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ABSTRACT. The dependence of noise amplification on the number of projection 

angles and on the lateral sampling interval of projections is presented. It is 

shown that about 1.5 D/d angles and a sampling interval of about .Sd arerequired 

in order that the data be efficiently utilized. (D is the linear dimension of the 

reconstruction region and d is the linear dimension of the cells into which the 

reconstruction region is subdivided.) Values for noise amplification are given 

for various combinations of projection angles and lateral sampling intervals. 
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1. Introduction 

Techniques for reconstruction of the 3-dimensional distribution of density 

in an object from projections at multiple angles have received extensive investi­

gation and review, particularly for x-ray transmiss.ion (Gordon and Herman 1973) 

and photon emission from radioisotopes (Budinger and Gullberg 1974). Previous 

analyses of the expected uncertainty in a reconstruction due to statistical flue-

tuations in the measurements have been performed ·for several reconstruction alga-

rithms ·under the assumption of adequate number of projections: iterative relax.;.. 

ation (Goitein 1972), convolution or filtering of the projections with subsequent 

backprojection (Shepp and Logan 1974, Barrett et. al. 1975, Chesler 1975, Tanaka 

and Iinuma 1975), Radon inversion (Friedman, Beattie arid Laughlin, 1974) and con-

volution or filtering of the backprojection (Huesman 1975). The present work 

gives the dependence of noise amplification on the number of projection angles 

and on the sampling interval of projections. The analysis is applied to the noise 

propagation for iterative techniques in the limit that the least squares solu-

tion is reached. Errors or artifacts in the reconstruction unrelated to statis-

tical fluctuations in the projection data are not considered here. 

This analysis is carried out using a circular reconstruction region of dia-

meter D which is subdivided into small square cells of dimension d x d. The area 

2 to be reconstructed consists of \! "' (rr/4) (D/d) cells, each of which is assumed 

to contain uniform density. The data consist of a collection of line integrals 

of the density over n coplanar paths through the transverse section. The paths 

traverse the reconstruction region at nz regularly spaced intervals and at n8 

regularly spaced angles such that n = n
8
nz. The geometry of the reconstruction 

region and an example of the paths for line integrals at one angle; e, are shown 

in fig. 1. For the model chosen (uniform density in each cell) the relationship 

between the line integral I. and the density, . h .th cell is, 
1 pj 1n t e J 

\) 

I. = L: .Q, pj (1) 
1 ij 

j=l 
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where £ij is the line length of the ith path through the jth cell, as shown 

in the inset of fig. 1. (£ .. is zero if the ith path does not intersect the 
1] 

jth cell.) For finite width paths, £ .. should be replaced by the area com-
1] . 

mon to the ith path and the jth cell divided by the path width. 

2. Reconstruction and Error Analysis 

The backprojection (simple superposition image) Bk, for the kth cell is 

proportional to the line integral times the line length through that cell sum-

med over the n paths. 

n 

I.£.k 
1 1 

i=l 

The choice of the normalization factor D/(nd3) is explained below. 

By substitution of eqn (1) into eqn (2), the backprojection can be 

written in terms of the density as, 

n v 

i=l j=l 

Defining the matrix M by the expression, 

and substituting into eqn ( 3) ' gives, 

\) 

Bk = E ~j P. 
j=l J 

so that the backprojection vector is just the density vector multiplied by 

the matrix M. A diagonal element of M is given by. 

M .• 
JJ 

n 

i=l 

2 
£ .. 

1] 

(2) 

(3) 

(4) 

(5) 

(6) 
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but the fraction of line lengths which are non-zero is about d/D (only about 

nd/D of the line integrals intersect the jth cell) and when non-zero, ~ij is 

about equal to d (the linear dimension of a cell) so that 

M .. ~ 
JJ 

1 

Thus the normalization factor D/(nd3) makes the matrix M roughly independent 

of the number of line integrals and the geometry of the reconstruction region. 

(7) 

In the Appendix it is shown that in the limit of.large n8 and nz' ~j approaches 

-1 -1 
(d/Tr) < rkj >, where < rkj > is the average inverse distance between points in the 

jth and kth cells; and that furthermore (d/Tr) <rj~> = .95. 

In order to investigate the uncertainty in the reconstruction, the density 

vector is expressed in terms of the inverse of the matrix Mas, 

\) \) n n \) 

2:' -1 I: -1 ~L: Ii ~ik =~L: L: -1 
~ik pj = Mjk Bk = .. M.jk Ii Mjk 

k=l k=l nd i=l nd i=l k=l 
(8) 

Since the measurements of different line integrals are statistically independent, 
. \ 

the statistical rms error of p. is the sum of the rms errors'of the contributions 
J 

from each I. added in quadrature,· 
l. 

n 

(~ ~ik y 2 

(n~3r L: 2 ,...1 
CJ (pj) a (I.) Mjk l. 

i=l 
(9) 

n \) \) 

( n~3) 2 L: 2 L: L: -1 .-1 
~ . a (I.) Mjk Mjm \k l. im 

i=l k=l m=l 

where o(p.) and CJ(Ii) are the rms errors of p. and I. respectively. If the 
J J l. 

rms errors of all I. are equal to o
1

, 
l. 

(:~r 
\) \) n 

2 (p .)= I: L: -1 -1 ~ ~ik ~im (10) CJ Mjk M. 
J Jm 

k=l m=l i=l 



and substitution from eqn 

2 \) 

2 Dai 

L: a (p.) 
nd 3 J 

k=l 

(4) gives, 

\) 

L -1 
Mjk 

m=l 
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-1 
M. ~ Jm 

-1 
M .• 

JJ 
(11) 

Eqn (8) is the standard unweighted least squares solution of eqn (1) with 

D/(nd
3

) factored out to make the results of the error analysis more transparent. 

Just as the matrix M is independent of the number of line integrals, so are the dia-

gonal elements of its inverse in the limit of large n
8 

and nz (as will be shown in 

the next section). The derivation of eqn (11) assumes that the uncertainties of all 

measured line integrals are equal, but practical estimates can be made when this 

assumption is not true. 

3. Infinite Number of Data Points (Line Integrals) 

As mentioned above, when n 8 and nz are sufficiently large ~j depends only on 

the relative coordinates of the jth and kth cells and therefore multiplication by 

the matrix M becomes a discrete convolution with the function (d/TI) < r -l> . The 

diagonal elements of the matrix M are equal, and the off diagonal elements decrease 

proportional to. the reciprocal of the distance between cells. That is, Mjk is 

proportional to the reciprocal of the distance between the kth d . th an J cells. Using 

values for Mjk given by eqn (Al4) of the Appendix, the matrix M has been inverted 

for D/d (the number of cells across the circular regia~ equal to 8, 16, and 32. 

In these cases, for all cells except those at the very edge of the reconstruction 

-1 
region, M .. = 1.5917 ± .001. JJ . Since thevalue of M~~ remains so stable over this 

JJ 
-1 

range, it is assumed that M .. = 1.59 is reliable for arbitrarily large values of 
JJ 

D/d. 

or 

-1 
Setting M .. equal to 1.59 in eqn (11) gives, 

J.J 

a=-~ 
p " nd

3 

(12) 

(13) 
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where a is the rms error of all reconstructed cell densities, since there is no p 

j-dependence on the right-hand side of eqn (12). 

The average value of the line integrals Ii for the circular reconstruction region 

is found from eqn (1) to be, 

<I> TID< p> 
4 

and division of ·eqn (13) by eqn (14) gives, 

a 
_P_. 
< p> 

<I> <I> 

where < p> is the average value of the density within the reconstruction region. 

Eqn (13) was previously derived under the same assumptions of large n
8 

and n · and the same model of a reconstruction region partitioned into square 
·z 

cells of uniform density (Huesman 1975). Two methods of reconstruction were 
\ 

(14) 

(15) 

shown to arrive at this result: convolution of the backprojection and filtering 

of the backprojection. In both cases the convolution function (or filter 

function) was chosen to. give the best possible resolution. When high frequency 

components are suppressed to reduce noise the resolution is degraded. Eqn (13) 

is applicable to any of the iterative techniques which converge to the 

least squares solution of eqn (1) under the assumptions of equal uncertainties 

for the measurements of the line integrals as well as large n
8 

and nz. Eqn (l.S) 

is essentially the same as the estimate made for the iterative relaxation tech-

nique by Goitein (1972). 

Results simil.ar to eqns (13) and (15) have been derived for the methods of 

convolution and filtering of the projections with subsequent backprojection 

(Shepp and Logan 1974, Barrett et. al .. 1975, Chesler 1975, Tanaka and Iinuma 

1975). These results have different constant factors which reflect the differ-

ent convolution or filter functions used and the different models or parameteri-

zations of the reconstructed density. Comparison with Radon inversion (Frie.dman, 

Beattie and Laughlin 1974) is difficult since resolution is not discussed. 
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4. Finite Number of Angles 

When nz.is sufficiently large, but ne is of moderate size, multiplication 

by the matrix M remains a convolution (~j depends only on the relative coor­

dinates of the jth and kth bins) but the convolution function is no long~r the 

simple one given by (d/TI) < rk-~> nor is it circularly symmetric. One may envi-
. J 

sian the convolution function by holding k constant and varying j. ~·will 
. J 

have the familiar star or spoked pattern centered.at cell k. Radially out-

ward from the kth cell (along the spokes) ~j does not decrease when the dis~ 

tance between the jth and kth cells is greater than about d/~8, where ~8 is 

the interval between angles. 

In order to investigate the effect of a finite number of angles the matrix 

M (as calculated using eqn (Al3) of the Appendix) has been inverted for n
8 

= 

8, 10, 12, 14, 16, 18, 20, 22, and 24 angles. The first angle is given by 8 = 

TI/2ri
8 

in order to avoid 8 = 0 (fig. 1). Subsequent angles were generated by 

adding increments of 1T/n
8

. D/d for this inversion was 16 and total number of 

cells in the reconstruction was V = 208. In all cases the value of .M .. was 

very close to .95. 

JJ 

(For large n
8 

and n , M .. = .95.) Fig. 2 shows the resulting 
z JJ 

-1 
average values of M .. , where the average has been taken over all cells except 

JJ 

those at the very edge of the reconstruction region. As can be seen on fig. 2, 

-1 
(M .. ) decreases with increasing number of angles and approaches the value of 

JJ avg 

1.59 as expected. Note that the abscissa is labeled n8d/D, and that no.explicit 

reference is made to n
8 

alone. It has been verified using D/d = 8, 24, and 32 

-1 
that (M .. ) depends only on n

8
·d/D. 

JJ avg 

It can be seen ·from fig. 2 that when the number of angles reaches about 

1.5 times the number of cells across the reconstruction region (n
8

d/D ~ 1.5) 

(M-:-~) is very close to its limit of 1.59. For n.8d/D 1.0, its value is 
JJ avg 

already greater than 2.5 so that it is desirable to. have n
8

d/D at least 1.0 

and preferably 1.5 in order to make efficient use of the data. This is consis-
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tent with the result of Klug and Crowther (1972) and Snyder and Cox (1975) which 

is that the number of angles required is given by nD/(2d). 

5. Finite Number of Line Integrals for each Angle 

-1 
The average values of M .. have been computed for several values of n

8 JJ 

and l:J.z, where l:J.z is the lateral spacing between line. integrals at each angle. 

D/d was 16 and. the averaging was performed over all cells except those at the 

edge of the reconstruction region. Angles were generated by the procedure 

given in the last section, and the lateral positions of the line integrals 

were chosen such that the center of the circular reconstruction region was 

halfway between two adjacent paths for each angle. 'In all cases the average 

value of M .. was 'very close to • 95. 
JJ 

'-1 
Fig. 3 shows (M .. ) for n

8 
= 12, 16,. 

JJ avg 

20, and 24 angles and values of !:J.z between zero and .85d. 

-1 . 
For values of f:J.z/d greater than .7, the individual values of Mjj vary 

-1 considerably from (M .. ) • This is the effect of our model of square cells 
JJ avg 

of uniform density and of the manner in which the paths for line integrals 

pass through the cells. The abscissa of fig. 3 is labeled !:J.z/d with the 

assumption that the propagation of errors from the data to the reconstruction 

depends only on n
8

d/D (the number of angles divided by the number of cells 

across the reconstruction region) and the distance between line integrals 

relative to the cell size. Points for f:J.z/d equal to zero have been taken 

from fig. 2. 

3, 
-1 

rapidly for !:J.z/d As can be seen on fig. (Mjj)avg increases greater 

than 0.7, but is quite well behaved for !:J.z/d less than 0.4. Thus, in order 

to obtain a reconstruction with resolution d, it is necessary to have the 

spacing between line integrals substantially less than d (.4d to .7d) in 
/ 

order to make efficient use of the data. This is in conflict with Synder 

and Cox (1975) where it is assumed that the resolution obtainable in a 

reconstruction is the same as the resolution in the projections. 
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The average variance of reconstructed cell densities based on the statis-

tical uncertainty of the measurements, o
1

, can be calculated by averaging eqn 

(11) over cel+s in the reconstruction region, 

(16) 

Eqn (16) is applicable when there is a finite number of uniformly spaced angles, 

-1 
n

8
, and equally spaced line integrals for each angle .. , D.z, if values for (Mjj) avg 

are taken from fig. 3 for various combinations of n
8 

and D.z. 

6. Discussion 

Eqn (11) expresses the expected variance of the least squares solution 

of eqn (1), the basic relationship between 2-dimensional density distribution 

and their line integrals. For an infinite number of data points, eqn (11) 

reduces to the simple expressions given by eqns (13) and (15). For a finite 

number of data points, eqn (16) expresses the expected average variance, 

-1 
where values for (M .. ) are taken from fig. 3 for various numbers of angles 

JJ avg 

and lateral separation of line integrals. 

It has been shown that for an infinite number of data points that the 

statistical fluctuations of the image are uniform over the reconstruction 

region. Evidence has been presented which supports the conclusion that the 

number of angles necessary to efficiently make·use of the data is given by 

TID/(2.d), or about 1.5 times the number of cells across the reconstruction 

region. Finally, the lateral separation between line integrals should be 

substantially less than d, the linear cell dimension, preferably between 

.4d and .7d in order to limit statistical fluctuations in the image. 

The single assumption made has been that the uncertainties of all measured 

line integrals are equal. This assumption is particularly appropriate for 

transverse section scans using monoenergetic heavy charged particles such as 
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protons or alpha particles. (Crowe et. al. 1975, Budinger et. al. 1975, Huesman, 

Rosenfeld and Solmitz 1975). This assumption is also a reasonable approximation 

for x-ray transmission scans of the human head when a water bath is used to par-

tially equalize the fraction of x-rays transmitted 

For x-ray transmission scanners which do not use a water bath, scans of 

the human head and chest are partially self-equalized. The. bone at the peri-

phery of the transverse sections tends to increase the'attenuation of x-rays 

where the path length through the patient is shortest. For gamma ray emission 

scans it is expected that this work will provide a rough estimate of the expected 

statistical fluctuations of the reconstruction. In addition to the nonuniformity 

of measurement errors, the problem of attenuation has not been treated here. 

The author gratefully acknowledges productive discussion with Dr. Thomas 

Budinger, Dr. Kenneth Crowe ·and Grant Gullberg. This work was supported in 

part by the ERDA and ih part by the NIH. 
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APPENDIX 

In this appendix it is shown that and nz (n = nenz) become 

large, K . in eqn (4) approaches (d/TI) 
. k] 

as ne 

-1 
<rkj> 

. .·· --1 
, ·;where < rk. > is the average inverse· . J 

d . b . . .h th d 1stance etween po1nts 1n t e j an 
th 

k cells. Eqn (4) is rewritten here for 

convenience. 

n 

Mjk n:3 ~ £ik £ij 
i=l 

Let the function Ek (x,y) be defined such that, 

th 
1, if the point (x,y) is in the k cell 

0, otherwise 

then, 

£ik = ~£ 1 
Ek(x

1
,y

1
) 

h h i 1 . . d 1 h .th h h w ere t e ntegra 1s carr1e out a ong t e 1 pat , so t at 

xl X 
1 (8., z.) zisin8. + £ 1 cose. . 1 1. 1 1 
I I 

y = y (e. ' z.) zicosei - £ sine. 
1 1 1 

as shown on fig. 4. Similarly,£ .. can be written as,· 
1] 

where 

I I I I 

X z.sine. + £ case. 1 1 1 
I I I I 

y z .case. £ sine. 1 1 1 

and substitution of eqns (A2) and (A4) into eqn (4) gives 

D tft' I I f" ~j nd
3 Ek(x , y.) d£ E. (x 

J 
i=l 

The distance between paths for each angle is given by, 

I I I I 

y ) 

(4) 

(Al) 

(A2) 

(A3) 

(A4) 

. (AS) 

(A6) 
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and the interval ·between angles is given by 

t:.e 

and eqn (A6) can be rewriten as, 

t:.et:.z i2 f~· ' ' /d9v'' '' I I 

~j = 
nd3 Ek(x , y ) E. (x y ) 

J 

i=l. 

In the limit of large n8 and nz eqn (A9) becomes, 

n+oo 
z 

f ' '' d8dzd9v d'Yv 
I I I I I I 

Ek(x , y )Ej(x , y ) 

and by making the transformation of coordinates of eqns (A3) and (AS), eqn 

(AlO) gives 

n+oo 
z 

f '' ''II 
dx dy dx dy 

I I I I I I 

Ek(x, y )E.(x t y ) 

,; (X I - X I I) 2 + (y I y I 1) 2 

where the .square root term in the denominator of eqn (All) arises from the 

Jacobian of the transformation. The functions.Ek and Ej in eqn (All) limit 

the integrals to withinthe kth and jth cells respectively, and since the 

area of each cell is d
2

, eqn (All) may finally be rewritten as, 

d -1 
~.--- <rkj> 

Jn + 00 TI e 
n+oo 

z 

The integration of eqn (AlO) is quite long and tedious, and the result 

is quoted here in two steps without proof: 

ne 1 

I: 
t:.e 

2: ~- . 28 2 Jn + oo 6TI s1n . cos e. 
z i=1 

]_ ]_ 
a=-1 

1 

2: 
b=-1 

(2-jaj-jbj) 
(-2) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(Al2) 

(Al3) 
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z 

1 
12TI 

H(q) l l,for 

O,for 

X x +a 

y y + b 
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1 1 

a=-1 b=-1 

q >0 

q<O 

and x andy are the lateral displacements between the kth and jth cells in 

and x and y directions respectively measured in unites of d. For x = y = 0 

in eqns (Al4) and (AlS) the result is, 

M .. - ; [3 ln(/2 + 1) - (/i- 1)] = .95 
JJn -+ oo3 

e 
n-+oo 

z 

' 

(Al4) 

(AlS) 

(Al6) 
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Figure Captions 

Fig. 1. Geometry of the reconstruction region and an example of line integral 

paths at one angle, e. 

Fig. 2. Average value of the diagonal elements of the inverse of the matrix M 

as a function of the number of projection angles divided by the number 

of cells across the reconstruction region. Infinitesimal lateral spa-

cing of line integrals is assumed. 

Fig. 3. Average value of the diagonal elements of the inverse of the matrix M 

as a function of the number of projection angles divided by the number 

of cells across the reconstruction region and the lateral spacing of 

line integrals divided by the linear dimension of a cell. 
I I I 

Fig. 4. Geometry for the transformation from the (8, z, ~ , ~ ) coordinate 
I I I I I I 

system to the (x ,y ,x ,y ) coordinates system. 
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This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any df their contractors, subcontractors, or 
their employees, makes· any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights . 
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