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The Effects of a Finite Number df'Projectioh Aﬁgles and Finite
 Lateral Sampling:Of Projections on the Propagatibn of

. Statistical Errors in Transverse Section Reconstruction

v,R; H. Huesman, Ph.D.

Lawrence Berkeley Laboratory
© University of California -

Berkeley, California
July 1976

ABSTRACT. The-dependence of noiee amplification on the number of projection
angles_aﬁd on the'lateral sampling interval of projeetions is presented. It is
shown that about 1.5 D/d angles and a sampling interval of about .5d are required
in order that the data be efficiently utilized. (D ié the linear dimension of the .
reconstruction region and d is thevlinear dimension ef the cells into which the
reconstruction region is subdivided.) Values fof noise amplification are given

for various combinations of projection angles and lateral sampling intervals.



1.. Introduction

Teqhniqués for reconstructién‘ofvthg 3-dimensiona1 distribution of density
in an objéct from projéctioné'ét multiple anglesvhaVé‘receiQed.extensive iﬁ&esti—
gation and review, particﬁiérly fdr #—réy transmiséibn’(Gotdon andeermaﬁ‘i973)'.
and phbton emission from radioisotopes (Budinger and Guilberg 1974). Previ§ﬁ§
aﬁalyses of the expected uncertainty in a reconstruction due_té sfatistical fluc-
tuations in the measurements have been performéd-for several réconsfruction algo-
rithms under the aSsuﬁption of adequéte number of projections: iterative relax-
ation (Goitein 1972), convolution or filtering of the préjections with subsequent
backprojection (Shepp aﬁd Logan 1974, Barfett et. ;l. 1975, Chesler 1975, Tanaka
and Iinuma 1975), Radon inversion (Friedman, Beattie and Laughlin, 1974) and con~
volution 6r filtering'of the backprojection (Huesman 1975). fhe present work
giveé the dependence of noise amplification on the number of projection angles
aﬁd on the sampling interval of projections.. The anélysis is applied to the noise
.propagation for iterative techniques in ;he limit that the least squares solu-
tién ig ;eached.> Errors or artifactsvin the’reconstruction unrelated to statis-
ﬁicai fiuétuations in the projection data are nqt cdnsidered here.

This analysis is carried out using a circular reconétruction region\of dia-
meter D wﬁich is.subdivided into small square cells 6f dimension d xvd, The area
to be reconstructed consisfs of v = (m/4) (D/d)2 cells, each.of which'is assumed
to contain uniform density. The data consist of a collection of 1ine integrals
of the density over n coplanar pathé through the7transverse secti6n. Tﬁe paths
traverse the reconstruction region at_ﬁz regularly spaced intef#als and at.ne
regularly spaced angles such that n = ngn, - The geometry of the'reconstruCtion
region and an example of the paths for line integrals at one anglé,‘e, are shown
in fig. 1. For the model chosen (uniform denéity in each cell) thé.relationship

between the line integral Ii and the density, pj in the jth cell is,

I - 2.0, W
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where Qij is the line length of the ith path through the jth cell, as shown
in the inset of fig. 1. (Qij is zero if the ith path does not intersect the
jth cell.) For finite width paths, Qij should be replaced by the area com-

mon to the ith path and the jth cell divided by the_ﬁath width.

2. Reconstruction and Error Analysis

The backpfojection (simple superposition image) B, , for the.kth cell is

k’
proportional to the line integral times the line length through that cell sum-

med over the n paths.

n -

. _.D

B =73 :z: I%k
nd _

i=1 .
The choice of the normalization factor D/(nd3) is explained below.
By substitution of eqn (l) into eqn (2), the‘backprojection can be

written in terms of the density as,

n AV]
D.
3 :E:- ik Py Py
i=1 j=1

B
k
Defining the matrix M by the expression,

D
nd3

WE
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My =

He
]
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and substituting into eqn (3), gives,
n
EMkJ

so that the backprojection vector is just the density vector multiplied by

the matrix M. A diagonal element of M is given by.

n
Mj.=~2§ z

(2)

(3)

(4)

(5)

(6)



but the fraction of line lengths which are non-zero is about d/D (only about

nd/D of the line integrals intersect the jth cell) and when non-Zero;'Q - is

v 1]
-about equal to d (the linear dimension of a cell) so that’
M, = _p3 %gidz =1 o T )
L Y : L

-Thus the normalization factor D/(nd3) makes the matrix M roughly indépendent
of the number of line integrals and the geometry of the reconstrﬁction:region.'
In the Appendix it is shown that in the limit of large ng and n_, Mkj apprdaches

(d/m) <rkj ». where <rk;> is the average inverse distance between points in the
jth and kth cells; and that furthermore (d/m) <r3§5‘ = ,95,

In order to investigate the uncertainty in the reconstruction, the density
vector is ekpressed in terms of the inverse of the matrix M as,
' v ' n ' n v
RO VNEE D DD -
A = ML
Mjk K= Mk 73 2 LYy 3 I 1kt (@)

k=l - k=1 nd a1 nd e k=1

Since the measurements of different line integrals are statistically independent,
- A . ' :

the statistical rms error of pj is the sum of the rms errors’of the contributions

from each I added in quadrature, -

: n v |
“fDd\2 2 -1
(__5) 2, o T 2o My Ax

-oz(oj)
nd i=1 \ k=1 -
(9)
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where o(pj) and O(Ii) are the rms errors of pj and_Ii respectively. If the

I’

o N2V v o , : S .
2 : 1 -1 -1 ‘ ‘
= [ — E v 1
(pj) ( 3) Z Mo Yym Lik Fim } (10)

rms errors of all Ii are equal to O



and substitution from eqn (4) gives,

Voo | - : '
Peps TR T G - gy
k=1 m=1
Eqn (8) is the standard:unweighted least équares solution of eqn (1) with
D/(nd3) factored out to make the results of the error analysis more transparent.
Just as the matrix M is independent of the number of line integrals, so are-the dia-

gonal elements of its inverse in the limit of large n and‘nZ (as will be shown in

6
the next section). The derivation of eqn (11) assumes that the uncertainties of all

measured line integrals are equal, but practical estimates can be made when this

assumption is not true.

3. Infinite Number of Data Points (Line Integrals)

As meptioned above, when ng and n_ are sufficiently 1arge Mkj dependsvsnly on
the relative coordinates of the jth_and kth cells and therefofe multiplication By
the ﬁatrix M becomes a discrete convolution with the function (d/m) <r—1> . The
diagonal.eleﬁents of the matrix M are equal, and the off diagonal'elements decrease
proportional td,the reciprocal of the distance between cells. Tﬁat is, R%k‘is
proportional to:the reciprocal of the distanqe between the kth and jth cells. Using
values for Mjk given by eﬁn (Al4) of the Appendix, the ﬁatrix M has bee§ inverfed
for D/d (the number of cells across the circular region) equal to 8, 16, and 32.

In these cases, for all cells except thdse at the very edge of the reconstruction

region, Mgi = 1.5917 * .001. Since the value of Mg; remains so stable over this

range, it is assumed that M;; = 1.59 is reliable for arbitrarily large values of

D/d.
Setting M}§ equal to 1.59 in eqn (11) gives,
2 1.59 D 2
o (p) = ——5 o] (12)
J nd
or
1.59 D ‘
O’ = —_—_— k
P 3 OI 13)

nd



where Gp is the rms error of all reconstructed cell densities, since there is no

j-dependence on the right-hand side of eqn (12).

The average value of the line integrals I, for the circular reconstruction regidn

i
is found from eqn (1) to be,
<> = mD-< p> _ ; | ) ; »' (14)

4

‘and division of ‘eqn (13) by eqn (14) gives,

% > 91 p> 9 . B
oo T .99 Y = —3 - (15)
| 3 nd®> <1 nd®>  <1> B

wheré <p$ is the average value of the density within the reconstruction region.
| Eqn (13) wgs previously‘derived under the same assUmptions éf large ﬁe
and n, and the same model of a feconstruction fegion partitioned into square
cells of uniform densitx (Huesman 1975). Tﬁo methods of reconstruétion were
shown to arrive at this result: - convolution of.the backprojection and filtering
of the backpfojection.r In both cases the convolution function (or filter
fuéction) was chosen to give the best possible resolution. Wheﬁ high frequency
.chponents are suppressed to reduce noise the resolution is degraded. Eqﬁ‘(13)
is.applicable to any of the iterative techniques which converge -to the
léast_squares~éolution of eqn (1) under the assumptions of.eéual uncertainties

for the measurements of the line integrals as well as large n, and n_ . 'Eqn (15)

5]
is essentially the same as thé estimate made for the iterative relaxation tech-
nique‘By éoitein (1972).
| Results similar to eqns (13} and (15) have been derived for the methods of

convolution and filtering of the‘ﬁrojections Qith subsequent béckprojection
(Shepp and Loganil974,‘Barrett et. al. 1975, Chesler 1975, Tanaka and Iinuma
1975). These results have different constant factoré'which reflect the differ;
ent-convolutiqn or filter functions used and_thevdifférent models or parameteri-

zations of the reconstructed density.. Comparison with Radon inversion (Friedman,

Beattie and Laughlin 1974) is difficult since resolution is not discussed.



4. Finite Number of Angles

5 is of moderate size, multiplication

by the matrix M remains a convolution (Mkj depends only on the relative coor-

When nz-isvsufficiéntly large, but n

diqates of the jth and kth bins) but the convolution function is no longqr_the
simple 6ne given'by (d/ﬂ).<r;§> nor ié it circulérlysymmetric. One may'gnvi_
sion the conyolution function by holding k constaﬁt gnd varying j. _Mkj will
have the familiar star or spoked pattern centered-étrcell k. Radially_out—
ward from thé kth cell (alqngtthe spokes) Mk5 does not deérease when the dis-
tance betwéén the ij and kth cells is greater thaﬁ about d/Af, where A8 is
the iﬁterval between-angles. |

- In order to iﬁvestigate the effect of a finite number of angles the matrix
M (as calcﬁlated using eqn (Al13) of the Appendix) has begn'inverted.for ng =
8, 10, 12,114, l6,718, 20, 22, gnd 24 angles. Tﬁe first ahgle is given by 6 =
Tr/2rie in.order té avoid 8 = 0 (fig. 1). Subsequent angles were generated by |
adding increments ofvﬂ/ne. D/d for this inversion was 16 and total number(of
cells in the reconstruction was v = 208. In all cases the value of_M.jj was
very close to .95. (For large n

9

average values of M;;, where the average has been taken over all cells except

and n_, ij = .95.) Fig. 2 shows the resulting

those at the very‘edge of the reconstruction region{ As can be seen on fig. 2,
(M}?)avg decréases with increasing ngmber of angles and approaches the value of
1.59 as expected. Note -that the abscissa is labeled ﬁed/D, and that no exp1icit

reference is made to n

0
‘ _1 _
that (ij)an depgnds only on ned/D.

alone. It has been verified using D/d = 8, 24, and 32

It can be seen from fig. 2 that when the number of angles reaches about
1.5 times the number of cells across the reconstruction region (ned/D ~ 1.5)

M, ) is very close to its limit of 1.59. TFor n,.d/D = 1.0, its value is
3jlaveg T : ' _ :

alréady greater than 2.5 so that it is desirable to have n.,d/D at least 1.0

6

and preferably 1.5 in ordér to make efficient use of the data. This is consis-
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tent with the result of Klug and Cfowther (1972) and Snyder and Cox (1975) which
is that the number of angles required is given by 7D/(2d).
" 5. Finite Number of Line Integrals for each Angle

0

and Az, where Az is the lateral spacing between line integrals at each angle.

The average values of'Mgﬁ have been computed for several values of n

D/d was 16 and the averaging was performed.over.all.cells except those at the
edge of the reconstruction region. Angles were generated by the procedure
given in the last section, and the lateral positions of the line integrals
were chosen such that the center of the circular reconstruction region was
halfway between two adjacent paths for each angle. 1In all cases the average
value of M;, was very Ciose'to .95. Fig. 3 shows (Mf%) for n, = 12, 16,
3 ' jj"avg 6
20, and 24 angles and values of Az between zero and .85d.

For values of Az/d greater than .7, the individual values of Mfl vafy

j3

bconsiderably from (Mg;)avg. This is the effect of our model of.square cells
of uniform density and of the manner in which the paths for.line integrals
pass through the cells. The abscissa of fig. 3 is labeléd Az/d witﬁ'the
assumption that the propégation of errors from tﬁe data to the reconstrucfion
depends only' on ned/D (the nuﬁber of angles divided by the-number of cells
across the reéonstruction région) and the distance between liﬁe'integrals
relative to the cell size. Points for Ai/d equal to zéro have been taken
from fig. 2.

As can be seen on fig. 3, (M;ﬁ)avg increases rapidly for Az/qvgreétér
than 0.7, but is quite well behaved for Az/d less thap 0.4. Thus, in ordet
to obfain a reconstrﬁction with resolution d, it is necgssary to have the
spacing between line'integfals su?stantially 1éss than d (.4d:to .7d) in
order to make efficient use of the data. This is in éonfligt with Synder

and Cox (1975) where it is assumed that the resolution obtainable in a

reconstruction is the same as the resolution in the projections.



-8-

The éveragevvariance of reconstructed cell densities based on the statis-
tical uncertainty of the measurements, OI, can be calculated by averaging eqn

(11) over cells in the reconstruction region,

%) e = — QD N | . (16)

(o L
p’avg ad jj’avs

Eqn (16) is applicable when there is a finite number of uniformly spaced angles,

ne, and equally spaced line integrals for each angle, Az, ifvvalues for (M;;)avg

are taken from fig. 3 for various combinations of-ne and Az.

65 Discuséion

Eqn_(ll) éxpreéses the expected variance of the least squarés‘solution
of eqn (1); the-basic.relationship between 2-dimensional deﬁsity distribution
and their line in;egrals. For an infinite nqmber of data boints, eqn (11)
redﬁces to the siﬁple.expressions given by eqns (13) and (15). For a finite
number of déta poiﬁts, eqﬁ (16) expresses the expected‘average'variance,
where values for (Mgﬁ)avg are taken from fig. 3 for various numbers of angles
and lateralbséparation of line integrais.

It has been shown that for an infinite number of data péints that the
statistical.fluctuationsbof the image are uniform over the reconstruction
region. Evidence has beén‘preseﬁfed which supports the conclusion that the
number of angles necessary to éffiéiently make .use of the data is given_By
mD/ (2d), or about 1.5 times the number of cells across the reéonstrucfion
region. Finally, the lateral separation between line integrals should be
substéntially less than d, the linear éell dimension, preferably between
.4d and .7d in order to limit statistical fluctuations in the image. |

- The single assumption made has Been that the uncertainties of all measured
line integrals are equal. This assumption is particuiarly appropriate ﬁor

transverse section scans using monoenergetic heavy charged particles such as



£
o

e
¢
o

R

00 v U4
protons or alpha particlés. (Crowé et. al. 1975, éudinger ef.‘él. 19753 Huesman,
Rosenfeld and'Solmitz 1975). This assumption is aiso a reasonable'approximation
for x-ray trahsmissién écans‘éf the human head when.a Qater.bath‘is used‘tO'par— '
| tially equalize the fraction éf X-rays transmitted—: |

For k—ray transmission scanners whi¢h do not use a water bath, sqans of
the humaﬁ head and éhest are partially self-equalized. The,bone at the peri-
phéry of the transverse séctions tends to increase the'atténuation of x-rays
where the path length through tﬁe patient is shortest. For gamma ray emission
scans it is-expected that this work will provide a rough estimate of the éxpected
stafisgical fluctﬁations of the reconstrqction. In addition to the nonuniformity

of measurement errors, the problem of attenuation has not been treated here.

- The author gratefully acknowledges productive discussion with Dr. Thomas
Budinger, Dfﬁ.Kenneth Crowe -and Grant Gullberg. This work was supported in -

part by the ERDA and in part by the NIH.
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APPENDIX

In this appendix it is shown that as ng and n, (n = nenz) become

large, Mkj in eqn (4) approaches (d/m) <r-}> ;»whéreA<ri

kj kj

.> is the :average inverse-

~distance between points in the jtb andvkth cells. ‘Eqn (4) is rewritten here for

convenience.

n
- D
Mjk 3 E Q’ik Qlij
nd~ |
i=1
Let the function Ek (x,y) be defined such‘that,

1, if the point (x,y) is in the kth cell
Ek(X,y) = ‘ -

0, otherwise

2= /;UL' E (x',y")

where the integral is carried out along'the'ith path, so that

then,

x' = x'(e,, z.) z.sin®. + 2'cosH,
i i’ i i

i
' ' ' ' :
y =Yy (ei’ Zi) zicosei - 31n6i

as shown on fig. 4. Similarly, Rij can be written as, -

,Q, Tt LB T
ij dag Ej(x s Y )

T L ]
z.,sinf. + & cosH,
i i i

where

»
I

Tty T
z.cosB. — & sinb,
i i i

~
It

and substitution of eqns (A2) and (Aé) into eqn (4)- gives
n
D ' ' ' e 1 re
M= _E-/;m Ek(x,y)ﬁz_ BGx Ly )
nd” -

The distance between paths for each angle is given'by,

(4)

(A1)

(A2)

(A3)

(a4)

(A5)

(a6)



=l )

z
and the interval between angles is given by

i

Tg

AB =

and eqn (A6) can be rewriten as,

J 7d

E,(x

n . . .
_ ABAz - ' ' v X
Moc e Y ,/;2 B G, y) faE
i=1 |

In the limit of large n, and n_ eqn (A9) becomes,

0

1

' 1 ' !

Mki_____..#gi Javdazar a2 E (x, y)E,
n. > o md . S
n > «©

and by making the transformation of coordinates of eqns (A3) and (AS); eqn

(A10) gives

(x

1

\J

‘9

\J

9

y

\

)

y

|

» Yy

1

)

’ ' "
v v e ey E(x, y )E, (x
M'kj 13 '/:'lx dy dx dy k .

n,~> ® rd : !

) _ (x -
n > o«

z

;

where the .square root term in the denominator of eqn (All) arises from the

'TZ

)

X

+ (y

Jacobian of the transformation. The functions.E and Ej

the integrals to within:the kthband jth cells respectively, and since the

area of each cell is d2, eqn (All) may finally be rewritten as,

Mk_-——-——> g— < r_1>
J

ne+ o i k3

n > o
z

The integration of eqn (A10) is quite long and tedious, and the result

is quoted here in two steps without proof:

. 1
AB
6T sinzei <:os26:.L :E:

)
z i=1

(Y cosB. - X sind y3 § (Y cos. -
(Y cgsei X sinf )° H (Y cosf, - X sinGi)

k

1

=1 b=-1

(-2)

(2-la|-|b])

in eqn (All) limit

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)
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1 1
(2-|al~]p])
1 2 R+Y
My o DU DI [3x ¥ ln gy
‘a=-1 b=-1
n > o a . , (A14)
2 :
2 R+X 3
+ 3XY" 1n Rx 2R ]
where
1,for q >0 ' -
H(q) = ‘ : , “ (Al15)
O,for q <0 ' '
X=x+a
Y=y +b
R=¥x? +v2 = '/(era)2 + (}"*‘b)2

and x and y are the lateral displacements between the kth and jth cells in
and x and y directions respectively measured in unites of d. For x =y =0

in eqns (Al4) and (AlS) the result is,

4
31

M, —

. [31n(/2+ 1) - (Z-1)] = .95 - - (A16)
n.~» o . .
0

n > «©
z
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Fig. 2.
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‘Figure Captiohs
Geometry of the reconstruction region and an example of line integral
paths at one angle, 8.
Average value_of the diagonal elements of the inverse:of the matrix M
as a function of the number of projection angles diQided by the number
of cells acréss the reconstruction region. Infiniteéimal lateral spa-
cing'of line integrals is assumed.
Average value of the diagonal elements of the inverse of the matrix M
as- a fﬁnction of the number of projection angles divided by the number
of cells across the reconstruction region and thé laterdl spacing of
line integrals divided by the 1inear dimensién of a cell.

v Tt
Geometry for the transformation from the (6, z, £ , £ ) coordinate

. 1] ] te T
system to the (x ,y ,x ',y ) coordinates system.
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LEGAL NOTICE

owned rights.

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
- States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes’any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completéeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
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