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Abstract
Summary: We introduce software for reading, writing and processing fluorescence single-molecule and image spectroscopy data and developing 
analysis pipelines to unify various spectroscopic analysis tools. Our software can be used for processing multiple experiment types, e.g. for time- 
resolved single-molecule spectroscopy, laser scanning microscopy, fluorescence correlation spectroscopy and image correlation spectroscopy. The 
software is file format agnostic and processes multiple time-resolved data formats and outputs. Our software eliminates the need for data conversion 
and mitigates data archiving issues.
Availability and implementation: tttrlib is available via pip (https://pypi.org/project/tttrlib/) and bioconda while the open-source code is available 
via GitHub (https://github.com/fluorescence-tools/tttrlib). Presented examples and additional documentation demonstrating how to implement 
in vitro and live-cell image spectroscopy analysis are available at https://docs.peulen.xyz/tttrlib and https://zenodo.org/records/14002224.

1 Introduction
Making raw intensity images accessible is an endeavor 
addressed by the tagged-image file format (TIFF), open- 
microscopy environment (OME) TIFF (Goldberg et al. 2005) 
and, more recently, by OME-Zarr (Moore et al. 2023). There 
are two challenges: (i) metadata necessary to interpret the origi-
nal data must be accessible and preserved, and (ii) original data 
must be readable. The development of our software for time- 
resolved single-molecule and imaging data was motivated by in-
tegrative modeling requirements (Hancock et al. 2022) and the 
need for standard data interfaces and automated analysis pipe-
lines. The lack of vendor-independent time-resolved single- 
photon data formats was recognized by the FRET community 
(www.fret.community), a scientific community founded to en-
hance dissemination and community-driven development of 
analysis tools (Lerner et al. 2021), as a challenge for 
fluorescence-based integrative models, as the archiving system 
for integrative models (Burley et al. 2017) recommends to ar-
chive models along with relevant experimental data, metadata, 
and experimental/computational protocols (Berman et al. 2019, 
Hanke et al. 2024). In single-molecule F€orster resonance energy 

transfer experiments (smFRET) the lack of data formats was 
mitigated by a Hierarchical Data Format (HDF5) based format 
(Ingargiola et al. 2016b). In the past, our software led to publi-
cations with a focus on spectroscopy (Hemmen et al. 2021, 
Balakrishnan et al. 2022) and image spectroscopy (Liu et al. 
2023). Our software provides a unified interface to diverse pro-
prietary data formats. It solved archiving and storing issues at 
our imaging facility and makes data accessible to customers.

Compared to intensity-based experiments, time-resolved 
spectroscopy and spectroscopic imaging data are more complex 
since spectroscopic and image information are jointly encoded 
(Fig. 1A). Such information can be used in FRET and photo- 
induced electron transfer (PET) experiments to map distances 
between fluorophores in the range from 1 to 10 nm at 
Ångstrom resolution (Stryer 1978, Clegg et al. 1993, Bates et al. 
2005, Sahoo et al. 2007) and inform on dynamics of molecular 
processes in solution (Kalinin et al. 2012, Barth et al. 2022, 
Opanasyuk et al. 2022) and in living cells. While fluorescence 
correlation spectroscopy (FCS) (Elson and Magde 1974) com-
bined with FRET or PET can map distances as a function of 
time over 10 time decades with sub-nanosecond resolution 
(B€ohmer et al. 2002, Kapusta et al. 2007, Felekyan et al. 2012), 
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fluorescence experiments are sufficiently sensitive (Moerner and 
Kador 1989, Orrit and Bernard 1990, Shera et al. 1990) to 
study single molecules for disentangling complex biomolecular 
systems (Ha et al. 1996, Weiss 1999). Fluorescence spectros-
copy combined with microscopy informs on large biomolecular 
assembly structures either in vitro (Peulen et al. 2023, Kolimi 
et al. 2024) or in living cells (Jares-Erijman and Jovin 2003, 
Sakon and Weninger 2010, Fessl et al. 2012, Stahl et al. 2013, 
K€onig et al. 2015, Kravets et al. 2016) at any size, ranging from 
polyproline oligomers (Stryer 1978, Schuler et al. 2005, Best 
et al. 2007, Hoefling et al. 2011) to ribosomes (Hickerson et al. 
2005) and can map interactions in living cells at high- 
throughput (Ries et al. 2010, Wachsmuth et al. 2015).

Single molecule spectroscopy (SMS) and fluorescence imag-
ing spectroscopy (FIS) rely on the time-resolved registration 
of photons. FIS and SMS data are encoded as photon streams 
(Fig. 1A). In SMS, fluorescence bursts are selected by inten-
sity thresholding the background. In FIS, the data stream is 
sorted into pixels of an image. In both cases, photons 
grouped into bursts or pixels need to be analysed, e.g. by 
counting, distribution or correlation analysis. Frequently 
bursts and pixels are grouped by spatial (e.g. shapes in 
images), temporal (e.g. kymographs in time-series analysis), 
or spectroscopic features (e.g. fluorescence lifetimes) into 
sub-ensembles and regions, respectively. SMS and FIS share 
similar challenges, as the number of photons in a pixel or 
burst is low (in the order of 10’s to hundreds of photons). 

Thus, identical analysis routines are used for apparently dif-
ferent tasks (Fig. 1B). Nevertheless, even though data storage 
and processing routines of SMS and time-resolved FIS are 
largely identical, to the best of our knowledge, no established 
unified framework exists for FIS and SMS data.

Therefore, we introduce a software that preserves metadata 
and gives access to raw data of proprietary data formats (e.g. 
PicoQuant, Becker&Hickl, Zeiss, Leica) via a unified interface. 
Our software reads and processes spectroscopic and image data 
for downstream processing and for integrating experimental 
data into analysis frameworks such as the Integrative Modeling 
Platform (Russel et al. 2012) (IMP) (Fig. 1C). Examples avail-
able at https://docs.peulen.xyz/tttrlib illustrate how to work 
with our library. Here, we present an SMS workflow that pro-
cesses human Guanylate binding protein 1 (hGBP1) single- 
molecule FRET data by burst-integrated fluorescence lifetime 
analysis (BIFL), fluorescence correlation spectroscopy (FCS) 
and photon distribution analysis (PDA) (Supplementary Fig. 
S1). Finally, we preprocess murine guanylate binding protein 
(mGBP) data in a workflow that combines classic image analy-
sis with spectroscopy (Supplementary Fig. S2).

2 Implementation
tttrlib is a file format-independent interface to FIS and SMS 
data that mimics the expected behavior of common numeric 
libraries such as NumPy (https://www.numpy.org). The 

Figure 1. Time-resolved single-molecule fluorescence spectroscopy (SMS) and fluorescence image spectroscopy (FIS) share data registration and 
processing routines. (A) In time-resolved fluorescence, excitation and photon detection events are encoded using a macro and a micro time counter. In 
pulsed experiments the coarse macro time counter is synchronized to the light source. The micro time measures the time delay relative to a macro time 
event (laser pulse). Events are characterized by an identifier, usually referring to the detection channel or TCSPC board input number. (B) Confocal SMS 
registers photons of freely diffusing molecules in a stationary excitation and detection volume. Confocal FIS generates an image by sweeping an 
excitation source over a sample and registering the emitted photons over time in a photon stream. SMS and FIS process macro and micro times. In SMS, 
photons are grouped into single-molecule events. FIS groups photons into pixels. Macro/micro times of photons in a group are analysed to determine 
spectroscopic features (e.g. fluorescence lifetimes or anisotropies). (C) Our Cþþ library tttrlib is wrapped for scripting languages via the Simplified 
Wrapper and Interface Generator (SWIG) and abstracts data to provide an interface to data, methods, and algorithms for laser scanning microscopy and 
single-molecule spectroscopy. This enables fluorescence data analysis by diverse sources using other data processing and analysis libraries such as 
scikit-image and scikit-learn and integrative modeling by the Integrative Modeling Platform (IMP). The acquired information/data is interpreted by 
modeling that can consider additional information, e.g. secondary structure, excluded volume or sequence connectivity information to produce a 
structural integrative model.
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functionalities were implemented following design guidelines 
for operations on sequence and list data in scripting lan-
guages such as slicing of data objects. tttrlib objects are ini-
tialized via keyword arguments. This allows conveniently 
creating and archiving settings used in analysis in nonrela-
tional object databases or dictionary files (e.g. JSON, YAML, 
or mmCIF).

The time-tagged time-resolved (TTTR) data is accessed by 
the TTTR class. TTTR objects can be sliced and merged to 
facilitate or distribute the processing of larger datasets. 
Slicing and merging TTTR objects allows users to build filters 
to select events by micro- or macro-time counter values, e.g. 
to discriminate depletion pulses in STED microscopy or mo-
lecular aggregates in single-molecule spectroscopy. Metadata 
of TTTR objects is accessed via a Header class and dictionar-
ies. Modifying the metadata and saving TTTR objects to 
other file types enables cross-compatibility of manufacture- 
specific analysis software. Selection algorithms allow defining 
ranges based on average intensities in a time window, and de-
tector numbers can be used to partition data. For the com-
mon operations (intensity thresholds, selection of detection 
channels, etc.) selection algorithms are predefined to select 
subsets of the data.

Requirements. tttrlib is available and tested on all major 
operating systems (Linux, macOS, and Windows). It can be 
installed in conda and scripted via Python.

Supported microscopes and data formats. tttrlib can be 
used for confocal laser scanning microscopy (CLSM) TTTR 
data and implements reading routines for the most common 
CLSM microscopes (such as the Leica SP5/SP8, Zeiss 
LSM980). So far, tttrlib supports reading of the proprietary 
data format of Picoquant (PTU/HT3), Becker&Hickl (SPC- 
130, SPC-630), Zeiss (confocor), the single-molecule SM file 
format, and the open source PhotonHDF5 format. The most 
common parameters necessary for interpreting CLSM TTTR 
data can be user-specified. Thus, tttrlib can be used to process 
arbitrary TTTR and time-resolved CLSM data.

3 Results
3.1 Spectroscopy
Our software offers high- and low-level processing and analysis 
methods that can be combined into pipelines for developing 
new ensemble fluorescence spectroscopy, SMS, and FIS method-
ologies. A features subset is demonstrated in a single-molecule 
analysis of human guanylate binding protein (hGBP1) smFRET 
data (Supplementary Fig. S1). In the confocal experiments, fluo-
rescence of dilute freely diffusing labeled hGBP1 was registered 
(Peulen et al. 2023). The analysis pipeline (i) reads smFRET 
data, (ii) selects single-molecule events (Fries et al. 1998, 
Schaffer et al. 1999, Maus et al. 2001), (iii) performs a burst 
analysis (computes intensity and lifetime-based FRET indica-
tors), (iv) correlates photon traces, (v) generates single-molecule 
counting histograms, analyzed by (vi) photon distribution 
analysis (PDA) (Antonik et al. 2006) and burst variance analysis 
(BVA) (Torella et al. 2011), and (vii) selects molecular sub- 
ensembles. Details are described in the Supplementary Methods 
and Supplementary Results.

3.2 Image fluorescence spectroscopy
Our image spectroscopy (FIS) pipeline (Supplementary Fig. 
S2) processes time series acquired on MEF cells transfected 
with murine guanylate binding proteins 3 (mGBP3) and 

mGBP7 N-terminally tagged with mCherry and eGFP, re-
spectively. GBPs localize in the cytoplasm and accumulate in 
vesicle-like structures (VLS) (Kravets et al. 2016). The pipe-
line (i) groups photons into pixels of intensity images, (ii) per-
forms a FLIM analysis for multiple detection channels and 
excitation sources, (iii) segments images into pixel classes, 
(iv) uses the model-free phasor approach to highlight sample 
heterogeneity (Digman et al. 2008), and (v) extracts fluores-
cence decays of pixel-classes for sub-ensemble analysis. The 
details are described in the Supplementary Methods and 
Supplementary Results.

4 Discussion
We introduced open-source software for processing various 
time-resolved data via a unified interface. Our software tttrlib 
integrates into various scripting languages for simple usage 
for custom data processing pipelines and automated FIS or 
SMS data processing. Our abstraction layer to vendor- 
specific original data and metadata addresses the challenge of 
preserving and processing data independent of its origin 
(Fig. 1C). The customizable vendor-agnostic reading routines 
process data of multiple experimental setups of varying types 
without the need for data conversion. By operating on origi-
nal data, we assert that metadata essential for handling mi-
croscopy data is preserved. Our software is programmed in 
C/Cþþ and comes with a set of algorithms and tools that op-
erate on the ingested data. It was tested for single-molecule 
(Supplementary Fig. S1) and image data (Supplementary Fig. 
S2) registered by multiple excitation and detection modali-
ties, including pulsed interleaved excitation (PIE) (M€uller 
et al. 2005, Hendrix and Lamb 2013) and multiparameter 
fluorescence detection (MFD) (Sisamakis et al. 2010) for 
studying protein structures and dynamics in vitro 
(Hellenkamp et al. 2018, Lerner et al. 2021) and in living 
cells (Weidtkamp-Peters et al. 2009, Stahl et al. 2013). tttrlib 
provides the most commonly used data reduction and analy-
sis algorithms of fluorescence spectroscopy such as PDA 
(Antonik et al. 2006) and correlation algorithms for FCS 
(Wahl et al. 2003) that can be used for advanced FCS techni-
ques such as full-, gated-, or filtered-FCS and methods for 
time-resolved image spectroscopy and image correlation spec-
troscopy (ICS) (Petersen et al. 1993). Here, we presented the 
most common single-molecule spectroscopy and imaging mo-
dalities applications. Applications for less commonly used 
methods (e.g. ICS) are presented in the online repository.

We wrapped our software using the Simplified Wrapper 
and Interface Generator (SWIG) for simple integration into 
scripting and other programming languages. Currently we fo-
cus on the most widely used programming language Python. 
Integrating our software into Python enables the use of time- 
resolved data in data-science software packages such as 
scikit-image (van der Walt et al. 2014), scikit-learn 
(Pedregosa et al. 2011) and the Integrative Modeling 
Platform (IMP) (Russel et al. 2012). For easy construction of 
custom analysis pipelines, we implemented our software in a 
fully modular fashion (Fig. 1C). This is illustrated by Python 
implementations of example smFRET and FIS analysis pipe-
lines and more extensive documentation, benchmarks and 
examples in the online documentation. These code examples 
can serve as templates to develop custom analysis pipelines 
and data processing workflows.
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Various FIS and SMS software (lifetime fits and phasor 
analysis) exist. FLIMJ, based on the FLIMlib library, focuses 
on ease of use by providing graphical user interfaces (GUI) 
for basic FIS analysis in ImageJ for Linux, macOS and 
Windows (Gao et al. 2020). FLIMfit offers many model func-
tions for FIS but lacks, as stand-alone software, a close inte-
gration with image analysis (Warren et al. 2013). General 
SMS software such as PAM (Schrimpf et al. 2018) and soft-
ware maintained by single-molecule labs usually offer ease- 
of-use through GUIs and a large toolbox for FIS and SMS 
(Weidtkamp-Peters et al. 2009, Sisamakis et al. 2010). This 
software is often based on closed-source programming lan-
guages, lacks scripting capabilities or interfaces to other tool-
boxes (e.g. for machine learning), and is tightly integrated 
with GUIs (Schrimpf et al. 2018). A collection of SMS soft-
ware is compiled and maintained by the FRET community 
(see: https://fret.community/software/). More recent open- 
source SMS software such as PhotonHDF and FRETBursts 
mitigate the absence of open standards in SMS and give 
scripting capabilities and interfaces to other toolboxes; how-
ever, they require a conversion of the original data to an open 
format (Ingargiola et al. 2016a) and lack imaging capabili-
ties. Our modular library was developed for programming 
analysis workflows while most existing FIS and SMS soft-
ware was designed for established data processing workflows 
and user-specific cases. By focusing on developers and data 
scientists, tttrlib can be closely integrated with other software 
such as NumPy/SciPy, scikit-image, or IMP.
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