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Obesity causes mitochondrial fragmentation 
and dysfunction in white adipocytes due to 
RalA activation

Wenmin Xia    1, Preethi Veeragandham1, Yu Cao    1, Yayun Xu1, Torrey E. Rhyne1, 
Jiaxin Qian1, Chao-Wei Hung    1, Peng Zhao    1,10, Ying Jones2, Hui Gao    3, 
Christopher Liddle4, Ruth T. Yu    5, Michael Downes5, Ronald M. Evans    5, 
Mikael Rydén    6, Martin Wabitsch    7, Zichen Wang8,9, Hiroyuki Hakozaki8,9, 
Johannes Schöneberg8,9, Shannon M. Reilly    1,11, Jianfeng Huang5 & 
Alan R. Saltiel    1,8 

Mitochondrial dysfunction is a characteristic trait of human and rodent 
obesity, insulin resistance and fatty liver disease. Here we show that high-fat 
diet (HFD) feeding causes mitochondrial fragmentation in inguinal white 
adipocytes from male mice, leading to reduced oxidative capacity by a 
process dependent on the small GTPase RalA. RalA expression and activity 
are increased in white adipocytes after HFD. Targeted deletion of RalA in 
white adipocytes prevents fragmentation of mitochondria and diminishes 
HFD-induced weight gain by increasing fatty acid oxidation. Mechanistically, 
RalA increases fission in adipocytes by reversing the inhibitory Ser637 
phosphorylation of the fission protein Drp1, leading to more mitochondrial 
fragmentation. Adipose tissue expression of the human homolog of Drp1, 
DNM1L, is positively correlated with obesity and insulin resistance. Thus, 
chronic activation of RalA plays a key role in repressing energy expenditure in 
obese adipose tissue by shifting the balance of mitochondrial dynamics toward 
excessive fission, contributing to weight gain and metabolic dysfunction.

Obesity has become a worldwide epidemic1, dramatically increasing 
the incidence of type 2 diabetes, nonalcoholic steatohepatitis and 
other cardiometabolic abnormalities2–4. During the development of 
obesity, white adipose tissue (WAT) chronically expands and undergoes 

metabolic changes characterized by hormone insensitivity, inflamma-
tion, fibrosis and apoptosis5,6. While mitochondria play an important 
metabolic role in healthy adipocytes, oxidizing fuel to produce ATP 
and generating heat during thermogenesis, mitochondrial function is 
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RalaAKO mice had a greater than 90% decrease of RalA protein in 
primary adipocytes from WAT and BAT and an approximately 50% 
decrease in whole WAT, without changes in liver (Extended Data  
Fig. 1d). Insulin-stimulated GTP binding of RalA was diminished in WAT 
of RalaAKO mice compared to control mice and reduced RalA activity was 
also observed in primary adipocytes (Extended Data Fig. 1e).

Depletion of RalA produced a reduction in insulin-stimulated 
glucose uptake in iWAT and BAT (Extended Data Fig. 1f–h). As our 
previous data showed that RalA plays an important role in regulat-
ing glucose uptake in BAT, we created brown adipocyte-specific KO 
(RalABKO) mice by crossing RalA-floxed mice with UCP1-Cre transgenic 
mice (Extended Data Fig. 1i). In direct contrast to what was observed 
in brown adipocyte-specific RalGAP KO mice, glucose uptake was 
reduced in the BAT of RalABKO mice (Extended Data Fig. 1j–l). Notably, 
insulin-stimulated glucose uptake was mostly restricted to brown fat 
and we observed that RalA is dispensable for glucose uptake into eWAT 
in both gain-of-function and loss-of-function models. To examine 
further whether the impact of RalA on glucose uptake in adipocytes 
occurs in a cell-autonomous manner, we generated primary white 
adipocytes by differentiation of iWAT stromal vascular cells from con-
trol and KO mice. As previously seen in 3T3-L1 adipocytes22, KO of 
RalA completely prevented the translocation of GLUT4 from intracel-
lular sites to the plasma membrane in response to insulin, as assessed 
by both microscopy and subcellular fractionation (Extended Data  
Fig. 1m,n). Moreover, insulin-stimulated glucose uptake in KO cells was 
significantly reduced in KO cells without disturbing upstream insulin 
signaling (Extended Data Fig. 1o,p).

Adipocyte-specific deletion of Rala had no effect on body weight 
in chow diet (CD)-fed mice, although these mice displayed a reduction 
in fat mass and depot weight (Extended Data Fig. 2a–c). Generally, 
adipocytes from iWAT were considerably smaller than those found in 
eWAT from mice fed CD29. RalaAKO mice had smaller adipocytes in iWAT 
compared to control mice fed with CD, whereas adipocyte size was 
comparable in eWAT and BAT between the genotypes (Extended Data 
Fig. 2d). While RalaAKO mice on CD showed no difference in glucose toler-
ance, there was a slight reduction in insulin tolerance when compared 
to Ralaf/f mice (Extended Data Fig. 2e,f). Insulin levels and homeostasis 
model assessment of insulin resistance (HOMA-IR) in RalaAKO mice were 
not different from control mice fed with CD (Extended Data Fig. 2g,h); 
however, RalaAKO mice gained significantly less weight than control lit-
termates when challenged with 60% HFD (Fig. 1e), including a marked 
reduction of fat mass, with no change in lean body mass (Fig. 1f). Fur-
ther analyses revealed that iWAT weight was reduced in RalaAKO mice, 
with no difference in eWAT and BAT (Fig. 1g). HFD increased adipocyte 
size in all fat depots from wild-type (WT) mice, but the effect was most 
pronounced in iWAT; HFD-fed RalaAKO mice displayed a trend toward 
smaller adipocytes in iWAT compared to control mice, but not in eWAT 
or BAT (Extended Data Fig. 2d). HFD-fed RalaAKO mice exhibited a marked 
improvement in glucose tolerance compared to control mice, with no 
change in insulin tolerance (Fig. 1h,i), but with reduced insulin levels and 
improved HOMA-IR (Fig. 1j,k). Fasting glucose levels were comparable 
between the genotypes on either HFD or CD (Extended Data Fig. 2i,j).

To investigate further which adipose tissue depot is responsible for 
the reduced weight gain in RalaAKO mice fed HFD, we placed RalaBKO mice 
on HFD. Although CD-fed RalaBKO mice showed a reduction in BAT weight, 
presumably due to reduced glucose uptake, there were no differences 
in overall fat mass or depot weight compared to control mice (Extended 
Data Fig. 2k, l). Glucose and insulin tolerance tests (GTTs and ITTs) 
were identical between the genotypes on control diet (Extended Data  
Fig. 2m,n). Moreover, no differences in body weight, fat mass, tissue 
weight, GTT or ITT were observed in HFD-fed RalaBKO mice (Extended 
Data Fig. 2o–s). We note that HFD-fed mice exhibit insulin resistance in 
BAT, such that RalA activation is already decreased in WT mice on HFD 
compared to control diet. Thus, these results suggest that specific Rala 
deletion in WAT, especially in iWAT, protects mice against obesity.

impaired in obese individuals7–10; however, what drives mitochondrial 
damage and how it contributes to obesity and its many complications 
remains unknown.

Obesity is associated with hyperinsulinemia and diabetes11,12 and 
studies have suggested a link between mitochondrial dysfunction, 
reduced energy expenditure and insulin resistance13. Altered mitochon-
drial oxidative function has been observed in muscle as well as adipose 
tissue from obese compared to healthy weight individuals14–18 and adi-
pocytes from obese individuals contain fewer mitochondria compared 
to lean counterparts15. Moreover, the mitochondria in the muscle of 
obese individuals are fragmented14. Changes in mitochondrial size and 
number are controlled by the dynamic balance of fusion and fission19. 
Fusion is crucial for the optimal control of mitochondrial number and 
integrity, particularly in response to changes in energy needs. Fission, 
which is catalyzed by the dynamin-related protein Drp1, mediates mito-
chondrial division and quality control during cell division20; however, 
mitochondrial fusion and fission are observed in many nondividing 
cells, indicating that the correct balance of these processes is crucial 
to adapting to energy needs and ensuring homeostasis.

Ral GTPases are members of the Ras superfamily involved in 
multiple cellular processes. We previously demonstrated that RalA 
is activated by insulin in adipocytes and in turn interacts with mem-
bers of the exocyst complex to target GLUT4 vesicles to the plasma 
membrane for docking and subsequent fusion, leading to increased 
glucose uptake21–23. Insulin activates RalA through inhibitory phos-
phorylation of the RalGAP complex24, as well as localization of RGL2, 
a guanine-nucleotide exchange factor (GEF) for RalA25. In vivo activa-
tion of RalA through targeted deletion of the RalGAP protein Ralgapb 
promotes glucose uptake into brown adipose tissue (BAT)26 and dra-
matically improves glucose homeostasis in mice on HFD. Similarly, 
targeted deletion of Ralgapa1 in mice improves postprandial glucose 
and lipid disposal into muscle27.

We report here that RalA gene and protein expression and activ-
ity are increased in adipocytes from obese mice and further that tar-
geted deletion of Rala in white, but not brown, adipocytes attenuates 
HFD-induced obesity, due to dramatically increased energy expendi-
ture and mitochondrial oxidative phosphorylation, specifically in 
inguinal WAT (iWAT). These beneficial effects of RalA deletion were 
driven by a reversal of the increased mitochondrial fission in white 
adipocytes induced by feeding mice HFD. In vitro studies revealed that 
RalA interacts with the protein phosphatase PP2Aa to promote the 
dephosphorylation of inhibitory Serine637 on Drp1, rendering Drp1 
active, leading to excessive fission and mitochondrial fragmentation. 
Taken together, these data reveal that persistent elevation of RalA in 
obesity produces mitochondrial dysfunction in white adipocytes, with 
profound effects on systemic metabolism.

Results
White adipocyte-specific Rala deletion protects mice from 
high-fat-diet-induced obesity
RNA sequencing (RNA-seq) analysis from isolated mature adipocytes 
derived from control and HFD-fed mice28 revealed that Rala expression 
is significantly upregulated in adipocytes from epididymal WAT (eWAT) 
and iWAT during obesity development, whereas Ralgapa2 expression is 
downregulated (Fig. 1a,b). In addition, RalA protein content is increased 
in mature adipocytes from iWAT of obese mice (Fig. 1c and Extended 
Data Fig. 1a), accompanied by elevation of RalA–GTP binding (Fig. 1d and 
Extended Data Fig. 1b). These positive correlations seem to be exclusive 
for WAT as no changes in RalA levels were detected in BAT after HFD feed-
ing (Extended Data Fig. 1c). Together, these observations support the 
notion that adipocyte RalA activity is constitutively elevated in obesity.

To explore further whether RalA plays a role in glucose home-
ostasis and energy metabolism, we generated adipocyte-specific 
Rala knockout (KO) (RalaAKO) mice by crossing Rala-floxed mice with 
adiponectin-Cre transgenic mice. Compared to Ralaf/f littermates, 
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Loss of RalA in WAT ameliorates HFD-induced hepatic steatosis
As HFD-fed RalaAKO mice showed an improved GTT without altering 
insulin tolerance, we speculated that the improved glucose handling is 
due to reduced hepatic glucose production. To test this assumption, we 
performed a pyruvate tolerance test (PTT) in HFD-fed Ralaf/f and RalaAKO 
mice. RalaAKO mice exhibited substantially lower glucose excursions 
following pyruvate challenge compared to control mice (Fig. 2a). There 
was a significant downregulation of the hepatic gluconeogenic genes 
G6pc and Pepck (Fig. 2b). These data suggest that adipocyte-specific 
Rala deletion improved glucose homeostasis partially through reduced 
hepatic glucose production.

Liver weights and triglyceride (TG) content were significantly 
reduced in HFD-fed RalaAKO mice compared to control mice (Fig. 2c,d). 
Both hematoxylin and eosin (H&E) and Oil-Red-O staining indicated 
less lipid accumulation in the livers of RalaAKO mice (Fig. 2e). In line 
with histology results, lipogenic genes (Acc, Fasn, Scd1 and Acsl1) were 

expressed at lower levels in the livers of RalaAKO mice (Fig. 2f); however, 
plasma leptin levels (Fig. 2g) and hepatic expression of genes related 
to fatty acid oxidation (FAO) (Fig. 2h) were unchanged in RalaAKO mice. 
In addition, inflammatory (Adgre1) and fibrosis-related (Col1a1 and 
Col3a1) genes were expressed at lower levels in livers of RalaAKO mice 
(Fig. 2i), as were aspartate aminotransferase (AST) and alanine ami-
notransferase (ALT) activities (Fig. 2j,k). Of note, we did not observe 
a difference in liver weights in RalaBKO compared to controls fed with 
HFD (Extended Data Fig. 2q). Together, these observations suggest that 
WAT-specific deletion of Rala systemically regulates lipid metabolism 
to ameliorate liver steatosis and damage in obesity.

RalA deficiency in WAT increases energy expenditure and 
mitochondrial oxidative phosphorylation
To explore why adipose tissue Rala deletion protects mice from 
HFD-induced hepatic steatosis, weight gain and glucose intolerance, 
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Fig. 1 | White adipocyte-specific Rala deletion protects mice from high-fat-
diet-induced obesity. a, Scheme illustrating RalA activation network involving 
genes encoding RalA, GEF and GAP. b, RNA-seq analysis of primary inguinal 
(Ing) and epididymal (Epi) mature adipocytes isolated from mice (n = 3) under 
16-week HFD feeding. Heat map displays transcriptional expression as z-scored 
FPM values. Adjusted P (adj. P) values are indicated and considered significant 
with values <0.05. c, Quantification of RalA protein content in mature adipocytes 
from iWAT and eWAT of mice fed with CD (n = 3) or HFD (n = 4) for 16 weeks. iWAT 
P = 0.033 CD versus HFD, eWAT P = 0.005 CD versus HFD. A.U., arbitrary units.  
d, Quantification of RalA GTPase activity in iWAT and eWAT of mice (n = 4) fed with 
CD or HFD for 4 weeks. iWAT P = 0.0448 CD versus HFD. e, Body weight of Ralaf/f 
(n = 8) and RalaAKO (n = 10) mice fed with 60% HFD. Longitudinal graph, P = 0.0158, 

P = 0.009, P = 0.0106. f, Body mass of Ralaf/f (n = 7) and RalaAKO (n = 6) mice fed 
with HFD for 12 weeks. Fat mass P = 0.0252. g, Fat depot weights of Ralaf/f (n = 10) 
and RalaAKO (n = 12) mice fed with HFD for 12 weeks. iWAT P = 0.0465. h, GTT on 
11-week HFD-fed Ralaf/f (n = 10) and RalaAKO (n = 13) mice, P = 0.0174, P = 0.0036, 
P = 0.0069; the area under the curve (AUC) was calculated from longitudinal 
charts, P = 0.0062. i, ITT on 12-week HFD-fed Ralaf/f (n = 10) and RalaAKO (n = 12) 
mice; AUC was calculated from longitudinal chart. j, Plasma insulin levels in 
8-week HFD-fed Ralaf/f and RalaAKO mice (n = 11). Fasted P = 0.0166. Fed P = 0.0329. 
k, HOMA-IR was calculated using fasting glucose and insulin levels from 8-week 
HFD-fed Ralaf/f (n = 8) and RalaAKO (n = 10) mice. P = 0.0152. Data (c–k) show 
mean ± s.e.m., *P < 0.05, **P < 0.01, by two-tailed Student’s t-test (c,d,f,g,j,k) or 
two-way analysis of variance (ANOVA) with Bonferroni’s post-test (e,h,i).
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we investigated energy metabolism in RalaAKO mice with metabolic cage 
studies. While Rala ablation in adipocytes did not affect energy metabo-
lism and food intake in mice fed CD (Extended Data Fig. 3a–e), HFD-fed 
RalaAKO mice displayed an increase in energy expenditure during the 
dark phase as determined by analysis of covariance (ANCOVA) using 
body weight as a covariate (Fig. 3a). Concordantly, oxygen consumption 
in RalaAKO mice was similarly increased compared to controls (Extended 
Data Fig. 3f), although there was no difference in respiratory exchange 
rate (RER), locomotor activity or food intake between the genotypes 
(Extended Data Fig. 3g–i). In contrast, RalaBKO mice fed HFD were identi-
cal to control littermates in energy expenditure, O2 consumption, RER, 
locomotor activity and food intake (Extended Data Fig. 3j–n). These 
observations demonstrate that Rala deficiency specifically in WAT 
increases energy expenditure.

Increased energy expenditure is an indirect reflection of increased 
mitochondrial oxidative activity30. Thus, we assessed the expression 
of mitochondrial proteins in fat depots. Oxidative phosphorylation 
(OXPHOS) proteins were markedly increased in iWAT of RalaAKO mice 
(Fig. 3b,c), but not in eWAT (Extended Data Fig. 3o,p). Complex I and 
complex II levels were modestly increased in BAT of RalaAKO mice 
(Extended Data Fig. 3q,r). This may occur because of systemic meta-
bolic improvement in RalaAKO mice rather than a cell-autonomous BAT 
function as HFD-fed RalaBKO mice did not show an improved metabolic 
phenotype. In this regard, plasma free fatty acid (FFA) and TG levels 
in HFD-fed RalaAKO mice were lower (Fig. 3d,e). Recent studies have 
shown that the beiging of iWAT promotes energy expenditure and 
protects against diet-induced obesity31. To test the possible involve-
ment of a generalized browning of iWAT, we also examined thermogenic 
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(b–d,f,i–k) or two-way ANOVA with Bonferroni’s post-test (a).
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markers. Ucp1, Cidea and Prdm16 expression was identical between the 
genotypes in all three fat depots, indicating that the improvement in 
energy expenditure in RalaAKO mice did not reflect the development of 
beige adipose tissue (Extended Data Fig. 3s).

Rala knockout in white adipocytes increases mitochondrial 
activity and fatty acid oxidation
We sought to evaluate further the mechanisms underlying improved 
energy metabolism in RalaAKO mice and directly assessed mitochondrial 
activity in adipocytes. Measurements of basal respiration revealed 
that oxygen consumption rate (OCR) was increased in mitochondria 
isolated from KO iWAT compared to that from control mice, but was 
similar in eWAT mitochondria of Ralaf/f and RalaAKO mice (Fig. 3f). We 
also noted that both basal and maximal respiration were higher in 
primary differentiated adipocytes from KO mice and the difference 
in maximal respiration was blunted by the addition of the CPT1 inhibi-
tor etomoxir that blocks FAO (Fig. 4a and Extended Data Fig. 4a). To 
investigate directly whether RalA plays a role in controlling FAO, we 
incubated cells with (14C)-labeled palmitic acid (PA) and measured 
its oxidation to either acid-soluble metabolites (ASMs) or CO2 in WT 
and KO white adipocytes. In agreement with the OCR results, FAO was 
higher in KO compared to WT adipocytes (Fig. 4b). These data indicate 
that RalA KO in WAT increases energy expenditure due to increased 
mitochondrial oxidation activity.

To ensure that these studies reflected the activity of RalA, we also 
generated an immortalized preadipocyte line from Ralaf/f mice and 
induced Rala deletion by transducing cells with Cre lentivirus. The 
Cre recombinase completely ablated RalA in preadipocytes and fully 

differentiated adipocytes (Extended Data Fig. 4b). BODIPY staining 
demonstrated that both primary and immortalized preadipocytes from 
WT and KO mice were fully differentiated. As an orthogonal approach, 
we performed live-cell imaging using the cell permeant fluorescent dye, 
TMRM, to detect mitochondrial membrane potential (MtMP), which 
reflects electron transport and OXPHOS in active mitochondria. KO 
adipocytes exhibited a higher TMRM signal intensity than their WT 
counterparts (Fig. 4c and Extended Data Fig. 4c). To specify the ability 
of TMRM to detect mitochondrial depolarization in active mitochon-
dria, we applied the β3-adrenergic receptor agonist CL-316,243 (CL) to 
induce mitochondrial membrane depolarization32. The TMRM signal 
declined quickly after administration of the agonist, which confirms 
that TMRM stains only active mitochondria (Extended Data Fig. 4d).

We previously reported that lipolysis drives mitochondrial oxida-
tive metabolism in adipocytes33. To rule out a possible role for lipolysis 
as the primary driver of increased oxidative capacity of Rala KO adipo-
cytes, we performed in vitro and in vivo lipolysis assays. CL robustly 
stimulated FFA and glycerol release to the same extent in KO and WT 
immortalized adipocytes and the molar ratio of FFA to glycerol was 
approximately 3:1 (Extended Data Fig. 4e,f). Additionally, there were 
no differences in CL-induced FFA and free glycerol production in Ralaf/f 
and RalaAKO mice (Extended Data Fig. 4g,h). We also tested whether 
RalaAKO mice are defective in the suppression of FFA release by insulin. 
Insulin suppressed CL-induced FFA release by approximately 50% in 
both WT and KO cells (Extended Data Fig. 4e). A single injection of 
insulin reduced FFA levels in control and RalaAKO mice to the same 
extent (Extended Data Fig. 4i). Notably, KO adipocytes displayed a mild 
increase in glycerol release in the presence of CL, whereas RalaAKO mice 

58

46

32

25

50

20

15

RalaAKO
Ralaf/f

a b

c d e f

SDHB

MTC
O1

ATP
5A

COX IV
0

1

2

3

O
XP

H
O

S/
β-

tu
bu

lin
 (A

.U
.) ***

***
*

NDUFB
8

iWAT

0

0.2

0.4

0.6 **
Pl

as
m

a 
N

EF
A 

(m
M

)

0

0.2

0.4

0.6

0.8

1.0 *

Pl
as

m
a 

TG
 (m

M
)

CV-ATP5A
CIII-UQCRC2

CIV-MTCO1

CII-SDHB

CI-NDUFB8

COX IV

kDa

iWAT

β-Tubulin

Ralaf/f RalaAKO

Ralaf/f

Rala
f/f

RalaAKO

Rala
AKO

Rala
f/f

Rala
AKO iWAT eWAT

0

100

200

300

400

500
Mitochondrial fraction

Ba
sa

l O
C

R 
(p

m
ol

 m
in

–1
) ***

0

18

35 40 45 50

20

24
Dark

Total mass (g)

EE
 (k

ca
l h

–1
)

0

22

Fig. 3 | RalA deficiency in WAT increases energy expenditure and 
mitochondrial oxidative phosphorylation. a, Regression plot of energy 
expenditure (EE) measured in HFD-fed Ralaf/f (n = 8) and RalaAKO (n = 5) mice 
during dark phase. ANCOVA was performed using body weight (BW) as a 
covariate, group effect P = 0.0391. b,c, Immunoblot (b) and quantification (c) of 
OXPHOS complex proteins and β-tubulin in iWAT of HFD-fed Ralaf/f (n = 10) and 
RalaAKO (n = 13) mice. P = 0.0005, P = 0.0348, P < 0.0001. d,e, Plasma  
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showed a mild decrease of plasma glycerol levels either in the presence 
of CL or after fasting (Extended Data Fig. 4f,h,j). Taken together, these 
results suggest that the absence of RalA in adipocytes enhances mito-
chondrial oxidative activity without affecting FFA supply.

Targeted Rala knockout protects against obesity-induced 
mitochondrial fission in iWAT
The increased mitochondrial oxidative activity observed in HFD-fed 
RalaAKO mice could result from increased mitochondrial biogenesis. 
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Expression of genes related to mitochondrial biogenesis was compa-
rable between the genotypes (Extended Data Fig. 5a,b) in WAT. The 
activity of AMPK, the master regulator of mitochondrial biogenesis34,35, 
was also comparable between control and RalaAKO mice fed with HFD 
(Extended Data Fig. 5c–f). In addition to biogenesis, mitochondrial 
function can also be regulated by dynamic changes in morphology 
through tightly controlled fusion and fission events that shape the 
organelle to comply with energy demands19,36. Electron microscopy 
(EM) revealed that HFD feeding of WT mice induced the appearance of 
smaller, spherical mitochondria in iWAT (Fig. 4d), consistent with previ-
ous reports that mitochondrial function and morphology is impaired in 
obese adipocytes37,38. We observed that mitochondria in iWAT changed 

from an elongated shape in CD-fed mice to a smaller size in HFD-fed 
mice (Extended Data Fig. 5g). Consistent with unaltered in vivo meta-
bolic phenotypes, adipocyte Rala deletion did not grossly affect mito-
chondrial morphology in iWAT of CD-fed mice, but the HFD-induced 
change in mitochondrial morphology was completely prevented in 
Rala KO iWAT (Extended Data Fig. 5g). Indeed, tissue weight (Fig. 1g), 
OXPHOS content (Extended Data Fig. 3o,p) and mitochondrial OCR 
(Fig. 3f) were not affected by RalA deletion in eWAT, corresponding 
to the observation that the appearance of fragmented mitochondria 
in this depot was not reversed by Rala KO in HFD mice (Extended Data 
Fig. 5h). In fact, mitochondria in eWAT do not undergo significant 
fragmentation in response to HFD, possibly because of their already 
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to max. Data (a,c,e,f) show mean ± s.e.m., *P < 0.05, **P < 0.01, ***P < 0.001 by 
two-tailed Student’s t-test (a,c,e,f). Significance in correlation was assessed by 
Spearman’s correlation test (h,j).

http://www.nature.com/natmetab


Nature Metabolism | Volume 6 | February 2024 | 273–289 280

Article https://doi.org/10.1038/s42255-024-00978-0

fragmented shape, consistent with the overall anabolic function of 
visceral adipocytes39. Moreover, mitochondrial morphology in BAT 
was not altered by RalA deletion in CD- or HFD-fed mice (Extended Data 
Fig. 5i). We also examined mitochondrial morphology in immortalized 
adipocytes differentiated from iWAT. As shown in Fig. 4e, mitochondria 
in KO adipocytes seemed longer than those in WT cells. There was a 
higher frequency of elongated mitochondria (1.0–1.5 μm) in KO cells 
(Fig. 4f) and the mean maximal mitochondrial length was significantly 
higher than in WT cells (Fig. 4g).

Inhibition of RalA increases Drp1 S637 phosphorylation in 
white adipocytes
Opa1 and Drp1 have been identified as key regulators of mitochon-
drial fusion and fission, respectively40. Opa1 undergoes proteolytic 
cleavage to generate long (L-Opa1) and short (S-Opa1) forms that 
together fuel mitochondrial fusion41–43. Protein levels of both forms 
of Opa1 were downregulated in iWAT after HFD feeding (Extended Data  
Fig. 5j–l). Only S-Opa1 was downregulated in eWAT from RalaAKO mice 
(Extended Data Fig. 5m–o), indicating the likelihood of reduced fusion 
in KO mice compared to WT littermates; however, the observation of 
elongated mitochondria in KO mice (Fig. 4d) suggests that this change 
in Opa1 processing is likely to be compensatory. We then focused on 
Drp1 as a key regulator of fission. Notably, Drp1 phosphorylation at 
the anti-fission S637 site was significantly increased in Rala KO iWAT 
(Fig. 5a and Extended Data Fig. 6a), whereas Drp1 S637 phosphoryla-
tion was comparable between the genotypes in eWAT (Extended Data 
Fig. 6b,c). Drp1 S637 phosphorylation is catalyzed by protein kinase 
A (PKA), activated by the β-adrenergic receptor–cAMP pathway44,45. 
To assess the role of RalA in modulating PKA action at this site, we 
assessed Drp1 S637 phosphorylation in iWAT. Phosphorylation was 
higher in CD-fed KO compared to WT mice in response to β-adrenergic 
stimulation (Extended Data Fig. 6d,e). This result ruled out the indirect 
regulation of Drp1 S637 phosphorylation by body weight differences 
in HFD-fed mice.

To establish whether this effect is cell-autonomous, we examined 
Drp1 phosphorylation in both immortalized and primary adipocytes. 
Consistent with in vivo results, Rala KO adipocytes showed a signifi-
cantly higher Drp1 S637 after forskolin and β-adrenergic stimulation 
compared to WT cells (Fig. 5b,c and Extended Data Fig. 6f–i). We also 
explored the effect of RalA on Drp1 S637 phosphorylation state using 
a specific Ral inhibitor that prevents activation and retains GTPase 
in the GDP-bound, inactive state26,46. Pretreatment with the pan-Ral 
inhibitor RBC8 significantly increased forskolin-stimulated Drp1 S637 
phosphorylation in 3T3-L1 adipocytes (Extended Data Fig. 6j,k). Inhi-
bition of RalA activity with RBC8 also increased forskolin-stimulated 
Drp1 S637 phosphorylation in the human primary adipocyte cell line 
SGBS (Fig. 5d,e). To determine whether RalA influences CL-induced 
PKA activation or cAMP breakdown, we measured cAMP production 
and phosphorylation of hormone-sensitive lipase (HSL) in adipocytes. 
There were no differences in cAMP production between WT and KO 
primary adipocytes after 5 min of CL stimulation (Extended Data  
Fig. 6l). Similarly, HSL S660 phosphorylation was identical in WT and 
KO adipocytes (Extended Data Fig. 6m,n). Thus, RalA specifically modu-
lates Drp1 S637 phosphorylation downstream of PKA activation across 
multiple adipocyte cell lines of both murine and human origin.

To investigate further whether Drp1 S637 phosphorylation is 
important for mitochondrial oxidative activity and morphology, 
we introduced S637 phospho-mimetic (SD) and phospho-null (SA) 
mutants into adipocytes and examined FAO and mitochondrial mor-
phology. Cells expressing Drp1SD had higher FAO than those expressing 
Drp1WT and Drp1SA (Fig. 5f). Consistent with this result, mitochondrial 
length in Drp1SD-expressing cells was higher than those with Drp1WT and 
Drp1SA expression (Fig. 5g and Extended Data Fig. 6o).

To examine the relevance of Drp1 as a regulator of metabo-
lism in human obesity, we analyzed microarray data of abdominal 

subcutaneous WAT from obese and non-obese women. In human sub-
cutaneous WAT, DNM1L (encoding human Drp1 protein) expression 
was positively correlated with body mass index (BMI) and HOMA-IR 
(Fig. 5h,i) and its expression was significantly upregulated in obese 
individuals (Fig. 5j), indicating that increased expression of DNM1L 
may contribute to mitochondrial dysfunction in obesity. Moreover, 
bioinformatic analysis of published microarray data (Gene Expres-
sion Omnibus (GEO) GSE70353) from 770 human males further con-
firmed that DNM1L is associated with obesity (Extended Data Fig. 6p–r). 
Together, these in vivo and in vitro data suggest that upregulated Drp1 
activity in adipose tissue may be an important contributor to mito-
chondrial dysfunction during obesity, and further, that RalA deficiency 
protects mitochondria from excessive fission by increasing Drp1 S637 
phosphorylation.

RalA interacts with Drp1 and protein phosphatase 2A, 
promoting dephosphorylation of Drp1 at S637
To understand the molecular mechanism by which RalA regulates 
Drp1 S637 phosphorylation, we used proteomics to search for pro-
teins interacting with WT, constitutively active (G23V) or dominant 
negative (S28N) forms of RalA ectopically expressed in liver. Among 
the binding proteins was protein phosphatase 2A subunit Aα (PP2Aa), 
the scaffolding subunit encoded by the Ppp2r1a gene, which preferen-
tially bound to the RalAG23V constitutively active mutant. To confirm 
these mass spectrometry data, we purified RalAWT–Flag protein from 
HEK293T cells and pulled down PP2Aa from lysates (Fig. 6a). To deter-
mine whether this interaction is dependent on the activation state of 
the G protein, we coexpressed WT and mutant RalA constructs with 
PP2Aa in HEK293T cells. As a positive control, the effector Sec5 only 
bound to active RalAG23V (ref. 47). Similarly, this mutant form of RalA 
had the highest affinity for PP2Aa (Fig. 6b). We also loaded a RalA–Flag 
fusion protein in vitro with GTPγS or GDP to evaluate the specificity 
of effector binding22. Both Sec5 and PP2Aa were pulled down by RalA 
loaded with GTPγS but not with GDP (Fig. 6c). In addition, because 
PP2Aa and Drp1 did not independently interact (data not shown), we 
investigated whether RalA directly modifies Drp1 phosphorylation 
via PP2Aa. When coexpressed, Drp1 and RalA interacted directly with 
each other, although there was no preference for the activation state 
of RalA (Extended Data Fig. 7a). Activation of the cAMP–PKA axis by 
addition of forskolin increased Drp1 S637 phosphorylation, whereas 
coexpression of PP2Aa promoted the dephosphorylation of S637  
(Fig. 6d), although overexpression of PP2Ab had no effect (Extended 
Data Fig. 7b). These data suggest that Drp1 is constitutively associated 
with RalA independent of activation state and upon activation, RalA 
recruits PP2Aa to promote the dephosphorylation of Drp1 S637.

Drp1 colocalized with RalA In adipocytes and this colocalization 
was not observed in RalA KO adipocytes (Fig. 6e and Extended Data 
Fig. 7c). To understand further the effects of RalA activation state on 
Drp1 phosphorylation and mitochondrial function, we transduced 
immortalized RalA KO cells with RalAWT and RalAG23V lentivirus before 
differentiation into adipocytes. RalAG23V-expressing adipocytes showed 
a robust increase in RalA–GTP binding (Fig. 6f) and these cells had sig-
nificantly less Drp1 S637 phosphorylation (Fig. 6g and Extended Data 
Fig. 7d). Expression of either RalAWT or RalAG23V significantly reduced 
mitochondrial potential in KO adipocytes (Fig. 6h and Extended Data 
Fig. 7e). To confirm that this reduction in mitochondrial potential 
is associated with reduced oxidative function, we performed a Sea-
horse assay. Consistent with results in primary adipocytes, RalAWT- and 
RalAG23V-expressing adipocytes displayed reduced basal and maxi-
mal OCR in comparison to KO adipocytes (Fig. 6i and Extended Data  
Fig. 7f). In addition, EM revealed that overexpression of WT or constitu-
tively active RalA in adipocytes resulted in fragmented mitochondria, 
indicating increased fission compared to RalA KO adipocytes (Fig. 6j 
and Extended Data Fig. 7g). Live-cell imaging analyses also indicated 
fewer fission events in KO compared to WT adipocytes, whereas no 
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of pulldown assay determining PP2Aa–RalA interactions. b, Representative 
immunoblotting of co-immunoprecipitation (co-IP) determining the interaction 
between RalA WT, constitutive active (G23V) or dominant negative (S28N) 
mutants and PP2Aa in HEK293T cells. c, Representative immunoblotting of 
pulldown and in vitro loading assay determining interaction between PP2Aa and 
GTP/GDP-loaded RalA. Purified Flag–RalAWT protein loaded with either GTPγS 
or GDP was, respectively, used as a bait to pull down GFP–PP2Aa from HEK293T 
cells. d, Representative immunoblotting of in vitro dephosphorylation assay in 
HEK293T cells co-transfected with PP2A and Drp1 plasmids. Cells were treated for 
1 h with 20 μM forskolin (Fsk) or vehicle. e, Representative immunofluorescent 
staining of endogenous Drp1 and RalA in immortalized WT adipocytes. Scale bar, 
5 μm. f, Representative immunoblotting of RalA activity assay in immortalized 

Rala KO adipocytes reconstituted with RalAWT and RalAG23V. g, Immunoblotting of 
phospho-Drp1 (S637), total Drp1, Flag-tagged RalA and β-actin in immortalized 
Rala KO adipocytes with or without RalA reconstitution (n = 3 independent 
experiments). Adipocytes were treated with 20 μM forskolin for the indicated 
times. h, Representative confocal images of live immortalized adipocytes (n = 3 
biological independent cells) stained with TMRM (red) and BODIPY (green). 
Scale bar, 15 μM. i, OCR was measured by Seahorse in immortalized adipocytes 
(KO, n = 5 independent samples; +WT, n = 10 independent samples; +G23V, n = 9 
independent samples); P = 0.0165 KO versus +WT, P = 0.0005 KO versus +G23V. 
Vertical arrows indicate injection ports of indicated chemicals. Data are shown as 
mean ± s.e.m., *P < 0.05, ***P < 0.001 by two-way ANOVA. j, Representative TEM 
images of Rala KO immortalized adipocytes with or without RalA reconstitution 
(n = 3 independent cells). Blue arrow indicates elongated mitochondria; asterisk 
indicates lipid droplet. Scale bar, 2 μm.
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differences were detected in fusion (Extended Data Fig. 7h,i and Sup-
plementary Videos 1 and 2).

RalA has previously been reported to promote fission in prolif-
erating cells and Rala knockdown led to a long, interconnected mito-
chondrial network and reduced proliferation48. Partially in agreement 
with this study, we found that RalA deficiency resulted in elongated 
mitochondria in adipocytes, with increased OXPHOS that dramatically 
impacted whole-body lipid metabolism; however, unlike the previous 
study, we did not observe an interaction between RalBP1 and Drp1. 
Notably, total PP2Aa protein levels were increased in Rala KO compared 
to control iWAT, without a difference in PP2Ab and PP2Ac content 
(Extended Data Fig. 7j,k), perhaps reflecting a compensatory pathway. 
Taken together, our data suggest that obesity drives RalA expression 
and GTP binding activity, leading to its association with PP2Aa, which 
in turn recruits the catalytic subunit PP2Ac to dephosphorylate Drp1 
S637. We also note that catecholamine resistance, an inherent trait of 
the obese state28, is also expected to lead to reduced PKA-catalyzed 
S637 phosphorylation. Together, these effects result in constitutive 
mitochondrial translocation of Drp1 and fragmented mitochondria in 
adipocytes from obese individuals (Extended Data Fig. 8).

Discussion
While accumulating evidence suggests that mitochondrial dysfunc-
tion is a characteristic trait of obesity in human and rodent adipo-
cytes16,37,38,49, the underlying molecular mechanisms remain unknown. 
Here, we report a new regulatory axis for the control of mitochondrial 
morphology and function in the context of obesity, involving prolonged 
activation of the small GTPase RalA. We show that RalA is both induced 
and activated in white adipocytes after feeding rodents HFD, whereas 
the negative regulator of RalA, RalGAP, is downregulated. We also 
observe a positive correlation of expression of the RalGEF RGL2 with 
BMI in adipose tissue of humans with obesity, expected to correspond 
to a chronic increase in RalA activity. The increase in adipocyte RalA 
messenger RNA, protein and activity is associated with mitochondrial 
dysfunction, characterized by fragmentation and reduced oxidative 
capacity, specifically in iWAT. Targeted deletion of RalA in white adipo-
cytes prevents the obesity-dependent fragmentation of mitochondria 
and produces mice resistant to HFD-induced weight gain via increased 
energy expenditure. In vitro studies revealed that RalA suppresses 
mitochondrial oxidative function in adipocytes by increasing fission 
through reversing the inhibitory phosphorylation of the mitochondrial 
fission protein Drp1. This reduced phosphorylation results from the 
recruitment of the regulatory subunit of PP2A, which acts as a bona 
fide effector of RalA, leading to the specific dephosphorylation of 
the inhibitory Ser637 residue on Drp1, rendering the protein active. We 
also note our previous study in which constitutive activation of RalA 
via adipocyte-specific KO of Ralgapb produced a significant enlarge-
ment of white adipocytes and increased adipose tissue mass, even on 
a control diet26. Thus, chronic elevation in RalA activity plays a key role 
in repressing energy expenditure in obese adipose tissue, contributing 
to weight gain and related metabolic dysfunction, including glucose 
intolerance and fatty liver, and may explain in part how energy expendi-
ture is repressed in prolonged obesity50.

The observation that adipocyte RalA controls overall systemic 
metabolism via this mechanism was noteworthy. We, and others, previ-
ously reported that RalA plays a key role in controlling the trafficking of 
GLUT4 vesicles in adipocytes and muscle22,23. RalA is activated by insulin, 
mainly by inhibition of its GAP complex through phosphorylation24,51 and 
when activated, RalA interacts with components of the exocyst complex 
to target GLUT4 vesicles to the plasma membrane for fusion, increasing 
glucose uptake into fat cells21. Indeed, adipocytes treated with an RalA 
inhibitor26 or isolated from RalA KO mice showed dramatically reduced 
GLUT4 translocation to the plasma membrane, with less glucose uptake 
in response to insulin. Targeted deletion of the scaffolding subunit of the 
RalGAP complex resulted in constitutive activation of RalA in adipocytes 

and myocytes and dramatically improved glucose homeostasis22,26,51; 
however, detailed physiological tracer studies revealed that improve-
ments in glucose disposal in adipocyte-specific KO mice occurred pri-
marily in brown fat, where glucose uptake was markedly increased26. 
Consistent with these findings, we observed that Rala deletion reduces 
glucose uptake mainly in BAT, with a smaller effect in iWAT and no effect 
in eWAT. We also saw a small reduction in insulin sensitivity in RalaAKO 
mice on a control diet, accompanied by reduced weights of all adipose 
tissues, likely reflecting less nutrient uptake; however, RalaAKO mice 
on HFD paradoxically showed improved glucose tolerance and insulin 
sensitivity. While it remains unclear exactly how these mice overcome 
the negative effects of RalA deletion on glucose uptake, GLUT4 mRNA 
and protein levels in WAT are downregulated in obesity12,52,53, whereas 
GLUT1 mRNA and protein levels are increased54,55, consistent with our 
RalGAP KO studies in HFD-fed mice that show little glucose uptake into 
white fat in response to insulin, but higher basal levels26. Additionally, 
brown fat develops insulin resistance in HFD mice, accompanied by an 
overall reduction in RalA activity even before KO. Thus, it seems likely 
that improved glucose tolerance in RalaAKO mice occurs because of 
increased energy expenditure primarily from FAO.

It was also notable that liver function was dramatically improved 
in RalaAKO mice on HFD, with reduced hepatic lipids and gluconeo-
genesis, as indicated by improvements in pyruvate tolerance. It is well 
established that WAT plays an important role in regulating whole-body 
energy metabolism56. Hepatic acetyl-CoA arises from WAT lipolysis to 
directly promote hepatic gluconeogenesis57. The increase in FAO in 
Rala KO adipocytes resulted in fewer circulating FFAs and TGs, likely 
producing improved liver health and reduced gluconeogenesis.

While the significance of the adipose depot specificity of the 
effects of RalA remains uncertain, we note that adipocytes in visceral, 
subcutaneous and brown fat differ in many ways58,59. Although RalA 
was deleted in all adipocytes in RalaAKO mice, mitochondrial function 
was only improved in iWAT. While there are numerous differences 
between visceral and inguinal white adipocytes that might explain 
this, including their response to HFD, one notable issue has to do with 
inherent mitochondrial morphology. Upon HFD feeding, adipocytes in 
iWAT underwent a dramatic size expansion, accompanied by a change 
in mitochondria from an elongated to a fragmented morphology, 
reflecting a transition to a largely anabolic state. These changes were 
not observed in RalA KO mice. Unlike what was observed in iWAT, 
mitochondria in eWAT display a fragmented morphology even in lean 
mice, with no change observed after HFD or RalA KO, consistent with 
the overall energy storage function of this depot even without the 
anabolic pressure of overnutrition.

Another question concerns the role of RalA in BAT. While BAT tissue 
weight was reduced in both RalaAKO and RalaBKO mice compared to con-
trols, likely due to reduced glucose uptake, only iWAT adipocytes seem 
to respond with a change in metabolic activity and mitochondrial mor-
phology. Brown adipocyte mitochondria are morphologically different 
from those in white adipocytes; brown adipocyte mitochondria are more 
numerous and larger than the mitochondria in white adipocytes and 
contain packed cristae. Comparison of the mitochondria of brown and 
white adipocytes by proteomic analysis revealed that proteins involved 
in pathways related to fatty acid metabolism, OXPHOS and the tricarbo-
xylic acid cycle were highly expressed in BAT compared to WAT60. Thus, 
it seems likely that mitochondria in BAT are subjected to fundamentally 
different modes of regulation than those in white fat, and the reduced 
weight of BAT in KO mice can be attributed to reduced glucose uptake.

As mitochondrial function is vital for healthy metabolism, efforts 
have focused on preventing fragmentation via blocking the activity or 
direct deletion of Drp1 (ref. 61). Muscle mitochondrial dysfunction is 
closely related to excessive Drp1 activity62 and elevated Drp1 activating 
S616 phosphorylation has been found in severely obese human mus-
cle63,64. On the other hand, triggering Drp1 S637 phosphorylation has 
been suggested to increase the uncoupling capacity of FFA in brown 
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adipocytes65. In line with this observation, increased S637 phosphoryla-
tion was found in BAT after cold exposure66. Administration of a Drp1 
inhibitor acutely improved muscle insulin sensitivity and systemic 
glucose tolerance67,68; however, the impact of modulating Drp1 levels 
and phosphorylation states is complicated and varies between tissues. 
Targeted deletion of Drp1 in liver reduced hepatic lipid accumula-
tion and body weight in a non-alcoholic fatty liver disease model69. 
Moreover, loss of Drp1 impairs brown adipocyte differentiation and 
thermogenesis, possibly reflecting the aspects of mitochondrial mor-
phology that are unique to BAT66,70. In this regard, an association of 
S637 phosphorylation with fission was reported in brown adipocytes, 
although it remains possible that increased fission might reflect the 
phosphorylation of the activating S616 site65,71. Moreover, mitochon-
drial fission not only leads to increased oxidative metabolism but also 
triggers mitophagy to clear damaged mitochondria72. Notably, endo-
plasmic reticulum stress has been observed in tissue-specific Drp1 KO 
mice models, which suggests that Drp1 may also regulate endoplasmic 
reticulum remodeling73. These findings highlight the likely differences 
between total ablation of Drp1 activity and changes in its upstream 
regulatory pathways.

Many questions remain concerning the role of the RalA–Drp1 axis 
in the control of mitochondrial function in subcutaneous adipocytes. 
What is the mechanism by which RalA mRNA and protein expression are 
increased and RalGAP is decreased in adipose tissue during obesity? 
Additionally, the factors leading to increased RalA–GTP binding are not 
known, although this may be a result of reduced RalGAP expression, as 
well as hyperinsulinemia and chronic elevations in Akt activity seen in 
obesity74. A key question concerns the spatial compartmentalization 
of RalA activation and Drp1 phosphorylation/dephosphorylation in 
adipocytes. Are there pools of RalA in different cellular compartments 
that interact with different effectors? Do other isoforms of RalA (RalB) 
also control Drp1 localization and function? What is the domain of 
PP2Aa that interacts with RalA? While many questions remain, these 
findings open a new line of investigation concerning how the RalA–Drp1 
axis regulates energy homeostasis.

Methods
Ethical statement
The animal study was approved by the Institutional Animal Care and Use 
Committee (IACUC) at the University of California, San Diego (UCSD). 
We obtained human data from a third-party database and collaborator. 
Human studies were approved by the corresponding institutes and 
informed written consent was provided by the participants. The cell 
culture study was approved by the Environment, Health and Safety 
Department at UCSD.

Animals
RalA-floxed (Ralaf/f) mice were bred with adiponectin-promoter-driven 
Cre or Ucp1-promoter-driven Cre transgenic mice to generate fat 
depot-specific RalA KO (RalaAKO or RalaBKO) mice. All mice were on 
a C57BL/6J background and all experiments were performed using 
littermates. Male mice were used for in vivo experiments and female 
mice were used only for primary preadipocyte isolation. We fed mice 
with standard CD (Teklad, 7912) or HFD consisting of 60% calories from 
fat (Research Diets, D12492) for 8–12 weeks, starting from 8 weeks of 
age. Mice were housed in a specific-pathogen-free facility with a 12-h 
light–dark cycle and given free access to food and water, except for the 
fasting period. The facility temperature and humidity were constantly 
kept at 22 °C and 50%. All animal experiments were approved by and 
followed the guidelines from the IACUC at the UCSD.

Cell culture
Primary preadipocytes. Inguinal WAT from 2–3 8-week-old female 
mice was dissected, minced and digested in 5 ml 1 mg ml−1 collagenase 
(Sigma) for 15 min (min) in a 37 °C water bath with gentle agitation. 

DMEM/F12 medium (15 mM HEPES) with 10% FBS (growth medium) 
was added to stop digestion and cells were filtered through 100-μm 
and 70-μm strainers. After centrifugation at 750g, cells were plated 
onto dish with growth medium. Once cells reached 90% confluence, 
preadipocytes were seeded into 12-well plates or imaging dishes for 
differentiation. Differentiation was induced in growth medium con-
taining 0.5 mM IBMX, 5 μM dexamethasone, 1 μM rosiglitazone and 
5 μg ml−1 insulin for 3 d. Medium was then switched to growth medium 
with rosiglitazone (day 3–5) and insulin (day 3–7). From day 7, cells were 
maintained in growth medium until they were 100% differentiated.

Immortalized adipocytes. Primary preadipocytes from Ralaf/f mice 
were immortalized by retroviral transduction of pBabe-zeo-LT-ST(SV40) 
and selection by Zeocin75. Single-cell clones were selected and tested for 
differentiation capacity. All used clones in this study displayed 100% 
adipocyte morphology after differentiation. To generate Rala KO cells, 
immortalized Ralaf/f (WT) preadipocytes were transduced with lentivi-
ral Cre with 8 μg ml−1 Polybrene for 12 h, then cultured in DMEM/F12-FBS 
medium. Cre recombinase efficiency was tested in preadipocytes and 
adipocytes. Once reaching 95–100% confluence (day 0), differentiation 
was induced as described above. On the day of experiment, cells were 
starved in DMEM/F12 medium 3 h before treatments.

Human primary preadipocytes (SGBS). Cells were cultured in DMEM/
F12-FBS medium supplemented with 3.3 mM biotin (Sigma, B4639) 
and 1.7 mM pantothenate (Sigma, P5155) and differentiated with a 
published protocol76.

3T3-L1 adipocytes. Preadipocytes were cultured in high-glucose 
DMEM with 10% newborn calf serum (culture medium). At 2 d after 
confluency, differentiation was induced in culture medium containing 
0.5 mM IBMX, 5 μM dexamethasone and 2 μg ml−1 insulin for 3 d. The 
medium was then switched to growth medium with insulin (day 3–7) 
or without insulin (day 7 to fully differentiated).

Lenti-X 293T cells. Lenti-X 293T cells were cultured in high-glucose 
DMEM-FBS medium for packing lentivirus. When cells reached 100% 
confluency on a 0.01% poly-lysine-coated dish, third-generation len-
tiviral packaging plasmids (pLVX vectors, pMDLg/pRRE (Addgene 
#12251), pRSV-Rev (Addgene #12253) and pMD2.G (Addgene #12259)) 
were transfected into cells using lipofectamine 3000 (Life Tech-
nology) following the manufacturer’s protocol. Fresh DMEM-FBS 
medium with 25 mM HEPES was added 12–16 h after transfection. The 
lentivirus-containing medium was collected twice at 48 and 72 h after 
transfection. After collection, the medium was spun at 300g for 5 min to 
remove dead cells, then incubated with Lenti-X concentrator (Takara) 
at a 3:1 ratio at 4 °C overnight. The viral pellets were collected by cen-
trifugation at 1,500g for 45 min at 4 °C and reconstituted in DMEM/
F12-FBS medium with 8 μg ml−1 Polybrene. Lentivirus was added to 
cells immediately after reconstitution.

Reconstitution of RalAWT and RalAG23V in RalA KO preadipocytes. 
Immortalized RalA KO preadipocytes were transduced with con-
centrated Flag–RalAWT or Flag–RalAG23V lentiviral supernatants with 
8 μg ml−1 Polybrene. At 24 h after infection, the medium was changed 
to fresh DMEM/F12-FBS and expanded for differentiation. Expression 
of Flag-tagged protein was examined in fully differentiated cells by 
western blot.

Gene analysis in clinical cohorts
The transcriptomics data from abdominal subcutaneous WAT of 30 
individuals with obesity and 26 healthy women were generated as 
previously described77. Transcriptome profiles were obtained using 
GeneChip Human Gene 1.0 ST Arrays. Data were deposited in the NCBI 
GEO under accession code GSE25402. Transcriptome profiles in the 
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verification cohort were obtained from subcutaneous fat biopsies from 
770 men participating in the METSIM study78. Transcriptomics and 
clinical data were retrieved from GEO (GSE70353). Obesity is defined 
as a BMI > 30 kg m−2 in these analyses.

Primary mature adipocyte isolation
Minced WAT was digested in DMEM with 1 mg ml−1 collagenase (Sigma) 
for 25 min at 37 °C with gentle agitation. The cell suspension was fil-
tered through a 100-μm cell strainer and centrifuged at 50g for 3 min 
to separate floating mature adipocytes. Floating mature adipocytes 
were transferred to PBS with broad open tips and washed twice. Then, 
1 ml mature adipocytes were lysed in 4 ml TRIzol (Life Technology) for 
RNA isolation.

RNA sequencing analysis
RNA extractions from primary mature inguinal and epididymal adipo-
cytes were performed using TRIzol (Life technologies) and PureLink 
RNA mini kit (Life Technologies), according to the manufacturer’s 
instructions. RNA quality was checked by an Agilent TapeStation. Bio-
logical triplicates of isolated 500 ng RNA were used to prepare sequenc-
ing libraries using the TruSeq RNA Sample Preparation kit v.2 (Illumina), 
according to the manufacturer’s protocol. Libraries were validated 
using a 2100 BioAnalyzer (Agilent), then normalized and pooled for 
sequencing using bar-coded multiplexing at a 90-bp single-end read 
length on an Illumina HiSeq 4000. Samples were sequenced to a median 
depth of 14 million reads.

Bioinformatics analysis
For RNA-seq, sequencing fastq files were generated automatically using 
the Illumina bcl2fastq2 Conversion Software. Read alignment and junc-
tion mapping to genome mm39 (GRCm39) and the mouse Genecode 
M30 annotation were accomplished using STAR (v.2.7.2b). Known 
splice junctions from mm10 were supplied to the aligner and de novo 
junction discovery was also permitted. Differential gene expression 
analysis and statistical testing were performed using DESeq2 with an 
adjusted P value < 0.05 as a cutoff. Raw gene counts were normalized 
to fragments per million mapped fragments (FPM) using DEseq2. 
FPM counts were filtered, centered by z score before gene clustering 
and heat map generation using GENE-E (v.3.0.215) or GraphPad Prism 
(v.8.4.3). For microarray data, gene matrix files were collapsed using the 
Collapse Dataset tool in GSEA (v.4.3.2) using chip platform (GPL13667) 
with collapsing mode (Mean_of_probes). The statistical significance of 
differential gene expression was assessed by ComparativeMarkerSelec-
tion module (v.11) from GenePattern (https://cloud.genepattern.org/
gp/pages/index.jsf).

Gene expression analysis
Tissue RNA was isolated with TRIzol reagent in combination with col-
umn (PureLink RNA mini, Invitrogen) according to the manufacturer’s 
protocol. Complementary DNA was generated from 1 μg RNA using the 
cDNA Maxima Reverse Transcription kit (Thermo Fisher Scientific). 
mRNA expression was assessed by real-time PCR using the QuantStudio 
real-time PCR system and SYBR Green PCR master mix (Invitrogen). 
Gene expression was normalized to Cyclophilin A in murine tissues. Rela-
tive mRNA expression levels were calculated using averaged 2−ΔΔCt values 
for each biological replicate. Primers are listed in Extended Data Table 1.

Protein isolation and western blotting
Tissue or cells were lysed or homogenized in RIPA buffer with freshly 
added Halt Protease and Phosphatase Inhibitor Cocktail (Thermo 
Fisher). Lysates were rotated in a cold room for 30 min, then briefly 
sonicated and centrifuged at 17,000g for 15 min at 4 °C. Cleared 
supernatants were collected and concentrations were determined 
with a BCA protein assay kit (Pierce) and iTecan plate reader for 
quantification. Proteins were resolved by Tris-Glycine gel (Novex, 

Invitrogen) electrophoresis and transferred to nitrocellulose mem-
branes. Individual proteins were detected with the specific antibodies 
(OXPHOS ab110413, β-tubulin 2146S, phospho-Drp1(Ser637) 4867S, 
phospho-HSL(Ser660) 45804S, HSL 4107S, MYC 2276S, Drp1 8570S, 
phosphor-AMPK(Thr172) 2535S, AMPK 5831S, RalA BD610221, β-actin 
66009-1-Ig, Flag 66008-4-Ig, GFP 66002-1-Ig and Sec5 12751-1-AP) and 
visualized on blots using fluorescent secondary antibodies with a Li-Cor 
system or on film using HRP-conjugated secondary antibodies (Fisher 
Scientific) with SuperSignal West Pico Chemiluminescent substrate 
(Thermo Fisher). All primary antibodies were used at 1:1,000 dilution, 
fluorescent secondary antibodies were used at 1:5,000 dilution and 
HRP-conjugated secondary antibodies were used at 1:8,000 dilution. 
Bands were quantified with ImageStudio or ImageJ.

Body-mass composition
Body-mass composition was assessed in non-anesthetized mice using 
EchoMRI.

Glucose tolerance test
Mice were fasted for 6 h, then intraperitoneally (i.p.) injected with  
d-[+]-glucose in PBS at a dose of 2 g kg−1 BW for CD-fed mice or  
1.2 g kg−1 BW for HFD-fed mice. Blood glucose levels were measured 
before injection and at 15, 30, 60, 90 and 120 min after injection using 
the Easy Touch glucose monitoring system.

Insulin tolerance test
Mice were fasted for 4 h, then i.p. injected with human insulin (Sigma) 
in saline at a dose of 0.35 U kg−1 BW for CD-fed mice or 0.6 U kg−1  
BW for HFD-fed mice. Blood glucose levels were measured as des
cribed above.

Pyruvate tolerance test
Mice were fasted for 16 h, then i.p. injected with pyruvate in PBS at 
a dose of 1.5 g kg−1 BW for HFD-fed mice. Blood glucose levels were 
measured as described above.

Blood parameters
Whole blood was taken from the facial vein and blood glucose was meas-
ured with a glucose meter (Easy Touch) from the tail vein. Plasma was 
collected after centrifugation at 1,200g at 4 °C for 10 min. Plasma TG 
and FFA levels were measured with an Infinity Triglycerides kit (Thermo 
Fisher) and NEFA kit (WAKO). Plasma insulin levels were measured 
with the Mouse Ultrasensitive Insulin ELISA kit (Crystal Chem, 90080) 
and leptin levels were measured with a Mouse Leptin ELISA (Crystal 
Chem, 90030) kit. Plasma AST and ALT activity was measured with the 
Aspartate Aminotransferase Activity kit (Biovision, K753) and Alanine 
Aminotransferase Activity kit (Biovision, K752).

HOMA-IR calculation
HOMA-IR is an index of overall insulin sensitivity79. Glucose and insulin 
levels from overnight-fasted mice were measured as described above. 
The values were used to calculate HOMA-IR with the formula: fasting 
insulin (μU l−1) × fasting glucose (nmol l−1)/22.5.

Hepatic lipid TG measurement
Frozen liver tissue (50–100 mg) was homogenized in 1 ml PBS. Then, 
800 μl lysates were added to 4 ml extraction buffer. After thoroughly 
rotating for 30 min at room temperature (RT), the lipid phase was 
separated from the aqueous phase by centrifuging at 1,800g for 
20 min. A 0.2-ml lipid fraction in the organic phase was collected and 
transferred to a 1.5-ml tube to dry under a nitrogen stream in the fume 
hood. Then, 0.2 ml 2% Triton X-100 solution was used to solubilize the 
lipids. TG levels were determined using the Infinity Triglycerides kit 
(Thermo Fisher). The lipid amount was normalized to the liver lysate 
protein amount.
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Histology
For H&E staining, liver tissue was collected and fixed in 10% formalin. 
Paraffin-embedding, sectioning and H&E staining was completed at the 
UCSD Biorepository and Tissue Technology Shared Resources (BTTSR). 
For adipocyte size quantification, H&E slides were imaged using a Key-
ance brightfield microscope or a Nikon confocal microscope with Texas 
Red excitation and emission filters. Adipocyte size was assayed using 
Adiposoft in ImageJ and an in-house-developed pipeline with Cell Pro-
filer. For Oil-Red-O staining, liver tissue was fixed in 4% PFA at 4 °C for 
24 h, then transferred to 20% sucrose/PBS for 24 h. Afterwards, tissue 
was embedded in O.C.T. (Sakura) with dry ice and ethanol. Frozen tissue 
blocks were sectioned and stained with Oil-Red-O at the UCSD BTTSR.

Indirect calorimetric measurements
For metabolic cage studies, mice were individually housed in Prome-
thion metabolic cages maintained at 22 °C under a 12-h light–dark cycle. 
Before the experiment, mice were adapted to the metabolic cages for 
2 d. The monitoring system records and calculates food intake, locomo-
tor activity, oxygen consumption, CO2 production, RER and EE. Mice 
were provided with free access to water and food during the entire 
measurement. The data were exported with ExpeData software (Sable 
Systems) and EE was analyzed using ANCOVA with BW as a covariate by 
a web-based CalR tool80.

Respiration measurement
Intact cells. The cellular OCR was measured using an eXF96 Extracel-
lular Flux Analyzer and analyzed by Agilent Seahorse Wave Software 
(Seahorse Bioscience). Before assay, 2,500 primary preadipocytes 
were seeded and differentiated in XF96 microplates. Once fully dif-
ferentiated, adipocyte culture medium was changed to assay medium 
containing 25 mM glucose, 1 mM pyruvate and 2 mM l-glutamine and 
0.5 mM carnitine without phenol red or sodium bicarbonate for 3 h. 
Before the measurement, cells were incubated in a CO2-free incubator 
for 15 min. Basal rates of respiration were measured in assay medium 
and followed with sequential injections of oligomycin (2 μM), FCCP 
(0.5 μM) and rotenone with antimycin A (each 0.5 μM). Oxygen con-
sumption values were normalized to protein content.

Isolated mitochondrial. Isolation of mitochondrial from HFD-fed 
mice and the OCR with 2.5 μg isolated mitochondrial was performed 
according to our published protocol33.

Fatty acid oxidation assay
Fully differentiated primary adipocytes in 24-well plates were  
incubated in 0.5 ml DMEM per well containing 1 mM carnitine and 
0.5 μCi per well and [14C]-PA for 60 min at 37 °C. Afterwards, 360 μl 
medium was collected and added to 40 μl 10% BSA in a 1.5-ml tube 
with a filter paper in the cap. Then, 200 μl 1 M perchloric acid was 
added to the tube and the cap was immediately closed tightly and incu-
bated at RT. After 1 h, captured CO2 and ASMs were used to measure 
radioactivity. The cells were lysed in NaOH/SDS buffer (0.3 N/0.1%) to  
measure protein concentration. FAO rates were normalized to protein 
content.

Glucose uptake assay
In vivo. CD-fed mice were fasted for 6 h and 10 μCi [3H]-deoxy-glucose 
or [14C]-deoxy-glucose was i.p. injected alone or spiked with 1.2 g kg−1 
glucose into each mouse. Then, 30 min after injection, plasma and 
tissues were collected and snap frozen until further processing. The 
accumulation of deoxy-glucose-phosphate in different tissues was 
determined using a published protocol26.

In vitro. Fully differentiated primary adipocytes were fasted in 
serum-free medium for 3 h before the assay. A glucose uptake-Glo assay 
was performed according to the manufacturer’s protocol (Promega).

Confocal microscope imaging
Live cells. Fully differentiated adipocytes were cultured in a glass- 
bottom dish (Cellvis) and incubated in phenol-red-free DMEM  
(imaging medium) with 100 nM TMRM (Thermo Fisher) for 30 min  
to indicate mitochondrial membrane potential and BODIPY 493/503 
(final 5 μg ml−1, Life Technology) was added to label lipid droplets 
for the last 15 min. Cells were then washed three times with imaging 
medium. Live-cell images were obtained with a Nikon A1R confocal 
microscope with ×100 or ×60 oil immersion objectives. For time-lapse 
imaging, pictures were taken every 10 min.

Fixed cells. Fully differentiated primary adipocytes were cultured 
in a glass-bottom chamber (Lab-Tek). On the day of the experiment, 
cells were serum-starved for 3 h and treated with 100 nM insulin. After 
15 min, the medium was removed, cells were fixed with ice-cold metha-
nol and incubated at −20 °C for 10 min. Cells were then washed twice 
with PBS and blocked with 10% goat serum in PBS with 0.1% Triton X-100 
at RT for 30 min. After blocking, cells were incubated with primary 
antibodies (1:50 dilution) at 4 °C overnight and secondary antibodies 
(1:2,000 dilution) for 1 h at RT. Cells were washed three times with PBS 
before imaging with a Nikon A1R confocal microscope using a ×100 oil 
immersion objective.

4D mitochondria live-cell imaging and analysis
A custom-built lattice light-sheet microscope designed by the Betzig 
Laboratory HHMI Janelia/UC Berkeley was used to image fully differenti-
ated adipocytes81. The 488-nm and 560-nm lasers were used to excite 
BODIPY and MitoTracker Red. A Multiple Bessel Beam Light Sheet Pat-
tern with NA max 0.4, NA min 0.38 was used, which has a 75-μm sheet 
length. The measured lateral resolution was 330 nm and the z resolu-
tion was 700 nm. To quantify mitochondrial motility and dynamics, 
we performed cell segmentation, mitochondria segmentation and 
mitochondria tracking. Single cells were first cropped using ImageJ and 
Python scripts for all 60 time points. MitoGraph was used to segment 
the mitochondria in each cell. Based on the segmented mitochondria 
skeleton, we used MitoTNT to track mitochondria and perform motil-
ity calculations with a published protocol82. Mitochondria displaying 
high motility were used for further fusion and fission dynamic analysis. 
Mitochondria fusion and fission levels were measured by the number of 
detected events per 1,000 mitochondria skeleton nodes for each frame 
and only the highly active events (counts > 3) were used for comparison.

Lipolysis
In vitro. Fully differentiated primary adipocytes in a 24-well plate were 
serum-starved in lipolysis medium (2% BSA-phenol-red-free DMEM) 
for 3 h. For insulin treatment, 100 nM insulin was added to cells for 
30 min starting at 2.5 h of starvation. After starvation, the medium 
was replaced with 0.5 ml fresh lipolysis medium with vehicle, 1 μM CL, 
100 nM insulin or in combination. The medium was collected after 1 h 
incubation at 37 °C. Released FFAs and free glycerol levels were meas-
ured using 100 μl medium with a NEFA kit (WAKO) and Free Glycerol 
Reagent (Sigma) according to the manufacturer’s protocol.

In vivo. CD-fed mice were used for in vivo lipolysis. For CL-induced 
lipolysis, ad libitum-fed mice were i.p. injected with PBS or CL (1 mg kg−1) 
for 60 min. Circulating FFAs and free glycerol levels were measured 
using 2 μl plasma with a NEFA kit (WAKO) and Free Glycerol Reagent 
(Sigma). For insulin-suppressed lipolysis, overnight-fasted mice were 
i.p. injected with insulin (0.5 U kg−1) for 60 min. Circulating FFAs and 
free glycerol levels were measured at the indicated conditions.

Electron microscopy
Adipose tissue. Dissected adipose tissue was immediately fixed with 
2–3 drops of fixative buffer (2% paraformaldehyde and 2.5% glutaral-
dehyde in 0.15 M sodium cacodylate buffer, pH 7.4). Fat tissues were 
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gently removed and fixed at RT. After 2 h incubation, tissues were 
further cut into around 1-mm3 cubes and immersed in fixative buffer 
overnight at 4 °C. Tissue cubes were postfixed in 1% osmium 0.15 M 
sodium cacodylate (SC) buffer for 1–2 h on ice, followed by five 10-min 
washes in 0.15 M SC buffer, then rinsed in ddH2O on ice. Washed tissues 
were stained with 2% uranyl acetate for 1–2 h at 4 °C then dehydrated in 
an ethanol series (50%, 70%, 90%, 100% and 100%, for 10 min each time) 
and dried in acetone for 15 min at RT. Dried tissues were infiltrated with 
50:50% acetone:Durcupan for 1 h or longer at RT then changed to 100% 
Durcupan overnight. The next day, embedded tissues in Durcupan were 
placed in a 60 °C oven for 36 to 48 h. Ultrathin sections (60 nm) were 
cut on a Leica microtome with a Diamond knife and then post-stained 
with both uranyl acetate and lead. Images were obtained using a Jeol 
1400 plus TEM equipped with a Gatan digital camera.

Immortalized cells. Fully differentiated cells in a six-well plate were 
quickly fixed with 2% glutaraldehyde in 0.1 M SC buffer (pH 7.4) at RT 
for 15 min then incubated at 4 °C for 15 min. Afterwards, cells were 
scraped down and pelleted by centrifugation. Cell pellets were post-
fixed in 1% OsO4 in 0.1 M SC buffer for 1 h on ice. The cells were stained 
all at once with 2% uranyl acetate for 1 h on ice, then dehydrated in a 
graded series of ethanol (50–100%) while remaining on ice. The cells 
were then subjected to one wash with 100% ethanol and two washes 
with acetone (10 min each) and embedded with Durcupan. Sections 
were cut at 60 nm on a Leica UCT ultramicrotome and picked up on 300 
mesh copper grids. Sections were post-stained with 2% uranyl acetate 
for 5 min and Sato’s lead stain for 1 min. Images were obtained using a 
Jeol 1400 plus TEM equipped with a Gatan digital camera.

cAMP measurement
To induce cAMP production, fully differentiated primary adipocytes 
were stimulated with 1 μM CL for 5 min. Cells were then immediately 
lysed in lysis buffer (0.1 N HCL) and cAMP levels were measured with 
the Direct cAMP Enzyme Immunoassay kit (Sigma) according to the 
manufacturer’s protocol.

Pulldown and co-immunoprecipitation
Active RalA pulldown. Fully differentiated primary adipocytes or 
immortalized adipocytes were serum-starved for 3 h in DMEM and 
treated with 100 nM insulin, if needed, for the indicated time. After two 
washes with ice-cold TBS, cells were lysed in RalA buffer (25 mM Tris, 
130 mM NaCl, 10 mM MgCl2, 10% glycerol, 0.5% NP-40 and EDTA-free 
protease inhibitor) and lysates were incubated at 4 °C for 15 min. then 
cleared by centrifugation. Protein concentrations were measured 
with the DC protein assay (Bio-Rad) and 0.5–1 mg protein was used for 
incubation at 4 °C with 20 μl GST-ΔRalBP1 agarose beads (Millipore) 
for 45 min or 20 μl Anti-Flag M2 Affinity gel (Sigma) overnight. After 
incubation, beads were washed three times with RalA buffer and boiled 
at 65 °C in 2× SDS buffer for 10 min.

Pulldown. HEK293T cells cultured in 15-cm dishes were transfected with 
Flag–RalAWT or GFP–PP2Aa. At 48 h after transfection, cells were washed 
twice with ice-cold TBS then lysed on ice with 1 ml lysis buffer (25 mM 
Tris-HCl, 130 mM NaCl, 10 mM MgCl2, 10% glycerol, 0.5% NP-40 and 
EDTA-free protease inhibitor). Cell lysates were rotated for 15 min at 4 °C 
and cleared by centrifugation for 15 min at 17,000g at 4 °C. Flag–RalAWT 
lysates were incubated with 20 μl Anti-Flag M2 Affinity gel (Sigma) at 
4 °C. After 2 h rotation, the empty M2 or Flag–RalAWT beads were washed 
three times with lysis buffer then incubated with GFP–PP2Aa lysates at 
4 °C overnight. The next day, the beads were washed three times with 
washing buffer (25 mM Tris-HCl, 40 mM NaCl, 30 mM MgCl2, 0.5% NP-40 
and EDTA-free protease inhibitor) and boiled in 2× SDS buffer at 65 °C 
for 10 min. For GTPγS and GDP loading to Flag–RalAWT beads, washed 
beads were rinsed with loading buffer (20 mM Tris, 50 mM NaCl, 1 mM 
dithiothreitol and 2 mM EDTA) then incubated with 2 mM GTPγS or 

200 μM GDP in loading buffer for 1 h at 25 °C with 50g agitation. After 
loading, 10 mM MgCl2 was added to stop the loading and loaded beads 
were incubated with GFP–PP2Aa lysates as described above.

Co-immunoprecipitation. Co-transfected cells at 70–80% confluency 
were washed twice with ice-cold TBS and lysed in 0.5 ml lysis buffer 
or Drp1 buffer (25 mM Tris, 50 mM NaCl, 0.5 mM MgCl2, 10% glycerol, 
0.5% NP-40 and EDTA-free protease inhibitor). Lysates were cleared by 
centrifugation and protein concentrations were measured with BCA 
(Pierce). Then, 0.5–1 mg protein was used for incubation with 20 μl 
Anti-Flag M2 Affinity gel (Sigma) at 4 °C. After overnight gentle rota-
tion, beads were washed three times with washing buffer (the same as 
described above) or Drp1 wash buffer (25 mM Tris, 50 mM NaCl, 0.5 mM 
MgCl2, 0.1% NP-40 and EDTA-free protease inhibitor) and boiled in 2× 
SDS buffer at 65 °C for 10 min.

Vector construction
pMIG-PP2Aa (#10884), pMIG-PP2Ab (#13804) and pcDNA3.1-Drp1 
(#34706) plasmids were purchased from Addgene and subcloned into 
mEGFP-C1 (#54759) and pCMV-Myc-3B vectors. RalAWT, RalAG23V and 
RalAS28N plasmids were subcloned into a pLVX vector with 3× Flag tag 
for lentiviral production.

Statistics and reproducibility
All in vivo animal experiments were randomized by genotype and 
the investigators were not blinded to allocation during experiments 
and outcome assessment. All in vitro cell experiments were not ran-
domized. There was no predetermination of sample size and sample 
size was chosen based on available animal or cell numbers. Negative 
values or Prism-detected outliners were excluded from the analyses 
due to poor sample quality or samples lost during processing. Sta-
tistical analyses were performed using GraphPad Prism (v.8.4.3). All 
experiments were performed at least three times independently. Data 
distribution was assumed to be normal without formal testing. For com-
parison between two groups, datasets were analyzed by a two-tailed 
Student’s t-test. For experiments with a two-factorial design, multiple 
comparisons were analyzed by two-way ANOVA to determine the statis-
tical significance between groups based on one variable. Differences 
in EE were calculated with CalR using ANCOVA with BW as a covariate. 
The significance of the correlations between gene expression with BMI 
and HOMA values were calculated using a Spearman’s correlation test. 
Values of P < 0.05 were considered as significant.

Schematics
Schematic graphs were created with Biorender.com.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the 
paper and its Supplementary Information. Source data and uncropped 
western blot gels are provided with this paper. qPCR primer sequences 
are provided in Extended Data Table 1. RNA-seq data reported in this 
paper have been deposited in the NCBI SRA database (BioProject 
PRJNA727566). Human study data are deposited in the NCBI GEO under 
accession code GSE25402 and retrieved from GEO (GSE70353). Genome 
sequences were from genome mm39 (PRJNA20689). Source data are 
provided with this paper.

Code availability
Adipocyte size from CD-fed mice was assayed using CellProfiler 
with an in-house-modified pipeline available at https://github.com/
Wenmin2023/Adipocyte-quantification-pipeline.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | RalA protein content and activity are increased in 
obese adipocytes. a, Immunoblotting for RalA in mature adipocytes isolated 
from iWAT (n = 3) or eWAT (n = 4) of age-matched CD-fed (lean) mice and HFD-fed 
(obese) mice. b, Representative immunoblotting for active RalA (aRalA) in iWAT 
(upper panel) or eWAT (lower panel) of age-matched CD-fed mice (n = 3) and HFD-
fed mice (n = 2). c, RalA mRNA expression and quantified protein levels in BAT 
of age-matched CD-fed and HFD-fed mice (n = 8). d, Immunoblotting of RalA in 
inguinal mature adipocyte fraction, eWAT, BAT, and liver from lean mice (n = 3).  
e, In vivo and in vitro activation of RalA by insulin in adipose tissue of Ralaf/f  
(saline n = 3, insulin n = 2) and RalaAKO (n = 4) mice and primary adipocytes.  
0.5U/kg or 100 nM insulin was injected or treated for 5 min or indicated time.  
f, Basal in vivo glucose uptake in 6 hrs fasted CD-fed mice injected with 10μCi 
[14C]-2deoxyglucose for 30 min (Ralaf/f n = 7, RalaAKO n = 5). g, Plasma insulin  
levels before and 30 min after glucose injection (Ralaf/f n = 9, RalaAKO n = 5).  
h, Insulin stimulated in vivo glucose uptake in CD-fed mice injected with 1.2 g/kg 
glucose and 10 μCi [3H]-2-deoxy-glucose for 30 min (Ralaf/f n = 6, RalaAKO n = 9).  
i, Immunoblotting of RalA in BAT (upper panel) and eWAT (lower panel) of Ralaf/f 

and RalaBKO mice (n = 3). j, Basal in vivo glucose uptake in 6 hrs fasted CD-fed 
mice injected with 10 μCi [14C]-2-deoxy-glucose for 30 min (Ralaf/f n = 7, RalaBKO 
n = 5). k, Plasma insulin levels before and 30 min after glucose injection (Ralaf/f 
n = 5, RalaBKO n = 7). l, Insulin stimulated in vivo glucose uptake in CD-fed mice 
injected with 1.2 g/kg glucose and 10 μCi [3H]-2-deoxy-glucose for 30 min (Ralaf/f 
n = 5, RalaBKO n = 7). m, Representative immunostaining of endogenous RalA and 
GLUT4 in primary adipocytes treated with insulin (100 nM) or vehicle for 30 min, 
scale bar = 15 μm. (n = 3 biological samples). n, Representative immunoblotting 
of RalA, GLUT4, IRAP and Na + /K + -ATPase proteins in plasma membrane 
fraction of primary adipocytes treated with vehicle or insulin (100 nM) for 
30 min. (n = 3 biological samples). o, 2-deoxy-glucose (2-DG) uptake in primary 
adipocytes treated with insulin (100 nM) or vehicle for 30 min (n = 3 biological 
samples). p, Immunoblotting of phosphor-Akt (S473), total Akt and GAPDH in 
primary adipocytes treated with or without insulin (100 nM) for 15 min. (n = 3 
biological samples). The data are shown as the mean ± SEM, *P < 0.05, **P < 0.01 
by two-tailed Student’s T-test (h, l, o).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Brown adipocyte specific Rala deletion in mice did not 
phenocopy RalaAKO mice. a-c, Body weight curve (a), body composition (b) and 
fat depot weights (c) of CD-fed Ralaf/f (n = 8) and RalaAKO (n = 12) mice at the age of 
24-weeks. P = 0.0103 (b). P = 0.0122, P = 0.0252, P = 0.0403 (c). d, Representative 
H&E staining images of iWAT, eWAT, and BAT from CD-fed and HFD-fed mice 
(n = 3), scale bar = 100 μm, representative adipocytes size quantification of iWAT 
from CD-fed and HFD-fed mice. e, f, Glucose tolerance test (GTT, e) and insulin 
tolerance test (ITT, f) on CD-fed Ralaf/f (n = 8) and RalaAKO (n = 12) mice. Area 
under curves (AUC) were calculated from GTT and ITT, respectively. P = 0.0247 
(f). g, Plasma insulin levels in CD-fed Ralaf/f and RalaAKO mice under ab libitum 
(n = 5) or overnight fasted (n = 9) condition. h, Homeostasis model assessment-
estimated insulin resistance (HOMA-IR) was calculated based on fasting glucose 
and insulin levels from CD-fed Ralaf/f and RalaAKO mice (n = 9). I, Blood glucose 

levels in CD-fed mice (n = 5) at indicated states. j, Blood glucose levels in HFD-fed 
Ralaf/f (n = 9) and RalaAKO (n = 11) mice at indicated states. k-l, Body composition 
(k) and fat depot weights (l) in CD-fed Ralaf/f (n = 9) and RalaBKO (n = 8) mice at 
the age of 28 weeks. P = 0.0488 (l). m-n, GTT (m) and ITT (n) were performed 
in CD-fed Ralaf/f (n = 9) and RalaBKO (n = 8) mice at the age of 26-weeks. o, Body 
weight curve of Ralaf/f (n = 6) and RalaBKO (n = 4) mice fed with HFD for 12 weeks. 
p-q, Body composition (p) and fat depot and liver weights (q) in HFD-fed Ralaf/f 
(n = 7) and RalaBKO (n = 5) mice at the age of 20-21 weeks. r, s, GTT (r) and ITT (s) 
were performed in HFD-fed Ralaf/f (n = 7) and RalaBKO (n = 5) mice at the age of 
17-weeks or 20-weeks, respectively. The data are presented as the mean ± SEM 
(a-c, e-s), *P < 0.05 by two-tailed Student’s T-test (b, c, f, l) or two-way ANOVA with 
Bonferroni’s post-test (a, e, f, m-o, r, s).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Neither CD-fed RalaAKO mice nor HFD-fed RalaBKO mice 
show increased energy expenditure. a, Regression plot of energy expenditure 
(EE) during dark phase against body weight (BW) in CD-fed Ralaf/f and RalaAKO 
mice (n = 8). ANCOVA test using BW as a covariate, group effect P = 0.2805.  
b-e, BW-normalized oxygen consumption (b), respiratory exchange ratio 
(RER) (c), pedestrian locomotion (d) and food intake (e) over a two-days period 
were measured in CD-fed Ralaf/f and RalaAKO mice (n = 8) by metabolic cages. 
f-i, BW-normalized oxygen consumption (f), respiratory exchange ratio (RER) 
(g), pedestrian locomotion (h) and food intake (i) over a two-days period were 
measured in HFD-fed Ralaf/f (n = 8) and RalaAKO (n = 5) mice by metabolic cages.  
j, Regression plot of EE during dark phase against BW in HFD-fed Ralaf/f (n = 7) and 
RalaBKO (n = 5) mice. ANCOVA test using BW as a covariate, group effect P = 0.2792. 

k-n, BW-normalized oxygen consumption (k), respiratory exchange ratio (RER, l),  
pedestrian locomotion (m) and food intake (n) over a two-days period were 
measured in HFD-fed Ralaf/f (n = 7) and RalaBKO (n = 5) mice by metabolic cages. 
(o, p) Immunoblotting (o) and quantification (p) of OXPHOS proteins in eWAT 
of HFD-fed mice (Ralaf/f n = 8 and RalaAKO n = 12). (q, r) Immunoblotting (q) 
and quantitation (r) of OXPHOS proteins in BAT of HFD-fed mice (Ralaf/f n = 10 
and RalaAKO n = 13). P < 0.0001, P = 0.0252 (r). s, Relative mRNA expression of 
browning-related genes in iWAT, eWAT and BAT of HFD-fed mice (Ralaf/f n = 8 
and RalaAKO n = 13). P < 0.0001, P < 0.0001, P < 0.0001. The data (b-i, k-n, p-s) are 
shown as the mean ± SEM, *P < 0.05, ***P < 0.001 by two-tailed Student’s T-tesI  
(d, e, h, i, m, n, p-s), or two-way ANOVA with Bonferroni’s post-test (b, c, f, g, k, l).
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Extended Data Fig. 4 | Absence of RalA in adipocytes did not affect free 
fatty acid release. a, Calculation of individual OCR in differentiated primary 
adipocytes (n = 8 biological samples). P = 0.0008, P = 0.0175, P = 0.0042. 
b, Representative immunoblot of RalA and β-Tubulin in immortalized 
preadipocytes and differentiated adipocytes. (n = 3 biological samples).  
c, Quantification of mean TMRM fluorescence intensity in primary adipocytes 
and immortalized adipocytes (n = 3 independent cells). P < 0.0001, P < 0.0001. 
d, Time course TMRM intensity quantification in primary and immortalized 
adipocytes (n = 4 biological samples). Adipocytes were treated with 1 μM CL-
316,243 (CL) for indicated times. P = 0.0015, P = 0.0044 (left panel). P < 0.0001, 
P = 0.0154, P = 0.0095 (right panel). e, f, Quantification of NEFA (e) and free 

glycerol (f) released into medium from immortalized adipocytes (n = 3 biological 
samples). Cells were treated with 1 µM CL, 100 nM insulin, or in combination 
prior to medium collection. P = 0.0301, P = 0.0051 (f). g, h, Plasma levels of NEFA 
(g) and free glycerol (h) in CD-fed Ralaf/f and RalaAKO mice (n = 6). P = 0.0027, 
P = 0.0173 (h). Mice were i.p. injected with CL or vehicle prior to blood sampling. 
i, j, Plasma levels of NEFA (i) and free glycerol (j) in CD-fed Ralaf/f (n = 4) and 
RalaAKO (n = 5) mice. Mice were either subjected to ad libitum feeding, overnight 
fasting or fasting plus insulin injection 15 min prior to harvesting. P = 0.0316 (j). 
The data (a, c-j) are shown as the mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001 by two-tailed Student’s T-test (a, c, e-j) or two-way ANOVA with 
Bonferroni’s post-test (d).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | RalA inhibition did not affect mitochondrial 
biogenesis in WAT. a, b, Relative mRNA expression of genes corresponding to 
mitochondrial biogenesis in iWAT (a) and eWAT (b) of HFD-fed Ralaf/f (n = 9) and 
RalaAKO (n = 10) mice. P = 0.0449, P = 0.0478. (a). c-f, Immunoblotting (c, d) and 
quantification (e, f) of phospho-AMPK (T172), total AMPK and β-Tubulin in iWAT 
(Ralaf/f n = 9, RalaAKO n = 14) (c, e) and eWAT (Ralaf/f n = 8, RalaAKO n = 12) (d, f) of 
HFD-fed mice. g, Maximal mitochondrial length in iWAT of CD-fed and HFD-fed 
mice (n = 3 biological samples). P < 0.0001, P < 0.0001, P = 0.1675.  

h, Representative TEM images of mitochondria in eWAT of HFD-fed mice, scale 
bar = 500 nm. i, Representative TEM images of mitochondria in BAT of HFD-fed 
mice, scale bar = 1 μm. j-l, Immunoblotting (j) and quantification (k, l) of Opa1 in 
iWAT of HFD-fed mice (Ralaf/f n = 10, RalaAKO n = 13). P = 0.0045 (k). P = 0.0044 (l). 
m-o, Immunoblotting (m) and quantification (n, o) of Opa1 in eWAT of HFD-fed 
mice (Ralaf/f n = 14, RalaAKO n = 10). P = 0.0063 (o). The data (a, b, e-g, k, l, n, o) 
are shown as the mean ± SEM, *P < 0.05, **P < 0.01, ****P < 0.0001 by two-tailed 
Student’s T-test (a, g, k, l, o).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Rala deletion in adipocytes did not affect cAMP 
production and HSL phosphorylation. a, Immunoblotting of phospho-Drp1 
S637, total Drp1 and β-Tubulin in iWAT of HFD-fed Ralaf/f (n = 10) and RalaAKO 
(n = 13) mice. b, c, Immunoblotting (b) and quantification (c) of phospho-
Drp1(S637), total Drp1, and β-Tubulin in eWAT of HFD-fed Ralaf/f (n = 8) and 
RalaAKO (n = 12) mice. d, e, Immunoblotting (d) and quantification (e) of 
phospho-Drp1 (S637), total Drp1 and β-Actin in iWAT of CD-fed mice. Non-
fasted Ralaf/f (vehicle n = 3, CL n = 4) and RalaAKO (vehicle n = 3, CL n = 5) mice 
fed with CD were i.p. injected with 1 mg/kg CL for 30 min. P = 0.0054, P = 0.0135 
(e). f, g, Immunoblotting (f) and quantification (g) of phospho-Drp1 (S637), 
total Drp1, RalA, and β-Actin in fully differentiated primary adipocytes (n = 4 
biological samples). P = 0.0085, P = 0.0046 (g). Adipocytes were differentiated 
from stromal vascular fraction (SVF) isolated from 8-week-old female mice, 
and were treated with 1 μM CL for indicated time. h, i, Immunoblotting (h) 
and quantification (i) of phospho-Drp1 (S637), total Drp1, RalA, and β-Actin in 
immortalized adipocytes (n = 4 biological samples). P = 0.0159, P = 0.0086 (i). 
Adipocytes were treated with 1 μM CL for indicated time. j, k, Immunoblotting (j) 
and quantification (k) of phospho-Drp1 (S637), total Drp1, and β-Actin in 3T3-L1 
adipocytes (n = 4 biological samples). P = 0.0009 (k). Cells were pretreated 

with 50 μM RBC8 or DMSO for 30 min, then treated with 5 μM forskolin (Fsk) for 
indicated time. l, Determination of intracellular cAMP levels in differentiated 
WT and RalaAKO (KO) primary adipocytes (n = 4 biological samples). Cells were 
treated with CL for 5 min prior to harvesting. m, n, Quantification of phospho-
HSL(S660) and HSL in primary (m) and immortalized adipocytes (n) treated with 
CL for indicated time (n = 4 biological samples). o, Maximal mitochondrial length 
in immortalized adipocytes expressing Drp1 mutants (n = 3 independent cells). 
P < 0.0001 3.1 vs Drp1WT, P < 0.0001 Drp1WT vs Drp1SD, P < 0.0001 Drp1SD vs Drp1SA. 
p-r, Transcriptomics and clinical data were directly accessed from GEO database 
(GSE70353). p, q, DNM1L mRNA expression is correlated with BMI (p) and HOMA 
(q) in human subcutaneous adipose tissue samples (n = 770). P = 0.0002 (p). 
P = 0.0019 (q). r, Box-and-whisker plot of DNM1L mRNA expression in abdominal 
subcutaneous adipose tissues from 770 individuals with or without obesity. 
Benjamini and Hochberg-adjusted P value (adj. p) is 0.014186. The box plot is 
presented as a box: 25th to 75th percentile, and whiskers: min to max. The data  
(c, e, g, i, k, l, m, n, o) are shown as the mean ± SEM, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001 by two-tailed Student’s T-test (e, g, i, k, o). 
Significance in correlation was assessed by Spearman’s correlation test (p, q).
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Extended Data Fig. 7 | Knockout of RalA increases PP2Aa content.  
a, Representative immunoblotting of co-immunoprecipitated between 
Flag-RalAWT, Flag-RalAG23V, or Flag-RalAS28N and Myc-Drp1 proteins in HEK293T 
cells. b, Representative in vitro dephosphorylation assay in PP2Ab and Drp1 
co-transfected HEK293T cells treated with or without 20 μM forskolin (Fsk) for 
1 hr. c, Quantification of Drp1 and RalA co-localization using Pearson’s method 
(n = 3 independent cells). P < 0.0001. d, Quantification of phospho-Drp1 
(S637) and total Drp1 in immortalized RalA KO adipocytes with or without RalA 
reconstitution (n = 3 biological samples). 15 min: P = 0.0164 KO vs +WT, P = 0.0015 
KO vs +GV. 30 min: P = 0.0185 KO vs +WT, P = 0.0087 KO vs +GV. Adipocytes were 
treated with 20 μM forskolin for indicated time. e, Quantification of TMRM 
fluorescence intensity in immortalized RalA KO adipocytes with or without RalA 

reconstitution (n = 3 independent cells). P < 0.0001 KO vs +WT. P < 0.0001 KO vs 
+GV. f, Calculated OCR in each state from immortalized RalA KO adipocytes with 
or without RalA reconstitution (WT = 6, +WT = 10, +GV = 9 biological samples). 
P < 0.0001, P = 0.0423, P = 0.0015, P = 0.0060. g, Maximal mitochondrial length 
in immortalized adipocytes (n = 3 independent cells). P < 0.0001 KO vs +WT. 
P < 0.0001 KO vs +GV. h, i, Quantification of fission (h) and fusion (i) events in 
immortalized adipocytes (KO = 92, +WT = 41). P = 0.0252 (h). P = 0.0879 (i).  
j, k, Immunoblotting (j) and quantification (k) of PP2Aa, PP2Ab, PP2Ac, and 
β-Tubulin in iWAT of HFD-fed mice (Ralaf/f n = 10, RalaAKO n = 13). P = 0.0039 
(k). The data (c, d, e, f, g, k) are shown as the mean ± SEM, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001 by two-tailed Student’s T-test (c, d, e, f, g, h, k).
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Extended Data Fig. 8 | Mechanistic model depicting how RalA regulates 
mitochondrial function in obese adipocytes. Created with BioRender.
com. Obesity drives RalA expression and GTP binding activity, leading to its 
association with PP2Aa, which in turn recruits the catalytic subunit PP2Ac to 

dephosphorylate Drp1 S637. Also, catecholamine resistance could reduce 
PKA-catalyzed S637 phosphorylation. The combined effects converging on RalA-
PP2A-Drp1signaling axis result in constitutive mitochondrial translocation of 
Drp1 and fragmented mitochondria in adipocytes from obese subjects.
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Extended Data Table 1 | Real-time qPCR primers

qPCR primers
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