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Abstract

Statistical, algorithmic, and robustness aspects of population demographic inference from
genomic variation data

by

Anand Bhaskar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

The recent availability of large-sample high-throughput sequencing data has given us
an unprecedented opportunity to very finely resolve the details of historical demographic
processes that have shaped the genomes of modern human populations. Such understanding
of population demography is important for several applications — to avoid false positives
in genome-wide association studies; to calibrate null models of neutral genome evolution in
order to find regions under selection; to study the impact of bottlenecks and small founder
populations on genetic mutational load; to reconstruct large-scale historical human migration
and admixture events; and so on.

In this dissertation, we consider some statistical, algorithmic and robustness aspects of
demographic inference from genomic variation data. In particular, we study the problem of
determining the historical effective size of a population from the sample frequency spectrum
(SFS), which measures the distribution of allele frequencies in a sample of sequences drawn
from the population.

From the statistical or information-theoretic perspective, it is known that this inverse
problem does not have a unique solution in general, no matter how large the sample size.
For any population allele frequency distribution, there exist infinitely many population size
functions that are consistent with this distribution. While such a non-identifiability result
might appear to pose a serious problem to statistical inference algorithms, we show that
the situation is not so bad in practice. In particular, we prove that if the true population
size function is piecewise-defined with each piece belonging to some family of biologically-
motivated functions, then the SFS of a finite sample of sequences uniquely determines the
underlying demography. We obtain a general bound on the sample size sufficient for iden-
tifiability; this bound depends on the number of pieces in the demographic model and on
the family of functions for each piece. We also give concrete instantiations of this bound
for piecewise-constant and piecewise-exponential models that are commonly used in demo-
graphic inference analyses.
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From the algorithmic perspective, we build on analytic results for the expected SFS of a
time-varying population size function and develop an efficient likelihood-based algorithm to
infer piecewise-exponential population size histories from large sample allele frequency data.
By considering very large samples, our method can resolve details of the population history
from the very recent past that are not otherwise accessible using smaller samples.

The third aspect of this dissertation is concerned with understanding the robustness
of widely used evolutionary models to violations of model assumptions. Continuous-time
evolutionary models like Kingman’s coalescent and its dual diffusion process are derived from
discrete models of random mating by assuming that the sample size being analyzed is much
smaller than the the population size. However, the very large sample datasets being produced
due to advances in high-throughput sequencing technologies are approaching the limits of this
assumption. To investigate this issue, we develop exact algorithms for computation under
the discrete-time Wright-Fisher model and use these algorithms to study the distortions in
several genealogical quantities arising due to the coalescent approximation. Our findings
indicate that for several demographic models inferred from large-scale sequence data, there
can be substantial genealogical deviations introduced by the coalescent approximation that
might influence the results of inference studies.
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Chapter 1

Introduction

1.1 Motivation

Human genetics has entered a new era with study sample sizes on the order of thousands
to tens of thousands of individuals sequenced at hundreds of genomic regions [1, 12, 19, 62,
85]. A consistent finding arising from several large-sample studies is that human genomes
harbor a substantial excess of rare variants compared to that predicted using previously
applied demographic models. For example, in a large-scale exome-sequencing study of 14,000
individuals at over 200 genes, Nelson et al. [62] found that over 70% of the single nucleotide
variants only appear in one or two haplotypes in the sample, which corresponds to a minor
allele frequency on the order of 0.01%. There are several factors that may contribute to
the discrepancy between observations in the data and theoretical predictions, including the
following possible explanations:

1. Previously applied demographic models are wrong. In particular, the observed poly-
morphism patterns are indicative of a recent rapid growth in the effective population
size, much more rapid than in previously applied demographic models. This conclusion
would be consistent with historical records of census population size [39].

2. Population substructure [71,81] and natural selection have distorted the observed poly-
morphism patterns while previous demographic inference studies have failed to ade-
quately account for these factors.

3. Theoretical predictions for a given demographic model are inaccurate when the sample
size is very large compared to the effective population size. Kingman’s coalescent
process [44–46], which arises as a continuum limit of a large class of discrete-time
random mating models [58, 59], provides an accurate approximation to these discrete-
time models only if the sample size is sufficiently small compared to the effective
population size. Violation of this assumption may distort the genealogical properties
of a large sample in a way that may inflate rare variants relative to the predictions of
coalescent theory.
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The aim of this dissertation is to investigate the first and third possibilities in detail
through the problem of demographic inference.

1.2 Demographic inference

1.2.1 Importance of understanding demography

Given a sample of genomic sequences from a large population, an important inference prob-
lem with a wide variety of applications is to determine the underlying demography of the
population. Understanding the population demography is important for many reasons:

• Genome-wide association studies for inferring the genetic basis of complex heritable
diseases can produce false positive associations if the demography of the population is
not taken into account properly [7, 10,53,65,70,86].

• The population demography is needed for calibrating correct null models of neutral
genome evolution so that one can conduct principled statistical tests to find regions of
the genome that are subject to evolutionary pressure from natural selection [6, 49, 63,
73,93].

• Genomic data can serve as an independent source of evidence for important anthro-
pological events like population migrations, splits, admixture and introgression events
[23,41,48,51,75,80,87] that have occurred in the history of our species.

• Demographic events such as bottlenecks and small founder populations can lead to a
higher frequency of deleterious mutations [49]. Conversely, increased genetic drift due
to bottlenecks might also serve as an explanation for speciation [2].

• Population demography is also important in forensic science applications, where a low
probability of a random genetic profile from the population matching the crime scene
sample is used as evidence for further investigation. This random match probability
strongly depends on the substructure and the amount of relatedness between individ-
uals of the population [72].

1.2.2 Representations of genomic data

Demographic inference from full sequence data is a very challenging problem, and most
existing methods for inferring demography can be broadly categorized into one of three
types depending on the representation of the sequence data that they operate on.

Full sequence data

The evolution of full genomic sequences with intragenic recombination can be modeled using
rich generative processes like the coalescent with recombination [29, 37]. However, because
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recombination induces correlations between distant genetic loci [94], it is computationally
cumbersome to even simulate long sequences at many samples, let alone perform any kind of
inference from data. Several approximations to the coalescent with recombination have been
proposed which avoid these long-range correlations by assuming that the ancestral trees at
each genomic locus form a Markov chain of small order [54, 57], thus enabling much more
efficient sequence simulation [8,17]. However, it is still quite challenging to perform inference
under these Markov approximations to the coalescent with recombination. Methods for
inferring piecewise-constant historical population sizes have been developed that can utilize
anywhere from a single diploid sequence (or a pair of haploid sequences) [48] to tens of
sequences [79]. These methods are able to quite accurately recover population size changes
in the ancient past, but have limited ability to infer very recent population expansion events
because of the small sample size and hence limited number of coalescence events that they
can access.

Tracts of sequence similarity

A lower-dimensional representation of full sequence data are the demography dependent
distribution of contiguous tract lengths where a pair of haplotypes are identical by descent
(IBD) or identical by state (IBS). Inference methods that use these data [34, 64] work by
calculating the expected distribution of IBD or IBS tract lengths for a pair of randomly
sampled haplotypes under a given demographic model. Using the observed distribution of
pairwise IBS and IBD tract lengths in a sample of sequences, they compute a composite like-
lihood function of the demographic parameters which can then be optimized. The advantage
of these methods is that they can capture linkage information between sites to some extent
while still summarizing a set of sequences of length L using L numbers. Another advantage
of working with tracts of sequence similarity is that one can easily visualize the fit of a de-
mographic model by plotting the expected and observed distributions of tract lengths. One
disadvantage of using IBD tracts is that it is not obvious from the data as to which segments
of a pair of haplotypes are shared identically by descent. Hence, one typically has to prepro-
cess the data using a method that can infer tracts shared by descent [30], and uncertainties
in this inference can also impact the downstream demographic inference analyses.

Sample frequency spectrum

The sample frequency spectrum (SFS) is a succinct representation of a sample of homologous
sequences which tracks the distribution of alleles frequencies without regard to where the
segregating sites are located along the sequence. For a randomly mating population with
low enough mutation rate so that each segregating site has exactly two distinct alleles,
the SFS of a sample of size n is a vector of length n − 1 that counts the proportion of
segregating sites as a function of the frequency ( b

n
, where 1 ≤ b ≤ n − 1) of the mutant

allele in the sample. The SFS is useful for several reasons. First, the SFS is a succinct
summary of a large sample of genomic sequences, where the information in n sequences
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of arbitrary length can be summarized by just n − 1 numbers. This makes the SFS both
mathematically and algorithmically tractable. In particular, since the SFS ignores linkage
information between sites, one can avoid challenging mathematical and computational issues
associated with rigorously modeling genetic recombination. Furthermore, the statistical
properties of the SFS and their dependence on the population demographic history are well
understood under the coalescent and the diffusion models of neutral evolution [9, 20, 26, 28,
42, 68, 95]. This dependence of the SFS on demography, along with the assumption of free
recombination between sites, has been exploited in several methods for inferring historical
population demography [16, 31, 52, 55]. Second, the SFS can effectively capture the impact
of recent demography on genetic variation. Because the leading entries of the SFS count
the rare variants in the sample, one might be able to use the large number of rare variants
in recent large-sample studies [1, 12, 19, 62, 85] to infer demographic events in the recent
past at a much finer resolution than possible using smaller samples. Third, similar to the
distribution of IBD and IBS tract lengths, the SFS also provides a simple way of visualizing
the goodness of fit of a demographic model to data, since one can easily compare the entries
of the observed and fitted SFS. Because of these advantages of the SFS, we will work with
this representation of the sequence data in the rest of this dissertation.

1.3 Preliminaries

Before proceeding any further, we first give a brief overview of the discrete-time Wright-
Fisher model and its continuum limit, Kingman’s coalescent. We also briefly describe how
the coalescent can be extended to incorporate population demography in the form of a
time-varying population size function.

1.3.1 Wright-Fisher model

The Wright-Fisher model is a widely used discrete-time random mating model for describing
the evolution of a finite population. In its simplest form, each generation of the population
is composed of N individuals, where an individual is a genomic region that is inherited as a
unit (henceforth called a locus). A locus could be a single nucleotide, a copy of a gene, etc.
In each generation, an offspring population of size N is produced, where each offspring picks
a parent from the previous generation uniformly at random. The ancestry of a sample of
sequences drawn from a given generation can be represented by a tree, where each internal
node corresponds to the most recent common ancestor of its descendant leaves.

The population size N used in the Wright-Fisher model is called the effective popula-
tion size to distinguish it from the more physical notion of the census population size. In
real biological populations, the Wright-Fisher model assumptions of random mating and
non-overlapping generations are obviously violated because of geographical and other demo-
graphic constraints. The notion of effective population size captures the degrees of freedom
in a random mating model which generates the same values for the population genetic quan-
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tities of interest as the actual biological population under study. In this work, the population
genetic quantity we are interested in is the site frequency spectrum of a finite sample. Keep-
ing the above points in mind, we use the terms population size and effective population
size interchangeably in the rest of this dissertation, reserving the use of the term census
population size to refer to the physical concept. A related discussion of the relation between
effective and census population sizes is given in Section 4.7 of Chapter 4.

In the Wright-Fisher model, the probability that two randomly sampled individuals from
a given generation have a common parent in the previous generation is 1/N by construction.
If we consider a random sample of n individuals from a particular generation, where n� N ,
the probability that some two individuals in the sample will have a common parent in the
previous generation is

(
n
2

)
/N + O (1/N2). The probability that no two individuals in the

sample will have a common ancestor in k previous generations is then given by(
1−

(
n
2

)
N

+O

(
1

N2

))k

= exp

(
−
(
n

2

)
k

N

)
+O

(
1

N2

)
If we set t = k/N in the above expression, let N tend to infinity, and measure time in units
of N generations, then the waiting time for a sample of size n to have n − 1 ancestors is
distributed as an exponential random variable with rate

(
n
2

)
. This scaling limit is called

Kingman’s coalescent.

1.3.2 Kingman’s coalescent

Kingman’s coalescent [44–46] — henceforth simply referred to as the coalescent — on a
sample of size n is a partition-valued Markov process (Πn(t), t ≥ 0) on P [n], the set of
partitions of [n]. It is defined as:

• Πn(0) = {{1}, {2}, . . . , {n}}

• At any time t > 0, from any Πn(t) = {A1, . . . , Ak} ∈ P [n], the only possible transitions
are to Πij at rate 1, where 1 ≤ i < j ≤ k and Πij = Πn(t)− {Ai, Aj} ∪ {Ai ∪ Aj}, i.e.
Πij is Πn(t) with blocks Ai and Aj merged.

Each realization of the above partition-valued process has a natural genealogical tree asso-
ciated with it. This tree can be sampled along with the partitions as follows.

• Let Πn,n = {{1}, {2}, . . . , {n}}, Σn+1 = 0 and k = n

• Repeat until k = 1

– Sample Tk ∼ Exp
((
k
2

))
and let Σk = Σk+1 + Tk

– Merge two blocks of Πn,k uniformly at random to obtain Πn,k−1

– Set k to k − 1
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Figure 1.1: A realization of a genealogical tree for a sample of size 5 from the
coalescent. The waiting time while there are exactly k ancestral lineages is denoted by Tk,
and the total time spent in the process while there are at least k ancestral lineages is given
by Σk.

Figure 1.1 shows a realization of a genealogical tree on 5 individuals sampled according to
the above algorithm along with the waiting times Tk and cumulative waiting times Σk.

Since its introduction, the coalescent has found wide use in modern population genetics
analyses, and has been extended to incorporate time-varying population sizes [27], recombi-
nation [25], natural selection [47], and population subdivision [35]. Although we motivated
the coalescent through a scaling limit of the discrete-time Wright-Fisher model, it is the
continuum limit of a large class of discrete-time models of random mating [46, 58, 59], and
hence robust to the minutiae of these random mating schemes. Furthermore, generaliza-
tions of Kingman’s coalescent have been developed which allow multiple lineages to merge
in a single coalescence event [67, 74] and even multiple sets of lineages to merge simultane-
ously [58,78].

1.3.3 Extension to variable population size

We can extend the previous description of the coalescent to a deterministically varying
population size as follows. Consider a discrete-time Wright-Fisher model where the popu-
lation size at generation t is given by N(t). In generation t + 1, an offspring population
of N(t + 1) individuals is produced, where each individual chooses a parent uniformly at
random. Let Nr be some reference population size and define the relative population size
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ηNr(t) in population-scaled units of time as

ηNr(t) =
N(dNrte)

Nr

. (1.1)

If Nr and the population size function N(t) tend to infinity while the following hold,

• limNr→∞ ηNr(t) = η(t) exists,

• η(t) is positive and bounded for all t ≥ 0,

then it can be shown that when time is measured in units of Nr generations, the genealogy of
a random sample of size n drawn at time t = 0 from the discrete-time Wright-Fisher model
with time varying population size N(t) approaches that given by the following continuous-
time coalescent process:

• Let Πn,n = {{1}, {2}, . . . , {n}}, Σn,n+1 = 0 and k = n

• Repeat until k = 1

– Sample Tn,k from an exponential distribution with time variable rate
(
k
2

)
/η(t)

started at time Σn,k+1

– Let Σn,k = Σn,k+1 + Tn,k

– Merge two blocks of Πn,k uniformly at random to obtain Πn,k−1

– Set k to k − 1

We label the times Tn,k and Σn,k by two indices to indicate the fact that the distribution
of Tn,k and Σn,k depend on both n and k. In the constant population size case described
in Section 1.3.2, these distributions depend only on k and not on n. Moreover, in the
constant population size case, the sequence of random variables Tn,k are independent. For
general variable population size functions, this is no longer true. However, for k < j, Tn,k
is conditionally independent of Tn,j given Σn,k+1, and this fact will be important later for
obtaining analytic expressions for the probability density function of Tn,k and Σn,k.

1.3.4 Sample frequency spectrum

We can also introduce mutations in the discrete-time Wright-Fisher model described in
Section 1.3.1, where each reproduction event is hit by a mutation with probability µ. If
we let µ tend to 0 while the population size N tends to infinity such that the population-
scaled mutation rate 2Nµ approaches some constant θ, then the mutation process on the
genealogy of a sample of size n approaches that given by a Poisson process with rate θ/2 on
the genealogy generated by Kingman’s coalescent on n leaves. The analogous statement also
applies to the variable population size setting, with the constant population size N replaced
by some reference population size Nr with respect to which the function N(t) stays bounded
for all t ≥ 0 in the scaling limit.
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In the rest of this dissertation, we will assume that the mutation rate is low enough that
each mutation affects a new site at the locus under consideration. This is called the infinite-
sites model of mutation [14]. For a random sample of size n drawn from the population at
time 0, let γn = (γn,1, . . . , γn,n−1) be the vector where γn,b is the expected number of sites
having b copies of the mutant allele and n − b copies of the ancestral allele in a sample of
size n. Furthermore, let ξn be γn normalized to be a probability distribution. The vector
ξn is known as the expected sample frequency spectrum (SFS) of a sample of size n. The
expected SFS ξn depends on the population size function η(t) and can be computed using
the expectation of the waiting times Tn,k and Σn,k. We describe these details in Section A.1
of Appendix A.

1.4 Overview

In this dissertation, we study the problem of demographic inference for a large randomly
mating population, where we will be interested in recovering the effective population size as a
function of time from the SFS representation of a sample of sequences generated according to
the coalescent with a variable population size function and infinite-sites model of mutation as
described in Section 1.3. The next three chapters in the dissertation deal with the following
three aspects of demographic inference, and the last chapter concludes with a discussion of
problems for future research.

1.4.1 Statistical

The most natural statistical or information-theoretic question to ask is whether the expected
SFS of a random sample of sequences uniquely determines the historical population size func-
tion. If the true underlying population size function is allowed to be an arbitrary continuous
function, then Myers et al. [61] have shown that it is information-theoretically not possi-
ble to recover the population size function from the SFS, no matter how large the sample
size. In particular, they showed that even if one has perfect information about the SFS, i.e.
even if the underlying population-wide probability density function of allele frequencies can
be known exactly, there might be several population size functions that generate this same
distribution. We can then sharpen the question and ask about what reasonable biologically
motivated assumptions might we impose on the true population size function so that it is
uniquely recoverable from the SFS of a finite sample? In Chapter 2, we use tools from real
analysis to show that the space of piecewise-defined population size functions where each
piece does not oscillate too much (in some technical sense) is identifiable from the SFS of
finite samples. The contents of Chapter 2 are largely based on a preprint of Bhaskar and
Song [5].
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1.4.2 Algorithmic

If we are able to restore statistical identifiability by restricting the space of underlying pop-
ulation size functions, then the next question is an algorithmic one. Given SFS data from
very large samples, how might we efficiently infer the population size function in the class
of functions that are biologically realistic and identifiable from the data? In Chapter 3, we
develop an efficient, exact and numerically stable likelihood-based algorithm for inferring
piecewise-exponential population size functions from the SFS of very large samples of tens
to hundreds of thousands of sequences. As a by-product of this inference procedure, we will
also be able to estimate the mutation rate at each locus. Our algorithm is based on ana-
lytic, numerically stable expressions for several genealogical quantities that are intimately
tied to the SFS [69]. Because our method will be based on an exactly computable likelihood
function rather than Monte-Carlo simulations, we can also compute gradients with respect
to the demographic parameters using automatic differentiation [24], thus enabling the use of
gradient-based optimization methods that work well in practice.

1.4.3 Robustness

With modern datasets having sample sizes on the order of tens of thousands of individuals,
a number commonly cited as the effective population size of humans [15, 32, 33, 82], we are
rapidly approaching samples that form a non-negligible fraction of the entire population.
Kingman’s coalescent [44–46], henceforth simply referred to as the coalescent, has been
a central model in modern population genetics for studying the ancestry of a sample of
individuals taken from a large randomly mating population. The coalescent is a continuous-
time Markov process that can be constructed as a scaling limit of a discrete-time Wright-
Fisher (DTWF) model of random mating by taking the population size to infinity while
suitably rescaling the unit of time. The coalescent is an excellent approximation to the
original discrete-time model if, for all times, the population size is sufficiently large relative
to the number of ancestral lineages of the sample. However, with modern datasets having tens
of thousands of individuals, the difference in genealogical quantities between the coalescent
and these discrete-time models of mating is not clear. In Chapter 4, we develop exact
computation algorithms for the DTWF model to study the deviations in several genealogical
quantities, such as the number of surviving lineages as a function of time, the number of
multiple and simultaneous mergers, and the entries of the expected SFS. We find that for
several recently inferred demographic models and large sample sizes, there can be substantial
genealogical deviations introduced by the coalescent approximation that might influence the
results of demographic inference analyses. The contents of Chapter 4 are based on a preprint
of Bhaskar et al. [3].
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Chapter 2

Identifiability of the population size
function from SFS data

2.1 Overview

In Chapter 1, we saw that the SFS is a particularly succinct representation of a large sample
of genome sequences. While the SFS has algorithmic advantages for demographic inference,
it is believed to suffer from a statistical shortcoming. Specifically, Myers et al. [61] showed
that even with perfect knowledge of the population frequency spectrum (i.e., the proportion
of polymorphic sites with population-wide allele frequency in (x, x + dx) for all x ∈ (0, 1)),
the historical population size function η(t) as a function of time is not identifiable. Using
Müntz-Szász theory, they showed that for any population size function η(t), one can construct
arbitrarily many smooth functions F (t) such that both η(t) and η(t) + αF (t) generate the
same population frequency spectrum for suitably chosen values of α. They also constructed
explicit examples of such functions η(t) and F (t). While this non-identifiability could pose
serious challenges to demographic inference from frequency spectrum data, the population
size functions involved in their example are arguably unrealistic for biological populations.
In particular, their explicit example involves a population size function which oscillates
at an increasingly higher frequency as the time parameter approaches the present. Real
biological population sizes can be expected to vary over time in a mathematically more
well-behaved fashion. In particular, populations can be expected to evolve in discrete units
of time, which, when approximated by a continuous-time model, restricts the frequency
of oscillations in the population size function to be less than the number of generations
of reproduction per unit time. Furthermore, since a population size model being inferred
must have a finite representation for obvious algorithmic reasons, most previous demographic
inference analyses have focused on inferring population size models that are piecewise-defined
over a restricted class of functions, such as piecewise-constant and piecewise-exponential
models [23, 40,48,51,62,77,85].

In this chapter, we revisit the question of demographic model identifiability under the
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assumption that the population size is a piecewise-defined function of time where each piece
comes from a family of biologically-motivated functions, such as the family of constant
or exponential functions. We also re-examine the assumption that one has access to the
population-wide patterns of polymorphism. In real applications, we do not expect to know
the allele frequency spectrum for an entire population but rather only the SFS for a randomly
drawn finite sample of individuals. Here, we investigate whether one can learn piecewise
population size functions given perfect knowledge of the expected SFS for a sufficiently
large sample of size n. Unlike in the case of arbitrary continuous population size functions
considered by Myers et al. [61], the answer to this question is affirmative. More precisely,
we obtain bounds on the sample size n that are sufficient to distinguish population size
functions among piecewise demographic models with K pieces, where each piece comes from
some family of functions (see Theorems 5 and 9). Our bound on the sample size can be
expressed as an affine function of the number K of pieces, where the slope of the function
is a measure of the complexity of the family to which each piece belongs. In the cases of
piecewise-constant and piecewise-exponential models, which are often assumed in population
genetic analyses, the slope of this affine function can be calculated explicitly, as shown in
Corollaries 6 and 7. We also obtain analogous results for the “folded” SFS (see Theorem 10),
a variant of the SFS which circumvents the ambiguity in the identity of the ancestral allele
type by grouping the polymorphic sites in a sample according to the sample minor allele
frequency.

There are two main technical elements underlying our proofs of the identifiability results
mentioned above. The first step is to show that the expected SFS of a sample of size n
is in bijection with the Laplace transform of a time-rescaled version of the population size
function evaluated at a particular sequence of n − 1 points. This reduces the problem of
identifiability from the SFS to that of identifiability from the values of the Laplace transform
at a fixed set of points. The second step relies on a generalization of Descartes’ rule of signs
for polynomials to the Laplace transform of general piecewise-continuous functions. This
technique yields an upper bound on the number of roots of the Laplace transform of a
function by the number of sign changes of the function. We think that this proof technique
based on sign changes might be of independent interest for proving statistical identifiability
results in other settings. We also provide an alternate proof of identifiability for piecewise-
constant population models, where the aforementioned second step is replaced by a linear
algebraic argument that has a constructive flavor. We include this alternate proof in the
hope that it could be used to develop an algebraic inference algorithm for piecewise-constant
models.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce the
model and notation. We describe and prove our main results in Section 2.3. We also discuss
the counterexample of Myers et al. in light of our findings in Section 2.4.



CHAPTER 2. DEMOGRAPHIC IDENTIFIABILITY 12

2.2 Notation

We consider a population evolving according to Kingman’s coalescent [44–46] with the
infinite-sites model of mutation [43] and selective neutrality as described in Section 1.3
of Chapter 1. The population size is assumed to change deterministically with time and is
described by a function η : R≥0 → R+, such that the instantaneous coalescence rate between
any pair of lineages at time t is 1/η(t).

Let T
(η)
n,k denote the time (in coalescent units) while there are k ancestral lineages for a

sample of size n obtained at time 0. Defining Rη(t) as

Rη(t) :=

∫ t

0

1

η(x)
dx, (2.1)

the expected time E[T
(η)
m,m] to the first coalescence event for a sample of size m is given by

E[T (η)
m,m] =

∫ ∞
0

t

(
m
2

)
η(t)

exp

[
−
(
m

2

)
Rη(t)

]
dt. (2.2)

Following the notation of Myers et al. [61], define a time-rescaled version η̃ of the popu-
lation size function η as

η̃(τ) = η(R−1
η (τ)), (2.3)

where τ ∈ R≥0. The function η̃(τ) reparameterizes the population size as a function of the
cumulative rate of coalescence τ = Rη(t). For a given population size function η̃ parame-
terized by the total coalescence rate τ , there corresponds a unique population size function
η parameterized by time t. Specifically, η(t) = η̃(S−1

η̃ (t)), for all t ∈ R≥0, where Sη̃(t) is an
invertible function given by

Sη̃(t) =

∫ t

0

η̃(x) dx. (2.4)

Applying integration by parts to (2.2) and using the condition that E[T
(η)
m,m] <∞, we have

E[T (η)
m,m] =

∫ ∞
0

exp

[
−
(
m

2

)
Rη(t)

]
dt. (2.5)

Furthermore, since Rη is monotonically increasing and continuous from R≥0 to R≥0, it is a
bijection over R≥0. For notational convenience, for any interval I ⊆ R≥0, we define Rη(I) to
be the interval

Rη(I) = {Rη(x) | x ∈ I}. (2.6)



CHAPTER 2. DEMOGRAPHIC IDENTIFIABILITY 13

By making the substitution τ = Rη(t) in (2.5) and using (2.3), we have the following expres-

sion for E[T
(η)
m,m]:

E[T (η)
m,m] =

∫ ∞
0

η̃(τ) exp

[
−
(
m

2

)
τ

]
dτ. (2.7)

Equation (2.7) states that the time to the first coalescence event for a sample of size m is
given by the Laplace transform of the time-rescaled population size function η̃ evaluated at
the point

(
m
2

)
. For a sample of size n, let ξn,b denote the probability that a polymorphic site

has b mutant alleles and n− b ancestral alleles. We refer to (ξn,1, . . . , ξn,n−1) as the expected
sample frequency spectrum (SFS).

2.3 Main results

2.3.1 Determining expected times to the first coalescence event
from the SFS

The following lemma shows that the expected SFS for a sample of size n tightly constrains
the expected time to the first coalescence event for all sample sizes 2, . . . , n:

Lemma 1. Under an arbitrary variable population size model {η(t), t ≥ 0}, suppose ξn,1,

. . . , ξn,n−1 are known and define cm := E[T
(η)
m,m] for 2 ≤ m ≤ n. Then, up to a common

positive multiplicative constant, the quantities c2, . . . , cn can be determined uniquely from
ξn,1, . . . , ξn,n−1.

Proof. In the coalescent for a sample of size n, let γn,b denote the total expected branch
length subtending b leaves, for 1 ≤ b ≤ n − 1. Then, ξn,b = γn,b/

∑n−1
k=1 γn,k, which implies

that there exists a positive constant κ such that γn,b = κξn,b for all 1 ≤ b ≤ n− 1. We now
prove that c2, . . . , cn can be determined uniquely from γn,1, . . . , γn,n−1.

Let φn,k = E[T
(η)
n,k ]. Then, by a result of Griffiths and Tavaré [28],

γn,b =
n−b+1∑
k=2

k

(
n−b−1
k−2

)(
n−1
k−1

) φn,k, (2.8)

for 1 ≤ b ≤ n − 1. The system of equations (2.8) can be rewritten succinctly as a linear
system

γ = Mφ, (2.9)

where γ = (γn,1, . . . , γn,n−1), φ = (φn,2, . . . , φn,n), andM = (mbk) withmbk = k
(
n−b−1
k−2

)
/
(
n−1
k−1

)
,

for 1 ≤ b ≤ n− 1 and 2 ≤ k ≤ n. The matrix M is upper-left triangular since
(
n−b−1
k−2

)
= 0
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if k > n− b+ 1, and the anti-diagonal entries are k

(n−1
k−1)

> 0. Hence, det(M ) 6= 0 and M is

therefore invertible. Thus, given γ, we can determine φ uniquely as M−1γ.
Let ψn,k =

∑n
j=k E[T

(η)
n,j ]. Then, defining ψn,n+1 := 0, observe that ψn,k = φn,k+ψn,k+1 for

2 ≤ k ≤ n. This implies that ψn,2, . . . , ψn,n can be determined uniquely from φn,2, . . . , φn,n.
Polanski et al. [68] showed that ψn,k can be written as

ψn,k =
n∑

m=k

an,k,mcm, (2.10)

where an,k,m, for k ≤ m ≤ n, are given by

an,k,m =

∏n
l=k,l 6=m

(
l
2

)∏n
l=k,l 6=m

[(
l
2

)
−
(
m
2

)] , (2.11)

and cm = E[T
(η)
m,m], shown in (2.5). An alternate derivation of (2.10) and (2.11) can also be

found in Section A.1 of Appendix A. Again, the system of equations (2.10) can be written
as a triangular linear system

ψ = Ac, (2.12)

where ψ = (ψn,2, . . . , ψn,n), c = (c2, . . . , cn), and A = (an,k,m), for 2 ≤ k,m ≤ n. Note that
A is an upper triangular matrix since an,k,m := 0 if m < k. Since A has non-zero entries on
its diagonal, A−1 exists, and c can be determined uniquely as A−1ψ.

This lemma implies that the problem of identifying the population size function η(t) from
ξn,1, . . . , ξn,n−1 can be reduced, up to a multiplicative constant, to the problem of identifying
η(t) from c2, . . . , cn.

2.3.2 Piecewise population size models and sign change
complexities

To state our main result in full generality, we first need a few definitions:

Definition 1 (F , family of continuous population size functions). A family F of continu-
ous population size functions is a set of positive continuous functions f : R≥0 → R+ of a
particular type parameterized by a collection of variables.

We use Fc to denote the family of constant population size functions; i.e., functions of the
form f(t) = ν for all t, where ν ∈ R+ is the only parameter of the family. Further, we use Fe
to denote the family of exponential population size functions of the form f(t) = ν exp(βt),
where ν ∈ R+ and β ∈ R are the parameters of the family.
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t

log η(t)

Figure 2.1: A piecewise-exponential population size function η ∈ MK(Fe), where
K ≥ 5. Note that the y-axis is in a log scale. This piecewise-exponential function depicts
the historical population size changes of a European population that was estimated from the
SFS of a sample of 1,351 (diploid) individuals of European ancestry [85].

Definition 2 (MK(F), piecewise models over F with at mostK pieces). Given a family F of
continuous population size functions, a population size function η(t) defined over R≥0 is said
to be piecewise over F with at most K pieces if there exists an integer p, where 1 ≤ p ≤ K−1,
and a sequence of p time points 0 < t1 < · · · < tp <∞ such that for each 1 ≤ i ≤ p+1, there
exists a positive continuous function fi ∈ F such that η(t) = fi(t− ti−1) for all t ∈ [ti−1, ti).
For convention, we define t0 = 0 and tp+1 = ∞. Note that η may not be continuous at the
change points t1, . . . , tp. We use MK(F) to denote the space of such piecewise population
size models with at most K pieces, each of which belongs to function family F . Illustrated in
Figure 2.1 is an example piecewise-exponential population size function η ∈ MK(F) where
K ≥ 5 and F = Fe.

Definition 3 (σ(f), number of sign changes of a function). For a function g (not necessarily
continuous) defined over some interval (a, b), we say that t ∈ (a, b) is a sign change point of
g if there exist some ε > 0, t′ ≥ t, and an interval (t′, t′ + ε) ⊆ (a, b) such that

1. (t− ε, t) ⊆ (a, b),

2. g(z) = 0 for z ∈ (t, t′),

3. g(x)g(y) < 0 for all x ∈ (t− ε, t) and y ∈ (t′, t′ + ε).

We define the number σ(g) of sign changes of g as the number of such sign change points in
its domain (a, b). See Figure 2.2 for an illustration.

Note that the above definition of the number of sign changes counts the number of
times the function g changes value from positive to negative (and vice versa) while ignoring
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t1 t2 t3 t

g(t)

0

Figure 2.2: Illustration of the sign changes of a function. For the domain shown,
σ(g) = 3 and the sign change points of g are denoted t1, t2, and t3.

intervals where it is identically zero. While the above definition is not restricted to piecewise
continuous functions, we will restrict our attention to such functions for the remainder of
this chapter.

Definition 4 (S (F) and S (MK(F)), sign change complexities). For a family F of con-
tinuous population size functions, we define the sign change complexity S (F) as

S (F) = sup
f1,f2∈F ,
a1,a2∈R≥0

σ(g)

∣∣∣∣∣∣∣
g(τ) := f̃1(τ − a1)− f̃2(τ − a2) with domain

Dom(g) =

{
τ ∈ R≥0

∣∣∣∣∣ τ − a1 ∈ Dom(f̃1),

τ − a2 ∈ Dom(f̃2)

} (2.13)

= sup
f1,f2∈F ,
a∈R≥0

σ(g)

∣∣∣∣∣∣∣
g(τ) := f̃1(τ)− f̃2(τ − a) with domain

Dom(g) =

{
τ ∈ R≥0

∣∣∣∣∣ τ ∈ Dom(f̃1),

τ − a ∈ Dom(f̃2)

} , (2.14)

where f̃j are the time-rescaled versions of fj as defined in (2.3), and Dom(f̃j) = Rfj(R≥0)

is the domain of f̃j. Similarly, for the space MK(F) of piecewise population size models
with at most K pieces over some function family F , we define the sign change complexity
S (MK(F)) as

S (MK(F)) = sup
η1,η2∈MK(F)

{σ(η̃1 − η̃2)} , (2.15)

where, again, η̃j are related to ηj as given in (2.3).

The following lemma gives a bound on the sign change complexity of a model with at
most K pieces in terms of the underlying family of population size functions for each piece.

Lemma 2. The sign change complexity of the space MK(F) of piecewise models with at
most K pieces in a function family F is bounded by the sign change complexity of F as

S (MK(F)) ≤ (2K − 2) + (2K − 1)S (F). (2.16)
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Proof. Given a pair of piecewise population size functions η1, η2 ∈ MK(F), let η̃1 and η̃2

be their respective time-rescaled versions, defined by (2.3). Let 0 < t
(1)
1 < · · · < t

(1)
p1 < ∞,

where 0 ≤ p1 ≤ K − 1, (respectively, 0 < t
(2)
1 < · · · < t

(2)
p2 < ∞, where 0 ≤ p2 ≤ K − 1)

be the change points of the pieces of η1 (respectively, η2). We define t
(1)
0 = t

(2)
0 = 0 and

t
(1)
p1+1 = t

(2)
p2+1 = ∞. The change points of η̃1 are given by Rη1(t

(1)
i ), where 1 ≤ i ≤ p1, while

the change points of η̃2 are given by Rη2(t
(2)
i ), where 1 ≤ i ≤ p2. Let 0 < τ1 < · · · < τp <∞

be the union of the change points of η̃1 and η̃2, where 0 ≤ p ≤ p1 + p2. For convention, let
τ0 = 0 and τp+1 =∞.

Consider the piece (τi, τi+1) for 0 ≤ i ≤ p. Let I1 = (t
(1)
k , t

(1)
k+1), where 0 ≤ k ≤ p1, and

I2 = (t
(2)
l , t

(2)
l+1), where 0 ≤ l ≤ p2, be the pieces of the original population size functions

η1 and η2, respectively, such that (τi, τi+1) ⊆ Rη1(I1) and (τi, τi+1) ⊆ Rη2(I2). Since η1 ∈
MK(F), there exists a function f1 ∈ F such that η1(t) = f1(t − t(1)

k ) for all t ∈ I1. Then,
for all τ ∈ Rη1(I1),

η̃1(τ) = η1

(
R−1
η1

(τ)
)

= f1

(
R−1
η1

(τ)− t(1)
k

)
(2.17)

= f̃1

(
Rf1

(
R−1
η1

(τ)− t(1)
k

))
(2.18)

= f̃1

(
τ −Rη1(t

(1)
k )
)
. (2.19)

Similarly, there exists some function f2 ∈ F such that, for all τ ∈ Rη2(I2),

η̃2(τ) = f̃2

(
τ −Rη2(t

(2)
l )
)
. (2.20)

Using (2.19) and (2.20), we see that the number of sign change points of η̃1− η̃2 in the piece

(τi, τi+1) is at most the number of sign change points of f̃1(τ −Rη1(t
(1)
k ))− f̃2(τ −Rη2(t

(2)
l ))

for τ ∈ (τi, τi+1). Hence, by (2.14), it follows that within each piece (τi, τi+1) for 0 ≤ i ≤ p,
η̃1 − η̃2 has at most S (F) sign change points. Also, the point τi+1 itself could be a sign
change point in the interval between the last sign change point in piece (τi, τi+1) and the
first sign change point in piece (τi+1, τi+2) where 0 ≤ i ≤ p − 1. These are all the possible
sign change points of η̃1 − η̃2. Hence,

σ(η̃1 − η̃2) ≤ p+ (p+ 1)S (F)

≤ (p1 + p2) + (p1 + p2 + 1)S (F)

≤ (2K − 2) + (2K − 1)S (F). (2.21)

Since (2.21) holds for all η1, η2 ∈MK(F), the lemma follows.

Note that the bound in Lemma 2 is tight for the family Fc of constant population sizes,
for which S (Fc) = 0 and S (MK(Fc)) = 2K − 2.
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2.3.3 Identifiability from the SFS

Our main results on identifiability will be proved using a generalization of Descartes’ rule of
signs for polynomials:

Theorem 3 (Descartes’ rule of signs for polynomials). Consider a degree-n polynomial
p(x) = a0 +a1x+ · · ·+anx

n with real-valued coefficients ai. The number of positive real roots
(counted with multiplicity) of p is at most the number of sign changes between consecutive
non-zero terms in the sequence a0, a1, . . . , an.

The following theorem generalizes the above classic result to relate the number of sign
changes of a piecewise-continuous function f to the number of roots of its Laplace transform:

Theorem 4 (Generalized Descartes’ rule of signs). Let f : R≥0 → R be a piecewise-
continuous function which is not identically zero and with a finite number σ(f) of sign
changes. Then, the function G(x) defined by

G(x) =

∫ ∞
0

f(t)e−tx dt (2.22)

has at most σ(f) roots in R (counted with multiplicity).

Proof. The proof is by induction on the number of sign changes of f . If f has zero sign
changes, then without loss of generality, f(t) ≥ 0 for t ∈ (0,∞) and f(t) > 0 for some
interval (a, b) ⊆ (0,∞). Hence, G(x) > 0 for all x, and the base case holds. Suppose f has
m+1 sign changes for some m ≥ 0. Let {t0, . . . , tm} be the set of sign change points of G(x).
Note that G(x) and F (x) = et0xG(x) have the same real-valued roots (with multiplicity) since
et0x > 0 for all x ∈ R. F ′(x) is given by

F ′(x) =
d

dx

(∫ ∞
0

f(t)e−(t−t0)x dt

)
=

∫ ∞
0

(t0 − t)f(t)e−(t−t0)x dt, (2.23)

where the interchange of the differential and integral operators in the second equality is
justified by the Leibniz integral rule because f is piecewise continuous over R≥0, and both
f(t)e−(t−t0)x and d

dx
(f(t)e−(t−t0)x) are jointly continuous over (pi, pi+1) × (−∞,∞) for each

piece (pi, pi+1) over which f is continuous. Note that the set of sign change points of
(t0 − t)f(t) is {t1, . . . , tm}. Hence (t0 − t)f(t) has only m sign changes. By the induc-
tion hypothesis, F ′ has at most m real-valued roots. By Rolle’s theorem, the number of
real-valued roots of F is at most one more than the number of real-valued roots of F ′.
Hence, F has at most m+1 real-valued roots, implying that G has at most m+1 real-valued
roots.

The statement of Theorem 4 and its proof are adapted from Jameson [38, Lemma 4.5] for
our setting. Using Theorem 4, we can prove the following main theorem on the identifiability
of piecewise models when the pieces are from a family with finite sign change complexity:
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Theorem 5. For a sample of size n, let c = (c2, . . . , cn), where cm = E[T
(η)
m,m], for 2 ≤

m ≤ n, defined in (2.5). If S (F) < ∞ and n ≥ 2K + (2K − 1)S (F), then no two
distinct models η1, η2 ∈ MK(F) can produce the same (c2, . . . , cn). In other words, for
n ≥ 2K + (2K − 1)S (F), the map c :MK(F)→ Rn−1

+ is injective.

Proof. First, note that if S (F) < ∞, it follows from Lemma 2 that S (MK(F)) < ∞.
Suppose there exist two distinct models η1, η2 ∈ MK(F) that produce exactly the same cm
for all 2 ≤ m ≤ n. From (2.7), we have that∫ ∞

0

(η̃1(τ)− η̃2(τ))e−(m
2 )τdτ = 0 (2.24)

for 2 ≤ m ≤ n. If we define the function G(x) as

G(x) =

∫ ∞
0

(η̃1(τ)− η̃2(τ))e−xτdτ, (2.25)

then from (2.24), we see that
(
m
2

)
is a root of G(x) for 2 ≤ m ≤ n, and hence, G has at least

n−1 roots. Applying Theorem 4 to the piecewise continuous function η̃1− η̃2, we see that G
can have at most σ(η̃1 − η̃2) roots. Taking the supremum over all population size functions
η1 and η2 inMK(F), we see that G can have at most S (MK(F)) roots, and by Lemma 2,
at most (2K−2)+(2K−1)S (F) roots. Hence, if n−1 > (2K−2)+(2K−1)S (F), we get
a contradiction. This implies that if n ≥ 2K + (2K − 1)S (F), no two distinct population
size functions in MK(F) can produce the same (c2, . . . , cn).

Using Theorem 5, it is simple to derive identifiability results for piecewise-defined popula-
tion size models over several function families F that are of biological interest. In particular,
we have the following result for the case of piecewise-constant models:

Corollary 6 (Identifiability of piecewise-constant population size models). For the space
MK(Fc) of piecewise-constant population size models, the map c : MK(Fc) → Rn−1

+ is
injective if the sample size n ≥ 2K.

Proof. As remarked after Lemma 2, for the constant population size function family Fc,
S (Fc) = 0. Hence, by Theorem 5, if n ≥ 2K, the map c :MK(Fc)→ Rn−1

+ is injective.

The bound in Corollary 6 on the sample size sufficient for identifying piecewise-constant
population models is actually tight, since MK(Fc) has 2K − 1 parameters in R+ and there
is no continuous injective function from R2K−1

+ to Rn−1
+ if n < 2K. (This fact can be proved

in multiple ways, such as by the Borsuk-Ulam theorem or the Constant Rank theorem.) We
also provide an alternate proof of Corollary 6 that does not explicitly rely on Theorem 5.
This alternate proof is based on an argument from linear algebra, and it might be possible
to adapt this approach to develop an algebraic algorithm for inferring the parameters of a
piecewise-constant population function from the set of expected first coalescence times cm.
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An alternate proof of Corollary 6 based on linear algebra. Let n ≥ 2K, and suppose there
exist two distinct models η(1), η(2) ∈ MK(Fc) that produce exactly the same cm for all
2 ≤ m ≤ n. Let η̃(1) and η̃(2) denote the time-rescaled versions of η(1) and η(2), respectively, as
in (2.3). Since η(j) is piecewise-constant with at most K pieces, η̃(j) is also piecewise-constant

with the same number of pieces as η(j), and η(1) 6= η(2) implies η̃(1) 6= η̃(2). Therefore, ∆̃ :=
η̃(1) − η̃(2) is a piecewise-constant function over [0,∞) with p pieces, where 1 ≤ p ≤ 2K − 1,

and ∆̃ is not identically zero. Let τ1 < · · · < τp−1 denote the change points of ∆̃, and define

τ0 = 0 and τp =∞. Suppose ∆̃(τ) = δi ∈ R for all τ ∈ [τi−1, τi), where 1 ≤ i ≤ p. Since η̃(1)

and η̃(2) produce the same cm for all 2 ≤ m ≤ n, we know that ∆̃ satisfies∫ ∞
0

∆̃(τ)e−(m
2 )τ dτ = 0, (2.26)

for all 2 ≤ m ≤ n. Substituting the definition of ∆̃ into (2.26) and multiplying by
(
m
2

)
, we

obtain

p∑
i=1

δi
[
e−(m

2 )τi−1 − e−(m
2 )τi] = 0, (2.27)

for 2 ≤ m ≤ n. This defines a linear system Aδ = 0, where δ = (δ1, . . . , δp) and A = (ami)

is an (n− 1)× p matrix with ami := e−(m
2 )τi−1 − e−(m

2 )τi for 2 ≤ m ≤ n and 1 ≤ i ≤ p.
Let B = (bmi) be the (n− 1)× p matrix formed from A such that the ith column of B

is the sum of columns i, i + 1, . . . , p of A. Defining αi = e−τi−1 , note that bmi = α
(m

2 )
i for

2 ≤ m ≤ n and 1 ≤ i ≤ p. Now, consider the p × p submatrix C of B consisting of the
first p rows of B. Since α1 > α2 > · · · > αp > 0, note that C is a generalized Vandermonde
matrix, which implies det(C) 6= 0 [22, Ch. XIII, §8]. Hence, rank(B) = p. The rank of
A is invariant under elementary column operations, and therefore rank(A) = rank(B) = p.
Therefore, the kernel of A is trivial, and the only solution to (2.27) is δ1 = δ2 = · · · = δp = 0,

which contradicts our assumption that ∆̃ = η̃(1) − η̃(2) 6≡ 0.

Another class of models often assumed in population genetic analyses are piecewise-
exponential functions, for which we have the following result:

Corollary 7 (Identifiability of piecewise-exponential population size models). For the space
MK(Fe) of piecewise-exponential population size models, the map c : MK(Fe) → Rn−1

+ is
injective if the sample size n ≥ 4K − 1.

Proof. Let f1, f2 ∈ Fe be given by

f1(t) = ν1 exp(β1t), (2.28)

f2(t) = ν2 exp(β2t), (2.29)
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where t ∈ R≥0, ν1, ν2 ∈ R+ and β1, β2 ∈ R. Then, for i = 1, 2, the time-rescaled function f̃i
is given by

f̃i(τ) =
νi

1− νiβiτ
, (2.30)

for τ ∈ Dom(f̃i) = Rfi(R≥0) = [0, 1
νiβi

). From (2.30), it can be seen that f̃1 and f̃2 are
continuous in their domains. Furthermore, for any given a ∈ R≥0, there is at most one

τ , where τ ∈ Dom(f̃1) and τ − a ∈ Dom(f̃2), such that g(τ) := f̃1(τ) − f̃2(τ − a) = 0,
implying σ(g) ≤ 1. By the definition of sign change complexity in (2.14), it then follows
that S (Fe) ≤ 1 for the exponential population family Fe. Hence, applying Theorem 5, we
conclude that n ≥ 4K − 1 suffices for the map c :MK(Fe)→ Rn−1

+ to be injective.

For the identifiability of piecewise population size models from the SFS data, we first
note the following lemma:

Lemma 8. Consider a piecewise population size function η ∈ MK(F). Consider a sample

of size n ≥ 2K + (2K − 1)S (F) and suppose the function η produces E[T
(η)
m,m] = cm for

2 ≤ m ≤ n. Then, for every fixed κ ∈ R+, there exists a unique piecewise population size

function ζ ∈MK(F) with E[T
(ζ)
m,m] = κcm for 2 ≤ m ≤ n. Furthermore, this population size

function ζ is given by ζ(t) = κη(t/κ).

Proof. For the population size function ζ(t) defined by ζ(t) = κη(t/κ), note that Rζ(t) is
given by

Rζ(t) =

∫ t

0

1

ζ(x)
dx =

∫ t

0

1

κη(x/κ)
dx =

∫ t/κ

0

1

η(x)
dx = Rη(t/κ).

E[T
(ζ)
m,m] is then given by

E[T (ζ)
m,m] =

∫ ∞
0

exp

[
−
(
m

2

)
Rη

(
t

κ

)]
dt (2.31)

= κ

∫ ∞
0

exp

[
−
(
m

2

)
Rη(t)

]
dt (2.32)

= κE[T (η)
m,m]. (2.33)

Since n ≥ 2K + (2K − 1)S (F), by Theorem 5, ζ is the unique population size function in

MK(F) with E[T
(ζ)
m,m] = κcm for 2 ≤ m ≤ n.

Given two models η, ζ ∈MK , we say that η and ζ are equivalent, and write η ∼ ζ, if they
are related by a rescaling of change points and population sizes as described in Lemma 8.
Then, combining Lemma 1, Theorem 5, and Lemma 8, we obtain the following theorem:

Theorem 9. If S (F) < ∞ and n ≥ 2K + (2K − 1)S (F), then, for each expected SFS
(ξn,1, . . . , ξn,n−1), there exists a unique equivalence class [η] of models inMK(F)/∼ consistent
with (ξn,1, . . . , ξn,n−1).
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2.3.4 Extension to the folded frequency spectrum

To generate the SFS from genomic sequence data, one needs to know the identities of the
ancestral and mutant alleles at each site. To avoid this problem, a commonly employed
strategy in population genetic inference involves “folding” the SFS. More precisely, for a
sample of size n, the i-th entry of the folded SFS χ = (χn,1, . . . , χbn/2c) is defined by

χn,i =
ξn,i + ξn,n−i
1 + δi,n−i

, (2.34)

where 1 ≤ i ≤ bn/2c. In particular, χn,i is the proportion of polymorphic sites that have i
copies of the minor allele. For any sample size n, since χ is a vector of approximately half
the dimension as ξ, we might expect to require roughly twice as many samples to recover the
demographic model from χ compared to ξ. This is indeed the case. Given the folded SFS χ,
the following theorem establishes a sufficiency condition on the sample size for identifying
demographic models in MK(F):

Theorem 10. If S (F) < ∞ and n ≥ 2(2K − 1)(1 + S (F)), then, for each expected
folded SFS χ = (χn,1, . . . , χn,bn/2c), there exists a unique equivalence class [η] of models in
MK(F)/∼ consistent with χ.

To prove Theorem 10, we first need a lemma that characterizes a certain symmetry
property of the invertible matrix that relates the genealogical quantities γ and c introduced
in the proof of Lemma 1.

Lemma 11. For a sample of size n, let W be the (n − 1) × (n − 1) invertible matrix such
that γn,b =

∑n
m=2Wb,mcm, where γn,b is the total expected branch length subtending b leaves

and cm = E[T
(η)
m,m]. Then, for every b and m, where 1 ≤ b ≤ n− 1 and 2 ≤ m ≤ n, we have

the following identities:

Wb,m +Wn−b,m = 0, if m is odd, (2.35)

Wb,m −Wn−b,m = 0, if m is even. (2.36)

Proof. From the proof of Lemma 1, it can be seen that the matrix W is the product of
3 matrices whose entries are explicitly given combinatorial expressions. However, using
Zeilberger’s algorithm [66], Polanksi and Kimmel [69, Equations 13–15] also derived the
following recurrence relation for the entries of W :

Wb,2 =
6

(n+ 1)
,

Wb,3 = 30
(n− 2b)

(n+ 1)(n+ 2)
,

Wb,m+2 = f(n,m)Wb,m + g(n,m)(n− 2b)Wb,m+1, (2.37)
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where f(n,m) and g(n,m) are rational functions of n and m given by

f(n,m) = −(1 +m)(3 + 2m)(n−m)

m(2m− 1)(n+m+ 1)
,

g(n,m) =
(3 + 2m)

m(n+m+ 1)
.

It will be easy to prove our lemma by induction on m using (2.37). The base cases are easy
to check:

Wb,2 −Wn−b,2 = 0,

Wb,3 +Wn−b,3 = 30
(n− 2b) + (n− 2(n− b))

(n+ 1)(n+ 2)
= 0.

Using (2.37), we see that if m is odd,

Wb,m+2 +Wn−b,m+2

= f(n,m)(Wb,m +Wn−b,m)

+ g(n,m){(n− 2b)Wb,m+1 + [n− 2(n− b)]Wn−b,m+1}
= f(n,m)(Wb,m +Wn−b,m) + g(n,m)(n− 2b)(Wb,m+1 −Wn−b,m+1)

= 0,

where the last equality follows from the induction hypothesis which implies Wb,m+Wn−b,m =
0 and Wb,m+1 −Wn−b,m+1 = 0. Similarly, if m is even,

Wb,m+2 −Wn−b,m+2

= f(n,m)(Wb,m −Wn−b,m)

+ g(n,m){(n− 2b)Wb,m+1 − [n− 2(n− b)]Wn−b,m+1}
= f(n,m)(Wb,m −Wn−b,m) + g(n,m)(n− 2b)(Wb,m+1 +Wn−b,m+1)

= 0,

where again the last equality follows from the induction hypothesis.

Proof of Theorem 10. For a sample of size n in the coalescent, let γn,b be the total expected
branch length subtending b leaves, for 1 ≤ b ≤ n− 1. Then, there exists a positive constant
κ such that

γn,d + γn,n−d
1 + δd,n−d

= κχn,d, (2.38)

for all 1 ≤ d ≤ bn/2c. Let fn,d =
γn,d+γn,n−d

1+δd,n−d
. The relationship between f = (fn,1, . . . , fn,bn/2c)

and γ = (γn,1, . . . , γn,n−1) can be described by the linear equation

f = Zγ, (2.39)
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where Z is an bn/2c × (n− 1) matrix with entries given by

Zdj =

{
1, if j = d or j = n− d,
0, otherwise,

(2.40)

for 1 ≤ d ≤ bn/2c and 1 ≤ j ≤ n− 1. Hence, dim(ker(Z)) = b(n−1)/2c.
From Lemma 1, we know that γ and c = (c2, . . . , cn) are related as γ = Wc, where

W = (Wb,m) is an (n− 1)× (n− 1) invertible matrix, where 1 ≤ b ≤ n− 1 and 2 ≤ m ≤ n.
Hence,

f = Y c, (2.41)

where Y := ZW . Since Yb,m = Wb,m + Wn−b,m, we know from Lemma 11 that Yb,m = 0
for all odd values of m. Therefore, every other column of the matrix Y is zero. This
implies that span({e3, e5, . . . , en−1{n even}}) ⊆ ker(Y ), where ei is an (n − 1)-dimensional
unit vector defined as ei = (ei,2, . . . , ei,n), with ei,i = 1 and ei,j = 0 for i 6= j. Note that
n − 1{n even} = 2b(n−1)/2c + 1 and dim(span({e3, e5, . . . , e2b(n−1)/2c+1})) = b(n−1)/2c. Now,
since W is invertible, dim(ker(Y )) = dim(ker(ZW )) = dim(ker(Z)) = b(n−1)/2c. Therefore,

ker(Y ) = span
(
{e3, e5, . . . , e2b(n−1)/2c+1}

)
. (2.42)

Suppose there exist two distinct models η1, η2 ∈ MK(F) that produce the same folded
SFS f . Let c(1) and c(2) be the vector of genealogical quantities for models η1 and η2

respectively, where c
(1)
m = E[T

(η1)
m,m] and c

(2)
m = E[T

(η2)
m,m], 2 ≤ m ≤ n. From (2.41), we know

that c(1) − c(2) ∈ ker(Y ). Using (2.42), c
(1)
m − c(2)

m can be written as

c(1)
m − c(2)

m =

b(n−1)/2c∑
l=1

αle2l+1,m, (2.43)

for some αl ∈ R. Since eij = 0 for i 6= j, (2.43) implies that c
(1)
m − c(2)

m = 0 for all even values
of m, where 2 ≤ m ≤ n. Now applying a similar argument as in the proof of Theorem 5 to
c

(1)
m − c(2)

m for even values of m, we conclude that if d(n−1)/2e > (2K − 2) + (2K − 1)S (F),
then no two distinct models η1, η2 ∈ MK(F) can produce the same f . This implies that a
sample size n ≥ 2(2K − 1)(1 + S (F)) suffices for identifying the population size function in
MK(F) from the folded SFS f , and the conclusion of the theorem follows from (2.38) and
Lemma 8.

2.4 The counterexample of Myers et al.

Myers et al. [61] provided an explicit counterexample to the identifiability of population size
models from the allelic frequency spectrum. In our notation, they provided two time-rescaled
population size functions η̃1 and η̃2 given by

η̃1(τ) = N, (2.44)
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η̃2(τ) = N(1− 9F (τ)), (2.45)

where N is an arbitrary positive constant, and the function F is given by the convolution

F (τ) =

∫ τ

0

f0(τ − u)f1(u)du, (2.46)

where f0 and f1 are given by

f0(τ) = exp(−1/τ 2), (2.47)

f1(τ) =
cos(π2/τ) exp(−τ/8)√

τ
. (2.48)

Both functions f1 and F have increasingly frequent oscillations as τ ↓ 0 so that σ(η̃1− η̃2) =
σ(F ) =∞. This is why Theorem 5 does not apply to this example. Indeed, by an argument
using the Laplace transforms of f1 and F , Myers et al. showed that the function G(x) defined
in (2.22) in terms of F has roots at −

(
m
2

)
for each m ≥ 2.

2.5 Discussion

In human genetics, several large-sample datasets have recently become available, with sample
sizes on the order of several thousands to tens of thousands of individuals [1, 12, 19, 62, 85].
The patterns of polymorphism observed in these datasets deviate significantly from that
expected under a constant population size, and there has been much interest to infer recent
and ancient human demographic changes that might explain these deviations [23, 48, 51].
Clearly, model identifiability is an important prerequisite for such statistical inference prob-
lems. In this chapter, we have obtained mathematically rigorous identifiability results for
demographic inference by showing that piecewise-defined population size functions over a
wide class of function families are completely determined by the SFS, provided that the
sample is sufficiently large. Furthermore, we have provided explicit bounds on the sample
sizes that are sufficient for identifying such piecewise population size functions. These bounds
depend on the number of pieces and the functional type of each piece. For piecewise-constant
population size models, which have been extensively applied in demographic inference stud-
ies, our bounds are tight. We have also given analogous results for identifiability from the
folded SFS, a variant of the SFS that is oblivious to the identities of the ancestral and mutant
alleles.

Our work suggests several interesting avenues for future research. In our work, we exam-
ined the identifiability of demography from the expected SFS data. However, if one were to
use the complete sequence data or other summary statistics such as the length distribution
of shared haplotype tracts, it might be possible to uniquely identify the demography using
even smaller sample sizes than that needed when using only the SFS. Indeed, several demo-
graphic inference methods have been developed to infer historical population size changes
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from such data using anywhere from a pair of genomic sequences [34, 48, 64] to tens of such
sequences [79], and it is important to theoretically characterize the power and limitations of
both the data and the inference methods.

Another interesting direction for exploration is to understand the extent to which ancient
demographic events can be inferred from the SFS in practice. The population size changes
sufficiently far back in the past are likely to have only a marginal effect on the SFS since the
individuals in the sample are highly likely to have found a common ancestor by such ancient
times. Our identifiability results apply in the limit that the genome length is infinite, which
allows one to estimate the entries of the expected SFS exactly. However, a finite length
genome does not permit exact estimation of the SFS, and it might be difficult to resolve very
ancient demographic events. Another question related to this issue is understanding the
sensitivity of the SFS to perturbations in the demographic parameters. This is important
for quantifying the extent to which errors in estimating the expected SFS from data affect
the parameter estimates in inferred demographic models.

It would also be interesting to consider the possibility of developing an algebraic algo-
rithm for demographic inference that closely mimics the linear algebraic proof of Corollary 6
provided in Section 2.3.3. For example, using a sample of size K + 1, one could consider in-
ferring a piecewise-constant model with K pieces, with one piece for each of the most recent
K − 1 generations and another piece for the population size further back in time. (Here we
are considering a restricted class of piecewise-constant population size functions with fixed
change points, so the minimum sample size needed for distinguishing such models using the
SFS is K + 1 rather than 2K.) Such an algebraic algorithm could provide a more principled
way of inferring demographic parameters, compared to existing inference methods that rely
on optimization procedures which lack theoretical guarantees for functions with multiple
local optima.
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Chapter 3

Inference of the population size
function from SFS data

3.1 Overview

Motivated by recent large-sample exome-sequencing studies [62,85] which have greater power
to capture rare variants than previous analyses involving small sample sizes [23, 31], in this
chapter, we study the problem of efficiently inferring population size changes and mutation
rates in a large randomly mating population using the SFS of a sample of individuals at
multiple loci.

There have been several previous approaches to this problem. Coventry et al. [12] de-
veloped a method based on coalescent tree simulations to infer population size changes and
per-locus mutation rates, and applied this to exome-sequencing data from approximately
10,000 individuals at 2 genes. Using coalescent simulations to empirically estimate the ex-
pected SFS under a given demographic model, Coventry et al. compute a likelihood function
for the demographic model by comparing the expected and observed SFS. Nelson et al. [62]
have also applied this method to a dataset of 11,000 individuals of European ancestry (CEU)
sequenced at 188 genes to infer a recent epoch of exponential population growth. Excoffier et
al. [16] have developed a software package that uses coalescent tree simulations to estimate
the expected joint SFS of multiple subpopulations for inferring potentially very complex de-
mographic scenarios. This problem has also been approached from the diffusion perspective.
Gutenkunst et al. [31] used numerical schemes to solve the partial differential equation for
the density of segregating sites at a given derived allele frequency, while Lukić et al. [52]
approximated the solutions to these equations using spectral methods.

Similar to the inference methods of Coventry et al. and Excoffier et al., we also work in
the coalescent framework rather than in the diffusion setting. However, our method differs
from existing methods in several ways. First, our method is based on exact computation and
does not require any Monte-Carlo coalescent simulations. We use an efficient algorithmic
adaption of the analytic theory of the SFS for deterministically varying population size
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models that was developed by Polanski et al. [68] and Polanski and Kimmel [69]. As a
result, our method is extremely efficient compared to simulation-based approaches, allowing
us to more thoroughly search the space of demographic models of interest. Second, our
method uses the Poisson Random Field (PRF) approximation proposed by Sawyer and
Hartl [76]. Under this approximation, all the segregating sites in a single locus are assumed
to be far enough apart to be completely unlinked. This is also the same approximation made
by the numerical and spectral methods for demographic inference under the Wright-Fisher
diffusion process [31,52]. At the other extreme, the method of Coventry et al. for population
size inference assumes that all the segregating sites in a locus are completely linked. Both
these model simplifications, which assume that a locus is a collection of completely linked
or completely unlinked sites, are biologically unrealistic. However, as we demonstrate in
our results on simulated data, our method can recover demographic parameters accurately
even when the data is generated under realistic recombination rates. Third, working in the
PRF model also confers our method a significant computational benefit. Under the PRF
model, we can write down efficiently computable expressions for the the maximum likelihood
estimate of the mutation rates at each locus. This contrasts with the method of Coventry et
al. where a line search has to be performed over the mutation rates due to the Monte-Carlo
integration involved. Fourth, under the PRF model, the maximum likelihood estimate for
the demographic model has a nice mathematical interpretation in that it is the demographic
model which minimizes the KL divergence of the expected SFS from the observed SFS.
Our method also has advantages over the diffusion-based methods of Gutenkunst et al. [31]
and Lukić et al. [52]. Since we are working in the coalescent framework, the running time
of our method is independent of the population size and our computations are exact up to
numerical precision. On the other hand, the method of Gutenkunst et al. discretizes the allele
frequency space, while the spectral method of Lukić et al. [52] has to choose the number
of basis elements for the representation of the Wright-Fisher transition density function.
Finally, since our method is based on a likelihood function that is computed exactly, we can
take advantage of automatic differentiation [24] to compute numerically exact gradients of the
likelihood function, and thus take advantage of gradient-based algorithms for optimization
over the space of demographic parameters.

As we have seen in previous chapters, a result of Myers et al. [61] shows that it is
information-theoretically not possible to uniquely recover general population size functions
from the SFS. However, as we proved in Chapter 2, if we assume that the true population
size function is piecewise-constant or piecewise-exponential, then the expected SFS of a
large enough sample uniquely determines the piecewise population size function. Taking
advantage of this identifiability result, we perform inference under the assumption that the
true population size function is piecewise-exponential (which also allows for constant pieces).

The rest of this chapter is organized as follows. We introduce the relevant notation in
Section 3.2, and describe some of the details of our method in Section 3.3. The details of the
theory and computation in our method are given in 3.3.2. In Section 3.4, we demonstrate
our method on simulated data using biologically reasonable parameters.
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3.2 Notation

The data we wish to analyze, denoted by D, consists of the unnormalized SFS for n haploid
(or n/2 diploid) individuals at each of G loci located sufficiently far apart in the genome.

The unnormalized SFS at locus g is a vector o(g) = (o
(g)
1 , . . . , o

(g)
n−1), where o

(g)
i is the number

(rather than the probability) of segregating sites at locus g which have i copies of the mutant

allele among the n alleles at that site. For notational convenience, let o(g) =
∑n

i=1 o
(g)
i be

the total number of segregating sites in the sample at locus g. We are also given the length
m(g) of each locus g. Given the data D, our goal is to infer the haploid piecewise-exponential
effective population size function N(t) and the per-base locus specific mutation rates µ(g).
Note that in this chapter, we work with the population size functions N(t) in physical units
rather than coalescent rate functions η(t) used in Chapter 2. The conversion from η(t) to
N(t) can be done if we have knowledge of, for example, the ancestral population size or the
mutation rate at some locus in physical units (i.e. per generation). We will use Φ to denote
the parameterization of the population size function in the family of piecewise-exponential
models we consider in this work. While we state our method assuming we have access to
the SFS, we can just as easily work with the folded SFS if the identities of the ancestral and
mutant alleles are uncertain.

3.3 Method

Let us first restrict attention to a single locus g. For a locus with length m bases and per-
base per-generation mutation rate µ, let θ denote the population-scaled mutation rate for
the whole locus. Specifically, in the infinite-sites model, θ is given by,

θ = 4Nrmµ,

where Nr denotes a reference population size which is used as a scaling parameter. We
wish to compute the probability of the observed frequency spectrum o at locus g under the
infinite-sites model. If all the sites in the locus were completely linked and the n individuals
in the sample are related according to the coalescent tree T , then the probability of observing
the frequency spectrum o is given by,

P(o | T,Φ, θ) =
n−1∏
i=1

exp

(
−θ

2
τn,i(T )

) ( θ
2
τn,i(T )

)oi
oi!

, (3.1)

where τn,i(T ) is the sum of the lengths of branches in the coalescent tree T which subtend
idescendant leaves. The explanation for (3.1) is as follows. In the infinite-sites model,
mutations are dropped on the coalescent tree according to a Poisson process with rate θ/2,
and every mutation generates a new segregating site. A mutation creates a segregating site
with i mutant alleles if it occurs on a branch that subtends i descendants. To avoid unwieldy
notation, we drop the dependence on the tree T for the branch lengths τn,i(T ). To compute
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the probability of the observed frequency spectrum o, we have to integrate (3.1) over the
distribution f(T | Φ) of coalescent trees T in the space of coalescent trees Tn over n leaves.
Abusing notation, this can be written as

P(o | Φ, θ) =

∫
Tn

P(o | T,Φ, θ)f(T | Φ) dT

=

∫
Tn

[
n−1∏
i=1

exp

(
−θ

2
τn,i

) ( θ
2
τn,i
)oi

oi!

]
f(T | Φ) dT

=

∫
Tn

[
n−1∏
i=1

(
θ
2
τn,i
)oi

oi!

]
exp

(
−θ

2
Ln

)
f(T | Φ) dT

P(o | Φ, θ) =

∫
Tn

(
o

o1, . . . , on

)[n−1∏
i=1

(
τn,i
Ln

)oi]
exp

(
−θ

2
Ln

) ( θ
2
Ln
)o

o!
f(T | Φ) dT. (3.2)

In (3.2), Ln is the total branch length of the tree T on n haploid individuals. It is not
known how to efficiently and exactly compute (3.2), even when Φ represents the constant
population size model. Coventry et al. [12] and Nelson et al. [62] approximate the integral in
(3.2) by drawing random coalescent trees under the demographic model Φ. In order to find
the MLE for θ, they repeat this Monte-Carlo integration for each value of θ in some grid.

3.3.1 Poisson Random Field approximation

In our method, we use the Poisson Random Field (PRF) approximation of Sawyer and
Hartl [76] which assumes that all the sites in a given locus are completely unlinked, and
hence the underlying coalescent tree at each site is independent. Under this assumption, the
probability of the frequency spectrum o is given by,

P(o | Φ, θ) =
n−1∏
i=1

(
θ
2
E[τn,i]

)
oi!

oi

exp

(
−θ

2
E[Ln]

)

= C

n−1∏
i=1

(
θ

2
E[τn,i]

)oi
exp

(
−θ

2
E[Ln]

)
(3.3)

where the expectation in (3.3) is taken over the distribution on coalescent trees T over n
leaves, and C =

∏n−1
i=1

1
oi!

is a data-dependent constant that can be ignored for maximum
likelihood estimation. Hence, under the PRF approximation, the problem of computing
the likelihood in (3.3) reduces to that of computing the quantities E[τn,i] and E[Ln] under
the given demographic model Φ. Using the theory of the SFS for variable population sizes
developed by Polanski et al. [68] and Polanski and Kimmel [69], we can develop an efficient
algorithm to numerically stably and exactly compute E[τn,i] and E[Ln] for a wide class of
population size functions N(t). In our work, we consider the family of piecewise-exponential
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functions. The details of computing E[τn,i] and E[Ln] for such a class of population size
functions is given in Section 3.3.2. Taking logarithms on both sides in (3.3), we get the
following log-likelihood for the demographic model Φ and mutation rate θ at this locus,

L(Φ, θ) = logP(o | Φ, θ) =
n−1∑
i=1

oi (logE[τn,i] + log θ)− θ

2
E[Ln] + constant(o). (3.4)

Assuming the loci are all completely unlinked, the log-likelihood for one locus given in (3.4)
can be summed across all loci g to get a log-likelihood for the entire dataset D,

L(Φ, {θ(g)}Gg=1) = logP(D | Φ, {θ(g)}Gg=1)

=
G∑
g=1

[
n−1∑
i=1

o
(g)
i

(
logE[τn,i] + log θ(g)

)
− θ(g)

2
E[Ln]

]
+ constant(o). (3.5)

It is easy to see that L is a concave function of the mutation rates θ(g), since the Hessian H
of L with respect to θ(g) is given by,

Hg,h =
∂2L

∂θ(g)∂θ(h)
= −δg,h

1

θ(g)2

n−1∑
i=1

o
(g)
i , (3.6)

showing that H is negative definite. Hence, the mutation rates of the loci that maximize L
are the solutions of,

0 =
∂L
∂θ(g)

=
1

θ(g)

n−1∑
i=1

o
(g)
i −

1

2
E[Ln], (3.7)

yielding the maximum likelihood estimate for the mutation rate θ(g) at locus g given the
demographic model,

θ̂(g) =
2
∑n−1

i=1 o
(g)
i

E[Ln]
. (3.8)

Note that for a constant population size, (3.8) is the same as Watterson’s estimator θ̂
(g)
W for

the mutation rate [92],

θ̂
(g)
W =

∑n−1
i=1 o

(g)
i∑n−1

i=1
1
i

,

since for a constant population size, E[Ln] =
∑n−1

i=1
1
i
. Substituting the MLE for θ(g) in (3.8)

into (3.5), we have the log-likelihood with the optimal mutation rates,

L(Φ) =
n−1∑
i=1

[(
G∑
g=1

o
(g)
i

)
log

(
E[τn,i]

E[Ln]

)]
+ constant(o). (3.9)
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If we define the n-dimensional discrete probability distributions õ and τ̃n by

õk =

∑G
g=1 o

(g)
k∑n−1

i=1

∑G
g=1 o

(g)
i

,

and

τ̃n,k =
E[τn,k]

E[Ln]
,

where 1 ≤ k ≤ n − 1, then we see that the demographic model Φ∗ that is the MLE of the
likelihood function L(Φ) in (3.9) is given by,

Φ∗ = arg max
Φ

L(Φ)

= arg min
Φ

KL(õ || τ̃2n), (3.10)

where KL(P || Q) denotes the KL divergence of distribution Q from P . Hence, given
the demographic model, we can efficiently infer the optimal mutation rate at each locus
independently according to (3.8) and compute the log-likelihood using (3.9). We can also
compute the gradient of L(Φ) with respect to Φ using automatic differentiation [24], and
search over the space of demographic models using a gradient-based optimization method.

3.3.2 Computing the expected SFS under a variable population
size

In this section, we describe the details of computing the quantities E[τn,i] and E[Ln], the
expected branch length subtending i leaves and the expected total branch length respectively,
when a coalescent tree is drawn over n individuals according to Kingman’s coalescent with
demographic model Φ.

Polanski and Kimmel [69] showed that τn,i and E[Ln] can be computed efficiently and
numerically stably using the relations,

E[τn,i] =
n∑

m=2

Wn,i,mcm, (3.11)

E[Ln] =
n∑

m=2

Vn,mcm, (3.12)

where the coefficients Wn,i,m and Vn,m are efficiently computable by dynamic programming
[69, Equations 12–15], the coefficients cm are given by the integral,

cm =

∫ ∞
0

exp

[
−
(
m

2

)
R(t)

]
dt, (3.13)
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and R(t) is a time-rescaling function for the coalescent process, given by the expression,

R(t) =

∫ t

0

Nr

N(τ)
dτ. (3.14)

In this work, we consider the class of piecewise-exponential population size functions. Any
population size function in this family of functions can be described by M + 1 time points,
0 = t0 < t1 < · · · < tM = ∞, where the effective population size in time interval [ti, ti+1),
0 ≤ i ≤ M − 1, is given by N(t) = N(ti) exp(−βi+1(t − ti)). The times ti are in units of
Nr generations. In the piece corresponding to time interval [ti−1, ti), exponential population
growth (decline) is encoded by βi > 0 (βi < 0), while βi = 0 represents a constant population.
For this family of population models, we can compute the integrals in (3.13) as follows. For
t ∈ [ti, ti+1), 0 ≤ i ≤M − 1,

R(t)−R(ti) = 1[βi+1 = 0]
Nr

N(ti)
(t− ti) + 1[βi+1 6= 0]

1

βi+1

Nr

N(ti)
(exp(βi+1(t− ti))− 1)

(3.15)

cm =
M∑
i=1

∫ ti

ti−1

exp

(
−
(
m

2

)
R(t)

)
dt

=
M∑
i=1

exp

(
−
(
m

2

)
R(ti−1)

){∫ ti

ti−1

exp

(
−
(
m

2

)
(R(t)−R(ti−1))

)
dt

}

=
M∑
i=1

exp

(
−
(
m

2

)
R(ti−1)

){
1[βi = 0]

∫ ti

ti−1

exp

(
−
(
m

2

)
Nr

N(ti−1)
(t− ti−1)

)
dt +

1[βi 6= 0]

∫ ti

ti−1

exp

(
−
(
m

2

)
1

βi

Nr

N(ti−1)
(exp(βi(t− ti−1))− 1)

)}

cm =
M∑
i=1

1[βi = 0]
1(
m
2

)N(ti−1)

Nr

{
exp

(
−
(
m

2

)
R(ti−1)

)
− exp

(
−
(
m

2

)
R(ti)

)}

+
M∑
i=1

1[βi 6= 0]
1

βi
exp

(
−
(
m

2

)
R(ti−1)

)
exp

(
1

βi

(
m

2

)
Nr

N(ti−1)

)
×{

Ei

(
−
(
m

2

)
Nr

N(ti−1)

exp(βi(ti − ti−1))

βi

)
− Ei

(
−
(
m

2

)
Nr

N(ti−1)

1

βi

)}
,

(3.16)

where Ei(x) is the exponential integral special function, given by,

Ei(x) = −
∫ ∞
−x

e−t

t
dt. (3.17)
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Equation (3.16) can be further simplified to get

cm =
M∑
i=1

1[βi = 0]
1(
m
2

)N(ti−1)

Nr

{
exp

(
−
(
m

2

)
R(ti−1)

)
− exp

(
−
(
m

2

)
R(ti)

)}
+

M∑
i=1

1[βi 6= 0]
1

βi

{
exp

(
−
(
m

2

)
R(ti)

)
exp

((
m

2

)
Nr

N(ti−1)

exp(βi(ti − ti−1))

βi

)
×

Ei

(
−
(
m

2

)
Nr

N(ti−1)

exp(βi(ti − ti−1))

βi

)
− exp

(
−
(
m

2

)
R(ti−1)

)
exp

((
m

2

)
Nr

N(ti−1)

1

βi

)
Ei

(
−
(
m

2

)
Nr

N(ti−1)

1

βi

)}
,

(3.18)

We evaluate terms of the form exp(x)Ei(−x) that appear in (3.18) for large values of x
using the following asymptotic expansion,

exp(x)Ei(−x) = −1

x

∞∑
k=0

(−1)k
k!

xk
. (3.19)

For the results in Section 3.4, we truncated the divergent expansion (3.19) after 10 terms for
x ≥ 45.

3.4 Results

To test the performance of our method, we simulated data under the following demographic
scenarios:

• Scenario 1 – One epoch of exponential growth, with several different parameter values
for the per-generation growth rate r1 and the duration of growth t1. For all of these
choices, the population expansion factor, (1 + r1)t1 , was fixed at approximately 512,
which was also roughly equal to the MLE for the population expansion factor in the
CEU subpopulation inferred by Nelson et al. [62]. The ancestral population size prior
to the onset of exponential growth was fixed at 7700 diploids following the estimate of
Schaffner et al. [77] for the CEU subpopulation.

• Scenario 2 – Two epochs of exponential growth, the more ancient of which lasts for
t2 = 300 generations with a growth rate of r2 = 1% per generation, and a more recent
epoch of rapid growth lasting t1 = 100 generations with a growth rate of r1 = 4%
per generation. This model also has two population bottlenecks inferred by Keinan et
al. [40]. The ancestral population size was fixed at 104 diploids.
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The population size functions, N(t), for both these scenarios are shown in Figure 3.1. For
each scenario, we generated 100 simulated datasets using Hudson’s ms program [36] with a
sample size of 10,000 diploid individuals. For Scenario 1, we simulated 200 loci of length
10kb, with the mutation rates at each locus randomly chosen from the range 1.1 × 10−8 to
3.8×10−8 per bp per generation, and then held fixed across all the simulated datasets. These
are also the range of mutation rates estimated from family trios by Conrad et al. [11]. For
Scenario 2, we simulated 1000 loci of length 1kb, each with mutation rate 2.5× 10−8 per bp
per generation. For both scenarios, we used a realistic recombination rate of 10−8 per bp
per generation within each locus.

Figure 3.2 shows the inferred values of the duration and rate of exponential growth for
the various values of r1 and t1 in Scenario 1, while Figure 3.3 shows the inferred values of the
duration and growth rates for each of the two epochs in Scenario 2. The inferred mutation
rates for one setting of parameter values for Scenario 1, and for Scenario 2 are shown in
Figures 3.4 and 3.5 respectively. As can be seen from Figures 3.2 and 3.4, our method is able
to accurately infer the growth parameters and per-locus mutation rate at each of the loci in
Scenario 1. While there is more uncertainty in the inference of the growth parameters and
mutation rates in Scenario 2, the estimates appear unbiased. With larger sample sizes or
more segregating sites, this uncertainty in the parameter estimates is expected to decrease.

For all these simulation results, we combined the counts of those segregating sites which
fell in the top 90% of segregating sites ordered by minor allele frequency. To search over the
space of demographic models, we used the optimization program IPOPT [88] with gradients
computed using the automatic differentiation library ADOL [91]. Using the binning scheme
mentioned above, the optimization over the two parameters in Scenario 1 takes about 10
CPU seconds, and that over the four parameters in Scenario 2 takes about a CPU minute.
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Figure 3.1: Population size N(t) as a function of time (number of generations ago)
for (a) several choices of t1 and r1 in Scenario 1 and (b) Scenario 2. The present
time corresponds to t = 0.
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Figure 3.2: Box plots of the (a) duration and (b) rate of exponential growth in the
population size for different values of t1 and r1 in Scenario 1 over 100 simulated
datasets.
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Figure 3.3: Box plots of the (a) durations and (b) rates of exponential growth for
each of the two epochs in Scenario 2, over 100 simulated datasets.
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Figure 3.4: Box plots of the inferred mutation rates at each of 200 loci for Scenario
1 with t1 = 100, and r1 = 6.4%. The loci are sorted in ascending order of the true mutation
rates. The red line indicates the true mutation rate used in the simulations, while the blue
circles and error bars denote the median and 1 standard deviation of the inferred mutation
rates over 100 simulated datasets.
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Figure 3.5: Box plot of the inferred common mutation rate for Scenario 2 with 2
epochs of recent exponential growth. The true mutation rate used in the simulations
was µ = 2.5× 10−8 per bp per generation at all loci.
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Chapter 4

Distortion of genealogical properties
for very large sample sizes

In this chapter, we investigate whether the coalescent continues to be a good approxima-
tion to the DTWF model in the case where the sample size increases to the point where
the coalescent assumptions may be violated. We compare the two models under certain
demographic scenarios previously considered in the literature, including the case of recent
rapid population growth for humans [23,85]. We examine several key genealogical statistics
of interest such as the number of multiple and simultaneous mergers in the DTWF model,
the number of lineages as a function of time (NLFT), and the sample frequency spectrum.
A key feature of our work is that all our results, under both the coalescent and the DTWF
model, are based on exact deterministic computations rather than Monte-Carlo simulations.

To perform exact computation in the DTWF model, we exploit the Markov property
of the model and devise dynamic programming algorithms to compute various genealogical
quantities of interest exactly. These algorithms are computationally expensive, so we also
consider a hybrid method that uses the DTWF model for the recent past and the coalescent
for the more distant past. We demonstrate that this hybrid approach produces substan-
tially more accurate predictions than does the coalescent, while being more efficient than
performing computation in the full DTWF model.

4.1 Demographic models

In addition to the case of a constant population size, we consider three models of variable
population size. The details of the demographic models we consider are provided below and
illustrated in Figure 4.1:

• Model 1: A constant population size of 10,000 diploid individuals [32, 33].

• Model 2: Proposed by Keinan et al. [40], this model has two population bottlenecks,
the most recent of which lasted for 100 generations starting from 620 generations in



CHAPTER 4. GENEALOGICAL DISTORTIONS FOR VERY LARGE SAMPLES 42

the past, and a more ancient bottleneck lasting 100 generations, starting from 4,620
generations in the past. Further back in time, the population size is fixed at 10,085
diploids.

• Model 3: This demographic model was inferred by Gravel et al. [23] for the CEU
subpopulation from the 1000 Genomes [1] exon pilot data. In this model, a population
expansion in the last 920 generations occurs at a rate of 0.38% per generation.

• Model 4: This demographic model was inferred by Tennessen et al. [85, Figure 2B]
for the CEU subpopulation from exome-sequencing of 2440 individuals. The ancient
demography is similar to that in Model 3. However, following the most recent bottle-
neck, there are two epochs of exponential expansion in the most recent 920 generations
– a slower expansion phase for 716 generations at 0.307% per generation, followed by
a rapid expansion rate of 1.95% per generation for 204 generations.

While other models exhibiting recent rapid population expansion have been inferred [19,62],
we focus on Model 3 and Model 4 in this chapter because we want to consider sample
sizes that are on the order of the current effective population size while also considering
demographic models that incorporate realistic changes in the population size. Due to com-
putational limitations, the largest sample size for which we can perform exact computation
in the DTWF model is on the order of 105 haploids, which is of the same order of magni-
tude as the effective population size in Model 3, and about 10% of the current effective
population size of Model 4.

Using the above four demographic models, we examine deviations in the following quan-
tities between the coalescent and the DTWF model:

(a) Multiple and simultaneous mergers in the DTWF model.

(b) Number of lineages as a function of time (NLFT).

(c) Expected sample frequency spectrum.

The computation of the various genealogical quantities in the DTWF model, such as the
number of simultaneous- and multiple-mergers, the NLFT, and the expected frequency spec-
trum, rely on the Markov property of the DTWF model. By considering the types and counts
of the mergers occurring in the previous generation, one can write down one-step recurrence
equations relating these genealogical quantities over time and solve these recurrences by dy-
namic programming. The details of these recurrence equations for the various genealogical
quantities considered in this work are provided in Section 4.6, and software programs imple-
menting them can be downloaded from http://www.eecs.berkeley.edu/~yss/software.
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Figure 4.1: Demographic models examined in this work. Each graph shows the
effective population size N(t) (in haploids) as a function of time (number of generations
ago) in a Wright-Fisher model of random mating. The present time corresponds to t = 0.
The demographic models are labeled as (a) Model 1, (b) Model 2, (c) Model 3, and (d)
Model 4.

4.2 Multiple and simultaneous mergers in the DTWF

model

For a given demographic model in the DTWF framework, it becomes more likely that multi-
ple lineages may be lost in a single generation as the sample size n increases. The first-order
approximations used in the derivation of the coalescent from the DTWF model assume that
the sample size n is on the order of

√
N , with N being the population size. For example,
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Table 4.1: Expected percentage of lineages (relative to n−1, where n is the sample
size) lost due to either multiple or simultaneous mergers for Models 1–4. For large
sample sizes (n = 2 × 103 or 2 × 104), in all demographic models, most of the lineages are
lost in generations where multiple lineages are lost.

n Model 1 Model 2 Model 3 Model 4
20 0.28% 2.16% 0.84% 0.86%

2× 102 25.13% 30.86% 19.44% 24.79%
2× 103 91.16% 92.18% 90.81% 92.53%
2× 104 99.12% 99.22% 99.14% 99.31%

consider a sample of size n = 250 with an effective population size of N = 20,000 haploids.
Figure 4.2 shows the probability distribution of the number of parents of the sample in the
previous generation. There is a high probability that the sample will have less than n − 1
parents in the previous generation, an event which is ignored in the asymptotic calculation
used in the coalescent derivation from the DTWF model. Figure 4.3 shows the expected
fraction of lineages (relative to n − 1) that are lost due to either multiple or simultaneous
mergers, from the present up to time t in the past. Table 4.1 shows the numerical values of
the expected fraction as t → ∞. The sharp jump in the plot for Model 2 (Figure 4.3b)
corresponds to the beginning (backwards in time) of population bottlenecks when the popu-
lation size declines substantially, thus instantaneously increasing the rate at which lineages
find common ancestors and are lost. For small sample sizes relative to the population size,
it is unlikely for more than one lineage to be lost in a single generation, as can be seen in
the plots for n = 20 and n = 200. In contrast, for large sample sizes (n = 2 × 104), almost
all the lineages are lost in generations when more than one lineage is lost.

When multiple lineages are lost in a single generation of the DTWF model, there are
several ways this could happen. For example, suppose 2 out of m lineages are lost in one
generation. This could be the result of 3 lineages finding the same parent in the previous
generation, or two pairs of lineages each finding a common parent, with the two parents
being different. In general, there are S(m, j) different ways that m labeled lineages can
have j distinct parents in the previous generation, where S(m, j) is the Stirling number of
the second kind, counting the number of ways of partitioning a set of m labeled objects
into j non-empty subsets. A particular pattern of mergers of m lineages which leads to
j distinct parents, where dm

2
e ≤ j ≤ m, is illustrated in Figure 4.4. Here, m − j pairs

of lineages each find a common parent distinct from all other parents, and the remaining
2j − m lineages do not merge with any other lineages. There are j ancestral lineages left
after this type of merger. We call this an (m− j)-pairwise-simultaneous merger. For k ≥ 2,
we use the term k-merger to denote an event where exactly k lineages find the same common
parent in the previous generation. It is possible to have several multiple merger events in
a single generation. For example, a j-pairwise-simultaneous merger is equivalent to there
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Figure 4.2: Probability distribution of the number of parents of a sample of size
n = 250 and population size N = 20,000 in the Wright-Fisher model. For each value
of j on the x-axis, the y-axis is the probability that the sample of size n has j parents in the
previous generation. There is a substantial probability of the sample having less than n− 1
parents in the previous generation, which corresponds to multiple or simultaneous mergers
in the ancestral process.

being exactly j 2-merger events and no other merger events in a single generation.
In the coalescent, since at most 2 lineages find a common ancestor in any given time, the

only kind of possible merger is a single 2-merger (or equivalently, a 1-pairwise-simultaneous
merger). On the other hand, in a DTWF model with m lineages at a given time, there are
1
2

(
m
2

)(
m−2

2

)
possible 2-pairwise-simultaneous mergers, and

(
m
3

)
possible 3-mergers, yielding

the following expression for the total number of different ways for m lineages to find m− 2
distinct parents in the previous generation:

S(m,m− 2) =

(
m

3

)
+

1

2

(
m

2

)(
m− 2

2

)
. (4.1)

Since the second term is O(m4) while the first term is O(m3), for large m we expect 2-
pairwise-simultaneous mergers to be the dominant reason for losing 2 lineages in a single
generation.
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Table 4.2: Expected percentage of lineages (relative to n−1, where n is the sample
size) lost due to k-mergers in Models 1–4.

Model 1 Model 2
k n = 2× 103 n = 2× 104 n = 2× 103 n = 2× 104

2 96.68% 68.70% 96.66% 68.93%
3 3.24% 23.03% 3.26% 22.93%
4 0.08% 6.44% 0.08% 6.36%

Model 3 Model 4
k n = 2× 103 n = 2× 104 n = 2× 103 n = 2× 104

2 98.77% 89.99% 98.96% 98.11%
3 1.22% 9.25% 1.03% 1.87%
4 0.01% 0.72% 0.01% 0.02%

In Model 1 and Model 2 for n = 2×104, a substantial number of lineages are involved in
3-mergers, and more than 6% of the lineages are involved in 4-mergers, because the sample
size is of the same order as the current population size. Even in Model 3 and Model 4 for
n = 2× 104, around 9% and 2% of the lineages participate in 3-mergers, respectively.

Figure 4.5 illustrates the ratio of the sum of the expected number of lineages lost due to
k-pairwise-simultaneous mergers, for k ≥ 2, to the results shown in Figure 4.3, the expected
number of lineages lost due to multiple or simultaneous mergers, from the present up to
time t in the past. As Figure 4.5 shows, a substantial fraction of the lineages that are lost
in generations with multiple lost lineages (i.e. in generations with mergers forbidden in the
coalescent) are due to pairwise simultaneous mergers. Incidentally, that the curves for n = 20
starts out near 0.93 can be attributed to the fact that the ratio of the second term in the
right hand side of (4.1) to S(m,m− 2) is 51

55
for m = 20.

The expected fraction (relative to n − 1) of lineages lost due to k-mergers is shown in
Table 4.2. A substantial number of lineages are lost to 3-mergers in Model 1, Model 2 and
Model 3 for n = 2×104 because the sample size is of the same order as the population size at
time 0. Even in Model 4, about 1.9% of lineages participate in 3-mergers. Figure 4.6 shows
the fraction of 3-mergers up to time t relative to the total expected number of 3-mergers as
t→∞. As expected, in Model 1, Model 2, and Model 3, due to the large sample size
relative to the population size at time 0, a substantial portion of the 3-mergers take place
very early when the number of surviving lineages drops quickly. It is rather surprising that
in Model 4, where there is a rapid exponential population growth, a large fraction of the
3-mergers in fact take place during this period of growth. In particular, more than 25% of
the expected 3-mergers for n = 2 × 104 occur in the most recent 32 generations when the
effective population size is at least 5.5× 105.

Based on the results described above, one would expect that the number of ancestral
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lineages remaining at a given time decreases more rapidly under the DTWF model than
under the coalescent, and we investigate this quantity next.

4.3 Number of lineages as a function of time

Here, we compare the expected number of lineages as a function of time (NLFT) in the
coalescent and in the DTWF model. In what follows, we let ACn (t) and ADn (t) denote the
random variables for the number of lineages at generation t in the coalescent and the DTWF
model, respectively, starting with a sample of size n at time 0. Under the coalescent, the
expectation and standard deviation of the NLFT, E[ACn (t)] and σ(ACn (t)), can be computed
exactly in a numerically-stable fashion for an arbitrary variable population size model as
described in Section 4.6.5. An algorithm to compute E[ADn (t)] and σ(ADn (t)) under the
DTWF model is also described there.

For the four demographic models considered, Figure 4.7 shows the expectation and stan-
dard deviation of the NLFT under the DTWF model, while Figures 4.8 and 4.9 show the
relative differences in the expectation and standard deviation, respectively, of the NLFT in
the coalescent with respect to the NLFT in the DTWF model. For large sample sizes under
Model 1, Model 2, and Model 3, it can be seen that the lineages are lost at a faster rate
in the DTWF model than in the coalescent. This pattern is consistent with the fact that
these demographic models exhibit a substantial number of 3-mergers in the DTWF model
for large sample sizes (see Table 4.2), though the deviation in the expected NLFT is still
substantially less than the expected number of 3-mergers. The deviation disappears after
about 1000 generations when enough time has passed for the number of ancestral lineages
to become sufficiently small that the coalescent approximation holds.

For Model 4, the expected NLFT in the coalescent provides a fairly good approximation
to that in the DTWF model for all times and for all sample sizes considered. This is because
the population size remains much larger than the number of ancestral lineages at all times.

4.4 Expected sample frequency spectrum

Given a sample of n haploid (or n/2 diploid) individuals, a common summary of the sam-
ple used in various population genetic analyses is the sample frequency spectrum, τ̂ n =
(τ̂n,1, . . . , τ̂n,n−1). Under the infinite-sites model of mutation, the kth entry τ̂n,k corresponds
to the number of polymorphic sites in the sample that have k derived alleles and n − k
ancestral alleles, where 1 ≤ k ≤ n − 1. For a sample of n haploids randomly drawn from
the population, we denote the expected value of τ̂n,k in the coalescent and the DTWF mod-
els by τCn,k and τDn,k, respectively. In the case of a constant population size, τCn,k under the
infinite-sites model of mutation is given exactly by the expression

τCn,k =
θ

k
, (4.2)
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where θ denotes a population-scaled mutation rate. (Mutations arise according to a Poisson
process with intensity θ/2 in each lineage, independently of all other lineages.) For variable
population size models, the results of Polanski and Kimmel [69] can be used to compute
the expected sample frequency spectrum numerically-stably under the coalescent. In Sec-
tion 4.6.4, we develop an algorithm to compute the expected sample frequency spectrum
under the DTWF model, denoted by τDn = (τDn,1, . . . , τ

D
n,n−1).

Figure 4.10 illustrates the relative difference between the coalescent and the DTWF model
in the number of singletons (τn,1) and doubletons (τn,2) as a function of the sample size (n). As
the figure shows, the number of singletons predicted by the DTWF model is larger than the
coalescent prediction by as much as 11% when the sample size is comparable to the current
population size. It is interesting to note that even though there are a substantial number
of 3-mergers and 4-mergers in Model 1 and Model 2, the deviations in the frequency
spectrum are not nearly as large as one might have expected. This is probably because
even though the coalescent forbids multiple mergers by construction, successive two mergers
can be separated by arbitrarily small amounts of time (as opposed to being separated by at
least 1 generation in a discrete model). This allows the coalescent to simulate the effect of
multiple mergers without explicitly allowing them, leading to fairly similar frequency spectra
as a DTWF model.

The deviations in the singletons and doubletons for Model 1
match those computed by Fisher [18] (and tabulated in [90, Table 1]) when the sample
size equals the population size and in the limit that the population size tends to infinity.
For Model 4 (Figure 4.10d), we could not consider sample sizes > 105 because of compu-
tational burden, but the results for Models 1–3 suggest that we should expect to observe
≥ 10% deviation when the sample size n is increased to 106, the current population size in
Model 4. The deviation in the number of doubletons is also significant when the sample
size is comparable to the current population size; the DTWF prediction for doubletons is
smaller than the coalescent prediction by about 4.8%.

The findings described above are especially important given that rare variants comprise
a large fraction of segregating sites when the sample size is large. In Figure 4.11, we plot the
cumulative distribution of the frequency spectrum in the DTWF model for Models 1–4.
The number of singletons in Models 3 and 4 is higher than in Models 1 and 2 due to ex-
ponential population growth. The rapid population expansion in Model 4 results in about
51% of the segregating sites being singletons and over 80% of the segregating sites having
less than 5 copies of the derived allele in a sample of size n = 2 × 104. Figure 4.12 shows
the expected proportion of rare variants (derived allele frequency ≤ 0.01%) as a function
of the sample size n for Models 3 and 4 under the coalescent. It can be seen that as n
approaches the current population size, the proportion of rare variants increases substan-
tially. Figure 4.13 shows the expected proportion of segregating sites that are singletons as a
function of n for Models 1–4 under the coalescent. For small sample sizes (say, n < 100),
the proportion of singletons in Model 3 and 4 (which incorporate rapid recent population
expansion) is not much larger than that in Models 1 and 2. However, the difference in-
creases considerably as the sample size goes beyond a few hundred individuals, illustrating
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the need for large sample sizes to infer recent population expansion from frequency spectrum
data.

4.5 A hybrid method for computing the frequency

spectrum

As detailed in Section 4.6, computation in the DTWF model is substantially more involved
than in the coalescent. In particular, while the runtime of the frequency spectrum compu-
tation in the coalescent depends only on the number of piecewise-exponential epochs and
not the duration of each epoch, the runtime of our dynamic programming algorithm for the
DTWF model actually depends on the number of generations over which the algorithm is
run. Since noticeable deviation between the DTWF model and the coalescent arises when
the number of ancestral lineages is not negligible compared to the population size, a reason-
able tradeoff between accuracy and runtime would be to use the DTWF model for the recent
past and the coalescent for the more distant past (when the number of ancestral lineages has
decreased sufficiently).

To explore this idea, we implemented a hybrid method for computing the frequency
spectrum which, for a specified switching generation ts, uses the full DTWF model for
generations 0 < t ≤ ts, followed by the coalescent for generations t > ts. In particular,
for ts = 0, this algorithm computes the frequency spectrum under the coalescent, while for
ts =∞, it computes the frequency spectrum under the full DTWF model.

As Figure 4.14 illustrates for Model 3 in the case the sample size n is equal to the
current effective population size N0, the difference in the frequency spectrum between the
full DTWF model and the hybrid algorithm decreases rapidly as ts increases. With ts = 5
generations, the largest deviation in the number of singletons is less than 1%, which is a
substantial reduction from 11% for ts = 0 (Figure 4.10c). Figure 4.15 shows these data in a
different way, where the deviations in the frequency spectrum for Model 3 between the full
DTWF model and the hybrid algorithm are shown as a function of sample size for several
values of ts.

4.6 Computational details

In this section, we present the details of the algorithms used to compute the various quantities
such as the expected NLFT, the expected number of k-mergers and the sample frequency
spectrum under the DTWF model, and the NLFT under the coalescent.

4.6.1 Notation

Let N(t) be the number of (haploid) individuals at generation t in a DTWF model, where

t = 0 corresponds to the present and t is increasing going back in the past. Let p
(t)
n,m denote
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the probability that a sample of n labeled individuals at generation t has m distinct ancestors
at generation t + 1. The probabilities p

(t)
n,m can be computed using the following recursion

for 1 ≤ m ≤ n,

p(t)
n,m =

N(t+ 1)−m+ 1

N(t+ 1)
p

(t)
n−1,m−1 +

m

N(t+ 1)
p

(t)
n−1,m, (4.3)

with the convention that p
(t)
0,0 := 1, and p

(t)
n,m = 0 for all other values of m and n. This

recursion can be derived by treating a sample of size n as a sample of size n − 1 and an
additional individual. The first term of (4.3) is the probability that the parent of this
individual is distinct from the m − 1 parents of the n − 1 individuals in the sample, and
the second term of (4.3) is the probability that the parent of this individual is one of the m
parents of the n− 1 individuals in the sample.

For an algorithmic reason that will become clear presently, we assume that there is a
critical generation tc such that N(t) = N (some constant) for all t > tc. This assumption
is not so restrictive since for sufficiently large t, there will be only 1 lineage left with high
probability, and the genealogical properties we study will not be affected. For t > tc, we
drop the dependence on t in the probabilities p

(t)
n,m, and simply write them as pn,m.

4.6.2 Expected number of lineages as a function of time under
the DTWF model

By conditioning on the number of ancestral lineages in the previous generation, it is easy
to write a recurrence relation for the distribution of the number of lineages at generation t
given that there are n lineages at time 0,

P[ADn (t) = m] =

{∑n
k=m p

(t−1)
k,m P[ADn (t− 1) = k], if t > 0,

δn,m, if t = 0,
(4.4)

where δn,m = 1 if n = m, and δn,m = 0 otherwise. One can then compute the expectation
E[ADn (t)] using (4.4).

4.6.3 Expected number of multiple- and simultaneous-mergers in
the DTWF model

Let M
(t)
n,k be the random variable denoting the number of k-mergers that occur in a genealog-

ical tree starting with a sample of size n observed at generation t. The expected number of
k-mergers in a sample of size n observed at present, E[M

(0)
n,k], can be computed by condition-

ing on the mergers that occur between generation t and t + 1. We then have the following
recurrence relations for E[M

(t)
n,k],

E[M
(t)
n,k] =

{(
n
k

)∑n
m=k+1 p

(t)
k,1p

(t)
n−k,m−k

N(t+1)−m+k
N(t+1)

+
∑n

m=1 p
(t)
n,mE[M

(t+1)
m,k ], if k < n,

p
(t)
k,1 + p

(t)
k,kE[M

(t+1)
k,k ], if k = n.

(4.5)
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If the population size is constant, or for t > tc when the population size remains fixed in
the past, we can drop the dependence on t in the notation E[M

(t)
n,k], and derive the following

recurrence relations and boundary conditions for E[Mn,k]:

E[Mn,k] =

{(
n
k

)∑n
m=k+1

pk,1pn−k,m−k

1−pn,n

N−m+k
N

+
∑n−1

m=1
pn,m

1−pn,n
E[Mm,k], if k < n,

pk,1
1−pk,k , if k = n.

(4.6)

One can write similar recurrence relations for the expected number of k-simultaneous mergers
by conditioning on the mergers that occur during each generation of reproduction.

4.6.4 Expected sample frequency spectrum under the DTWF
model

The expected frequency spectrum of a randomly drawn sample of n individuals is denoted
τ n = (τn,1, . . . , τn,n−1), where τn,k corresponds to the number of polymorphic sites in the
sample having k derived alleles and n − k ancestral alleles for 1 ≤ k < n under an infinite-
sites model of mutation. For a given sample of individuals observed at present, the ancestral
process in the DTWF model generates a genealogical tree, where the root of the tree is the
most recent common ancestor (MRCA) of the sample, with the individuals in the sample
forming the leaves of the tree. For the DTWF model, we can use dynamic programming to
efficiently calculate τn,k as follows. Let γ

(t)
a,b be a random variable denoting the total branch

length (in number of generations) of a subtree that subtends a particular set of a labeled
individuals in a larger set of a+b individuals observed at time t. Then by the exchangeability
of the individuals in the sample, the definition of γ, and linearity of expectation, we have,

τn,k =
θ

2

(
n

k

)
E[γ

(0)
k,n−k], (4.7)

since there are
(
n
k

)
subsamples of k individuals out of the n individuals in the original sample.

By conditioning on the mergers between lineages that take place between generations t and
t+ 1, we get the following recurrence relations for E[γ

(t)
a,b],

E[γ
(t)
a,b] =


∑a

j=1

∑b
k=1 p

(t)
a,jp

(t)
b,k

(N(t+1)−j)k↓
(N(t+1))k↓

E[γ
(t+1)
j,k ] if a > 1,

1 +
∑b

m=1
N(t+1)−m
N(t+1)

p
(t)
b,mE[γ

(t+1)
1,m ] if a = 1 and b > 1,

1 + p
(t)
2,2E[γ

(t+1)
1,1 ] if a = b = 1.

(4.8)

If the population size is constant, or for t > tc when the population size remains fixed in
the past, we can drop the dependence on t in the notation γ

(t)
a,b, and by conditioning on the

previous genealogical event, we can derive the following recurrence relations and boundary
conditions for E[γa,b],

E[γa,b] =


∑a

j=1

∑b
k=1(1− δj,aδk,b) pa,jpb,k

1−pa+b,a+b

(N−j)k↓
(N)k↓

E[γj,k] if a > 1,
1

1−pb+1,b+1
+
∑b−1

m=1
N−m
N

pb,m
1−pb+1,b+1

E[γ1,m] if a = 1 and b > 1,

N if a = b = 1.

(4.9)
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From recurrence relations (4.8) and (4.9), the expected frequency spectrum for a sample
of size n can be computed in O(n4) and O(n4tc) time for the constant and variable population
cases respectively. However, if one truncates the summation range for the indices j and k
in (4.8) and (4.9) to only those j, k values where p

(t)
a,j and p

(t)
b,k (respectively, pa,j and pb,k)

are greater than some small tolerance parameter ε > 0, the time complexity of the above
dynamic programs can be improved to Õ(n2) and Õ(n2tc), where the Õ notation signifies
the dependence of the quantities on the truncation parameter ε.

We used (4.7) along with a truncation parameter of ε = 10−120 to compute the expected
frequency spectra values presented in the Results. Upon decreasing this threshold further, we
did not observe any change to the frequency spectra, suggesting that the computed answers
are accurate.

4.6.5 Expected number of lineages as a function of time under
the coalescent

Suppose we have a panmictic population with size N(t) at time t, evolving according to
Kingman’s coalescent. If we sample n lineages at time 0 and let ACn (t) denote the number of
ancestral lineages of this sample surviving at time t, then we have the following expression
for the probability distribution function of ACn (t) [83, 84],

P[ACn (t) = m] =
n∑

i=m

e−(i
2)R(t)(−1)i−m

(2i− 1)(m)(i−1)↑(n)i↓
m!(i−m)!(n)i↑

, (4.10)

where

R(t) =

∫ t

0

N(0)

N(τ)
dτ. (4.11)

The summation in (4.10) has terms with alternating signs, and this leads to a loss of numer-
ical precision due to catastrophic cancellation for even moderate sample sizes [56]. Hence,
computing the expectation of the NLFT, E[An(t)], by naively using (4.10) will not produce
reliable answers. However, using a formula of Tavaré [84, equation 5.11], one gets the follow-
ing closed-form expressions for the expectation and variance of An(t) that are numerically
stable to evaluate,

E[ACn (t)] =
n∑
i=1

e−(i
2)R(t)(2i− 1)

(n)i↓
(n)i↑

, (4.12)

Var
(
ACn (t)

)
=

n∑
i=1

e−(i
2)R(t)(2i− 1)(i2 − i+ 1)

(n)i↓
(n)i↑

−
[

n∑
i=1

e−(i
2)R(t)(2i− 1)

(n)i↓
(n)i↑

]2

. (4.13)

Each term in the summations in (4.12) and (4.13) is positive, and hence poses no numerical
problems for evaluation. Furthermore, the terms in the sum decay rapidly for large i due to
the exponential functions involved. We give elementary combinatorial proofs of (4.12) and
(4.13) in Section A.2 of Appendix A.
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4.7 Dicussion

Several analyses of genomic sequence variation in large samples of humans [19,39,62,85] have
found a substantial excess of rare variation compared to those predicted using previously ap-
plied demographic models. The inference in these studies is that these results are consistent
with a rapid growth of the effective population size in the recent past (much more rapid than
in previously applied demographic models), a conclusion consistent with historical records of
census population size [39]. These studies also employed sample sizes that would appear to
be large enough to violate assumptions of the coalescent, potentially distorting genealogical
properties in a way that may inflate rare variation relative to the predictions of coalescent
theory. In this chapter, we have investigated this issue by developing a method for perform-
ing exact computation in the discrete-time Wright-Fisher model of random mating. We have
studied the deviation between the coalescent and the Wright-Fisher model for several key
genealogical quantities that are used for population genomic inference.

For several recently inferred demographic scenarios for humans, our results show that
there are a significant number of multiple- and simultaneous-merger events under the Wright-
Fisher model that are ignored by construction of the coalescent. Furthermore, there are no-
ticeable differences in the expected number of rare variants between the coalescent and the
DTWF model, especially in the regime where the sample size is on the order of the current
effective population size. Even if the demographic models considered here might underesti-
mate the true current effective population size of humans, sample sizes in population genetic
studies are rapidly increasing and might grow to be large enough to cause the differences
between the DTWF and the coalescent to become amplified.

A number of demographic inference methods are based on fitting the expected frequency
spectra under the coalescent [12, 62, 85] or the diffusion process [23, 31, 51, 52] to observed
data. For instance, the exponential growth parameters in Models 3 [23] and 4 [85] were in-
ferred using a likelihood method based on the diffusion process approximation to the DTWF
model, by fitting the predicted frequency spectrum to polymorphism patterns observed in a
sample size of 876 individuals and 2,440 individuals, respectively. Since the diffusion process
approximation to the DTWF model is equivalent to the coalescent approximation, the dif-
ferences in the frequency spectrum (see Figure 4.10) between the coalescent and the DTWF
model indicate that we might infer different demographies if the analysis were done using
the DTWF model. In particular, for a sample of size n analyzed under the DTWF model,
any inferred demography will have a current effective population size of at least n. However,
the coalescent imposes no such restriction on the inferred current effective population size.
In fact, under the coalescent, it is even possible to estimate a current effective population
size N0 that is smaller than the sample size n. This is because one can only infer a scaling
function of time in the coalescent, which is the ratio of the variable effective population size
to a fixed reference population size. The inferred scaling function can then be transformed
into an effective population size function by using the empirically estimated per-generation
mutation rate [23], or by setting the reference population size to a specific value [12,62] (e.g.,
using an ancestral population size inferred by previous studies [77]).
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To balance the tradeoff between accuracy and computational efficiency, we have proposed
a hybrid algorithm that uses the DTWF model for the recent past and the coalescent for the
more distant past. This hybrid algorithm provides a way to obtain more accurate predic-
tions of the frequency spectrum than in the coalescent, while being computationally more
efficient than considering the full DTWF model. We leave the exploration of this method
for demographic inference as future research.

Wakeley and Takahashi [90] have provided asymptotically accurate expressions (as the
effective population size N →∞) for the number of singletons and the number of segregating
sites under a variant of the DTWF model which allows for a larger number of offspring
than the effective population size, assuming that the effective population size stays constant
over time. Fu [21] has also examined the accuracy of the standard coalescent model and
proposed an alternative continuous-time “exact” coalescent model applicable in the regime
when N(N−1) · · · (N−n+1)×N−n � 0, where N denotes the effective population size and
n the sample size. That work was restricted to the case of a constant population size, while in
this chapter we have considered several demographic scenarios inferred from recent large-scale
population genomic studies. Moreover, for some of the demographic scenarios and sample
sizes considered here, the assumption in Fu’s work [21] thatN(N−1) · · · (N−n+1)×N−n � 0
is violated. Wakeley et al. [89] have shown that it is difficult to reject the coalescent even
for data generated using fixed pedigrees with random genetic assortment. Our work is
complementary to that study and compares the coalescent to the DTWF random mating
model.

In this chapter, we have focused on the DTWF model for simplicity. However, it is
known that under some weak conditions on the limiting probabilities of a 2-merger and
a 3-merger, a large family of exchangeable random mating models converge to the same
coalescent limit as the unit of time is rescaled appropriately and the population size gets large
[58, 59]. The rate of convergence to the coalescent differs between different random mating
models [4], and hence the accuracy of coalescent predictions for large sample sizes depends
on the random mating model being considered. The deviation from the coalescent could be
amplified for other random-mating models. It would be interesting to consider the accuracy
of the coalescent for other random and realistic models of relevance to human genetics; e.g.,
models in which generations overlap and the distribution of offspring number more closely
reflects the observed pattern for human populations (for example, the Swedish family data
of Low and Clarke [50] or the Saguenay-Lac-Saint-Jean population considered by Moreau et
al. [60]). Despite having access to large samples, recent studies [19,62,85] have inferred much
smaller current effective population sizes (on the order of millions) than the current census
size (on the order of billions) of the population from which the samples were drawn. It is
possible that demographic inference methods that explicitly model realistic human mating
patterns might be able to infer census population size histories more accurately than does
the coalescent, which assumes random mating and can only infer effective population sizes
that do not have a direct census interpretation.

Furthermore, it would be interesting to compare discrete-time random models and the
coalescent with respect to haplotype sharing (identity-by-descent and identity-by-state), link-
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age disequilibrium, and natural selection when the sample size is very large. For example,
Davies et al. [13] employed simulations to demonstrate that for a constant population size
model, recombination and gene conversion can increase the number of ancestral lineages of a
sample of chromosomes to the extent that multiple and simultaneous mergers in the DTWF
model can lead to substantial differences from the coalescent model in the rates of coales-
cence and in the number of sequences carrying ancestral material. It would be interesting to
perform such comparisons for more realistic demographic models for humans.

We will soon enter an era where it will become routine to analyze samples with hun-
dreds of thousands if not millions of individuals. For these large sample sizes, the standard
coalescent will no longer serve as an adequate model for evolution. The DTWF model
is mathematically cumbersome to work with, which was one of the original motivations
for adopting the coalescent for modern population genetics analyses. However, for these
very large sample sizes, we will need to develop new mathematically and computationally
tractable stochastic processes that better approximate realistic models of human population
evolution, and under which we can efficiently compute genealogical quantities like we have
been able to under the coalescent.
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Figure 4.3: Expected proportion of lineages (relative to n−1, where n is the sample
size at present) that are lost in generations when more than one lineage is lost,
from the present up to time t in the past. For each generation t on the x-axis, the
y-axis is the expected number of lineages that have been lost due to coalescence events in
those generations from 0 to t where more than one lineage is lost, normalized by the quantity
n − 1, which is the total number of lineages that are lost over all generations. The plots
correspond to (a) Model 1, (b) Model 2, (c) Model 3, and (d) Model 4. The sharp
jumps in the plot for Model 2((b)) corresponds to the beginning (backwards in time) of
population bottlenecks when the population size declines substantially, thus instantaneously
increasing the rate at which lineages find common ancestors and are lost. For small sample
sizes relative to the population size (n = 20 and n = 200), it is unlikely for more than one
lineage to be lost in a single generation. In contrast, for large sample sizes (n = 2 × 104),
almost all the lineages are lost in generations when more than one lineage is lost.
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Figure 4.4: An example generation of an (m − j)-pairwise-simultaneous merger
during which m lineages in generation t find j parents in generation t+ 1 (back-
wards in time). Each of m − j pairs of lineages in generation t finds a different common
parent in generation t + 1, while the remaining 2j −m lineages of generation t each have a
different parent in generation t+ 1.
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Figure 4.5: Ratio of the sum of the expected number of lineages lost due to k-
pairwise-simultaneous mergers up to time t, for k ≥ 2, to the respective results
shown in Figure 4.3. This quantity measures the proportion of lineages lost in generations
where more than one lineage is lost due to pairwise simultaneous merger events (and no
multiple merger events). The plots correspond to (a) Model 1, (b) Model 2, (c) Model 3,
and (d) Model 4. A substantial fraction of the lineages that are lost in generations with
multiple lost lineages are due to pairwise simultaneous mergers.
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Figure 4.6: Ratio of the expected number of 3-mergers until time t to the total
expected number of 3-mergers. The plots correspond to (a) Model 1, (b) Model 2,
(c) Model 3, and (d) Model 4. In Model 1 and Model 2, due to the large sample size
relative to the population size at time 0, a substantial portion of the 3-mergers take place
very early when the number of surviving lineages drops quickly. Even in Model 4 where
there is a rapid exponential population growth in the most recent 204 generations, more
than 25% of the expected 3-mergers for n = 2× 104 occur in the most recent 32 generations
when the effective population size is at least 5.5× 105 haploids.
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Figure 4.7: The expectation (solid line) and standard deviation (vertical whiskers)
of the NLFT under the DTWF model. (a) Model 1. (b) Model 2. (c) Model 3.
(d) Model 4.
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Figure 4.8: The percentage difference in the expected NLFT between the coales-
cent and DTWF models, for a haploid sample of size n ∈ {20, 2×102, 2×103, 2×104}.
The plots correspond to (a) Model 1, (b) Model 2, (c) Model 3, and (d) Model 4. For
all demographic models, lineages are lost at a faster rate in the DTWF model than in the
coalescent, consistent with the fact that there are a substantial number of 3-mergers in the
DTWF model for large sample sizes. This deviation is more pronounced for larger sample
sizes and for Models 1–3 where the sample size is comparable to the current population
size.
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Figure 4.9: The percentage difference in the standard deviation of the NLFT
between the coalescent and DTWF models, for a haploid sample of size n ∈
{20, 2 × 102, 2 × 103, 2 × 104}. The plots correspond to (a) Model 1, (b) Model 2, (c)
Model 3, and (d) Model 4.



CHAPTER 4. GENEALOGICAL DISTORTIONS FOR VERY LARGE SAMPLES 63

101 102 103 104 105

Sample size n

−6

−4

−2

0

2

4

6

8

10

12

τ
D n
,i
−
τ
C n
,i

τ
D n
,i
×

10
0%

Singletons
Doubletons

(a)

101 102 103 104 105

Sample size n

−6

−4

−2

0

2

4

6

8

10

12

τ
D n
,i
−
τ
C n
,i

τ
D n
,i
×

10
0%

Singletons
Doubletons

(b)

101 102 103 104 105

Sample size n

−6

−4

−2

0

2

4

6

8

10

12

τ
D n
,i
−
τ
C n
,i

τ
D n
,i
×

10
0%

Singletons
Doubletons

(c)

101 102 103 104 105

Sample size n

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

τ
D n
,i
−
τ
C n
,i

τ
D n
,i
×

10
0%

Singletons
Doubletons

(d)

Figure 4.10: The percentage relative error in the number of singletons and dou-
bletons between the coalescent and DTWF models, as a function of the sample
size n. When the sample size is comparable to the current population size, the number
of singletons predicted by the DTWF model is larger than the coalescent prediction by as
much as 11%, while the number of doubletons predicted by the DTWF model is smaller
than the coalescent prediction by about 4.8%. In Model 4, we could not consider a sample
size comparable to the population size (106) because of computational burden, but we expect
a similar extent of deviation as in Models 1–3 as n increases. Note that the y-axis scale
for Model 4 is different from that for Models 1–3. (a) Model 1. (b) Model 2. (c)
Model 3. (d) Model 4.



CHAPTER 4. GENEALOGICAL DISTORTIONS FOR VERY LARGE SAMPLES 64

0 5 10 15 20 25
k, number of derived alleles

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

n = 20

n = 2× 102

n = 2× 103

n = 2× 104

(a)

0 5 10 15 20 25
k, number of derived alleles

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

n = 20

n = 2× 102

n = 2× 103

n = 2× 104

(b)

0 5 10 15 20 25
k, number of derived alleles

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

n = 20

n = 2× 102

n = 2× 103

n = 2× 104

(c)

0 5 10 15 20 25
k, number of derived alleles

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

n = 20

n = 2× 102

n = 2× 103

n = 2× 104

(d)

Figure 4.11: The cumulative distribution function of the frequency spectrum, as
a function of the number of derived alleles, k, in the DTWF model with sample
sizes n ∈ {20, 2 × 102, 2 × 103, 2 × 104}. For each value of k on the x-axis, the y-axis is
the proportion of segregating sites with at most k copies of the derived allele in the DTWF

model,
∑k

j=1 τ
D
n,j∑n−1

i=1 τ
D
n,i

. The plots correspond to (a) Model 1, (b) Model 2, (c) Model 3, and

(d) Model 4. In Model 4 where the population grows rapidly in the recent past, about
51% of the segregating sites are singletons in a sample of size n = 2× 104. In Model 3, the
fraction of singleton sites is lower than in Model 4 because the population growth rate is
lower.
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Figure 4.12: Expected proportion of segregating sites with derived allele frequency
≤ 0.01%, as a function of the sample size n in the coalescent for Models 3 and
4. The frequency of such rare variants is increasing in the sample size and in the case of
Model 4, rare variants practically account for all the variants for very large sample sizes.
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Figure 4.13: Expected proportion of segregating sites that have only one copy of
the derived allele (i.e., singletons), as a function of the sample size n in the coa-
lescent for Models 1–4. The difference in the number of singletons in Model 4 (which
incorporates recent population expansion) and the number of singletons in Models 1 and
2 (without a recent expansion) rapidly increases for sample sizes beyond a few hundred indi-
viduals, indicating that large sample sizes are needed to infer demographic models of recent
population growth from frequency spectrum data.
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Figure 4.14: The percentage relative error, with respect to the full DTWF model,
in the number of singletons and doubletons in a hybrid algorithm with switching
time ts. The hybrid method uses the DTWF model for generations ≤ ts and the coalescent
model in generations > ts. The results are for Model 3 in the case the sample size n is
equal to the current effective population size N0 = 67,627. The case of ts = 0 corresponds
to using the coalescent model only. This plot shows that the difference in the frequency
spectrum between the full DTWF model and the hybrid algorithm decreases very rapidly as
the switching time ts increases.
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Figure 4.15: The percentage relative error in the number of singletons and dou-
bletons between the computations under the full DTWF model and a hybrid
algorithm which uses the coalescent model in generations t > ts for Model 3.
The case of ts = 0 corresponds to using the coalescent model only, illustrated in Figure 4.10c.
We use τ (ts) to denote the frequency spectrum using the hybrid algorithm with a switching
time of ts. As ts increases, we see that the deviation between the computation under the
DTWF model and the hybrid algorithm decreases monotonically, suggesting that one could
use such an algorithm to efficiently approximate the frequency spectrum under the DTWF
model. The values of ts for the plots are (a) ts = 1, (b) ts = 5, (c) ts = 10, (d) ts = 25.
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Chapter 5

Future directions

This dissertation examined several aspects of demographic inference for a randomly mating
population using the sample frequency spectrum of a set of sequences. Beyond the open
problems mentioned in the discussions in each chapter, there are several interesting questions
for future research related to these aspects:

• What can we say about model identifiability from other representations of genomic
data, such as full haplotype data or the distribution of IBD and IBS tract lengths?
Several recent population size inference methods [48, 79] based on the sequentially
Markov coalescent approximation [57] implicitly assume that piecewise-constant pop-
ulation sizes are identifiable from just two haplotypes. If this is indeed the case, what
is the minimum sequence length required for identifiability under the full coalescent
with recombination or approximations like the sequentially Markov coalescent? The
same questions can also be asked about the evolutionary models that are used by de-
mographic inference methods [34,64] that utilize the distribution of IBS and IBD tract
lengths for a pair of haplotypes.

• What can we say about the number of samples sufficient for demographic identifiability
if we have access to only a few entries of the expected SFS? More generally, how many
samples are sufficient for identifiability given access to a linear transformation of the
expected SFS? Such a result would generalize the identifiability theorem for the folded
frequency spectrum given in Section 2.3.4 of Chapter 2.

• As the number of segregating sites increases, the empirical SFS converges in probability
to the expected SFS, thus allowing the demographic model to be reliably inferred from
sample sizes such as those given in Chapter 2. However, if we have access to far more
samples than the minimum needed for identifiability, then simulations indicate that
we might require fewer segregating sites for reliable inference than if we used a smaller
sample size. This suggests the following interesting question: for a given total number
of bases of sequencing capacity, what is the trade-off between the sample size and
sequence length that maximizes the accuracy of our inference method?
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• Can we develop demographic inference methods based on exact computation that use
the joint SFS from samples from multiple populations while taking into account com-
plex demographic events like admixture and continuous migration? Chen [9] has de-
rived analytic expressions for the entries of the expected joint SFS of multiple popu-
lations that are related by split and point admixture events. It would be interesting
to extend those results to the case of multiple populations with continuous migration
between them.

• What are the extremal demographic models for the deviations of the various genealog-
ical quantities between the discrete-time Wright-Fisher and coalescent models? What
can we say about this question for other discrete-time models of mating that also con-
verge to the coalescent, such as the discrete-time Moran model or the more general
family of Cannings exchangeable models?
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[13] Davies, J. L., Simanč́ık, F., Lyngsø, R., Mailund, T. and Hein, J. (2007).
On recombination-induced multiple and simultaneous coalescent events. Genetics 177,
2151–2160.

[14] Durrett, R. (2008). Probability models for DNA sequence evolution 2nd ed. Springer,
New York.

[15] Erlich, H. A., Bergström, T. F., Stoneking, M. and Gyllensten, U. (1996).
HLA sequence polymorphism and the origin of humans. Science 274, 1552–1554.

[16] Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. and Foll,
M. (2013). Robust demographic inference from genomic and SNP data. PLoS Genetics
9, e1003905.

[17] Excoffier, L. and Foll, M. (2011). Fastsimcoal: a continuous-time coalescent
simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioin-
formatics 27, 1332–1334.

[18] Fisher, R. A. et al. (1930). The distribution of gene ratios for rare mutations.
Proceedings of the Royal Society of Edinburgh 50, 205–220.

[19] Fu, W., O’Connor, T. D., Jun, G., Kang, H. M., Abecasis, G., Leal, S. M.,
Gabriel, S., Altshuler, D., Shendure, J., Nickerson, D. A. et al. (2012).
Analysis of 6,515 exomes reveals the recent origin of most human protein-coding vari-
ants. Nature 493, 216–220.

[20] Fu, Y.-X. (1995). Statistical properties of segregating sites. Theoretical Population
Biology 48, 172–197.

[21] Fu, Y.-X. (2006). Exact coalescent for the Wright-Fisher model. Theoretical Population
Biology 69, 385–394.

[22] Gantmacher, F. R. (2000). The theory of matrices vol. 2. Chelsea Publishing Com-
pany, New York.



BIBLIOGRAPHY 73

[23] Gravel, S., Henn, B. M., Gutenkunst, R. N., Indap, A. R., Marth, G. T.,
Clark, A. G., Yu, F., Gibbs, R. A., Bustamante, C. D., Altshuler, D. L.
et al. (2011). Demographic history and rare allele sharing among human populations.
Proceedings of the National Academy of Sciences 108, 11983–11988.

[24] Griewank, A. and Corliss, G. F. (1991). Automatic differentiation of algorithms:
theory, implementation, and application. Society for industrial and Applied Mathemat-
ics Philadelphia, PA.

[25] Griffiths, R. (1991). The two-locus ancestral graph. Selected Proceedings of the
Sheffield Symposium on Applied Probability. IMS Lecture Notes–Monograph Series 18,
100–117.

[26] Griffiths, R. (2003). The frequency spectrum of a mutation, and its age, in a general
diffusion model. Theoretical Population Biology 64, 241–251.
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[88] Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming 106, 25–57.

[89] Wakeley, J., King, L., Low, B. S. and Ramachandran, S. (2012). Gene ge-
nealogies within a fixed pedigree, and the robustness of Kingman’s coalescent. Genetics
190, 1433–1445.

[90] Wakeley, J. and Takahashi, T. (2003). Gene genealogies when the sample size
exceeds the effective size of the population. Molecular Biology and Evolution 20, 208–
213.

[91] Walther, A. and Griewank, A. (2012). Getting started with ADOL-C. In Combi-
natorial Scientific Computing. ed. U. N. und O. Schenk. Chapman-Hall CRC Compu-
tational Science pp. 181–202.

[92] Watterson, G. (1975). On the number of segregating sites in genetical models without
recombination. Theoretical Population Biology 7, 256–276.

[93] Williamson, S. H., Hernandez, R., Fledel-Alon, A., Zhu, L., Nielsen, R.
and Bustamante, C. D. (2005). Simultaneous inference of selection and population
growth from patterns of variation in the human genome. Proceedings of the National
Academy of Sciences 102, 7882–7887.

[94] Wiuf, C. and Hein, J. (1999). Recombination as a point process along sequences.
Theoretical Population Biology 55, 248–259.
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Appendix A

Some identities related to Kingman’s
coalescent

In this appendix, we derive analytic expressions for several genealogical quantities under the
coalescent with a time-varying population size function. While these results are known in
previous works, we give independent elementary combinatorial proofs here.

A.1 Analytic expressions for the distribution of the

coalescent waiting times

In this section, we derive analytic expressions for the entries of the expected SFS ξn of a
sample of size n under a time-varying population size and the infinite-sites model of mutation.
These expressions also appear in the works of Polanski et al. [68] and Živković and Wiehe [96].
Consider Kingman’s coalescent with a time-varying population size function η(t), where t = 0
corresponds to the present, and t increases going back into the past. Similar to the notation
in Chapter 2, we let T

(η)
n,k denote the random variable representing the time (in coalescent

units) spent while there are k lineages in the coalescent process, given that we start with

a sample of size n at t = 0. We also let Σ
(η)
n,k be the random variable denoting the total

time spent in the process while there are at least k surviving lineages, given that we start
with a sample of size n at t = 0. For notational brevity, we will drop the dependence of
these random variables on the population size function η where it is clear from context. The
random variables Σn,k and Tn,k, for 2 ≤ k ≤ n, are related by

Σn,k =
n∑
j=k

Tn,j,

Tn,k = Σn,k − Σn,k+1,

where for consistency, we define Σn,n+1 = 0.
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For a coalescent-rescaled population size function η(t), the total intensity of any pairwise
coalescence up to time t, Rη(t), is given by

Rη(t) :=

∫ t

0

1

η(x)
dx. (A.1)

From the Markov property of the ancestral process mentioned in Section 1.3.4 of Chapter 1,
the sequence of random variables Σn,n, . . . ,Σn,2 form a first-order Markov chain with the pdf
of Σn,k conditional on Σn,k+1 = τ given by

fΣn,k|Σn,k+1=τ (t) =

{(
k
2

)
1
η(t)

exp
(
−
(
k
2

)
(Rη(t)−Rη(τ))

)
if t ≥ τ

0 if t < τ.
(A.2)

Theorem 12. The pdf fΣn,k
of the total time Σn,k while there are at least k ancestors for a

sample of size n at time 0 is given by,

fΣn,k
(t) =

n∑
j=k

an,k,j

(
j

2

)
1

η(t)
exp

(
−
(
j

2

)
Rη(t)

)
, (A.3)

where the an,k,j are given by

an,k,j =

∏n
l=k,l 6=j

(
l
2

)∏n
l=k,l 6=j

[(
l
2

)
−
(
j
2

)] . (A.4)

Proof. Letting λk =
(
k
2

)
, for any sample size n, the pdf fΣn,n of the waiting time to the first

coalescence event Σn,n is given by

fΣn,n(t) = λn
1

η(t)
exp (−λnRη(t)) . (A.5)

Now consider the pdf of the total waiting time to the second coalescence event Σn,n−1. Using
(A.5) and (A.2), we have

fΣn,n−1(t) =

∫ t

0

fΣn,n(τ)fΣn,n−1|Σn,n=τ (t)dτ

=

∫ t

0

λn
1

η(τ)
exp (−λnRη(τ))λn−1

1

η(t)
exp (−λn−1(Rη(t)−Rη(τ))) dτ

= λnλn−1
1

η(t)
exp (−λn−1Rη(t))

∫ t

0

1

η(τ)
exp [− (λn − λn−1)Rη(τ)] dτ

= λnλn−1
1

η(t)
exp (−λn−1Rη(t))

1− exp [− (λn − λn−1)Rη(t)]

λn − λn−1

fΣn,n−1(t) =
λnλn−1

λn − λn−1

1

η(t)
exp (−λn−1Rη(t))−

λnλn−1

λn − λn−1

1

η(t)
exp (−λnRη(t)) . (A.6)
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Equations (A.5) and (A.6) suggest the following ansatz for the pdf fΣn,k
of Σn,k:

fΣn,k
(t) =

n∑
j=k

bn,k,j
1

η(t)
exp (−λjRη(t)) , (A.7)

where the coefficients bn,k,j are real-valued constants that only depend on n, k and j (and
not on η(t)). We can get a recurrence relation between the coefficients bn,k,j by substituting
the ansatz (A.7) into (A.2) as follows,

fΣn,k
(t) =

∫ t

0

fΣn,k+1
(τ)fΣn,k|Σn,k+1=τ (t)dτ

=

∫ t

0

{
n∑

j=k+1

bn,k,j
1

η(τ)
exp (−λjRη(τ))

}
λk

1

η(t)
exp (−λk(Rη(t)−Rη(τ))) dτ

fΣn,k
(t) =

n∑
j=k+1

bn,k+1,j
λk

λj − λk
1

η(t)
exp (−λkRη(t))−

n∑
j=k+1

bn,k+1,j
λk

λj − λk
1

η(t)
exp (−λjRη(t)) .

(A.8)

Equating the coefficients of (A.7) with the coefficients in (A.8), we get the following recur-
rence relations,

bn,k,k =
n∑

j=k+1

bn,k+1,j
λk

λj − λk
, 2 ≤ k ≤ n, (A.9)

bn,k,j = bn,k+1,j
λk

λk − λj
, 2 ≤ k ≤ n and k + 1 ≤ j ≤ n, (A.10)

with boundary conditions,

bn,n,n = λn. (A.11)

It is clear that (A.9)–(A.11) has a unique solution for the bn,k,j. Using (A.9) and (A.10), we
can explicitly compute the first few values of bn,k,j,

bn,n−1,n−1 =
λn−1λn
λn − λn−1

, bn,n−1,n =
λn−1λn
λn−1 − λn

,

bn,n−2,n−2 =
λn−2λn−1λn

(λn−1 − λn−2)(λn − λn−2)
, bn,n−2,n−1 =

λn−2λn−1λn
(λn−2 − λn−1)(λn − λn−1)

,

bn,n−2,n =
λn−2λn−1λn

(λn−2 − λn)(λn−1 − λn)
.

From these equations, we can conjecture that bn,k,j, 2 ≤ k ≤ j ≤ n, is given by

bn,k,j =

∏n
l=k λl∏n

l=k,l 6=j λl − λj
. (A.12)
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It is easy to see that the conjectured expression (A.12) for bn,k,j satisfies (A.10) and
(A.11). To see that it satisfies (A.9), consider the partial fraction expansion of

∏n
l=k+1

1
λl−x

in the variable x,

n∏
l=k+1

1

λl − x
=

n∑
j=k+1

Bj

λj − x
, (A.13)

where the coefficients Bj can be found by the Heaviside cover-up method to be

Bj =
n∏

l=k+1
l 6=j

1

λl − λj
. (A.14)

Substituting x = λk into (A.13), using (A.14), and multiplying both sides of (A.13) by∏n
l=k λl, we have, ∏n

l=k λl∏n
l=k+1 λl − λk

=
n∑

j=k+1

 ∏n
l=k+1 λl∏n

l=k+1
l 6=j

λl − λj

 λk
λl − λk

. (A.15)

Note that the term on the left hand side matches the conjectured expression (A.12) for
bn,k,k, and the term in the parentheses on the right hand side is the conjectured expression
for bn,k+1,j. Hence, (A.12) is the solution to (A.9)–(A.11). Using (A.12) and noting that
bn,k,j = an,k,jλj, we get (A.4).

For the variable population size function η(t), a result of Griffiths and Tavaré [28] states
that the entries of the expected SFS ξn for a sample of size n are proportional to linear
combinations of E[T

(η)
n,k ],

ξn,b =

∑n−b+1
k=2 k

(n−b−1
k−2 )

(n−1
k−1)

E[Tn,k]∑n
k=2 kE[Tn,k]

. (A.16)

Note that E[Tn,k] = E[Σn,k]− E[Σn,k+1], and E[Σn,k] can be calculated using the pdf of Σn,k

given in (A.3),

E[Σn,k] =
n∑
j=k

an,k,j

∫ ∞
0

t

(
j

2

)
1

η(t)
exp

(
−
(
j

2

)
Rη(t)

)
dt

=
n∑
j=k

an,k,jcj, (A.17)

where cj is the expected time to the first coalescence event for a sample of size j,

cj =

∫ ∞
0

t

(
j

2

)
1

η(t)
exp

(
−
(
j

2

)
Rη(t)

)
dt.
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However, this method of computing the expected SFS ξn for a given population size function
η is not numerically stable for large sample sizes n [68]. This is because for fixed values of n
and k, the terms an,k,j have alternating signs in j, which causes numerical difficulties in the
computation of E[Σn,k] using (A.17) for large n.

A.2 Expectation and standard deviation of the NLFT

under the coalescent

We first establish some combinatorial identities, which will be used in the proofs of the ex-
pressions for the mean and variance of the NLFT under the coalescent stated in Section 4.6.5
of Chapter 4.

Claim 13. For all t, n ∈ Z+,

n∑
k=0

(−1)n−k
(
n

k

)(
t+ k − 1

t

)
=

(
t− 1

n− 1

)
.

Proof. Let Ω = {(x1, · · · , xn) : xi ∈ Z≥0,
∑n

i=1 xi = t, }, and define Ai = Ω
⋂ {(x1, · · · , xn) :

xi = 0}. The number of positive integer solutions to x1 + . . . + xn = t is equal to
(
t−1
n−1

)
.

Hence, ∣∣∣∣∣⋂
i

Aci

∣∣∣∣∣ =

(
t− 1

n− 1

)
.

By the inclusion-exclusion principle,∣∣∣∣∣⋂
i

Aci

∣∣∣∣∣ = |Ω|+
∑

∅(S⊆[n]

(−1)|S|

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣
=

n∑
j=0

∑
∅⊆S⊆[n],
|S|=j

(−1)j
(
t+ (n− j)− 1

t

)

=
n∑
j=0

(−1)j
(
n

j

)(
t+ (n− j)− 1

t

)
∣∣∣∣∣⋂
i

Aci

∣∣∣∣∣ =
n∑
k=0

(−1)n−k
(
n

k

)(
t+ k − 1

t

)
,

where in the second equality, we used the fact that the number of non-negative integer
solutions to y1 + . . .+ yl = m is equal to

(
m+l−1
m

)
.
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Claim 14. For n ∈ Z+,
n∑
k=1

(−1)n−kk
(k)(n−1)↑
k!(n− k)!

= 1

Proof.

n∑
k=1

(−1)n−kk
(k)(n−1)↑
k!(n− k)!

=
n∑
k=1

(−1)n−k ((n+ k − 1)− (n− 1))
(k)(n−1)↑
k!(n− k)!

=
n∑
k=1

(−1)n−k
(k)n↑

k!(n− k)!
− (n− 1)

n∑
k=1

(−1)n−k
(k)(n−1)↑
k!(n− k)!

. (A.18)

Considering the first term of (A.18),

n∑
k=1

(−1)n−k
(k)n↑

k!(n− k)!
=

n∑
k=0

(−1)n−k
(
n

k

)(
n+ k − 1

n

)
= 1, (A.19)

where in the second equality, we have used Claim 13 with t = n. Considering the second
term of (A.18),

(n− 1)
n∑
k=1

(−1)n−k
(k)(n−1)↑
k!(n− k)!

=
(n− 1)

n

n∑
k=0

(−1)n−k
(
n

k

)(
n− 1 + k − 1

n− 1

)
= 0, (A.20)

where in the second equality, we have used Claim 13 with t = n− 1.

Claim 15. For n ∈ Z+,

n∑
k=1

(−1)n−kk2 (k)(n−1)↑
k!(n− k)!

= n2 − n+ 1

Proof.

n∑
k=1

(−1)n−kk2 (k)(n−1)↑
k!(n− k)!

(A.21)

=
n∑
k=1

(−1)n−k
(
(k + n)(k + n− 1) + (1− 2n)(k + n− 1) + (n− 1)2

) (k)(n−1)↑
k!(n− k)!

= (1− 2n)
n∑
k=1

(−1)n−k
(k)n↑

k!(n− k)!
+ (n− 1)2

n∑
k=1

(−1)n−k
(k)(n−1)↑
k!(n− k)!

+
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+
n∑
k=1

(−1)n−k
(k)(n+1)↑
k!(n− k)!

(A.22)

The first term of (A.22) is equal to (1 − 2n) by (A.19), and the second term of (A.22) is
equal to 0 by (A.20). Considering the third term of (A.22),

n∑
k=1

(−1)n−k
(k)(n+1)↑
k!(n− k)!

= (n+ 1)
n∑
k=0

(−1)n−k
(
n

k

)(
n+ 1 + k − 1

n+ 1

)
= n(n+ 1),

where in the second equality, we used Claim 13 with t = n+ 1.

Theorem 16. The expected number of surviving lineages at time t in the coalescent, given
that there were n lineages at time 0, is given by,

E
[
ACn (t)

]
=

n∑
i=1

e−(i
2)R(t)(2i− 1)

(n)i↓
(n)i↑

. (A.23)

Proof. We have the following expression for the probability distribution of ACn (t) [83, 84],

P[ACn (t) = m] =
n∑

i=m

e−(i
2)R(t)(−1)i−m

(2i− 1)(m)(i−1)↑(n)i↓
m!(i−m)!(n)i↑

. (A.24)

Computing P[ACn (t) = m] for large sample sizes using (A.24) will produce inaccurate values
due to catastrophic cancellations. Instead of computing E

[
ACn (t)

]
by summing (A.24) over

all values of m, we can compute E
[
ACn (t)

]
in a more numerically stable fashion by an

interchange of summations as follows,

E
[
ACn (t)

]
=

n∑
m=1

m P[ACn (t) = m] (A.25)

=
n∑

m=1

m

(
n∑

i=m

e−(i
2)R(t)(−1)i−m

(2i− 1)(m)(i−1)↑(n)i↓
m!(i−m)!(n)i↑

)

=
n∑
i=1

e−(i
2)R(t)(2i− 1)

(n)i↓
(n)i↑

(
i∑

m=1

(−1)i−mm
(m)(i−1)↑
m!(i−m)!

)

E
[
ACn (t)

]
=

n∑
i=1

e−(i
2)R(t)(2i− 1)

(n)i↓
(n)i↑

,

where in the last equality, we have used the combinatorial identity in Claim 14. Since each
term in the summation in (A.23) is positive, this expression poses no numerical problems.
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Theorem 17. The variance of the number of surviving lineages at time t in the coalescent,
given that there were n lineages at time 0, is given by,

Var
(
ACn (t)

)
=

n∑
i=1

e−(i
2)R(t)(2i− 1)(i2 − i+ 1)

(n)i↓
(n)i↑

−
(

n∑
i=1

e−(i
2)R(t)(2i− 1)

(n)i↓
(n)i↑

)2

.

(A.26)

Proof. By a similar interchange of summations as in Theorem 16, we can also calculate the
variance of ACn (t) as,

Var
(
ACn (t)

)
= E

[
ACn (t)2

]
− E

[
ACn (t)

]2
, (A.27)

E
[
ACn (t)2

]
=

n∑
m=1

m2

(
n∑

i=m

e−(i
2)R(t)(−1)i−m

(2i− 1)(m)(i−1)↑(n)i↓
m!(i−m)!(n)i↑

)

=
n∑
i=1

e−(i
2)R(t)(2i− 1)

(n)i↓
(n)i↑

(
i∑

m=1

(−1)i−mm2 (m)(i−1)↑
m!(i−m)!

)

E
[
ACn (t)2

]
=

n∑
i=1

e−(i
2)R(t)(2i− 1)(i2 − i+ 1)

(n)i↓
(n)i↑

, (A.28)

where we have used the combinatorial identity in Claim 15 in the last equality. Combining
(A.28) with Claim 16 gives the stated expression for Var

(
ACn (t)

)
.




