
UCLA
UCLA Previously Published Works

Title
Don't mind the gap: Bridging network-wide objectives and device-level configurations

Permalink
https://escholarship.org/uc/item/468332vn

Journal
ACM SIGCOMM Computer Communication Review, 49(5)

ISSN
0146-4833

Authors
Beckett, Ryan
Mahajan, Ratul
Millstein, Todd
et al.

Publication Date
2019-11-08

DOI
10.1145/3371934.3371965
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/468332vn
https://escholarship.org/uc/item/468332vn#author
https://escholarship.org
http://www.cdlib.org/


Don’t Mind the Gap: Bridging Network-wide Objectives and
Device-level Configurations

(Brief Reflections on Abstractions for Network Programming)

Ryan Beckett
Microsoft

Ryan.Beckett@microsoft.com

Ratul Mahajan
University of Washington

and Intentionet
ratul@cs.washington.edu

Todd Millstein
UCLA

and Intentionet
todd@cs.ucla.edu

Jitendra Padhye
Microsoft

padhye@microsoft.com

David Walker
Princeton University

dpw@cs.princeton.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
We reflect on the historical context that lead to Propane, a high-level
language and compiler to help network operators bridge the gap be-
tween network-wide routing objectives and low-level configurations
of devices that run complex, distributed protocols. We also high-
light the primary contributions that Propane made to the networking
literature and describe ongoing challenges. We conclude with an
important lesson learned from the experience.

CCS CONCEPTS
• Networks Network control algorithms; Network re-
liability; Network management; • Software and its
engineering Automated static analysis; Domain spe-
cific languages;

KEYWORDS
Propane; Domain-specific Language, BGP, Synthesis, Compilation,
Fault Tolerance, Distributed Systems

1 HISTORICAL CONTEXT
When Software-Defined Networking (SDN) burst onto the scene
around 2008, it offered a new means to control packet forwarding
from a single centralized vantage point. Neither network engineers
nor researchers would be bound to the slowly-evolving technology
provided by traditional routers. Instead, for many in the network-
ing community, SDN opened up the opportunity to program new
algorithms that use network-wide data to optimize performance.
The decisions made by these new algorithms could then be real-
ized by pushing specific packet-processing rules out to a distributed
collection of OpenFlow-enabled switches.

While many networking researchers examined what new algo-
rithms could be implementing using SDN, a few, in collaboration
with programming languages researchers, began to explore how best
to express these algorithms. With a plethora of new algorithms and
much new infrastructure being developed, there are were bound to
be many bugs, which in the short term at least, might make such

network services less reliable. Hence, it made sense to consider
whether there might be new programming paradigms that, through
their design, might be able to cut down on certain classes of software
errors.

Frenetic was the first language that provided programmers with
a higher-level interface to OpenFlow switches [4]. It responded to
control events from switches, such as failures or traffic statistics,
and used the information it received to compute declarative data
plane policies. These policies specified much of the same informa-
tion as lists of OpenFlow rules, but unlike OpenFlow, they were
composable. For instance, one could specify a network monitoring
policy separately from a network routing policy and then implement
both policies simultaneously, without fear of conflicts, by invoking
a single function. Under the covers, Frenetic generated OpenFlow
rules and installed them “consistently” [11] to avoid transient bad
behaviors. Composition and consistent updates raised the level of
abstraction at which network engineers could implement policy and
helped fend off some of the errors that can arise due to poorly-
synchronized rule installation.

Soon afterwards, inspired by Frenetic, researchers looked to ex-
tend the set of policies network engineers could craft to specify
intended routing behavior. For instance, NetCore [8] generalized
Frenetic’s simple packet patterns, allowing users to classify traffic us-
ing more general boolean predicates over packets, and demonstrated
it was possible to compile such programs to OpenFlow. Pyretic [9]
extended NetCore’s policy language to allow a new kind of sequen-
tial composition to complement Frenetic’s parallel composition).
FatTire [10] went a step further, adding the abstraction of paths,
specified by regular expressions. These paths represented the first
real network-wide abstraction.

Thus, in the five-year period between 2008 and 2013, researchers
had converged on two essential elements of stateless, network-wide
data plane programming: (1) regular expressions to describe paths
and (2) boolean predicates to classify packets and to choose the paths.
In 2014, Anderson et al. [1] recognized that network programming
languages possessing this combination of features were instances of
a well-known algebraic structure called a Kleene Algebra with Tests

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

104



(KAT) [6]. Through this connection, a rich semantic theory and a
host of algorithmic techniques could be adapted from the world of
formal algebra to the study of network programs.

2 PROPANE’S CONTRIBUTIONS
While SDN was the hot topic of the day in academia, most networks,
both big and small, continued using traditional routing protocols
such as OSPF and BGP. Even modern data centers, which might use
SDN around the edge, often continued to use traditional routing in
their core. In part, this continued use is certainly a legacy software
and hardware issue. But it is also likely that traditional routers, which
have the benefit of being plug-and-play, simply perform well enough
in many common cases. Finally, regardless of whether a network
uses SDN internally or not, it is necessary to communicate with
peers, and the only current means of doing so is via BGP. Hence,
interfacing with traditional distributed protocols remains essential,
even in the SDN world.

The primary contribution of Propane is to demonstrate that the
kinds of high-level abstractions used to specify data plane policy in
SDN could also be adapted to specify control plane policy in tradi-
tional networks. In particular, fundamental network-wide abstrac-
tions such as paths, specified via regular expressions, and boolean
expressions, used to classify traffic, could be combined, as in the
SDN world, to denote the expected flow of data plane traffic.

However, there are two significant differences at the level of opera-
tor specifications. First, whereas SDN programs concern themselves
only with intra-domain routing, Propane could simultaneously spec-
ify both intra- and inter-domain traffic patterns. Hence, in a single
uniform notation, network engineers could specify the way they
wished to interact with their peers and how they wanted to route
traffic through their own network. Second, when failures occur or
a route is withdrawn by the peer, the control plane will recompute
its routing decisions and choose a backup route—these backups
must be specified up front, along with the primary routes. Propane
added relations between paths to allow operators to specify path
preferences such that a lower-preference path is taken only when a
higher-preference path is unavailable.

A second key contribution of the Propane is to demonstrate how
global specifications provided can be compiled and implemented cor-
rectly using traditional distributed protocols. To do so, the Propane
system uses BGP as the implementation protocol because of its
flexibility. However, it turns out that not all regular sets can be imple-
mented by path vector protocols like BGP. Consequently, Propane
defined an analysis to inform users when their policies cannot be
implemented in BGP. The original SIGCOMM paper describes the
analysis and compilation process briefly; Beckett’s thesis [2], which
won the 2018 ACM SIGCOMM dissertation award, fills in the de-
tails.

3 CONTINUING CHALLENGES
While the original work supplied a proof of concept, much work
remained, and continues to remain, to provide the surrounding infras-
tructure necessary for Propane to be adopted by mainstream network
engineers.

Scaling. One of the first challenges was to improve the scaling
properties of Propane to make it attractive to engineers of large

networks. To tackle this problem, in a follow-on system called
Propane/AT [3], we stole an idea in use in industry: the notion
of templates. Rather than specifying concrete locations and desti-
nations, we allow Propane-like specifications to include template
variables. In a first compilation phase, we analyze the Propane speci-
fication with respect to these parameters and an abstract topology
and ensure that any legal instantiation of the parameters will gener-
ate a control plane and concrete topology with desirable properties
(e.g., the appropriate level of fault tolerance). In a second compila-
tion phase, we instantiate the parameters and convert the abstract
topology to a valid concrete topology. We found that this two-phase
compilation strategy dramatically improved compilation times for
Propane. Using abstract topologies, Propane can compile data center
configurations up to two orders of magnitude faster. These generated
configurations also allow certain kinds of incremental changes to
network configuration without recompilation and reinstallation of
all configurations on all switches.

Incremental deployment. A significant challenge in deploying
Propane industrially is incremental deployment. At the moment,
Propane is designed for new networks. How should Propane interact
with existing networks that operate using completely different, ad
hoc configuration system? This is a rich problem, worthy of future
study, and the topic of an ongoing NSF grant [7].

One possible approach is to analyze the set of low-level config-
urations that are present in the existing network. Such an analysis
could identify the paths allowed and synthesize a matching Propane
specification. The simplest way of doing so may list all the paths
through the network one-by-one. However, such a listing is likely
very verbose and compact specifications are almost always much pre-
ferred over verbose ones. Another approach to finding a specification
would be to try to find a compact generalization of the naive list of
paths. However, doing so might involve admitting more paths in the
specification than are present in the existing network. In other words,
a compact generated specification might over-approximate the set of
actual routes. But how much overapproximation will a user accept?
What notation should one use to cut out overapproximations? These
and similar questions require further research.

Incremental evolution. Once Propane is deployed, engineers will
undoubtedly need to update policy from time to time to addess secu-
rity vulnerabilities, add or remove hosts, expand capacity, or change
routing decisions. While Propane/AT [3] provides mechanisms that
allow for incremental update of the network topology, it does not pro-
vide mechanisms for changing policy. One approach to solving this
problem would be to adapt recent research on network repair [5] to
the problem. The idea here would be that the new Propane program
would be the specification and the existing set of configurations be
“repaired” to meet this new specification. Ideally, such repairs would
generate a minimal set of commands that could be issued to update
routers.

4 A KEY LESSON: THE IMPORTANCE OF
SMALL MODELS

The programming languages that software engineers use on a day-
to-day basis are extremely complicated. This is true of C++, Python,
Haskell, and JavaScript. It is also true of Cisco IOS and Juniper

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

105



JunOS, the languages network operators use to program their net-
works. In order to understand how these languages work in a deep
sense, how to program with them, and how to build reliable abstrac-
tions on top of them, one cannot tackle the whole language all at
once. It is necessary to build small, simple models first—little ideal-
ized languages—which might not have every bell and whistle, but
that are more uniform than their real-world counterparts. Such small
models will almost always leave out elements of the real language,
which will invariably frustrate practitioners. However, that is not a
bug but a feature—it frees the researcher to focus on what is left in
the small model and to ignore additional complexity that is left out.

In a sense, OpenFlow 1.0 was a small model for packet forwarding.
It provided an understanding of the network dataplane so simple that
even programming language researchers could understand it! Once
we understood this simple forwarding model, we could manipulate,
transform, abstract, and extend it. And then, finally, we could begin
to apply the lessons learned in this simple setting to more expansive
contexts. The latter step is where Propane comes in as it adapted
ideas developed in the world of early SDN dataplane to the more
complex setting of the traditional router. Going forward, we hope to
see the networking community develop more small models for other
components of the networking stack.

Acknowledgments. We thank R. Aditya, George Chen, Lihua
Yuan, and the SIGCOMM reviewers for feedback on the original
work. That work was supported in part by the National Science

Foundation awards CNS-1161595 and CNS-1111520 as well as a
gift from Cisco.

The current paper is supported in part by the National Science
Foundation award 1703493. We thank Jennifer Rexford and George
Varghese for many discussions about Propane over the years and for
ideas concerning its evolution.

REFERENCES
[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and

D. Walker. NetKAT: Semantic foundations for networks. In POPL, 2014.
[2] R. Beckett. Network Control Plane Synthesis and Verification. PhD thesis, Prince-

ton University, 2018. See http://arks.princeton.edu/ark:/88435/dsp01d217qs28v.
[3] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Network configu-

ration synthesis with abstract topologies. In PLDI, 2017.
[4] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and

D. Walker. Frenetic: A network programming language. In ICFP, 2011.
[5] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu. Automatically

repairing network control planes using an abstract representation. In SOSP, 2017.
[6] D. Kozen. Kleene algebra with tests. Transactions on Programming Languages

and Systems, 19(3), May 1997.
[7] T. Millstein, G. Varghese, and D. Walker. NeTS: Medium: Collaborative Re-

search: Network Configuration Synthesis: A Path to Practical Deployment. https:
//www.nsf.gov/awardsearch/showAward?AWD_ID=1703493, July 2017. NSF
CNS 1703493.

[8] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and run-time
system for network programming languages. In POPL, 2012.

[9] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing software-
defined networks. In NSDI, 2013.

[10] M. Reitblatt, M. Canini, N. Foster, and A. Guha. FatTire: Declarative fault
tolerance for software defined networks. In HotSDN, 2013.

[11] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions
for network update. In SIGCOMM, 2012.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

106

http://arks.princeton.edu/ark:/88435/dsp01d217qs28v
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1703493
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1703493

	Abstract
	1 Historical context
	2 Propane's Contributions
	3 Continuing Challenges
	4 A Key Lesson: The Importance of Small Models
	References



