var (w (s)) = σ2, and
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Cov (w (s) , w (s′)) = 0. Then, the process

x (s) =

∫
S
k (s− u;φ)w (u) du (5.1)

is a stationary Gaussian process that has mean zero and

Var (x (s)) = σ2
∫
S
k2 (s− u;φ) du

c (d) = Cov
(
x (s) , x

(
s′
))

= σ2
∫
S
k (t;φ) k (t− d;φ) dt, d = s− s′.

If S is Rm and k (s;φ) is isotropic1, there is a one-to-one correspondence between the

kernel and the covariance function c (d) of x (s), provided that the first two moments

of k (s;φ) exist or c (d) is integrable and positive definite. Note however that if the

process is not isotropic multiple kernels can map to the same covariance function. In

addition, based on the convolution theorem for Fourier transformations, the Fourier

transform of the covariance of x (s) is the square of the Fourier transform of k (s;φ) .

In practice, due to the complexities involved in doing numerical integration,

a finite sum approximation to (5.1) is applied (Higdon, 1998), i.e., for a grid of sites

u1, . . . , uG in S, the process is defined as

x (s) =
G∑
g=1

k (s− ug;φ)w (ug) .

A result of this discrete approximation is that the process is no longer stationary

1A kernel function k (s− s′;φ) is isotropic if its value depends on distance alone, i.e., k (s− s′;φ) =
k (τ ;φ), where τ = ‖s− s′‖. An isotropic kernel function has a corresponding covariance function c (τ)
that is also isotropic.
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since the covariance of x (s) is Cov (x (s) , x (s′)) = σ2
∑G

g=1 k (s− ug;φ) k (s′ − ug;φ),

which is not a function of the distance ‖s−s′‖. However, such finite sum approximation

provides dimension reduction and allows us to simplify the computational complexity

of the algorithms for posterior inference. A relatively small number G of parameters

w (u1) , . . . , w (uG) will effectively control the entire spatial process x (s) .

Instead of using MRFs or defining a specific local neighboring structure for

each voxel, we use a convolution-based spatial prior on the parameters that specify

the voxel-specific probabilities of activation. This structure allows us to uncover the

underlying full probability map of brain activation from CV-fMRI data. Regarding the

kernel function, k (s;φ) , several choices are available and have been used in the litera-

ture. A popular choice is the Gaussian kernel because of its analytical properties and

computational appeal. However, the Gaussian kernel leads to the Gaussian covariance

function, and its corresponding random field is infinitely smooth. This assumption is

not very realistic for fMRI data. Here we use another popular kernel function, the

Bezier kernel, whose 2-D version is given by

k (zv − ug;φ) =

(
1− ‖zv − ug‖

2

φ2

)ν
, ‖zv − ug‖ < φ, (5.2)

with ν > 0 a smoothing parameter, which will be assumed fixed, and range parameter

φ > 0. In the later fMRI analysis, zv is the location of voxel v, and ug can be seen

as the site of the spatial region g in the image. This kernel can be seen as a general

version of several commonly used kernel functions such as the parabolic (ν = 1),

quartic (biweight) (ν = 2) or the triweight kernel (ν = 3) up to some constant. One
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of the key features of the Benzier kernel is that it has a compact support. This avoids

unrealistically relating any two voxels in the image and does not require us to pre-

specify a particular neighboring structure. Instead, the model learns the neighboring

structure from the data by inferring the range parameter φ. In the simulation and

human data studies presented below we consider different values of ν, and compare

the Bezier kernel and Gaussian kernel. As an illustration, Figure 5.1 shows the effect

of φ on the Bezier kernel when ν = 2. As φ increases, the range affected by the kernel

becomes larger.

Figure 5.1: Effect of φ on the Bezier kernel when ν = 2. Both x and y are from -5 to
5. The color bar below shows kernel values z.

5.1.2 A complex-valued linear model for task-related CV-fMRI

As in the previous chapter, we continue to use the Cartesian coordinates

representation of Lee et al. (2007), Lee et al. (2009) and Rowe (2009), or the complex-

valued linear model (3.7). Without loss of generality we assume that the fMRI signals

have been centered and detrended, and so, in our setting each xj,t corresponds to the
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discretized convolution of the on-and-off signal of the stimulus sequence for task j

with a given HRF. Again, we further assume that the HRF is known for all t and v.

This assumption can be relaxed by considering models that also infer the voxel-specific

HRF (Rowe, 2001), but this significantly increases the computational cost of posterior

inference, especially because our model has a voxel-level resolution.

We add a spatial structure in γv as follows. Let ψvj be an indicator variable

such that γvj = 0, with γvj = γvRe,j+iγvIm,j , if ψvj = 0 and γvj 6= 0 if ψvj = 1. Then, model

(3.7) can be rewritten to make the dependence on the indicator variables explicit, i.e.,

yv = X (ψv)γv (ψv) + ηv, ηv
iid∼ CNT

(
0, 2σ2vIT ,0

)
, (5.3)

where ψv =
(
ψv1 , . . . , ψ

v
p

)′
. Thus, detecting activation at the voxel-specific level can be

viewed as a variable selection problem where a voxel v is labeled as active under task

j if and only if γvj 6= 0, which corresponds to ψvj = 1, and labeled as non-activated

otherwise.

The model in (5.3) defines the likelihood so we now proceed to discuss the

prior specification for the model parameters. In particular, we focus on the prior for

the indicator variables ψv, as spatial dependence is introduced through these binary

variables. For the remaining parameters, we choose their prior distributions so that

posterior inference can be computationally efficient.

Let σ2 =
(
σ21, . . . , σ

2
V

)
. We assume π

(
σ2
)

=
∏V
v=1 π

(
σ2v
)
, with σ2v

iid∼

IG (aσ, bσ) . In practice we typically set aσ = bσ = 1/2, which leads to a relatively

non-informative prior IG (1/2, 1/2) . The invariant prior π
(
σ2v
)
∝ σ−2v can also be con-
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sidered. In order to make comparisons with the approach of Bezener et al. (2017), we

use a complex circular normal g-prior on γv (ψv), which is given by

γv (ψv) | γv, σ2v
ind∼ CNp

(
γ̂v (ψv) , 2Tσ2v

(
X′ (γv) Xv (γv)

)−1
,0
)
,

with γ̂v (ψv) = (X′ (γv) X (γv))
−1

X (γv) yv. As it is the case in the real-valued do-

main, this circular complex normal prior allows γv (ψv) to be easily integrated out

and hence makes the computation more efficient. Note that, similar to Bezener et al.

(2017), the parameter g in the g-prior is fixed at T , the length of the time course of the

CV-fMRI signal, for both real and imaginary parts, which yields a unit information

prior that produces similar results as those derived from BIC (Raftery, 1998). An

empirical Bayes approach can also be used to select the value of g.

Due to the large number of voxels in the images, it is computationally chal-

lenging to do spatial modeling at the voxel-specific level. Therefore, we consider a

two-step procedure following Bezener et al. (2017), i.e., we first parcellate the images

into G spatial regions of voxels, and then construct a latent spatial random process

based on the G spatial regions. The regions must be non-overlapping, so that each

voxel belongs to only one spatial region. In addition, since the centroids of the regions

will determine the location of the regions and will be used to compute how strongly

spatially correlated the different regions are, the shapes of the regions should be such

that their centroid lies in their region. Hence, a ring-shaped region or any other non-

convex set may not be valid. Anatomical information or brain atlases can be used to

define the different regions or to determine regions of interests (ROIs), however, in the
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absence of any prior anatomical information, using equally-spaced grids to parcellate

the image is a natural starting point. In general, choosing a larger number of spatial

regions G will lead to better activation detection performance, but it will also imply

a heavier computational burden. Because of this it is important to choose a spatial

prior that is not too sensitive to the choice of G. As mentioned before, we consider two

classes of spatial priors that lead to two spatial models in the complex-valued domain.

One of these models extends the Gaussian process prior approach of Bezener et al.

(2017) to the complex-valued domain and will be referred to as the CV-GP model.

The alternative model uses a kernel-convolution approach to induce the spatial struc-

ture and will be referred to as the CV-KC model. We show via simulation studies that

the performance of the CV-GP model is sensitive to G and that its computing time

grows significantly with G. The performance of the CV-KS approach, on the contrary,

is not very sensitive to G and its computing time grows much slower as G increases.

We describe the spatial priors below.

5.1.3 Hierarchical Gaussian process priors on ψv for the GP model

Let ψ(j) be the set of indicator variables for task j and all the voxels v with

v = 1, . . . , V, i.e., ψ(j) =
(
ψ1
j , . . . , ψ

V
j

)
. Define S(j) =

(
S1
j , . . . , S

G
j

)
as a collection of

region-specific spatial random effects for task j for a given parcellation. Let Rg denote

the set of all voxels in region g, for g = 1, . . . , G. The spatial prior for this model

assumes that the indicator variables are conditionally independent given the spatial

random effects, and that these random effects are generated from a Gaussian process
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as follows:

π
(
ψ(j)

∣∣ S(j)

)
=

G∏
g=1

∏
v∈Rg

π
(
ψvj
∣∣ Sgj ) ,

ψvj
∣∣ Sgj ind∼ Bernoulli

(
1

1 + e−(agj+S
g
j )

)
.

Here agj allows us to incorporate any prior external anatomical information into the

model. Finally, for this model it is assumed that the spatial random effects S(j) are

generated from a Gaussian process, i.e.,

S(j)

∣∣ δ2j , rj ind∼ N
(
0, δ2jΓj

)
,

where Γj is an exponential covariance function whose (i, k)-th element is given by

Γj(i, k) = exp
(
−‖si−sk‖rj

)
, with si and sk denoting the centroid coordinates of regions

i and k, respectively, and ‖ · ‖ denoting the Euclidean distance. Here δ2j is a parameter

that controls the smoothness of S(j), and therefore the smoothness of ψ(j), while rj

is a range parameter that determines the strength of the spatial dependence between

neighboring regions under task j. Now, letting δ2 =
(
δ21 , . . . , δ

2
p

)
, r = (r1, . . . , rp) , and

S =
(
S(1), . . . ,S(p)

)
, we assume

π (S, δ, r) = π (S | δ, r)π (δ)π (r) ,

π (S | δ, r) =

p∏
j=1

π
(
S(j) | δj , rj

)
, π

(
δ2
)

=

p∏
j=1

π
(
δ2j
)
, π (r) =

p∏
j=1

π (rj) ,
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with π
(
δ2j

)
∝ δ−2j and χ2 priors for rj , for j = 1, . . . , p. Notice that through this

spatial prior setting, voxels in the same spatial region g, i.e., all v ∈ Rg, share the

same region-level spatial random effect Sgj and the same agj , and hence, the same

probability of activation 1

1+e
−(agj+S

g
j )

. On the other hand, voxels in different regions

will be related through the underlying Gaussian structure of the spatial random effects,

which may be stronger or weaker depending on the scale and range parameters that

will be learned from the data.

5.1.4 Hierarchical spatial priors on ψv for the KC model

As it was the case with the CV-GP spatial priors described above, our pro-

posed kernel convolution model model assumes that ψ(j) is conditionally independent

given the spatial random effects S(j). However, instead of assuming region-specific

spatial random effects, we now assume that S(j) contains voxel-specific spatial random

effects, and so S(j) =
(
S1
j , . . . , S

V
j

)
. Then, letting wgj , be the spatial random effect for

task j and region g, z1, . . . , zV , denote the locations of the voxels, and k (zv − sg;φ) a

kernel function, we have

Svj =

G∑
g=1

k (zv − sg;φ)wgj ,

where sg is the centroid of region g. The region-specific spatial effects wgj are assumed

to be Gaussian distributed such that wgj | τ2j
ind∼ N

(
0, τ2j

)
, and τ2j

iid∼ IG (aτ , bτ ) , or

equivalently, S(j) = K(φ)w(j) follows a V -dimensional Gaussian distribution

N
(
0, τ2j K(φ)K(φ)′

)
, where K(φ) = [k (zv − sg;φ)] is the V ×G matrix of kernel values
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whose (v, g)-th element is k (zv − sg;φ) and w(j) =
(
w1
j , . . . , w

G
j

)
. The parameter

φ in the kernel function could be a positive scalar common for all the regions or a

region-specific vector, i.e., φ =
(
φ1, . . . , φG

)
. This parameter controls the shape of

the kernels, and hence the smoothness of the activation maps. Different priors can be

assigned depending on the scalar or multivariate nature of φ. A common gamma or

inverse gamma prior on a scalar φ or on independent priors on each φg can be used, for

example, φg
iid∼ Ga (aφ, bφ). Region-specific aφg and bφg can also be considered if one

has any prior information about how the spatial effect wg in region g can contribute

to the spatial structure in other regions.

Note that instead of having V independent S1
j , . . . , S

V
j , spatial dependence

is achieved by relating ψ1
j , . . . , ψ

V
j using kernel convolution. In addition, this kernel

convolution approach leads to dimension reduction, as only a relatively small number of

region-specific effects may be needed to describe the entire underlying spatial process in

the image at the voxel level. The voxel-level spatial effect Svj is a weighted average of the

region-specific spatial effects wgj and the kernel values that are voxel and region specific.

Note also that {k (zv − sg;φ)}Gg=1 can be viewed as a set of basis functions. Hence, a

voxel v in region g can relate not only to voxels in its own region, but to voxels in other

regions. Voxels in the same region under the KC model can have less similarities in

their probabilities of activation than those implied by the GP model because in the KC

approach each voxel is allowed to borrow information from different regions through

different values in the kernel convolution. This property allows us to obtain higher

resolution latent spatial effects and more precise posterior probability activation maps,
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as it is illustrated in the simulation studies and in the human data example presented

in Sections 5.3 and 5.4. As it is shown later, the posterior probability activation maps

obtained from the GP approach usually display a probability inflation effect, i.e., when

a given spatial region contains a non-negligible number of activated voxels, other non-

activated voxels in the region will also have relatively high probabilities of activation.

On the other hand, two voxels located next to each other may also have significantly

different probabilities of activation in the GP model due to their different spatial region

assignment. This effect usually occurs when the correlation between spatial regions

decays very fast, and it highly depends on the resolution of the grid that defines the

spatial regions, and on how similar is the behavior of voxels that belong to the same

region. The KC model does not have this issue because of the “spillover effect” of

convolution methods. Kernel functions are more flexible in terms of determining how

a given voxel is related to voxels in other spatial region through the kernel structure

and the parameter φ. The strength of the relationship between voxels is explained by

the kernel values. As a result, the KC approach is less sensitive to the parcellation

than the GP approach. Finally, note that although voxels in the same region have

their own unique spatial random effect, they can also share common region-specific

but external information through the constant agj that describes features that are only

specific to this particular region for the different tasks.
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5.2 Posterior Inference

In this section we focus on posterior inference for the CV-KC model via

MCMC. The posterior distribution and sampling scheme for the magnitude-only GP

model can be found in Bezener et al. (2017). The MCMC algorithm for posterior

sampling in the complex-valued case is very similar to the algorithm of Bezener et al.

(2017), so we do not describe it here. Instead, we focus on the algorithm for posterior

sampling under the CV-KC model.

Let y =
(
y1, . . . ,yV

)
be the observed complex-valued image,

γ (ψ) =
(
γ1
(
ψ1
)
, . . . ,γV

(
ψV
))

, ψ =
(
ψ(1), . . . ,ψ(p)

)
, w =

(
w(1), . . . ,w(p)

)
, w(j) =(

w1
j , . . . , w

G
j

)
, τ 2 =

(
τ21 , . . . , τ

2
p

)
, the model parameters and S(j) = K(φ)w(j). With-

out loss of generality, we assume that φ is a scalar with φ > 0. Based on the model and

prior setup given in the previous section, the posterior density of the CV-KC model is

given by

q
(
γ (ψ) ,ψ,w, τ 2,σ2 | y

)
∝ p

(
y | γ (ψ) ,ψ,σ2

)
π
(
γ (ψ) | ψ,σ2

)
π
(
σ2
)
π (ψ | w, φ)

×π
(
w | τ 2

)
π
(
τ 2
)
π (φ) .

Note that this model is high-dimensional with V (2p+1)+Gp+p+1 parameters, even

for single-subject activation analysis. Therefore, to further improve computational

efficiency, we take advantage of the conjugate priors and integrate out the parameters
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γ (ψ) ,σ2 and τ 2 to get the marginal posterior

q (ψ,w, φ | y) ∝ p (y | ψ)π (ψ | w, φ)π (w)π (φ) .

Let ỹv =
(
yv1,Re, . . . , y

v
T,Re, y

v
1,Im, . . . , y

v
T,Im

)′
and X̃v = X̃ (ψv) =

blockdiag (X (ψv) ,X (ψv)). In the circular normal case, after integrating γ (ψ) and

σ2 out, the real representation of the marginal p (ỹ | ψ) in the complex-valued model

model is given by

p (ỹ | ψ) =

∫
p
(
ỹ | γ̃ (ψ) ,ψ,σ2

)
π
(
γ̃ (ψ) | ψ,σ2

)
π
(
σ2
)
dγdσ2

=
V∏
v=1

(1 + T )−qv
(

(ỹv)′ ỹv − (ỹv)′ X̃v

(
X̃
′
vX̃v

)−1
X̃
′
vỹ

v + 2bσ

)−(T+aσ)
=

V∏
v=1

(1 + T )−qv M (ψv)−(T+aσ) ,

where qv =
∑p

j=1 ψ
v
j and M (ψv) =

(
(ỹv)′ ỹv − (ỹv)′ X̃v

(
X̃
′
vX̃v

)−1
X̃
′
vỹ

v + 2bσ

)
.

Then we have the marginal posterior

q
(
ψ,w, τ 2, φ | y

)
∝ p (ỹ | ψ)π (ψ | w, φ)π

(
w | τ 2

)
π
(
τ 2
)
π (φ) .

Each τ2j can further be integrated out to get the marginal distribution of w(j), and so,
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for each j = 1, . . . , p,

π
(
w(j)

)
=

∫
π
(
w(j) | τ2j

)
π
(
τ2j | aτ , bτ

)
dτ2j =

∫ G∏
g=1

N
(
wgj
∣∣ τ2j ) IG (τ2j | aτ , bτ) dτ2j

=
baττ

Γ (aτ )
× Γ (G/2 + aτ )(

1
2

∑G
g=1

(
wgj

)2
+ bτ

)(G/2+aτ )
.

As a result, we now have q (ψ,w, φ | y) ∝ p (ỹ | ψ)π (ψ | w, φ)π (w)π (φ) and can

propose a MCMC algorithm to sample from this distribution.

First, note that the conditional distribution for ψ is

q (ψ | w, φ,y) ∝ π (ψ | w, φ) p (ỹ | ψ) ,

∝ π (ψ | w, φ)
V∏
v=1

(1 + T )−qv M (ψv)−(T+aσ) ,

where

π (ψ | w, φ) =

p∏
j=1

π
(
ψ(j)

∣∣ φ,w(j)

)
=

p∏
j=1

V∏
v=1

π
(
ψvj | K′v(φ)w(j)

)
,

where Kv(φ) is the v-th row vector of K. Similarly, we obtain the conditional dis-

tributions for w and φ from q (w | ψ, φ,y) ∝ π (ψ | w, φ)π (w) , and q (φ | ψ,w,y) ∝

π (ψ | w, φ)π (φ) .

The marginal posterior q (ψ,w, φ | y) has dimension p(V +G)+1. We gener-

ate posterior samples from this distribution sequentially by sampling w, ψ, and φ. We

sample w and φ using Metropolis-Hastings steps, and then sample ψ using a Gibbs

step as follows:
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• Sampling w: this involves pG steps. For j = 1, . . . , p and for each g with g =

1, . . . , G we have that the conditional density of wgj is given by

q
(
wgj

∣∣∣ w
(−g)
(−j) ,ψ, φ,y

)
∝ π (ψ | w, φ)π

(
w(j)

)
∝ π

(
wgj

) V∏
v=1

π

(
ψvj

∣∣∣∣∣ Svj (wgj ; Kv(φ),w
(−g)
(−j)

))
,

where w
(−g)
(−j) are all region level spatial random effects whl such that l 6= j, h 6= g. .

Here, Svj

(
wgj ; Kv(φ),w

(−g)
(−j)

)
denotes that we view Svj as a function of wgj leaving

the remaining parameters in Kv(φ) and w
(−g)
(−j) fixed. A random walk proposal(

wgj

)∗
∼ N

((
wgj

)(m)
, σ2

wgj

)
is used, where

(
wgj

)(m)
is the current state and

σ2
wgj

is a tuning parameter. Hence, the Metropolis-Hastings ratio is

q
((
wgj

)∗ ∣∣∣ w−g−j ,ψ, φ,y)
q

((
wgj

)(m) ∣∣∣ w−g−j ,ψ, φ,y) =

∏V
v=1 π

(
ψvj

∣∣∣ Svj ((wgj)∗ ; Kv(φ),w
(−g)
(−j)

))
∏V
v=1 π

(
ψvj

∣∣∣ Svj ((wgj)(m)
; Kv(φ),w

(−g)
(−j)

))

×
π
((
wgj

)∗)
π

((
wgj

)(m)
) .

• Sampling ψ : this involves pV updates. For j = 1, . . . , p and v = 1, . . . , V we

have that Pr
(
ψvj = 1

∣∣∣ ψ(−v)
(−j) ,w(j), φ,y

)
∝ θ

(
ψvj = 1

)
, with

θ
(
ψvj = 1

)
= π

(
ψvj = 1

∣∣∣ Svj = K′v(φ)w(j)

)
(1 + T )−ψ

v
j M (ψv)−(T+aσ) , andψ

(−v)
(−j)
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are all binary indicator variables ψul , l 6= j, u 6= v. Therefore,

(
ψvj

∣∣∣ ψ(−v)
(−j) ,w(j), φ,y

)
∼ Bernoulli

 θ
(
ψvj = 1

)
θ
(
ψvj = 1

)
+ θ

(
ψvj = 0

)
 .

• Sampling φ: Let ξ = log(φ), then, the full conditional of ξ is

q (ξ | ψ,w,y) = q (φ(ξ) | ψ,w,y) eξ

= Ga
(
eξ | aφ, bφ

)
· eξ ·

p∏
j=1

V∏
v=1

π

(
ψvj

∣∣∣∣∣ Svj (Kv(e
ξ); w(j)

))
.

We use a normal random walk proposal on ξ, i.e., ξ∗ ∼ N
(
ξ(m), σ2ξ

)
, where ξ(m) is

current state value and σ2ξ is a tuning parameter. Then, the Metropolis-Hastings

ratio is given by

q (ξ∗ | ψ,w,y)

q
(
ξ(m) | ψ,w,y

) =

∏p
j=1

∏V
v=1 π

(
ψvj
∣∣ Svj (Kv(e

ξ∗); w(j)

))
∏p
j=1

∏V
v=1 π

(
ψvj
∣∣ Svj (Kv(eξ

(m)
); w(j)

))
×

Ga
(
eξ
∗ | aφ, bφ

)
· eξ∗

Ga
(
eξ

(m) | aφ, bφ
)
· eξ(m)

.

For the general case that φ =
(
φ1, . . . , φG

)
, each φg can be updated using a

scheme similar to the one described above.

Although this algorithm works, we improve the mixing considerably by sampling the

parameters in blocks and also use the empirical covariance matrix from posterior
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samples in previous iterations to generate proposal candidates. Once M posterior

samples are obtained,
{(
ψ(m),w(m), φ(m)

)}M
m=1

, we can estimate the posterior prob-

abilities of activation for each voxel and each task, Pr
(
ψvj = 1

∣∣∣ y
)

, by computing

p̂vj = 1
M

∑M
m=1

(
ψvj

)(m)
.

5.3 Simulation studies

We show the performance of the proposed complex-valued spatial methods

for detecting activation in two simulation studies. We compare three methods for CV-

fMRI data, namely, the two proposed spatial models referred to as the CV-KC and

CV-GP models, and the non-spatial C-EMVS approach proposed by Yu et al. (2018).

The results obtained using exclusively magnitude fMRI and magnitude-only spatial

models, referred to as MO-KC and MO-GP2, and the non-spatial MO-EMVS are also

compared. In fact, the synthetic CV-fMRI data generated in the simulation study

below was obtained using a complex-valued version of the data generating process

used in a simulation study presented in Bezener et al. (2017).

5.3.1 Simulated data

We simulated 10 datasets consisting of 20×20 CV-fMRI slices with a constant

baseline signal and a single expected BOLD signal (i.e., p = 1) resulting from the

convolution of a stimulus indicator function and the canonical HRF. Three activation

regions were simulated using the function specifyregion in the R package neuRosim

(Welvaert et al., 2011). Specifically, for v = 1, . . . , 20× 20, and t = 1, . . . , 50, the time

2MO-GP is in fact the model proposed by Bezener et al. (2017).
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series for each voxel v were simulated as follows:

yvt,Re = (βv,0 + βv,1xt) cos (α0) + ηvt,Re, ηvt,Re ∼ N
(
0, σ2

)
,

yvt,Im = (βv,0 + βv,1xt) sin (α0) + ηvt,Im, ηvt,Im ∼ N
(
0, σ2

)
,

(5.4)

where xt is the expected BOLD signal, which is obtained as a convolution of a given

HRF and a stimulus indicator function (Lindquist, 2008). We used α0 = π/4 and

different values of β0 and β1 to examine the performance of the proposed CV-KC and

CV-GP models. These were chosen to set specific values of the SNR and the CNR as

defined in Rowe & Logan (2004), with SNR = β0/σ and CNR = β1/σ.

Figure 5.2: Left: Design matrix of the expected BOLD signal with the canonical HRF
used in the simulation. Middle: Activation map of a 20× 20 image. Right: Activation
map with white spatial region grid lines. The number of regions is G = 25. Each region
is of size 4 × 4 containing 16 voxels. Yellow dots represent the centroids of regions.
Yellow numbers are region numbers.

The expected BOLD signal, true activation map, and and a parcellation of the

image with G = 25 regions are shown in Figure 5.2.3 The expected BOLD signal is the

convolution of the canonical HRF with a 0-1 stimulus function that is on for 1 ≤ t ≤ 16

and off for 17 < t ≤ 50. Here, we consider four different combinations of (βv,0, βv,1) that

3The simulated image is the same as the one in the benchmark example in Bezener et al. (2017).
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correspond to high or low SNRs or CNRs, namely, case LL: (βv,0, βv,1) = (1, 2) - low

SNR and low CNR, case LH: (βv,0, βv,1) = (1, 5) - low SNR and high CNR; case HL:

(βv,0, βv,1) = (300, 2) - high SNR and low CNR; and case HH: (βv,0, βv,1) = (300, 5) -

high SNR and high CNR. Case HH is in fact one of the coefficient settings in Bezener

et al. (2017). However, their model does not include the phase angle α0 = π/4 as

shown in Eq. (5.4) and considers only one real-valued time course of signals. That is,

the simulated data are generated from

yvt = βv,0 + βv,1xt + εvt , εvt ∼ N
(
0, σ2

)
.

Also, in order to compare our results to those in Bezener et al. (2017) we also set

σ2 = 3.

5.3.2 Fitted complex-valued models

We fit the CV-KC and CV-GP spatial models proposed in Section 5.1, and

the non-spatial C-EMVS model proposed in Yu et al. (2018) to the simulated data.

We measured the performance of these models for detecting brain activation at voxel

level by measuring the sensitivity, specificity, precision and accuracy in the different

simulation settings. Specifically, for v = 1, . . . , V, with V = 400, T = 50, G = 25 and
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p = 1, we considered a CV-KC model of the form

yv = x (ψv) γv (ψv) + ηv, ηv ∼ CNT

(
0, 2σ2vIT ,0

)
,

γv (ψv) | ψv, σ2v
ind∼ CN1

(
γ̂v (ψv) , 2Tσ2v

(
x′ (ψv) x (ψv)−1

)
, 0
)
,

ψv | Sv ind∼ Bernoulli

(
1

1 + e−Sv

)
, Sv =

G∑
g=1

k (zv − sg;φ)wg,

wg | τ2 ind∼ N
(
0, τ2

)
, τ2 ∼ IG (1/2, 1/2) ,

σ2v
iid∼ IG (1/2, 1/2) , φ ∼ IG (1/2, 1/2) ,

where γ̂v (ψv) = (x′ (ψv) x (ψv))−1 x (ψv) yv, zv denotes the coordinates of voxel v and

sg denotes the centroid coordinates of region g. The centroids for the regions in the

parcellation are shown as a yellow dots in Figure 5.2. Without any prior information,

we assume that ag = 0 for all g. Note that in this simulation study there is only one

task (p = 1), so we removed the subindex j from the notation.

The CV-GP model has the same likelihood and the same priors on γv and

σ2v . The rest of the model setup is given by

ψv | Sg ind∼ Bernoulli

(
1

1 + e−Sg

)
,
(
S | δ2, r

) ind∼ N
(
0, δ2Γ

)
, π

(
δ2
)
∝ δ−2, r ∼ χ2

8,

where Γ is the exponential covariance function described in the previous section. The

degrees of freedom in the χ2 distribution are set to 8 for comparison with Bezener

et al. (2017).

The C-EMVS model has the same likelihood as the CV-KC and CV-GP
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models. The rest of the model specification is given by

γv | ψv ∼ (1− ψv)CN1

(
0, 2v0σ

2
v , 0
)

+ ψvCN1

(
0, 2σ2v , 0

)
,

σ2v ∼ IG (1/2, 1/2) , ψv | θ ∼ Bernoulli (θ) , θ ∼ Beta (1, 1) .

Note that although there is no explicit spatial structure in this model, activation

is inferred by borrowing information across voxels through a common probability of

activation for all voxels in the Bernoulli prior. The tuning parameter v0 is chosen from

a grid of values so that the optimal v0 maximizes p (ψ | y) that evaluates ψ containing

those variables for which ψv = 1. That is, the optimal v0 leads to the most likely

activation pattern given the observed data.

For the MCMC algorithms of the KC and GP models, 51,000 samples were

drawn. After burning the first 1,000 samples and thinning the sequences by keeping

every 25th draw, 2,000 draws were used for analysis. For the EM algorithm, we iter-

ated the expectation and maximization steps until the Euclidean distance between the

current and new parameter values was less than 0.001, that is, ‖θ(l) − θ(l−1)‖ < 10−3,

where θ(l) denotes the full parameter vector at the lth iteration.

5.3.3 Results of the analysis of the simulated data

In order to examine the performance of the different methods, we consider two

threshold values for detecting activation, namely, 0.8722 and 0.5. A threshold value of

0.5 corresponds to the so called “median probability model”, i.e., the model that labels

the sites as active if they have posterior probabilities of activation higher than 0.5. This
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model has been shown to be the optimal predictive model under certain assumptions

for the squared error loss (Barbieri & Berger, 2004). A threshold value of 0.8722 has

been used in some Bayesian spatial approaches for magnitude-only fMRI data (Smith

& Fahrmeir, 2007; Lee et al., 2014). This threshold corresponds to a p-value 0.05 for

the likelihood ratio statistic −2 log ((1− Pr (ψv = 1 | y)) /Pr (ψv = 1 | y)) (Raftery,

1996). Alternative threshold values can be used. For example, a threshold value can

be determined by a Bayesian decision theoretic approach. Müller et al. (2004) and

Müller et al. (2006) show that when the loss function being considered is of the form

cE (FD | y) + E (FN | y), where FD is false discoveries and FN is false negatives, the

optimal threshold value that minimizes the loss function is c
1+c . Note that for c = 1,

the optimal threshold is 0.5. In simulation settings, the performance with different

threshold values for detecting activation can be examined by looking at the resulting

receiver operating characteristic (ROC) curves as illustrated below.

Figures 5.3 and 5.4 show the activation performance measures for the complex-

valued models we considered (the spatial CV-KC and CV-GP models, and the non-

spatial C-EMVS) using, respectively, threshold values of 0.8722 and 0.5 for the spatial

models. A threshold value of 0.5 was used for the non-spatial C-EMVS approach.

When a threshold value of 0.8722 is used for detecting activation in the spatial models

and a threshold value of 0.5 is used for the non-spatial C-EMVS, the C-EMVS has

larger sensitivity values than those obtained with the spatial models in the cases with

low CNR. However, both spatial models have higher precision and specificity than the

the non-spatial model, with the CV-KC dominating both, CV-GP and C-EMVS. On
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the other hand, when a threshold value for activation of 0.5 is used for all the models,

the proposed CV-KC method clearly dominates the other two approaches, especially

in terms of sensitivity and accuracy, as shown in Figure 5.4.

Figure 5.3: Performance measures of CV models under the spatial KC (blue-solid, CV-
KC) priors, the spatial GP (red-dashed, CV-GP) priors, and the non-spatial EMVS
(brown-dotted, CV-EMVS). Top-left: Sensitivity. Top-right: Precision. Bottom-left:
Specificity. Bottom-right: Accuracy. A threshold value of 0.8722 is used for detecting
active voxels in CV-KC and CV-GP, and a threshold value of 0.5 is used for the non-
spatial C-EMVS.

As mentioned above, a threshold value of 0.8722 is commonly used for spatial

models, however, it is not clear that this is the best threshold for complex-valued

models in terms of balancing out false positives and false negatives. We also note that
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Figure 5.4: Performance measures of CV models under the spatial KC (blue-solid, CV-
KC) priors, the spatial GP (red-dashed, CV-GP) priors, and the non-spatial EMVS
(brown-dotted, CV-EMVS). Top-left: Sensitivity. Top-right: Precision. Bottom-left:
Specificity. Bottom-right: Accuracy. A threshold value of 0.5 is used for all three
models.

under the threshold value of 0.5 the GP model does not really improve in terms of

the performance measures, showing values similar to those obtained with the 0.8722

threshold. Figure 5.5 shows the ROC curves for the three complex-valued models under

the low CNR scenario for 2 different SNR scenarios. We see that the CV-KC method

has the largest area under the ROC curve, showing that the CV-KC model leads to

the best results in terms of detecting activation at the voxel level.

Figure 5.6 shows the estimated weights of the region-specific spatial effects
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Figure 5.5: ROC curve under case LL (left) and case HL (right) for the CV models:
CV-KC (blue-solid), CV-GP (red-dash) and C-EMVS (brown-dot).

w1, . . ., w25 on each voxel in the CV-KC model. Specifically, in this example with 25

regions, the voxel-level spatial effect is given by

Sv =
25∑
g=1

k (zv − sg;φ)wg = k (zv − s1;φ)w1 + · · ·+ k (zv − s25;φ)w25,

and hence the weights of the effects w1, . . . , w25 are column vectors {Kv,1}400v=1, . . . ,

{Kv,25}400v=1 of the 400 × 25 kernel matrix K. Figure 5.6 shows each of these columns

in an image. Since a common φ is used for all spatial regions, the radii of the kernel

effects are the same. The effects displayed in the plot are obtained by evaluating the

Bezier kernel function k
(
zv − sg; φ̃

)
at the posterior mean of φ, φ̃. Then, this figure

shows how a given voxel is related to other voxels in the image. In general, voxels

in a given region g are mostly influenced by the spatial effect of the same region, as

indicated in the picture, but they are also affected by the spatial effects of other regions

with the kernel values shown in the picture acting as weights for the different effects.
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For example, voxels in region 2 (see Figure 5.2 for region numbers) are heavily affected

by w2 with the largest weights given by k
(
zv − s2; φ̃

)
, v ∈ R2. This is shown in the

image corresponding to Column 2 of K in Figure 5.6. However, voxels in region 2 are

also impacted by the spatial effects from regions 1, 3, 6, 7, and 8 with smaller weights

k
(
zv − sg; φ̃

)
, v ∈ R2, for g = 1, 3, 6, 7, 8.

Figure 5.6: Kernel effect with the kernel function k
(
zv − sg; φ̃

)
evaluated at the pos-

terior mean of φ, φ̃. Each image shows the effect of spatial region g.

The CV-KC model produces a higher resolution latent spatial process Sv at

the voxel level than that obtained by the GP model, as shown in Figure 5.7. The

posterior voxel-level spatial effect S is computed via K
(
φ̃
)

w̃, where φ̃ and w̃ are the
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posterior means of φ and w, respectively. The spatial process map correctly identifies

three activation areas. The probabilities of activation are obtained from the posterior

means of the spatial effects via the logistic transformation. We see that these estimated

probabilities of activation are close to one for voxels that are truly activated. On the

other hand, the GP model does not allow us to infer activation at the voxel level by

simply examining its resulting spatial process. As shown in Figure 5.7 (b), voxels in

the same region share the same spatial effect. This is not realistic unless there is a

clever way to parcellate the image so that voxels in the same region behave similarly

and hence are all active or non-active. In fact, these region-specific probabilities can

be seen as the overall mean probability of activation in a region g. Take region 18

for example, the probability of activation for this region is estimated at the posterior

mean of S18, S̃18, as 1/(1+e−S̃
18

) ≈ 0.626. This number is similar to the proportion of

activated voxels in the region 18, 10/16 = 0.625. Hence, based on the region-specific

spatial effects, the GP model can tell us that there are approximately 10 voxels out of

16 being activated in region 18, but it cannot further specify which voxels are more

likely to be activated as there is no voxel-level information for this model except the

posterior probabilities p̂v. Later, we will show that if magnitude-only data are used,

the GP model tends to inflate its region-level spatial effects, and potentially lead to

more false positives.

Given the fact that the CV-GP model forces voxels in the same region to

share the same spatial effect, its detection performance is very sensitive to the number

of spatial regions and to how the image is parcellated. In general, the larger G is,
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(a) CV-KC voxel-level spatial effect (b) CV-GP region-level spatial effect

Figure 5.7: Posterior mean of spatial random effects and corresponding logistic trans-
formation for the CV-KC and CV-GP under the case HH.

Figure 5.8: Effect of G under the case LL. Top: posterior probability maps of CV-
GP. Bottom: posterior probability maps of CV-KC. From left to right are maps with
G = 16, 25, 100, respectively.

the better detection we can have. Figure 5.8 shows how activation probability maps

change with the number of spatial regions G. Notice that the CV-KC model is much

less affected by G. In fact, the CV-KC model with G = 25 can lead to the same or

even better activation detection than the CV-GP model with G = 100. This matters

because more spatial regions results in longer computing time. To examine how the
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G 4 16 25 100

CV-GP 0.469 0.587 0.950 9.809
CV-KC 0.607 0.908 1.198 3.510

Table 5.1: Average computing time of running the CV-GP and CV-KC MCMC algo-
rithms 10 times. The time unit is seconds per 1000 MCMC iterations.

number of spatial regions G affects the computation efficiency of CV-GP and CV-KC,

we run their MCMC algorithm 10 times each, and the their average computing time

on the simulated data with V = 400, T = 50 and p = 1 under case LL is shown in

Table 5.1. The time unit used in the table is seconds per 1000 MCMC iterations. The

algorithms are coded in R version 3.3.1 environment with C++ code embedded using

the Rcpp package. The algorithms were run on the operating system OS X Yosemite

10.10.5 with the 1.3 GHz Intel Core i5 processor. Notice that the computing time of

the CV-GP model grows faster than the computing time of the CV-KC model as G

gets larger. For these data, when G = 100, we see that the CV-GP model essentially

takes almost 2.80 times longer to obtain the same type of activation results obtained

by the CV-KC model.

Figure 5.9: Multi-resolution spatial effects of CV-KS. From left to right: (1) Two
resolution grids. Coarse grids are colored yellow and fine grids are colored white. (2)
The posterior mean of overall spatial effects, i.e., the sum of spatial effects from coarse
grids and spatial effects from fine grids. (3) The logistic transformation of the overall
spatial effects.
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Another advantage of the kernel method is that it allows for multi-resolution

approaches. For example, one can use finer grids on areas that are more likely to be

activated. Also, kernels used in coarse and fine grids could be different to capture dif-

ferent activation patterns. The mathematical formulation is straightforward. Suppose

that G regions are created using a coarse grid and H regions are created using a fine

grid. Denote the “coarse” kernel functions by kc (zv − sg, φc) and the “fine” kernel

functions by kf (zv − dh, φf ), respectively, where sg denotes the centroid of each of the

regions in the the coarse grid, and dh denotes the centroid of each region in the fine

grid. Then the voxel-level overall spatial effect is

Svj =
G∑
g=1

kc (zv − sg;φc)wgj +
H∑
h=1

kf (zv − dh;φf )uhj = Svc,j + Svf,j ,

where uhj is another Gaussian variable independent of wgj . The posterior sampling

scheme for this multi-resolution model is essentially the same as the scheme used for

the model with only one resolution described in the previous section. Figure 5.9 shows

how multi-resolution works. In this example, we put a finer grid on the regions that

include the true activated voxels. This is not uncommon, as in many practical scenarios

neuroscientists have some knowledge about the areas of the brain where they expect

to see active voxels in a particular experimental setting. The middle picture shows

the posterior mean of the overall voxel-level spatial effects. Unlike the spatial effects

in Figure 5.7 (b), the spatial effects from the coarse grid become a very smooth and

flat layer because all possible ups and downs are captured by the spatial effects from

the fine grid. The estimated probability activation map obtained by computing the
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Kernel type Sensitivity Specificity Precision Accuracy

Bezier ν = 1 0.7387 0.9985 0.9893 0.9582
Bezier ν = 2 0.7629 0.9982 0.9870 0.9618
Bezier ν = 3 0.7790 0.9979 0.9858 0.9640
Bezier ν = 5 0.7677 0.9982 0.9877 0.9625

Gaussian 0.7516 0.9982 0.9875 0.9600

Table 5.2: Performance measures of CV-KC under the Bezier kernel with ν = 1, 2, 3
and 5 and the Gaussian kernel. The threshold value is 0.5.

logistic transformation of the overall spatial effects shows values near one for activated

voxels and essentially zero for non-activated voxels. This shows that properly using a

multi-resolution scheme can further improve activation detection without dramatically

increasing the computation time.

5.3.4 Effect of smooth parameter ν and comparison to a convolution

model with Gaussian kernels

We examine the effect of the smooth parameter ν in the Bezier kernel function

by detecting activation performance and recovering the latent spatial process when

ν = 1, 2, 3 and 5. With a fixed value of parameter φ, smaller value of ν leads to larger

degree of smoothness. Table 5.2 shows that the kernel method is not so sensitive to

what value of ν is used in the model. This is because the KC model can learn the

value φ, balance the effect of ν and φ, and hence produce a kernel effect that is best

for detecting activation.

When a Gaussian kernel k(sv − ug;φ) ∝ exp{−‖sv − ug‖2/2φ} is used, the

latent spatial process will be smoother than the spatial process generated by the Bezier

kernel, but its performance measures do not change much, as shown in Table 5.2.
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5.3.5 Comparison across magnitude-only models

Finally, we assess the effect of including a spatial structure in models for

detecting brain activation from magnitude-only data. For this purpose, we obtained

the magnitude-data from the complex-valued data simulated as described above and

fitted three magnitude-only models, namely, a kernel-based spatial model (MO-KC),

a spatial Gaussian process model (MO-GP) and the magnitude-only EMVS model

of Yu et al. (2018) with no spatial structure (MO-EMVS). Note that by taking the

magnitude data from the complex-valued data simulated above we are altering the

SNR and CNR values, and so, the results obtained from magnitude-only models are

not directly comparable to the results obtained under complex-valued models discussed

above. However, we can still make comparisons across magnitude-only models as the

magnitude-data are the same.

Figure 5.10 shows four different performance measures for detecting brain ac-

tivation, namely, sensitivity, precision, specificity, and accuracy in the three magnitude-

only models that we considered, i.e., MO-KC, MO-GP and MO-EMVS. Figure 5.11

shows the ROC curves for the magnitude-only models under two simulated scenarios.

Once again the kernel-based spatial model dominates the other two models in terms

of the ROC curves. The kernel-based spatial model improves sensitivity and accuracy

when SNR is high and CNR is low. The higher specificity and precision for both spatial

models indicate that introducing a spatial structure when analyzing magnitude-only

fMRI reduces false positives. Note, however, that the spatial GP model has lower power

for detecting activation than our non-spatial variable selection model when CNR is low,
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Figure 5.10: Performance measures of MO models under KC (blue-solid), GP (red-
dash) and EMVS (brown-dot). Top-left: Sensitivity. Top-right: Precision. Bottom-
left: Specificity. Bottom-right: Accuracy. y-axis is adjusted to magnify the differences
between models. Threshold 0.8722 is used for the KC and GP models, and 0.5 for the
non-spatial EMVS model.

i.e., when activation strength is weak. This is because the MO-GP model induces a

probability inflation effect, i.e., if a spatial region contains true activated voxels, other

non-activated voxels in the region will also have a relatively high probability of acti-

vation. One can clearly see this inflation effect in the estimated posterior probability

map shown in Figure 5.12 (a). This effect increases the chance of false positives around

true activated voxels, and so, the detection of active voxels for the spatial GP model

is sensitive to the choice of the threshold value for detecting activation. Even though
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Figure 5.11: ROC curve under case LL (left) and case HL (right) for the MO models:
MO-KC (blue-solid), MO-GP (red-dash) and MO-EMVS (brown-dot).

those voxels are not misclassified as activated in this example, this kind of map is not

reasonable because two neighboring voxels that behave similarly may have significantly

different probabilities of activation due to their spatial region assignment. On the con-

trary, the KC spatial model does not have this unfavorable effect and produces a more

reasonable probability map. Note also that the probability inflation effect for the GP

model is much smaller when complex-valued data and models are used, as one can see

in Figure 5.12 (b).

5.4 Analysis of human CV-fMRI data

We also analyzed human data recorded during an fMRI experiment performed

on a single subject on a 3.0-T General Electric Signa LX magnetic resonance image

scanner. The experiment consisted of a unilateral finger-tapping task performed with
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(a) MO models. Left: MO-GP. Right: MO-KC

(b) CV models. Left: CV-GP. Right: CV-KC

Figure 5.12: Posterior probability maps for GP and KC models. The maps are gener-
ated from a high SNR and high CNR simulated data set.

a visual cue indicating whether to tap or rest. A block designed experiment with

an initial 20 s of rest followed by 16 epochs of 15 s on and 15 s off was used. The

full dataset is composed of seven 2.5 mm thick axial slices of dimension 96 × 96.

A single slice was used for the analysis presented here. Further details about the

experiment, the data, and previous analyses of these data are found in Karaman et al.

(2014) and Yu et al. (2018). The original time series at each voxel had 510 TRs,

however, following the approach of Karaman et al. (2014), we discarded the first 20

observations for the analysis. Activation from this finger-tapping experiment is well-

studied. Our goal here is to demonstrate that our novel Bayesian complex-valued

spatial method is able to simultaneously produce activation results that are consistent
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Figure 5.13: Activation of human subject CV-fMRI. Left: Activation map from KC-
S with threshold 0.8722. Middle: Activation map from CV-GP with threshold 0.5.
Right: Activation map from non spatial EM with threshold 0.5.

with previous analyses with the additional benefit of reducing of spurious activations,

such as detecting activations outside the brain or in regions that are not implicated in

the finger tapping task.

Yu et al. (2018) have shown that their C-EMVS approach removes many false

positives outside the brain area and improves detection of activation in the expected

motor-related brain regions with respect to results obtained with a complex-valued

model proposed in Karaman et al. (2014). Here, we further improve activation results

by using our proposed spatial models. We begin by parcellating the image into 36

equal-sized squared spatial regions containing 36 voxels each, and then fit the CV-KC

and CV-GP models to the complex-valued human subject data set. Figure 5.13 shows

the activation maps derived from the CV-KC, CV-GP and C-EMVS models under

a threshold value of 0.5 for detecting activation. Clearly, spatial models eliminate

isolated voxels around the brain margin incorrectly labeled as active by the C-EMVS

approach. In addition, spatial modeling encourages activation in groups or clusters
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of voxels. Both, the CV-KC and CV-GP models detect more activated voxels in the

expected motor-related brain regions located on the left of the brain. These results

are biologically plausible because execution of complex cognitive tasks usually involve

populations of neurons spanning across many voxels rather than a single voxel.

(a) CV-KC voxel-level spatial effect

(b) CV-GP region-level spatial effect

Figure 5.14: Posterior mean of the spatial random effects and their corresponding
logistic transformations for the complex-valued human data: (a) results from the CV-
KC model; (b) results from the CV-GP model.

In order to focus on a smaller portion of the image that reduces areas outside

the brain, an image of size 56×56 was furthered examined. This image was parcellated

into 64 equally-sized regions, each containing 49 voxels. Figure 5.14 shows the voxel-

level spatial effects inferred by the CV-KC model and the region-specific spatial effects
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inferred by the CV-KC and the CV-GP models for this reduced image. The CV-

KC model generates smooth and localized maps of the estimated spatial effects that

show the strength of the spatial effects adequately concentrated around the active

regions. On the other hand, the maps of estimated spatial effects are neither smooth

nor localized.

Figure 5.15 shows the posterior probability maps obtained from the posterior

samples of ψ. We note that for this particular data set, the activation results are not

so different for the CV-KC and CV-GP approaches when threshold values of 0.5 or

0.8722 are used for detecting activation. However, once again, we see that the CV-

KC model leads to probability maps that are less uncertain than the maps obtained

from the CV-GP model, e.g., there are less voxels with probabilities different from zero

around the central activated region for the CV-KC maps. This is a clear advantage of

the CV-KC approach, as more precise posterior probability maps for activation lead

to final activation results are less sensitive to the choice of the threshold value used for

detecting activation.

5.5 Discussion

We propose a new Bayesian spatial model via kernel convolution for detecting

brain activation from CV-fMRI signals at the voxel-specific level. Our simulation

studies show that the Bayesian complex-valued spatial methods lead to more true

positives and less false positives than models that do not include a spatial structure,

especially when the CNR is small. This is due to the fact that complex-valued models,
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Figure 5.15: Posterior probability maps of human subject CV-fMRI. Left: CV-KC.
Right: CV-GP. Uncolored voxels have posterior probability of activation numerically
zero.

even those with no explicit spatial structure, use the additional information provided

by the phase data to produce more accurate activation results, specially when the SNR

is small.

We also see that our kernel-based complex-valued model outperforms the

competing GP model by cleverly borrowing spatial information from neighboring vox-

els. Therefore, the CV-KC approach produces more precise posterior probability maps

than the CV-GP model. Moreover, the CV-KC model is not very sensitive to the

number of spatial regions, leading to dimension reduction and consequently decreas-

ing the computational time for obtaining posterior inference. Future extensions of the

models presented here will consider modeling functional connectivity through the agj

to capture long distance spatial dependencies.

Once again, we strongly recommend the use of CV-fMRI data and related

models for detecting activation at the voxel level in fMRI task-related studies. Adding

a spatial structure will definitely improve the performance of the complex-valued model
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for detecting brain activation at the voxel level, but is computationally more costly

than using a complex-valued model with no spatial structure. Having this in mind, we

strongly advocate for the use of complex-valued models with probabilities of activation

modeled using a spatial kernel-convolution approach for the following reasons. First, as

shown in our simulation studies, these models lead to more flexible spatial modeling and

more accurate estimated probability activation maps, and so, they are less sensitive to

the choice of the threshold value that determines activation at the voxel level. Second,

the complex-valued kernel-convolution models lead to dimension reduction and allow

us to easily incorporate multi-resolution components to obtain more precise results

without significantly increasing the computational efficiency.
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Chapter 6

Multi-subject Bayesian spatial

model for task-related CV-fMRI

activation and connectivity

In this chapter, we generalize the spatial model proposed in the previous

chapter into a multi-subject model. The model allows us not only to detect activation

at the voxel level in multi-subject CV-fMRI, but also to infer connectivity by finding

which areas of the brain are related in terms of activation. Therefore both, local spatial

dependence and long distance connections between brain regions, can be captured by

the multi-subject model.
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6.1 Multi-subject model for CV-fMRI data

Given voxel-wise data, it is computationally challenging to estimate connec-

tivity at the voxel level. Thus, common connectivity analyses focus on inferring the

relationship between the fMRI time series from a given set of regions of interests or

ROIs. In the previous chapter, the image is parcellated into several spatial regions and

a local spatial structure across neighboring voxels is induced through these regions

using Gaussian processes or via kernel convolutions.

In this chapter we propose multi-subjects models for detecting activation

and connectivity that use two types of brain regions. One set of regions is defined

through a relatively fine grid, as illustrated in the previous chapter, with the purpose of

inducing local spatial structure across neighboring voxels. Then, another coarser set of

regions, usually referred to as regions of interest or ROIs, is defined and our model uses

the information provided by the multi-subject data to estimate brain connectivity by

inferring co-activation patterns across these regions. The ROIs are typically provided

by the neuroscientists, defined using a brain atlas or via prior information provided by

other imaging modalities such as structural MRI of diffusion tensor imaging (DTI).

6.1.1 Multi-subject hierarchical model

We generalize the spatial models proposed in the previous chapter, i.e., CV-

KC and CV-GP into multi-subject models. Specifically, for subject s = 1, . . . , n, time

t = 1, . . . , T , voxel v = 1, . . . , V , local spatial region g = 1, . . . , G, ROI d = 1, . . . , D
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and task j = 1, . . . , p, our full complex-valued multi-subject KC model1 is

yv(s) = X
(
ψv(s)

)
γv(s)

(
ψv(s)

)
+ ηv(s), ηv(s) ∼ CN

(
0, 2σ2vI,0

)
,

γv(s)

(
ψv(s)

) ∣∣ ψv(s), σ2v ind∼ CNp

(
γ̂v(s)

(
ψv(s)

)
, 2Tσ2v

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
,0

)
,

γ̂v(s)

(
ψv(s)

)
=

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
X′
(
ψv(s)

)
yv(s),

σ2v | aσ, bσ
iid∼ IG (aσ, bσ) ,

ψv(s),j | a
d
(s), S

v
j ∼ Bernoulli

(
1

1 + e
−
(
ad
(s)

+Svj

)
)
,

Svj | φ,w(j) =

G∑
g=1

k (zv − sg;φ)wgj (6.1)

wgj | τ
2 ind∼ N

(
0, τ2j

)
,

τ2j | aτ , bτ
iid∼ Ga (aτ , bτ ) ,

φ | aφ, bφ ∼ Ga (aφ, bφ) ,

a(s) =
(
a1(s), . . . , a

D
(s)

)′ iid∼ ND

(
µ,Σ = Ω−1

)
,

µ = (µ1, . . . , µD)′ ∼ ND (0, I) ,

Ω | r0,Ω0 ∼WishartD (r0,Ω0) .

The connectivity is estimated through the correlation structure of the parameter

a =
(
a(1), . . . ,a(n)

)
with a(s) =

(
a1(s), . . . , a

D
(s)

)
whose components appear in the

Bernoulli prior

Bernoulli

(
1/

(
1 + e

−
(
ad
(s)

+Svj

)))
. By doing so, the model can potentially utilize con-

nectivity information to further improve activation detection (Ng et al., 2011; Yoldemir

1The multi-subject model can also be generalized from the GP model in the previous chapter.
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et al., 2013). Instead of assuming that a1(s), . . . , a
D
(s) are constants representing prior

external anatomical information as in the spatial GP or KC models in the previous

chapter, here a(s) is assumed normally distributed with a mean vector µ and precision

matrix Ω. Therefore, the connectivity structure is captured by the D × D precision

matrix Ω or equivalently, the covariance matrix Σ = Ω−1 that shows the conditional

dependence or correlation between the D connectivity regions or ROIs.

To keep the model and its MCMC algorithm computationally efficient, a

simple and natural choice of prior for Ω is the conjugate Wishart distribution, i.e.,

Ω ∼ Wishart (r0,Ω0). Also, using a Wishart prior always leads to a positive definite

posterior estimate for Ω. When no prior information about the connectivity across

ROIs is available, one can choose the Wishart prior whose mean is the identity matrix,

that is, Ω0 = 1
r0

I. The degrees of freedom r0 in the prior can be seen as the “prior

sample size”. The larger r0 is, the more the posterior estimate will shrink to the

identity matrix. The least informative but proper Wishart prior is obtained by setting

r0 = D. It should be noticed that our connectivity is not directly estimated by the

correlation between time series of ROIs. Instead, the connectivity estimation is mainly

based on n replicates of correlated connectivity parameters
(
a(1), . . . ,a(n)

)
which is

usually much smaller than T . As a result, when there are many ROIs and relatively few

subjects, D can be large and even larger than n. In this situation, even using the least

informative proper prior may result in huge shrinkage to the identity matrix because

information from the data is weighted less comparing to the prior information due to

a small sample size n. Therefore, in order to obtain accurate connectivity results, the
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number of subjects has to be larger than the number of ROIs or, alternatively, some

prior information about connectivity needs to be included through the prior on Ω. If

only a small number of subjects have participated in the study, a smaller number of

ROIs should be considered. In addition, note that the ROIs do not need to cover the

entire brain or all the voxels in the image. For those voxels that do not belong to

any ROI, their parameter ad(s) in the Bernoulli prior can be set to zero. An improper

Wishart prior, i.e., a prior with r0 < D, could also be considered if the posterior

distribution remains proper. However, if an improper prior is used when n is small, a

noisy estimation is expected.

Note that in our proposed model, the spatial effects Svj are voxel-specific but

not subject-specific. While subjects have their own individual characteristics, they

also share common features. Therefore, common spatial effects Svj across subjects can

be seen as a group-level effect borrowing information about local dependence from all

subjects. Subject-specific ad(s), on the other hand, is a subject-level effect that account

for individual differences.

6.1.2 Posterior inference

Let ψ =
(
ψ(1), . . . ,ψ(n)

)
be the collection of indicator variables for iden-

tifying activation in all voxels and subjects, and ψ(s) =
(
ψ1

(s), . . . ,ψ
V
(s)

)
, ψv(s) =(

ψv(s),1, . . . , ψ
v
(s),p

)
. Let γ =

(
γ(1)

(
ψ(1)

)
, . . . ,γ(n)

(
ψ(n)

))
be the collection of regres-

sion coefficients corresponding to expected BOLD signals in all voxels and subjects,

and
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γ(s)

(
ψ(s)

)
=
(
γ1
(s)

(
ψ1

(s)

)
, . . . ,γV(s)

(
ψV(s)

))
. w =

(
w(1), . . . ,w(p)

)
, w(j) =(

w1
j , . . . , w

G
j

)
, τ 2 =

(
τ21 , . . . , τ

2
p

)
, a =

(
a(1), . . . ,a(n)

)
, σ2 =

(
σ21, . . . , σ

2
V

)
and S(j) =

Kw(j) where K = K(φ) is the matrix with elements k (zv − ug;φ). Without loss of

generality, we assume φ is a scalar greater than zero. Based on the model and prior

setup provided above in the previous section, the posterior distribution of the full

multi-subject model is given by

q
(
γ (ψ) ,ψ,w, τ 2,σ2,a,µ,Ω | y

)
∝ p

(
y | γ (ψ) ,ψ,σ2

)
π
(
γ (ψ) | ψ,σ2

)
π
(
σ2
)

× π (ψ | w, φ,a)π
(
w | τ 2

)
π
(
τ 2
)
π (φ)

× π (a | µ,Ω)π (µ)π (Ω) .

Integrating γ, σ2 and τ 2 out, we obtain the density of y given ψ:

p (y | ψ) =

V∏
v=1

(1 + T )
−
∑n
s=1 q

v
(s)

(
1

2

n∑
s=1

Mv
(s) + bσ

)(nT+aσ)

,

where Mv
(s) =

(
yv(s)

)′
yv(s) −

(
yv(s)

)′
X (ψ)

(
X (ψ)′X (ψ)

)−1
X (ψ)′ yv(s), and qv(s) is the

number of tasks for which voxel v of subject s is activated, i.e., qv(s) =
∑p

j=1 ψ
v
(s),j .

Then, the marginal posterior is

q (ψ,w, φ,a,Ω | y) ∝ p (y | ψ)π (ψ | w, φ,a)π (w)π (φ)π (a | µ,Ω)π (µ)π (Ω) .

We then infer the parameters ψ,w, φ,a and Ω via a MCMC algorithm that allows

us to obtain posterior samples from this marginal posterior using Metropolis-Hastings
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steps and/or Gibbs steps as follows:

• Sampling ψv(s),j : For j = 1, . . . , p, v = 1, . . . , V and s = 1, . . . , n,

q
(
ψv(s),j

∣∣ ψ−v(−s),−j , ψ
−v
(−s),−j ,w(j),a, φ,y

)
∝ p (y | ψ)π

(
ψv(s),j

∣∣ w(j), φ,a(s)

)
,

and π
(
ψv(s),j

∣∣ w(j), φ,a(s)

)
= Bernoulli

(
1

1+e
−
(
ad
(s)

+K′v(φ)w(j)

)
)
. Therefore, each

ψv(s),j can be drawn from a Bernoulli distribution with the probability of activa-

tion proportional to p (y | ψ)Bernoulli

(
1

1+exp
{
−
(
ad
(s)

+K′v(φ)w(j)

)}
)

.

• Sampling wgj : For j = 1, . . . , p and g = 1, . . . , G, we have that the conditional

density of wgj is given by

q
(
wgj
∣∣ w

(−g)
(−j) ,ψ, φ,a,y

)
∝ π

(
ψ(j) | w(j), φ,a

)
π
(
wgj

)
=

(
n∏
s=1

V∏
v=1

π
(
ψv(s),j | w(j), φ,a

))
π
(
wgj

)
.

A Metropolis-Hastings step with a normal random walk proposal(
wgj

)∗
∼ N

((
wgj

)(m)
, σ2

wgj

)
is used to sample wgj , where

(
wgj

)(m)
is the current

state and σ2
wgj

is a tuning parameter.

• Sampling φ: The full conditional of φ is

q (φ | ψ,w,a,y) ∝ π (ψ | w, φ,a)π (φ)

=

 n∏
s=1

p∏
j=1

V∏
v=1

π
(
ψv(s),j | w(j), φ,a(s)

)π (φ) .

A Metropolis-Hastings step with a normal random walk proposal for ξ = log(φ),
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ξ∗ ∼ N
(
ξ(m), σ2ξ

)
is used to sample ξ and hence φ, where ξ(m) is current state

value and σ2ξ is a tuning parameter.

• Sampling a(s): For s = 1, . . . , n,

q
(
a(s)

∣∣ a−(s),ψ,w, φ,µ,Ω,y) ∝ π (ψ | w, φ,a)π (a | µ,Ω)

=

 n∏
s=1

p∏
j=1

V∏
v=1

π
(
ψv(s),j

∣∣ w(j), φ,a(s)

)
×N

(
a(s) | µ,Ω−1

)
.

Block move update for a(s) and a random walk proposal a∗(s) ∼ ND

(
a
(m)
(s) ,Σa(s)

)
is used, where a

(m)
(s) is the current state and Σa(s)

is the tuning covariance matrix.

• Sampling µ: The full conditional of µ is

q (µ | ψ,w, φ,a,Ω,y) ∝ π (a | µ,Ω)π (µ) = ND

(
a(s) | µ,Ω−1

)
ND (µ | 0, I)

∼ ND

(
(I + nΩ)−1 Ωna, (I + nΩ)−1

)
,

where a = 1
n

∑n
s=1 a(s). Then µ is directly sampled from the multivariate normal

distribution above.
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• Sampling Ω: The full conditional of Ω is

q (Ω | ψ,w, φ,a,µ,y) ∝ π (a | µ,Ω)π (Ω)

=

(
n∏
s=1

ND
(
a(s) | µ,Ω−1

))
×Wishart (Ω | r0,Ω0)

∝ |Ω|−
n+r0−D−1

2 exp

(
−1

2
tr

(
n∑
s=1

a(s)

(
a(s)

)′
+ Ω−1

0

)
Ω

)

∼ WishartD

n+ r0,

(
n∑
s=1

(
a(s) − µ

) (
a(s) − µ

)′
+ Ω−1

0

)−1
 .

Ω is directly sampled from the Wishart distribution above.

Details of the algorithm can be found in Appendix A.6.

6.2 Simulation study I

In this study we consider a data set and a model without spatial random

effects, and focus on obtaining posterior inference for the parameters a and Σ.

The simulated image is of size 12×12 containing V = 144 voxels. In the study,

the ROIs are D = 9 equally-sized grids each containing 16 voxels. The left panel of

Figure 6.1 shows the 9 brain ROIs. Two regions are correlated if an edge is connected

between the nodes of the regions. Therefore, for the 9 ROIs, the following region pairs

are correlated: (1, 3), (1, 7), (1, 9), (3, 7), (3, 7), and (7, 9). Dark green edges indicate

negative correlation, while red edges indicate positive correlation. The middle and

right subplots of Figure 6.1 show the true covariance Σ and precision matrix Ω used

in the simulated data. The covariance matrix has all diagonal values being equal to

one and hence it is also a correlation matrix. The positive and negative correlation
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values between two regions are 0.7 and −0.7, respectively.

Figure 6.1: Left: 9 equally-sized connectivity brain regions. Two regions are corre-
lated if an edge is connected between the nodes of the regions. Dark green edges
indicate negative correlation while white edges indicate positive correlation. Middle:
Covariance (correlation) matrix. Right: precision matrix.

Given the precision matrix Ω, the connectivity parameters a(s), s = 1, . . . , 30

are then generated from a D = 9 dimensional multivariate normal distribution

N9

(
µ,Σ = Ω−1

)
, where µ is assumed to be a vector (0,−3, 0,−3,−3,−3, 0,−3, 0).

Drawn from N9 (µ,Σ), the vectors a(1), . . . ,a(30) have mean (−0.07,−2.74, 0.09,−2.96,

−3.00,−3.13, 0.03,−3.23, 0.15). With each a(s), the true activation pattern for each

subject is then generated by ψv(s) | a
d
(s) ∼ Bernoulli

(
1

1+exp
{
−ad

(s)

}
)

. Notice that we

expect regions 1, 3, 7 and 9 to have more activated voxels than other regions because

about half of voxels in regions 1, 3, 7 and 9 are activated, and very few voxels in the

remaining regions, indexed as 2, 4, 5, 6 and 8, are activated due to their small values of

ad(s), d ∈ 2, 4, 5, 6, 8. In addition, voxels in regions 1 and 9 tend to be activated together

as the two regions are positively correlated. Voxels in regions 3 and 7 behave similarly.

Moreover, when regions 1 and 9 yield more activated voxels, there are less activated

voxels in regions 3 and 7 and vice versa due to the negative correlation between those
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regions.

We consider 30 subjects who perform one task that produces similar activation

maps. Specifically, in this simulation, there are two types of subjects. Some subjects

show co-activation of regions 1 and 9, while some show co-activation of regions 3 and

7. Figure 6.2 shows the true activation maps of subjects 1, 10, 26 and 30. For subjects

1 and 10, they have more activated voxels in regions 1 and 9, while subjects 26 and

30 have more activated voxels in regions 3 and 7. Note that subjects do not have

the same activation map because whether a voxel in a subject’s image is activated or

not is determined by its associated indicator variable that is randomly drawn from a

Bernoulli distribution.

Figure 6.2: Activation maps of subject 1, 10, 26 and 30.

Figure 6.3: Experimental design and expected BOLD signal with canonical HRF.

Finally, for v = 1, . . . , 12 × 12, t = 1, . . . , 200, and subject s = 1, . . . , 30, the
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real and imaginary time series components were simulated as follows:

yvt,Re,(s) =
(
βv,0 + βv,1

(
ψv(s)

)
xt

)
cos (α0) + ηvt,Re,(s), ηvt,Re,(s) ∼ N

(
0, σ2

)
,

yvt,Im,(s) =
(
βv,0 + βv,1

(
ψv(s)

)
xt

)
sin (α0) + ηvt,Im,(s), ηvt,Im,(s) ∼ N

(
0, σ2

)
,

(6.2)

where again xt is the expected BOLD signal, and α0 = π/4 as used in Chapters 4 and 5.

The experimental design and expected BOLD signal, xt, obtained using the canonical

HRF are shown Figure 6.3. For βv,0 and βv,1, we use the case LL (βv,0, βv,1) = (1, 2)

and set σ2 = 3 as in Chapter 5.

We then fit the following model to the simulated data set:

yv(s) = X
(
ψv(s)

)
γv(s)

(
ψv(s)

)
+ ηv(s), ηv(s) ∼ CN

(
0, 2σ2vI,0

)
,

γv(s)

(
ψv(s)

) ∣∣ ψv(s), σ2v ind∼ CNp

(
γ̂v(s)

(
ψv(s)

)
, 2Tσ2v

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
,0

)
,

γ̂v(s)

(
ψv(s)

)
=

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
X′
(
ψv(s)

)
yv(s),

σ2v | aσ, bσ
iid∼ IG (1/2, 1/2) , ψv(s) | a

d
(s) ∼ Bernoulli

(
1

1 + e
−ad

(s)

)
,

a(s) | µ,Ω
iid∼ ND

(
µ,Ω−1

)
, µ ∼ ND (0, I) ,

Ω | r0 ∼WishartD (r0, (1/r0)I) .

For the parameter r0, we set r0 = D = 9, leading to the least informative proper

Wishart prior. Later, we will discuss the effect of r0 on the posterior connectivity

structure.

We first examine the convergence behavior of the parameters a and µ. Figure

6.4 shows the traces, histograms, and ergodic means of posterior samples of a2(1), a
2
(10),
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a2(26), a
2
(30) and µ2, that is, the connectivity comes from Σ for the second region and

for subject 1, 10, 26 and 30. µ2 represents the overall mean of the second connectivity

region effect averaged over a2(s), s = 1, . . . , 30. The trace plots show that mixing of the

chain is good; the 2.5% and 97.5% quantiles and posterior means go to a steady state

showing a healthy convergent behavior.

Figure 6.5 shows the posterior means of the overall means of the parameter

a and its corresponding true mean. Specifically, the posterior values in the images are

obtained as 1
M

∑M
m=1

1
30

∑30
s=1

(
ad(s)

)(m)
, d = 1, . . . , 9, where

(
ad(s)

)(m)
is the posterior

sample of ad(s) of the m-th MCMC iteration. The true values in the image are given by(
1
30

∑30
s=1 a

d
(s)

)
, for d = 1, . . . , 9. The posterior estimates are close to the true values

of a, and correctly identify regions 1, 3, 7 and 9 that have more activated voxels.

Figure 6.6 shows the posterior mean covariance matrices with n = 30 under

the (improper) reference prior r0 = 0, improper Wishart prior with r0 = 5, Wishart

prior with r0 = D = 9 and the true covariance matrix. The posterior distribution of

Ω is proper as long as n+ r0 ≥ D. Note that our prior mean covariance matrix is the

identity matrix. Conditional on y and other parameters, at each MCMC iteration m,

the conditional posterior mean covariance matrix can be broadly viewed as a weighted

average of the covariance of samples of a
(m)
(s) and the prior mean covariance Ω0, weighted

by the sample size n and prior sample size r0, providing a ridge-type estimation.

Precisely speaking, the eigenvalues of the conditional posterior mean covariance matrix

of a(s), λ̂d, are n
n+r0

λd + r0
n+r0

1, where λd are the eigenvalues of the covariance matrix

computed by a
(m)
(s) . Therefore, any correlation between region d and region d′, d 6= d′
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Figure 6.4: Traces, histograms, and ergodic means of posterior samples of a2(1), a
2
(10),

a2(26), a
2
(30) and µ2. Gold vertical lines in the histograms denote the true parameter

values. Red dashed lines indicate 2.5% and 97.5% quantiles.
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Figure 6.5: Images of posterior mean of overall mean of connectivity parameter a (left)
and its corresponding true means (right).

Figure 6.6: Left to right: posterior mean covariance matrices when n = 30 under
the (improper) reference prior r0 = 0, Wishart prior with r0 = 5, Wishart prior with
r0 = D = 9 and the true covariance matrix.

will shrink more to zero as r0 increases. This type of shrinkage effect also happens on

the posterior distribution of Σ. This can be seen in Figure 6.6, as the absolute values

of off-diagonal correlations under r0 = 9 are smaller than the values when the reference

prior is used.

On the other hand, the Wishart prior makes the conditional posterior covari-

ance matrix more well-conditioned as the prior increases sample eigenvalues λd smaller

than one and shrinks λd greater than one. When the number of subjects is much

less than the number of unknown elements to be estimated in the precision matrix,

i.e., n � 1
2D(D + 1), the eigenstructure of the sample covariance matrix computed
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Threshold Sensitivity Specificity Precision Accuracy

0.5 1 0.998 0.985 0.999
0.8722 1 1 1 1

Table 6.1: Mean of sensitivity, specificity, precision and accuracy over 30 subjects.

by MCMC samples of a(s) is ill-conditioned, and leads to a large estimation error.

In this case, a moderate r0 helps us get a more stable posterior covariance matrix.

The posterior covariance of Ω behaves similarly as the conditional posterior covariance

generated from Wishart density.

Figure 6.7: Posterior distribution of some covariance elements under the reference
prior. Top: non-zero elements Σ17, Σ19, Σ37, Σ39. Bottom: zero elements Σ12, Σ23,
Σ34, Σ35. Blue lines indicate the true value and green lines show the posterior mean.
Red lines are 5% and 95% quantiles of the distribution.

Figure 6.7 shows the full posterior for some elements of the covariance matrix.

In general, the distributions are either right or left-skewed depending on whether the

true value is negative or positive. When the true correlation is zero, the posterior

distribution is more symmetric.
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Figure 6.8: Posterior probability maps of subject 1, 10, 26 and 30.

Figure 6.8 and Table 6.1 show how well the model recovers the simulated

activation. There will be only one false positive for subject 1, 10, 26 and 30 when 0.5

is used as the threshold. The mean posterior probabilities across 30 subjects are close

to either 1
1+exp{−0} or 1

1+exp{3} depending on the mean of the connectivity parameter

a or µ at different regions. Therefore, our model adequately captures the underlying

co-activation and voxel-level activation for each of the 30 subjects in the simulated

data.

6.3 Simulation study II

In this section we generate a multi-subject simulated data set that has the

same image size and activation areas as the simulated data set generated in Chapter

5 Figure 5.2. We then fit three different models, independent C-EMVS models on

each subject, the multi-subject model proposed in this chapter with and without the

spatial effect. Here, we model the spatial effect through kernel convolution S = Kw.

We compare the different models in terms of their inferred activation and connectivity

structures.
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We consider 30 subjects who perform one task that produces three brain

activation areas as in Figure 5.2 in Chapter 5. To account for individual differences,

each subject has different activation strengths in the three areas which are generated

from a multivariate normal distribution centered at the values used in the case LL, i.e.,

(βv,0, βv,1) = (1, 2) in the simulation study in Chapter 5. Specifically, the simulated

image is of size 20× 20 containing V = 400 voxels. Six ROIs are created as shown in

the left panel of Figure 6.9. Regions 1, 3 and 5 are assumed to be connected, and the

correlation matrix Σ of the six regions is shown in the right panel in Figure 6.9. The

nonzero correlations are fixed at value 0.7.

Figure 6.9: Left: connectivity regions of the simulated data. Right: correlation matrix
of the connection regions.

We generate the coefficients βv(s),1 as follows. For each subject s = 1, . . . , 30,

active voxels in the same region d have the same value of coefficient β
(d)
(s),1. That is,

βv(s),1 = β
(d)
(s),1 for all v ∈ d. Similarly, non-active voxels in the same region have

the same value of the coefficient. Notice that the proposed model describes the con-

nectivity structure through the correlation between the ROIs in the Bernoulli prior

for the indicator variables ψ. Unlike Simulation study I that generates the cor-
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related indicators from the model, in this simulation, the connectivity structure is

described by the correlation between the coefficients of the associated regions. De-

note the coefficients in the ROIs 1, 3, and 5 by βact(s),1 =
(
β
(1),act
(s),1 , β

(3),act
(s),1 , β

(5),act
(s),1

)
and

βnon(s),1 =
(
β
(1),non
(s),1 , β

(3),non
(s),1 , β

(5),non
(s),1

)
for active and non-active voxels respectively. Then

βact(s),1 is generated by βact(s),1 ∼ N3 (2× 13, 0.05Σ3) for activated voxels, and βnon(s),1 is

generated by βnon(s),1 ∼ N3 (03, 0.05Σ3) for non-active voxels, where 13 = (1, 1, 1)′ and

Σ3 is the sub-correlation matrix of the connectivity regions 1, 3 and 5. By doing so,

individual differences are induced as each subject s would have different coefficient

sizes, centered around either 0 or 2. For ROIs 2, 4, 6, their simulated coefficients are

generated independently by N(0, 0.05).

Figure 6.10 shows the simulated coefficients βv(1),1, β
v
(2),1 and βv(3),1, for v =

1, . . . , 20 × 20. Clearly, each subject has different coefficient values, i.e., different

activation strengths, and will have different activation estimation results, but the true

activation maps are the same for the 3 subjects.

Figure 6.10: Simulated coefficients βv(1),1, β
v
(2),1 and βv(3),1, v = 1, . . . , 20× 20.

Finally, for each subject s = 1, . . . , 30, at voxel v = 1, . . . , 20 × 20 and time
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t = 1, . . . , 50, the real and imaginary parts of time courses are simulated as follows:

yvt,Re,(s) =
(
βv,0 + βv(s),1xt

)
cos (α0) + ηvt,Re,(s), ηvt,Re,(s) ∼ N

(
0, σ2

)
,

yvt,Im,(s) =
(
βv,0 + βv(s),1xt

)
sin (α0) + ηvt,Im,(s), ηvt,Im,(s) ∼ N

(
0, σ2

)
,

(6.3)

where again xt is the expected BOLD signal. βv,0 = 1, α0 = π/4 and σ2 = 3 are used

as in the previous simulation.

We consider 3 different approaches, labeled as A, B and C, to analyze the

simulated data, where the first method uses the single-subject C-EMVS model and the

other two are multi-subject models with and without spatial effects, i.e.,

A. Independent single-subject C-EMVS on each subject 1, . . . , 30. The independent

single-subject C-EMVS is the model (4.8) in Chapter 4, that is,

yv = Xγv + ηv, ηv ∼ CNT

(
0, 2σ2vI,0

)
,

γv | ψv ∼ (1− ψv)CN1

(
0, 2v0σ

2, 0
)

+ ψvCN1

(
0, 2v1σ

2, 0
)
,

σ2 ∼ IG (1/2, 1/2) , ψv | θ ∼ Bernoulli (θ) , θ ∼ Beta (1, 1) .

The parameter settings are the same as the setting in the first simulation study

discussed in Chapter 4.
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B. Multi-subject model without the spatial effects S. The model is

yv(s) = X
(
ψv(s)

)
γv(s)

(
ψv(s)

)
+ ηv(s), ηv(s) ∼ CN

(
0, 2σ2vI,0

)
,

γv(s)

(
ψv(s)

) ∣∣ ψv(s), σ2v ind∼ CNp

(
γ̂v(s)

(
ψv(s)

)
, 2Tσ2v

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
,0

)
,

γ̂v(s)

(
ψv(s)

)
=

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
X′
(
ψv(s)

)
yv(s),

σ2v | aσ, bσ
iid∼ IG (1/2, 1/2) , ψv(s) | a

d
(s) ∼ Bernoulli

(
1

1 + e
−ad

(s)

)
,

a(s) | µ,Ω
iid∼ ND

(
µ,Σ = Ω−1

)
, µ ∼ ND (0, I) ,

Ω | r0 ∼WishartD (r0, (1/r0)I) .

C. Multi-subject model with the spatial effects using kernel convolution. The fitted

full multi-subject model is

yv(s) = X
(
ψv(s)

)
γv(s)

(
ψv(s)

)
+ ηv(s), ηv(s) ∼ CN

(
0, 2σ2vI,0

)
,

γv(s)

(
ψv(s)

) ∣∣ ψv(s), σ2v ind∼ CNp

(
γ̂v(s)

(
ψv(s)

)
, 2Tσ2v

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
,0

)
,

γ̂v(s)

(
ψv(s)

)
=

(
X′
(
ψv(s)

)
X
(
ψv(s)

)−1)
X′
(
ψv(s)

)
yv(s),

ψv(s) | a
d
(s), S

v ∼ Bernoulli

(
1

1 + e
−
(
ad
(s)

+Sv
)
)
, σ2v

iid∼ IG (1/2, 1/2) ,

Sv | φ,w =
G∑
g=1

k (zv − sg;φ)wg, wg | τ2 ind∼ N
(
0, τ2

)
,

τ2
iid∼ IG (1/2, 1/2) , φ | aφ, bφ ∼ Ga (aφ, bφ) ,

a(s)
iid∼ ND

(
µ,Σ = Ω−1

)
, µ ∼ ND (0, I) ,

Ω | r0 ∼WishartD (r0, (1/r0)I) .
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Here we use the reference prior for Σ−1 for both methods B and C.

Figure 6.11 shows the correlation estimation at the 5% quantile, 95% quantile

and posterior mean derived from method B. Although the nonzero correlations are

underestimated, the model can adequately capture the connectivity structure, even

though these data were not simulated from this model. The estimation from method

C is similar to the estimation from method B, and method A is not able to learn the

connectivity structure as the C-EMVS treats each subject independently.

Figure 6.11: 5% quantile, 95% quantile and posterior mean of the correlation matrix
of a(s).

For activations, we first examine how the detection activation performance

can be improved when a multi-subject model is used, and then check how spatial effects

from kernel convolutions further improve the detection performance.

Figure 6.12 shows the estimate activation maps for subjects 1, 2 and 3 with

threshold value of 0.5 to detect activation from the three approaches. Since subject 1

has smaller regression coefficients, i.e., weaker activation strengths, as shown in Figure

6.10, we expect to see less activated voxels for subject 1. One can see that the single-

subject C-EMVS leads to more false positives than the multi-subject models. This is
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reasonable because the multi-subject models can borrow information across subjects

and learn that voxels in ROIs 2, 4 and 6 tend to be non-activated. Furthermore, when

the spatial effects are included in the model, the local dependence between neigh-

boring voxels is more adequately captured by kernel convolution. Therefore, the full

multi-subject spatial model detects more true positives that are missed when the local

dependence is not characterized in the model. Table 6.2 shows sensitivity, specificity,

precision and accuracy measures for the three models. Simply using the multi-subject

model without spatial effects can increase precision, comparing to single-subject C-

EMVS analysis. When the latent spatial effects are in the model, the power, or true

positive rate, also increases significantly.

To examine the activation pattern at the population level, the overall ac-

tivation map can be derived from averaging activation maps over all subjects. One

advantage of MCMC is that uncertainty can be quantified. Hence, we could also av-

erage posterior probabilities from the MCMC samples over all subjects. Figure 6.13

shows the proportion of voxels being activated in 30 subjects. Single-subject C-EMVS

produces some false positives in the individual images, but it can capture the over-

all activation pattern as the multi-subject models. Once again we see that when the

spatial effects are included, more voxels are classified as activated in the three true ac-

tivation areas, showing high detection power. Figure 6.14 shows uncertainty measures

for the posterior probability maps obtained from the multi-subject models. Clearly,

the full multi-subject model with the kernel convolution spatial effect appropriately

increases the posterior probabilities of activation for the true activation areas. Finally,
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Figure 6.12: Activation maps for subjects 1, 2 and 3 (top, center and bottom) with
threshold value 0.5 from the three fitted models, C-EMVS (left), multi-subject model
without spatial effects (middle), and multi-subject model with spatial effects (right).

the posterior mean of population-level spatial effects, and its corresponding logistic

transformation, from the full multi-subject model are shown in Figure 6.15. Superim-

posing this common population-level effect onto each subject, the multi-subject model

with spatial effect included not only eliminates false positives but also increase true
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Model Sensitivity Specificity Precision Accuracy

A. C-EMVS 0.647 0.984 0.892 0.932
B. Multi w/o S 0.651 0.993 0.956 0.941
C. Multi w/ S 0.810 0.998 0.985 0.969

Table 6.2: Sensitivity, specificity, precision and accuracy of single-subject C-EMVS,
multi-subject without and with spatial effects.

positives.

Figure 6.13: Proportions of activated voxels from approaches A, B and C.

In sum, we find that the multi-subject models eliminate isolated false positives

that are generated from fitting single-subject C-EMVS independently. When the local

spatial structure is included in the model, more true positives are discovered and voxels

tend to be activated in clusters.

6.4 Discussion

This chapter discusses a multi-subject model that can borrow information

from all subjects and improve activation detection at the subject level. The model

can also learn the brain connectivity structure via the correlation between the con-

nectivity regions. Even without spatial effects that describe the local dependence, the
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(a) Model without spatial effect

(b) Model with spatial effect

Figure 6.14: Average posterior probability map over 30 subjects. Left to right: 2.5%
quantile, posterior mean, 95% quantile.
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Figure 6.15: Posterior mean spatial effect and its logistic transformation from the full
multi-subject model.

multi-subject model eliminates false positives shown in the images from C-EMVS. The

common population spatial effect S introduces local dependence and further enhances

detection power.
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Chapter 7

Conclusions

Several application areas, particularly in engineering, require the analysis of

complex-valued datasets. For instance, some radar, sonar, and imaging data are gener-

ated after Fourier transformation (FT) and hence are complex-valued. Neuroimaging

modalities such as fMRI also employ FT and/or inverse FT, and therefore lead to real

and imaginary data, or equivalently, magnitude and phase fMRI. However, mainstream

MR scanners do not output complex-valued raw data by default, but only produce the

magnitude part of complex-valued signals for analysis. Such default setting discard

the phase data. As a result, researchers do not use the complete complex-valued data.

In this thesis we show that statistical models using the entire complex-valued data

improve fMRI brain activation. Therefore, we recommend neuroimaging researchers

to change the MRI scanner setting and make the CV-fMRI data available for analysis.

We first build a complex-valued Bayesian variable selection model to detect

which voxels are activated in task-related CV-fMRI data. A novel complex normal
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spike-and-slab mixture prior is used for variable selection. The proposed computa-

tionally efficient C-EMVS model described in Chapter 4 is shown to produce less

false positives and more true positives than the magnitude-only models, including

magnitude-only EMVS as well as popular lasso and adaptive lasso, especially when

SNR is low, which occurs more frequently in practice due to higher voxel resolutions

of advanced MRI technology. We show that the C-EMVS leads to better activation

strength and noise variance estimates. We also consider a version of the complex-valued

variable selection model that includes a temporal autoregressive process for improved

activation detection. In addition, a complex-valued version of MCMC algorithm is

developed to quantify the uncertainty of activation strength.

In order to explicitly describe spatial dependence of voxels in the image,

we then build a complex-valued Bayesian spatial model via kernel convolution that

further improves detection performance. The kernel-based model takes advantage of

dimension reduction and leads to computational efficiency. We show that this spatial

model encourages local spatial dependence and activation in clusters, which is more

biologically plausible and further increases detection power. The model is also able to

remove isolated false positives and improves specificity. Furthermore, unlike models

using MRFs, the proposed model does not need us to pre-specify the neighboring

structure of a voxel. Instead, the neighboring structure is learned from the data.

Finally, we develop a multi-subject model that can infer brain activation at

the voxel level and connectivity or co-activation across brain regions by borrowing

information across multiple participants. The conjugacy of normal and Wishart priors
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in the model keeps the model simple and computationally feasible. We show that

this multi-subject model can capture how regions of interests are correlated and leads

to less voxels incorrectly labeled as active (false positives) than fitting single-subject

models on each subject separately.

Notice that all of our proposed models are built in Cartesian coordinates and

based on complex-valued linear regression. This linearity makes the models and their

associated algorithms computationally efficient. More importantly, as shown in Chap-

ter 4, the performance of our proposed models can be as good as some nonlinear models

that use the MR signal equation, for example, the DeTeCT-ING model proposed by

Karaman et al. (2014).

In terms of future work, in addition to the complex normal distribution, we

plan to consider using other distributions for complex random variables. We will also

work on alternative approaches for inferring connectivity, especially on how to utilize

the correlation of the real and imaginary parts of the signals. For this purpose, we

expect to collect more real human CV-fMRI data and apply the multi-subject models

to human multi-subject CV-fMRI. Finally, as MR technology requires many prepro-

cessing steps to get the raw data, a key question is how these preprocessing steps affect

complex-valued data and the resulting activation and connectivity inference. Complex-

valued and magnitude data may behave differently depending on the pre-processing

steps. For example, magnitude data may be more sensitive to the spatial-smoothing

steps used in the preprocessing pipeline than complex-valued data, as complex-valued

data contain some additional spatial information.
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In sum, we develop complex-valued Bayesian statistical models and computa-

tionally efficient algorithms for detecting fMRI brain activation and connectivity. The

advantages of using the complex-valued data and our proposed models for inferring

activation and connectivity will hopefully encourage more neuroimaging researchers

to utilize the complete CV-fMRI data. While many sophisticated real-valued spatial-

temporal models have been proposed to improve activation detection performance,

complex-valued modeling provides an opportunity to further improve activation detec-

tion.

Finally, although our proposed models are developed for CV-fMRI applica-

tions, these methods are general, and we believe that they can also be applied to

complex-valued data from different fields.
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Appendix A

Derivation of the C-EMVS and

C-SSVS algorithms

A.1 Derivation of the C-EMVS algorithm

Assume that yv ∼ CNT

(
Xγv, 2σ2vI,0

)
with a prior for γv of the form

(4.3), i.e., γv | ψv ∼ CNp

(
0, σ2vΩv, σ

2
vΛv

)
with Ωv = diag

(
κv1, . . . , κ

v
p

)
, and Λv =

diag
(
τv1 , . . . , τ

v
p

)
, where κvj =

(
1− ψvj

)
ω0 + ψvjω1 and τvj =

(
1− ψvj

)
λ0 + ψvjλ1

for j = 1, . . . , p. In addition, assume σ2v
iid∼ IG (aσ, bσ), ψvj

iid∼ Bernoulli (θj), and

θj
iid∼ Beta (aθ, bθ).

Now, using the notation introduced in Section 4.2, let γ =
[
γ1, . . . ,γV

]
,

with ψ =
[
ψ1, . . . ,ψV

]
, ψv =

(
ψv1 , . . . , ψ

v
p

)′
, θ = (θ1, . . . , θp)

′, σ2 =
[
σ21, . . . , σ

2
V

]
, and

y =
[
y1, . . . ,yV

]
. Given the values of the model parameters at the l-th step of the EM
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algorithm, denoted as γ(l), θ(l) and σ2,(l), the objective function is given by

Q
(
γ,θ,σ2 | γ(l),θ(l),σ2,(l)

)
= Eψ|·

[
log π

(
γ,ψ,θ,σ2 | y

) ∣∣∣ γ(l),θ(l),σ2,(l),y
]
,

where Eψ|· denotes the conditional expectation of ψ given γ(l),θ(l),σ2,(l) and y, i.e.,

E
ψ|γ(l),θ(l)

,σ2,(l),y
.

Using the complex-valued normal density (Wooding, 1956; van den Bos, 1995;

Picinbono, 1996), we write the posterior distribution as

π
(
γ, θ,σ2,ψ | y

)
∝

V∏
v=1

[
f
(
yv | γv, σ2v

)
π
(
γv | ψv, σ2v

)
π (ψv | θ)π

(
σ2v
) ]
π (θ) ,

where for each voxel v, we have

f
(
yv | γv, σ2v

)
∝ |2σ2vI|−1 exp{−(yv −Xγv)H

(
2σ2vI

)−1
(yv −Xγv)},

π
(
γv | σ2v ,ψ

)
∝ [|σ2vΩv||P v|]−1/2

× exp

{
− (γv)H P−∗v γ

v +
1

2

[
(γv)′R′vP

−∗
v γ

v + (γv)H RH
v P

−1
v (γv)∗

]}
,

π
(
σ2v
)
∝
(
σ2v
)−(aσ+1)

exp{−bσ/σ2v}, π (ψv | θ) ∝
∏p
j=1 θ

ψvj
j (1− θj)1−ψ

v
j , and

π (θ) ∝
∏p
j=1 θ

aθ−1
j (1− θj)bθ−1 , with

P v =
(
σ2vΩv

)∗ − (σ2vΛv

)H (
σ2vΩv

)−1 (
σ2vΛv

)
= σ2v

[
Ω∗v −ΛH

v Ω−1v Λv

]
,

and Rv =
(
σ2vΛv

)H (
σ2vΩv

)−1
= ΛH

v Ω−1v . Here Z∗ denotes the complex conjugate of

a matrix Z and ZH denotes its conjugate transpose, i.e., ZH = (Z∗)′.
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Hence, the log-posterior distribution is

log π
(
γ,θ,σ2,ψ | y

)
=

V∑
v=1

{
− 1

2σ2
v

(yv −Xγv)
H

(yv −Xγv)− (T + p+ aσ + 1) log
(
σ2
v

)
− bσ
σ2
v

− (γv)
H
P−∗v γv +

1

2

[
(γv)

′
R′vP

−∗
v γv + (γv)

H
RH
v P

−1
v (γv)

∗
]

+

p∑
j=1

ψvj log (θj) +

p∑
j=1

(
1− ψvj

)
log (1− θj)

}

+ (aθ − 1)

p∑
j=1

log (θj) + (bθ − 1)

p∑
j=1

log (1− θj) +Kπ,

for some constant Kπ.

The log-posterior above can be further simplified using some complex-valued

linear algebra. First, note that Λv is a symmetric matrix, which implies that Λ′v = Λv

and ΛH
v = Λ∗v, and hence P ∗v = σ2v

[
Ωv −ΛvΩ

−∗
v Λ∗v

]
. Using the Sherman-Morrison-

Woodbury formula we have

P−∗v =
(
σ2v
)−1 [

Ω−1v + Ω−1v ΛvP
−1
v ΛH

v Ω−1v
]
,

which, given the structure assumed for Ωv and Λv, can be written as

P−∗v =
(
σ2v
)−1

diag

(
1

κv1
+

(τv1 )∗ τv1
κv1 ((κv1)∗ κv1 − (τv1 )∗ τv1 )

, . . . ,
1

κvp
+

(
τvp
)∗
τvp

κvp
((
κvp
)∗
κvp −

(
τvp
)∗
τvp
)) ,

=
(
σ2v
)−1

diag

(
1

κv1
(1 + bv1) , . . . ,

1

κvp

(
1 + bvp

))
,

with bvj =
|τvj |2

|κvj |2−|τvj |2
=

(τvj )
∗
τvj

(κvj )
∗
κvj−(τvj )

∗
τvj

, for j = 1, . . . , p, where bvj is real-valued for all

j and all v.
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Similarly,

R′vP
−∗
v =

(
σ2v
)−1 (

ΛH
v Ω−1v

)′ (
Ω−1v + Ω−1v ΛvP

−1
v ΛH

v Ω−1v
)
,

=
(
σ2v
)−1 (

Ω−1v Λ∗vΩ
−1
v + Ω−1v Λ∗vΩ

−1
v ΛvP

−1
v ΛH

v Ω−1v
)
,

which can be simplified further by writing

Ω−1v Λ∗vΩ
−1
v = diag

(
(τv1 )∗ / (κv1)2 , . . . ,

(
τvp
)∗
/
(
κvp
)2)

, and

Ω−1v Λ∗vΩ
−1
v ΛvP

−1
v ΛH

v Ω−1v = diag

(
bv1

(τv1 )∗

(κv1)2
, . . . , bvp

(
τvp
)∗(

κvp
)2
)
.

We now proceed with defining some quantities and computing some expec-

tations that are required in the E-step of the EM algorithm. Let b(i) be the value of

bvj if ψvj = i, i = 0, 1. That is, b(0) = |λ0|2
|ω0|2−|λ0|2 , and b(1) = |λ1|2

|ω1|2−|λ1|2 . Then, for

j = 1, . . . , p, we have expectations

Eψ|·

[
1

κvj

(
1 + bvj

)]
=

1

ω0

(
1 + b(0)

)
Pr
(
ψvj = 0 | · · ·

)
+

1

ω1

(
1 + b(1)

)
Pr
(
ψvj = 1 | · · ·

)
,

=
1

ω0

(
1 + b(0)

)
Eψ|·

(
1− ψvj

)
+

1

ω1

(
1 + b(1)

)
Eψ|·

(
ψvj
)
,

Eψ|·


(
τvj

)∗
(
κvj

)2
 =

λ∗0
ω2
0

Pr
(
ψvj = 0 | · · ·

)
+
λ∗1
ω2
1

Pr
(
ψvj = 1 | · · ·

)

=
λ∗0
ω2
0

Eψ|·
(
1− ψvj

)
+
λ∗1
ω2
1

Eψ|·
(
ψvj
)
,
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and

Eψ|·

[
bvj

τ∗j
(κvj )

2

]
= b(0)

λ∗0
ω2
0

Pr(ψvj = 0 | · · · ) + b(1)
λ∗1
ω2
1

Pr(ψvj = 1 | · · · )

= b(0)
λ∗0
ω2
0

Eψ|·(1− ψ
v
j ) + b(1)

λ∗1
ω2
1

Eψ|·(ψ
v
j ).

Therefore, the objective function can be written as

Q
(
γ,θ,σ2 | γ(l),θ(l),σ2,(l)

)
=

V∑
v=1

Qv1

(
γv, σ2v | γv,(l),θ(l), σ2,(l)v

)
+Q2

(
θ | γ(l),θ(l),σ2,(l)

)
+KQ,

for some constant KQ, where

Qv1

(
γv, σ2v | γv,(l),θ(l), σ2,(l)v

)
= − 1

2σ2v
(yv −Xγv)H (yv −Xγv)− (T + p+ aσ + 1) log

(
σ2v
)
− bσ
σ2v

− 1

σ2v

p∑
j=1

(
γvj
)∗ (

γvj
) [ 1

ω0

(
1 + b(0)

)
Eψ|·

(
1− ψvj

)
+

1

ω1

(
1 + b(1)

)
Eψ|·

(
ψvj
)]

− 1

σ2v
Re

 p∑
j=1

(
γvj
)2 [λ∗0

ω2
0

(
1 + b(0)

)
Eψ|·

(
1− ψvj

)
+
λ∗1
ω2
1

(
1 + b(1)

)
Eψ|·

(
ψvj
)] ,

and

Q2

(
θ | γ(l), θ(l),σ2,(l)

)
=

V∑
v=1

{
p∑
j=1

Eψ|·
(
ψvj
)

log (θj) +

p∑
j=1

(
1− Eψ|·

(
ψvj
))

log (1− θj)

}

+ (aθ − 1)

p∑
j=1

log (θj) + (bθ − 1)

p∑
j=1

log (1− θj) .
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Finally, pvj = Eψ|·

(
ψvj

)
= Pr

(
ψvj = 1

∣∣ γ(l),θ(l),σ2,(l)
)

can be computed as

pvj =
p1

p0 + p1
, where p0 = π

(
γ
v,(l)
j

∣∣ σ2,(l)v , ψvj = 0, ψv−j

)
Pr
(
ψvj = 0

∣∣ θ(l), ψv−j) and

p1 = π
(
γ
v,(l)
j

∣∣ σ2,(l)v , ψvj = 1, ψv−j

)
Pr
(
ψvj = 1

∣∣ θ(l), ψv−j). This completes the E-step

of the algorithm.

We now continue with the maximization step of the EM algorithm. For each

voxel v, define

dvj =

[
1

ω0

(
1 + b(0)

)
Eψ|·

(
1− ψvj

)
+

1

ω1

(
1 + b(1)

)
Eψ|·

(
ψvj
)]

and

gvj =

[
λ∗0
ω2
0

(
1 + b(0)

)
Eψ|·

(
1− ψvj

)
+
λ∗1
ω2
1

(
1 + b(1)

)
Eψ|·

(
ψvj
)]
.

We begin with maximization of Qv1. Regardless of σ
2,(l+1)
v , we solve the following

problem for γv:

(γv)(l+1) = arg min
γv∈Cp

h (γv) ,

where h (γv) : Cp → R is a real-valued function of complex-valued vectors given by

h (γv) =
1

2
‖yv −Xγv‖2 + (γv)H Dvγ

v − 1

2

[
(γv)′Gvγ

v + (γv)H G∗v (γv)∗
]

=
1

2

[
(γv)H XHXγv − (γv)H XHyv − (yv)H Xγv

]
+ (γv)H Dvγ

v+

− 1

2

[
(γv)′Gvγ

v + (γv)H G∗v (γv)∗
]

+Kh

with Kh a constant and with Dv = diag
(
dv1, . . . , d

v
p

)
= Eψ|·[P

−∗
v ] and
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Gv = diag
(
gv1 , . . . , g

v
p

)
= Eψ|·

[
R′vP

−∗
v

]
and G∗v = Eψ|·

[
RH
v P

−1
v

]
.

In general, we can view h(γ) as a function of two variables, γ and γ∗. If h

is analytic in γ and γ∗ independently, i.e., if h is partially differentiable with respect

to γ and γ∗, then, following Brandwood (1983), either condition ∂h/∂γ or ∂h/∂γ∗

will allow us to find a stationary point that minimizes h. Note that in our case,

given the Gaussian structure of our priors and noise terms the analytic condition of

h is satisfied. Now, using Table IV in Hjørungnes & Gesbert (2007) (or Table 4.2 in

Hjørungnes (2011)), we have

∂
(
γHX′Xγ

)
/∂γ = γHX′X, ∂

(
γHDγ

)
/∂γ = γHD, ∂

(
γHX′y

)
/∂γ = 0,

∂
(
yHXγ

)
/∂γ = yHX, ∂

(
γ ′Gγ

)
/∂γ = γ′

(
G + G′

)
, ∂

(
γHG∗γ∗

)
/∂γ = 0.

Similarly,

∂
(
γHX′Xγ

)
/∂γ∗ = γ′

(
X′X

)′
, ∂

(
γHDγ

)
/∂γ∗ = γ′D′, ∂

(
γHX′y

)
/∂γ∗ = (X′y)′,

∂
(
yHXγ

)
/∂γ∗ = 0, ∂ (γ′Gγ) /∂γ∗ = 0, ∂

(
γHG∗γ∗

)
/∂γ∗ = γH

(
G∗ + GH

)
.

Then

∂h

∂γv
=

1

2
(γv)H XHX− 1

2
(yv)H X + (γv)H Dv −

1

2

[
(γv)′

(
Gv + G′v

)]
=

1

2
(γv)H XHX− 1

2
(yv)H X + (γv)H Dv − (γv)′Gv,
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and the γv that minimizes h satisfies the equation

(γv)H
(
XHX + 2Dv

)
− 2 (γv)′Gv = (yv)H X. (A.1)

We also have

∂h

∂ (γv)∗
=

1

2
(γv)′

(
XHX

)′ − 1

2

(
XHyv

)′
+ (γv)′D′v −

1

2

[
(γv)H

(
G∗v + GH

v

)]
.

=
1

2
(γv)′XHX− 1

2
(yv)′X + (γv)′Dv − (γv)H G∗v,

and so, the γv that minimizes h also satisfies the equation

(γv)′
(
XHX + 2Dv

)
− 2 (γv)H G∗v = (yv)′X. (A.2)

Note that (A.1) is the conjugate of (A.2) and both equations lead to the same

solution of γv. Transposing (A.2), we have

(
XHX + 2Dv

)
γv − 2GH

v (γv)∗ = X′yv

Hence,

(
XHX + 2Dv

)
(γvRe + γvImi)− (2Gv,Re − 2Gv,Imi) (γvRe − γvImi) = X′yv,
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and

[(
XHX + 2Dv − 2Gv,Re

)
γvRe + 2Gv,Imγ

v
Im

]
=
(
X′yv

)
Re
,

[(
XHX + 2Dv + 2Gv,Re

)
γvIm + 2Gv,Imγ

v
Re

]
=
(
X′yv

)
Im
.

Therefore, taking Fv = XHX + 2Dv, at iteration (l + 1) we have

γ
v,(l+1)
Re =

[
F2
v − (2Gv,Re)

2 − (2Gv,Im)
2
]−1 [

(Fv + 2Gv,Re)
(
X′yv

)
Re
− 2Gv,Im

(
X′yv

)
Im

]
,

γ
v,(l+1)
Im =

[
(2Gv,Im)

2 − F2
v + (2Gv,Re)

2
]−1 [

2Gv,Im

(
X′yv

)
Re
− (Fv − 2Gv,Re)

(
X′yv

)
Im

]
.

The update for each σ2v is derived from ∂Qv1/∂σ
2
v = 0, which leads to

σ2,(l+1)
v =

SSσ
T + p+ aσ + 1

,

where

SSσ =

[(
yv −X(γv)(l+1)

)H (
yv −X(γv)(l+1)

)]
/2 + (γv)(l+1)HDv(γ

v)(l+1)

− Re
(

(γv)(l+1)′Gv(γ
v)(l+1)

)
+ bσ.

Finally, simply taking derivatives of Q2 with respect to θj , for j = 1, . . . , p, we update

each θj as follows

θ
(l+1)
j =

∑V
v=1 p

v
j + aθ − 1

aθ + bθ + V − 2
.

This completes the derivation of the C-EMVS algorithm.
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A.2 EM derivation for model (4.4)

For model (4.4) we have parameter values values λ0 = λ1 = 0, ω0 = 2v0 and

ω1 = 2v1. Here we also assume that, aσ = bσ = 1/2, which determine the prior distri-

bution for σ2v that was used in the analyses of simulated and human data. Therefore,

the prior for γv | ψv, v = 1, . . . , V has the form γv | ψv ∼ CNp

(
0, 2σ2vΩv,Λv

)
, where

Λv = 0 and Ωv = diag
(
(1− ψv1) v0 + ψv1v1, . . . ,

(
1− ψvp

)
v0 + ψvpv1

)
.

Since Λv = 0 and Ωv is real-valued, one has P v = 2σ2vΩv and Rv = 0. The

E-step of the algorithm is a bit simpler as all the terms that involve λ0 = λ1 = 0

cancel. With real-valued X and Gv,Re = Gv,Im = 0, the M-step leads to

(γvRe)
(l+1) =

(
X′X + 2Dv

)−1 (X′yv)
Re
,

(γvIm)(l+1) =
(
X′X + 2Dv

)−1 (X′yv)
Im
,

with Dv as previously defined. In addition,

σ2,(l+1)
v =

‖yvr −X (γvr)
(l+1) ‖2 + 2‖(Dv)

1/2 (γvr)
(l+1) ‖2 + 1

2T + 2p+ 3
,

and

θ
(l+1)
j =

∑V
v=1 p

v
j + aθ − 1

V + aθ + bθ − 2
,

for j = 1, . . . , p.
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A.3 Derivation of the C-EMVS algorithm for models with

autoregressive noises

The analyses of the human CV-fMRI data presented in Section 4.4 with au-

toregressive errors consider four different models based on voxel-specific and/or com-

mon variance and/or AR coefficients. These models are labeled as: model (ii): (σ2, ϕ);,

model (iii): (σ2, ϕv); model (v): (σ2v , ϕ); and model (vi): (σ2v , ϕv). The following de-

rives the EM algorithm for the most general case of voxel-specific variances and AR

coefficients, i.e., model (vi) with (σ2v , ϕv). Derivations for the other three cases are

similar.

The model setting for the general case is as follows. For each voxel v =

1, . . . , V , and each j = 1, . . . , p, we have

yv = Xγv + ηv, ηvt = ϕvη
v
t−1 + ζvt , ζvt

iid∼ CN1

(
0, 2σ2v , 0

)
,

γv|ψv ∼ CNp

(
0, σ2vΩv, σ

2
vΛv

)
, σ2v |aσ, bσ

iid∼ IG (aσ, bσ) ,

ψvj |θj
iid∼ Bernoulli (θj) , θj |aθ, bθ

iid∼ Beta (aθ, bθ) , ϕv
iid∼ Uniform (−1, 1) .

First we apply the Prais-Winsten transformation on yv and X so that

ỹv =


ỹv1

...

ỹvT

 =



√
1− ϕ2

vy
v
1

yv2 − ϕvyv1
...

yvT − ϕvyvT−1


, X̃

v
=


x̃v1

...

x̃vT

 =



√
1− ϕ2

vx1

x2 − ϕvx1
...

xT − ϕvxT−1


,
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where xt is the t-th row vector of X. Note that now both ỹv and X̃
v

are functions of

ϕv. We then consider the likelihood conditional on the first observation, yv1 , instead of

the full likelihood and obtain

f
(
ỹv−1 | γv, σ2v , ϕv, yv1

)
∝ |2σ2vI|−1 exp{−

(
ỹv−1 − X̃

v
−1γ

v
)H (

2σ2vI
)−1 (

ỹv−1 − X̃
v
−1γ

v
)
},

where ỹv−1 is ỹv without ỹv1 and X̃
v
−1 is X̃

v
without the first row x̃v1. This leads to the

following log-posterior density

log π
(
γ, θ,σ2,ψ,ϕ | y

)
=

V∑
v=1

{
− 1

2σ2v

(
ỹv−1 − X̃

v
−1γ

v
)H (

ỹv−1 − X̃
v
−1γ

v
)
− (T − 1 + p+ aσ + 1) log

(
σ2v
)
− bσ
σ2v

− (γv)HP−∗v γ
v +

1

2

[
(γv)′R′vP

−∗
v γ

v + (γv)HRH
v P−1v (γv)∗

]
+

p∑
j=1

ψvj log (θj) +

p∑
j=1

(
1− ψvj

)
log (1− θj)

}
+ (aθ − 1)

p∑
j=1

log (θj) + (bθ − 1)

p∑
j=1

log (1− θj) + K̃π,

where P−∗v and Rv are as defined as above and K̃π is a constant. The E-steps are

essentially the same as the ones described above, but we now work with the transformed

values ỹv−1 and X̃
v
−1. Similarly, taking F̃v =

(
X̃
v
−1

)H
X̃
v
−1 + 2Dv, the M-step leads to

the following updating rules for γv and σ2v , for each v, we obtain (γv)(l+1) = γ
v,(l+1)
Re +
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iγ
v,(l+1)
Im , with

γ
v,(l+1)
Re = [F̃

2
v − (2Gv,Re)

2 − (2Gv,Im)2]−1

×
[(

F̃v + 2Gv,Re

)((
X̃
v
−1

)′
ỹv−1

)
Re

− 2Gv,Im

(
X̃
′
−1ỹ

v
−1

)
Im

]
,

γ
v,(l+1)
Im =

[
(2Gv,Im)2 − F̃

2
v + (2Gv,Re)

2
]−1

×
[
2Gv,Im

((
X̃
v
−1

)′
ỹv−1

)
Re

−
(
F̃
2
v − 2Gv,Re

)((
X̃
v
−1

)′
ỹv−1

)
Im

]
,

with Dv and Gv as defined above,

σ2,(l+1)
v =

(SSvσ)(l+1)

T + p+ aσ
,

with

SSv,(l+1)
σ =

(
ỹv−1 − X̃

v
−1(γ

v)(l+1)
)H (

ỹv−1 − X̃
v
−1(γ

v)(l+1)
)

2
+ γ(l+1)HDvγ

(l+1)

− Re
(
γ(l+1)′Gvγ

(l+1)
)

+ bσ,

and the following updating rule for θ
(l+1)
j ,

θ
(l+1)
j =

∑V
v=1 p

v
j + aθ − 1

aθ + bθ + V − 2
.

Finally, to obtain the updating rule for the AR coefficients we proceed as follows. First

note that, for t = 2, . . . , T ,

ỹvt − x̃vt (γvr)
(l+1) =

(
yvt − ϕvyvt−1

)
−(xt − ϕvxt−1) (γvr)

(l+1) = (ηvt )(l+1)−ϕv
(
ηvt−1

)(l+1)
.
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We derive the M-step for each ϕv by setting

∂
[∑T

t=2

(
(ηvt )∗ − ϕv

(
ηvt−1

)∗) (
ηvt − ϕvηvt−1

)]
∂ϕv

= 0.

This leads to

ϕ(l+1)
v =

∑T
t=2 Re

(
(ηvt )∗(l+1) (ηvt−1)(l+1)

)
∑T

t=2|
(
ηvt−1

)(l+1)|2
.

If we consider common σ2 instead of voxel-specific σ2v , its updating rule is

σ2,(l+1) =

∑V
v=1 SS

v,(l+1)
σ

V [(T − 1) + p] + aσ + 1
.

Similarly, the updating rule for a model with common ϕ across voxels is

ϕ(l+1) =

∑V
v=1

∑T
t=2 Re

(
(ηvt )∗(l+1) (ηvt−1)(l+1)

)
∑V

v=1

∑T
t=2|

(
ηvt−1

)(l+1)|2
.

For general AR(q) noises, we can transform variables from yv and X to

ỹv =


ỹvq+1

...

ỹvT

 =


ϕv(L)yq+1

...

ϕv(L)yT

 , X̃
v

=


x̃vq+1

...

x̃vT

 =


ϕv(L)xq+1

...

ϕv(L)xT

 ,

where L is the lag operator such that ϕv(L) = 1− ϕ1,vL− · · · − ϕq,vLq. Accordingly,

the E-step and M-step for the parameters can be derived as the AR(1) case above.

Specifically, the updating rules for γv, σ2v and θ are similar to those with the AR(1)

172



structure, and the updating rules for ϕ1,v, . . . , ϕq,v are given by

ϕ
(l+1)
k,v =

Avk −Bv
k

Cvk
, k = 1, . . . , q,

where

Avk =

T∑
t=q+1

[
(ηvt )∗(l+1) (ηvt−k)(l+1)

+
(
ηvt−k

)∗(l+1)
(ηvt )(l+1)

]

=
T∑

t=q+1

2Re
(

(ηvt )∗(l+1) (ηvt−k)(l+1)
)

Bk =
T∑

t=q+1

q∑
n=1,n6=k

[
ϕ(l)
n,v

(
ηvt−n

)∗(l+1) (
ηvt−k

)(l+1)
+ ϕ(l)

n,v

(
ηvt−k

)∗(l+1) (
ηvt−n

)(l+1)
]

and

=

q∑
n=1,n6=k

ϕ(l)
n,v

T∑
t=q+1

2Re
((
ηvt−n

)∗(l+1) (
ηvt−k

)(l+1)
)
,

and

Ck =

T∑
t=q+1

2|(ηvr,t−k)(l+1)|2.

A.4 Derivation of the C-SSVS algorithm

Once again consider the model specified by

yv = Xγv + ηv, ηv ∼ CNT

(
0, 2σ2vI,0

)
,

γv | ψv ∼ CNp (0,Ωv,Λv) , σ2v
iid∼ IG (aσ, bσ) ,

ψvj | θj
iid∼ Bernoulli (θj) and θj | aθ, bθ

iid∼ Beta (aθ, bθ) .
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As in the derivation of the C-EMVS algorithm, we use the complex-valued normal

density (Wooding, 1956; van den Bos, 1995; Picinbono, 1996) to find the full condi-

tionals for γ, σ2, ψ and θ and obtain the steps of a Gibbs sampling algorithm for full

posterior inference. The posterior distribution for γ, σ2, ψ and θ is

π
(
γ,σ2,ψ,θ | y

)
∝

V∏
v=1

[
f
(
yv | γv, σ2v

)
π
(
γv | ψv, σ2v

)
π
(
σ2v | ψv

)
π (ψv | θ)

]
π (θ)

∝
V∏
v=1

[
|2σ2vI|−1 exp

{
− (yv −Xγv)H

(
2σ2vI

)−1
(yv −Xγv)

}
(|Ωv||P v|)−1/2

× exp

{
− (γv)H P−∗v γ

v +
1

2

[
(γv)′R′vP

−∗
v γ

v + (γv)H RH
v P

−1
v (γv)∗

]}
×
(
σ2v
)−(aσ+1)

exp
{
−bσ/σ2v

} p∏
j=1

θ
ψvj
j (1− θj)1−ψ

v
j

]
p∏
j=1

θaθ−1j (1− θj)bθ−1 ,

where P v = Ω∗v −ΛH
v Ω−1v Λv Hermitian and positive definite, and Rv = ΛH

v Ω−1v .

Now assume that for each v, γv and ηv are uncorrelated and “unrelated”,

i.e., the covariance matrix is zero, Cov (ηv,γv) = 0, and the relation matrix is also

zero, Rel (ηv,γv) = 0, Then (yv,γv)′ are jointly complex normal, i.e.,

(yv,γv)′ ∼ CN
(
(0,0)′ , Ω̄v, Λ̄v

)
, where

Ω̄v =

 Ωv
y Ωv

y,γ(
Ωv

y,γ

)H
Ωv

γ

 =

XΩvX
′ + 2σ2vI XΩv

(XΩv)
H Ωv

 ,

Λ̄v =

 Λv
y Λv

y,γ(
Λv

y,γ

)H
Λv

γ

 =

XΛvX
′ XΛv

(XΛv)
′ Λv

 ,
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and

Ωv
y = Cov (yv) = Cov (Xγv + ηv) = XΩvX

′ + 2σ2vI,

Λv
y = Rel (yv) = Rel (Xγv + ηv) = XΛvX

′,

Ωv
y,γ = Cov (Xγv + ηv,γv) = XΩv,

Λv
y,γ = Rel (Xγv + ηv,γv) = XΛv.

The full conditional posterior of γv is then γv
∣∣ γ−v,σ2,ψ,θ,y ∼

CNp

(
µγv (yv) ,Ωv

pos,Λ
v
pos

)
, where

µγv (yv) = Avy
v + Bv (yv)∗ ,

Ωv
pos = Ωv −Av (XΩv)−Bv

(
(XΛv)

′)H ,
Λv
pos = Λv −Av (XΛv)−Bv

(
(XΩv)

H
)′
,

Av =
((

(XΩv)
H
)
− (XΛv)

′ (XΩvX
′ + 2σ2vI

)−∗ (
XΛvX

′)H)W−∗
v ,

Bv =
((

(XΛv)
′)− (XΩv)

H (XΩvX
′ + 2σ2vI

)−1 (
XΛvX

′))W−1
v ,

Wv =
(
XΩvX

H + 2σ2vI
)∗ − (XΛvX

′)H (XΩvX
H + 2σ2vI

)−1 (
XΛvX

′) .
The full conditional posterior for σ2v is σ2v | γ,σ2

−v,ψ,θ,y ∼ IG (av,posσ , bv,posσ ), where

av,posσ = T +aσ, and bv,posσ = ‖yv−Xγv‖2/2 + bσ. For the full conditional posterior for

ψv, notice that Pr
(
ψvj | y,γ,σ2,ψv−j ,θ

)
= Pr

(
ψvj | γv, σ2v ,ψ

v
−j ,θ

)
since ψv affect
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yv only through γv. So Pr
(
ψvj = 1 | γv, σ2v ,ψv−j ,θ

)
=

cvj
cvj + evj

, where

cvj = π
(
γv | ψv−j , ψvj = 1

)
π
(
σ2v | ψv−j , ψvj = 1

)
Pr
(
ψvj = 1 | ψv−j ,θ

)
,

evj = π
(
γv | ψv−j , ψvj = 0

)
π
(
σ2v | ψv−j , ψvj = 1

)
Pr
(
ψvj = 0 | ψv−j ,θ

)
,

and π
(
γv | ψv−j , ψvj = 1

)
and π

(
γv | ψv−j , ψvj = 0

)
are complex normal densities

CNp

(
0,Ωv

(
ψv−j , ψ

v
j = 1

)
,Λv

(
ψv−j , ψ

v
j = 1

))
and

CNp

(
0,Ωv

(
ψv−j , ψ

v
j = 0

)
,Λv

(
ψv−j , ψ

v
j = 0

))
, respectively. Since ψvj are indepen-

dent and identically distributed Pr
(
ψvj = 1 | ψv−j ,θ

)
= θj , and Pr

(
ψvj = 0 | ψv−j ,θ

)
=

1− θj . Furthermore, for aσ and bσ constant, cvj = π
(
γv | ψv−j , ψvj = 1

)
θj and

evj = π
(
γv | ψv−j , ψvj = 0

)
(1− θj) .

Finally, the full conditional for each θj is Beta distributed

Beta
(∑V

v=1 ψ
v
j + aθ, V −

∑V
v=1 ψj + bθ

)
. This completes the derivation of the complex-

valued SSVS algorithm.

A.5 C-SSVS algorithm for model (4.4)

Here we derive the full conditionals for the model in Section 4.2.2 with γv |

ψv ∼ CNp (0,Ωv,0), where Ωv = 2×diag
(
(1− ψv1) v0 + ψv1v1, . . . ,

(
1− ψvp

)
v0 + ψvpv1

)
.

Using the equations above, we have

Ωv
pos = Ωv −Av (XΩv) , Λv

pos = 0,

Av = (XΩv)
H W−∗

v , Bv = 0, Wv =
(
XΩvX

H + 2σ2vI
)∗
.
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Since both X and Ωv are real-valued and Ωv is symmetric, the full conditional for γv

is CNp

(
µγv ,Ω

v
pos,0

)
, where

Ωv
pos = Ωv − (XΩv)

H (2XΩvX
H + 2σ2vI

)−1
(XΩv) =

(
2−1σ−2v X′X + Ω−1v

)−1
,

and

µγv (yv) = Avy
v = (XΩv)

H (XΩvX
H + 2σ2vI

)−1
yv = Ωv

posX
′yv/σ2v .

The full conditional for σ2v is IG (av,posσ , bv,posσ ), where av,posσ = T + aσ, bv,posσ = ‖yv −

Xγv‖2/2 + bσ. In addition, the full conditional for ψvj is Pr
(
ψvj = 1

∣∣ γv, σ2v ,ψv−j) =

cvj
cvj + evj

, where cvj = π
(
γv | ψv−j , ψvj = 1

)
θj , and evj = π

(
γv | ψv−j , ψvj = 0

)
(1− θj).

Note that Ωv is diagonal, and so π
(
γvj | ψ

v
−j , ψ

v
j = 1

)
= π

(
γvj | ψvj = 1

)
=

CN (0, 2v1, 0) and π
(
γvj | ψ

v
−j , ψ

v
j = 0

)
= π

(
γvj | ψvj = 0

)
= CN (0, 2v0, 0). Finally,

the full conditional for θj is the same as in the general complex-valued case.

A.6 Derivation of MCMC algorithm of the multi-subject

spatial model

Let γ̃, X̃, and ỹ be the real representation of γ, X and y, respectively. We

first integrate out γ̃ (ψ) and σ2. For simplicity, X̃ (ψv) is replaced by X̃.1 For each

1Note that X̃ has dimension 2T × p, but X̃ (ψv) has dimension 2T × qv.
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voxel v and subject s,

p
(
ỹv(s)

∣∣ γ̃v(s) (ψ(s)

)
,ψv(s), σ

2
v

)
∝
(
σ2
v

)−T
exp

(
− 1

2σ2
v

(
ỹv(s)

)′
ỹv(s)

)
,

× exp

(
− 1

2σ2
v

(
−2
(
γ̃v(s)

)′
X̃
′
ỹv(s) +

(
γ̃v(s)

)′
X̃
′
X̃γ̃v(s)

))
;

π
(
γ̃v(s)

(
ψv(s)

) ∣∣ ψv(s), σ2
v

)
∝
(
σ2
v

)−qv(s) |T (X̃
′
X̃
)−1

|−1/2 exp
(
Bγ
)
,

where

Bγ = − 1

2σ2v

((
γ̃v(s)

)′
T−1X̃

′
X̃γ̃v(s) − 2

(
γ̃v(s)

)′
T−1X̃

′
X̃ˆ̃γv(s) +

(
ˆ̃γv(s)

)′
T−1X̃

′
X̃ˆ̃γv(s)

)
.

Note that

(γ̃v)′ T−1X̃
′
X̃ˆ̃γv = (γ̃v)′ T−1X̃

′
X̃
(
X̃
′
X̃
)−1

X̃
′
ỹv,

ˆ̃γ ′vT
−1X̃

′
X̃ˆ̃γv = ỹ′vX̃T

−1
(
X̃
′
X̃
)−1

X̃
′
ỹv.

Hence,

p
(
ỹv(s)

∣∣ γ̃v(s) (ψv(s)) ,ψv(s), σ2v)π (γ̃v(s) (ψv(s)) ∣∣ ψv(s), σ2v)
∝
(
σ2v
)−(T+qv

(s)
) |T

(
X̃
′
X̃
)−1
|−1/2 exp

(
− 1

2σ2v

(
ỹv(s)

)′
ỹv(s)

)
× exp

(
− 1

2σ2v

(
−2 (γ̃v)′

(
1 + T−1

)
X̃
′
ỹv + (γ̃v)′

(
1 + T−1

)
X̃
′
X̃γ̃v

))
× exp

(
− 1

2σ2v

(
ỹv(s)

)′
X̃T−1

(
X̃
′
X̃
)−1

X̃
′
ỹv(s)

)
.
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Therefore,

∫
p
(
ỹv(s)

∣∣ γ̃v(s) (ψv(s)) , ψv(s), σ2
v

)
π
(
γ̃v
(
ψv(s)

) ∣∣ ψv(s), σ2
v

)
dγv(s)

=
(
σ2
v

)−(T )
∣∣∣T (X̃

′
X̃
)−1 ∣∣∣−1/2

exp

(
− 1

2σ2
v

(
ỹv(s)

)′
ỹv(s)

)
× exp

(
− 1

2σ2
v

(
ỹv(s)

)′
X̃T−1

(
X̃
′
X̃
)−1

X̃
′
ỹv(s)

)
×
∣∣∣ (1 + T−1

)−1
(
X̃
′
X̃
)−1 ∣∣∣1/2 exp

(
− 1

2σ2
v

(
ỹv(s)

)′
X̃
(
X̃
′
X̃
)−1 (

1 + T−1
)
X̃
′
ỹv(s)

)
∝
(
σ2
v

)−T
T−q

v
(s) (T/(1 + T ))

qv(s) exp

(
− 1

2σ2

((
ỹv(s)

)′
ỹv(s) −

(
ỹv(s)

)′
X̃
(
X̃
′
X̃
)−1

X̃
′
ỹv(s)

))
.

Hence

A :=

∫
γ1

(1)

. . .

∫
γV

(n)

· · · dγ1
(1) · · · dγ

V
(n)

=

n∏
s=1

V∏
v=1

(
σ2
v

)−(T )
(1 + T )−q

v
(s) exp

− 1

2σ2

((
ỹv(s)

)′
ỹv(s) −

(
ỹv(s)

)′
X̃
(
X̃
′
X̃
)−1

X̃
′
ỹv(s)

)
︸ ︷︷ ︸

Mv
(s)


=

V∏
v=1

(
σ2
v

)−(nT )
(1 + T )−

∑n
s=1 q

v
(s) exp

(
−1

2σ2
v

n∑
s=1

Mv
(s)

)
.

Therefore,

∫
A · π

(
σ2
)
dσ2 =

∫ V∏
v=1

(
σ2
v

)−(nT+aσ+1)
(1 + T )−

∑n
s=1 q

v
(s) exp

−
(

1
2

∑n
s=1M

v
(s) + bσ

)
σ2
v

 dσ2

∝
V∏
v=1

(
1

2

n∑
s=1

Mv
(s) + bσ

)(nT+aσ)

(1 + T )−
∑n
s=1 q

v
(s) .
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Hence,

p (ỹ | ψ) ∝
V∏
v=1

(
1

2

n∑
s=1

Mv
(s) + bσ

)(nT+aσ)

(1 + T )
−
∑n
s=1 q

v
(s)

As a result, the marginal posterior is

q (ψ,w, φ,a,Ω | y) ∝ p (y | ψ)π (ψ | w, φ,a)π (w)π (φ)π (a | µ,Ω)π (µ)π (Ω)

We then infer the parameters ψ,w, φ,a and Ω via a MCMC algorithm that

allows us to obtain posterior samples from this marginal posterior using Metropolis-

Hastings steps and/or Gibbs steps as follows:

• Sampling ψ: this involves npV updates. For j = 1, . . . , p, v = 1, . . . , V and

s = 1, . . . , n, we have Pr
(
ψv(s),j = 1

∣∣∣ ψ(−v)
(−s),(−j),w(j),a, φ,y

)
∝ θ

(
ψv(s),j = 1

)
,

with

θ
(
ψv(s),j = 1

)
= π

(
ψv(s),j = 1

∣∣∣ Sv(s),j = K′v(φ)w(j), a
d
(s)

)(1

2

n∑
s=1

Mv
(s) + bσ

)(nT+aσ)

× (1 + T )
−
∑n
s=1 q

v
(s) ,

where ψ
(−v)
(−s),(−j) are all binary indicator variables ψu(s′),l, l 6= j, u 6= v and s′ 6= s.

Therefore,

(
ψv(s),j

∣∣∣ ψ(−v)
(−s),(−j),w(j),a, φ,y

)
∼ Bernoulli

 θ
(
ψv(s),j = 1

)
θ
(
ψv(s),j = 1

)
+ θ

(
ψv(s),j = 0

)
 .
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• Sampling w: this involves pG steps. For j = 1, . . . , p and for each g = 1, . . . , G

we have that the conditional density of wgj is given by

q
(
wgj
∣∣ w

(−g)
(−j) ,ψ, φ,a,y

)
∝ π

(
ψ(j)

∣∣ w(j), φ,a
)
π
(
wgj

)
∝

(
n∏
s=1

V∏
v=1

π
(
ψv(s),j

∣∣ w(j), φ,a
))

π
(
wgj

)
,

where w
(−g)
(−j) are all region level spatial random effects whl , l 6= j, h 6= g. A

random walk proposal
(
wgj

)∗
∼ N

((
wgj

)(m)
, σ2

wgj

)
is used, where

(
wgj

)(m)
is

the current state and σ2
wgj

is a tuning parameter. Hence the Metropolis-Hastings

ratio is

q
((
wgj
)∗ ∣∣∣ w

(−g)
(−j) ,ψ, φ,a,y

)
q
((
wgj
)(m)

∣∣∣ w
(−g)
(−j) ,ψ, φ,a,y

)
=

∏n
s=1

∏V
v=1 π

(
ψv(s),j

∣∣∣ Svj ((wgj )∗ ; Kv(φ),w
(−g)
(−j)

)
, ad(s)

)
∏n
s=1

∏V
v=1 π

(
ψv(s),j

∣∣∣ Svj ((wgj )(m)
; Kv(φ),w

(−g)
(−j)

)
, ad(s)

) × π
((
wgj
)∗)

π
((
wgj
)(m)

) .

• Sampling φ: Let ξ = log(φ). φ = eξ. Then the full conditional of ξ is

q (ξ | ψ,w,a,y) = q (φ(ξ) | ψ,w,a,y) eξ

= Ga
(
eξ | aφ, bφ

)
· eξ

×
n∏
s=1

p∏
j=1

V∏
v=1

π

(
ψv(s),j

∣∣∣∣∣ Svj (Kv(e
ξ); w(j)

)
, ad(s)

)
.

We can use normal random walk proposal on ξ: ξ∗ ∼ N
(
ξ(m), σ2ξ

)
, where ξ(m) is

current state value and σ2ξ is a tuning parameter. Then the Metropolis-Hastings
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ratio is

q (ξ∗ | ψ,w,a,y)

q
(
ξ(m) | ψ,w,a,y

) =

∏n
s=1

∏p
j=1

∏V
v=1 π

(
ψv(s),j

∣∣ Svj (Kv(e
ξ∗); w(j)

)
, ad(s)

)
∏n
s=1

∏p
j=1

∏V
v=1 π

(
ψv(s),j

∣∣ Svj (Kv(eξ
(m)

); w(j)

)
, ad(s)

)
×

Ga
(
eξ
∗ | aφ, bφ

)
· eξ∗

Ga
(
eξ

(m) | aφ, bφ
)
· eξ(m)

.

For the general case that φ =
(
φ1, . . . , φG

)
, each φg can be updated via the

scheme similar to the one described above.

• Sampling a: this involves n steps. For s = 1, . . . , n, the conditional density of

a(s) =
(
a1(s), . . . a

D
(s)

)
is given by

q
(
a(s)

∣∣ a−(s),ψ,w, φ,µ,Ω,y
)
∝ π (ψ | w, φ,a)π (a | µ,Ω)

=

 n∏
s=1

p∏
j=1

V∏
v=1

π
(
ψv(s),j

∣∣ w(j), φ,a(s)

)N
(
a(s)

∣∣ µ,Ω−1
)
,

where a−(s) are all the connectivity parameters a(s′), s
′ 6= s. Block move update

for a(s) and a random walk proposal a∗(s) ∼ ND

(
a
(m)
(s) ,Σa(s)

)
is used, where a

(m)
(s)

is the current state and Σa(s)
is the tuning covariance matrix.
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The Metropolis-Hastings ratio is

q
(
a∗(s)

∣∣ a−(s),ψ,w, φ,µ,Ω,y)
q
(
a
(m)
(s)

∣∣ a−(s),ψ,w, φ,µ,Ω,y)
=

∏n
s=1

∏p
j=1

∏V
v=1 π

(
ψv(s),j

∣∣ Svj (Kv(φ),w(j)

)
,a∗(s)

)
∏n
s=1

∏p
j=1

∏V
v=1 π

(
ψv(s),j

∣∣ Svj (Kv(eξ
∗); w(j)

)
,a

(m)
(s)

)
×
ND

(
a∗(s),Σa(s)

)
ND

(
a
(m)
(s) ,Σa(s)

)

• Sampling µ: The full conditional of µ is

q (µ | ψ,w, φ,a,Ω,y) ∝ π (a | µ,Ω)π (µ) = ND

(
a(s) | µ,Ω−1

)
ND (µ | 0, I)

∼ ND

(
(I + nΩ)−1 Ωna, (I + nΩ)−1

)
,

where a = 1
n

∑n
s=1 a(s). Then µ is directly sampled from the multivariate normal

distribution above.

• Sampling Ω: The full conditional of Ω is

q (Ω | ψ,w, φ,a,µ,y) ∝ π (a | µ,Ω)π (Ω)

=

(
n∏
s=1

ND
(
a(s) | µ,Ω−1

))
Wishart (Ω | r0,Ω0)

∝ |Ω|−
n+r0−D−1

2 exp

(
−1

2
tr

(
n∑
s=1

a(s)

(
a(s)

)′
+ Ω−1

0

)
Ω

)

∼ WishartD

n+ r0,

(
n∑
s=1

(
a(s) − µ

) (
a(s) − µ

)′
+ Ω−1

0

)−1
 .
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Ω is directly sampled from the Wishart distribution above.
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Appendix B

Description of the human

CV-fMRI data and the approach

of Karaman et al. (2014)

The human CV-fMRI data analyzed in Section 4.4 was recorded during a

block designed fMRI experiment that consisted of a unilateral finger-tapping task

performed with a visual cue indicating whether to tap or rest. The block designed

experiment had an initial 20 s of rest followed by 16 epochs of 15 s of tapping (stim-

ulus on) and 15 s of rest (stimulus off). Karaman et al. (2014) analyzed these data

with 3 different models that we refer to in Section 4.4 as KBR14-CV, KBR14-MO and

DeTeCT-ING. A brief description of the models follows:

KBR14-CV: this is a complex-valued constant phase activation model that linearly

describes the temporally varying magnitude. Parameters are estimated via MLE and
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activation images are thresholded at 5% family wise error (FWE) rate.

KBR14-MO: this model is also a constant phase activation model that linearly de-

scribes the temporally varying magnitude, but it is applied to magnitude-only fMRI

data derived from the CV-fMRI data. Parameters are estimated via MLE and activa-

tion images are thresholded at 5% FWE rate.

DeTeCT-ING: this model is a more physically realistic model than the previous 2

models as it takes into account the effect that the task execution has in the magne-

tization equation. More specifically, the model incorporates the tissue and imaging

parameters T1 and T ∗2 into the magnetic resonance equation. This is a non-linear

model so parameter estimates are obtained numerically via least squares estimation.

The first scans of the CV-fMRI data (with no stimulus present) are used to estimate

T1 and T ∗2 and these estimates are then used to detect active voxels with the remaining

scans. Activation images are also thresholded at 5% FWE rate.

Figure B.1 shows the results of the analyses in Karaman et al. (2014). From

this figure it can be seen that the KBR14-CV and the DeTeCT-ING models have a

higher power of detection than the KBR14-MO model, with KBR14-CV having the

highest power. Activation for this experimental task is expected to occur in the left

motor and suplementary area which is adequately detected by both, the KBR14-CV

and the DeTeCT-ING models but mostly missed by the KBR14-MO model. With a

5% FWE rate, we also see that the KBR14-CV model leads to several false positives

outside the brain, while the DeTeCT-ING model produces no false positives outside the

brain. The KBR14-MO also has no false positives outside the brain, but, this model
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Figure B.1: Activation maps thresholded at 5% FWE rate from the Karaman et al.
(2014) models: complex-valued model KBR14-CV (left plot); magnitude-only model
KBR14-MO (center plot); and DeTeCT-ING model (right plot).

has low power identifying active sites in the left and supplementary motor area. The

model DeTeCT-ING detects a few false positives in the upper left side of the brain,

very close to the no signal area. Note that these models assume that the observations

are independent in space and time.
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