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Distinguishing time clustering of astrophysical bursts

Mikhail Denissenya ,1 Bruce Grossan ,1,2 and Eric V. Linder 1,2,3

1Energetic Cosmos Laboratory, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
2Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
3Berkeley Center for Cosmological Physics & Berkeley Lab, University of California,

Berkeley, California 94720, USA

Many astrophysical bursts can recur, and their time series structure or pattern could be closely tied to the 
emission and system physics. While analysis of periodic events is well established, some sources, e.g., 
some fast radio bursts and soft gamma-ray emitters, are suspected of more subtle and less explored periodic 
windowed behavior: the bursts themselves are not periodic, but the activity only occurs during periodic 
windows. We focus here on distinguishing periodic windowed behavior from merely clustered events 
through time clustering analysis, using techniques analogous to spatial clustering, demonstrating methods 
for identifying and characterizing the behavior. An important aspect is accounting for the “curious incident 
of the dog in the night time”—lack of bursts carries information. As a worked example, we analyze six
years of data from the soft gamma repeater SGR1935 þ 2154, deriving a window period of 231 days and 
55% duty cycle.

I. INTRODUCTION

The time evolution of energetic astrophysical burst
events carries critical information and clues to their nature.
This can reveal exciting, extreme astrophysics such as
complete stellar disruption, ultrahigh magnetic fields,
accompanying neutrino bursts, etc. and high luminosities
visible to great distances. Notable high luminosity exam-
ples include gamma ray bursts (GRB), fast radio bursts
(FRB), and soft gamma repeaters (SGR). Important puzzles
remain concerning their nature, involving aspects of stellar
structure, accretion, jet production, and the circumobject
medium.
Of particular interest are those events that recur, indicat-

ing that the process is not wholly disruptive, and possibly
involves rotation or orbits; they also offer the possibility of
observing the explosive event multiple times. Furthermore,
if the repetition can be somewhat predicted, so that
observations can be scheduled, this enables enhanced
opportunities for understanding the burst mechanism and
astrophysics. Orbits and rotation naturally impose periodic
modulation on a variety of astrophysical signals, from
occultations of stars by planets to pulsars to accretion disk
phenomena. As a result there is a highly developed set of
mathematical, statistical, and computer code tools to
estimate the statistical likelihood of periodicity in a
noise-limited or nonideal sampling of data, and then
determining the period and its uncertainty. This field has
shown diverse evolution and activity from early Blackman-
Tukey analysis [1] to “pulsar folding” (e.g., [2]) to Lomb-
Scargle periodograms (see, e.g., [3] for a review of the

Lomb-Scargle periodogram and comparison to other
methods).
An example of greater complexity of phenomena and

data came with the discovery and study of quasiperiodic
oscillations—such an X-ray emission phenomenon linked
to accretion appears not as a simple periodic signal but as a
broad bump in frequency space. Our focus here is periodic
windowed behavior (PWB), inspired by the recent discov-
ery of such behavior in repeating FRB sources [4,5]. For
PWB, activity occurs only during periodically occurring
windows—there is no activity in the gaps between the
active windows; however, not all active windows may show
activity. The activity within a window may be random;
there is no requirement or expectation that it will converge
to a uniform profile (like a pulsar profile). Both the period
and the active fraction (e.g., related to duty cycle of the
energetic astrophysical process) are of interest.
Radio telescopes observing repeating FRB sources

report millisecond duration bursts from the same source
that may have time spacings from milliseconds to days
during continuous observations, but intensive monitoring
campaigns may observe no bursts for ∼180 days [4,5].
Initially, it was proposed that the behavior of the best-
known repeating FRB, the source of FRB 121102, may be
modeled as a time-clustered Weibull distribution [6].
However, with a few years of data in hand, an unexpected,
and stunning, result appeared: the bursts were not periodic,
or simply clustered, but were observed only in“periodic
activity windows” [4,5]. Similar behavior was reported for
the source of FRB 180916 [7].
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More recently, PWB was reported in SGR1935þ 2154,
but in soft gamma-ray bursts [8]. This object is particularly
noteworthy as it became the only known source of
FRBs within our Galaxy when two were detected
during the same day in 2020 [9–11]. This object is so
much closer than any other known FRB source that one
could hope it could be some kind of “Rosetta stone” for
understanding FRBs. (Another claim of PWB in soft
gamma bursts was given for SGR1806-20 [12], though
it is less certain.)
Robust identification, and characterization, of PWB

could shed light on astrophysical burst mechanisms and
energetics. For example, a considerable number of theories
have been proposed for the origin of FRBs [13]; docu-
mentation and analysis of PWB in FRBs would be very
important in constraining these models and could be key to
understanding the bursting nature. As we enter an age of
big data time domain surveys, PWB could also be dis-
covered in other astrophysical contexts, showing further
value for improved ways of identifying and measuring this
phenomenon.
In Sec. II we describe a method for identifying PWB, and

in particular distinguishing it from more irregular time
clustering of events. For a burst series suspected of having
PWB, in Sec. III we present methods for determining the
period and active fraction. We apply this to the data from
SGR1935þ 2154 in Sec. IV, and discuss extensions and
conclude in Sec. V.

II. IDENTIFYING PERIODIC
WINDOWED BEHAVIOR

Strictly periodic behavior can be identified through a
large number of different methods; for astrophysical time
series data one of the most widely used is the Lomb-Scargle
periodogram [3,14,15], which works in frequency space,
where the folding of the time series increases the signal. In
periodic windowed behavior, activity occurs at some times
(not necessarily deterministic) within windows, where it is
the windows that recur at a regular period. Such behavior
may be the result of, e.g., a periodic “shutter” modulating
nonperiodic emission, or the physical conditions necessary
for an outburst may occur only periodically (but not
guarantee a specific time for a burst), or see [16] and
references therein for an FRB precessing beam model. In
this case long-term folding of data will not necessarily
converge to an average profile.
The active windows may be a significant fraction of the

full period, and then often the frequency analysis methods
are diluted, with aliasing of the signal, i.e., signal peaks are
broadened. Moreover, they tend to ignore the “curious
incident of the dog in the night time” [17]: that the dog
didn’t bark (the gaps with no bursts) carries important
information. Therefore we discuss a time domain method
for assessing the burst data.

Working in the time domain, we initially examine the
cumulative distribution function (CDF), since it does
contain information on both events and gaps, and has
useful statistical properties. From an ordered series of
events at times ftig, we look at the distribution of burst
spacings ti − t1 vs observation time. Normalizing both axes
to run from 0 to 1 (at the end we can restore the scaling by
the total observation time, to get answers in days), we
have the cumulative fraction of events, between 0 and
100%, vs the time fraction, normalized by the length of
the observation campaign.1 Thus we have the CDF of a
variable distributed on [0,1].
Figure 1 illustrates several CDF for various

realized distributions with a mean of 128 events each.
We compare the uniform random distribution to two
clustered distributions—all without actual periodicity—to
a PWB case. The distributions have both similarities

FIG. 1. Cumulative distribution functions are shown for ran-
dom realizations of four different distributions, with a mean of
128 events per distribution. The event fraction, number of events
as a fraction of total number of events, is plotted vs the time
fraction, how far into the total observing duration the event
occurs. The dotted diagonal shows a perfect uniform distribution.
The other distributions exhibit clusters of events with gaps of no
activity interspersed. One can see at least hints of periodic
windowed behavior in the PWB distribution.

1Some technical details: we take time 0 to be when the first
burst is observed; any gap before this is uninformative since
we have no way of knowing whether the object had ever burst
before—basically we are interested in the repeats. The end time
can be either the end of the observing or when the last burst is
detected; this does not affect the results. We then normalize all
burst time differences ti − t1 by tend − t1 so that the x-axis of time
fraction runs from [0,1].



and differences, and the eye can be fooled by random
excursions into thinking it detects patterns, even peri-
odic ones.
The uniform distribution is realized by generating

event times in a uniform random fashion over the [0,1]
interval. The Weibull distribution is often used in astro-
physics (e.g., [5,6] for FRBs), and more widely to give
events that are clustered together at either early times or
late times (as in failure rapidly or due to aging). We show
an example with scale parameter β ¼ 0.4 and shape
parameter k ¼ 1.5, so the CDF is 1 − expf−ðt=βÞkg.
Events beyond the end of the unit interval are not yet
observed and not selected. The clustering here is due
solely to the distribution. A true clustering is implemented
in the clustered distribution, where events are generated
with a two point correlation function ξðr≡ jtj − tijÞ ∼ r−γ .
We construct this using the Soneira-Peebles approach
[18,19], using a multiplicity parameter η ¼ 4, scale
parameter λ ¼ 8 (thus γ ¼ 0.33), and four levels, giving
256 points, from which we randomly select the desired
number.
For the PWB distribution we take four periods of length

0.25 with active fraction 60%, i.e., an activity length of
0.15 and a gap length of 0.1. Within the active window the
events are uniformly randomly distributed. While by eye
one can discern gaps of no activity in the PWB CDF,
one can as well in the clustered case, as well as lesser ones
in the Weibull and even uniform distributions. As the
data become sparser (and gaps become longer and reali-
zation scatter increases in the active windows), it is harder
to assess visually whether there is actual PWB. Figure 2

illustrates this as we reduce the number of events2 to
N ¼ 64 and then 32.
Since the eye is suspect in determining PWB, we aim to

quantify the difference in distributions more rigorously.
One common approach to distinguishing between distri-
butions is the relative entropy, or Kullback-Leibler (KL)
divergence [20]. For two distributions pðxÞ and qðxÞ this is
defined as

DKLðpðxÞ; qðxÞÞ ¼
X

i

pðxiÞ ln
pðxiÞ
qðxiÞ

: ð1Þ

Generally one does not compare two realized distributions,
since they may not have events at the same times xi, but
rather a realized distribution pðxiÞ is the data and qðxÞ is the
test or model distribution.
We can now start to see why KL divergence is not ideal

for our purposes: we cannot take qðxÞ, i.e., the model, to be
the PWB distribution, since the important presence of no-
event gaps gives qðxÞ ¼ 0. There are ways of getting
around this using the CDF QðxÞ ¼ R

dxqðxÞ rather than
the probability density qðxÞ itself [21], but the results are
not wholly satisfactory. Briefly, we do find the ability to

FIG. 2. As Fig. 1 but for 64 (left) and 32 (right) mean events in each distribution. Random scatter increases the difficulty of discerning
periodic windowed behavior below N ¼ 64.

2Due to the random realization, in the PWB case while there
are a mean ofNtotal=4 events in each activity window, this number
varies and so does the total. The three cases for PWB actually
have 127, 63, and 30 events. The Weibull distribution case also
has 125 rather than 128 events; since the Weibull distribution is
well separated from the others, and to enhance clarity, we do not
show it for the Ntotal ¼ 64 and 32 plots.



distinguish each of the distributions from the uniform
random case and from each other. However, the quantifi-
cation of the degree of difference is not easily interpreted,
and the information of the gaps—the dog not barking—is
diluted. [Note that when pðxiÞ ¼ 0 there is no contribution
to the KL divergence, regardless of the model distribu-
tion qðxÞ].
Therefore, we adapt a method used in galaxy spatial

clustering, where the cosmic web of structure—both
connectivity and void regions—carries important informa-
tion. The friends of friends (FOF) method [22,23] defines
clusters of activity where neighbors lie within a linking
length b. For our one dimensional time series, this is trivial
to implement: ti − ti−1 ≤ b. This is fast and easy to apply to
all our distributions. We set the linking length several times
larger than the average uniform separation so that clusters
will not be (rarely at least) falsely identified in uniform
distributions. For example, b ¼ 5=n̄, where n̄ is the
number of events divided by the time interval, i.e., the
mean density or reciprocal of the interevent spacing for a
uniform distribution, roughly corresponds to a signal to
noise S=N ≈ 5 distinction from a uniform distribution.
Empirically, we find this works well.
Friends of friends, like any clustering method, will have

difficulties if there are few data points, but note that even if
there is only one event in a window, FOF will recognize it
as its own cluster unless n̄ is too small. In any case, we will
end up using FOF as a means of identifying windows, and
turn in Sec. III to other statistical techniques for robust
quantification of their characteristics. In the end, we will
employ FOF quantitatively simply as a useful guide to
reasonable priors for a detailed estimation procedure.
An immediate output of applying the FOF method is the

values from each activity cluster found of the length of
activity windows aj, of gaps gj between them, and the
possible periods from summing consecutive active and
inactive times Tj ¼ aj þ gj and the active fractions or duty
cycles fj ¼ aj=Tj. For true PWB we expect consistency
(i.e., a narrow distribution) in aj, gj, etc. while these would
be widely scattered or sparse for event distributions without
some periodic behavior.
Since PWB events occur somewhere in an active

window, not necessarily at the extremes, we expect the
measured values of aj to give lower limits on the true value
a, measured values of gj to give upper limits on the true g,
and the period aj þ gj to have some scatter around the true
period T. All estimates become more accurate with more
events in the time series; Sec. III discusses accurate
characterization of the PWB.
Figure 3 shows the results of the FOF clustering analysis

on the four types of distributions realized. The uniform
random distribution was found to have two, disparate
clusters, one extending from the first event to 34% of
the observing duration, the other extending for the last
60%, showing no clear periodic windowing. The Weibull

distribution has four clusters, with activity window lengths
scattered from below 1% to 64% of the duration, again no
PWB evident. The clustered distribution has five clusters
with three activity windows at 2% length, but others at 7%

FIG. 3. Histograms of the activity window durations (top) and
periods (bottom) are shown for four realized distributions. Peaks,
or narrow distributions, in both indicate periodic windowed
behavior. To compare distributions more evenly we present the
variables as fractions relative to the maximum active window
duration and period for that distribution. (Thus all distributions by
definition have one element for each quantity at the value 1, and
we offset these slightly vertically for visibility; for the uniform
case, e.g., the other instance is at a=amax ¼ 0.34=0.60 ¼ 0.57.)
Only the true PWB distribution shows a narrow distribution
around 1 in the period, as well as in the active window duration.



and 17% length; the related “periods” (sums of consecutive
active and gap states) are more diverse, from 8% to 33%
length, so no PWB is falsely detected. To compare the
different distributions more clearly, we normalize each by
their maximum values of period and activity found, Tmax
and amax, respectively.
Finally, analysis of the actual PWB distribution case has

three activity windows of 15% length and one of 11%
length, with periods grouped from 23% to 27%. Recall that
the input for generating the random realization was activity
0.15 and period 0.25, so FOF successfully reconstructs the
truth. One can quantify this by computing the mean and
standard deviation of the activity window length, for
example, to assess the peaked nature of the estimation
distribution.3

We go into characterization of PWB properties in more
detail in the next section, going beyond FOF. Here we have
motivated that PWB can be recognized, and that other
distributions, even those that have innate clustering
(Weibull or the correlation function clustered cases) do
not lead to false PWB identification.

III. MEASURING PERIODIC
WINDOW PROPERTIES

Now that we have some confidence that PWB can be
identified accurately, we turn to robust characterization of
PWB properties such as the period and activity fraction.

A. Quick look

We begin with a quick look estimate that we will find is
surprisingly accurate, and useful to set a prior range for the
more robust determination in the next subsection. As
mentioned, measurements aj of the active window length
give lower bounds for a, and those of gaps gj give upper
bounds for g. A zeroth order estimate of the true quantities
could then be simply the highest and lowest values,
respectively. However, we would like to do better since
we know the true a ≥ max aj, plus we would like some
indication of the uncertainty range.
We improve the estimation by looking at the difference

between the highest aj, call it ahi and the next two closest
values, call them Δa1 and Δa2. If Δa2 > 2Δa1 we take
Δa ¼ Δa2, otherwiseΔa ¼ Δa1. For the gap length, this is
more subject to overestimation (i.e., it is easier to not have a
burst, even in an active window) so we start from the lowest

gj and go down by Δg ¼ 2Δg1 always. Then our estimate
of the activity window length is a ¼ ½ahi; ahi þ Δa� and the
gap length is g ¼ ½glo − Δg; glo�. The estimate of the period
is T ¼ ½ahi þ glo − Δg; ahi þ Δaþ glo�. Again, we note
that we will employ these FOF estimates simply as a
useful guide to reasonable priors for a detailed estimation
procedure. Nevertheless, we find below that they work
quite well in the tests made.
For our PWB with four windows, we find a ¼

½0.1486; 0.1509�, g ¼ ½0.07367; 0.1019�, T ¼ ½0.2222;
0.2528�, where the truth values are 0.15, 0.1, 0.25. Note
that for the PWB cases with N ¼ 63 and N ¼ 30 realized
events, the active window lengths and periods are still
determined, but in the N ¼ 63 case the true period lies
slightly outside the estimated range (at 1.6 times the mean
uncertainty from the central value), and in the N ¼ 30 case
the period has a 25% uncertainty. Thus, estimation
becomes more robust with ≳100 events (at least for
observations limited to four windows).
As a blind test, one of the authors generated a distribu-

tion with 128 events and another fit it, obtaining
a ¼ ½0.0362; 0.0398�, g ¼ ½0.0854; 0.0885�, T ¼ ½0.1216;
0.1283�, and deducing correctly there were eight activity
windows. The truths were revealed to be 0.0375, 0.0875,
0.125. A more difficult blind test used a distribution where
some of the activity windows were empty, i.e., appeared
as gaps rather than active times. Here the fits gave
a ¼ ½0.0374; 0.0394�, g ¼ ½0.0856; 0.0968�, T ¼ ½0.1230;
0.1362�, and deduced correctly that while there were eight
activity windows during the observing time range, only six
exhibited bursts and one of those had only a single burst.
The truths were 0.0375, 0.0875, 0.125.
Thus, in all cases we correctly reconstruct the PWB

characteristics. We would, however, like to reduce the
uncertainties further (the blind tests obtained the periods
with 2.7% and 5.1% uncertainty, respectively). This can be
done with more data, of course, e.g., more bursts within an
active window, a larger activity fraction (the blind cases had
only 30% duty cycle), or a longer observing duration giving
more windows. Since we cannot control the first two,
astrophysical properties, and we do not always want to wait
for the last one, we instead use the first round of results as
input to a more rigorous likelihood optimization routine.
The initial estimates serve to guide priors that increase the
speed and efficiency of the likelihood code.

B. Robust estimation

For more robust determination of the period and activity
window fraction, we carry out a likelihood analysis through
a direct parameter grid search. The grid search is the most
accurate approach, and tractable due to the low dimension-
ality of the parameter space. Other sampling methods are
less efficient due to the posterior surface actually being a
broad plateau, not an isolated peak. For example, for any
given period, a 100% active window fraction means that the

3We use a weighted mean,

ā ¼
P

jNjajP
jNj

; ð2Þ

where Nj is the number of events within the activity window of
duration aj. To the extent the scatter goes as 1=

ffiffiffiffiffiffi
Nj

p
, this is

inverse variance weighting. Using this mean, we calculate the
standard deviation.



entire observational duration is treated as active and this
will fit the data as well (though much less efficiently) as
isolated windows.
Once the PWB nature of a burst time series is indicated,

we employ the range derived in the FOF analysis as an
efficient guide for the grid search, placing top hat priors on
the period T and active length a. We introduce a phase
parameter τ as well to describe the difference between the
starting time of the first active window and the first burst
observed, with a range ½−a; 0� (so the prior on a fixes the
prior on τ as well; note that FOF does not use phase
information.) We check that the final results are not affected
by these priors, they merely serve to make the grid search
more efficient.
The log likelihood function compares the model

fT; a=T; τ=ag and the data, having two terms,

logL ¼ Aþ E: ð3Þ
The acceptance term A is a step function, assigning zero if
the data indeed falls within the activity windows of the
model, i.e., the model describes the data. All models that fit
the data, i.e., where burst events fall within an active
window, have equal likelihood. However, if bursts fall into
model gaps, where no events were predicted, a step to a
large, constant negative penalty is assigned, preventing
acceptance of the model (the exact size of the penalty does
not matter if it is large enough, e.g., <−1). As mentioned
above, this gives a broad plateau in the likelihood that
allows trivially inefficient models, e.g., with a ¼ T and so
having negligible or no window gaps. To break this
degeneracy we add an efficiency term E to the log like-
lihood that penalizes values of a=T larger than necessary.
For any given T there will be a minimum (optimum) a=T,
and the minimum a=T across all T defines the global
optimum model fT; a=Tg. The E term serves to “tilt” the
plateau so the optimization traces out its boundary. We use
the form

E ¼ −
a=T

amax=Tmin
: ð4Þ

The numerator imposes a penalty for a=T larger than
strictly necessary, and the denominator is simply a constant
normalizing factor not affecting the shape of the log
likelihood, where amax and Tmin are the upper and lower
prior bounds, respectively, so that −1 < E < 0. We test this
approach against the two mock datasets of the previous
subsection: each contains 128 events distributed over eight
windows of activity, with varying numbers of bursts in each
window. The first dataset, denoted as “full”, has all eight
activity windows with events: (17,13,7,15,15,21,23,17)
uniform randomly distributed in the respective windows.
The “sporadic” dataset contains the same number of bursts,
however, two activity windows are empty and another one
contains a single burst—(11,3,36,0,1,52,0,25)—to mimic a

different possible observational scenario (and one that we
will see in the next section is closer to a particular actual
dataset). Recall that the FOF analysis was able to discern
correctly the number of active windows in each case and
obtain estimates for T and a.
Figure 4 shows the minimum active fractions ða=TÞmin

found for each T and the global minimum picking out the
optimal Topt. From our likelihood analysis we obtain the
best fit parameters to be T ¼ 0.1248 and a ¼ 0.0362 for
the full, and T ¼ 0.1251 and a ¼ 0.0374 for sporadic mock
cases, respectively (compared to the truth, T ¼ 0.125,
a ¼ 0.0375). Any model lying above the curve is a valid
fit to the data, but less efficient than the optima. We see that
the global optimum is quite close to the truth. Note that this
method gives a best fit, but not an uncertainty per se.
We can define an uncertainty by choosing to consider

models with a bound on inefficiency such that the optimum
behavior would not appear much less frequently than in
68.3% of simulated datasets. For example, a model with a
larger than needed active window, hence a=T, would be
consistent with the data, but only rarely would its realiza-
tions be as restricted as the data, i.e., falling in narrower
windows. “Efficient” models lie in the region above the
minimization curve but below the dotted, nearly diagonal

FIG. 4. Likelihood optimization gives both local minima in
active window fractions a=T as a function of period T and the
global minimum. We show the cases for the two mock data
samples, when all windows are active (“full”; solid blue curve)
and when data is sporadic enough that some windows are empty
of events (“sporadic”; dashed black curve). The global minimum
is the best estimate; all points above the curves are consistent with
the data, but past the dotted diagonal curves the models are
inefficient (only a few are as restrictive as the data). We can use
this region to define an uncertainty on T, shown by the projection
to the T axis. The input value is shown by the bold red x.



inefficiency curve (see Appendix A for its expression).
Projecting to the T axis defines the range in the period. For
the full case this gives a range of T ∈ ½0.1241; 0.1256�, or
½−0.5%;þ0.7%� uncertainty on the period. For the sporadic
case the range is T ∈ ½0.1243; 0.1256�, or ½−0.6%;þ0.4%�
uncertainty (the tighter precision relative to the full case is
due to the higher density, though fewer, windows; recall
they both have the same total number of events, just
distributed differently).
Figure 5 shows the phase parameter τ=a. It is tightly

constrained when a=T is at the minimum, but has a modest
range when a=T ¼ ða=TÞmin þ 0.01, for a given T. Finally,
we note that we crosschecked against two other optimiza-
tion approaches, specifically simulated annealing by
employing the dual_annealing routine from the
SciPy optimization package and a Markov chain Monte
Carlo (MCMC) sampler, and found the results are com-
patible (see Appendix B).

IV. APPLICATION TO SGR1935 + 2154

Real observational data can be more difficult, and
scientifically rewarding. We apply our methods to actual
measurements of the source SGR1935þ 2154, testing
whether it exhibits PWB, and giving robust estimates of
its period and active window fraction. These characteristics
can constrain models of the origin of the emission and
properties of the system.

SGR1935þ 2154, a magnetar within our Galaxy, was
identified as the source of two FRBs occurring UT
(Universal Time) 2020 April 28 [9,10]. The local nature
makes measurements of the object and its environment
much easier and with much greater detail. In fact, a
linkage between the production of soft gamma bursts in
this source and FRBs is naturally suggested: the same two
events as the FRBs, with the appropriate delay due to
dispersion by interstellar electrons, were detected by γ-
ray instruments [24–28] (though some authors suggest
that different source types may be responsible for these vs
extragalactic FRBs [29]).
As an example of the constraining power of these

measurements, in [8] the SGR1935þ 2154 soft gamma
burst PWB period was found to be 231 days, but the binary
comb model for FRB [30] is limited to periods ≲100 days
[31]. Such a model may perhaps be eliminated for
SGR1935þ 2154 or other PWB long-period magnetars
[8], pointing to other models such as isolated neutron star
precession (e.g., [32]) as the source of periodicity, coupled
with a nonperiodic emission mechanism. More generally,
given an excellent knowledge of the PWB parameters,
correlating additional observational properties with these
parameters may shed further light on the physical mech-
anisms at play. For example, with robust knowledge of the
phase of the window boundaries, one could look not only
for correlations with the modulation period, but also for
effects at the window boundaries in SGR burst intensity,
fluence, and spectral characteristics. Comparison of the
variation in soft gamma burst polarization measurements
(coming from the next generation of instruments) with the
PWB period and the window boundaries could shed light
on the role of the magnetic field in these modulations, as
well as in the role of magnetic field orientation in the
emission mechanism.
Long term monitoring of SGR1935þ 2154 has pro-

vided several years of data from a number of γ-ray
instruments. In [8], for some range of periods the data
were folded at various trial periods, and the activity
fraction—the fraction of a period that would be consistent
with all event data, was calculated, and the period with the
minimum activity fraction was taken to be the “best”
period. That analysis did not provide an examination of
the uncertainty in the period or active fraction. Its
conclusion that there was actually a periodic windowed
behavior arose from comparison to uniform random
events. Here we use different methods and quantification,
and a clustering analysis.
We apply our methods to burst data from the Third

Interplanetary Network (IPN3 [33]). IPN3 includes numer-
ous spacecraft with X-ray and gamma-ray sensitive instru-
ments, but notably the Konus instrument on the Wind
spacecraft. This instrument is in orbit around the sun at
Lagrange point 1, far from Earth, and so provides a nearly
continuous, unobstructed view of the entire sky, and a more

FIG. 5. Likelihood optimization provides the phase fraction of
the first observation, τ=a, as a function of period T. For the
minimum a=T (the curves in Fig. 4), the phases are tightly
constrained ð∼pointlikeÞ, but have more freedom for larger
allowed a=T; the vertical solid and dashed lines indicate the
allowed phase range for a=T ¼ ða=TÞmin þ 0.01.



constant background than for low-earth orbit instruments.
These are ideal properties for time series monitoring.4

Carrying out our procedure for identifying and character-
izing PWB, we first examine the CDF, as in Fig. 1, but
here applied to SGR1935þ 2154 data (159 events iden-
tified in the IPN3 SGR list for SGR1935þ 2154 as of 2021
February 1 [33]). Figure 6 shows the resulting CDF. While
there are clearly episodes of activity and gaps of inactivity,
it is difficult to tell by eye if there is PWB.
Applying the FOF method, we carry out the period

analysis in Fig. 7. While the activity window lengths and
gaps scatter greatly, the pseudoperiods (sum of consecutive
active window lengths and gap lengths) show an interesting
pattern. We exhibit T=Tmax, and see a concentration around
T=Tmax ∼ 0.2, or T ∼ 0.1.
The FOF method gives the estimate for the period (not

pseudoperiod ratio) of T ¼ ½0.056; 0.129�. While a broad
estimation, due to some empty activity windows increasing
the uncertainty, it still provides a useful prior for the more
incisive likelihood analysis. In addition we find the activity
window length a ¼ ½0.049; 0.077� and six active windows.
We proceed with our likelihood analysis and parameter

determination of the SGR1935þ 2154 data in the same
manner as the simulated cases of Sec. III. The final results
determine a global optimal period T ¼ 0.1074 and active

fraction a=T ¼ 0.554 (i.e., a ¼ 0.0595). Converting back
to days by rescaling to the duration of observations, this
implies the PWB has period T ¼ 230.6 days, with an active
fraction of 55.4%. Figure 8 shows the results, along with

FIG. 6. Cumulative distribution function for the SGR1935þ
2154 data, similar to Fig. 1. By eye it is difficult to confirm or
deny periodic windowed behavior, requiring statistical analysis.

FIG. 7. Histogram of the (pseudo)period, relative to the
maximum instance, for the SGR1935þ 2154 data. The peak
at 0.23 is suggestive, and the cluster of four just below may
indicate the true period lies in between the two clusters, with
some having sparse activity in the active window (hence
apparently shorter periods) and some having long gaps (hence
apparently longer periods). Quantitative analysis confirms this.

FIG. 8. As Figure 4, but for the actual SGR1935þ 2154
data. The global optimum gives T ¼ 0.1074, a=T ¼ 0.554. This
corresponds to T ¼ 230.6 days, a ¼ 127.8 days.

4While there is some heterogeneity in instruments and cover-
age, the main instruments other than Konus are in low earth orbit,
without any long-term changing viewing zones and hence no bias
for or against periods in the hundreds of days range. An analysis
for particular sets of instruments was carried out in [8] and found
results consistent with each other and the results here.



the local optima boundary. Using the efficiency criterion,
analysis of the SGR1935þ 2154 data yields a range of
T ∈ ½0.1066; 0.1109�, or ½−0.7%;þ3.2%� uncertainty on
the period.
Figure 9 presents the estimation of the phase parameter,

with a best estimate of τ=a ¼ −0.101, i.e., the first detected
burst of the time series occurred 10% of the way through
the activity window. The estimation of this is very tight
ð−0.2%;þ0.9%Þ at ða=TÞmin, broadening as shown in the
figure as one moves away from the local optima (here we
show a shift by 0.02 from the minimum a=T, the same
fractional difference as the 0.01 shift used in Fig. 5).

Finally, we note that the FOF estimations for the period
T and active window length a do include the likelihood
optimization results of T ¼ 0.1074, a=T ¼ 0.554 (i.e.,
a ¼ 0.0595), and the optimization results lie well inside
the prior information from the FOF analysis. Our results
agree as well with those from [8].

V. CONCLUSIONS

Astrophysical bursts occur in observations throughout
the electromagnetic spectrum, from the radio to optical to
gamma ray. Repeated outbursts indicate the source is not
totally disrupted, and periodic bursting points at some
physics connected with, e.g., rotation or an orbital
companion. An intriguing middle ground that is becoming
more recognized with further data is periodic windowed
behavior, where activity windows, rather than the burst
events themselves, have periodicity. This can also provide

important clues to the astrophysical mechanism of the burst
and system characteristics.
Analysis methods for strict periodicity often fall short

when dealing with PWB, as the duty cycle is important,
activity windows can be empty of events, and the time
series of events can be distributed in a complicated manner.
We have emphasized that the lack of bursts carries critical
information that must fold into the analysis, and we develop
a time domain method that takes this into account.
The cumulative distribution function of event intervals

works well at identifying whether or not PWB is a
reasonable possibility. We test this technique for four
distributions: uniform random, Weibull, PWB, and a
special distribution with correlated clustering. Given rea-
sonable indications identifying PWB from the CDF analy-
sis, we then draw on the friends of friends technique from
galaxy clustering to characterize the PWB. This FOF
analysis delivers quantitative estimates of the period T,
active window length a (and hence duty cycle a=T), and
observing phase τ. For our test cases of mock data, the
estimates accurately reconstruct the input and have ∼3–5%
precision for data with at least 100 events and≳4 populated
windows. However, we view the FOF analysis as a guide
toward carrying out a full likelihood analysis (where the
FOF can serve in setting reasonable priors).
For the likelihood analysis we use an optimization grid

approach, due to the low dimensionality of the parameter
space, increased accuracy, and that the posterior surface is
actually a broad plateau, not an isolated peak. However we
do find consistent results with both a simulated annealing
approach and a Markov Chain Monte Carlo approach. We
minimize the duty cycle that agrees with the data, and find
accurate estimates of the period to ≲1% uncertainty on the
mock data. Analyzing real observational data on the source
SGR1935þ 2154 we first identify that PWB is reasonable
for the data, and then characterize it as having period
T ¼ 230.6 days, with ∼1.9% uncertainty, and duty cycle
a=T ¼ 55.4%.
Finding PWB for what is truly a random distribution is

highly unlikely: if we consider the probability that a
uniform distribution realization would avoid all the 10
spans of time that PWB predicts no activity (let alone
have the active windows in a periodic pattern), this is
P ¼ ð1 − 0.554Þ10 ≈ 3 × 10−4. For a truly uniformly ran-
dom distribution one could take into account not just the
number of windows but the total number of events, so the
probability would be P≈ð1−aÞN≈2−159≪1. Nevertheless,
the ultimate proof will be predictivity: if the values for the
period and active fraction derived above are correct, the
next two active windows (which admittedly are not
guaranteed to have activity) are from June 1–October 7,
2021, and January 18–May 26, 2022, and we predict no
activity outside of our active windows.
Numerous next generation time domain surveys in a

wide range of wavelength bands (e.g., LSST [34] in the

FIG. 9. As Fig. 5, but for the actual SGR1935þ 2154 data.
Here black vertical lines indicate the allowed phase range
for ða=TÞmin þ 0.02.



optical, DSA-2000 [35] and CMB-S4 [36] in the radio and
submillimeter, wide-field instruments such as STROBE-X
WFM [37] and SVOM ECLAIRs [38] in the X-ray/gamma
ray bands) will greatly increase the database and diversity
of repeating sources with possible PWB. The efficient
methods presented here give a straightforward path for
analysis, identification as PWB (vs, e.g., simply clustering),
and its characterization. Accurate estimations of PWB, and
the period, duty cycle, and phase, offer the potential for
significant advances in understanding the physics of
energetic bursts and the properties of the repeating outburst
systems, in a wide variety of astrophysical contexts.
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APPENDIX A: ESTIMATING INEFFICIENCY

Many models, i.e., combinations of periods T and active
fractions a=T, can fit the data. Trivially, a model that is
always active, a=T ¼ 1, will fit the burst data but be
inefficient at doing so. That is, it allows bursts at any time
but they seem to appear only within periodic windows.
Such a formal fit is not informative. We therefore seek the
most efficient fit as the most informative: the model with
ða=TÞmin and its associated Tbest. However, models close to
this are only a little inefficient, that is many realizations of
such models would generate data still falling within the
optimal window structure. Conversely, for models further
away, such as all-active a=T ¼ 1 models, Monte Carlo
simulations of such a model would show many instances
that, while including the data, would also have predicted
many bursts where none were seen. Hence it is inefficient
(or, if you like, complete but not pure).
We seek a measure of the inefficiency, so that the region

of efficient models can translate to a range, or uncertainty,
of the period and active fraction. Consider a single
window. If it is a little wider than optimal, then that model
will fit the more restrictive data, but be somewhat ineffi-
cient at doing so. Suppose we want 68.3% of simulations of
a model to not only match the data but also not give
bursts outside the optimal windows. For one window,

and one burst within the window, this means that mod-
els with a0=T 0 > ða=TÞmin=0.683 are likely to be ineffi-
cient. For N independent windows the inefficiencies
ða0=T 0Þ=ða=TÞmin multiply, so to obtain an efficiency
0.683 < 1=½ða0=T 0Þ=ða=TÞmin�N each window can only
contribute a factor 0.683−1=N. If we consider more than
one burst within a window, we have to understand the
coherence between bursts before we can quantitatively
evaluate this, but 0.683−1=N gives an upper limit to the
inefficiency so we stay with this.
Similarly, if the period is taken to be longer than optimal,

this can also be inefficient. For a constant a=T, a longer T
means a longer active window width a. Again this adds
inefficiency to each window, giving a factor T 0=T for each
window. There are further effects from the shift of the far
and near sides of the windows, and the phase, but these
contribute less when T 0 − T ≪ a, a0 − a ≪ a. Under those
conditions we simply multiply the two inefficiency factors
to get to first order

ða=TÞeff ¼ ða=TÞminðT 0=TÞ−10.683−1=N: ðA1Þ

We use this to define the diagonal inefficiency curves in
Figs. 4 and 8. We have checked this gives a reasonable
approximation under the conditions stated by running a
suite of 1000 Monte Carlo realizations.

APPENDIX B: COMPARISON TO
DIRECT OPTIMIZATION

As mentioned in Sec. III, we have crosschecked our
direct grid search optimization routine with a standard
MCMC and a simulated annealing optimization. The direct
grid search is innately more exact, and sufficiently efficient
due to low dimensionality of our parameter space that we
use it throughout the paper. We exhibit some results of the
other two methods here.
Figure 10 shows the MCMC samples generated using the

Stan software [39] to find the global optimum model and
explore the distribution of other combinations of param-
eters fT; a=T; τ=ag consistent with SGR1935þ 2154 data.
It agrees well with our direct optimization. We also used the
dual simulated annealing optimization routine dual_
annealing [40] as a complementary approach to the
grid search optimization to quickly find the best estimates
of the global minimum. We randomly chose 25 initial
points and found the dual annealing provided good
estimates of the global minimum as well, as seen in Fig. 11.
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