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Abstract

The paper analyzes the possibility of reaching an equilibrium in
a market of marine mutual insurance syndicates, called Protection
and Indemnity Clubs, or P&I Clubs for short, displaying economies of
scale. Our analysis rationalizes some empirically documented findings,
and points out an interesting future scenario.

We find an equilibrium in a market of mutual marine insurers, in
which some smaller clubs, having operating costs above average, may
grow larger relative to the other clubs in order to become more cost
effective, and where medium to larger cost efficient clubs may stay
unchanged or some even downsize relative to the others. Some of
the very large clubs suffering from diseconomies of scale may have a
motive to further increase relative to the other clubs.

According to observations, most clubs have, during the last decade,
expanded significantly in size measured by gross tonnage of entered
ships, some clubs have merged, but very few seem to have decreased
their underwriting activity, in particular none of the really large ones.

∗Thanks to the finance faculty at Anderson Graduate School of Management, UCLA,
and in particular my sponsor, Eduardo Schwartz , for hospitality and a stimulating research
environment during my sabbatical stay for the academic year 2004-2005. Support from
the Norwegian Research Council is gratefully acknowledged.
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The analysis points to the following future scenario: The small and
the medium to large clubs converge in size, while there is a possibility
for some very large clubs to be present as well.

KEYWORDS: Marine Insurance, syndicated market, P&I clubs, equilib-
rium, economy of scale, diseconomy of scale

1 Introduction

The paper takes as given two scale effects observed in the marine mutual
insurance industry, see e.g., Li and Shan (2004), and investigates if his is
consistent with a partial equilibrium model. While the insurance products
offered by the P&I Clubs are rather similar, the ability to lower costs seems
like an important factor for the competitiveness of these clubs. This can be
achieved by utilizing scale economies.

Economies of scale due to uncertainty apparently exists in the marine
mutual industry, as has been documented by several authors, e.g., by Katr-
ishen and Scordis (1998). The explanation for this, shared by many different
insurance markets, is that of diversification. The more ships in a club, the
less is the risk per ship, as follows essentially from the Law of Large Num-
bers. Even if the liabilities are not independently and identically distributed,
diversification has the effect of lowering the overall risk in the portfolio in
relation to its size, also observed in other industries, like e.g., banking (e.g.,
Baltensperger (1972)). The effect this has on the operating cost per ship is
typically that of lowering this type of cost as a function of the number of
ships in a club. These costs involve opportunity costs from holding reserves
to deal with future claims payments. Since the uncertainty of cash flows
decreases relatively with the number of policies, the costs caused by holding
cash reserves and capital accounts also decrease relatively with size.

Next are the effects on the operating costs that are not directly related to
uncertainty of the insurance portfolio. These can either decrease or increase
relative to an increase in size. For mutual marine clubs the operating costs
have been documented to increase at a lower rate than their output. However
multinational insurers can only achieve this effect up to a certain size, and
those firms with size above a particular level typically display diseconomies of
scale in their operating costs. This may be due to the fact that an increase in
size is accompanied by an increase in the complexity of firms’ operations and
the cost of coordinating those operations. It may come to the point where
this increase is also offsetting the scale economies due to diversification, in
which case the overall operating costs may display diseconomies of scale, as
found by Li and Shan (2004). These authors looked at data from 13 major
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P&I Clubs for the years 2002 and 2003 and found a U-shaped operating cost
function, with a turning point at about 80 million gross tons.

The objective of this paper is to investigate if such findings are consistent
with an economic equilibrium. And if so, can we learn from the nature of
the competitive equilibrium in what direction this market is likely to move
in the future?

The paper is organized as follows: In Section 2 we formulate the theory
of syndicates for a single P&I Club consisting of a certain number of ship
owners. In Section 3 we consider a market of such syndicates and find an
optimal risk sharing arrangement in this market when each P&I Club has a
operating cost depending on its size. Section 4 discusses existence of various
types of equilibriums in such markets. In Section 5 we develop market insur-
ance premiums for different loss distributions. In Section 6 we provide three
different interpretations of an equilibrium in the market of P&I Clubs, in
increasing order of realism. Here we present estimates of the risk tolerances
of the various clubs in the International Group. Section 7 concludes.

2 A P&I-Club Considered as a Syndicate

If a group of businessmen is not satisfied with the offers received from insur-
ance companies, the members of the group could set up a mutual insurance
scheme of their own. All that is needed is really an informal agreement on
how losses caused by specific random events and hitting some member, shall
be shared by all. A P&I Club, which offers ”Protection and Indemnity” to
ship owners, is such an arrangement. The old standard marine policy of
Lloyds covered only three-fourths of the liability which a ship could incur
in a collision, and left a number of other liabilities completely uncovered.
To cover these risks ship owners formed the P&I Clubs, which in reality are
mutual insurance companies.

It should be possible to include the risks covered by the P&I policy in
an ordinary marine insurance contract, but it seems that the Clubs have
certain advantages. The members are ship owners, and their number is, even
on a world wide basis, fairly limited. This means that some simplifications
and some informality is possible. The premium paid is proportional to the
gross tonnage of the vessel, and the number of votes a member can cast is
proportional to the number of gross tons he has registered in the Club.

Based on these observations, let us first formulate a model for such a
Club. Since it is a mutual arrangement, the theory initiated by Karl Borch
(1960a), (1960b) and (1962) seems appropriate. It goes as follows:

Given is a group of I ship owners, each one facing a certain risk repre-
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sented by a random variable Ui, i ∈ I = {1, 2, . . . , I}. We model ship owner
i’s random endowments Xi by

Xi = wi − Ui, (1)

where wi = ship owner i’s wealth, assumed to be a constant here, and Ui is the
potential loss facing ship owner i. The representation (1) is supposed to hold
after the ship owner has insured his fleet in the commercial marine insurance
market. The residual risk Ui can be viewed as the risk not covered above
some cap, or reinsurance layer, often found in XL -reinsurance contracts.

The ship owners are assumed risk averse with marginal utility functions
u′i(x) = e−x/ai , i ∈ I, and therefore they seek further insurance. Not be-
ing able to obtain this in the commercial marine insurance market, these
individuals are then forced to share these residual risks between themselves,
rather than facing them in splendid isolation. The random endowment of
ship owner i is denoted by Yi after the exchange has taken place. Let us
denote the sum of the initial endowments Xi by XM , XM =

∑I
j=1 Xj. Then

the Pareto optimal sharing rules, also known to be the partial equilibrium
allocations of the ship owners, are known to have the following form

Yi =
ai

α
XM + bi, where bi = ai ln λi − ai

k

α
, i ∈ I. (2)

This follows from the first order conditions of optimal risk exchange, given
here by equating the marginal utilities multiplied by positive constants λi:

λie
−Yi/ai = ξ, a.s., i ∈ I, (3)

where ξ is the state price deflator, or marginal utility of the representative
agent. After taking logarithms in this relation, and summing over i, market
clearing implies

ξ = e(k−XM )/α, where k =
I∑

j=1

aj ln λj, α =
I∑

j=1

aj. (4)

Thus the optimal sharing rules are affine in XM . The constants of pro-
portionality ai/α are simply equal to to each ship owner’s risk tolerance,
measured relative to the other members. In order to compensate for the
fact that the least risk-averse ship owner will hold the larger proportion of
the total fleet, zero-sum side payments occur between the ship owners, here
represented by the terms bi. Without these side payments a ship owner, with
a small initial wealth but with a large risk tolerance, would end up with a
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large final wealth, but this could not possibly be consistent with his budget
constraint.

In order to determine the ray λ = (λ1, . . . , λI), we employ precisely the
said budget constraints:

E(Yie
(k−XM )/α) = E(Xie

(k−XM )/α), i ∈ I, (5)

from which side payments bi are found as

bi =
E{Xie

−XM/α − ai

α
XMe−XM/α}

E{e−XM/α}
, i ∈ I. (6)

Now the optimal sharing rules Yi are completely determined in terms of the
given primitives of the model.

The ray λ can also be determined modulo a normalization. Letting k =∑I
j=1 aj ln λj denote this normalization, then

λi = ebi/aiek/α, i ∈ I.

If we impose that E{ξ} = 1/(1 + r) where r is the risk free interest rate, we
obtain e−k/α = (1 + r)E{e−XM/α}, in which case the constants λ are given
by

λi =
ebi/ai

(1 + r)E{e−XM/α}
, i ∈ I.

In this model market prices are given by

π(Z) =
1

1 + r

E{Z · e−XM/α}
E{e−XM/α}

, for any Z ∈ L2, (7)

where Z is any risk having a finite variance, i.e., being in the set L2 for short.
Alternatively this can be written

π(Z) =
1

1 + r

{
E(Z) +

cov(Z, e−XM/α)

E{e−XM/α}

}
, for any Z ∈ L2. (8)

The last term in the expression (8) is the risk premium, which would disap-
pear under risk neutrality.

The results related to the explicit form of the side payments given in
(6) can be found in Aase (1993), where also the pricing rule (7) is derived.
Further results regarding this type of models can be found in Aase (2002,
2004a and 2004b).
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3 Equilibrium in a Market of P&I Clubs

The model of the previous section can be interpreted along the following
lines. The group of ship owners have formed a syndicate, and the objective
function of this syndicate is given by uλ(x), where u′λ(x) = e−x/α. It should
be noted that this function has the same form as the ship owners’ individual
marginal utility functions, being of the negative exponential type, and hence
displaying constant absolute risk aversion. Hence, the function uλ(x) can
be interpreted as the objective function of the P&I Club, which is really a
syndicate.

Notice that we do not impose a ”utility” function on the clubs. Rather the
objective function uλ(x) is endogenously determined through the formation
of the syndicate. When we later talk about the ”risk aversion of the P&I
Club”, what we mean is the parameter (1/α), and likewise for the reciprocal
”risk tolerance of the P&I Club” α. As indicated above, α =

∑I
i=1 ai, so the

syndicate’s risk tolerance is the sum of the risk tolerances of the individual
ship owners that constitute this P&I Club. When the ship owners in a club
are all risk averse, so is the P&I Club, and when the ship owners are all risk
tolerant, so is the P&I Club.

Consider a market of N different P&I Clubs formed this way, indexed
by n ∈ N = {1, 2, · · · , N}, having ”objective functions” vn(x) of the forms
v′n(x) = e−x/αn , n ∈ N . That is, the objective for each Club n to is solve

supY ∈L2E
(
vn(Y )

)
s.t. π(Y ) ≤ π(Xn). (9)

By an equilibrium we mean the simultaneous determination of a linear price
functional π(·), and optimal portfolios (Y1, Y2, · · · , Yn) such that Yn solves
the problem (9) and markets clear:

∑N
k=1 Yk =

∑N
k=1 Xk = XM . We intend

to find the optimal risk sharing arrangement in this market, and some of its
economic implications.

The motivation behind this construction is that the residual risks the
ship owners retain after commercial marine insurance contracts have been
underwritten, can not be further insured in the commercial marine insurance
market. Recall that this is simply the original reason for the existence of
these clubs. If the clubs are going to trade risks, it seems like a logical
consequence of these market structures that this trade will have to take place
among themselves. Viewed this way, the clubs can be thought of as members
in a syndicate with objective functions vn(x), n ∈ N , and we may apply the
theory of optimal risk sharing in a syndicate on this particular market of P&I
Clubs. According to this definition the International Group of P&I Clubs,
containing the major insurers in this category at present, is a syndicate.
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The portfolio Xn of Club n is

Xn = wn + mn(pn − cn(mn))− Un, n ∈ N , (10)

where wn = the reserves, mn = the number of ships in the n-th club’s portfo-
lio, pn = premiums per ship, cn(mn) = the operating costs per ship for club n,
and Un = random loss incurred by the n-th club, where E(Un) = µn, n ∈ N .

To make the role of size predominant, we may assume that the ships are
homogeneous. The initial premiums pn are by definition varying with n, a
variation which may or may not be compensated in equilibrium (we return
to this issue later), and the mean losses µn = µ for all n ∈ N . The cost
function cn(mn) = c(mn) of P&I Club n is here assumed to be a convex
function of size mn only, decreasing sharply in the beginning, then flattening
out towards some minimum (around 80 million gross tons in the data), and
finally increasing slightly as the club grows bigger. The function looks like a
left skewed smile.

In general we do not need any independence assumptions of the various
random losses Un, which are assumed to have an arbitrary, as long as the
model is well defined, joint distribution, only satisfying certain moment re-
strictions to become clear later. However, the distribution of Un will depend
upon the number of ships mn of club n, and typically the standard deviation
of Un will increase slower than the number of ships mn grows, stemming from
the diversification effect of increasing the number of ships in the portfolio of
a club. For the case where Un =

∑mn

j=1 Z
(n)
j , where the Z

(n)
j represents the

potential loss incurred from ship j in the portfolio of Club n, if these losses
are mutually independent, then the standard deviation of Un is proportional
to
√

mn.
Since the perils of the sea often induce several ships to suffer simultaneous

losses caused by the same incident, like a collision, it is an advantage that
the model allows for dependencies between the losses Un.

Employing the theory of the previous section, we notice that this implies
that the optimal portfolios Yn after trade among the clubs are given by

Yn =
αn

a

(
w + M(p− cM)− U

)
+ bn, n ∈ N . (11)

Here M =
∑N

k=1 mk, p = 1
M

∑N
k=1 mkpk, cM = 1

M

∑N
k=1 mkc(mk), w =∑N

k=1 wk, a =
∑N

k=1 αk, U =
∑N

k=1 Uk and bn are the side payments. The
market portfolio XM = (w + M(p − cM) − U), and EU = µM , where
µ = 1

M

∑N
k=1 µk.

Club n’s original risk Un has been replaced by the fraction αn/a of the
diversified risk U , and the reserves, premiums and operating costs have been
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replaced by smooth versions at this same ratio1. The fraction αn/a is to
be interpreted as Club n’s risk tolerance relative to the risk tolerance of the
market. In addition we have the side payments bn, which can be written, by
virtue of (6) and (7)

bn =
(
wn −

αn

a
w

)
+

(
mnpn −

αn

a
Mp

)
+

(αn

a
McM −mnc(mn)

)
+

(αn

a
π(U)− π(Un)

)
.

(12)

The two first terms adjust for reserve and premium smoothing, the third for
operation costs smoothing and the last for costs of diversification. These
side payments are transfers that take place between the clubs internally,
and between the syndicate and the ship owners. In one of the scenarios
discussed, the mutual one, these adjustments compensate for the varying
initial premiums pn, so that after pooling all the ship owners face the same
premium p per ship.

In Section 6 we consider three different scenarios for the premiums pn. In
the first the initial premium covers, among other things, the costs c(mn) of
each Club n, in the second all the pn are equal, and in the third they depart
only because of credit risk differences.

The fact that the above allocations Yn, n ∈ N , together with the pricing
functional given in (7) constitute a competitive equilibrium (if it exists),
and that these equilibrium allocations are Pareto optimal, follow from the
references cited in Section 2.

In the next section we explore the implications of the optimal risk sharing
arrangement given in equations (11). We return to the side payments (12)
in Section 6.

4 Feasibility of Equilibria

First we investigate if the equilibrium allocations derived in the previous
section are feasible. If no trade takes place between the P&I Clubs, the
premium p per ship must cover (i) the operating costs, (ii) net expected value
of the losses, and (iii) a compensation for risk bearing. This principle really
dates back to Adam Smith (1776), who wrote in his Wealth of Nations (Book
I Chapter 10) that the insurance ”premiums must be sufficient to compensate
the common losses, to pay the expense of management, and to afford such a

1This smoothing could be seen in light of the current (Spring 2005) discussion between
regulators and American Insurance Group regarding ”smoothing of accountancy results”.
Presumably the latter kind of smoothing, partly using derivatives, is different from (11).

8



profit as might have been drawn from an equal capital employment in any
common trade”.

Using the market pricing rule given in equation (8), this principle gives
the following expression for the premium pn per ship for Club n

p(1)
n = c(mn) + π

(
Z

(n)
j

)
= c(mn) +

1

1 + r

(
µ +

cov(Z
(n)
j , eU/a)

E(eU/a)

)
,

which is the principle we consider in the first scenario in Section 6. Here Z
(n)
j

represents the potential loss from any of the ships j, j = 1, 2, · · · , mn, in Club
n’s portfolio, the individual losses all having expected value µ, and we have
used that the first three terms in the market portfolio are constants, which
all cancel in the above pricing formula. The last term is the risk premium
of each ship in the club’s portfolio. This formula can also be written more
simply as

p(1)
n = c(mn) +

1

mn

π(Un). (13)

From these expressions we see that if the clubs do not pool, there can not
be any equilibrium at the prices given in (13), since these premiums vary
with the clubs through the operating cost term c(mn). The various clubs
would then offer different premiums for otherwise identical risks, since we
have assumed that the ships are homogeneous, and this is not compatible
with an equilibrium.

There could, perhaps, be an equilibrium of this type if all the premiums
were equal, i.e., p1 = p2 = · · · = pN , in which case m1 = m2 = · · · = mN . The
present market structure is not, however, consistent with this uniformity in
size across the clubs, as can be seen from Table 1 is Section 6. The remaining
possibility is then that each club charges p = 1

N

∑
k pk, in which case there

could, perhaps, be a no pooling equilibrium with varying profits among the
clubs. No trade between the clubs hinges upon affine objective functions
vn(x) = anx + cn of all the clubs, which could only be a consequence of
risk neutral ship owners in the first place (see sections 2 and 3). If these
individuals were risk neutral, they would not seek any insurance solutions,
and the P&I Clubs would simply not exist.

When the objective functions are strictly concave, it is clear from the
results of Section 3 that there are gains from trade even if all the clubs had
the same costs. In particular there will be gains from diversification with
strictly concave objective functions. We elaborate further on this point in
Section 5.

Turning to the pooling equilibrium, consider the optimal portfolios Yn

given in equation (11). Notice that Club n now holds the fraction (αn

a
) of
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the market portfolio XM . Originally it faced total operating costs mnc(mn),
and now it appears to be facing the weighted average operating costs cM =
1
M

∑N
k=1 mkc(mk). We may rewrite the expression for Yn as follows

Yn = ŵn +
αn

a

(
M(p− cM)− U

)
, n ∈ N , (14)

where ŵn = (αn

a
w + bn) can be interpreted as the reserves of Club n after

pooling. Using the pricing principle outlined above, it must be the case that

αn

a
Mp = π

(αn

a

(
McM + U

))
,

or, since π(·) is linear,

p = cM +
1

M
π(U). (15)

Notice that, given the above premium principle, the difference between the
premiums before and after pooling is

p(1)
n − p = (c(mn)− cM) + (

1

mn

π(Un)− 1

M
π(U)).

Since the ships are homogeneous, the Z
(n)
j ’s have the same distributions for all

j = 1, 2, · · · , mn; n = 1, 2, · · · , N . By the linearity of the pricing functional
π, the last term in the above difference cancels out. Notice that this is true
regardless of the dependence between these losses. Thus

p(1)
n − p = c(mn)− cM . (16)

Thus these price differences are caused solely by the operating cost differences
in this model.

From the formula (8), the premium p per ship after pooling can also be
written

p = cM +
1

1 + r

(
µ +

1

M

cov(U, eU/a)

E(eU/a)

)
. (17)

From this expression we notice that the market premium per vessel does
not depend upon the particular Club n after poling, and is thus a viable
premium. This means that an equilibrium exists in the above model under
our assumptions, i.e., that of operational costs varying across the different
P&I Clubs. We formulate our findings this far as follows:

Theorem 1 An equilibrium exists in the market of P&I Clubs outlined above,
where pooling takes place, the resulting equilibrium allocations Yn, n ∈ N
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given in (14) are Pareto optimal, and the premium per vessel p is given in
equation (17).

A ”no pooling” equilibrium could exist at premium p if all P&I clubs were
risk neutral. Risk neutrality is, on the other hand, not consistent with ship
owners demanding insurance.

The core insurance product offered by International Group Clubs is very
similar, complying with the above model. In the hypothetical situation with
no trade, presumably the ship owners would seek out insurers that offer the
lowest rates, implying that they would end up in the clubs of size near the
optimal, from an operating costs point of view. As a consequence these clubs
would grow away from the optimal cost level, and more clubs would have to
be formed. In the end one should observe a market where all the clubs were
identical in size, corresponding to the optimal operating cost level. This is not
consistent with the market structure in this industry today, as is illustrated
in Table 1 of Li and Shan (2004).

They present a list of 15 P&I clubs ranging from the two largest, the Lon-
don based ”United Kingdom” at 120 million g.t and the Oslo based ”Gard”
at 97.7 million g.t. to the London based ”Shipowners” at 8.8 million g.t.
and the Haren based ”NNPC” at 0.064 million g.t. The average among these
clubs are found by the authors to be 45.6 million g.t.

Most of the clubs in their investigation appear to have experienced an
increase during the last decade, some up to 10% annual rates, with a weighted
average of about 7% per annum. Only the Oslo based ”Skuld” is displayed
with a negative annual growth rate of -5.23% during the period 2000-2003.
The increase has largely been achieved through mergers and an expansion
in membership. The ”Liverpool & London Club” has disappeared, and the
”North of England Club” absorbed the ”Newcastle Club” in 1999.

5 Computation of Risk Premia for various

Probability Distributions

The reader is perhaps wondering at this stage how the risk premiums ap-
pearing in the formulas (13) and (17) look like. To answer this one needs
the probability distributions of the random losses Un, n ∈ N to be speci-
fied. In this section we present two different distributional assumptions, and
demonstrate the required computations.
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5.1 Multinormally Distributed Claims

First we consider the case where the risks Un’s are multinormally distributed.
Here we may take as a starting point the insurance version of the CAPM
which states that (see Aase (2002))

π(Xn)− 1

1 + r
EXn =

cov(Xn, XM)

varXM

(
π(XM)− 1

1 + r
EXM

)
, (18)

where the covariance term in units of the variance of the market portfolio
can be interpreted as portfolio n’s beta. One could of course question the
validity of the normal assumption applied to insurance claims, which can not
take on negative values. To this there is to say that the normal distribution
is applied with success to a vide variety of situation where, say, a negative
value is meaningless, such as models of heights, or weights of human sub-
populations. The variance and the mean will then adjust the probability of
observing values in the forbidden region to be negligible.

In economics we often have the added difficulty that the preferences may
not be defined for negative values of wealth, which is here a problem with
the right hand tails of the loss distribution. In our model this is not a
formal problem, since the negative exponential function is defined for all real
numbers. This distribution allows us to model bankruptcy risk, which we will
take into account in Scenario 3. The normal distribution suffers from having
too heavy left tails and too light right tails as compared to various types
of loss data, since this distribution is symmetrical around its mean. It has
many other convenient properties though, in particular are we able to model
dependencies with ease. Assuming this joint distribution for the moment,
the CAPM relation can alternative be written in terms of the random losses
Un

π(Un)− 1

1 + r
EUn =

cov(Un, U)

var(U)

(
π(U)− 1

1 + r
EU

)
. (19)

Both in this relation and in the formula for the market premium of each
vessel in (17), everything is determined as soon as we are able to compute
the market value of U , i.e.,

π(U) =
1

1 + r

(
EU +

cov(U, eU/a)

E(eU/a)

)
.

To this end, we use Stein’s lemma to conclude that

cov(U, eU/a) =
var(U)

a
E(eU/a).
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From this we obtain that the market value of any of the losses Un is given by

π(Un) =
1

1 + r

(
E(Un) +

1

a
cov(Un, U)

)
, n ∈ N , (20)

which leads to

p(1)
n = c(mn) +

1

1 + r

(
µ +

1

a
cov(Z

(n)
j , U)

)
, n ∈ N ,

and the premium p of each vessel in equilibrium is

p = cM +
1

1 + r

{
µ +

1

aM

( ∑
k

var(Uk) + 2
∑
k>l

cov(Uk, Ul)
)}

. (21)

We notice that as the market becomes more risk tolerant, i.e., a increases, the
risk premium decreases, and when the market risk aversion (1/a) increases,
the risk premium increases.

Notice also that since the covariances cov(Un, Ul) grow slower than mnml

as these sizes of the fleets increase, a consequence of diversification, the risk
premium in (21) decreases as the number of vessels increases, a reasonable
property in a competitive market. This property does not hold in the polar
case of independence: Suppose each Un =

∑mn

j=1 Z
(n)
j , where the individual

losses from each ship are all i.i.d. normally distributed with mean µ and
variance σ2, and assume that all the Un’s are mutually independent. It
follows that

p = cM +
1

1 + r

{
µ +

1

a
σ2

}
. (22)

In this case we readily observe the effects from the probability distribution
of the individual losses on the equilibrium premium p of each vessel, as well
as the effect from the attitude towards risk in the market represented by the
parameter a. The effects from the covariances are no longer present, so the
premium is invariant to the size of the fleet. This is likely to be an artifact
also of the assumption about constant absolute risk aversions. 2

5.2 Gamma Distributed Claims

We noticed in the previous section that one undesirable property of the nor-
mal distribution is that it allows for negative claims, which is not possible
in real markets the way we model such insurance claims. For this reason we
now present the relevant analysis in a situation when the claims are gamma

2We are keenly conscious about the limitations of this assumptions, of which the wealth
effect will be of some concern to us.
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distributed, and consequently only take on positive values. Also this dis-
tribution allows us to model varying credit risks. The undesirable property
now, however, is that we retain the independence assumption leading to the
premium formula (22). The tails of this distribution has sometimes been
found to be too light in some lines of insurance, but obviously it is a better
candidate than the normal for many insurance problems.

To this end, assume that the individual losses Z
(n)
j from each ship are all

i.i.d. exponentially distributed with parameter λ. This distribution has its
support on the positive real axis, and thus overcomes the potential problem
of the normal distribution in this regard. Since the loss facing P&I Club n is
given by Un =

∑mn

j=1 Z
(n)
j , it is a consequence of the properties of the expo-

nential distribution that Un is gamma distributed with parameters (mn, λ).
In this situation we do not have a simple version of the insurance CAPM

like the one in (20), but we intend to find the risk premium of each individual
contract in formula (17). For this we need the probability distribution of
U =

∑N
n=1 Un. Under our assumptions the accumulated loss U is gamma

distributed with parameters (M, λ), where M =
∑N

k=1 mk. It is precisely
here we need the independence assumption of the Un’s. Only independent
gammas having the same λ-parameter convolute to a gamma distribution,
whereas arbitrary normals sum to a normal distribution (provided they are
jointly normal).

In order to derive the relevant formulas for the market premiums, we need
to compute the quantities cov(U, eU/a) and E(eU/a). Since cov(U, eU/a) =
E(UeU/a)−EUE(eU/a), we attempt to find the terms on the right hand side
of this equality. Notice that we must require that λ > a−1 for the following
formulas to be well defined.

First recall that E(U) = M/λ. Second we find E(UeU/a) as follows

E(UeU/a) =

∫ ∞

0

ueu/a λM

Γ(M)
uM−1e−λudu =

M

λ

( λ

λ− a−1

)M+1

.

Third we compute E(eU/a). It is given by

E(eU/a) =

∫ ∞

0

eu/a λM

Γ(M)
uM−1e−λudu =

( λ

λ− a−1

)M

.

Putting this together and inserting into the expression for the market pre-
mium in (17), we obtain the formula

p = cM +
1

1 + r

{
µ +

1

λ

( λ

λ− a−1
− 1

)}
,
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where the last term is the risk premium. Since µ = 1/λ, this can be written
simply as

p = cM +
1

1 + r

( 1

λ− a−1

)
. (23)

This formula displays some of the same basic properties as the formula (22) of
the previous section, for example it does not depend on the number of ships
in the market fleet. Some desirable properties are the following: (i) When
the risk tolerance a of the market increases, the risk premium decreases,
(ii) When the risk aversion a−1 in the market increases, the risk premium
increases, (iii) Under risk neutrality a−1 = 0, and the risk premium is equal
to zero, (iv) The risk premium decreases as the parameter λ increases.

Property (iv) needs some further explanation. Since E(Z
(n)
1 ) = 1/λ (for

any n) and varZ
(n)
1 = 1/λ2, an increase in the parameter λ implies that the

expected loss per ship decreases, and so does its variance. Thus the risk
of insuring this ship ought to decrease, and so should the risk premium.
Accordingly we find property (iv) rather natural as well.

We can also calculate π(Un). By the independence between the Un’s, we
find that

cov
(
Un, e

U/a
)

E(eU/a)
=

mn

λ

( λ

λ− a−1
− 1

)
,

which gives that

p(1)
n = c(mn) +

1

1 + r

( 1

λ− a−1

)
.

As a summary of this section’s results, we have the following

Theorem 2 When the claims Un against the various P&I Clubs are jointly
multinormally distributed, an insurance version of the CAPM applies to these
claims, given in the relation (20).

The market premium p of the individual ships is given in equation (21)
for an arbitrary correlation structure, and in equation (22) for the special
case that the losses Un’s are mutually independent.

When the claims Z
(n)
j caused by the individual ships belonging to Club

n are independent and exponentially distributed for all j and n, the result-
ing claims Un against the clubs are gamma distributed (mn, λ) and mutually
independent.

As a result the aggregate risk U also has a gamma distribution (M, λ).
The market premium p of an individual vessel in this market is given in
equation (23).

It would be interesting to test out the results of this section on real data.
The risk premiums we have obtained are all positive, well in accordance with
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theory. Insurance practice sometimes tells us otherwise. For example, some
lines of insurance may be compared to the banking industry: The premiums
paid by the insurance customers may be interpreted as bank deposits requir-
ing positive returns. For this to function, the insurance companies must, like
banks, invest the premium reserves in, say, the financial markets and obtain
a rate of return higher then the one required by the insurance buyers.

The assets of a bank consists of the debts of a large number of people,
and the banks require a higher return on these assets than they pay to the
depositors. Competition between the insurance companies may then have
the effect that the risk premiums of the insurance claims can be negative,
but still the insurance companies may make a profit when the returns on the
invested premium reserves are taken into account.

This picture of the insurance industry is of course very much at odds with
classical risk theory, but is quite consistent with economic theory. These
effects are not incorporated in the above simple model, as it is unclear to the
author if this plays an important role in the market for P&I Clubs.

5.3 Maximizing the Objectives of the Clubs

Since we are fortunate enough to have solved the optimization problem (9),
we are in position to calculate the optimal objective function of each club.
It is easy to see that the inequality

E(vn(Xn)) ≤ E(vn(Yn))

is equivalent to the following inequality

1

αn

π(Un)− log
(
E

(
e

1
αn

Un
))

≤ 1

a
π(U)− log

(
E

(
e

1
a
U
))

. (24)

The budget constraint π(Xn) = π(Yn) is automatically satisfied, since Yn

solves problem (9). This can be written

αn

a
≥ mn

M
+

αn

π(U)
log

(
E

(
eU/a

)
E

(
eUn/αn

))
. (25)

Depending on the sign of the last term in this inequality, the final fraction
of the risky wealth of Club n may increase or, perhaps, decrease relative
to the initial fraction. From the above, what appears to determine this is
diversification and risk aversion, but not the operating costs, nor the reserves.
More precisely, suppose

E
(
eU/a

)
E

(
eUn/αn

) > 1. (26)
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This means that the risk tolerance (αn/a) of Club n relative to the syndicate
is larger than the ratio of the club’s initial insurance risk to the total risk,
appropriately measured. Then the inequality (25) says that the final equilib-
rium portfolio fraction of the club is larger than its initial fraction of ships
insured.

For example, in the multinormal case the inequality (25) can be written

αn

a
≥ mn

M
+

(1/2)αn

(π(U)− EU)

{(σ

a

)2

−
(σn

αn

)2}
. (27)

This inequality shows that αn

a
> mn

M
if αn

a
> σn

σ
, i.e., if the risk tolerance of

the Club relative to the syndicate is larger than the ratio of the standard
deviation of the club’s initial risk Un to the standard deviation of the total
risk U , then the final portfolio fraction of the club is larger than its initial
fraction of ships insured.

For the gamma distribution the mixed measure of risk and risk aversion
appearing in (26) is given by

E
(
eU/a

)
E

(
eUn/αn

) =

(
λ

λ−a−1

)M(
λ

λ−α−1
n

)mn
,

leading to the the analogous inequality

αn

a
≥ mn

M
+

αn

π(U)

{
M log

( λ

λ− a−1

)
−mnlog

( λ

λ− α−1
n

)
)
}

.

To a second order Taylor series approximation, this inequality can be written

αn

a
≥ mn

M
+

(1/2)E(U)

(π(U)− E(U))

1

λαn

{mn

M
−

(αn

a

)2}
.

For any distribution a rather crude approximation is given by

αn

a
≥ mn

M
+

(1/2)αn

(π(U)− EU)

{
E(U2)

a2
− E(U2

n)

α2
n

}
.

Already for the normal we see that it is only accurate if the means of U and
Un are zero. It still provides roughly the the same type of qualitative result
as for the normal, but replacing σn by

√
E(U2

n) and σ by
√

E(U2), and can
easily be further refined.

The fact that the reserves and the costs fell out of this comparison, is
due the properties of the felicity index, being the negative exponential. The
management still faces the task of maximizing the objectives of the club,
which naturally depend also on these factors. We return to this issue in
Section 6.3.
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6 Implications of the Economic Analysis

6.1 General observations

In Section 4 we demonstrated that after the optimal risk exchanges have
taken place between the P&I Clubs, the operating cost of each Club is the
weighted average operating cost cM of all the clubs, and the premium of each
identical ship is the same in this market. At least this is the picture as long
as we ignore the side payments bn. The premium contains an operation cost
component, a net premium and a risk premium, and since the latter two must
be identical for the same type of risk, the cost components of the equilibrium
market premium p must also be identical across this market.

At first sight this may seem to imply that the clubs have no motivation
to improve their cost efficiency, since the mere pooling of risks will leave all
the clubs with the same level of the operating costs. In general this is a has-
tened conclusion since, among other things, the liabilities have also changed,
and there are the side payments. In Scenario 1, however, where the initial
premiums are given by formula (13), this conclusion is about right. For this
reason we consider two additional interpretations of the equilibrium analy-
sis, in increasing order of realism, and each assuming an increased degree of
competitiveness among the P&I Clubs.

We start by taking a closer look at the side payments. Recall from Section
3 that these can be written

bn =
(
wn −

αn

a
w

)
+

(
mnpn −

αn

a
Mp

)
+

(αn

a
McM −mnc(mn)

)
+

(αn

a
π(U)− π(Un)

)
.

(28)

The reserve adjustment can be rewritten as(
wn −

αn

a
w

)
=

(
wn −

mn

M

)
w +

(mn

M
− αn

a

)
w.

Likewise, the premium adjustment is(
mnpn −

αn

a
Mp

)
= mn(pn − p) + p

(
mn −

αn

a
M

)
,

and the cost adjustment is(αn

a
McM −mnc(mn)

)
= mn(cM − c(mn)) +

(αn

a
M −mn

)
cM .

Finally, as observed in Section 4, the adjustment for diversification can be
written (αn

a
π(U)− π(Un)

)
=

(αn

a
− mn

M

)
π(U).
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Before we proceed, let us take a closer look at the cost data presented by
Li and Shan (2004). These authors defined the operating costs as the sum
of the general expenses and acquisition costs, and the average cost per ton
is the total operating costs divided by the size of the club. The estimated
operating costs range from US $ 2.25 to $ 0.25 per ton for the 20 observations
corresponding to P&I clubs of sizes less than 80 million gross tons, and range
from $ 0.180 to $ 0.258 per ton for the 5 observations corresponding to P&I
clubs of sizes larger that 80 million gross tons, with a weighted average around
$ 0.34 per ton (not reported). Thus the estimated cost function is U-shaped,
but rather skewed to the left, while the right part of the cost curve does not
climb above the weighted average. Let us assume that the operating cost
function has this form.

6.2 Calibrating the Risk Aversions

So far we have taken the initial portfolios Xn of each Club n as exogenously
given, and derived the optimal portfolios Yn endogenously. Consider the data
of Table 1. The three first columns of the table contain information that can
be found in various publicly available sources, and agree with parts of Table
1 of Li and Shan (2004), except that we focus attention on the clubs in the
International Group. 3

Since the data in this table can be thought of as the result of some form
of equilibrium, the sizes in column four, when transformed to relative sizes,
can be interpreted as the final fractions (αn/a) of each club’s share of the
total fleet in the market, at least under certain conditions. Those are that the
reserves, initial numbers of insured ships, premiums, costs and risks are all ”in
the same proportions”. This partly follows from the expressions for the final
portfolios Yn after pooling, since the side payments are all zero under these
conditions. With this interpretation in mind, we have tentatively estimated
the proportions (αn/a) in Column 5 in Table 1.

Small clubs typically strive to become bigger, whereas big clubs rarely
try to size down their operations, despite possible diseconomies of scale. The
only big P&I Club that has decreased during recent years is ”Skuld”, but its
size in 2003 was 51.5 million g.t., well below the observed ”optimal” size of
80 million g.t. Otherwise all the big clubs have also increased during the last
years, and the largest club in the sample, ”United Kingdom”, has displayed
a growth rate of 10% per annum during the period 2000-03.

Of the 13 clubs all members of the International Group, three of the
smaller and medium sized clubs have growth rates even larger than this,

3Consult Li and Shan (2004) for further information.
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Club Period Growth Size Risk tolerance Adjust.
United Kingdom 2000-03 10.06% 120.0 0.176 +

Gard 1996-03 4.76% 97.7 0.143 0
Britannia 1994-03 5.68% 80.0 0.117 0
Steamship 2001-03 1.38% 64.5 0.094 0
Standard 2001-03 13.03% 58.0 0.085 -

Japan 1993-03 2.24% 54.0 0.079 -
Skuld 2000-03 -5.23% 51.5 0.075 -

West of England 1998-03 3.73% 46.0 0.067 -
North of England 2001-03 19.72% 43.0 0.063 0

London 2000-03 2.46% 28.1 0.041 0
American 2000-03 19.33% 17.5 0.026 +
Swedish 2000-03 2.36% 14.8 0.022 +

Shipowners 1998-03 9.86% 8.8 0.013 ++
Aggregate 683.9 1.00

Table 1: Estimates of the final portfolio fractions αn

a
of the International

Group, with suggested adjustments. These are also the ratios of the risk tol-
erances αn of the various clubs to the total risk tolerance a of the International
Group.

where ”North of England” with above 19% has grown fastest during the
period 2001-03.

In our one period model we can not capture this yearly growth, but we
would like to say something about the relative distribution of ships between
the clubs from the beginning to the end of the period.

Based on the results of Section 5.3 on may, perhaps, think of calculating
the fraction αn/a based on an expression like

α̂n

a
=

mn

M
+

αn

π(U)
log

(
E

(
eU/a

)
E

(
eUn/αn

))
(29)

motivated by the inequality (25). The right hand side depends on the un-
known parameter (αn/a) and is a lower bound, not an ”unbiased estimate” in
any statistical sense, of course (it is not even a random variable). Moreover,
this value takes as given that there are no gains from trade. If the initial risk
to the total risk in the market is well balanced to the risk tolerance of the
club relative the risk tolerance in the syndicate, the last term on the right of
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this equation disappears, in which case

α̂n

a
=

mn

M
(30)

results. Adopting this as the base case, let us attempt to study the effects,
of the operating costs and the reserves.

The parameters αn play two different roles in our theory. Being given
exogenously and determined by the risk tolerances of the ship owners be-
longing to Club n, they can not be thought of as decision variables. The
ratios (αn/a), on the other hand, can be interpreted as Club n’s fraction of
the total syndicate wealth after pooling, excluding the side payments. It is
likely that the management of Club n has an opinion about what this fraction
ought to be.

In the next section we will try to answer this question.

6.3 The Effects of the Side Payments and the Objec-
tive Criterion on the Final Portfolios

In this section we analyze the three different scenarios mentioned in Section
3. In the first two we ignore bankruptcy, i.e., we assume that Yn(s) ≥ 0 for
all states s in the set of possible states S of the world, but allow for it in the
last scenario.

We assume as the base case that the clubs are initially well balanced.
What we mean by this can perhaps best be illustrated by an example. In
the normal case, suppose that (αn/a) = (σn/σ), i.e., insurance risks and
risk tolerances are in harmony initially. Then (27) implies that (αn/a) ≥
(mn/M).

We then ask the question: When management considers the reserves and
the operating costs of Club n, should they alter this fraction, and if so, in
what direction?

In a choice between two alternatives, our objective function picks the
preferred outcome independent of the ”wealth” level of the club. Still our
objective criterion depends on both reserves, premium income and costs, and
can be used to analyze the effects of changing the final portfolio weights. In
addition we can argue directly from the expressions for the optimal portfolios
Yn, which we have closed formulas for. This may work well, except for
exploring the possible effects of diversification, but here the result (25), or
(27), is useful.
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6.3.1 The Non-Profit Mutual

In the first scenario we imagine that the ship owners initially pay pn in
premium per ship to Club n, and are later compensated (p− pn) per ship by
the syndicate after pooling has taken place. In the model there is no time
lag between these two events. Any additional premium compensations are
shared among the clubs. The key here is that Club n is acknowledged by the
syndicate to have obtained the premium pn per ship in its portfolio. In this
scenario the premium pn is given by

p(1)
n = c(mn) +

1

mn

π(Un) n ∈ N .

The side payments can be written

bn = mn(p(1)
n − p) + mn(cM − c(mn)) +

(
wn −

αn

a
w

)
, (31)

where the first term is the part of the initial premium adjustment which
is exchanged between the Club n and its customers, while the second is
the corresponding part of the cost adjustment. The last term is exchanged
between Club n and the other clubs.

In mutual insurance experience rating is common, where the insured pays
an extra premium if the company is doing worse than expected, and is com-
pensated by a ”dividend” in the opposite case. The above practice of first
paying p

(1)
n and then being reimbursed (p− p

(1)
n ) can be considered as a mild

form of experience rating.
Since (p

(1)
n − p) = (c(mn)− cM) as observed is Section 4,

bn =
(
wn −

αn

a
w

)
. (32)

After pooling the portfolio of Club n is the following

Yn =
αn

a

(
w + M(p− cM)− U) + bn = wn +

αn

a
(π(U)− U), (33)

where we have used (32). The objective criterion at Yn is

E
(
vn(Yn)

)
= 1− exp

{
− 1

a

( a

αn

wn + π(U)− alogE
(
eU/a

))}
. (34)

Since wn > 0, decreasing (αn/a) increases the objective function of Club
n. Not all the clubs can decrease their final portfolios at the same time,
since market clearing requires

∑
k(αk/a) = 1, so only those with the highest

bargaining power will manage this.
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We shall discuss the following three categories:
(i) a relatively small club with c(mn) > cM ,
(ii) a medium to large, cost effective club where c(mn) < cM , and
(iii) a very large club where diseconomies of scale implies that c(mn) > cM .
Note that none of the clubs in Table 1 are in the latter category, only two to
tree clubs are in category (i), the rest in category (ii).

Consider a club in category (i). In this case p
(1)
n > p and the two first

terms in the side payment in (31) are equal but of opposite sign. The first
term is the additional premium that this club is allowed to charge initially,
but since the ship owners must all pay p in equilibrium, they are compensated
by Club n for this additional premium, the compensation being given exactly
by the second term. Thus the sum of the two first terms are zero. If this is
taken into account, the premium per ship after pooling is p, and the cost per
ship after pooling is cM , so there seems to be no motivation for this club to
take more or less risk than it did initially.

The reserve after pooling is still wn, and the diversification effect can be
seen from (25), or even more transparent from (27): If the initial proportion
of ships (mn/M) in the club is well balanced to the reserves and to the initial
risks, it seems as the final proportions (αn/a) ought to remain unchanged in
this case.

Consider next a club in category (ii). For a medium to large, cost efficient

club with operating cost c(mn) < cM , the premium p
(1)
n satisfies the inequality

p
(1)
n < p, and the two first terms in (31) are still equal, of opposite signs and

cancel out. The first term is the premium rebate this club is supposed to offer
initially, but since the ship owners must all pay p in equilibrium, they are
entitled to reimburse their Club n for this initial discount, the reimbursement
being given by the second term.

Finally consider a club in category (iii). Because of diseconomies of scale
c(mn) > cM , and the cash flows from the first two terms in (31) are the same
as in category (i).

Summing up, all the different clubs, small, medium or large, have the same
motivation to decrease or retain their underwriting after pooling relative to
their initial underwriting, provided these are balanced according to the clubs
reserves and initial risks held. A likely outcome is that all the side payments
bn are close to zero, and the final portfolios Yn are given by

Yn ≈
mn

M
(w + M(p− cM)− U), for each club n ∈ N .

This means that the various clubs hold approximately the same fraction of
the total fleet after pooling as they held originally, they all receive the same
premium p per ship and they all have the same average operating costs.
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A more natural solution would seem like one in which the small clubs were
motivated to grow in order to improve their operating cost efficiency, and the
medium clubs were motivated to size down in order to further capitalize on
their cost efficiency. Thus the medium clubs would be able to lend to the
small clubs. However, the weakness of Scenario 1 is that it does not give
these clubs the right kind of motives to pursue either of these strategies.

In reality the cost efficient medium clubs are subsidizing the cost ineffi-
cient small clubs, as well as the cost inefficient large clubs, after pooling, a
picture that fits well with the standard view that marine mutual clubs are
non-profit and provide services to their members at cost. A truly mutual in-
surance arrangement typically displays this feature, namely that the ”strong”
helps the ”weak”, although it may be hard to visualize the very large club
as worthy of any subsidy.

6.3.2 More Competition

In order to overcome the weaknesses obove, we now assume that the syndicate
of marine mutual insurance companies is more competitive in that initially
the various clubs all receive the same premium p per ship from the ship
owners, with no further transfers between these customers and the clubs.
In the above formulas for the side payments the premiums pn = p

(2)
n for

n = 1, 2, · · · , N , where

p(2)
n = p = cM +

1

M
π(U), n ∈ N . (35)

In this case the side payments after pooling are exchanged only between
the clubs in the syndicate, and these are given by

bn = mn(cM − c(mn)) +
(
wn −

αn

a
w

)
, (36)

since now the premium adjustment term is zero for all the clubs. After
pooling the final portfolios can be written

Yn =−
(αn

a
McM −mn(cM − c(mn))

)
+

(αn

a
Mp

)
+

(αn

a
w + (wn −

αn

a
w)

)
− αn

a
U.

(37)

The first term on the right hand side can be considered as the negative
of the cost plus cost adjustments, the second term is the premium, the third
as the reserve plus reserve adjustments, and the last term is the liabilities.
Consider first the cost term. The number of ships in Club n after pooling
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is (αn/a)M , so the operating costs of Club n per ship after pooling can be
written (mn

M

a

αn

)
c(mn) +

(
1− mn

M

a

αn

)
cM , (38)

a convex combination of the operating costs c(mn) of Club n before pooling
and the weighted average operating costs of all the clubs in the syndicate.

Consider a small club in category (i). According to our assumptions
this club has higher operating costs per ship than the weighted average, i.e.,
c(mn) > cM , implying that the cost adjustment term in (36) is negative.
The club is now being penalized for its cost inefficiency, which appears more
realistic than in Scenario 1.

Exploring the cost component given in equation (38), from an operating
cost perspective this formula for the cost per ship after pooling suggests
that a small club should try to become larger after pooling in order to get
the cost per ship down, since c(mn) > cM . The premium per ship after
pooling is just p, so unlike in the previous scenario, there is no need for the
club to decrease in size after pooling to get the premium income per ship
up. Recalling the dual interpretation of (αn/a), increasing the risk tolerance
(αn/a) from (σn/σ) is consistent with increasing the portfolio fractions (αn/a)
from (mn/M) in equilibrium, as seen by (27) for the normal case, a similar
reasoning holding in general.

The club will have incentive to become more cost efficient, which it can
achieve by growing. The total premium income will increase in direct pro-
portion to the risk, but since the reserve is unchanged, the regulators are
likely to limit the club’s increase in risk exposure.

Consider the objective of the club. The optimal portfolio after pooling is

Yn = wn + mn(cM − c(mn)) +
αn

a
(π(U)− U), (39)

where we have used (36). The objective criterion at Yn is thus

E
(
vn(Yn)

)
= 1− exp

{
− 1

a

( a

αn

Dn + π(U)− alogE
(
eU/a

))}
, (40)

where
Dn =

(
wn + mn(cM − c(mn)

)
. (41)

If Dn > 0, decreasing (αn/a) increases the objective function of Club n, and
if Dn < 0, increasing (αn/a) increases the objective of the club. From this
it follows that the club will only want to increase its final portfolio if its
reserves are sufficiently small, i.e., if wn < mn(c(mn) − cM), otherwise it
wants to decrease risk.
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Moving to a club in category (ii), the first term in (36) is now positive,
so this club is finally rewarded for its cost efficiency. From an operating cost
perspective, expression (38) for the cost per ship after pooling suggests that
a medium club should try to downsize its underwriting relative to the other
clubs. By doing so, we see that the cost given in (38) will be smaller than
c(mn), so even the most cost efficient club can decrease its operating cost
this way. This conclusion is supported by the objective criterion of the club
as well, since this time Dn > 0, which calls for a decrease in (αn/a).

Since the club is, after all, making its money in the insurance business
by obtaining a risk premium per ship, there will obviously be a trade-off
between profit and cost efficiency. For example, it could well be that it is
not profitable for such a club to downsize at all.

Unlike in Scenario 1, this time the premium per ship after pooling is just
p, so in this situation there is no motive for the club to take more relative
risk to get the premium income per ship up.

In this situation the club may have a motive to become more cost efficient
or stay where it is, which it can achieve after pooling by downsizing relative
to the others or staying put. The total premium income will remain the
same, or decrease in direct proportion to the risk, and since the reserve after
pooling is unchanged, the regulators are likely to have no objections to either
of these strategies.

Finally consider case (iii). A very large club is penalized from cost inef-
ficiency through the side payment given in (36) if its cost is larger that the
weighted average cM of all the clubs. Intuitively one might think that such a
club should size down its relative underwriting operations in order to become
more cost efficient. This is also consistent with the objective criterion if the
reserves are large, i.e., if wn > mn(c(mn)− cM).

As seen from the expression (38) for the cost per ship after pooling,
however, a very large club could alternatively try to increase its relative
underwriting in order to get the cost per ship down, since c(mn) > cM . From
(38) we notice that if the equality (αn/a) = (mn/M) holds, the cost per
ship after pooling is just c(mn), the initial cost. The only way to reduce
this cost is to increase the fraction (αn/a). Again the regulators are likely to
set limits for how large this increase could be, since the reserves are still wn

after pooling. From the objective criterion we see, on the other hand, that
the club will only pursue this strategy if the reserves satisfy the inequality
wn < mn(c(mn)− cM).

Summing up, Scenario 2 displays a situation where the cost efficient clubs
are rewarded after pooling, and the cost inefficient clubs are being penalized
through the side payments bn. From analyzing the final portfolios after pool-
ing, and the objective criterions of the clubs, we see that there is an incentive
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for the small, leveraged clubs to grow, the medium clubs will make a profit
and act as net lenders, and the very large clubs, experiencing negative side
payments, will have a motive to further increase their underwriting.

If the reserves of the clubs in categories (i) and (iii) are sufficiently large,
however, all the clubs will have a motive to downsize their underwriting.

6.3.3 Credit Risk

Until now we have ignored the possibility that the losses may bring a P&I
club in distress. If for Club n, Yn(s) < 0 in some state s in the state space S,
we have not been specific about what could happen. One possibility is that
this loss is shared between the other clubs in their respective proportions
(αn/a) of the market. Another possibility is that the ship owners behind
Club n are asked to pay in the residual as an addition to the premium,
after the losses have materialized, as a direct form of experience rating. If∑

k Yk(s) < 0, the ship owners must in any case cover this residual market
loss on own accounts.

In this section we consider a situation where the clubs claim limited lia-
bility. A ship owner will then judge the club according to this possibility, and
only be willing to pay a premium that reflects the total risk. The situation
is now that a club with a larger risk exposure than what corresponds to its
relative size in the market, may have to offer a discount on its premium.

Since the club is owned by the ship owners, this means that they have
to cover parts of the risk theselves, and are in return only willing to pay a
premium for the risk that is actually covered. Let us denote the assets of
Club n by An, i.e.,

An =
αn

a

(
w + M(p− cM)

)
+ bn, (42)

and let
Bn = Ana/αn = w + M(p− cM) +

a

αn

bn. (43)

Then the premium must now be determined by the relation

pn = cM +
1

M

(
π(U |U ≤ Bn)P (U ≤ Bn) + π(U |U > Bn)P (U > Bn)

)
. (44)

Here π(U |U > Bn) = An

1+r
, and

π(U |U ≤ Bn) =
1

1 + r

(
E(U |U ≤ Bn) +

cov(U, eU/a|U ≤ Bn)

E(eU/a|U ≤ Bn)

)
. (45)
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The actual computation of these quantities is straightforward for the models
considered in Section 5. By continuity there will exist some discount factor
dn < 1 such that

pn := p(3)
n = cM +

dn

M(1 + r)

(
EU +

cov(U, eU/a)

E(eU/a)

)
. (46)

Here dn < 1 for all n ∈ N , and d < 1 as well, where d = 1
N

∑
k dk. Notice

from (42) and (43) that when the side payments are all zero, all the discount
factors dn = d for all n ∈ N .

This situation is analogous to a reinsurance market where the reinsurers,
here the the P&I clubs, can not get coverage above a certain XL-layer, here
An for Club n, where An serves as a cap. The average premium p(d) in the
syndicate reflects this. In real life the clubs should be able to obtain an
umbrella, or catastrophe coverage, of this residual risk.

Also in this scenario the side payments after trade are exchanged only
between the clubs in the syndicate, since this time pn is what the ship owners
really pay per ship to Club n. The side payments are given by

bn = mn(cM − c(mn)) +
mn

M
π(U)(dn − d)+(αn

a
− mn

M

)
π(U)(1− d) + (wn −

αn

a
w),

(47)

where the premium adjustment term is

mn(p(3)
n − p(d)) =

1

M
mnπ(U)(dn − d). (48)

In the syndicate each ship is accounted for the average premium p(d), and the
different clubs will ”receive” the difference (p

(3)
n −p(d)) per ship after pooling.

In addition we have the term(αn

a
− wn

M

)
π(U)(1− d) (49)

stemming from adjustment costs for diversification of the insurance risk when
credit risk is present. If the latter risk does not exist, d = 1 and this term
disappears. This correction to the side payment will, ceteris paribus, make it
more profitable for a club to increase its risk exposure, because it now enjoys
limited liability.

The final portfolio Yn can be written

Yn =−
(αn

a
McM −mn(cM − c(mn))

)
+

(αn

a
Mp(d) +

mn

M
π(U)(dn − d)

)
+

(αn

a
w + (wn −

αn

a
w)

)
+

((αn

a
− mn

M

)
π(U)(1− d)− αn

a
U

)
.

(50)
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The two new terms are the second and the fourth on the right hand side,
the second being the premium term after pooling. Dividing by the number
of ships, this term can be written(

p(d) +
(mn

M

a

αn

) 1

M
π(U)(dn − d)

)
. (51)

The objectives of the clubs can be found as follows. First we need the
optimal portfolio after pooling, which is

Yn = wn+mn(cM − c(mn)) +
mn

M
π(U)(dn − 1)+

αn

a
π(U)(1− d) +

αn

a
(π(U)− U),

(52)

where we have used (47). The objective criterion of Club n at Yn is thus

E
(
vn(Yn)

)
= 1− exp

{
− 1

a

( a

αn

D̃n + π(U)(2− d)− alogE
(
eU/a

))}
(53)

where
D̃n =

(
w̃n + mn(cM − c(mn)

)
, (54)

and
w̃n := wn −

mn

M
π(U)(1− dn). (55)

If D̃n > 0, decreasing (αn/a) increases the objective function of Club n,
and if D̃n < 0, increasing (αn/a) increases the objective of the club. Since
w̃n < wn, the constants D̃n < Dn and the situations with increasing risk
taking in categories (i) and (iii) is more likely here than in Scenario 2.

Starting with a small club in category (i), according to our assumptions
this club has higher operating costs per ship than the weighted average,
i.e., c(mn) > cM , implying that the cost adjustment term in (47) is negative.
The club is still being penalized for its cost inefficiency. If (αn/a) = (mn/M),
the last two terms in (47) are zero. This leads to a negative side payment,
in which case dn < d. Thus the two first terms in (47) are negative, and
consequently the club is penalized both for being cost inefficient, and for
having a credit risk higher than the average. This is now the base case,
giving a negative bn.

In this situation the club will have motivation to grow more cost efficient.
As in Scenario 2, from an operating cost perspective, expression (38) for the
cost per ship after pooling suggests that a small club should try to become
larger in order to get the cost per ship down.

Since dn < d, we notice from (51) that also the premium term increases
when (αn/a) increases, but this effect may eventually be reduced, since a
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higher exposure can led to a decreased credit rating. Finally, the term (49)
calls for more risk taking of this small club, except from the last term in (50)
which is the very risk itself.

From the objective criterion it follows that increasing risk only increases
the objective function if D̃n < 0, which means that the reserves wn must be
relatively small, but not as small as in Scenario 2, since w̃n < wn. This effect
is enforced if the total risk U has a large market value, the initial ratio of ships
is large, and the credit rating is low, in fact, w̃n may then be negative. The
likely outcome for a small club is that of more risk taking than in Scenario
2.

Moving to a medium club in category (ii), the first term in (47) is now
positive since c(mn) < cM , so this club is still rewarded for its cost efficiency.
If (αn/a) = (mn/M) were to hold, the last two terms in (47) are zero. This
leads to a positive bn, which gives a more favorable credit rating than the
small club could obtain, i.e., dn > d. As a consequence the side payment
is further increased by the second term in (47), and ends up being clearly
positive.

As in Scenario 2, from an operating cost perspective, expression (38) for
the cost per ship after pooling suggests that a medium club should downsize
its underwriting. We notice from the expression (51) for the premium per
ship after pooling that this premium increases as (αn/a) decreases. The likely
effect of this is to further strengthen the club’s credit rating, making this
premium even larger. The downsizing may is reduced, however, by the risk
taking effect from the term (49), not to forget the profits from underwriting.

While Dn > 0 in Scenario 2, here D̃n may be negative, and relative
downsizing is not the only alternative according to the objective criterion.

The overall outcome for a medium to large club depends on the relative
sizes of all these effects, and may vary between downsizing, more risk taking
and staying at about the same level of risk as initially.

Finally consider category (iii). A very large club is penalized for its
diseconomies of scale since its cost is larger that the weighted average cM of
all the clubs. If (αn/a) = (mn/M), then the cost per ship after pooling is
c(mn), the initial cost, and the club is motivated to improve its cost result by
increasing its risk exposure. This can again be seen from the expression (38)
for the cost per ship after pooling. A very large club might thus be inclined
to increase its underwriting in the pooling negotiations in order to get the
cost per ship down.

If (αn/a) = (mn/M) were to hold, the last two terms in (47) are zero.
As a consequence the club may have a negative side payment, which will be
further lowered from the credit risk effect of the second term. Thus its side
payment in this base case may be negative.
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From the expression for the premium per ship after pooling, we notice the
same effect is true for a large club as for a club in category (i). However, if the
club has reserves large enough for its credit rating to satisfy dn > d, not an
unlikely situation for such a club, the premium will be reduced by increasing
(αn/a). This conclusion is also supported by the objective criterion.

The diversification effect from (49) calls for taking more risk, ceteris
paribus, when there is credit risk. The outcome for a very large club thus
seems to depend upon its credit rating: If dn < d it is is about the same sit-
uation as in Scenario 2, or, perhaps, leaning towards a bit more risk taking
behavior based on the objective criterion. If dn > d on the other hand, the
premium reduction may be roughly counterbalanced by the positive effect
from the term (49). From the objective criterion, in the latter case we notice
that w̃n is larger, which calls for downsizing.

The overall outcome for a very large club depends on the relative sizes
of all these different effects, and may vary between downsizing, more risk
taking and staying at about the same level of risk as initially. The surprising
conclusion is that in many situations such a club may find it best to increase
in size. This is in particular true if the cost effect dominates in a club with
not too large reserves. Such a club will take more risk if it is allowed to by
the regulators and the other participants in the syndicate.

Finally let us recall that the positions taken must ”adds up”, i.e.,
∑

k bk =
0, and

∑
k αk/a =

∑
k mk/M = 1, since we have assumed that markets clear,

and
∑

k wk/w = 1 by definition.
Based on the analysis in this section we have added a sixth column in

Table 1 indicating possible adjustments to the estimates of the ratios (αn/a)
of the final portfolios, excluding side payments, interpreting the values in
Column 5 as the initial (mn/M)-values.

Summing up, with credit risk we still have a situation where the cost
efficient clubs are rewarded after pooling, and the cost inefficient clubs are
being penalized. The small clubs tend to be further penalized by credit risk,
and the medium clubs are now typically more rewarded.

The medium clubs will make a profit and could act as net lenders, and
the very large clubs, may either act as lenders or as borrowers, depending
upon their credit ratings, and the degree of diseconomies of scale. The very
large clubs may have a motive to grow relative to the other clubs if the cost
effect dominates, and they do not have too large reserves. Clubs in this latter
category are not observed in the sample of Table 1.

For a small club with a levered, risky position, if the perils of the sea are in
its disfavor, in order to grow more cost efficient, and hence more competitive,
a strategy of merger and acquisition could be explored, rather than the one
outlined above. Such strategies have been observed in the market for P&I
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Clubs during the last couple of decades.
Since we only consider a one period model, all clubs cannot grow simul-

taneously, and we can only explore the relative changes of the various clubs.
If the exogenous growth in the market for P&I coverage is strong enough, all
the clubs may grow, but to a varying degree.

Our analysis indicates one possible scenario: The small and the medium
clubs converge in size, and some very large clubs grow even larger.

This conclusion may be somewhat surprising. Considering the develop-
ment in this market during the last few decades, however, this scenario seems
to conform to the current trend among the P&I clubs.

A dynamic model would be valuable to capture the growth element in the
market for P&I coverage, preferably one that makes this growth endogenous.
This is the topic for a future investigation.

7 Conclusions

The paper analyzes the possibility of reaching an equilibrium in a market of
Protection and Indemnity Clubs, displaying economies of scale. Our anal-
ysis rationalizes some empirically documented findings, and points out new
possible directions for this market.

Of the three scenarios we have analyzed, the one with credit risk, and side
payments only transfered between the clubs, seems to be the most promising.
Being more realistic, it is still parsimonious enough for us to draw some in-
teresting conclusions. This arrangement is close to a competitive equilibrium
between corporate insurance companies. This is following a trend of demu-
tualization, where mutual companies either are transfered into corporations,
or they act more and more like stock owned companies. The main reasons
for this seem to be that the insurance companies want to attract sufficient
equity capital to meet asset-to-liability limits set by regulators, and this can
be difficult for a mutual company to carry out because of its special owner-
ship structure. For a P&I Club this may be less of a problem, however, since
many of its owners are rather wealthy. The situation we consider with credit
risk will typically induce some of the clubs to take more risk.

In particular we find an equilibrium in a market of such mutual marine
insurers, in which smaller clubs, having operating costs above average, may
grow larger relative to the other clubs in order to become more cost effective,
and where among the medium to larger cost efficient clubs there may be
some that want to downsize their underwriting relative to the other clubs.
Some of the very large clubs suffering from diseconomies of scale may have a
motivation to further increase from an operating cost perspective, if allowed
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to do so, while others may downsize their underwriting relative to the other
clubs.

According to observations, most clubs have, during the last decade, ex-
panded significantly in size measured by gross tonnage of entered ships, some
clubs have merged, but very few seem to have decreased their underwriting
activity, in particular none of the really large ones. Combining these obser-
vations with our model, the analysis points to the following possible future
scenario: The small clubs and the medium to large clubs will tend to converge
in size, while there may still be some very large clubs present as well.

References

[1] Aase, K. K. (2004a). ”Optimal risk sharing”. Enclycopedia of Actuarial
Science, J.L. Teugels and B. Sundt (eds.), Vol. 3, pp 1212-1215, Wiley,
Chichester, England.

[2] Aase, K. K. (2004b). ”Pooling in Insurance”. Enclycopedia of Actuarial
Science, J.L. Teugels and B. Sundt (eds.), Vol. 3, pp 1308-1311, Wiley,
Chichester, England.

[3] Aase, K. K. (2002). ”Perspectives of risk Sharing”. Scand. Actuarial J.
2, 73-128.

[4] Aase, K. K. (1993). ”Equilibrium in a reinsurance syndicate; Existence,
uniqueness and characterization”. ASTIN Bulletin 22; 2; 185-211.

[5] Baltensperger, E. (1972). ”Economies of Scale, Firm Size, and Concen-
tration in Banking”. Journal of Money, Credit and Banking 4, 467 -
488.

[6] Borch, K. H. (1962). ”Equilibrium in a reinsurance market”. Economet-
rica, Vol. 30: 3, 424-444.

[7] Borch, K. H. (1960a). ”The safety loading of reinsurance premiums.”
Skandinavisk Aktuarietidsskrift 163-184.

[8] Borch, K. H. (1960b). ”Reciprocal Reinsurance Treaties”. ASTIN Bul-
letin, Volume I, 170-191.

[9] Katrishen, F. A., and N. A. Scordis (1998). ”Economies of Scale in
Services: A study of Multinational Insurers”. Journal of International
Business Studies 29, 305-323.

33



[10] Li, K. X., and Wang Shan (2004). ”Organizations of Marine Mutual
Insurance: Scale Economies or Diseconomies.” Unpublished Manuscript,
Hong Kong Polytechnic University and Tsinghua University.

[11] Smith, A. (1776). The Wealth of Nations. Edinburgh.

34




