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ABSTRACT 
+ .. . 

Expe::·imenta.l m.easurernents of the K -nucleon tota1 cross. 

section ·in the momentum :range })etween 0.8 and z;9 .Bev/c, and· K+ -. · 

.prot~n elc-.stic scattering anguia.:t' dist;r:ibut~o~ at· 0. 97, ! .17, ;1nd 1. 97 

Bev I c are .reported. 

The K+ -proton. and K+:..neu~ron total cross se~tions wer.e .found. 

· to .be neari·y :equal and .. constant ;t about 17,5 mb be~ween- LO a·nd -2.9 . 

_·Bevlc. At 0. 77 Bev/c both cross sections a're sigriificantly·l.ower; the 
. . + c ~ .. + . 

value-measured for .K .:.proton was 13 mb, and for K -neutron was 

.. about 15 mb; . . 

· · Phase-.shift analyses. of the Kt-p.roton differential cros.s section.s 

.are discussed. Severa.l sets of sol.utions ~found at 0 .. 97·and 1.17 Bdy/c 

. are. given. The angular distribution at l. 97 Bev/ c is· p·eake·d in the for..:· 

wa~d direction, indicating the p:~ese.nce of many angular-momen~um 

~tates. The .!'esults of an ·optical-model analysis of these data are .pre­

. ·sented. 

The existing info:rmation on K± -protpn total .c.to's~ sections ~nd 
experi-mental values for the real part of th~ forward scattering a.mp~itude' 

. . ~ 
were·used ip a for;.vard-dispersion-relation c·a~ct;LlM_ i9r.-__ ·to evaluate the 

. - * * . ~t! ·. 
residue of the effective pble I\A, :E, y 1 ' y 0 ) • and t.o! dom:paX:e the energy 

dependence .. of the real part o£ the forward -scatter~ng amplitud-e,_ as pre­

dict~d_ by the fo.r'V'(ard dispersion relations, with the data .. 

I 
/ 
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I. INTRODUCTION 

·, 
,· 

In the decade since the discovery of K mesons, many experi­

mental st.udies have- been undertaken to elucidate the nature of their 

interactions with nucleons· (N), and to determine their intrinsic 'properties. 
. . - .· . • ' l 

A great body of experimental data has been accumulated, and several 
' ' 2 
theories of the K-N interaction have been proposed. However~ none 

of these theories has succeeded in satisfying all of the e-r,,;i:rical data. 

This situation is, of course~ not uniqu-e with K-N interactions,· but 

rather is typical of alLstrange-particle interactions. 

The dispersion-relation· (S-matrix) theory of strong interactions 

seems t~ be the most promising' at the present time~ 3 
,The strange­

particle dispersion relations have not-bee.n completely justified; 
4 

how-

. ever, several authors have proceeded by analogy with the n-N case 

to derive and use K-N dispersion relations. 
5

• 6 The approximations 

and assumptions necessary to derive these expressions can, in principle, 

be checked by comparing the predictions of the theory with the experi­

mental data. 

In recent applications of the S-rrtatrix theory· to the K-N preble~, 

forward- scattering dispersion relations have been used in an attert:lpt 

to deduce the K-N-hyperon relative pa'rity, and the interaction coupling 

constants. 
7

• 8 However, it h_a:s not been possible to arrive at a unique 

solution, partly because of the l~ck o£ experimental data at high ene-rgies .. 

Experimental Lnformation prior to the experiment reported herein 

showed the K+ -p total cross -section risi-ng s'low.ly from about ·10 mb at 
- ' 9 10 . . 

low energies up to about 13mb at .p(lab)· = 1.0 Bev/c. ' Measurements 

at higher momenta indicated the ·possibility of structure in the region 

I 
11 . . 

between 2 and~ 3 Bev c. Such structure would be very important to 

establish. ·.; } 
' .. 

The objectives of this experiment_ were to pr~vif-e data on the 

K+ -N total cross seetions and the K+ -p differential-tt~~~s sections at· 

moderately _high energies, and to investigate the possible structure in the 

K+ ..:p total .cross section between 2. and 3 Bev/c.. . 

f 
/ 
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The ~xperim!=nt was ~ondu.cted .in two phases: _First,. totai c.ross · 

sections for. the K+ ... p and· K+ -n:eutrotl .iri.teractions we.r~ -~determi11.ed :by. 
• • • • • ' .• ; ...... • . •. · • t 

·a conventional_beam.,.transm,ission ~ethod·oy using a 4-ft-:-long 6-in •. - ; 

-diam liquid hyd-ro~en (de_uteri~m) ·targe~-~: .The ·~ame_·:bea.m -~n~l tar~et 
~ere then u~~9. 'in. con)un~tion witb··s~ark chambers A~d sci~~ill~ti"ori., : · .. , . ' . - .. . . . . ' 

... - . ,. t. '\ , _ ... ·'! 
countet-s for the differential c.ross-section·Ilieasuretnent-s. · · · 

.. Irithis thesis we will describe. the ~~rma:tioh of the. K+ beam, in. :. 
- . . - . . . -

Sec. ll.. The experimental technique an·d t.he·· resul.t-s of t'he total ·c·ross· ... ·· .:.~ 
- ·- . . . ' . ·' . .-,_ ''. 

sectio:n measurements are described in Sec. ·III .. ln. Sec. tv th:e differe~_. 

tiai ci-~ss-·section m:easurements· are de~cr.ibed~ :A di·scussion of the :· 
resuits of the' app~i.cations of dispersion' the,c>r">;; ~~~ ~·ph;<ise-s~ff ap-al;~is . 

·of the di_fferential cross section i~ pre.sented in se!., ·V •. · A de:t{va,tion of . . . , . . ., 
the forward di~pe rsion relationS fo.r K" pr.oto.'t

1 
~ ~att.e ~i11g is p;re ~ ente~ " . 

in. !\ppe.ndix ·B. · f. !J . 

. .. 

'"'",. 

, I 

,. .~ 

. . 
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11 .. THE . K+. BEAM 

- A. Formation· of the Beam 

The ·beam layout is d~picted i_rt Fig_. i. Particles were produced 

by the internal proton beam of _the Bevatron striking a 4 -X .1/2-Xi/ 4-in. 

Heavyniet target. Those particles emitted at an angle of 26 deg' to the 

internal beam direction _and· within a so·lid angle of about 2 msr were · 

. focused by the first quadrupole. doublet o
1

· at the center of th~ field 

len~ q2 . ·The C magnets ~~ _.and M2 · st~ez·ed thl9eam clear of tpe . 

Bevatron structure. The beam then passed through: the gas Cerenkov · 

counter c
1

, .the ;..quadrupole field le'ns Q~, and t)l/i second Cerenkov 

counter ·c2·. The field lens Oz i~c.'r~ased_the beanf/f~tensityat th~ . 

hydrogen target by about a factor of 2. The final .h~riding magnet~ M 3 
defined the 'central mQm_entum of-the· beam entering .the target. -The 

momentum spread was limited by the. aper.·ture of the field lens a2 • and_ 

was a~~ut :t 40fo. The qua~rupole 0 3 1oxm,ed the final image at t~e T / 
count~r for tJ:e total -cross-section ine~sti~·ements, and ·at· H

3
(su-bs·e.c .. ' 

IV ..:A2) for the differential cross-·seetion measurements. The .tofal path 

l~ngth .fr,om production target.tc 'the hydroge:b. target was about 85 ft ... 

The beam size at the T 'counter w~s a.ppr~ximately 2 in:. in diameter 

at hal£-maxiinum·intensity at all mo~enta·apo?e ·1.5 Bev/c •. and somewhat 

larger at lower.mpmenta. The -largest bea~ size occurred at 0.8 Bev/c 

. (3 in. diam). The· upper limit on the momentum for which the beam . . - . . 

co~ld b.e tun~ci was ~et by. the C m~gn~ts. M 1 an.d M 2 , which -ha~. to 

provide the initial bend neces.sary to is'et .the ,beam clear of the Bevatron. 

The lowe~ limit_ was set by the· K-parti.cle flux,· which fell_o£ rapidly in 

the region of 800-M~v/c momentum. " 

. I 

l' 
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Fig. 1. Beam layout for K+ -N scattering ex·perl.ment 
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The two gas Cerenkov CO\lnters (C
1 

·and -C 2) and time-o£-flight­

betwee·n the beam-counter ·pairs B 
1

; B
3 

~nd B 2 , .l3" 
4 

wer_e .used. to select'. 
? • J •.t • 

particles cf K mass from the momentum-analyzed beam. A complete 

descriptl.on of the Cerenkov counters is given in :r,. i'e::.·ence 12. These 
. . . . . . . . . . . • .. , . .( 

counters were- designed to -.dete.ct particles having velocitie,s in eithe'r of --~ 

two_ velocity _intervals. In this experiment the counters "'J'<~re sit so that 

K' s and iT 1 s of the same ffiOD;l.entum ·were de~ected .. This monlentum could 

be changed by varying the- ga~ (metharie) pressure in the counters. . ·. 
Whene~er a K entered th-e hydrogen target a ''K~ gate 11 _sign~l was ~ 

generated. _In addition to the Cere.nko'\•-counter K 'signal~ l c
1 

(K), C 2(K)] 

the K- gate circuitry (Fig. 2) re·quire.d: _that there "be no· signal frqm ·the 

TT channels l cl (n}, Cz('rr)]; 'Yes ,j signals fro.rn the beam defining co~nters' 

(B 1 , Bz~ B 3,, B 4 );_ no signaL from the hydrogen target.antidefining counter 

. (A2 ); and no signal from .the a~cidenta1 an~icounter. (A
1
). -· 

·. . ! . . . . -
The large prpton.flux in the beam was a source of contamination 

' . . 
for two reasons~ 'First;~· o rays that were produced in the Ceren~ov 

counters could· produc~ l'ight which could simulate the Cerenko~ light of 

K particles. The protons producing the o rays could then contipu,e .on 

down the beam channel a·nd would-be counted as· K 1 s: -This sour·ce of 

contamination was practically eliminated by the use. of.two Gerenkov 

count'ers, since the probability of having o rays of the ·righJ: energy 
•·I 

and angle to simulate K' s produced in both counters is extremely srriall. 

Proton·~ could also cause accid¢-ntal coincidence counts because of 

the high ·beam flux. Protons which passed down .the be-am before or after 

a K pa.rticle, a_nd within the resolution time of the 

could contri.bute to the mea_sured transmission rate. 
• 

. . 
K selection circuits, 

This ·would lead to . 

an erroneou-sly small -~ross section. The _.A
1 

counter.and -c-ircuitry were 

·de.signed to eliminate this s<:;~rce of cdntamination by providihg an outp_ut 
. - . t 

pulse whenever a _ K ·was accompanied by a second particle within ±50 nsec .. 

This pulse was us-ed in anticoincid~nce in the K.;.gate drcuit. --- . 

<. 
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A Video amplifier 

A H-P 460A 

A H-P. 4608 dlst. 

. [[I Discriminator. 

¢ Variable d~lay 

amp .. 

' 
A. I A2 ' Bev. !-pip 

~~----+-----+---~ 

Multi- channel 
2-fotd caine. 

. ·Fig .. 2. Simplified block diagram of ·~lectro·nics .. 
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The · K- gate can be writte·n !?ymbolica.lly as 

. . . . 

At low morhen~a the Ce renkov counters coulo. r~-;t be ·made. to cpunt 

n' s and K' s sepa.rately in the two velocity intervals;· At these mome~ta· 

only the ·n anti signals were used. Time of fligfft was ti:;ed tc separate 

K' s and protons~ . .- .. ~~~ ···. , . 
C. Composition of the Beam 

The beam COUnting rate was measured. at each momentum as a 

function of gas· pressure in the two Ce.renkov counters. A typical 
. . . 

·./ 
I' 

presstfre curve is presented in Fig. 3 .. Similar pressure curves ·were 

taken at e~ch mome:ntum to find the optimum op.e-~ating pressure for K 

particles' and to measure the ab:und~nces of Tr 1 s and prot.ons ~n the beam. 

The measur*d yields are plotted versus. momentum in Fig. "4 • 

/'' 

.. . 
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:fig. 3.. Cdincidence rate in the Cerenkov and f?Cintillation 
cqunters rtormaliz.ed to ·the total flux of particle·s in the· 
selected beam. ·(a) Results at J. Bev/c. At this mo­
mentum the· ce:renkov counters were used op.ly to anti· 
TT mesons-. No counts were rec;:orded' forJ.any mass · 
selection ·betw~ery. · 420 me arid 630 me,' 'is it:),dicated. 
~y ~h.e arrows. T~e bar at th~ tail.of.~C3;ch a_rrow ·. 
md1cates the r.ate 1f one count,·h~d be·~il j>btamed. . 
(b) R~ sults at 2.3 Bev/ c; the backgioufiij coincidence 
rate rises withpressure because of prcJt6n-i'nduced delta . . . 
rays. 
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Fi;g. 4. The .composition of the beam stated in terms of 
the number·of partieles per 101 1 protons incident 
on a 5-in; :Heavymet target per 1.5 msr, arid for a· 
momentum spread 4-p/p = 0.08 .. Rates-measure9 
at about" 90. ft from the production target were cor­
rected :for decay in fltght and absorption l.n the Cerenkov 
count'ers to deduce the approxima~e production ·rates~ 
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in. TOTAL cRoss~s:ECTION MEA~UREMENTs13 

·A. Experimental Method 

+ . . . -
The to.tal cross sections for K -p (ad·) were deter~ined ?Y me~sur-

ing the transmission rates of.. K 1·s through a 4-ft-long 6-in::.-di~m:target, .. 

. ~hich: could be fille.d ~·ith ei·i:"her liquid hydrogen or liqui_d deute~ium. Two· 

transmission counters were used. ~e of these was a· 9-in .. -diain 

circ':llar sci~tillator (T 
1

) ··and,the other was a 12-in. square {T 
2

). 

Several ~easurements. were m;:~.de at each energy with the target alterna- · 

· tely full and empty. 

In terms of the transmtssion rates wi£h·ta~~et full (T F) ·~·nd· empty 

(T E), the to'tal cross section i.s 

(] 
1 TE 

P L ln TF ' 
.V 

. ·{ 
j I' 

.. ~)1· 
.. , 
t j 

wh,ere "pv .;: number. of :protons in the ta:rge_t: per .unit volu."m_e 

L . · = length of tar get, / 

arid the statistical error in the cross section is 

=!(aa jaT E)
2 (~T E)

2 

- lL J(b.TE/TE)2 
P.v 

l 
p L 
.v 

·where. N~ = number of K 1 s transmitted with targ~t·empty, 

NF =.number of .Ki s transmitted with targ.et full. .. 

(l) 

' . ,-1 
:The K+ -rieutr6n cros·s sections were determined by measuring 

. . . . ' 
the Kt.:.deuteriurn cross section and making the subtraction 

a·· . = (a d - a ) g , 
n. p 

where g is the correction factor arising from the scl:"eening of the. 

neutron. 

,. 
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'{ 

B. Corrections 

The measur~d cross· sections had to._be co.rre.cted for: ( 1). ·d~cay 

of K' s; (Z) forward scattering and forward recoil; (3) rnultipl~ SC!=l..t'­

't~ring in the target; and (4)screening of the ~eutron _by the protori in. 

deuterium. which applied only, to the neutron cross sections . 

. (1) The. ne~essity f~r--t]).e decay-in~flight co·rre~tic.·;, a-rises . .'chiefly_· 
I!~· • • , • ; • • • • • • .. . • • 

because of the energy loss by the . K'.s in traversing the hydrogc;h target. 

With th¢ .target f~ll· this am~unts to ~bout 40. Mev/c ·i~ iiquid .hydro_gen. 

The first-orcier correc.tion can be easily ·calcul'ated to. reduce th~ 
. ·. . . . 

·measured cross section by the amount 

1 
( '""L 
. F 

1 ) 

~ 
·where· d =·distance from the cen£e~· of the hyd'i·oge:n target to. the T 

·, . .. r 

counter; 

{4). 

X.F = meari free path for decay ofa · ~- after traver~~pg half the 

hydrogen·tar,get w~th target full, 
• "• • I 

X.E :::: mean free path for decay of a K with t~r~et empty. 

·The mean free path. for decay can be· w_ritten· 

. X._F = 'TC. (!3.y) F 
.,.·: . 

where .. T ::mean iife of K, 

c = velocity of light, 

.. 

' 

. p c . 
(!3Y')F= JK .- , ( pF is the . K momentum with the target Full}~ 

and MK is. 'the rest energy. of the K. Then 

X. . = X.E + 6.X. F 
and 

.. 

'(5) 
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' I' 
In ·Eq. (5} we assume that all the hydrogen is concentrated at the 

center of the target, and we_neglect decays upstream from the ·~ydrogen 

target, and the probability tha,t some decay products v.(rill. coW1t ·in the T 

counter. The· e.xact integrals that must be calculatedto evaluate this 

effect are: of the form 
/. 

where 

r- :& £. (z . 14 
. 1. 

I 

Oi(Z)exp[-Z/A.(Z)] 

4'1T·. 

f. '= branching ratio for ith decay mode,. 
1 . . .. 

dz, 

. 'I . . ' 

n .. (Z)_= solid angle s~btended by the T coW1ter at 
1 . ·. . . . . 

(6) . 

. . 
·z,. tbr the ith 

i-
_decay mode, • · 

. A(Z)~ mean free path for_ the disappearance of a K from the b'c::atn, 

. due to scattering and decay. . . . 
. ·. . ' . . 14 

Integrals of this type were evaluated numerically on an IBM .704 cojnpuf~r. 

The correctio~ to the first-order decay-in-flight correction.wa.S· ~t In.o.st· ..... 

5o/o. 
(2} The forward scattering and forward .r~coii cot:,rections were 

e·stimated by making use of t?e forward and backward scattering cro.ss 

sectio~smeasured:iri thi~ experiment at 0.97, Ld,-and 1.97 Bev/c, .·. 

and. interpolatl.ng or extrapolating to values for the ·other momenta. The 
. . . . 

correction to the measured total cross ·section is approximately 

. () 

. 6..(] ·=J c 

B=_O_. 

da (O) d(r (O) an -dn~ an 
. .· 

(7) 

~here .6-n equals the solid. angle subtended by the T. counter. at :the 

center of the hydrogen target, and· e is the cutoff angle defined by the 
. . c . . .,;, 
transmission counter -as. seen from the center of the hydrogen target: 

(3) The correctio~ for multiple C~~loinb ~~ait~ring· i~·the hydrogen 

target is. significant only for beam distributions having trans,verse (to the ~ 

beam direction) dimensions of the same orde.r as_ th~ tr~ns~ssi~-~ cottnter. · 

-. 
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If n(r) is the distribution of beam partic_les in the r.adial direction 

{ass\u;ned axl.ally symmetric,, which was nearly the 'case in this e'xpe.riment), 

and N M is th,e number of particles count~d b'y the. T ·_.counter with tar.get 

full, the correction to the tota.l cross section arising .from multiple scat­

tering is (see Appendix A).· 

where 

. ' dn -. 

dF R' 
.. T 

pv =number of protons.in the:target per unit;volutne · 

L = length. of -hydrogen target, 

= radius o_f the T counter.~ . 

(8) 

2 . 
(15/p~)- (LjX

0
) =projected rms scattering angle, where 

· x
0 

= ·radiati_on ·length in hydrogen, . -: 

dn 

drR 
T 

- _·slop·e of distribution function n(r) evaluated at the radius· 

of the · T counter. 

The correction is seen to depend upon the size of the·· T counte.r. 

In .fact, this effect acc~ourited for nearly all of the ·difference between the 
. - . .. . . 

T 
1 

and T 2 transmis sian rates at the two momenta-whe·re the cor-

rection V:,as not ~ompletely negligible, i.e., at 0.77 and a·.97 Bev/~. 
(4) The neutron-screening correction has been calculated by 

. 15 - . ·. . 
Glauber. A simple. model in which the_ neutron and proton are con-

side red to be bla~k disks, and the. D-wave · contribu.tidn to 'the. deuteron 

wave function i·s neglected, leads td the expr~ssion for the K-neut:ron· 

cross section: 

where / .!__) .yd-

O'd - 0' . p . 

L~~· 
(9) 

is the rms yalue ·of the reciproc~l of the deuteron radius; 
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C. Results. 

The measured total cross sections, with the corrections discussed 
. . 

. in Subsec .. III-B applied, are presented in Table_ I.· Afte:~ all corrections 

had b~en made there remained a small system~tic differe~ce ·betw~en 
,1the cross section's calculated from the T i an_d. 1;' 

2
. transmission rates. 

The results given in )'able I are averages of the correctec~ cross sectio-ns, 
. . .. . .... I . -· 

and may th~refore contain a systematic error of -at most~ :1;:0 •. ) mb; ·: 

affecti;~ ali values ·equally·. ·The total crosf1 sections for K. and K 
. . - n - p 

are nearly constant and equal over the entire energy range· investigated 

in this experiment.. Our K+ -p. r~sults in the 2~ to 3-Bev/c .regio_n -f~ll 
. lf 

between the values· found by von -Dardel eL al~ and Burro-..yes et al. , _ .. 
and, as mention:ed abov~·-· indfcate an absence __ of structure .. 

. I + 
A compilation df some recent measurements of K --N total cross. 

sections,· including ours, is presented in Fig. 5. 
'J ·•• 

'· 

', 

.J. 

r':,' 
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, Table I.. Total cross se·ctions: K+ -proton, K+ -d~uteron, and K+ -neutron. (Corrections that have 
been applied are described· in Subsec.III-B of the text.) 

Momentum 
. (B.ev/c} · .. 

(mb) 0. 77 0.97 

.CTP 13.0 ·.15.4 

± o.o ± 0.6 

ad 27.3 32..4 

± 0.6 ·± 0.5 

a· 15.5 17.8 .. 
n 

.. :f 1.1 ± 0 .. 8 

·~ ....... 

..... ',·· ·-......:.. 
~~~·. ·<-

. '·. 

·" 

1.17 1.30 

'18.1 . 17.9 

± .0.6 
. 

± 0.9 

35.4. . 35.6 

± o.s ± o'.6· 

. 18.2 18.5 

±. 0.8 ± Ll 

1.44 1.69. 1.97' 2 . .2~ .2.55 2.83 

. 18.1 17'.5 16.9 17; 1 17.1 16.7 

± 0.7 ± 0~'6 ±0.4 . ± ·o.s ± 0.6 ± .0.5 

35.4 35.1 34.6 33.9 33.~ 33.4 

± 0.5 ± 0.5 ± 0.5 :i: 0.6 ± 0.5 ± 0. 7. 

18.1 18.5 18.6 17.7 17.1 17.5 

± 0.9 ± 0.? ± 0.6 ± 0.8 ± 0.8 ± 0.9 

\ . 

I 

·~ ·"' 
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IV. DIFFERENTIAL CROSS SECTIONS· 

A. Experimental Metho4 

The arrangement of the apparatus used. in me_asuring the dif­

ferential c-ross ·sections is illustrated in. Fig·. 6.. The bea~ and K+. 

~-electio~ werE~· th~ s·ame as in the total cross-s,ectib~ ~xperirrtent.' 
1 

• 

. . . . + . I . 

Spark chambers were used as. detectors for K ...-p .scatters in the range 
• . . . . .11. , . 

15 deg ;5 (\, 8 p .6 135,l.deg (lab angle); a· scintill~to~tp.o<ioscope system was 
. . ! • . . . 

used fo·r the range 4 deg ~ 8k' .. 8p :$ 12 deg. The two .syste~_s were used. 

sim~ltan·eously. 

1. The· .spark chamber-s. The conducting electrodes o£ the three 

identical chambers were made ·o£ aluminum-tube .frames (1 in .. ·o. d .. ),/ 

over which o.oo3-in .. ai~minU:m foil was stretched.· Thln foil ~as used.' 

so as to ke~p to a minimum the amount ofmatter through which the 
~ . . . . . . 

scattered p~rticles passed ... There were five. such plates· pe_r chamber. . . 

In addition. there we:t:e two outer (grounded) plat.es made o£ ·sheets of· . . . . . 

0.012..:in. al~minum fastened to 1/4-in, flat-aluminum h~a~es·. The· 

conductin~ plates were lOX28 in. and were m<:>Yntedwith 3/8-in .. gaps 

between plates. 
. . 

The electrode assembly (Fig. 7) was mounted in. an aluminum box. 

which could be evacuated, ~nd which was filled to one ~tmo.~phere (absolute) 

of argon during the experiment. The spark discharge c~uld be photo­

graphed through a 2~in. -thick ~Lucite window, wh~ch .. formed_ o~e ~~!1 
of the box .. A mirror was mounted .in each box to provide a: 90-deg ~ 

stereo view of·each electrode a:ssembly. 
I' 

. . . 
Th~ three chambers were placed around· the hydrogen .t~rget as 

indicated in Fig. 6. A .refe.rence grid (scribed on Luc;_ite) was placed 

directly beneath the hydrogen target. A 5-ft-dia~ Lucit.e lens was placed 

about ~0 in: from the spark-chamber windows, with the.pla~e ·ofthe lens 

parallel to the windows, and ~he axis of the l~ns _passing through the geo­

metrical ce'p.ter of the spark-.chamber array. . This lens made j.t possible 

to photograph sparks that occ~rred at the- end of the spark chamber 

farthest from the camera .. . !, 
. , 

't 
l' .... 
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Fig; 6. · · Spark-chc;mber and hodoscope counter·arrangement 
for differential cros~-section mea·surem:ents.· · 
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(a). 
(b). 

ZN-3091 

A single aluminum-foil spark-chamber plate. 
Spark-chamber plate assembly. 

(a) 

(b) 
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All th-ree ofH1e ........ spark c-hambers were photograp~ed .by a single 

camera which was placed about 15 ft from the Lucite field lens. ·space 
'. 

·-·limitations made it necessary to pface o~e. mirror;:.b~tweefi the camera: 

·and the Hms . 
I 

The number of K 1 s incident bn the targ(et was rec~rcied on each 

frame by placing ·a K-gate scaler near the spark chamber·; so that it ~ 

could be photographed. 

The useful volume of the spark cpambers was de:f:ine.d· by-a 

scintillator array· that was mounted-_ flush against the, spark-chamber 

boxes (see Fig. 6). A "K scatter" trigger was· generated by a "K-g~te" 

pulse in coincidence with·a -"left-right" coincidence s~gnal from the SL 

and SR counters. The K .. scatter signal triggered a thyratron circuit·. 

(Fig. 8) which provided .the negative ZO-kv pulse used in generating the . . 
spark discharge. The three chambers were connected in parallel and 

were driven by two hydrogen thyratrons .: 

A constant po·si.tive de clearing field was applied to the-_spark­

chamber plates to sweep out ions after a ·discharge, and to shorten the 

resolving time of the system by sweeping out ions formed by particles 
. . . 

passing through the chamber before a · K scatte·r occured .. The re- · 

solving time oft he .chambers and electronics was about 500 ·:nsec. About 
t 

250 nse<; of this time was needed to form the K-scatter signaL 

The s.parking· ef_ficie~cy is a function .of the magnitude of the clear-

. ing field, and of th,e· delay time between the passage of the· particle through 

the chamber and ·the application of the 20-'kv pulse to the chamber. In 

Fig. 9·-the sparking effi'cie:ncy per gap is plotted as a function oLdelay ; 

time for various ~alue~ of clearing field for each of the three chambers. 

Since the cam:_eras whlc.h were available at the time were capable 

of taking only one picture per pulse, the spark-chamber trigger circu.i~ 

was gated off after each trigg.er and remained off until the next be~m pulse. 

The same gate was ·used to turn off the. scaler. that counted the total· 

number of K 1 s that entered th.e hydrogen targe~~.G ' ' . 

. ·' 
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·Z. The" hodoscope COUJ1ter system. The thre.e scintillation~ 

. counter ar.rays H
1

,· Hz, and H
3 

~ere composed of 10, l·S, ~n{ 15 , 

counters, resp.ect~vely. Each scintillator -~easured 3X8X1f4. in; The. 
. . . ~ 

H 1 and_ Hz arrays w~re monnted at the entrance and exit en?-~· 

. r~spectively; of the bending mag~et M 4 . Adjacent ~- ,.inti_llato.rs over-. 

lapped by-1 in. along the 8 in. edge, so tha.t the elements in th~· x di­

.. rection. (see fig. 10) were 1X8 _in. T~e H 3 a.rray was p:' . :e~ ~>.bout· 

· 7 ft farther downstream with the scintillators flush along the ~-in. edge, 

SO 'the element·S in the X direction We!"e 3 in. ',!!' 

In the following discussion, and in later sections, we will adopt 
" . 

·the following notation. Whe~· discussing the individual hodoscope · 
~ • I ~ ~ ';.' • " ' So; ~ 

scintillation counters we will ~.rite, e. g .• ' Hll to riHer _to the number 1 

connt~r in the H 1 ~rray. When referring to the hodoscope elements 

we will use' the notation H
1 

(i), etc. The it1dex i rnns from 1 to 19, j 

l Hz '(j)]- runs from 1 to 35, a~d k l H 3 (k)] runs from'l to 1?_~ 

Each of the scintillators was viewed by a 68lOA photomultiplier. 
. . .· , . .. 

Signals from the photomultipliers were fed to ._a multichannel two-fold 

coincidence circuit (Fig. Z), the other input for each ~hannel being. th~ . . 
K- gate pulse. Outputs from each channel were applied-through an adder 

~ . 
circuit-to the verticaJ-deflection plates of an oscilloscope. Time delays 

between the signals wefe a~ranged ~0 give the scope presentation illustrated 

in Fig. 11. The K~.~at~ and t~e ·scope trigger:.pulse were al~·displayed 
on the oscilloscope, t~ provide timing fiducial marks. t 

The Cerenkov connter c 3 was filled with SF6 (gaseous) to a 

p_ressure of about Z50 psi. The pressure was adjusted for a_ threshold !3 
above that for K 1 s (0. 97 at Z.O Bev /c) and below that for n' s With approxi­

m.atel y the same momentum as the K 1 s. Thus the combination of the · 

bending magnet M 4 and c
3 

(used as an anti-counter) could reject n~arJ.~ 

all of the TI 1 s and .f.l.' s from K decay.· The effective radiating vol..;m:e qf 
c

3 
was 48in. wide, lOin. high, a·ndabout l7in .. deep .. 16 

The H4 scintillator (4~XlZ i:n. ) ensured that' particles .accepted 
. ' . 

as scattered K 1 s (or protons) had passed through c 3. The H 5 
stintillator (lZXlZ in.), placed on the p.ow!lstream side of C- on the beam -. j 

.. 

·, 
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center line, measured the tran,s·mitted be·am. :it provided a measure c.r 
. the beam attenuation by decay -in flight.,· by interaction.~ in the target walls 

• ' -·. • • - ------ •• • ., • + • • • • : •• • • • ' •••• 

and in. the s-park -chamber (No. 3 was directly. athwart' the beam), and by 

c
3

. The A4 counter was compoied··C?f four.·se.ctions -that were designed 
. ro 

to: cover the M4 pole faces. Its purpose was 'to rej.-:.9~ beam. p·articles. 

that .~cattered off the pole tips. 
' 

The signals from H22 , H23 ,~ and H24 wer~ cohnecte9-: iL parallel·. 

to form the H2 (t) signal,. which was used·_as an ·anti' ~o help eliminate u 

beam-particle triggers. The signcils f~om H 32·,· _·Hj 3• and a34 ·w·ete 

also connectedin parallel to form: the i-1 3 (1'·) signal,: which was used in 

the. h
5 

coincideiice circuit to reduce accide_ntal counts .. 

Th~ oscilloscope sweep was triggered wh~J;l the· coinci<iea::e signal . . ... . 

St : K t H4 + H 3 ~ Hz(_T) - A4 - ·c3 wi1:_~ gene~at~d. ·.The H 3 i~gnal . 

was the sum of the H 3 (k) hodosc·ope c()unter sig~als,·H:3 = ~- H3(k). 

H
3

(5) was disconnected to av9id beam.triggers~ . k=b · 

. For particle_s of a fixed momentum the~ angle .of scattering was. 

detertnined by any two of the arrays;· The third array could the·n be .used 
. . 

to select particles of a given momentum. Pa;rticle trajectories through 

M4 were measured as· a function of momentum by the wire-orbit techniq~e, 

and ;this information was used to determiri'e tjle ~la~tic-scatte~ing criteria ·. 

for {i,j, k). 

The total solid angle accepted .by the detection _system was delimited 

by the. H 3 array and, at the center of the hydr~gen target, amounted t_o 

about 10 msr. 

I 

'· 't ' .. 
I ... ' 

~f 
.I I .. 

. ·~II 
i ! 
I. 

. •· 
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B. _Sp_z . .::-k-· Cl:;_ambe.<:· Data:, ·A.na.lysi~ 

.1. Film scanning and data. te_~~c~'2.~ The spa~k-chamber pictures 

were sca_nned .on a pt·ojecUon mic:rosccpc. A typica.l pic_ture_- of an elastic 
. + 
K -p scatter is p_rese1~teci. in Fl.g. 12. E·a.ch picture was ass_igned to one 
of the following catego:d·es: {;)·Good two-prong kt-·er.ing" angle > 70._deg-. ·. ··i· 

and devi_ation from ~'opla:na::·ity < 10 deg}. {2) Bad two-p:r.-(-·ng, (3J One-

''pi-ong, (4) No prongs. a.nd {S},Th.~ee or mCire p:r-ongs. The e;..··;c;::.ts in the 

first categ_ory we:t'e rp.easu~ed by the sca.n.neJ..~s. who r-ecorded two 'i'ingles. 

(one in plan· and one in elevation '?i.ew} f6x· each prong, as. well as. the: 
~ . . . . .. - ,. 

loc.ation of the inte:..~secti.q,ri cf-the p:.--ongs in the two viev1s. A).l nit;!a:sure- · 
. '. . 

ments were m.id.e 'li.·lth respect: to the g·:.:·id lines, which ~er.e _par~llel 
(and normal) _to the c~nt~al beam_ t::-ajectory. The number of incldent 

K' sand the. numbei.of spr.:~:::k~- in· ea.ch p:.-ong ';\"ere also recorded;. Ali 

data were recorded.d:r~r..ily oii -IBM p·:mched ca~ds. ,. 
. . . -~ 

• I 

Ac?mpute:r _pi~og::-:.:--Im_ 'Has written: that carried out the rather' 
. . ' 

simple logic and algeb'ra l"~q·:.Ii:-ced.tc compa.1·e each ev~nt with . .the elastic-

scattering crite:d.a. The d.evia.~i.on 'f~oin c.':',p1anarity (.A·q,) and th~ dev~ati.on 
. . . . 

from the elastic:-scatte~ii,~g-ang:i..e cu:r:-·•re {/:i$) were computed for each ev~nt .. 

Fer· side-side eve:-J.te. (p!·ongs i:.-l t:hambe::--s 1 and 2), ~4> was simply 

the angle betvJeen t~b~e· tVtto p:co.ngS in th.e ~levatio.n "'"ievJ. ·For ~front-side· 1. -.. ~ 

events (prongs in chamh·e.r·s 1 0::- 2, a::1d in chambe~· 3), a simple cal­

culation was required to: d.ete:t.~rrl.ine .64>. 

A typical plo,t o~ the :i.arge:r a.ngJ.e \G L) a'ga.inst the' smaller angle 

(G 5 ) _for elastic K+ -p sca.tte·~4ing is given in. Fig. 13. The angles measured 
. . ,. . . . 

for ·.~ach event l e L (M}, 8 S~M)] co:c·respo::1d to a point on this plot. .The 

deviation 6.$. wa.s defined a.s the no:;:·rn<'¥1 c:~i~tance f;rol? [ GL(M), G
5

(M)] 

·to the curve. Fo:r events ~hich i.en between the twi) branches of the . . 

C·Urve both Do$ IS Were caku12:.tea, ar._d th.e event war. ~SSl&ned .tO the_ 

branch resulting in the ~mailer Ll_e. · The 'I>; rue" s'cattedng_ angles for 
the event were taken to be those at the intersection of the curve and the. 

. ' . 
normal from [ 6 L (¥}, e 

5
{M}]. The cosine of the "true 11 

. K scattering 

angle in the c. m. 'Has calculated by th.e computer. 

,. 
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Cutoffs for 68 and .6.¢ for acc.eptable (elastic) ~vents were 

determined. by examining the distributions in. 6.8 · and D.<j> , which peaked· 
... . . ,· . . . ... 

up sharpl·1 about ~(), D.<j> = 0, and then setting the cutoffs at the poi?t 

where the distributions fell to the backgro;und level outside the peaks. 

Th:e validity· of the .. cutoffs in 6.8 and ~<I> _was ~he eked by varying the 

cutoff slightly, and requiring that the results sho~ld not. 1~'; significantly_ 

changed. The cutoffs were largest for .forward and backward. s.c.a.ttering, 

V.:hich is to be expected for two reasons: 

(a) .Multiple scatteri~g in t[.te hydrogen and aluminum of the target 
. . . 

for low-energy r.ecop p::..·otons (forward scatte't:ing) and K 1 s (backward 
. . . ' 

. scattering) becomes appreciable· in these· regions. :At 1·.1 7 Bev/~ this:· 

amounted. to about· 1 de g. in the forward scattering region, and abqut 1. 7 ~-­

in the backward scattering. region~ . 

. (b)· Angular divergence of the incident ·beam could result in a 
. ~-· __.. . 

large spread in_ Li<t>~·for tne-two extreme~ ofthe angula:r,range .. values 

for D.() and D.q;' ·were calc~.llated unde.r.th~ assumpti~n that the incident 

particl.e was n:oving parallel to the beam,/l.iis. · if the. ar{gle bet_ween the 

incident K direction a.nd the beam was 2 ·deg~ ·the .obseryed rioncoplanarity 
. .. ... . .. 

for an elastic. scatter could be as large as 8 deg for the extremes of.the 

angular range·. 

The. estimated uncertainty· in the number of elastic. scatters due 

·to the arbitrary cutoffs in D.() and- D.<j>· is less .. than Zo/o at·most angles .. 

In the extreme fo:rward and backward directions. the results,. were more· 
. .· . ·. . ~ : . . . 

sensitive to th'e ~election of the cutoffs' the e ~timated unce rtain:tybeing-

. about 5o/~ for tJ1.ese regions. 
. . 

The. contamination of inela'stic scatters·. in the accepted .. elastic 

events was estimated by dete;'rrillnfng the·density. of reJec:ted 2-pt.ong 

events ·in the ( 6.8, .~<!>) plane, outside the (6.8, D.<j>) cutoff region .. · The cor­

rection was made assuming that these events were uniformly distributed 

throughout the (6.$, D.<j>) plane. 

Measurement. accuracy was found to range from 0.5 to ·1 deg,·· the·­

greatest accuracy being achieved for particle trajectories no'rmal.to the 

spark-chamber plates. 

. t. 

.. !t, ... 
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The mo.m.entum spread (.6.pjp:::::: ±0.04)· and~he a~gul<;lr dlv~rgen~e 
of the. incident .beam. (about ± 1 deg) introduced an u.nce~tainty in the ex-

. .. - ; ': • f,t' . 

pected elastic.- scattering kinematics tha~ wa·s .estimated to be aboy.t ±1.5 

deg. This uncertainty combined with the mea."~ure~erit error cquld ac-
. . ·. . t 

count for a width in the D..(J distribution cfor ·e~(istic .·s~.atters o'f ~rom 
about 3 .(±1.5) to 5 deg. 

All events which on the initial·scan were assigne4. :~o category 

.. 

5 (three .o·r more prongs) were resca~ned ·and checked again~t the ~')rpothe.:. · 
.. . : . , .. 

sis that t:vo of the prongs comprised an elastic scatter w11.'erea~. the_ others 

. were accidental a. About 15% of t.his .gro~p were fou~d io .fit ~:his· hypc;;the.sis. 

Most of them were. a result of either. beam.::particle acCideptals which . . . . 

could enter the" fiducia] volume of-the spa·~k chamber·3 becau~.e of the 

width of the beam, or proton s·tatters in' the target .. 
I , 

z. Differential cross section. The differential cros.s~ sect~h~ in 
. . . /' . 

the c m. system can be w,ritten ~· . 

where. 

d
·a· · · N.E a.j3 .. 

l . l 1 
- l 

<ID 
1
. - n nKLSZ.LS<j>. (LScos8). p . l 1 1 

, 
. -

· N. = number of elastic scatters found in the 'ith interval of cos 8, 
l 

np = number of protons 'in the. target per l,lnit ~ength, 

nK = nun;:ber of K' s incident on the hydrogen·target, 

D..Z. = effective tar.get length for the ith interval, 
1 .. -· 

.6.<j>. = effective azimuthal angular range iiccepted by the spark. 
·1 

E. : 
l ·. 

chambers, 
i 

correction for protons stopped in the hyd:togen,. in the walls 

of the ·target, and in the spark chambers~ 

a. = correction for loss of K particles due to scattering and 
1 

decay in flight, 

j3. = corr~ction .for· Ioss of protons due to scattering, 
l -

(J = c. ·m. scattering angle <?f t~e · K. 

·.,). 

•. 

I ' 

' .. ! <i. 
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The effective length of the hydrogen tar:get ·(~Z)'~s a '£unction o.f 

scattering angle and of X and. y, was calculate"d from .. theknOWh geom~try 

o'fthe detecti~n system~· ·The . 6Z. ·were evalua~ed approximat~ly b;. ' 
. . . . . . . l ·. ' . . . . ' . . . ' . . 

. weighting the calculated values ea.z (x, y;_ cosO) according to the meas'ured 

beam distribu~ion, a.nd then averaging ove·r t_he'·. 6. ~::Js8 interyai. · 

. The a31m"..lthal angular range .. (.6<j>, nie~surecl ih the x-y plane).: 
. . J . . . • . . .. ..· .•• · . 

accepted by the spark chambers is ·a function of x, y, z,. a~td. cosO>· The· . . . 
. 6<j> (x, y,z·, cos8) could be calculated from the geo~e.try of tl1e.·system~ 

The· 6<j>i is an average qver (6 cos8\ of the .6<j> weighted a~cordini. 

to the :,earl} distribution. ·.1 

.::.. Corrections.The low-ene:rgy .recoil proto~:~ from s~all-aAgle K 

scatters could .~e stoppeq in the hydrogen· o:r' in the wal~s .o.fthe tar.get qr 

-spark chambers: This effect reduces the number of __ small-.angle K .. 

scatters that are detectable .. The. correction E i ·depends ·upon· the beam· 

distribution and the scattering angle.. The (cos8). intervals vJere cho·sen 
. . .. l . . 

so that E. · is app:reciable only in the interval nearest cosO '= + i. 
l . . . . . 

·The K decay and i~teraction loss· (a) and the protOI1·inte·raction 
. . . . . . . . 

loss (f3). were calculated as functions of x, y,Z, and 8, :and then averaged 

for each 6cos8 .. 
1. , ... 

.I 

C. , Hodosco.pe Data Analysis 
r 

. ·. I 

l. Scanning a~d.·dad~. reduction. The format o{ the,hodosco'pe film · 

traces is illu.str.ated in Fig. 11. · Each trace was -scanned and designat~d 

as one of the f.oll9wirtg types: 

a~- yood traces. The K- gate (G) and the scope-trigger (T) puls~s 

were required. In ·addition there could be-no more ·than two ;''scatters u ,., 

indicated by the pulses from each. hodoscope array. 
,. . . . . . " . . 

b6 Spa.rk traces {with G). Radiation from spark-chamber dis-

'1Charges was picked up -by the hodoscope electronics. and.the :oscilloss:;ope,. 
. . . ·-

usually resulting in a spurious scope trace with the large noise pulse. 

from the spark discharge clearly evident on the .trace. Occasionally the-•- . . .. . . . 

spark chambers and the hodoscope s'ystem we-re triggered by the same 

.• 

. 
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particle. The resultii'lg tra·ces contc.ined a G. p~lse· follo~ed, ·afte-r q 

characteristic time delay, by the spark-chamber noise pulse. A .cor'- · 

rection for. such e~~ntS•; (sp~r·k tr.aces with G) had to be made,since they 

::epresented a possible loss of good: scatte.r·s~ · 

c·. .Blank trac.es: 

d. Traces indicating more. than two sc~tt'ered particles in any 

of the three hodoscope arrays. 

e. 
I . '· I . . . .· 

The pul:ses present on ~yp~·(a).:t:r·aces we_'r·J record~d on olBM·' . . . . 

Unr~a.9-able ·traces. 

cards. A computer progra·m was written·to so~t these evehts into. : 
' ,, . . 

(1) ·one-parti<}eeven.ts, (2) two-pa;ticle eve~ts,~ip) pulses .fr~m any one 

~f the arrays missing, and (4) doubtful ev~nts. 'rhe .one-parti~le e~ents 
I . • . . 

were. futther sorted into .. bins desigi;J.ated by (i-j),' where· th"e·indices re£er . . . . . 

to the element in which the pulse occurred it) the ar::ays H 1 (i), H2(j), / ··: 

and H 3 (k). ''· 

In the ~nalysis of the data the first: two arrays were used to d~~-. · · 
termine the angle of scattering (proportional to i-j), and th~ third array 

·was u;ed to se.lect ela~tic s~att~·rs .. Th~ elemen:ts in H.
1 

(i) .. an,d H 2 (J) . 

were 1X8 in. , and any combination (i-j) determined the. scattering angle_. 

to about ±1 deg. 

The allowe9- elastic-sca:t.tering_r~gi~:m in· H 3(k) for a given (i,j) 

combination_was, in. gener~l. larger than one element ··(3 in:). Cutoffs 

in H3 (k) were establi~hed by P,lotti~~ t~e observed k distri~ution: for·_·each 

(i,oj) combination. These distributions were--f~und·to peak ar&und a . 

particu~ar k element for each (i,j); this.was designated the elastic '· 

scattering element k . All eyents· in the bins (i, j, k ±Ak) wer·e accef;'ted • 
. · .e e . 

as ~lastic scatters. · The data were ·tested for sensitivity to the sel~ctim 
., 

of the cutoffs (~k) in H 3 (k) by varying ~k. tn all· cases where sufficient . 

data existed to make statisticaily significant "tests possible, the results 

were. found to be insensitiye'· to cha~ges of one e~ement size (3 in.) in 

~k. The net number of particles 1n each bin N(i, j, k) was determined by 

making a target Full-Ein_pty subtraction.· 

The events in categories other. than "one particle II events were 

checked for hydrogen scatters; however, ·.all of them disappeared after 
~ . . 

t 



,. 

..... 

the Full-En1pty subt:caction except in the ''two-particle event 11 and 

"doubfful. pulse 11 catego:ries. . 
The two-p~rticle events were tested for a fit to the hyp()thesis_ . . 

that one. particle wa·s ari elastic scatter and the other was in accidental 

coincidence with the K-gaJ;e. All possibfe combiri:-.<·::-.·~lS (i;j, k) 

fitting this hypothesis were constructed from th~ pulses found in the . .. ' . . .• 

two·-~particle event, _arid each combination was assigned _a ;;eight. bjised 

on the_ frequency of its o~currence ln the one~particle type ~vent~. The 

weights corresponding to elastic scatters-were then added -to the total 

number of eiastic scatt~:::-s: 

When the scanners found a pu:lse which did not meet_ t.qe pulse­

height requirement but appea:t:"ed to be l~nger than the usual ._feed-through-

pulse size, they were instructed to record it. as doubtful. Whe·n a· p·arti~ 

cular counter was found to produce "doubtful pulses'·' frequently, the 

population of "one particle" events (i,j, k) involving tl:tis counter ~as 
compared with neighboring combinations. ·When th_e · "sick 11 ·coUnter 

combinations wer'e underpopulated the doubtful pulses from that counte:r­

were accepted as real, and these "doubtful" events· were checked for 

acceptable elastic scatte:rs. 

2. Differential cross section. Consider first the 'case. where all 
. . 

'· 

scatters occur on the axis of the ~.ydrogen target. The elastically scattered 

K 1 s.that pass through thehodosco~ combination (i,j,k) must-have.inter-
. . ' . . 

acted with a proton somewhere in the region .6.Z (refer to Fig. 10). 
} . . 

The nu:rrlber of K pc.rtides which scatter in .6.Z into (i,j, k). and reach 

the· H4 trigger counter be.f?~e decaying or undergoing a second inter-
. . . . I •· _, j . . . I_ 

action· is gi veh by. 

where 

N(i. Pl = N'T,II)J. 
·Az 

. Cl 

n 
p 

' ·'I 
.6.0 (n,-Z) ~{'t1tZ)d~, 

I . ' 
i·-

nK = number of K 1 s l.ncident on the hydrogen target, 

n = number of protons in_ the. ta-rget per un.-it __length, 
p 

"( 11) 

; 

/ '. 
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<l(J(a) + . , . 
dO = K -p clifferenti~l cross section averagec;l o'ver the angula:r;-

.60(a, Z) 

f(a, Z.) 

- ·interval accepted·by the ~th counter Comb-ination,·. 

= solid angle subtended by the ~th. hodbscope co11:1b~n:ation, 
-~· ' 

= ccrr_r.ection ·factor for K attenuationin the hydrogen 

target, walls of "the hydrogel?- tar.get and the. Cer'enkov 

co~nte_r c3. and decay in flight between· B4 ~nd H4. 

The S()lid angle ;.60(a, Z) ca~ be written . , 

:. 

where 8 '0. is the central scattering a!lgie accepted by th_e . ath'· ho4_os'cope 

combination: The azimuthal angular range accepted by the hodosco-pe . 

· syst~_m_was. limited by the .·H3 array. Since the di~_tance !1::om th~ tar,g~t 

to H · ( ~ 150 in.) was large compared to the height of t.he hodoscope 3 .. 
elements (8 in. ) ' we can w.rite -

where 

.6"-. z h cot ea 
:"t'a Z - Z ·' 

3 . ._, 

z3··= distance _from the entrance. end_()f the hydrogen t~rge.t to_ .i:I-3'' 
h · =·.height of hodo~cope elements. 

The decay_ and interaCtion correction is of the form 

F(a, Z) = exp 

where 

. 1(a, Z)m J 
I: X 
m m· 

I • 

1 (a, Zj = the path length in the mth medium ·(hydrogen, aluminum, , m . -
etc.), 

~-
m 

' .. . ' 

= mean, free path for attenuatiojl due to s·catteri!lg, absorptiop., 
' : . )·• . 

and decay in flight. 

The total path length between B 
4

. and H
4 

was about.· 220 l.n .. : The .. total 

interval AZ was at most .about 15 -in. If we tak~·- Z at the center of the 

interval. ~Z we can write 

(. 

·, 
·' 
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.. ' :.· ~- ' .. 

·( 

< ·, 

· F(!', ~~ . r · <'>~~ (Z)dZ, '• / ·. . •.. ( {2) . 
,,.-·_z ..... ·. · .. , .... ·.· .· 
lJ. Cl ,_-·-~·:,· .. 

. >I;? . .. 
.. · .· ' 

. .. 

. ' 
' ... ' .. 

· · · da·(u) 
·N(u)· = n . .·. p---an:-

h cos ~0.:· i 1· a 

z - z 3 · · ~z . -a 
a.·. 

nK(xll\8 n (x,· Z)F_(a, z/x):~~aZ, t.:· .: 
·-·; : 

.'t··,· ): 
·where nK(x) is the beam distribution Jn' x, and·± <a ::::,:'2.·3 ~n. ~-are the ' 

At . .. . . ,, • .· . • '· .• ·• . . t .• •' . 

limits set bythe hydrogen t~;r:get d~f~n~ng coun~er. B4 •. For a sy~·metri~ . 
· · · .. . · . ·. . · · · .· ·a .. ··t .. ·,,.,. · · •. · 

. '· 

.,· 

beam the effect on L\Bn (x, Z~ cancels to Jirst order ~n· Lz. (.~.30 :.) .•. ·.~~-~re 

.L2 is the distan.c~_. from'. Z tothe ho.dosco_~e element· H 2(j). -M~~i~g:· . . _ 
off ... axis affects_.only the pat_h length· in .pydr~g~n in•:_F(a~.Z·, x,'};,-~a~d.·to .'first orde·r ·, 

in :_· _(~ .fo~)_, where./L~- is: the pau~Jlength in. hydrogen: aio,tt t~~:-ceht~r : · . . : · 

1 in eH, this e.ffect allso cancels. This approxiinati~n is -g~o~ t~ a-hput. · · 

2o/o. Tkese cancellations occ_ur pr~~'ided th~ e~ti:~;:,.beam _(syrri~~t~i·~~Y., 
is sampled at the point Z. This is tr.u~ for_ th~ miftdle s-ection o-f the:, . 

target (l~beled M in Fig. lO) .. but not:~o·r. the ~ric\ ~~c~~o-~s F.: artd·:_l3 .... ;_ _ ~ . 

. For the ·end sections the :average be. am-particle. location: (whe;re the ;<::~n:- .~ •.... 
. .. . . . . . -~ 

men'tioned abo:Ve do <?ecur) ·i~··not ~n th~r- targ~t axis.· .. 'rher~· 
does exist s~ch. a point, howe:ver. a.nd we .. c'an write for ~he.·t'h.r~e ·t~rget .. . . . . ~ .. 

cellations· 

regions, 
.··• 

N(a) ·. ( 1~) .: . . ' 

where t takes. on the values t = M·; F, B. 

'. 
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-The expression for the differential cross section a_·s a function· 

of scattering angle· can now be _written as a su1n over the hodoscope . 

combinations .a, subject ·to the constraint i- j = g8, ~he1~e- :g depends on 

the geometry of the hodosc;o.pe system and the angle of deflection in _ M4 .. 

We.have 

da (8) 
an = 

6.8a ( Z)_~zJ_ · 
. t 

(15) 

,-. 

The integral's I((1) wer_e evaluated by numerical .integration for 

each hodoscope combination_ a. 

The HS counting rate (H5/:r:·K} (see"Subsec. ~V-Al) 1~easui-ed _ 

the __ attenuation of the beam by: (1) .. _l.nteraction in the hydrogen target,~: 

in the .spark chambe_r walls, and in ~he- Cerenkov <;:ounter· C3' and_ (2.} . 

decay in flight between· --B 4.: and ._.H
5

• _ The differe_nc~ betwe_en:- H:5/nK . 

and F(f:!., Z) is a functi?n of the, sca~teri.ng angle and the geometry of. -

the system. ~.~ • 

The· net number.'q/ ccn.ints in each a was arrived _at by t"n'iaking 

the subtraction --

N - N (Full} 
a -- a · 

where e corrected.the empty data for the difference bet:Ween targe_L 
a,. 

_Full and Empty' attenuation r·ate-s. · 

3. Co-rrections. Cross sections· calculated-from (15) were cor.:. 

. rected for: --(a) proton contamination and (b) vertical focusing in . M.4 : .. . . . . . . . . ' . 

a. Proton recoils in the forward direction could not .be dis-

tinguished from- K' s. The diffei·ence in momentum .between protons· and 

: K' s scattered at smal~ angles was not large enough to be dete.cted by .the 

hodoS'cope system. Thus the number bf ··s<:·atters detected at an angle 

8, N(8), composed of K' :s and 'recoil protons, can be written 

-.. 

. . -. 

. . -
r . 

"· 
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[
~ -.• . da {6 ~8') ]. ·_ 

N K(8) 1 4- f cr · p·. . ... , 
(] (8 =8) - . an . 

where £ take·s account of the difference in attenuation for .K1 S and 

·protons between the p·oint of .scatte_ring and _H4 ; 

.,. 
/. 

b. Vertical focusing in M 4 increased the effective solid angle. 

of the system. The correction was calculated· by tre~ting the e:atrant.e 

and exit planes of M4 . as thl,n lenses with focal le11gth given by_ 

F= tan V (1_7) 

. where. p =- radius of curvatur~ in :M4 , c;.nd 8 is the angle betwe-en the 

particle trajectory ,and the bm.1~dary iine of the magnetic field regicJ;J-.. 
.1 

D. Results .. 
1. Spark-chamber data" 'The results of the.'.film scan are ptesented . 

' . ·. . ~ 

in Table II. The number of picture's fourid_ of ea.ch type with targe1t Full-

and Empty is given, alc)ng with the total numl?er of elastic. scatters and 

the nu~ber of incident K 1 s (NK) at -~ach.of the momenta investiga~ed. 

Types 1 and 5 contained all of the· elastic .~catters. Eyents in the other· 

categories were. inelastic hydrogen scatters, and interactions ,in the target 

walls and spark-chamber boxes. :. 

The calculated differential cross. sections are given in Table III. 

The'quoted ~~rors include-'the statistica~ e~r,.orsv N(8} and esti~ated 
systematic uncertainties (7 to iOo/o). Ir. the film scan, ~events ?aving 

6.<j> > 10 deg w·ere rejected .. This' l:ejection was possible, however, only 
t . . . -~ ... . 

for side-side events. Copla,narity for frorit-side events co~ld 116t.-b~ · 
., .'I • . • • ,I 

checked directly; arid was ~t applied to these events. Since all Efv-ents 

in the· extreme fo~·~a.rd an.d ext!'eme =-ackward directions were front­

side events, no elastic scatters should have been lost because of the 

6.4> scanr..ing criterion. 

,, 
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Table II. Film-scanning results. __ V'Types 11 are discussed in Subsec. B.) 
:.; 

Momentum (:Bev/c) 
Type 0.97 1.17 ' ' 1.97 ' 

! 
'" 

: 

Full 
a 

Fun ·.Empty. ]\Je_ta Full Empty 
. a 

Empty Net Net . 
. 'l '1214 10 1164 194-6_ ' 14 1902 1694 ,'1 7 1625 

2 '649 66 321 1055 131 { 744 3166 476 1477 

3 960 106 435 1734 212 1068 3340. 517 1449 

4 212 65 -100 34_3 6-8 129 893 23'4 39 

5 671 37 487 638 22 568 .2670 212 1881 ,, 
'l 1 

Toui1 37o6 284 2.307 5766' 44·7' 44.11 'i 1 J 783 1456 . 6471 
. J i I . 

• . . ~~~ , .. 
Elastic 1261 0 1699 0 1593 l 

NK 0. 7962 0.1606 L 133 0~3602 2.582 o:s929 

><.10 6 Xl0 6 Xl06 _Xl06. X106 .. Xl06 ' l 
! 

aE~pty nu~bers have been normalized to the tota~ number_ b£ I;<+ {N K) 

incident on the Full target. 

.. 

.. 

:··· 
.. , .. 

' ., 

,> 

.., 
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cos e · 

0. 76±0.06 

0.6 ±0.10· 

0.4 ±0.10 

0.15±q.15 

-0.1 ±0. 10 

-0.3 ±0; 10 

-0.5 ±0.10 

-0.7 ±O.lCi 

-0.88±0.08 

.. 

~ 

Table III. Differentiai cross-sections in K+ -p c, m. system.· 

da I : iiTf(mb sr) 

1.07±0. ,18 

0. 84±0. 09 

1.15±0.11 

0. 7.5±0'.07 

0.57±0.06 

0.67±0.08 . 

0. 76±0.1<? . 

0.67±0.09 

0.61±0.11 

'· 

a 
t::..a com 

0.53 

O.Z2 

0.27 

0.17 

0.13 

p: 17 . 

O.ZZ· 

0.21 

. . 0.2( 

. ~ ' 

Momentum tBev I c) 
1.17 

. * cos e. · da · · a an (mblsr) t::..ocom 

0.78*0.08 1.89±0. 2-4 1.09 

0.65±0.05 1.26±0.14 . 0.32 

0;55±0.05 1.19±0.12 . 0. 33 

0.45±0.0.5 0.95±0.10 0.21 

0.35±0.05. 1.04±0.10 0.30 

0.15±0.15 0'.61±0.05 . 0'.14 

.-0.05=!:().05 0.42±0.05 0.09 

-0.15±0.05 o. 35±a.os 0.'08 

-.0.-25±0.05 0 .. 33±0.05 0.08 
.. 

·* 
C\)Se 

. 0.92±0.02 

0.85:f0.05 

.0.-75±0. 05 

0.65±0.05 

0;55±o.os 

0.,45~.05 

0.35±0.05 

0. 25±0.05 

0:10±0.10 .. 

I. 91 

1.52±0.21 

1. 84±0.15 

1.47±0.14 . 

1.04±0.11 

0.49±0.06 

0.44±0.06 

0.3Z±0:05· 

0.27±0.04 

0.12±0.06 ,):. 
-'o.o5±o.o5 -0,35±0.05. 0 .. 36±0.06 0.08 o:o6t±0.023 

-0.45±0.05 .. 0.43±0.07 o:12 _-0.15~.05 0.08J±O.OZ8 

-0.55±0.05 0. 24±0.05 0.07 
.. 

. -0.25~05· . 0.056±0.021 
,; .. -.,' ' . 

-0.65±0.05 0.41±0,07. 0.13 .:0:~±0.05 -... 0.029±0 .. 014 . 
. . . ~ . ·. 

-0. 75±0.05 0.36±0.06 0.11 . -0.45±0.05 > • 0.048±0.016 

-0;85±0.05 0.43±0.0-7 0.14 · -0.55±o.05 0.054±0:016 

-0 .. 93±0.0_3 0. 73±0.17 0.28. -0;65±0.05' 0.064±0. :. '7. 
-0.. 75±0.05 0. 06 2'±0.0.17 

-0.85±0.05 0.08l.:>:>J 019 
-0.94±<>.04 . 0::043!':\).i.Jll 

0.69 

0.39 

0.3·1 

0.22 

0.09 

0.08 

0.06 

0.05 

0.02 

0.0'11 

Q.Q 16 

0.011 

0 006 

0. '1 il 

0.013 

0.015 
0.016 
0.021' 
O.Oi3 

a The listed eros's se.c'tions.include this cor.rec.tion, which is the·.sum ~fthe cor.rections"for stopping prbton . 
·loss, proton interaction.., and K decay and interactj.on. · ·.. · . . , . · . · 

. @ 

'· 

"; .. 

. ~i" .. 

·,. 

.. 
~ 
0 

. ·1· 

., 
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2. Hodoscope data. The resul~s of the h~~os.coP,e film scan are 

summarized in Table IV. Of th~ total niunber of sweeps photographed 

about 50% were triggered by the spark chambers,, 35% were analyzed .. , 

. for .elastic scatters, and the rerp.aining 15o/o .were ~f the following .~ypes 

(approximate percentage in parentheses). 

a. H 2 ~issing (7o/o).· There were no 'net hydrogen 11 eve~ts o.f 

. this type after the target .. Full-Empty s.ubtraction.: This' 

implies that they are most likel·y unscatter·ed bea.m partic'l.es 

which do not provide an anti pulse i~ Hi(_T) .. __ or decays in 

flight which manage to miss .H2 .. 

b .. Blank (3o/o). No . K -gate or ~w~ep trigger (:T) were vi.sible 

on the sweep. These were accidental sco.pe triggers. which,.· 
. . 

introduce no uncertainfy in ·the results. 

c .. H3 r:nissing (lo/o). These were due to ·(i'), the loss of _si~rial 

f;~m one or ~o:re of the H3 counters betw.een the counter~ 
a'nd· theJ:>scilloscope, or _(iiL_ a.ccidental scope tri.gge~s, 

since H 3 is required to gene.rate the scope sweep trigger.·. 

The net number of even:ts after the targ~t F~h-Empty sub-
. , . . ·. 

traction was zero. This indicates that they were. not ¢lastic 

. scatters which were Lost becaus.e of _missing ~igna~s from 

one H 3 counter. Assurp.ing that events oLthis type a~e the 

result of lost pulses from all ~3 .c?unte-~s, we fou~d :a~ ' 

averag~: H 3 ~"~pulse recording'' efficienc~ 1o:f 98o/o. The fre-: . 
. .. 

quen~y.speCtrum of (i,j) for these evepts was ·similar to· 

that ·found for all measured. ev~ents. '\V~tf'?nciuded therefore 
.• ~ . t . 

t~at th,.e 1nefficiency implied by the existence of thi's type· of 

event could only introdu.ce an Uncertainty in the results .w~th 

was not <: function of angle. Be·cause of the large statistical 

uncertainties.(~ 20o/o) that exist. the uncertainties introduct;tl 
'• 

. 'by this effect are insignificant: 



Total 
sweeps 

Number 
analyzed· 

· Elastic 
scatters 

0·.97 

6800 

1871 

494 

l.035X1o
6 

0.312 

·'. 
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~·· 

Momentum (Bev/ c)· 

. ·1. {? 1.97 · .. 

Empty Full Empty Full Ein.pt.y 

797 9316. 1665 . ~3 zr·.<l 2841 

320 2922 721 5424 140~ 

.· 64 791 . 157 i544. 263 

0.176Xlo6 ·L503Xld6 0.404X1o6 
Z •. 437X1o 6 o. 788X1o6 · 

0. 371 o:385 
_ .... __ - 0.624 

·l 

. ; 

' ·' . 
' .. ~ i . ~ . 

I. 

f 
f 



-· .. 
-43-

.. 
<. ,_. 

d. H
1 

missi·ng· (< 1%). No angular dependence different from . 

that for the anc:lyzed events was found. These ·e:vents .als-o 

disappear in the. Full-Empty subtraction. 

e. Any two·of the hodoscope ~ignals missing (<1 o/o) • .. 
f. More than two. particles through any of the ho,doscope arrays(lo/o) .. 

. . 
These were beam a~cidentals, interactions in the aluminum q{ 

the target walls and spark chamber, or· decays .. · .. 

The origin 'ofthe .K_+ proton· scatt.e·rs ·could ri.'ot be' determined 
., 

precisely from the hodoscope 'infor~atio~. However,· the r~gion of the 

Z axis through which the line of scatter ... passes provides 'som~ information 

on the distribution; of or.igins. A plot of the expected Z-intercept distri­

bution for a given angle of scatter is shown in Fig .. -14; the expe·rimental 

distributio~ found for ·the 1. 97 -Bev I c data is also shown ·f~r com:pa.rison. 

The theore.tical curve was plotted by assuming a Gaussian beam .distri·-. 

bution cut off at :t2 in. Similar plots of the data.were made at all angles, 

wher~ data was ~ufficient, to check that event.s .accepted as hydrogen 

scatters were coming f~om the hydrogen target. 

The calculated cross sections are presented in Table V. The 

·data accun;:ulated at ,1.17 and o: 97 ·Bev I c were ·not sufficient to pro..;,ide 

·significant measurements in more than·one or two angu].ar in,tervals: 
. . • . . . . . • J 

The quoted errors are statistical. .. 

. :- t 
.. 

. J.fv . 
f!l 
I. • 

I 
l . , 
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'• 
' 

lc loll!i--- Hydrogen · target -....;..._ .. ~~ 

... '. 

Fig: )4. The· Z ·intercept of pardcles scattered through 

70 

,._ 

· 6.8 deg. The. solid curve wa.s calculated for a Gaussian, 
beam di·st:ribution syminelric about th:e · ?l Jaxl.s . 

- ,..,_,. 

• ... 

' / .· 
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Table V; Differential cross sections in the c. m. system, 
measuried ...,;,-H:h the. hod.oscope apparatus. 

. , . . . 

___ __,_1_._.9.L..:-7_,B~e"'-~- _· _,'·----"----:::-'1.:.... ... 17 Bev/c 
da ·. · ·. * da · 

o .. 97 ljev /c · 
* · da · e* 

.8.1 

10.7 

13.3 

15.8 

18.3 

20.7 

23.1 

2.5.4 

27. 7 .... 

29.8 

if diT (mb/s r) f) . .if cm(rnb/ sr} ~ . -~ orr(mb/ s r) 

JS3±38 

117±30-

. _119±23 

80±17 

81±14 

62:t:l4 

"57:t:14 

"48±8· 

39±7 

23±6 

5.21'±1.29 
' 4.36±1.12 

3.94±0.80 . 

2.62±0.56 

2.62±0.45 

. 2.08~0.47 

. 1. 94±0.48 

2.08±0.41: 

2.4Lt{l.43 

2 .. 75±0.72 

.. 

9i;"i 150±413;36±0 .. 92 15±8 92:!:30 :l.40"±0.78 

20.±5. 120±21 2. 36±0 :45 

• !• 1:~ . 
•:.;." 

: 4 

The net' number of elastic _scatters after the Full-~ Empty .subtractipn. --. 

• I 
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V. DISG.USSION 

A, Phase-Shift Analysis 

1. Nonrelativistic scattering amplitudes. The differential 

cross section for K+ -p elastic scatt~ring can be f''ot:-arated into two"parts: 
' .. ' . 

. one· involving .a change in orbital a!).gular 'momentum (spin-flip), (l.nd the . . . r 
, <?ther coli.se'rving orbital angularmomentum.(nonflip). (\Ve. assume· K 

.·spin = 0 and proton spin= I/2.) The cross section can be written 

. 'd' . ·. 2 2 . 2 . em (8) = I A I + I B I ' sin e , . (18) 

. . I .... . 

where A is the nonflip amplitud-e and B is the spin- flip amplitude. 

The amplitudes A and: B for nuclear scattering can he written ~ 

w.here 

. .· . 
• CliO 

A(O) : ~ ?:0 (t+l) [ ~~+ e>:p(ZiO; )-1] + i c~; ~xp(Zib; '1 Bpi (cos B)' 

! . 
., 

ao . 

B(8) = -ir-L [Tl;' 1

~~p (2i 0 r- .Tlj) exp(2i 61- ila(:ose) ·-(co~~( (19) 

£;::1 

~ = particle wavelength in t. m. system, 

. i=>1 (cos8) = .!_th.order. Legendre polynomia~. 

The complex· phase shifts have been:wr·~tten 

and ± . ± . ··for j = 1 ± .1 / 2 
rJ = exp(- 2_. a. n ) £. . .«, 

(20) 

... 
i 

The amplitudes for pu:r:e Coulomb scattering can be written in the. ·same 

form, 
17 

with the ab~orptiori param~te_rs Tl_e = L _When-both p.uclear a~d· 
Coulomb forces are _presen.t the sc'atter.ing amplitud·es .can again ·be 

written in the form.(l9), ·:~h.er~ th~ pha.se shifts -are.the result of the 
;_ .. 

''total. interaction" (nuclear plus Coulomb). In the following discussion . ~ . . 

o1 will refer to the total inte·ra~tion phase ·shifts.· 

·;, 
' 
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J • J :· 

J /f' . -11, 
I ' 
; 

In the partial-wave analysis it is des.irable to terinin~t_e th.e · 

summation (19} wifh as low an l . valve .as is needed-to lit the e~peri·: 

·menta~ data: The short- range .'I;luclear potenti~l aff~cts .o·n~y those . / 

partialwaves up to about ~max.:::: ~ , where R' is the· rarige .of .the .. 
~ ' . . 

'4 

nuclear_ :potential, and X. is the particle wavelength in the c. m.: system._· 

The irt.fin~te-·range Coulomb_potential, on the other hand; eff~cts- all, 

orders of J.. 
•. 1 • 

· A partial-wave expansion that converges more rapidly than the 

form giv~n in (19} has been giv~~ by Foote. 18
• Briefly, the. der-ivation 

proceeds as follows. 

First we note'.that the nonrelativistic-Couiomb amplit-udes 

spinless particle~} can be ~ritten in the closed form19 · · .,. · 

(for 

. A (8) = ~ exp {- i n I_n [si~ 2 (8/2_. ) ~ i.r Hi ~g,J} . ' 
c - 2sin (8/2) · · . (2'1) 

where 

·-rt = arg 0 . 
2 

e 
n = lie 

I" .. ' 

r (1 +in), 

. I . 
Now we can write the scattering az:rtplitudes for the total interaction as 

. . 
BC(8) 7 0 (nonrelativisti<;:)· {22) 

·· Using (19), (21J, _and (22J, w~ find 
. "\ I r . . ~ 

e~(- in In ['sin
2

(8/2)] +in+ Zi'\J} 
'I . 

·. 2' . 
2 sin (8 /2) 

~- . 

L {(1+1) [ 11; e~p (2io;)~exp(2(q,1 )] 
l = 0 . . . 

+_l ( ~.; exp( 2iO;) -exp(2i<j>l)} Pl (cos 8). 

·. · (23 co~t. ) 

' 

,; 
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·. 

d[ P
1 

(cos.8)] 

e'xp( 2icj>l) l d(cos 8} ' 

(23) 

where · .t 

<P.{ = [.tan -.l(n/k)._ · 

k:l 

The cj>.t are ~he difference .betwe~!l\he nori;elativ~sticl toulomb phase:. 

,. 

shifts of order .t a.nd orde:.:: 1 = 0. The nuclear p¥se shi.t:ts a:r:e approxi-
. . '" . ·. ~1, 

· .. ·'1 
l 

mately given by 

* :. . . * . 
6 .t (nue; )::::: o J. - <j>J. • 

2. Fl.rst-~rde-r .relativistic corrections. Solmitz
20 

has calculated. 
. .. . . . . . . . l .. ... 

the relativistic Coulomb scattering amplitudes for the scattering· of spin.:.· 
. . . . . . . . . . . -

zero part~cles by spin-l/2- particles. The Coulomb nonflip and spin-flip 

amplitudes for K+ on p~otohs ar~ . - . . z 

A (rel. ) . c 

· B (rel.) 
c 

~.z. II+~( I +cos ll)-(2 ~p-1)(1-cos B) .j] 
TIC I .{j3k+ j3') sin (8 2) 

. p . 2 
. j3 

~ n j3kj3 + ·(2~ -1)-/-
.n + . p R . 

2 s.in 2(8/2) 1 + j3k~p = 

r~ ~kj3 . . . . ·. j3 2] .... 
)\, 2 e 2: L p 2 . P_ ~' ( 2 ~ - l) -/ sin. 8 

= 2 tic · · t Ll/ · · (j3k~j3P) sin ;(u 2) ·· · 

2 .-

. "- n · [~ j3kj3 j3 J - . · P P + .2 (~ - l) P sin ·e 
2 sin 2 ( 8/2) 2 . · P . · 4'" · 

(24) 

(25) 

where j3'k ·and j3 are the c. m. velocities of the K arid proton, ~ is 
p . .. . I p . 

. the proton magneqc moment in nuclear magnetons, and ri ·is as defined 

in Eq. (21). 

, . . . ·,· 

,I' 
r 

. ; .. 
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Corrections to the nonre.Jat~vistic total· phase shifts ~m·d to the 

.spin-flip amplitude can be calculated from the. second term· of (~4) ~d.· 

from (25). Note that the first term ·in (24) differs. only in .phase from: 
' . . . . . 

the nonreiativistic Coulomb amplitude. .S~ch a; calculation has be~n 
carried .out by Foote, 18 in which the correction terms are expanded in·. · . 

partial ·waves an4 applied to the nonrelativistic a,mplitudes ·ter~. by term. 

The final amplitudes are 
-. 

AT(8) =;.. . ·'1\l. · ex_p·{. i nln.(sin
2

(8/2_)J\_: 
2sin (8/2) JJ 

· .. ..:.· .. 
..... 

· tJ [ ~1 e~p(2ibf)-exp(2i~1 l]} ~j(cos J), 
(iz6) 

where 

'!\ n C si.n 8. · 

2 sin
2

(8/2) 

1 + f3kf3 p 

and the nuclear phase shifts are approximately 

± ± ± 
o.t (nuc. )::::: o1 -. q,1 - ~cp I. 

. ; ' 

~ (2 7) 

/ . . ~ . 
.. (28) 

The first order relativistic .corrections to the Coulomb phase shifts are 

,, .·. 
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.. · ll3kl3 + (2 tL -1) 13 
2

/·2].· - p . p p ... 
L:l.<j>o - n . l + 13 13 • ' 

k p .. 

.. 
(29) 

. . . ~ 

3. Phase-shift-fitting procedure." A l~ast-square_s:".fitting com~. 
. . .. ,: . . . . ± :f .. 

puter program. was used to find sets of phase,.~hifts (TJ 1 , o1 ) whi~,h 

~.esulted in a good fit of the differential cross section. calculated from .(26) 

.and (27) to the experimental data. The usual X z. dist~ibut1on analysis.. .t. 

was used to_determine goodness of fit, with 

where 

x
2 =4={1 

Y. -(l+e)y. 
12 1 . 1 

75.y. 
1 

y. = der (8.) (experimental) 
1 an . 1 

+ I 

E . = normalization parameter, 

·a T - a ( TJ,.' o) 12 lie !2}· + 
LSaT 

~ 

" 

L:l.e = uncertainty in ~ormalization of e:X:perirnental dif~erential· 
··cross· sections,. 

aT= expe.riment~l value for total cross sect~,?~·' 

.D.'aT= uncertainty in aT, . • . 

(30) 

a ( 'rj, 6) = total cross section calculated frorri th¢' phase shif~s .. 

The ·search proc.eeded from an initial s~t of phase shifts that were. 
. . . . . . . •,· .·• 

randomly selected on the int.ervals •.90 deg < o < 90 deg ~nd 0 < Tl ~ Lo .. 
. . . , . . I 

About 100 trials were made at each momentum •. : 
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4~ Results of the phase-.. shift· analyses •. Searches fo.r S- and 

P-wave fits at both momenta pro.duced several different sets. of "good" 

phase shifts. In addition to the usuai· ambiguities there a're vari~us 

combinations of ~~ s and. 5 1 ~ :which gav~ good f~ts. Some of 'the solutions 

which ~ere found with P(x 
2

} ~ 0.05 ·are presented in Table VI. 
. . ~ . 10 22 ' 

Phase- shift analyses at'- lower momenta . '. have yielded (most 

probable)' solutions with lar:g~ S-:-wave pha.se shifts. Rapid variations 

in t'he S-wave phase shi~t as ~ function of energy are· unlikely. Thus t):le 

l!reasonabl~ 11 phase s·hift sets·in Table VI are probably tho:se· J'ith . 

o
0 
~ 30 deg to 50 .deg._ '··~his can~ot be. in.ade'very_precise, olc~urse, .~ 

but with the information available at .the present time it appears to be 

' the ·only criterion which can be used to !?-arrow down the _range of possi-

ble solutions. 

The data at small .angles are not good enough .to determine:_the · 

sign of the nuc::lear .interaction. Howe:ver, .the solutions which require· 

. constructive interferenc~.~·between the nuclear and Coulomb' interactions· . . .. 
give· consistently ·slightly better fits than those requi:ririg d~structive_ 

. . 
interference~ Since this is in agreerri~nt with the results at low~r 

energies we are encouraged to accept :.~elutions which p~oduce negative 
~ . . . . .: . 

values for .t4e· real part of the forward ~cattering arnp~litude (D). 

We observe that all solutions.for the 0. 97 :-Bev/c data give values· 

for the magnitude of D which are· equaL within statistics. ·.The valu~s 
of D that were. used in the dispersion ··,relation analysis were those . . . 
c·alculated fo:_ the A.- --s-olutions given in Table VI., 

The measured angular distributions and repres~ritative phase­

shift solutions are plotted in Fig~ 15. 

,._· 

.. . 
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. A 
A+ 

B 
B+ 

-c 
c+ 

D 

.E 

. 
-A 

'A+ 

B 

c 
c+ 

D 
n+ 

,1. 
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VI.. Phase-shift' solutions found at 0!97. Bev/c 

·<>o 'Ylo 

-:-38±1 l.O 
39±1 l-.-0 

30±1 OA 
-32±1 6.5 

. 9±'1 . 0. 7 
-14±1 0.7 

3±1 0.8 

-20±9 . 1.0 

-33±2 1.0. 
·43±2 o.a_ 
74±1 0.2 

- 3±1 0.2 
12±5 0.2 

- '9±1 0.3 
13±1 0.4 

' I 

01 
. . 

•. 1 0±1 
-16±1 

-38±2 
39~ 

15±7' 
-14±7_ 

-43±3 

39±9. 

-1 0±19 ;-
5±1 

-30±9 

-64±14 
55±10 

1±5 .. 
1.±9· ' 

0, 97 Bev/c_ 
+ + ,.,. 61 - T'll' 1-

1. o· 3±4 . 0.6-
0.9 l-±3 0.7 

0~ 8 . -4±2 1.0 
.C. 7 5±2 ·Lo- ; 

l.O . - ":' 29:h2 0.8 
1.0 29±2 0.8' 

0.'9 ·7±9 . .o. 8 

0..7 ~.:1 O±i 0.8 

L 17 Bev/c 
' 

0.8 . 4'±1 0.2 .. 

0.6 .. . -9±5 OA 

0.6 :..14±3 0.8 

0.3 -15±1 0.9 
0.6 11±2 . 0.8 

.' 

l.O -39±1 0.5 
1.0 43±2 0:4 

... 
-'C.. 

,.· 

and 1.17 -Bev/c. 

D(f) _/ P( ~} . X 

-0.10±0.03 
+0.09±0'.03 

.:.. 0 . .~. .• ~±0. Q4 
+0.1.2±o.04' 

-0.12±0.04 
+0.10±0.03 

-0.10±0.03· 

-·0. 1.0±0.03 

" 
\ 

~0.19~~).09 
+0.08±0.08 ·. 

. - 0 . 1 9 ±0. 0 9 

-0.20±0.09 
+0,22±0.10 

-0.18±0.10 
0.17:1:0.10 

- l' 

0.14 
0.07 

o .. t'5 
0.07 

0.13 
0.06 

0.11 

0.12 

~-

o.zz. 
0.07 

0.21 

0.22 
0.08 

0.21 
0.10 

,· 
s· ~. . ~ 

.. 
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Fig. 15 .. Angular distributi~ns and represetitative phase 
shift solutions fo~ .(a)0 ... 97 Bev/c.andjb) 1.11 Bev/c. ·· 
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B. Small-Angle Scattering at 1. 97 Bev / c 

The elastic,;.s.cattering c:ross sectlon at 1.97 Bev/c is peaked in 

.the forward direction. ·This implies ·that many angular momentum states . . . :· 

are present. For this reason a partial wave analysis was felt to be 

impractical with the small angle da.ta available fn: .. n this ·experime.rit. 

Since there are many angular momentum channels open :3~ this mo­

mentum,. and because' the measured angular di~tribution 15 dc\n:.inated 

by the diffraction peak, an optical model fit to the data wa.s attempted . 
. . '. ·•. 

A model w·as used in which the transmission rate for a given 

impa,ct radius p. is given by 

1 ... a= C g (p), . (3Jl 

where . '·· 8 C is cor.n})lex if there is real sc~ttenng. . A good fit was ob-

tained with a Gaussian shape, .. 
· . . g(p) = exp (-p

2
/ ( p~) ·) 

wher·e M is the r:m.s radius of the disc. 

(:32) 

The differential cr.oss section is given _by . 

da (P2
)/ 2) 

.-.:·. {' 2 -- <to exp -q. (33). dn .. 
·where 2 p sin (.8/2) is the momentlim trari.sf~-,:i.. t 

. ., 
q = 

I . 

The para._meters t~ be determined from the dat~. <fre · a O ::: forward • . . .· 
. • . . • r?:'T'J ( ·'2.') 1/2 . . . . ' 

elastic srattering cross section, ~J1d y 3/.2 p '~ . = interaction radius.· .. 

. A least·- squares fitting pro•~edure was useJ .tb. determine tl1e best 
. . 2 1/2 . . 

values for· a O and ( p ) ·. . The results of th.is analysis are presented. 

·in Table VII, and a plot of the cross .section calculated fr'om {33) and the 

experimental data are presented in Fig .. 16.: ' 
/ ·,. 
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Table VII. Best values fou11d fo:r the para.meters discussed in ~he te_xt. 

D is the r_eaf part of the forward ~scattering a.mplitude .in units whexe 

M =11 K 
:: c =. 1 .. 

l. All points 0.65±0.06 

2. Excluding 0.92±0.11 · 
two points 
at la~gest 
angles 

.. 

4.0±0.5 

4. 9±0'. 8 . 

· .. : : 

0.22±0.14 

·1.0 ±OA 

'i 
1/' 

' ~~~· 
l : 

0.25 

0.60 

. ·;·· 

. -~·. 

.· ~ 

•'/ 
;· 

·.· 

~-- . . 
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• Spark Chamber_s. 

... 

•·· ... . •· 

3.0 

,10 20 30 40 . 50 .. 60 . 70 80 110 120 130 140 150 160 ·170 180· 190 

.. 

Fig. 16. Elastic sc_attering at 1.97 Bev/.c. The curves were 
calculated using Eq. (33). 
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·The solution for Case 1 gives a better. fit to the sm?-ll~angle·· · · 

spark-chamber data t,han the solution· for· Case-~· ··It is to .be._z:toted. that 
. . ~.. .. . . . . . 

the interaction ;radius found for Case 1 is smaller th~m that found for . . . . 8· .. 
K- -p scattering at the same energy, namely· 

The solution for Case 2 gives a value ·f;; the K+ -p_.interaction· radius.th-a.t 

is d.bout the san1.e as that foun:d for K .. -p. 

C.. Disper.?ion Relations· 

The formalism for c~nst.~ucting dispersic:\ri :re1atlof\~ fo:;:o twc.:. 

particle systems has qeen discussed by many authors in .. recent years-. 

A .particula'rly lucid account has been giveri by C}:lew. 
3 

.. A derivati.on of 

K-N forward disp~_rsio{l ~elations b·ased on 'the .. methods d~scribed ir. 
I • •. 

. this paper is given in Appertdix B .. ·Many a.uthors have written' down 

K-N dispersion ·relations in analogy with _.n-N ... rela~ions. A derivation 

which proceeds from the M~ndelstam represen~ation for· the invariant 

scattering amplitude is included in this report for 'completeness. 

The forward dispersion relatioi1:s relate. the real part of the '· . . . . ' . . . 

forward scattering ampli!ude to integra~s over the imaginary parts :..for 

scattering in the cross chamiels as ·well as the incident channel. Jn .units· 

where h = c = M = 1 we find . K 

D (w) ='C + ± 

-v 

w ± ·w + ~J ! . 

WATT 

·A (w 1 )d~ 1 

-w' ±w 

" 

"CIC 

+ !_r 
1T 

. 1'· 

QO 

A (w 1 )dw 1 

f f + TT .w' ±w 

A (w 1 }dw 1 

+ 
w1 Tw 

r 
The pole term- is an average pole combining the effects of the 

(34) 

* Wtw * · · 
A,~. Y 1 , and Y

0 
· poles (see Appe~dix .e). D±(w) is the r.eal part and 

± 
A±(w) is the imaginary pa_rt of the K -y fo.rward 5Gatte·ring amplitude, 

.. 
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!. ,. . 

\ 
Fig. 1 ·t. The imagiii?-ry p~rt of the forward s.cattering amtplitude 

for·· K+ -p and·. K- -p elastic scattering~ ·The optical theorem 
was used to ·calculate the experimental points ·from the mea­
sured total cross sections. 

Symbol code: The numbers .. beside the symbols are for de;... 
termining references from the follow~ng sequence: (l) Ref. 13; · . 
_(2) ~Ref. .22; (3) Burrowes et aL ,· Ref-. ll; (4) Vovenko et, al.., · .,\. 
Ref. I l; (5) E. W. Jenkins, W. F; Bak.er, .R. L. Cool, T:·F:. · · ... 
Kycia, R. H\ .. Phillip~,· A. L:. Read, -B~il. Affi·~ PhYs. ~Soc:. .. ·• 

·. 6, 433 (l96f}; (6) Ref. ·9; (7) Ref. .. lQ; (8) 0. Chamberlain, 
R. M. ·Crowe, D. Keefe, L. T. Kerth, ·A .. Lemonick, TiJ1. 
Maung, T. F. Zip£, .Phys. Rev·. 125, 1696 (1962); ('9) Ref .. 8; 
(10) M. Ferra-Luzzi, R. D. Tripp·, M.- B .. Watson, Phys. Rey. 
Letters .8, 28 (1962); (11) von Dardel ei ·al.; Ref. 11; (12) same 
as· (5). - · . ' ' . 
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and .'-c~J =~ is the. total labora.to:r-y energy of the .K. The quantitr:. 

C is ·independent of the energy w. 

The. objects of the present analysis--are. to evaluate the average 

. ,. pole residue r and to compare the pr'edicted ener.gy depende~ce of D 

. with the experimental data. This can be achieved if the other te·rrns in 

(34) can be evaluated. The i1~agin~·;_.y p~rt of the forward s·cattering 

amplitude I in the physical energy region. (w ~ 1) I .is related to the total 

cross section by the optical theorem 

:· -~ 

ltn f ( () = 0) = A(w) = yw- ~!a.(<<>) 

- . 

Vaities for A±(w) calculated from ·ail the mea-sured total cross sections 

extant to this date are plotted agains't w in Fig. 17. The integrals ,over 

the physical region (up to w = 40) w~re ~valuated nu:rilerically.f~r- sev'era:l . . . 

possibie curves drawn through the expe.dmenta1·~ata. The integ!:'als in 
. . .... . 

(34) do not converge. To ensure convergence and to eliminate the con-

stant in (34), subtracted .relations mu~t b~ fot~ed:.'l_! 
1 

. . •' . ' . 

The treatment of the region beyond which~fxperimental data ~re 

available (w> 4<>;_, and the unphysical continuum~/~ff·disc.~ssed in 

Appendix B. . ,f ' . ~· . 

The other quantities- in (34) which ar~ dirl:;ctly measurable are 

the real parts of the forward scattering amplitudes D (w): The values . . . w 
that are available, including the· best ·values .. measured in this expe'ri- / 

ment, are giv.en in Table.V~II. 

'l.. Subtractions. At least one s~btrattion must be ma.de:to 'eliminate 
.. . ' 

. the constant _term in .the .expre.ssion for· D (w) or D (w). The purpose .. . " : . . : . . . . + - . . . 
of forming more complicated subtracted relations is to ensure ·m·ore 

.. 
;apid convergence of the integrals .·and ~6 reduce the impo.r'tance of so·me 
. -- . ·. . . 
energy :r·egions in evaltia'ting. the integrais in (.34). 

- .. 
The following are typical of single subtractions which have been 

used. 

:.! 

,. . 
. . .! 

I'. 
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r (<;.>z-wl) 

(~wl >.<~+wz) 
·. 

. ' 

. .+ . d.w' : .• 
A (w') . J 

{:·J 1 -~~, Hw.' -w..,.) 

0 (w) 
+ 

D (r.AJ) 

1 

=< _ ~2 ... z_w_s-·.-·_. + __ ~WJ ... 
~ ·-'US) -~ ' 

An 

• . •. t.. .. 

A ·(w.' )dw• 
':" 

,2 .. 2 
w - w 

. 00 . - . . . , Zw{.- (~- {w' )-A+(wi) ) 

·' · + 1T · 2 . 2 . 
1
.. w 1 . - w 

dw' .. (36} 

has been· die-The convergence of the last l.ntegral in these expres-sions 

c~s-sed by· &nati et al. 
23 

They find that if the condition~ 
lim· AJ:(w). 

= cons.tant, is v~lid, then the integral~ ·of't~.e. f()r~, w 

·~. -

A (w'') 

w' 

A (w'), 
+ ·. dw·1 

··24 
conv~:~:·ge. · 

Udgaonkar
25 

has considered the asymptotic behavio;r qf the quantities 

(0' . +a ) .and (0' - d ) assuming tha/Re~.ge poles d~minate the cx:cs:;. - + - + ' . . •. . . . . 
sections at high energi~s. ·His resu-lts provide a ·means' of evaluating ·. . . 

the integrals above the cu~off energy w. = ·40 .. (See Appendix B:) 
i. . .l ' 
' ' .... t 

J 

. I 

i
;f . 

J . 
. ~,, 

. ' 1 . 

I 

/ 

-. 

.{ 
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Tabl.e VIII., Experime-ntal values of the .real part of the forward scat­
tering amplitude in the laboratory system,· in K-Compton wavelengths 
{11 = c = M .. ,= 1).. ~ - , . K 

w D 

~.23 .. . - 1. 14±0. 0 5 

1.28 -1.23±0.14 

1.46 . - l. 14:!:0. 0 5 

!".46 -1.20±().08 

1.85 ·:.. 1 . 0 2±0 . 0 5 

---"1. 92 :.-(h80±0.23'. 

2.22 -0.46±0.19 

2.56 .. 0. 9.4:$:0.44 

4.10 ±Z.. 2 ±0.9 
:': 

-1.04 +0-.6±1. 1 
-1.08 .. -0. 3±_1.1 

-4.10 ±3.3±0.6 

.. > p 

Reference 

26a 

lOa 

26a 

lOa 

. 26 il: 

Solution A-. of -reference 22~ 
Table VI, Solution ·A-~ 

Table VI,· So1.ption A i'· 

Table: VIii, Case 2 

30 

30 t 
~ 

8. . 

.;.t 

·, 

' ; J' ~ ' . 
' .. 
r .~"' .. 

aThese V'alues were calculated from th.e measured total cr·oss· sections 

D(w) = kL 

k . c.m. 

b·· '. ~. ··+· +' -· '·-· 
· Calculated using D(w). = T· I: l (.t + 1 )( T) 1 sin2o1 ) + l_T) 1 sin 261 ] · 

-~. 

.;· 

.~·"" 
<. 

'· 

. .... 

-.: '. 

. 'I . 
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· 2. R·esults. ·An attempt was made to take fullest advantage of: the 

c;t.vailable data by plotting 
"'!. 

/\./ .. 
A/ 

f(w,r) 
r (1-w). 

= = D(w)-D(l)tl(l)-I(w), (3 7) 

where 
1 ! . 

l(w) = (.ln-w .. )J.' .A_ (~q_dw' 
(w' +w){w' t-1) + 

. W I 

A (w') j · · · + • dw' 
-.(w' -wi?w• -1) 

~-
An· 

The right-hand side of (37) is -known at several energies where 

. the real pa.rt of the forw~rd scattering amplitude has been measured. The 

function f(w}<.> was piotted fo.r 'vario~s values' of r. "an:d. the . r . ~hich 
. . 

gave the best fit to the experimental data was found. A careful statistical· 

fit c:annot. be made ~ntil ~;e. !(:'" -p elastic scatt~rin'g. data are- obtained .. 

The value ·r = - LO:t:LO gives ·a good fit to the K+ -p data but does not·. 

tit th~ experimental values for the K- -p data.- (See Fig. 18). These· 

numbers are preliminary anq do _not r.epresent the best values one can 

get fro~the data presently available. 

A more complete study of the result$ ·one s;an get from the appli­

cation of forward dispe:rsio~ relations to th~ K-N data· is underway .. 

A subtracted form which remo~es the: Y 
1 
* p~le fr~m the ~esidue term 

has been used by G. Goldh~ber .and hls collaborators. 
26 

·Prelimina·ry . . .. -· . . ·. * 
results i~di·cate that the r~maining residue (A,l:, and, p'oss~bly .... Y 

0 
poles) is positive, opposite in sign to our value for the t9tal ·effe~tive .. * . . . " ; . 
pole. It is possible·.that th~ Y

1 
·residue is large and negative; thus 

accounting for .this difference in sign. 
. . . - Uncertainties in''the experimental 

data make an unambiguous solutior:l unlikely at the present. time. 
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18. The fun"cti~n .f(w, I\ plotted for ·r = 1 and r = 2. 
values for O(w)-D(l)+I(l)-I(w) are plotted at all w for 
which D(~} has ·been ~easured. · 
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VI. CONCLUSIONS 

The energy dependence of the ·~+ -p ~otal.cros·s section appear's 

to be S-wave up to ab0ut 0.~-Bev/c f!lbmentum .. In the regio-n of the 2;r 

prod~"ctiori threshold there is a should'e.r in the. total eros s s'ection a~d aJ : 

slowly decreasing elastic eros s section .. This behavior is· iilustrated 

in Fig·. 19 by the curves that are drawn throug~1 the. expe:dmeiltal points. 

(The _curves have no other significance.) .It .is seen that. the total cross 

section cannot be pure S-~·ave beyond about 0. 8 Bev/ C·. 

. The phase-shift an~lysis at o.9i .and 1.'17 Bev/c indicated_ an .in-

creasing 1?-wave contribution to the elastic sca~t~iing, as expected 

from the discussion above. 

-phase shifts; however' an 

. f>:..wave inter~ction. 

We were unable to fbtain a uni~ue ·set of• 

solutions ind~_cated thef'P.resence of considerable 
, ···I ., , 

! . 

We were able to determine values for the r·eal· part of .the forward 

elasti<;- s c~ttering amplitude at 0. 97, 1: l 7 and .1.97 Be_,;/ c" These quantities were 

used in a forward dispersion relation calculatlc;m. · The results are, as. 

is :u9ual with these calculations, rather i:ttiprecis,e. The) do indi.catk . 

areas where mcr.e data would be usefuL We are encouraged. by the rather 

good fit to the measured V<,l.lues for .D ·(w); .that is, for K+ -p scattering. 
. . . + 

For the average pole residue we foinid r :::: - 1.0. Th~s is the residue of 
* . - . ~: 

an* effective pole including the A_, 1:', and .Y 
1 

poles, and possibly the·· 

Y_ 0 po ... _'e. 
*. * -The existence of the Y 

1
. and Y 

0 
poles complicate the problem. 

o'f determining the AKN and l:KN relative parities. These complications. 
. . 27 

are disc.1ssed by Dalitz. At present we can say only tha~t our negative 

value for the composite pole residue is con:sistent with e~en 1li 
. .: ... . 28 

relative parify, which is _the result fotind by Tripp et· al. , ,. 

we wish to emphasize that our analysis· c;:annot separate .. \:he· effects 

of the various. pole terms on K+ -p s-cattering, thtis making a deter:.. ~ 
· mination of the KAN parity practi.cally impossible .. · However, it is of 

interest to attempt to fit the real part of:·the -~catteting amplitude. as a 
. . 

function of energy to the predictio:ns of dispersion theory .. 
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'APPENDICES 

. A. Multiple-Scattering Correction to the Total Cross Sections 

··• 
Consider a beam of K 1 s' traveling parallel to the central beam 

axis. We assume a ~adially symmetric b~am in v.lhicb. the partici'e 

density at the transmission ·counter, assuming no multiple scattering 

in the ·hydrogen, is f(r).· The total numb.er of particles in the aimulus 

d'r at r is· 

n(r)dr = 21Tr f(r)dr 

For this ~alculatio~ we consider the hydrogeno~to be concent::::-ated at t:he 

center of the {a.rget, thus neglecting the iateraLdiffusion of the bea"m in 

the target and the correlation between lateral displacement and scat­

tering angle . 

where 

. The rms project~<! fi.Gattering angle .i.s given by ··· 

(e)= ~~ . ~·-

p = particle momentum, 

13 particle velocity, 

L;: path length in sc:atterer,, 

X
0

=, radia~ion length in the scattering medium. 

The distribution of scattering angles· is normal witH. mean e .. 0 

and standard deviatio_n ( e) 

P(8) 

:. Particles which were at radius r in the unscatte red bea.m wi1J 
. . 
distributed normally about r as a result of multiple scattering i~1. the hydrc-

gen. Writing the standard _deviation in radial displacement from r as . 

E =( 8 )d, · where d is the distance from the cent~r of the hydr.ogen 

target to the T counter, 

.. 

. t•:, 

~ . . ' 
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'. 
we have 

·f. 
,J!' ... 
.. ~~.' ... · 'i'; .• 

. , ' 
l 

. ~ _., ! 
... 
'·. 

The total beam di~tr.ibution is. the result _of a parallel beam undergoin~ 

multiple scattering .i_n the hydrogen .. t~rget, . and is given by 

N(R) = 1· 
·.f 

Now. n(rf ~is a sio~1ly varying function com.pared ~ith 
2 2.. . . . 

. exp[ - (R- r) /2 E ] • ,. Then we can e~pand n(r} in a Taylor s~rie s: 
. . . 2 

. dn: 1 2 d n 
: n(r) = n(R) +. (R-r) dR .+ · 2 (R-r) ~- , 

.. dR 

_neglecting terms·~f h.i'gher order ~n (R-r). Then we' find 

2 . 2. 
E· d n 

N(R) = n(R) + y·. dJ~z. 
/. 

•. 

. . 
TJ:le number of particles that pa.ss through a- circular. transmis sian counter 

.is then 

.. NM =-r G(~) + :: . ::z] 
· 0 r 

. 2' .· e · dn 
1 = NT+-z--dR. R 
. T 

dR . , 
t 

where . .. 
- ~T .= number·of :pa.rt~cles which would pass tht:ough the· T 

in the absence of multiple· scattering, and 

RT = radius of T counter . 

. . 

.. 
··' 
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. . 
The cor.rectiori to the transmission rate with target full is then 

(N ·=number of K's incident on the 
·0 

hyd"rogen ta:rget), · 
; . . l •' 

and the correction to the total cr.oss sectiori l's 

where 

1 
i>L v 

= 

'· 

.. pv = number of protons per unit volume, 

L = length of hydrogen target, 

. ;~ 

., 

' 
/ 

NM= number _of particles that pass through the T. counte·r with 

tar gef fulL .. 

B. 

Th~ derivation presented here follows the discussi~n give~ by 

Chew. 
3 

We include only enough preliminary remarks ·to define .the. 

problem and refer to reference 20 fcir theoretical justificatiori". 

1. Kinematics. Consider the _diagranrin Fig. Bl~ The fo.ur 

" p 1 , · · · , p 4 , reptesentin·~- four ingoing particles, sa~isfy the momenta 

conditions 

.. 

4 
:I; p. = 0 

1. 

2 
and p. 

1 
= ~--2 

. 1 
(B-1) . 

i= 1 

. 2 ' 
It is convenient to use the invariants, si = (pi+p4 ) (for ,i ·= 1;._2,3), 

as variables in describing the ·s~att~·ring .proc·es_ses for the three chan~el.s 

list¢d bel.ow. Only two of the · s va·riables are independent since. they 
3 2 4.. 2 ·' 

satisfy 1:: s. = .z; Mi , where Mi =mass ·of the i_.th pa·r~icle. 
i= 1 

1 
i= 1 --

The_ assertion is now, made that the invariant scatteririgamplitude 
t 

A(s 1' Sz, s3) depends o~Hy_on any two· independent s variables,an,d not 
. /' . 
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on which of the· p. represent ingoing and which represent outgoing 
1 

particles. The diagram in Fig; Bl represents the three processes 

I. . K + p -+ K +· p 

II. p + p- .,... K+ + ~--. 
III. K++ p _: K+ + p 

2. Ma~delstam representation. A pres~ription for the analytic 

continuation of the inva.:dant scattering amplitude, which {s symmetric 
. . ,. ( . - .· 

in the s variables, ha~ been ghre_n by Mandelstarn; (Reference 3 includes 

this paper.) . Ac~ording to this prescription 

A(s 1' s 2' s3) =, i~ 1. ~ I ds.'p.(s.•.) 
- 1 .. 1 1 

sir.- sl 

GO· 

2 . 3 
+ -~ . l: 

i= 1 j=2 
~ 

i:f'j 

l .. 
-::z 
1T 

JJ ds. 'ds. 1 p .. (s. 1 s. 1 } 
1 . J lJ . 1 J . 

{s. 1 -s.)(s. 1 ..,s.) 
1 l· J . J . .l r . 

{B..:l} 

·f 

where integration s extended from a lower Umit greater than or equa!l 

to. zero over the positive real·:axis .. Tt~e -~pec~:t')i'f·f functions p. · e~.nd 
. . - . . .. ' . . ·1 

p .. are re·a_l and .. satisfy the conditions .,, '! 
1J 

p.(s.) =f 0 
1 1 . . 

. . 2 
only when .s. =M 

. 1 

p .. (s.,s.} ¥= n_onlywhen s1. or s. = iv12
. 

1J 1 . J : J 
/ 

where M is the mass c,f a physi'c_al system having the same quantum 

numbers as the channel fo~ which the correspondirig . s variable is the 

total ~nergy in ~he c. m. system. The regioz:ts in ~hich· the spec:tral 

functions are nonvanishirig are illu~tr.ated in Fig. B2. The li'nes along 

which the single spectral func:tions do,~ot vanish lead to poles in the 

scattering amplitude, (B-2). T~e poles which o~cur in the amplitude 

representing the reactions ~-£ Fig. B 1 are 

, 
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Fig. B 1. Diagram defining .the ·va.riables used in the dispersfon-
relation deriv~ation. · 
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B2. M~tndelstam ·diagram foi- the three :channels:: I, 
K.- + p-+ K.":. + J>; It; p + p-_:- K+ K-; III,· K+·+ .P..:..,;. K++ p. 
Shaded. areas: defl.ne ·regions where speCtral fu'nctions · 
are nonvanishing. Dotted 'lines. are poles. 

, .. 

.-·:· 
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Particle 
. 0 * * 
A::I;_,Yl ,Y0 

p,w 

none. 

3. "Forwa:rd. dispersio11 relations. The one-dimensional dispersion 
~ 

relations are derived ·from the expression (B- 2) as follows. First: con-

·sider s 
1 

fixed in its physical energy range. Then we see from' ~ig. B2 

that the other two s variables a:re "nonphysical". Thus the only de­

nom~nators which can vanis-h ar~ those containing ·s 
1

• -s
1

. Using the 

relation 

1 + iTT61s 1 -s 1 ) i . "{B-3} 

where P indicates principal value integral, one finds 

. ; 

Similar expressions can be fdund for A 2 and A
3 

where s 
2 

and s 3' · 

respectively, are confined to physical values.·· The amplitudes outside 

the physical regions are now defined by the expressions given for A
1

, 

A 2 , and A 3 . With this definition the invariant amplitude can be written 

in three forms interms of. A
1

, A 2 ,. and A 3 . 

We are interested in: the form that requires the momentum-transfer 

variable for K+ -p scattering (s 
2

) to be fixed, namely . 

. ·~ - ljds2'p2(s2') l}dsl'A.l(sl''s2,s3. ') 
.A(s 1,s 2 ,s 3)-- (s 'I_ ) + - ( t_ ) TT 2 s

2 
TT . . s

1 
s

1 
_ 

In particular we want dispersion relations for forward scattering where 

s 2 = 0. 

• 

·, t•' 
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Then 

+ -~_{. A 3 (s 1 I , ~, s 3 1 )d~3 1 

•) . ( s 3 - s ) ' . ·. • 
1., ., j I 

•· ·--~ . (B~6) . 

·where ,J . 
. ~~~-. = constant . 

> I .. 
. . . 2 

The_ region of integration belowthe-ph,ysical thr.eshdld ~M+l) ih the s 
1 

integral contributes poles at the positi-on indicated previously. Each· of . . r. . . 
the pole terms is of the fprm 1z , where ri is the· r-esidue of the . / 

M. -s. 
1 1 

pole and Mi.-· i!3 the mass of the i,nte rmediate sta~e partiCle. as so cia ted 

with the pole. The unphysical region is further co-mplicated by the 
. . -

existence of tV[o-parti'cle intermediate states, which lead to branch 
.2 .· , ~ . . 

points at ·s 1 = (MA + MTI') and · s 1 =. (M~ + M
1
;J . If we remove the pole 

. . . . . . . .. · .. ·2 -
terms from the s 1 integral the low.er limit becon;es (MA +Mn) · = sAn.; 

There are no unphysical contributions to the integral over s 3 ._ Thu·s 

the lower limit for ~his integral is (MK+MN)
2= s0.- · 

It is convenient to write the dispersion rel~tions for forward 
.:r 

scattering in the. lab. system whe·re the proton is at rest and. the K has 

energy 

Then 

Vihere 

W= 

M= 

( MK_ = 1i = c = 1) 

- . + . ·. .. : . 
nucleon mass. For K -p,scatter~ng We have. 

2 . 
. s

3 
-m -1 

w = = w + for channe1_Ill, 2M 

and a similar expr~ssion for K- -p scattering, 

w= 

2 s m ·1. -
2M 

l 
- w for .channeJ I. 

t· 

't 

,, 

., 

/' 
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2 2 ·2 
The s 

1 
and s 

3 
variables are related by s 

1 
· + s 3 _ = 2 (M + l) 

for s 2 :: 0 . Then 

.... 
(&) = 

2 2 
2(l+M· )-s

1
-M -1. 

ZM = 

' 2 
1 + M -s 1 

2M - - w 

Define 

'write 

... ' w· = w. Then {B-6) is the amplitude for. channel III and we can. 

r. 
1 . 1 1 

z 2 . + 
Mi. -(M +1~2Mw). { 

A (w 1 )dw 1 2M 

~ _(_2_M_w~1~+-M-. ~2-+-1)----(-M-_~z+----1--_2-M~_--w-) 

-· ... _ 

.where 

Atr 

+ ~-.·foCI.· A
3

(w

1 

)dw

1 

,, . .. z . t 
··(2Mw' +M +1)-(2Mw+M +1) 

. r. 
= E 1 + 

i ZM(wi+w) 

M.
2

-M
2-f 

1 ' 
wi = ---z""Mr-· .,.._--

A
1 

(w' )dw' 
+ 

/ 
(B-8) 

T~e :only term that can have an imaginarypart is,,~e integral over A3' 

where the denominator vanishes at w3 
1 

:: w~. Usinf:JB- 3) we· can write 

the real part of the amplitude for channel III l · 

Re Ayll((l,)) = C + 1: 
i 

r: 
1 

2M(w.-+w) 
. 1 

ao' . 

PJA3 (w.
1 

)dw
1 

iT w'fw 
1 . :; 

(B~9) 

The physical si:'attering a_mplitudes are related to the invariant 

amplitudes by A(w) = ·1 fc. m. ·, W =total ener_gy in c. m.- The physical 

for~ard scattering amplitudes. for the c. rn. and la-}.) systems are related 

by 
L kL 
fo=~ -f~.m. 

c.m. 

= W fc.m. 
M 0 

" . 



'· 

_,. 

.·,, 

Then 
L · Z 

£
0 

(w) .- M A(w} 

Defining 

f;(±w)= D ±{w) + i A±(w) 

we .can write 
r. 

1 

z 
M.(w.±w) 

1 

+ 
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. 00 

l f n 
w 

An 

i 

.. 
A·~ (w' )dw' 

· w' ±~w 

1.' 

•• 

. 00 

·~A .(w' )dw
1 

l . + 
+ 1T · wi 31' w . · · 

. l . ' . . 

.. (B-.10) 

4. Pole Terms. It can be shown that the r.esidues at.the poles 

are given by 

r.· 
1 

·MT 

2 
g. 

' 1 
=+·~ 

z 
g. 

1 

~ 

2 
. (Mi +M) ,_-1 

M .. M. · for even (K, i) pa:·rity 
1 

MM. ·f6r odd (K,i) par.ity. 
. '1 

The sum over the pole te:rms. fo·r K-p dispersion.relation is" 

where 

r. 
1 

wA· = 0.125, 

wl:: :::.0~320, 

wy *= 0.403, 
. 1 

w .. = 0._429 . 
yo>:' 

: ::. 

r . * y 
.. 1 

T y * · .. ] . --
.0 .. · .. 

+ (wy *-w).. .., 
0 

For w sufficiently large we can consider a composite pole·ha~ing re~idue. 
-'V 

r at (;f: 0.32. 

·· .. 

l-· •• 
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.·· 5 .. The ·unphysical continuum .. The branch cuts beginning at 

' w :: wA:r/ arid ~E~ in the uriph:y_sical region i_ntroduce a· co;mplication intp 

the c<dculation. since the irri<iginary part of the· scatte~ing amplitude cannot 
. . . . ' , ·. . . . 

. be evai~ated in a direct way in this region. bne can only proce~d· by 

extrapolating from ~h-e.physi~al_r.e~ion according to some. th~oretical 
scheme. · One such approach is to· use the S-wave zero effective. range. 

scattering lEmgths de:termin~d by D~litz and Tuah 29 to calculate the 

i. scatteri~g amplitud~ in th'e! uriphysical region. The S-wave forward ·$cat-
. - , .. · a· . .· . 

tering a~plitude c<fn be written 

where 

60 = S-wave p1;lase shift for -T = 0 

6
1 

!::: S-wave .phase.: shift ·fo_r T = 1. 

( . 

(B-:11) 

,. 

· ·In terms of the complex scattei-in'g lengths given by· 

. . 1 
A= a+ 1·-.b ·= · · · ·· k ·cot 6 

(B-12) can be written 
. l , A0 +A1 ·- 2 i kA0 A 1 

"' f ( 0 ) = Z ( 1 - i k A6) (1 ~ i . k A 
1
1 

For w .less than 1, k := i I .k I I • -1.• \ 

We find for the imaginary .part 

of the sc.atteri;ng amplitude .. 

Im f(Q) =. { [~~o~:D2+b0 2Jkj'z + (l+a;.lkl)+b1
2ik 12J · 

·' (B- 13) 

. . 

We have used the two sets of scattering lengths fou_'nd by Hurnpluey and 
. 30 . . 
Ross to calculate (B-13), 

:. 

- .. i -
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:. 
6. The high-energy region.· The tot~l eros s, seJt{ons for K- -p 

(a.) and K+'-p (a ) have been measured up to .about ·'f = 40. The 
. + • . . . . . 'I~. . .· . 

int~grals in (B-10} ~ere evaluated by drawing a smobtJi,~urv.e through 
, I· . 

~he. experimental values for . A±' which were c::lculated.l>y using the 

optical theorem · 
·'· ~ 

.· ·· A = ...;w- ~ 1 a± 
± . · 4n 

and numerically integ.rating under this curve up to w = 40. The eJ;lergy 
' . 

region above :w = 40 .can be eva~uated by us~ng the" expr·e~sions given by 
. •.. 25 

Udgaonkar, · . 

4n (A -A ) 
- + 

. a2 
4n (A +A ) ~ wf + h •.w , for w > > 1 , - . + (B-14) 

where we have set 
r;-. 

k = .J w.~- 1 ~ w . 

The integrals in (B-10)· can· be .written 

- A ) dw' 
+ 

.. 

These integrals do not c?nverge. Copvergent forms can be foup.d by form- ,. 

ing subtracte~ relations. Conside'r, for example, ·the, single subtraction:.·· 

1 [. ao{ (wl 2 -wz2
>l w' f + (wi_tz:h]. w' +<w1 -wzh {C!> 1 r~wl w~] 

I+ ( w l ) -I+ ( w 2) ~ -2 . 2 2 2 2 
4TI WO . [(w') -Wl ] [{w') -Wl,] al} 

c(w') dw' 

For 

,, 

.. 
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