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ABSTRACT OF THE DISSERTATION 

 

Improving Acute Ischemic Stroke Clinical and Imaging Outcome  

Classification using Machine Learning and Deep Learning Methods 

 

by 

 

King Chung Ho 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2019 

Professor Corey Wells Arnold, Co-Chair 

Professor Denise R Aberle, Co-Chair 

 

Stroke is the fifth leading cause of death in the United States, with approximately 795,000 new 

cases each year. The goal of stroke treatment is to rescue salvageable tissue by reperfusion therapy. 

Clinical trials have shown that intravenous tissue plasminogen activator (IV tPA) and clot retrieval 

devices are effective treatments for recanalizing occluded blood vessels. However, determining an 

optimal stroke treatment plan is not a straightforward decision because it involves different factors, 

such as patient risk of hemorrhage and penumbra size. The relationships between these factors and 

patient outcomes are not clearly understood. This dissertation attempts to overcome these 

challenges by developing machine learning and deep learning models for acute ischemic stroke 

clinical and imaging outcome classification. A novel deep learning model was first proposed using 

source perfusion imaging to predict voxel-wise tissue outcome. The model architecture is designed 

to include contralateral patches to improve the feature learning process. Second, an end-to-end 

machine learning approach was developed to classify stroke onset time, which is a major clinical 

variable in selecting patients for IV tPA treatments. The approach combines baseline descriptive 

features and deep features to improve stroke onset time classification using machine learning 
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models. Third, a bi-input convolutional neural network was developed for perfusion parameter 

estimation. This model lays a foundation to estimate perfusion parameters using pattern 

recognition techniques. Finally, a machine learning model trained with a balanced data set was 

developed for acute stroke patient outcome prediction. Rigorous experiments and results have 

shown the effectiveness of these proposed methods. This dissertation describes methods that lead 

to better understanding of stroke imaging, which lays the foundation to offer decision-making 

guidance for clinicians providing acute stroke intervention treatments. 
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CHAPTER 1  

Introduction 

1.1 Motivation 

Stroke is the primary cause of long-term disability and the fifth leading cause of death in the 

United States, with approximately 795,000 Americans experiencing a new or recurrent stroke each 

year [1]. Acute stroke treatments focus on restoring blood flow to hypoperfused regions to 

minimize infarction (i.e., tissue death). Intravenous (IV) tissue plasminogen activator (tPA) 

remains the dominant thrombolytic treatment for acute stroke, with a strict time usage guideline 

(no more than 4.5 hours from witnessed stroke symptom onset, i.e., time-since-stroke (TSS) < 

4.5hrs) due to the increased risk of hemorrhage when administered beyond that time interval [2]. 

More recently, mechanical thrombectomy (clot retrieval) [3]–[5] has been developed as an 

alternative or adjunct therapy to IV tPA, in which a device is used to navigate through the arterial 

tree under fluoroscopic guidance to physically retrieve blood clots. Yet, the optimal treatment time 

window of the clot retrieval devices remains uncertain [6], and overall stroke outcomes (e.g., 

mortality) after treatments have to be further determined [7]. 

Effort has been placed in identifying risk factors and creating models predictive of stroke and 

its outcomes [8]–[10]. Yet, the existing stroke outcome prediction model performance is often 

biased because of the problem of between-class imbalance in medical data, which is common in 

binary prediction tasks when one class has substantially more samples than the other class [11]–

[13]. Also, models with the greatest ability to predict an individual’s functional outcome after 

stroke are based primarily on pre-stroke variables (e.g., age) and functional status at presentation. 
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These variables shed little light on the pathophysiological processes supporting their predictions 

and offer minimal information on how to tailor individual treatment.    

Stroke imaging analysis represents a key area for further investigation. Magnetic resonance 

(MR) images are often obtained, including diffusion-weighted images (DWIs), apparent diffusion 

coefficient (ADC) maps, and perfusion-weighted images (PWIs). Early work using manual and 

threshold-based analysis on these MR images has demonstrated the utility in salvageable tissue 

calculation [14]–[16]; recent work has shown that imaging features can be used with clinical 

features to improve outcome prediction [17], [18]; and image preprocessing methods [19], [20] 

and diagnostic tools [21] are readily accessible. Currently employed methods for stroke image 

analysis typically make voxel-based predictions on tissue outcome prediction (i.e., tissue fate) 

[22], [23]. These studies apply machine learning techniques using shallow features extracted from 

images to predict infarcts. These hand-crafted features are derived from the perfusion parameter 

maps (e.g., cerebral blood volume map), which describe the brain tissue characteristics. While the 

machine learning techniques have proven to be beneficial, the performance of tissue outcome 

prediction is still limited and recent studies suggest that this is due to drawbacks of using hand-

crafted features in the classification models [24]–[29]. Another stroke imaging research is time 

since stroke (TSS) classification. An imaging feature (a mismatch pattern) is derived from the 

magnetic resonance (MR) image. The mismatch volume is calculated to estimate the patient stroke 

onset time [30]–[33], which determines the eligibility of IV tPA (TSS < 4.5hrs). While this is the 

current state-of-the-art method for determining eligibility for thrombolytic therapy in cases of 

unknown TSS, computing mismatch using MR imaging remains a difficult task and the 

performance is moderate [34], [35]. 

This research focuses on two areas to address some of the aforementioned challenges: 1) tissue 

outcome classification; and 2) time since stroke classification. The ensuing two sections detail the 

motivation for each task.  
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1.1.1 Tissue outcome classification 

Predicting ischemic tissue outcome is an important task for better stroke evaluation and 

treatment planning. Knowing the potential tissue outcome can provide important information to 

clinicians about the relative value of interventions. For example, if the volume of predicted infarct 

tissue is large given any treatment variable in the model, a clinician may reconsider the utility of 

a treatment such as thrombolysis or clot retrieval, either of which can increase the chance of 

hemorrhage and may worsen the clinical outcome. In addition, predicting stroke tissue outcome 

helps generate new knowledge that may be useful in patient selection for clinical trials [6].  

Researchers have attempted to predict the final infarct volume from the pre-treatment MR 

images using machine learning techniques [22], [36], [45]–[47], [37]–[44]. These models rely on 

hand-crafted features that are derived from the perfusion parameter maps for prediction (Figure 

1.1). While these techniques have proven to be useful, recent concerns have been raised about the 

use of these parameters [24], [25], due to drawbacks that have been discussed in several studies  

[26]–[29]. One such drawback is the sensitivity of PWI to vascular delays and dispersion effects 

caused by physiologic changes, such as heart rate and cardiac output, that can substantially change 
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Figure 1.1: An overview of voxel-wise tissue outcome prediction from source perfusion-weighted 

images (PWIs). Hand-crafted features are derived from a voxel concentration time curve. These 

features are time-to-maximum (Tmax), cerebral blood flow (CBF), cerebral blood volume (CBV), 

mean transit time (MTT), and time-to-peak (TTP). 
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the perfusion image parameters [26]. Another drawback is the fact that choosing the appropriate 

arterial input function (AIF) from PWIs, which describes the contrast input to the vasculature over 

time, is a challenging and generally subjective task due to the need to account for the partial volume 

effect. This can lead to variability in blood flow measurements caused by varying delays and/or 

dispersion based on different AIF choices [27]. Although deconvolution by singular value 

decomposition (SVD) can address this problem, studies have found that the deconvolution process 

can introduce distortions that influence the measurement of perfusion parameters [28], and the 

decoupling of delay may negatively impact infarct prediction [29]. All of these factors have 

contributed to the imperfect prediction of tissue outcome by current methods. Thus, it is highly 

desirable to have a novel machine learning model, where no hand-crafted features are needed, to 

achieve optimal performance on tissue outcome prediction.  

1.1.2 Time since stroke classification 

Figure 1.2 shows the current stroke treatment guideline based on time since stroke onset. IV 

tPA remains the dominant thrombolytic treatment for acute ischemic stroke, with a strict time 

usage guideline (no more than 4.5 hours from witnessed stroke symptom onset) due to the 

increased risk of hemorrhage when administered beyond that time interval. About 30% of the 

population cannot receive IV tPA because of unknown TSS (e.g., wake-up strokes or unwitnessed 

 

Figure 1.2: Treatment guideline for acute ischemic stroke patient.   
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strokes) [48]. Therefore, determining stroke onset time independent of patient history is an 

important task for better stroke evaluation and stroke treatment decision-making. 

The current state-of-the-art and experimental methods that can provide clinicians with insight 

into stroke onset time are mostly based on observable mismatch patterns between MR DWI and 

fluid attenuated inversion recovery (FLAIR) imaging, known as “DWI-FLAIR mismatch” [30]–

[33]. Most of the previous studies [31]–[33] reported that the mismatch method could only achieve 

a medium performance: a specificity of 0.60 to 0.80 with a sensitivity of 0.50 to 0.60 and a negative 

predictive value (NPV) of 0.20 to 0.50. Computing mismatch using MR imaging is a difficult task 

that requires extensive training and for which clinician inter-observer agreement has been found 

to be only moderate [34], [35]. Another research work has also suggested that the mismatch 

method may be too stringent and simple, and therefore miss individuals who could benefit from 

thrombolytic therapy [49].  Thus, it is desirable to develop a classification pipeline, which includes 

novel feature generation and advanced machine learning model classification, to classify stroke 

onset time. 

1.2 Contributions 

Recent work has shown that deep learning techniques outperform many state-of-the-art 

classification tasks [50], [51]. The deep-layer-learning approach is effective in discovering hidden 

hierarchical non-linear representations that are powerful for prediction [52]. To address the issues 

described in Section 1.1, this work presents novel machine learning and deep learning methods to 

improve acute ischemic stroke tissue outcome prediction and provide a state-of-the-art solution for 

TSS classification. Two specific aims are defined:  

1. To develop a deep learning algorithm for acute stroke clinical MR imaging sequences that 

allows for more accurate prediction of stroke tissue outcome. A novel deep convolutional 

neural network (CNN) architecture was proposed to utilize the patch of interest and its 

contralateral patch to improve voxel-wise tissue outcome prediction. The deep learning model 
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automatically learns hierarchical representations from the stroke images and makes predictions 

of tissue outcome without using hand-crafted perfusion parameters. This method eliminates 

the use of the traditional deconvolution method which may cause distortions in residue 

function. The contralateral patch input also acts as a matched control (i.e., a patch for 

comparison) for the patch of interest which makes tissue outcome prediction possible without 

the information of the arterial input function. The results show that the proposed deep learning 

model outperforms existing tissue fate models.  

2. To develop a machine learning framework that utilizes unsupervised feature learning of 

stacked autoencoders on quantitative image representations to classify acute stroke patient 

onset time (TSS). The framework is one of the earliest approaches to apply machine learning 

in TSS classification. It includes developing a set of hundreds of imaging features from stroke 

images and training machine learning models for TSS classification. A deep learning algorithm 

based on an autoencoder architecture is developed to extract latent representative imaging 

features from stroke images. This work shows that deep learning features improve TSS 

classification significantly and the best model outperforms the current state-of-the-art 

thresholding approach (DWI-FLAIR mismatch method). This framework serves as the 

foundation to move towards advanced imaging analysis for TSS classification, which 

ultimately impacts the treatment guidance for IV tPA.  

Towards Aim 1, a novel deep CNN architecture was developed for voxel-wise tissue outcome 

prediction using source perfusion images. The proposed deep CNN had a new layer to learn pairs 

of unit voxel-wise temporal filters. These unit temporal filters help paring feature learning from 

modified training data, in which each input data was a pair consisting of the patch of interest and 

its contralateral patch. The model was evaluated and compared with the existing tissue fate models 

(generalized linear regression model, support vector machine, and spectral regression kernel 

discriminant analysis). While the deep CNN tissue outcome prediction model was being built, a 

bi-input convolutional neural network (bi-CNN) was also developed to investigate if a machine 
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learning approach can be used to estimate perfusion parameter values. The proposed bi-CNN had 

two separated convolution chains that were used as deconvolution operations for the input (the 

patch of interest and the arterial input function). The results show that the bi-CNN can be used as 

an alternative to traditional deconvolution methods for perfusion parameter map generation. 

Additional analyses were performed to correlate imaging and clinical features to stroke outcome 

(i.e., mortality) with an imbalanced data set.  

For Aim 2, a machine learning framework was proposed for TSS classification. Notably, this 

framework is the first complete machine learning work on addressing issues on the simple 

thresholding approach (DWI-FLAIR mismatch). The developed framework comprises of four 

major steps: 1) defining the region of interest (ROI) in the MR images for feature generation; 2) 

generating a set of imaging features from the ROI; 3) creating additional imaging features using 

the proposed deep autoencoder architecture from the source perfusion-weighted images; and 4) 

training five machine learning models with imaging features for TSS classification. The trained 

models were then compared with the DWI-FLAIR mismatch method.  

Collectively, the design and implementation of these aims results in imaging features and 

outcome classification models that present deeper understanding of acute ischemic stroke and 

provide insights for better acute ischemic stroke treatment guidance.  

1.3 Organization of the Dissertation 

The dissertation is organized as follows. Chapter 2 provides background on acute ischemic stroke 

and its treatment, stroke patient outcome prediction, stroke imaging, deep learning, current 

limitations, and literature review. Chapter 3 describes Aim 1 work on tissue outcome prediction 

using the proposed deep learning architecture with contralateral inputs. A machine learning 

framework is introduced in Chapter 4, addressing Aim 2 for advanced imaging analysis in TSS 

classification. Chapter 5 describes the work we have done in perfusion parameter estimation using 

bi-input convolutional neural network and Chapter 6 describes the work we have done on acute 



8 

 

stroke patient outcome prediction. Chapter 7 concludes by summarizing this work results, 

discussing the limitations of this work, and suggesting future directions.  
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CHAPTER 2  

Background 

2.1 Stroke Overview 

There are two types of strokes: ischemic strokes (87%) and hemorrhagic strokes (13%) [1]. 

Ischemic stroke occurs when arteries to brain tissues are narrowed or blocked by one or multiple 

occlusions, leading to severely reduced blood flow (ischemia) and tissue death. Hemorrhagic 

stroke occurs when a weakened blood vessel ruptures, causing bleeding inside the brain. In this 

dissertation, acute ischemic stroke is the primary research focus.  

Figure 2.1 shows an overview of the ischemic stroke regions caused by a blood clot. The infarct 

core is defined as a dead tissue region with insufficient blood supply and irreversible damage. The 

Collateral flow

Penumbra

Infarct core

Blood flow

Blood clot
 

Figure 2.1: A schematic of ischemic stroke regions. The damage to the infarct core is irreversible, 

whereas the penumbra can be possibly saved by immediate treatment. The collateral flow provides 

microvascular perfusion to the ischemic regions, maintaining the salvageable tissues. 
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penumbra is a salvageable tissue region and has hypoperfused tissue that is at risk of dying, unless 

blood flow is restored. Penumbra tissue can recover from damage and therefore is often the target 

for interventional treatments. Because penumbra size determines how much tissue can be saved in 

treatments, research is conducted actively to determine the factors that influence penumbra size. 

Factors including reperfusion success, clinical variables (e.g., age), and vascular risk factors (e.g., 

hypertension) are being investigated [53].  

An additional important factor is time. “Time is brain” [54] is a term emphasizing the 

importance of time in treating acute ischemic stroke patients. For every minute a stroke is left 

untreated, an estimated 1.9 million neurons are destroyed, resulting in a larger infarct core and 

smaller penumbra. Early clinical trials on mechanical thrombectomy often failed because the door-

to-imaging time was poorly controlled [7], [55], [56]. However, later clinical trials demonstrated 

one of the important factors to successful stroke treatments is time [57]–[61]. As motivated by 

“time is brain”, computer tomography perfusion (CTP) imaging is becoming more popular over 

magnetic resonance perfusion (MRP) imaging in pre-treatment diagnosis. CTP requires an 

averagely shorter imaging time (about 78 minutes) than MRP and it generates similar amount of 

information to physicians for treatment decision [62]. However, CTP often requires a higher 

radiation dose to generate detailed anatomic and physiologic images for analysis, limiting its 

clinical usage [63]. Active research is being conducted in low-dose CTP and commercial tools are 

being developed for CTP imaging in clinical practice [64]. 

Another factor that affects the penumbra and infarct core size is the degree of collateral flow, 

which is defined as the alternate circulation around a blocked artery via nearby minor vessels [65]. 

Despite the occlusion in the blood vessel, ischemic tissue can still receive sufficient cerebral blood 

flow via a subsidiary network of vascular channels. With a good degree of collateral flow, a large 

volume of penumbra may survive before treatment. Good collateral circulation often correlates 

well with smaller infarct cores, better reperfusion, and good clinical outcomes [66], [67]. A recent 
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finding also suggests that collateral flow may be more important than time to determine the volume 

of infarct core within 60 minutes of stroke onset [68], [69]. 

2.2 Treatments 

The current US Food and Drug Administration (FDA) approved treatments for ischemic stroke 

are tissue plasminogen activator (tPA) and clot retrieval devices. tPA is often administered 

intravenously, with a cutoff time at three hours within stroke onset for all patients or an extended 

cutoff time at 4.5 hours within stroke onset for a group of eligible patients [70]. Patients may 

receive clot retrieval devices up to six hours within stroke onset [71]. In 2018, FDA approved the 

use of a particular clot retrieval device (i.e., Trevo) to treat certain stroke patients up to 24 hours 

after stroke onset [72]. The following sections describes the overview of each treatment. 

2.2.1 Intravenous and intra-arterial tPA 

Tissue plasminogen activator is a protein that breaks down blood clots to restore blood flow. 

tPA can be administrated intravenously (IV) or intra-arterially (IA), which is known as IV tPA and 

IA tPA respectively. IV tPA remains effective within 4.5 hours of stroke onset, yet it dramatically 

increases the chance of parenchymal hematoma (intracerebral bleeding) beyond this time point 

[73]. Therefore, the clinical guidelines suggest the use of IV tPA only up to 4.5 hours within stroke 

onset. IA tPA may improve patient outcomes between 4.5 hours and 6 hours of stroke onset, 

according to two clinical trials, the Prolyse in Acute Cerebral Thromboembolism II (PROACT II) 

[74] and the Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) [75]. 

However, there is still insufficient clinical data to conclude the optimal treatment time window for 

IA tPA and no corresponding clinical guidelines are established [76].  
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2.2.2 Clot retrieval devices 

All clot retrieval devices adopt a catheter-like design to physically remove clots. MERCI 

retriever was the first clot retrieval device released in 2004 [77], followed by Penumbra Systems 

(2009) [78], Trevo retriever (2012) [3], and Solitaire revascularization device (2012) [4]. In 2013, 

three clinical trials reported that the mechanical thrombectomy is no more effective than IV tPA 

[7], [55], [56]. Two years later, five clinical trials reported that clot retrieval devices are indeed 

highly beneficial as compared to using IV tPA alone with better imaging time and newer devices 

in patients with large vessel occlusion [57]–[61]. In 2016, two clot retrieval devices (Trevo and 

Solitaire) were approved by FDA. An example of Trevo device is shown on Figure 2.2 [79].  

2.2.3 Revascularization 

The goal of stroke treatments is to revascularize blocked blood vessels and save penumbral 

tissue. A roadmap was published in 2013 and suggested that revascularization is a combination of 

three different mechanisms: recanalization, reperfusion, and collateralization [80]. In the past, 

researchers often evaluated treatment effectiveness based on whether recanalization was achieved 

[81]. Yet recent work suggests that reperfusion is as important as recanalization [82]. 

Recanalization and reperfusion are strongly associated but not always equivalent in ischemic 

stroke [83]. It is therefore important to apply treatment that can reperfuse ischemic tissues in a 

short amount of time when collateral flow is poor [84].  

 

Figure 2.2: A Trevo revascularization device. The image is obtained from stryker.com [79]. 
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2.3 Stroke Imaging  

CT imaging and MR imaging are commonly used in clinical acute ischemic stroke diagnosis 

to identify infarct and penumbra. CT imaging provides excellent evidence on 

intracerebral/subarachnoid hemorrhage in a short amount of time while MR imaging provides a 

more precise measurement and details in ischemic and penumbral regions identification [85]. In 

this dissertation, MR imaging is the primary research interest. 

The following sections will describe several major types of pre-treatment and post-treatment 

MR images (Figure 2.3). They are: (1) diffusion-weighted imaging (DWI)/apparent diffusion 

coefficient (ADC) map, (2) T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging, 

and (3) perfusion-weighted imaging (PWI). 

2.3.1 Diffusion-weighted imaging and apparent diffusion coefficient map 

DWI measures the random Brownian motion of water molecules within a voxel of tissue and 

it is used to quickly locate the ischemic parenchymal injury within the first few minutes after stroke 

onset. When acute ischemic stroke occurs, the random motion of water molecules decreases in the 

ischemic region because of swelling and cytotoxic edema. The decrease manifests as an increase 

Pre-FLAIR Pre-DWI Pre-ADC Post-FLAIR
 

Figure 2.3: Imaging sequences for a patient with MCA (middle cerebral artery) stroke. Images 

include a pre-treatment FLAIR image (pre-FLAIR), pre-treatment DWI (pre-DWI), pre-treatment 

ADC map (pre-ADC), and a post-treatment FLAIR image (post-FLAIR).  
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in the signal intensity on diffusion weighted images (DWIs). To entangle diffusion and relaxation 

effects on image contrast, an ADC map is often generated from multiple diffusion-weighted 

imaging sequences acquired from different b-values (the degree of diffusion weighting applied) 

[86], [87]. DWIs and ADC maps are used together to identify the area of ischemic core; the infarct 

core appears bright (hyperintense) in DWI and appears dark (hypointense) on ADC maps [26]. 

Yet, a reversal of DWI-ADC ischemic core may occur under certain circumstances, including 

patients who are treated within 4.5 hours of stroke onset [88], immediate reperfusion after a tPA 

treatment [89], and patients who have a small infarct core [90].  

2.3.2 FLAIR 

FLAIR images are generated from MR imaging with long repetition time (TR) and time to 

echo (TE) [91]. They suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out 

hyperintense lesions. Typically, there are no signs of ischemic region on FLAIR images within six 

hours of stroke onset, and areas of hyperintensity slowly evolve thereafter. Therefore, pre-

treatment FLAIR images are often a good imaging source to identify past patient lesions, and to 

estimate the onset time of a new stroke by measuring the mismatch of hyperintensities in DWIs 

[92]. Post-treatment FLAIR images are, in contrast, often used to measure the final infarct volume, 

which can be assessed as early as the subacute stage (3-6 days after treatment) [93].  

2.3.3 Perfusion-weighted imaging  

PWI generates spatio-temporal imaging data (4-dimensional) that shows the flow of a 

gadolinium-based contrast bolus into and out of the brain over time. The perfusion-weighted images 

(PWIs) contain concentration time curves (CTCs) for each brain voxel that describe the flow of the 

contrast (i.e., signal intensity change) over time. Model-based perfusion parameters such as cerebral 

blood volume (CBV), cerebral blood flow (CBF), time-to-peak (TTP), time-to-maximum (Tmax), 

and mean transit time (MTT) can be derived from PWIs and used to estimate the volume of 
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salvageable brain tissue. To be able to compute these physiological parameters (CBF, CBV, TTP, 

Tmax, and MTT) from perfusion imaging, the CTCs at any voxel in the collected raw data must be 

processed. Because the injected contrast bolus is not a perfect impulse and varies across 

acquisitions, it is generally assumed that it follows the Indicator-Dilution Theory [94], i.e., the 

observed CTC of a voxel is the convolution of the arterial input function, AIF(t), with a residue 

function, R(t), scaled by CBF: 

 𝐶𝑇𝐶(𝑡) = CBF ∙  (𝐴𝐼𝐹(𝑡) ∗ 𝑅(𝑡)), (2.1) 

where R(t) represents the fraction of observed contrast remaining in the vasculature (within a 

voxel) at a certain time t, and AIF(t) describes the contrast input to the vasculature (within a voxel) 

at a certain time t [27]. The AIF can be defined locally or globally. The global AIF is defined from 

a large artery, such as middle cerebral artery (MCA), and it is used as the global input function for 

every voxel in a PWI. The local AIF is defined from the local small arteries and every voxel has 

its own unique local AIF. The global AIF is typically used in perfusion parameter estimation 

 

Figure 2.4: An illustration of the tissue concentration time curve (CTC), arterial input function 

(AIF), and residue function (R) corresponding to a voxel. The CTC and AIF are observable from 

the raw perfusion images, whereas R is obtained via deconvolution of CTC and AIF. The perfusion 

parameters are defined in the CTC(t) and R(t). CBV, CBF, Tmax, and MTT are normally defined 

in the R(t); the TTP is defined in the CTC(t).  
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because oftentimes local AIFs suffer from partial volume effect [27]. Figure 2.4 shows an 

illustration of a CTC and an AIF.  

2.3.3.1 Deconvolution 

The common standard technique to obtain R(t) is based on the deconvolution of CTC with AIF 

using singular value decomposition (SVD). The concentration time curve (CTC) from equation 

(2.1) can be first expressed in an integral form [95]: 

 𝐶𝑇𝐶(𝑡) = CBF∫ 𝐴𝐼𝐹(𝑡)𝑅(𝑡 − 𝜏)𝑑𝜏
𝑡

0
, (2.2) 

where both CTC(t) and AIF(t) can be observed from the raw perfusion weighted images (PWIs). 

To obtain R(t) by SVD, equation (2.2) is first discretized to: 

 𝑐𝑡𝑐(𝑡𝑗) =  ∆𝑡 ∙ CBF ∙∑𝐴𝐼𝐹(𝑡𝑖) ∙ 𝑅(𝑡𝑗 − 𝑡𝑖)

𝑗

𝑖=0

, (2.3) 

where ∆𝑡  is the sampling frequency. Equation (2.3) is then formulated as an inverse matrix 

problem: 

 

[

𝑐𝑡𝑐(𝑡0)

𝑐𝑡𝑐(𝑡1)
⋮

𝑐𝑡𝑐(𝑡𝑁−1)

] = CBF ∙ ∆𝑡 [

𝐴𝐼𝐹(𝑡0)

𝐴𝐼𝐹(𝑡1)
⋮

𝐴𝐼𝐹(𝑡𝑁−1)

0
𝐴𝐼𝐹(𝑡0)

⋮
𝐴𝐼𝐹(𝑡𝑁−2)

⋯
⋯
⋱
⋯

0
0
⋮

𝐴𝐼𝐹(𝑡0)

] 

× [

𝑅(𝑡0)

𝑅(𝑡1)
⋮

𝑅(𝑡𝑁−1)

], 

(2.4) 

 𝒄 = 𝑨 ∙ 𝒃, (2.5) 

where c represents the CTC(t), A represents the AIF(t), and b represents the R(t) (constants are not 

shown for simplification). Using SVD, we can decompose A:  
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 𝑨 = 𝑼 ∙ 𝑺 ∙ 𝑽𝑻, (2.6) 

 𝑨−𝟏 =  𝑽 ∙ 𝑾 ∙ 𝑼𝑻, (2.7) 

where S is a non-negative square diagonal matrix, and U and V are orthogonal matrices. W is equal 

to the inverse of S (i.e., 𝑺−𝟏 ). Then, b, which is also equivalent to R(t), can be obtained as 

following: 

 𝒃 =  𝑽 ∙ 𝑾 ∙ 𝑼𝑻 ∙ 𝒄 . (2.8) 

2.3.3.2 Perfusion parameter maps 

Perfusion parameters (CBF, CBV, TTP, Tmax, and MTT) are defined from CTC(t) and R(t). 

CBV describes the total volume of flowing blood in a given volume of a voxel and CBF describes 

the rate of blood delivery to the brain tissue within a volume of a voxel. CBV and CBF are used to 

derive MTT, which represents the average time it takes the contrast to travel through the tissue 

voxel. TTP is the time required for the CTC to reach its maximum, which approximates the time 

needed for the bolus to arrive at the voxel with delay caused by brain vessel narrowing or 

obstruction. Tmax is the time point where the contrast residue function reaches its maximum, which 

approximates the true time needed for the bolus to arrive at the voxel. Tmax>6s is often used as a 

cutoff time point to capture both the dead tissue core and the salvageable tissue that can possibly 

be saved by intervention aimed at restoring blood flow [96]. The mathematical expressions of these 

parameters are listed in the following: 

 CB  =  ∫ 𝑅(𝑡)𝑑𝑡 
∞

0

, (2.9) 

 CBF = m x(𝑅(𝑡)) , (2.10) 
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    =
CB 

CBF
 , (2.11) 

   P =   gm x𝑡 (𝐶𝑇𝐶(𝑡)), (2.12) 

  m x =   gm x𝑡  (𝑅(𝑡)), (2.13) 

2.3.3.3 PWI-DWI mismatch 

Perfusion parameter thresholds are defined to identify tissue regions that are dead, 

hypoperfused, or hyperperfused [97]–[99]. The most frequently used threshold is Tmax>6s, which 

captures hypoperfused regions that can possibly be saved by intervention aimed at restoring blood 

flow [96]. A PWI lesion (as defined by Tmax>6s) is often larger than a DWI lesion. The volume 

difference between lesions defines the PWI-DWI mismatch [16], which represents the volume of 

penumbra (salvageable tissue) that can be possibly saved by treatments.  

2.4 Classification and predictive modeling in stroke  

This section is divided into four parts to cover the background of classification and predictive 

modeling work in stroke outcome and imaging analysis: 2.4.1. Stroke Clinical Outcome Prediction 

describes the work on acute stroke patient mortality prediction; 2.4.2. Stroke Tissue Outcome 

Prediction describes the work on stroke tissue fate prediction after treatments are applied; 2.4.3. 

Perfusion Parameter Estimation describes the current techniques on generating perfusion 

parameter maps; 2.4.4 Time Since Stroke Classification describes the state-of-the-art imaging 

methods for classifying unknown acute stroke onset time.  

2.4.1 Stroke clinical outcome prediction 

Significant effort has been placed in creating models predictive of stroke and its outcomes 

since 1997. In early work, researchers were interested mostly in multivariate logistic regression 

techniques. Stineman et al. [100] created a logistic regression to predict patient functional recovery 
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status after rehabilitation and to provide a better understanding of discharge patient proportion. 

Counsell et al. [8] developed a six simple variable (SSV) multivariate logistic regression model to 

predict 30-day mortality using a dataset of 530 patients. The model was validated using two 

external independent cohorts of stroke patients with an area under the receiver operating curve 

(AUROC) of 0.840. Nam et al. [101] used univariate logistic regression analysis and found that 

percent improvement at 24 hours is an important factor for long-term outcome prediction.  

While modeling techniques were the primary interest, effort has also been placed in identifying 

predictive clinical variables for acute stroke patient outcome. Weimar et al. [102] and König et al. 

[103] developed a multivariate logistic regression model and found out both the age and pre-

treatment National Institutes of Health Stroke Scale (pre-NIHSS) are strong predictors for 

mortality. Later, Smith et al. [104], Yoo et al. [18], and Fonarow et al. [105] also showed that pre-

NIHSS score provides substantial incremental information for mortality prediction. 

Unlike most models that were built to predict mortality probability using logistic regression, 

Saposnik et al. [106] developed a coefficient-based scoring method, “iScore”, to calculate patient 

mortality risk score based on information routinely available in hospital, such as demographics, 

clinical presentation (diplopia, dysarthria, aphasia, etc.), and patient comorbidities. Additional 

scoring models are under development, including the DRAGON score [107], and the HIAT2 score 

[108]. Table 2.1 summarizes the existing prediction and scoring models for stroke patient outcome 

prediction.   

While significant work has been done in predicting ischemic stroke patient outcomes and 

identifying clinical predictors, there has been little work regarding the problem of between-class 

imbalance, which occurs frequently in binary prediction tasks when one class (the majority) is 

more common than the other class (the minority) [13]. Additionally, limited work has been done 

to investigate the effect of clinical variables and treatment variables in stroke patient outcome 

prediction. Therefore, one of the contributions in this dissertation is to address the imbalance 
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problem in acute ischemic stroke dataset and investigating the correlation of clinical variables in 

patient outcome prediction. The details of this work are described in Chapter 6.   

Table 2.1: Summary of existing models on stroke patient outcome prediction 

Author Outcome Model Variable in the best 

model 

Performance 

Stineman et 

al. (1997) 

[100] 

Functional 

independence at 

discharge 

Logistic 

regression 

Age, and 9 other 

variables 

N/A* 

Counsel et al. 

(2002) [8] 

30-day mortality Forward 

stepwise 

multiple logistic 

regression 

Age, and 5 other 

variables 

AUROC: 

0.840 

Weimar et al. 

(2004) [102] 

100-day mortality Binomial logistic 

regression 

Age, pre-NIHSS Accuracy: 

0.747 

König et al. 

(2008) [103] 

90-day mortality Logistic 

regression with 

intercepts 

adjustment 

Age, pre-NIHSS Accuracy: 

0.748 

 

Nam et al. 

(2009) [101] 

90-day mRS¥  after 

IV-tPA 

Logistic 

regression 

Smoking, and 3 other 

variables 

N/A 

Smith et al. 

(2010) [104] 

In-hospital 

mortality 

Logistic 

regression 

Age, and 13 other 

variables 

AUROC: 

0.850 

Yoo et al. 

(2010) [18] 

90-day mRS Logistic 

regression 

Pre-NIHSS†, acute 

DWI and MTT lesion 

volumes 

N/A 

Saposnik et al. 

(2011) [106] 

30- day mortality iScore Age, and 11 other 

variables. 

AUROC: 

0.850 

 

Fonarow et al. 

(2012) [105] 

30-day mortality Logistic 

regression 

Pre-NIHSS†, and 16 

other variables 

AUROC: 

0.820 

Strbian et al. 

(2012) [107] 

90-day mRS DRAGON score Age, and 4 other 

variables 

AUROC: 

0.800 

Sarraj et al. 

(2013) [108] 

Discharge mRS 

after IA-tPA 

HIAT2 score Age, and 3 other 

variables 

N/A 

*N/A = Not available 
¥mRS = modified Rankin Score; scale: 0 (no stroke symptoms) – 6 (dead) 
†Pre-NIHSS = pre-treatment National Institutes of Health Stroke Scale; scale: 0 (no stroke 

symptoms) – 42 (severe stroke) 

 

 

Table 2.2: Summary of existing models on stroke patient outcome prediction 

Author Outcome Model Variable in the best 

model 

Performance 

Stineman et 

al. (1997) 

[100] 

Functional 

independence at 

discharge 

Logistic 

regression 

Age, and 9 other 

variables 

N/A* 
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2.4.2 Stroke tissue outcome prediction 

Models have been developed to predict tissue outcome, and estimate the growth of infarcts in 

order to provide more information for clinicians to make treatment decisions. One of the earliest 

models is the MR tissue signature model developed by Welch et al. [41], which utilized the ADC 

and T2 images to identify reversible and irreversible volumes in ischemic brain regions. Another 

early model is the generalized linear model (GLM) developed by Wu et al. [36]. This model used 

patients’ DWIs and perfusion parameters (e.g., CBF) to predict tissue outcome at a voxel level. 

The result shows that using both PWIs and DWIs provided better performance in prediction 

compared to using DWIs alone. Later, Wu et al. [37] applied the same model to investigate the 

effectiveness of tPA on animal data. Nguyen et al. [38] further improved the basic GLM by 

introducing a correlation term that integrated spatial correlation information of voxels. 

In addition to linear classifiers, non-linear classifiers have been explored. Bagher-Ebadian et 

al. [39] developed a four-layer artificial neural network (ANN) to predict the final extent of the 

three month post-stroke T2-lesion in stroke patients using T1-weighted, T2-weighted, diffusion-

weighted, and proton density-weighted images. Huang et al. [40] developed an ANN using voxel-

wise neighboring information to predict stroke tissue outcome of rats. The model was trained to 

use a spatial infarction incidence map and nearest-neighborhood information (eight neighboring 

voxels for a 2D patch; 26 neighboring voxels for a 3D patch). Scalzo et al. [22] exploited spectral 

regression kernel discriminant analysis (SR-KDA) [109] to predict voxel infarction using voxel 

time-to-maximum (Tmax) and ADC values. SR-KDA is an effective algorithm to project high-

dimensional non-linear distributed data into a low-dimensional space, enabling efficient non-linear 

dimension reduction. The result shows that learning non-linear functions of the neighboring 

relationships of a patch is important for classification.   

Clustering-based methods have also been investigated. Carano et al. [110] proposed a 

multispectral image analysis of four MR parameters (ADC value, T2, M0, CBF) to predict ischemic 
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tissue fate on animal data. The analysis included the use of two unsupervised (K-means, fuzzy C-

means) and two supervised (multivariate Gaussian, K-nearest neighbor) clustering techniques. 

Rose et al. [111] developed a parametric Gaussian mixture model to predict infarcted tissue. To 

further improve the performance, Rose et al. [112] later developed a model based on expectation 

maximization and K-means clustering algorithms to account for the time-delay problem in 

perfusion parameters. Shen et al. [113] developed an iterative-self-organizing-data-analysis-

algorithm (ISODATA) to forecast rat tissue outcome longitudinally on a pixel-by-pixel basis. The 

result shows that the model performed the best with ADC and CBF maps. 

Other methods have included region-growing approaches [114] and instance-based learning 

[115]. While most of the existing models incorporated features from multiple imaging sequences, 

only two studies have investigated the use of voxel neighboring information to improve 

performance [22], [40]. Surprisingly, there has only been one model [37] that studied the effect of 

treatment (IV tPA) on tissue outcome prediction. In addition to that, all models have utilized hand-

crafted features extracted from perfusion parameter maps (e.g., CBV), which may be problematic 

because of the vascular delays caused by physiologic changes [26] and signal distortions caused 

by the deconvolution process [28]. This motivates part of this dissertation work in developing a 

novel deep learning approach to automatically learn predictive imaging features for voxel-wise 

tissue outcome prediction. The details of this work are described in Chapter 3.  

2.4.3 Perfusion parameter estimation 

Perfusion parameter maps are important sources of imaging features to predict stroke patient 

clinical (mortality) and imaging (tissue fate) outcomes. Singular value decomposition (SVD) is the 

most common deconvolution technique to calculate the perfusion parameter maps. While SVD is 

simple and quick, it has limitations on time delays and therefore variations of SVD have been 

proposed. Delayed-corrected SVD (dSVD) [116] was developed to perform deconvolution while 

doing delay correction for contrast delay. Another delay-insensitive method is the block-circulant 
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SVD (bSVD) [95], which employs a block-circulant decomposition matrix to remove the causality 

assumption built into standard SVD. Oscillation-index SVD (oSVD) [95] is a variant of bSVD, 

which used an oscillation index in an iterative process of repetitive bSVD deconvolution to identify 

the best residue function. Because the acquired concentration curves are generally very noisy, SVD 

techniques may produce residue functions that are not physiologically plausible and subject to 

distortions that can underestimate the perfusion parameters [28], which may negatively impact 

tissue outcome prediction [29]. Other less common techniques are being developed to improve 

perfusion parameter estimation, including a Bayesian approach [117], Gaussian process 

deconvolution [118], and Tikhonov regularization [119].  

While a number of techniques have been developed, limited work has been done using a 

deconvolution-free machine learning approach to approximate perfusion parameters. Perfusion 

parameter estimation is an important step in classification and predictive modeling in stroke 

because most models rely on perfusion parameters as input features. This motivates part of this 

dissertation work in developing an alternative solution to estimate perfusion parameters based on 

recognizing patterns from input imaging data using deep learning. The details of this work are 

described in Chapter 5. 

2.4.4 Time since stroke classification 

Time since stroke (TSS) symptom onset is a key factor in selecting tPA candidates, in which 

guidelines support its administration within a maximum of 4.5 hours from TSS. Yet up to 30% of 

acute stroke patients have unknown TSS [48]. Typically, the ischemic stroke tissue is nearly 

immediately visible in DWI at stroke onset whereas it takes 3-4 hours for the ischemic tissue to 

appear in FLAIR [30]–[33]. Studies therefore utilize this biological phenomenon to investigate the 

use of a simple imaging feature, a mismatch pattern between magnetic resonance (MR) diffusion 

weighted imaging (DWI) and fluid attenuated inversion recovery (FLAIR) imaging, to estimate 

TSS. The mismatch pattern is known as “DWI-FLAIR mismatch,” which is defined as the presence 
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of visible acute ischemic lesions on DWI with no traceable hyperintensity in the corresponding 

region on FLAIR imaging. Figure 2.5 shows an example of DWI-FLAIR mismatch and no DWI-

FLAIR mismatch. In the left example of Figure 2.5, the clinical TSS is one hour and there is clearly 

a mismatch between the DWI and FLAIR. In contrast, both DWI and FLAIR have hyperintensities 

in the right example of Figure 2.5, in which the clinical TSS is eight hours.  

The DWI-FLAIR mismatch method has been investigated in multiple studies to classify 

TSS<3hrs and TSS<4.5hrs. The work of using DWI-FLAIR mismatch was first introduced by 

Thomalla et al. [30], in which they used the mismatch pattern to identify stroke patients with less 

than 3-hour stroke onset. The method achieved a high specificity of 0.93 and a high positive 

predictive value (PPV) of 0.94, with a low sensitivity of 0.48 and a low negative predictive value 

(NPV) of 0.43. Aoki et al. [92] and Petkova et al. [120] followed the same method and applied it 

to their datasets. Both achieved a high sensitivity (0.83 and 0.90 respectively) and a high specificity 

(0.71 and 0.93 respectively), but Aoki et al. reported a moderate PPV of 0.64. Later, interest has 

been shifted to classifying TSS<4.5hrs because this may allow more acute stroke patients to be 

treated. Ebinger et al. [32] developed a mismatch model and it achieved a specificity of 0.79 and 

DWI DWIFLAIR FLAIR

DWI-FLAIR mismatch No DWI-FLAIR mismatch  

Figure 2.5: An example of DWI-FLAIR mismatch and no DWI-FLAIR mismatch. LEFT: presence 

of DWI-FLAIR mismatch (TSS = 1hr); RIGHT: absence of DWI-FLAIR mismatch (TSS = 8hrs). 

Hyperintensities are indicated by the red arrows. 
 

 
 

 

 

 

Figure 2.6: An example of DWI-FLAIR mismatch and no DWI-FLAIR mismatch. LEFT: presence 

of DWI-FLAIR mismatch (TSS = 1hr); RIGHT: absence of DWI-FLAIR mismatch (TSS = 8hrs). 

Hyperintensities are indicated by the red arrows. 
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a sensitivity of 0.46. Later, a large multicenter study was done by Thomalla et al. [31] to assess 

the ability of DWI-FLAIR mismatch. The mismatch method achieved a specificity of 0.78 and a 

PPV of 0.83, with a sensitivity of 0.62 and an NPV of 0.54. The study interobserver agreement of 

acute ischemic lesion visibility on FLAIR imaging was moderate (kappa = 0.569). Emeriau et al. 

[33] also investigated the use of mismatch pattern and the model achieved a high PPV of 0.88, but 

a low NPV of 0.19 with a moderate sensitivity of 0.55 and a moderate specificity of 0.60. The 

AUROC of using mismatch patterns in the identification of TSS was 0.58. Table 2.2 summarizes 

the existing studies on TSS classification. 

There are also large multicenter clinical trials to further investigate the use of magnetic 

resonance DWI-FLAIR mismatch in guiding stroke treatment decisions, including the WAKE-UP 

trial in the European Union [121], the THAWS in the Japan [122], and the MR WITNESS trial in 

the United States [123]. A recent study has also shown that lesion water uptake obtained from CT 

images may estimate TSS more accurately than MRI [124], yet CT research on TSS classification 

remains limited. While much work has been done in estimating TSS, the developed methods are 

mostly limited by using a simple mismatch feature. This motivates part of this dissertation work 

Table 2.2: Summary of studies using DWI-FLAIR mismatch on TSS classification 

Study Label Sensitivity Specificity Precision NPV AUROC 

Thomalla et al.(2009) [30] <3hrs 0.48 0.93 0.94 0.43 N/A 

Aoki et al. (2010) [92] <3hrs 0.83 0.71 0.64 0.87 N/A 

Petkova et al.(2010) [120] <3hrs 0.9 0.93 N/A  N/A   N/A 

Ebinger et al.(2010) [32] <4.5hrs 0.46 0.79 N/A  N/A  N/A  

Thomalla et al. (2011) [31] <4.5hrs 0.62 0.78 0.83 0.54 N/A  

Emeriau et al. (2013) [33] <4.5hrs 0.55 0.60 0.88 0.19 0.58 

*N/A = Not available 
 

 

Table 2.4: Summary of studies using DWI-FLAIR mismatch on TSS classification 

Study Label Sensitivity Specificity Precision NPV AUROC 

Thomalla et al.(2009) [30] <3hrs 0.48 0.93 0.94 0.43 N/A 

Aoki et al. (2010) [92] <3hrs 0.83 0.71 0.64 0.87 N/A 

Petkova et al.(2010) [120] <3hrs 0.9 0.93 N/A  N/A   N/A 

Ebinger et al.(2010) [32] <4.5hrs 0.46 0.79 N/A  N/A  N/A  

Thomalla et al. (2011) [31] <4.5hrs 0.62 0.78 0.83 0.54 N/A  

Emeriau et al. (2013) [33] <4.5hrs 0.55 0.60 0.88 0.19 0.58 

*N/A = Not available 
 

 

Table 2.5: Summary of studies using DWI-FLAIR mismatch on TSS classification 

Study Label Sensitivity Specificity Precision NPV AUROC 

Thomalla et al.(2009) [30] <3hrs 0.48 0.93 0.94 0.43 N/A 

Aoki et al. (2010) [92] <3hrs 0.83 0.71 0.64 0.87 N/A 

Petkova et al.(2010) [120] <3hrs 0.9 0.93 N/A  N/A   N/A 

Ebinger et al.(2010) [32] <4.5hrs 0.46 0.79 N/A  N/A  N/A  

Thomalla et al. (2011) [31] <4.5hrs 0.62 0.78 0.83 0.54 N/A  

Emeriau et al. (2013) [33] <4.5hrs 0.55 0.60 0.88 0.19 0.58 

*N/A = Not available 
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in developing a novel classification framework that is based on machine learning and deep learning 

techniques to classify TSS. The details of this work are described in Chapter 4. 

2.5 Deep Learning  

Conventional machine learning techniques are often limited in classification because they 

heavily rely on careful engineering and domain expertise to design feature extractors that can 

transform raw data (e.g., image) into a suitable feature representation (e.g., descriptive statistics of 

an image), which a classifier may use to classify patterns [52]. Deep learning methods are 

representation learning methods, which allow a machine to be fed with raw data and features are 

then automatically discovered for classification or prediction. Deep learning methods often consist 

of many layers of information-processing stages, and this hierarchical architecture is exploited for 

feature representation learning and pattern recognition [125]. A single building block of deep 

learning methods is a neuron, and a deep learning method often consists of many neurons in many 

layers, in which each neuron performs non-linear transformation to the input and generates an 

output for the next neuron. The simplest form of a deep learning model is a multi-layer neural 

network. Variants of neural network methods have been proposed in both supervised and 

unsupervised manners, including convolutional neural networks [126], stacked autoencoders [127], 

recurrent neural network [128], U-Nets [129], generative adversarial networks [130], and deep 

Boltzmann machines [131]. The first method receives the most attention in recent computer vision 

research [52] and is the primary focus in this dissertation. In the subsequent sections, the 

background of multi-layer neural networks is first introduced, followed by the background of 

convolutional neural networks and its association with multi-layer neural networks. The training 

details of neural networks are then described, with a literature review of deep learning applications 

in natural image and medical image analyses. 
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2.5.1 Multi-layer neural networks  

A single layer neural network is called perceptron, which maps its input vector to an output 

value via a linear or non-linear mathematical transformation. A multi-layer neural network (NN) 

consists of multiple hidden layers with many neurons. In an NN, a neuron is always connected to 

the next layer neurons via a weight vector with linear or non-linear transformation. The final output 

value of an NN is used for classification based on a decision function. One example of a decision 

function can be: 

 𝑓(𝑥) =  {
1 if sigmoid(𝑾 ∙ 𝑿 + 𝑏) > 𝟎 

0 oth  wis 
, (2.14) 

where sigmoid(∙) is a non-linear sigmoid transformation [132], W is the weight vector, X is the 

input vector, and b is the bias. A shallow NN is a model that contains only one or zero hidden 

layers; a deep NN is a model that contains multiple hidden layers with many neurons. While a 

deep NN is often needed for classifying highly non-linear data, training a deep NN can be 

inefficient because of a large number of trainable parameters. This limitation motivates the 

creation of convolutional neural networks (CNNs) [126], which have fewer trainable parameters 

while achieving superior performance in many challenging tasks.  

2.5.2 Convolutional neural networks  

Convolutional neural networks (CNNs) are invented to mimic human eye operations in 

observing an object and sending signals to the brain via receptive fields [133]. Therefore, CNNs 

have unique architectures that allow much easier training and better generalizability than NNs 

[52]. CNNs reduce learning computation requirements and overfitting by sharing weights within 

layers. They also possess a translation invariance characteristic that make them robust to 

translation artifacts in images. A deep CNN typically consists of four standard layer types: a 

convolutional layer, pooling layer, fully-connected layer, and output classification layer. Figure 
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2.6 shows an example of a CNN with two layers of each type and an output layer. A pooling layer 

often follows a convolutional layer; fully-connected layers are usually the last few layers before 

the output layer. A non-linear activation function is often added between layers to introduce non-

linearity to the network (not shown in Figure 2.6). Key concepts are as follows:  

• Weights. They are adjustable parameters (continuous real values) that are learned during 

model training. Every weight value represents the numerical influence of one neuron on another 

in a connection. In a typical deep learning model, there may be a hundreds of millions of adjustable 

weights [52], which requires many labeled data to learn.  

• Convolutional layer. Every local region of an input, also known as a local receptive field 

[134], is connected to neurons in a subsequent layer. A local receptive field is associated with a 

weight matrix, which is a feature filter to detect input patterns using convolution operations. 

However, it is impossible to have weight matrices for all local regions in a convolutional layer 

because this might result in many tunable weights. Therefore, a weight-sharing strategy is often 

applied, i.e., a fixed number of weight matrices are learned and shared among all the local regions. 

Through using these weight matrices, elementary features, such as oriented edges and endpoints, 

may be captured from an input. The outputs of a convolutional layer are therefore also called 

feature maps. Feature filter size, stride value, and zero-padding value are three important 

hyperparameters in a convolutional layer [135]. Feature filter size controls a receptive field size, 

Conv1 Pool1 Conv2 Pool2 FC 1&2 Output  

Figure 2.6: An example of a convolutional neural network. Conv: a convolutional layer; Pool: a 

pooling layer; FC: a fully-connected layer. The image is obtained from Caltech-101 dataset [242].  
 

 

 

 

Figure 2.9: An example of a convolutional neural network. Conv: a convolutional layer; Pool: a 

pooling layer; FC: a fully-connected layer.  
 

 

 

 

Figure 2.10: An example of a convolutional neural network. Conv: a convolutional layer; Pool: a 

pooling layer; FC: a fully-connected layer.  
 

 

 

 



29 

 

which defines the area of a local region for consideration. Stride and zero-padding values control 

how much spacing and area are needed for a convolution to be performed.  

• Pooling layer. Local characteristics of input values are summarized via pooling operations 

(mean-pooling or max-pooling). Pooling reduces input spatial size and limits the number of 

adjustable weights, and therefore controls overfitting. The pooling layer produces summary 

statistics for the next layer that are robust to local transformations. In mean-pooling, averages of 

local regions are calculated. In contrast to mean-pooling, max-pooling only captures maximum 

values of local regions and passes them to the next layer. Figure 2.7 shows an example of mean-

pooling and max-pooling on a 4 × 4 input.  

• Fully-connected Layer. Every fully-connected layer neuron connects to every next-layer 

neuron via a weight vector. Because every neuron is connected to the next layer, there are often 

thousands of trainable weights and therefore only two to three fully-connected layers are used in a 

typical CNN. Fully-connected layers are usually used before an output layer.  

• Output Classification Layer. Classification is performed in this layer. It usually comes 

with a softmax classifier [136], which is a generalized form of logistic regression. Softmax 

classifier is trained in a supervised manner and its cost function is defined as: 

 𝐽(𝑾, 𝑏; 𝑿, 𝑦) = −
1

𝑚
(∑∑1{𝑦(𝑖) = 𝑗}𝑙𝑜𝑔

𝑒𝑤𝑗
𝑇𝑥(𝑖)

∑ 𝑒𝑤𝑙
𝑇𝑥(𝑖)𝑘

𝑙=1

𝑘

𝑗=1

𝑚

𝑖=1

), (2.15) 
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Figure 2.7: An example of a mean-pooling and a max-pooling on a 4 × 4 input. 
 

 

 

 

Figure 2.12: An example of a mean-pooling and a max-pooling on a 4 × 4 input. 
 

 

 

 

Figure 2.13: An example of a mean-pooling and a max-pooling on a 4 × 4 input. 
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where m is the number of training data, k is the number of unique labels, W is the weight vector, b 

is the bias constant, X is the input vector, and y is the label. A L1- or L2- regularization term may 

be added to regularize the learning of the parameters and avoid overfitting [137].  

• Activation Function. A non-linear activation function is usually added between fully-

connected layers and after the convolutional/pooling layers. Widely accepted activation functions 

are sigmoid and hyperbolic tangent functions. The major difference between a sigmoid function 

and a hyperbolic tangent function is the upper and lower bounds: the former has a range of [0, 1], 

whereas the latter has a range of [-1, 1]. Rectified linear unit (ReLU) is another common activation 

function, which improves network sparsity learning and enables faster and more stable learning 

[132]. Figure 2.8 plots the activation functions and their mathematical expressions are as follows:  

 sigmoid function = sigmoid(x) =
1

1 +  xp(−x)
, (2.16) 

 hyp  bolic t ng nt function = t nh(x) =
 x −  −x

 x +  −x
, (2.17) 

 R LU =   ctifi  (x) = m x(0, x), (2.18) 

 

Figure 2.8: Three typical activation functions in deep learning. Sigmoid: sigmoid function; tanh 

= hyperbolic tangent function; ReLU = rectified linear unit 

 

 

Figure 2.15: Three typical activation functions in deep learning. Sigmoid: sigmoid function; tanh 

= hyperbolic tangent function; ReLU = rectified linear unit 
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• Additional Components. Dropout [135] is an operation added to a fully-connected layer, 

in which every neuron is randomly turned off based on a probability, p, during training. Dropout 

prevents complex co-adaptions among feature filters and helps preventing overfitting. Batch 

normalization [138] is another technique to prevent overfitting and speedup training, in which 

outputs of a layer are normalized (i.e., reduce covariance shift) before passing to the next layer.  

2.5.3 Neural networks versus convolutional neural networks  

The architecture of CNNs allows translation invariance and feature filter learning for pattern 

recognition. Additionally, CNNs typically have fewer weights than NNs, enabling faster training 

and avoiding overfitting. Figure 2.9 shows an example of an NN and a CNN to illustrate how 
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Figure 2.9: An example of an NN and a CNN. (a) NN; (b) CNN. The number of adjustable weights 

in the CNN (104,916) is approximately 8 times fewer than the NN (824,300). 
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efficient a CNN can be. The NN has two fully-connected layers and an output layer, whereas the 

CNN has a convolutional layer and pooling layer, followed by two fully-connected layers and an 

output layer. The convolutional layer has four feature filters, each one with a filter size of 27 × 27, 

stride of 1, and zero-padding of 0. Assuming there are no bias constants in both networks, the total 

number of weights in the NN is: 128 × 64 × 100 + 100 × 50 + 50 × 2 = 824,300. In contrast, 

the total number of weights in the CNN is: 27 × 27 × 4 + 51 × 19 × 100 + 100 × 50 +

50 × 2 = 104,916, which is approximately eight times fewer than the NN.  

2.5.4 Training a deep network  

Training a deep network refers to learning a set of weights that minimize a loss function while 

maximizing an evaluation metric (e.g., accuracy). Training a deep network can be supervised, 

where both input and output is required, or unsupervised, where only input is required, depending 

on the deep network architecture [139]. For example, an autoencoder is often trained in an 

unsupervised manner while a CNN is often trained in a supervised manner. In general, deep 

network training is performed by iteratively minimizing a loss function while adjusting the 

network weights. Several components are required in training: a loss function, gradient descent, 

and backpropagation. Key concepts include the following: 

• Loss function. This is a function that is optimized during training. It is important to define 

a suitable loss function for a training task because it determines how fast a network converges to 

an optimal point. An example of a simple loss function is the mean square loss between the input 

and the output, which is often used as a reconstruction loss in an autoencoder [127] : 

 𝐽(𝑾, 𝑏; 𝑿, 𝑦) =  
1

2
‖𝑦 − ℎ𝑾,𝑏 (𝑥)‖

2
, (2.19) 

where W is the weight vector, b is the bias constant, X is the input vector, y is the label, and 

ℎ𝑾,𝑏 (𝑥) is the network output. Another example of typical loss function is softmax loss for multi-

class classification (Equation 2.15).  
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• Gradient descent. This is an optimization algorithm that is commonly used in deep 

network training [140], [141]. General gradient descent requires a complete forward pass of all 

inputs in order to compute the overall loss and update the network weights. Variants of gradient 

descent are proposed: stochastic gradient descent [142] and mini-batch gradient descent.  A weight 

update is performed for each training example (instead of all training examples) in stochastic 

gradient descent, which eliminates redundant computations [142]. Yet, per-example update has 

high variance that causes the objective loss function to fluctuate heavily. Therefore, mini-batch 

gradient descent is often used instead, in which the loss of a mini batch of training data (e.g., n=20) 

is computed in every update. The weights are then updated by gradients (which are calculated from 

the loss), namely:   

 𝑾 = 𝑾− 𝛼
𝜕

𝜕𝑾
𝑱(𝑾, 𝑏), (2.20) 

where W is the weight vector, 𝑱(𝑾, 𝑏) is the loss, the derivative is the gradient, and 𝛼 is the 

learning rate. The learning rate is a user-defined hyperparameter that determines how much a 

weight is updated. Because it is a sensitive hyperparameter, it often requires careful manual tuning. 

Alternative gradient ascent algorithms have been proposed to adaptively adjust the learning rate 

during training and these algorithms show better performance than general gradient descent. These 

algorithms include AdaGrad [143] , Adadelta [144], and Adam [145].  

• Backpropagation. This refers to the movement of the loss (calculated from a loss function) 

from the output layer to the input layer, in which the weight gradients are calculated, and weights 

are updated. One important trick of backpropagation for gradient calculation is the “chain rule 

trick” [126], which enables gradient computations in all the hidden layers. 

• CPU and GPU training. Training a deep network requires high computation power due 

to many adjustable weights. To address this challenge, many tools exploit hardware features such 

as multi-core computer processing units (CPUs) (10-20) and many-core graphical processing units 

(GPUs) (1000+) to shorten the training and inference time [146]. For example, a high-end GPU 
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(e.g., Nvidia Tesla K40c) can achieve about 10x improvement in training speed than a high-end 

CPU (e.g., Intel Xeon E5-2697 v2).  

2.5.5 Deep learning in natural and medical images analysis 

Many state-of-the-art classification records have been achieved by deep learning models [52]. 

The success of these models is heavily based on their powerful capability to automatically learn to 

detect patterns from input images [126], [147]. These data-driven patterns are learned by 

hierarchical convolutional feature filters, which have been shown to be effective in detecting local 

characteristics that improve classification [148].  

One example is the ImageNet competition [50], in which participating teams are ranked based 

on the performance of their classifiers on classifying 1,000 different image categories. The winning 

teams from the recent years’ competition all built their classifiers based on deep learning 

techniques, and teams had built deep learning classifiers with new architectures and building 

blocks that can even achieve error rates lower than the human error. For example, Ioffe et al. [138] 

proposed the batch normalization method that can improve deep model performance by reducing 

covariance shifts of training data. He et al. [149] proposed a new deep model architecture that is 

designed to learn residual functions with reference to a layer input, which makes the learning easier 

to optimize. Hu et al. [150] developed a new building block, the squeeze-and-excitation block, that 

can adaptively recalibrate channel-wise feature responses (i.e., channel feature importance) to 

significantly improve the model performance in ImageNet competition. All the techniques are 

generalizable to different network architectures and have been adapted widely in many imaging 

applications. The applications of deep learning techniques are not limited to two-dimensional 

imaging data, but also include higher dimensional data, such as video classification [151]–[154]. 

Instead of using two-dimensional spatial feature filters, spatio-temporal filters are learned during 

training, and they are used to extract meaningful patterns from input videos for classification.  
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In the medical domain, researchers have recognized the tremendous ability of deep learning 

techniques in image and video analysis and have begun to apply these techniques in medical image 

challenges. In segmentation tasks, Davy et al. [155] developed a multi-scale CNN approach in a 

cascade architecture that exploits both local features as well as more global contextual features to 

perform brain tumor segmentation. The model achieved state-of-the-art performance while being 

over 30 times faster than a single-scale CNN. Ronneberger et al. [129] alternatively proposed a 

new CNN architecture, U-Net, for favors precise localization using symmetric expanding paths to 

improve cell segmentation. This architecture has been adapted in many applications, including 

high-resolution histological segmentation [156]. Recently, Li et al. [157] have developed a region-

based convolution neural network that utilizes R-CNN [158] to achieve an epithelial cell 

segmentation with an accuracy of 99.1%.  

In medical prediction and classification tasks, Suk et al. [159] used a Deep Boltzmann Machine 

to predict Alzheimer’s Disease and its prodromal stage by learning joint imaging features from 

MRI and positron emission tomography. Shin et al. [160] tested the application of unsupervised 

deep autoencoders on organ (e.g., liver, kidney, spleen) identification on MR images. Roth et al. 

[161] proposed a classification method that exploits random aggregation of deep CNN outputs 

from rotated image patches to predict bone lesions. Ertosun et al. [162] trained a deep CNN for 

automated classification of gliomas grading using digital pathology images. All of these proposed 

deep learning models have shown superior performance over the existing methods.  

Notably, several of these models are inspired by the clinical understanding of the diseases, 

such as the multi-scale CNN approach for local and global feature extraction in tumor 

segmentation [155]. Chapters 3 and 4 detail the deep network architecture designs on stroke tissue 

outcome prediction and stroke onset time classification, both of which are driven by stroke 

pathophysiology.  

 



36 

 

CHAPTER 3  

Stroke Tissue Outcome Prediction Using Deep Learning  

3.1 Overview 

Treatment guidelines have been established to limit the morbidity and mortality associated 

with acute stroke [6], [76], [163]. Researchers have actively pursued new methods and information 

to assist neuroradiologists in stroke treatment guidance. One area of research is to predict stroke 

infarct volume from magnetic resonance perfusion weighted imaging (PWI), which could provide 

helpful information to clinicians in deciding how aggressively to treat acute stroke patients [22], 

[36], [113]–[115], [37]–[41], [110]–[112]. While these techniques have proven to be useful, there 

are two major limitations. First, the proposed models were mostly built using hand-crafted features 

(e.g., perfusion parameters) derived from perfusion images, and performance may be limited due 

to feature simplicity. Alternatively, deep learning techniques have not been fully explored in tissue 

outcome prediction, yet they have drawn tremendous interest in other areas of research because of 

their ability to learn data-driven features for state-of-the-art performance [164]. Second, most of 

the existing models rely on estimated model-based perfusion parameters (e.g., cerebral blood flow 

(CBF)) to predict tissue infarction. Recently, concerns have been raised about the use of these 

parameters [24], [25], due to drawbacks discussed in several studies, including the sensitivity of 

perfusion parameters to vascular delays [26], and their robustness to distortions from 

deconvolution process [28].  

In this chapter, we first present a deep convolutional neural network (CNN) that predicts voxel-

wise stroke tissue outcome using source perfusion weights images (PWIs). This model consists of 

several novel designs to improve the prediction performance: 1) patch sampling to incorporate 
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neighboring voxel information, 2) the use of matched controls to improve feature learning, and 3) 

a new layer to learn paired unit filters for temporal feature learning. The proposed model is 

compared to several existing tissue outcome models and baseline deep CNNs. Second, I describe 

analyses to predict final infarct volume using only clinical variables and investigate whether 

treatment variables can improve imaging outcome prediction. In the remainder of this chapter, 

Section 3.2 details the data and preprocessing steps used in this study. Section 3.3 describes the 

proposed CNN architecture. Section 3.4 describes the experimental setup for voxel-wise infarct 

prediction using imaging data and the validation results. Section 3.5 details the experimental setup 

and the results on using only clinical and treatment variables to predict final infarct volume. 

Section 3.6 discusses several interesting observations and the limitations. The content of this 

chapter have partly been published in [165]. 

3.2 Data Cohort and Data Processing 

A total of 444 patients were identified from UCLA Research Electronic Data Capture 

(REDCap) database [166]. These patient MR images were retrieved and examined from the UCLA 

picture archiving and communication system (PACS) between December 2005 and December 

2015 with the approval from institutional review board, IRB#11-000728. These patients have had 

been treated with none, one, or more of the following treatments: intra-arterial tissue plasminogen 

activation (IA tPA), intravenous tissue plasminogen activator (IV tPA), or clot retrieval devices. 

Two sets of data were collected: the first set was for the study in which source PWIs were used for 

the final infarct prediction; the second set was for the study in which clinical and treatment 

variables were used for the final infarct volume prediction. 

3.2.1 Voxel-wise tissue outcome prediction using source PWI 

The patient inclusion criteria were all patients with: 1) acute ischemic stroke due to middle 

cerebral artery (MCA) occlusion; 2) MR imaging performed before treatment and 3-7 days after 
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treatments (e.g., clot retrieval, tPA); and 3) absence of hemorrhage. A total of 48 patients satisfied 

these inclusion criteria and were used in the study. The patient characteristics are summarized in 

Table 3.1. 

Final infarct volumes were semi-automatically determined and measured on the 3-7 days post-

treatment (post-FLAIR) images [93] by an expert neuroradiologist (Dr. S. El-Saden) using Medical 

Table 3.1: Patient cohort characteristics for final infarct prediction using only source PWI. 

 Patients (n = 48) 

Demographics  

Age 65.4 ± 17.3 

Gender 20 males 

Clinical Presentation  

Time since stroke 206 ± 122 mins 

NIHSS† 15.1 ± 7.7 

Treatments (received)*  

IV tPA 24 

IA tPA 6 

Clot retrieval devices  29 

Treatment Evaluation  

TICI score¥ 0 (4), 1 (0), 2a (13), 2b (8), 3 (1), N/A (22) 

AOL scoreΩ 0 (3), 1(0), 2(4), 3(16), N/A (25) 

Outcome  

Discharge mRS‡ 3.44  1.47 

Discharge lesion size 65.9  81.7 cm3 

†NIHSS = NIH Stroke Scale International; scale: 0 (no stroke symptoms) - 42 (severe stroke) 

*A patient could receive more than one treatment in a visit.  
¥TICI = Thrombolysis in Cerebral Infarction; scale: 0 (no reperfusion), 1, 2a, 2b, 3 (full 

reperfusion), N/A (missing). Available only for patients with clot-retrieval devices. 
ΩAOL = Arterial Occlusive Lesion; scale: 0 (complete occlusion) – 3 (complete recanalization), 

N/A (missing). Available only for patients with clot-retrieval devices. 
‡discharge mRS = discharge modified Rankin Scale; scale: 0 (no stroke symptoms) – 6 (dead) 
 

 

Table 3.2: Patient cohort characteristics for final infarct prediction using only source PWI 

 Patients (n = 48) 

Demographics  

Age 65.4 ± 17.3 

Gender 20 males 

Clinical Presentation  

Time since stroke 206 ± 122 mins 

NIHSS† 15.1 ± 7.7 

Treatments (received)*  
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Image Processing, Analysis, and Visualization (MIPAV) software [167]. Pre-treatment FLAIR 

images (pre-FLAIR) were used to identify pre-existent lesions that were not related to the current 

stroke; these lesions were not labeled as part of the final infarct volumes.  

All patients underwent MR imaging using a 1.5 or 3 Tesla echo planar MR scanner (Siemens 

Medical Systems); scanning was performed with 12-channel head coils. The PWIs were acquired 

using a repetition time (TR) range of 1,490 to 2,890 ms and an echo time (TE) range of 23 to 50 

ms. The pixel dimension of the PWIs varied from 1.00 × 1.00 × 5.00 to 2.00 × 2.00 × 7.00 mm. 

The pre-FLAIR images were acquired using a TR range of 8,000 to 10,000 ms and a TE range of 

82 to 123 ms. The pixel dimension of the pre-FLAIR images varied from 0.45 × 0.45 × 3.00 to 

0.94 × 0.94 × 7.00 mm. The post-FLAIR images were acquired using a TR range of 8,000 to 

10,000 ms and a TE range of 82 to 134 ms. The pixel dimension of the post-FLAIR images varied 

from 0.43 × 0.43 × 3.00 to 0.94 × 0.94 × 7.00 mm. The perfusion parameter maps of time-to-

maximum (Tmax), cerebral blood flow (CBF), time-to-peak (TTP), cerebral blood volume (CBV), 

and mean transit time (MTT) were calculated using block-circulant singular value decomposition 

(bSVD) as provided by the sparse perfusion deconvolution toolbox [168]. The z-dimension is 

ignored in patch data generation due to slice thickness. Therefore, the notation of the size of a 

“voxel” is simplified to 1 x 1 only (x-, and y- axes).  

Table 3.2: A list of clinical and treatment variables for final infarct prediction. 

Clinical Variables Treatment Variables 

Gender, hypertension, diabetes, hyperlipidemia, 

atrial Fib, myocardial Infarction, congestive heart 

failure, NIHSS, age, time since stroke 

IV tPA, clot retrieval device, IV tPA & 

clot retrieval device 

 

 

Table 3.5: A list of clinical and treatment variables for final infarct prediction. 

Clinical Variables Treatment Variables 

Gender, hypertension, diabetes, hyperlipidemia, 

atrial Fib, myocardial Infarction, congestive heart 

failure, NIHSS, age, time since stroke 

IV tPA, clot retrieval device, IV tPA & 

clot retrieval device 

 

 

Table 3.6: A list of clinical and treatment variables for final infarct prediction. 

Clinical Variables Treatment Variables 

Gender, hypertension, diabetes, hyperlipidemia, 

atrial Fib, myocardial Infarction, congestive heart 

failure, NIHSS, age, time since stroke 

IV tPA, clot retrieval device, IV tPA & 

clot retrieval device 

 

 

Table 3.7: A list of clinical and treatment variables for final infarct prediction. 

Clinical Variables Treatment Variables 

Gender, hypertension, diabetes, hyperlipidemia, 

atrial Fib, myocardial Infarction, congestive heart 

failure, NIHSS, age, time since stroke 

IV tPA, clot retrieval device, IV tPA & 

clot retrieval device 
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3.2.2 Final infarct volume prediction using clinical and treatment variables 

The patient inclusion criteria were all patients with: 1) acute ischemic stroke due to MCA 

occlusion; 2) FLAIR imaging performed 3-7 days after treatment; 3) absence of hemorrhage; and 

4) all clinical and treatment variables. A total of 82 patients satisfied these inclusion criteria and 

were used in the study. The clinical and treatment variables are summarized in Table 3.2. Similarly, 

the ground truth final infarct volumes were determined and measured on the 3-7 days post-

treatment (post-FLAIR) images by an expert neuroradiologist (Dr. S. El-Saden). 

3.2.3 Image preprocessing 

Image preprocessing steps were performed on MR images before they were used. First, each 

voxel in pre-PWIs and post-FLAIR should align to the same anatomical location in pre-FLAIR. 

Therefore, intra-patient registration of axial pre-PWIs, pre-/post-FLAIR images, and post-FLAIR 

images were performed with a six-degree of freedom rigid transformation using FLIRT [169]. 

Then, Gaussian filters with a size of 2.35 mm full width at half maximum (FWHM) were applied 

to remove spatial noise for all pre-PWIs [170], followed by interpolation to ensure all pre-PWIs 

had the same unit increment in the time dimension. Multi-atlas skull-stripping algorithm [19] was 

used to remove the skulls and brain ventricle voxels were excluded in training. Each source signal 

of pre-PWIs, S(t), was then converted to a tissue concentration time curve, CTC(t), based on the 

baseline signal S(0), TE, and β [171]: 

 𝐶𝑇𝐶(𝑡) =  −𝛽 𝑙𝑜𝑔 (
𝑆(𝑡)

𝑆(0)
) /𝑇𝐸, (3.1) 

where S(0) is the average of the first five values of the signal curve, TE is the echo time of the MR 

image, and β is a scaling factor provided by Mouridsen et al. [171], with a value of 2000. All CTCs 

were standardized to zero-mean and unit-variance globally on a voxel-by-voxel basis [172]. 
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3.3 Methods for Voxel-wise Tissue Outcome Prediction 

This section details the methods for voxel-wise tissue outcome prediction. The task was to 

predict the final outcome of every brain voxel (i.e., infarcted or non-infarcted) given its 

concentration time curve (CTC) in PWIs. The ground truth binary mask was derived from the post-

FLAIR images, where the positive class was infarcted and the negative class was non-infarcted. 

The proposed deep CNNs learned features directly from the CTCs to predict voxel-wise outcomes, 

which were different to previous approaches that often rely on perfusion parameters [22], [36], 

[113]–[115], [37]–[41], [110]–[112]. The proposed CNNs did not depend on the AIFs, which 

describes the overall contrast input to the vasculature within a voxel. 

3.3.1 Patching sampling 

One straightforward approach to generate training data from a perfusion signal associated with 

a given voxel is to only use a voxel’s concentration time curve (Figure 3.1a). For example, a single 

training sample has a dimension of 1 x 1 x T, in which T is the total time length of a pre-PWI. 
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Figure 3.1: Training data generation. (a) A training voxel with a dimension of 1 x 1 x T, containing 

the concentration change along time t (concentration time curve). (b) A training patch with a 

dimension of d x d x T (T = 64). The center of the patch (red) is the voxel of interest. A patch is 

associated with the outcome value (0 or 1) of the voxel of interest. 
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However, this approach is sensitive to noise (e.g., small motion artifacts can cause apparent 

concentration changes in a voxel) and it incorrectly assumes voxels are independent. Recent work 

[22] revealed that incorporating neighboring voxel information improved classification 

performance. Therefore, training data was sampled as a three-dimensional (3D) “patch” sequence 

instead of a single sequence; each training example had a size of d x d x T, where d is the 

width/height of the patch and the center of the patch is the voxel of interest (Figure3.1b). Deep 

CNNs then learn filters to extract spatio-temporal features from the patch to predict the outcome 

of the central voxel. The optimal value of d (d=25, as described in the next section) is determined 

in a nested 10-fold cross-validation.  

3.3.2 Deep CNN architecture for voxel-wise tissue outcome prediction 

3.3.2.1 Baseline deep CNNs 

Typical deep CNNs consist of multiple convolutional, pooling, non-linear, fully-connected 

layers, and a softmax classifier. The convolutional layers produce feature maps (usually > 10) from 

the input through automatically learned feature filters (weight matrices). The pooling layers pool 

values in a local region together using pooling operators to make the network more translation 

invariant. The non-linear rectified linear layer [173] (ReLU) is often added in between the 

convolutional and pool layers to enable the network to learn non-linear features. After multiple 

stacking of convolutional-ReLU-pooling layers, several fully-connected layers are added to 

generate summarized features, which are the inputs to the softmax classifier for classification. 

Given a deep CNN with L layers and N data samples (X, y), the parameters (𝜽) of a softmax 

classifier in binary form (i.e., logistic classifier) are obtained by minimizing the cost function: 

 J(𝜽) =  −
1

𝑁
∑ [𝑦𝑛 log ℎ𝜽(𝑿𝑛

𝐿) + (1 − 𝑦𝑛) log(1 −  ℎ𝜽(𝑿𝑛
𝐿))]𝑁

𝑛=1 +  𝛾𝑓(𝜽), (3.2) 

 ℎ𝜽(𝑿𝑛
𝐿) =

1

1+exp(−𝜽𝑿𝑛
𝐿 )

, (3.3) 
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where 𝛾 is a parameter for controlling the 𝐿2 weight decay term (𝑓(𝜽)), ℎ𝜽(𝑿𝑛
𝐿) is the sigmoid 

function, and 𝑿𝑛
𝐿  is the output of the fully-connected layer before the softmax classifier. The 

weights in a deep CNN layer (𝑾(𝑙)) are updated via gradient descent and backpropagation [126].  
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Figure 3.2: An eight-layer 2D deep CNN and an eight-layer 3D deep CNN for tissue outcome 

prediction. Input patch regions (width x height x time) are convolved in the convolutional layers, 

where different number of feature maps are learned (32 & 64). After two series of convolutional-

ReLU-pooling layers, overall representations are learned in the two fully-connected layers, which 

form the input to a softmax classifier for binary classification (infarct or not-infarct). Input layer: 

L1; 2D/3D convolutional layer with ReLU: L2, L4; max-pooling layer: L3, L5; fully-connected 

layer: L6, L7; output softmax layer: L8. 
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There are two basic approaches to train deep CNNs with the 3D training data for voxel-wise 

tissue outcome prediction (Figure 3.2). In the first approach, the temporal dimension of the training 

data is treated as if it were a color channel. This therefore allows the use of a standard 2D deep 

CNN architectures that are typically applied to images [135]. The filter learning of a convolutional 

layer in a 2D deep CNN is two-dimensional. In the second approach, a 3D deep CNN architecture 

[152] can be used, which is composed of 3D filters instead of 2D filters in convolutional layers. 

Spatio-temporal features can be extracted progressively along the network and they are more 

descriptive for small changes in both the spatial and temporal dimensions.  

3.3.3 Baseline CNN limitations 

The motivation for using deep 2D and 3D CNNs is their strong ability to learn data-driven 

filters to obtain complex features that are predictive of infarction. However, when we trained these 

standard architectures using the perfusion image training patches, we implicitly assumed that every 

training patch was sampled from a distribution generated by the same global AIF, which describes 

the unique pattern of flow of the contrast agent traveling within the cerebrovascular, and which 

also reflects the effects of both of the administration method as well as the cardiac function and 

vasculature between the intravenous administration site and the brain [27]. This assumption may 

not hold across patients due to a variety of factors, such as a patient’s unique cerebrovascular 

architecture. We can also define a lot of local AIFs [27], in which each is based on the closest 

artery to the voxel of interest. Yet this approach is difficult to use because the PWIs are low-

resolution and it is challenging to find suitable arterial voxels throughout the brain.   

Figure 3.3 illustrates an example of the tissue concentration time curves (CTCs) of a non-

infarcted voxel and infarcted voxel in two different patients with their corresponding AIFs. A non-

infarcted voxel always has a CTC with an earlier and higher peak (solid line) relative to the CTC 

of the infarcted voxel (dotted line). However, when we compare curves across patients, the CTC 

of the non-infarcted voxel of patient #2 is delayed and lower than the CTC of the non-infarcted 
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voxel of patient #1. These differences are due to their unique AIFs, which are not easy to 

incorporate into the training, and this makes the learning of representative features difficult. The 

learned feature filters from these 2D and 3D deep CNN architectures are therefore likely to be 

limited to only detect features within a patch signal (e.g., peak maximum value) and do not account 

for the difference in patient AIFs.  

3.3.4 The proposed CNN architecture 

To overcome abovementioned limitations, the network must be capable of learning features 

that are independent of confounding patient-specific variables, such as AIFs, and that are 

predictive of tissue outcome. Therefore, a novel deep CNN model was proposed to improve feature 

learning. The model included a new form of input patches, in which a patch of interest is paired 

with its contralateral patch (as a matched control  [174]). Additionally, a new architecture for the 

convolutional layer was proposed to enable explicit learning of unit temporal filters (i.e., a set of 

filters that have a size of 1 x 1 x t) for the new form of input patches.  

Patient #1 Patient #2 AIFs  

Figure 3.3: An illustration of CTCs of a non-infarcted voxel and infarcted voxel in two different 

patients (#1 and #2). The left plot shows the corresponding AIFs of patients #1 and #2. Patient #1 

has an AIF with earlier and higher peak than patient #2. 

 

 

 

Figure 3.5: An illustration of CTCs of a non-infarcted voxel and infarcted voxel in two different 

patients (#1 and #2). The left plot shows the corresponding AIFs of patients #1 and #2. Patient #1 

has an AIF with earlier and higher peak than patient #2. 
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3.3.4.1 Matched controls for input patches 

The features learned on an input patch of interest are implicitly affected by the AIF. In contrast, 

features that are derived from the comparisons between the input patch of interest and a matched 

control might be independent of the confounding variables [174]. We exploited the natural 

symmetry of the brain to create a matched control for each patch, which is the patch contralateral 

to the patch of interest (“contralateral patch”). Each original training patch was paired with its 

contralateral patch, and it was then used to train the CNNs.  

3.3.4.2 A proposed architecture for learning paired unit temporal filters 

To learn feature filters that extract relationships between a pair of input patches (i.e., the patch 

of interest and its contralateral patch), a new convolutional layer with paired convolutions was 

proposed. In this layer, pairs of 3D convolutional filters are learned simultaneously. Each “filter” 

in the new convolutional layer consists of two 3D filters (𝒘1, 𝒘2), each of which convolved local 

regions on the patch of interest and the contralateral patch respectively. An output location (𝑂i,j ) 

on a feature map produced from the new convolution layer is defined to be the sum of the 

convolved values of the same local regions on the patch of interest (𝒊𝒑𝒐𝒊) and the contralateral 

patch (𝒊𝒄𝒑):  

 𝑂i,j = 𝒊𝒑𝒐𝒊⊗𝒘𝒑𝒐𝒊 + 𝒊𝒄𝒑⊗ 𝒘𝒄𝒑, (3.4) 

The advantage of this formulation is that all pairs of filters (𝒘𝒑𝒐𝒊 , 𝒘𝒄𝒑 ) are learned 

simultaneously, without modification to our loss backpropagation and weight updating 

methodology. 

Figure 3.4 shows the proposed CNN architecture. It is designed to first favor the learning of 

temporal features between patches, followed by learning the spatial features. The network is made 

to first explicitly learn n paired unit voxel-wise temporal filters in the new convolutional layer 

(L1.5). More specifically, each filter in a pair had a size of 1 x 1 x t (where t is the time dimension); 
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these filters capture the local voxel-wise temporal characteristics. Then, normal 2D convolution 

and pooling are performed to extract spatial features (similar to a 2D deep CNN), which are fed to 

the fully-connected layers with a softmax classifier to predict voxel-wise tissue outcome. The new 

proposed deep CNN is denoted as “Unit CNN-contralateral”.  

3.4 Evaluations and Results for Voxel-wise Tissue Outcome Prediction 

3.4.1 CNN configurations and implementations details 

The architecture details of the Unit CNN-contralateral, baseline 2D deep CNN and baseline 

3D deep CNN are described in Figure 3.5. In summary, all three deep CNNs consisted of two 

sequences of convolutional-nonlinear-pooling layers, followed by two fully-connected layers. The 
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Figure 3.4: The proposed eight-layer deep CNN (Unit CNN-contralateral) with the new 

architecture of the convolutional layer and unit temporal filter learning (orange) for tissue outcome 

prediction (only the interconnections within first layer are shown). An input consists of a pair of 

25 x 25 voxel patches (the patch of interest, red, and its contralateral patch, blue). Pairs of unit 

temporal filters (L1) are learned simultaneously, which feed into the first convolutional layer 

(L1.5) and the remaining layers in the network (same as 2D CNN). 

 

 

 

 

Figure 3.8: The proposed eight-layer deep CNN (Unit CNN-contralateral) with the new 

architecture of the convolutional layer and unit temporal filter learning (orange) for tissue outcome 

prediction (only the interconnections within first layer are shown). An input consists of a pair of 

25 x 25 voxel patches (the patch of interest, red, and its contralateral patch, blue). Pairs of unit 
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two fully-connected layers were incorporated with dropout [175] and batch normalization [138] to 

reduce overfitting of the data and address the issue of internal covariate shift. There were 128 

features in the last fully-connected layer, which were the inputs to a softmax classifier for voxel 

outcome prediction. The Unit CNN-contralateral had an additional first layer (the new 

convolutional layer) which learns paired unit temporal filters. This layer (orange boxes) was 

inserted into the 2D deep CNN architecture. For these deep CNNs, the number of filter maps, and 

the parameters (e.g., size and stride) of the filters and the max-pooling were based on published 

architectures [135], [152]. 

The deep CNNs were trained with batch gradient descent (batch size: 50) and backpropagation. 

A momentum of 0.9 and a learning rate of 0.05 were used. A heuristic was repeated three times to 

improve the learning of weights [135], where the learning rate was divided by 10 when the 

validation error rate stopped improving with the current learning rate. An early-stopping strategy 

was also applied to improve the learning of deep CNNs weights and prevent overfitting. In this 
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Figure 3.5: The deep CNNs for predicting voxel-wise tissue outcome with the hyperparameters 

setup. Top: 2D deep CNN. Middle: 3D deep CNN. Bottom: the proposed deep CNN (denoted as 

“Unit CNN-contralateral”). These deep CNNs learn feature filters to generate 128 complex 

hierarchical features in the last fully-connected layer, which are then used by the softmax classifier 

to predict outcome.  Abbreviations: conv (convolutional layer), max-pool (max-pooling layer), full 

(fully-connected layer), batch norm (batch normalization), and ReLU (rectifier linear units). 
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strategy, the training was terminated if the performance failed to improve in five consecutive 

epochs (maximum number of training epochs: 40). The CNNs were implemented in Torch7 [176], 

and the training was done on two NVIDIA Titan X GPUs and an NVIDIA Tesla K40 GPU. 

3.4.2 Baseline tissue outcome model comparison 

In addition to the baseline 2D and 3D deep CNN models, we compared the proposed deep 

CNN with published state-of-the-art tissue fate models (GLM [36], SR-KDA [22]) and a SVM 

designed for large-scale classification [177]. Briefly, SR-KDA is a patch-based model for which 

Tmax patches [22] were generated for model training. GLM is a single-voxel-based model in 

which several image parameters (ADC, pre-flair, CBF, CBV, and MTT) are the model inputs. 

SVMs were trained using the same features as the GLM. 

To investigate the importance of using contralateral patches, the proposed Unit CNN 

architecture was trained with two additional types of training data: 1) the patch of interest with a 

patch randomly selected from the brain (Unit CNN-random), and 2) the patch of interest with a 

copy of itself (Unit CNN-duplicate). Additionally, the tissue perfusion status may be different in 

gray matter and white matter. This may affect the Unit CNN model performance when trained 

with random patches sampled from both types of tissue. To evaluate this, two additional Unit 

CNNs were trained using: 1) random patches from only the white matter (Unit CNN-random-

white), and 2) random patches from only the gray matter (Unit CNN-random-gray). 

The performance of the deep CNNs were compared using 10-fold patient-based cross-

validation, with a nested validation in each cross-validation fold to identify the optimal cutoff point 

that optimizes the Youden Index [178] for receiver operating characteristic (ROC) curve. A total 

of 1,000 patches were randomly selected without replacement from the set of infarcted voxels, and 

the set of non-infarcted voxels respectively, generating a randomized, stratified, and balanced 

training dataset with a total of 96,000 patches from 48 patients to avoid biased training [179]. 
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3.4.3 Evaluation metrics 

Area under the ROC curve (AUROC) was used to evaluate model performance, which is the 

probability that a model ranks a random positive example highly than a random negative example 

[180]. The accuracy and overlap coefficient were also calculated [181]. Ten-fold cross-validation 

was used to the compute all the evaluation metrics for the whole brain data set to which the held-

out validation set belonged. To determine if the performance of the models significantly differed, 

we used Hanley and McNeil significant test [182] to compare the model AUROCs, and used two-

tailed Wilcoxon signed-rank test  [183] to compare the overlap coefficient and the accuracy of the 

models.  

3.4.4 Results 

3.4.4.1 Optimal input patch size 

Different values of patch size (d) were experimented to identify the optimal number of 

neighboring information to be incorporated. Figure 3.6 shows the AUROCs with respect to 

 

Figure 3.6: The AUROCs of the deep 2D CNN with different training patch sizes in the nested 10-

fold cross-validation. The deep 2D CNN achieved the best AUROC (0.783) at patch size = 25. 

Therefore, a training patch size of 25 x 25 x 64 was used for all subsequent deep CNN models. 

 

 

 

 

Figure 3.11: The AUCs of the deep 2D CNN with different training patch sizes in the nested 10-

fold cross-validation. The deep 2D CNN achieved the best AUC (0.783) at patch size = 25. 

Therefore, a training patch size of 25 x 25 x 64 was used for all subsequent deep CNN models. 
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different value of d. The optimal value of d is 25 in the baseline 2D CNN architecture. Therefore, 

a training patch size of 25 x 25 x 64 was used for all the deep CNN model training and testing.  

3.4.4.2 Baseline models versus Unit CNN-contralateral 

Figure 3.7 shows the ROCs of the deep CNNs and the baseline tissue outcome models (GLM, 

SR-KDA, standard SVM) on predicting tissue outcome, and Table 3.3 shows the average accuracy, 

overlap coefficient, and AUROC of each classifier calculated from the 10-fold patient-based cross-

validation.  

Among all the baseline tissue outcome models, SR-KDA achieved the best AUROC, and 

overlap coefficient. Compared to the best baseline results (SR-KDA), deep CNNs achieve better 

performance. The 3D deep CNN is slightly better than 2D deep CNN, yet these two deep CNNs 

did not offer significant performance improvement of AUROC compared to SR-KDA. Among all 

deep CNNs, the Unit CNN-contralateral achieved the best performance in all evaluation metrics. 

 

Figure 3.7: Ten-fold cross-validation AUROC curves for Unit CNN-contralateral, Unit CNN-

random, Unit CNN-duplicate, and baseline models. 
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It achieved the highest AUROC and overlap coefficient of 0.871 and 0.811 respectively. The 

significance test results show that the proposed deep CNN achieved significantly better AUROC 

than all other deep CNN classifiers. Overall, the AUROC and overlap coefficient indicates that the 

proposed deep CNN performed significantly better than SR-KDA, 0.871 vs 0.788 (p-value = 

0.003) and 0.811 vs 0.679 (p-value = 0.0001). These results indicate that the proposed deep CNN 

is the best model for predicting tissue outcome. 

3.4.4.3 Unit CNNs with different types of patches 

To investigate the significance of using the contralateral patch as part of the input, the proposed 

Unit CNN architecture was trained with four additional types of patches. The results are shown in 

Table 3.4. The performance of the deep CNNs significantly dropped when trained with random or 

duplicate paired patches instead of contralateral patches. The Unit CNN trained with duplicate 

patches performed worse than other deep CNNs; the Unit CNN trained with random patches 

achieved only slightly higher performance than a 3D deep CNN (Table 3.3). Unit CNN-random-

white, Unit CNN-random-gray, and Unit CNN-random all had similar accuracies, overlap scores, 

and AUROCs. The results suggest the deep CNN model can capture hidden features from tissue 

outcome prediction that are robust to tissue types and using the contralateral patch provides 

Table 3.3: Ten-fold cross-validation result using CNNs and baseline models. 

Model Accuracy Overlap AUROC 

GLM 0.751* 0.628* 0.746* 

SVM 0.724* 0.633* 0.691* 

SR-KDA 0.784 0.679* 0.788* 

2D CNN 0.746 0.728* 0.783* 

3D CNN 0.790 0.717* 0.799* 

Unit CNN-contralateral 0.818 0.811 0.871 

*Statistically Significant result (p-value<0.05) against the Unit CNN-contralateral model 
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additional information that allows the deep CNN to learn useful comparison filters rather than 

merely signal filters to extract features for tissue outcome prediction.  

3.4.4.4 Visualization of convolutional filters in the Unit CNNs 

Figure 3.8 shows the seven of the 16 learned pairing filters of the proposed deep CNNs (trained 

with contralateral patches, random patches, and duplicate patches respectively). Each pair of filters 

consists of two 1 x 1 x t (t = 64) 3D filters, and each 3D filter is composed of 64 unit filters with a 

size of 1 x 1. Instead of capturing spatial features (e.g., edges) as typical 2D filters do, these pairs 

of 3D filters capture the relationships between two input signals in the time dimension. When 

looking at the pairing filters of the deep CNN trained with duplicate patches, one may observe that 

filters are similar within a pairing filter. In contrast, the variability of the pairing filters of the deep 

CNN trained with contralateral patches is higher: some pairing filters appear to be the “opposite” 

of each other, while others appear to be similar. For example, in filter pair number 7, the first filter 

(top) can detect later signals (indicated as black first and then white along time) whereas the second 

filter detects early signals (indicated as white first and then black along time). Compared to these 

pairing filters, those paired filters trained by the deep CNN with random patches were inconsistent 

and more random in appearance; those paired filters trained by the deep CNN with duplicate 

Table 3.4: Ten-fold cross-validation result using CNNs with different patches. 

 Accuracy Overlap AUROC 

Unit CNN-random-white 0.784 0.764* 0.803* 

Unit CNN-random-gray 0.781 0.774* 0.805* 

Unit CNN-random 0.780 0.753* 0.805* 

Unit CNN-duplicate 0.770 0.698* 0.757* 

Unit CNN-contralateral 0.818 0.811 0.871 

*Statistically Significant result (p-value<0.05) against the Unit CNN-contralateral model 
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patches looked similar. This result shows that training with contralateral patches results in a 

distinct class of filters that are associated with better model performance.  

 

Figure 3.8: Seven of the 16 pairs of 3D filters learned in the first layer of the proposed Unit CNNs 

trained with contralateral patches, random patches, and duplicate patches respectively. Each 3D 

filter is composed of 64 unit filters (along time) with a size of 1 x 1; therefore, each 3D filter has 

a size of 1 x 1 x t (t = 64). 
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3.4.4.5 Examples of prediction 

 Figure 3.9 shows the examples of tissue outcome predictions. For patient #1, Unit CNN-

contralateral and SR-KDA showed better visual inspection than 3D deep CNN, i.e., 3D deep CNN 

predicted high probability (red color) only in certain parts of the final infarct regions, whereas Unit 

CNN-contralateral and SR-KDA both predicted most of the final infarct regions. For patient #2, 

all models predicted the correct locations of the final infarct regions. Unit CNN-contralateral and 

3D deep CNN both predicted larger final infarct volumes than SR-KDA. The volume of prediction 

with the highest probability (>0.90) of Unit CNN-contralateral matches well with the ground truth. 

For patient #3, SR-KDA and Unit CNN-contralateral predicted larger final infarct volume with 

 

Figure 3.9: Tissue outcome prediction of Unit CNN-contralateral, SR-KDA, and 3D deep CNN. 
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high probabilities whereas 3D deep CNN predicted only partial volume. For patient #4, the regions 

with high probability of SR-KDA and 3D deep CNN were larger and smaller respectively, whereas 

the region of high probability of Unit CNN-contralateral matched well with the ground truth.  

3.5 Evaluations and Results for Tissue Outcome Volume Prediction 

3.5.1 Evaluations 

In addition to using only images (i.e., PWIs) to predict voxel-wise tissue outcome, studies [17], 

[18], [184] have shown interests in determining whether clinical and treatment variables are 

predictive of final tissue outcome volume. Therefore, in this study, machine learning models were 

trained to predict the final tissue outcome volume using clinical and treatment variables. 

Random forest (RF) classifiers [185] were trained to perform binary final infarct volume 

classification at different final infarct volume cutoff. Three groups of classifiers were compared: 

(1) trained with only clinical variables, (2) trained with only treatment variables, and (3) trained 

with both clinical and treatment variables. AUROCs of these classifiers were calculated and the 

nested five-fold cross-validation was used to evaluate the model performance.  

3.5.2 Final tissue volume prediction  

Table 3.5 summarizes the RF performance on different final infarct volume cutoff values 

trained with three groups of variables. The best classifier using only the clinical variables achieved 

 Table 3.5: Classifier AUROCs on different final infarct volume cutoff using different variables. 

Variable Type 
Final infarct volume cutoff (cm3) 

20 40 60 80 100 120 140 160 180 

Clinical only 0.648 0.507 0.647 0.607 0.613 0.766 0.619 0.619 0.499 

Treatment only 0.529 0.566 0.561 0.521 0.324 0.259 0.265 0.265 0.365 

Clinical + treatment 0.632 0.507 0.660 0.634 0.589 0.772 0.633 0.633 0.460 

 

 

 

 Table 3.8: Classifier AUROCs on different final infarct volume cutoff using different variables. 

Variable Type 
Final infarct volume cutoff (cm3) 

20 40 60 80 100 120 140 160 180 

Clinical only 0.648 0.507 0.647 0.607 0.613 0.766 0.619 0.619 0.499 

Treatment only 0.529 0.566 0.561 0.521 0.324 0.259 0.265 0.265 0.365 

Clinical + treatment 0.632 0.507 0.660 0.634 0.589 0.772 0.633 0.633 0.460 

 

 

 

 Table 3.9: Classifier AUROCs on different final infarct volume cutoff using different variables. 

Variable Type 
Final infarct volume cutoff (cm3) 

20 40 60 80 100 120 140 160 180 

Clinical only 0.648 0.507 0.647 0.607 0.613 0.766 0.619 0.619 0.499 

Treatment only 0.529 0.566 0.561 0.521 0.324 0.259 0.265 0.265 0.365 

Clinical + treatment 0.632 0.507 0.660 0.634 0.589 0.772 0.633 0.633 0.460 

 

 

 

 Table 3.10: Classifier AUROCs on different final infarct volume cutoff using different variables. 

Variable Type 
Final infarct volume cutoff (cm3) 

20 40 60 80 100 120 140 160 180 

Clinical only 0.648 0.507 0.647 0.607 0.613 0.766 0.619 0.619 0.499 

Treatment only 0.529 0.566 0.561 0.521 0.324 0.259 0.265 0.265 0.365 

Clinical + treatment 0.632 0.507 0.660 0.634 0.589 0.772 0.633 0.633 0.460 
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an AUROC of 0.766 with a final infarct volume cutoff of 120 cm3, whereas the best classifier 

using only the treatment variables achieved an AUROC of 0.566 with a final infarct volume cutoff 

of 40 cm3. Among all the classifiers, the classifier trained with both clinical and treatment variables 

achieved the best performance at a final infarct volume cutoff of 120 cm3, with an AUROC of 

0.772. However, there was not much AUROC improvement as compared to the classifier using 

only the clinical variable (AUROC = 0.766). These results show that clinical variables are 

predictive of the final infarct volume, and the addition of treatment variables did not provide 

enough information to greatly improve the classifiers’ performance. We also notice that some 

AUROCs are lower than 0.5 (e.g., treatment only variables and cutoff > 100 cm3). This may be 

due to data imbalance problem when one class is more common than another class in training 

dataset, which can make the trained classifiers biased in classification when a small dataset is used.  

3.6 Discussion 

In this work, I proposed a new architecture for the convolutional layer (Unit CNN), which 

learned pairs of unit temporal filters simultaneously from the patch of interest and its contralateral 

patch. This new layer was inserted as the first layer to the standard 2D deep CNN and allowed the 

deep CNN to derive paired filters to obtain useful temporal correlations between inputs in the first 

layers. This enables the learned filters in the subsequent convolutional layers no longer detected 

the spatio-temporal features of a single input. Instead, these filters were learned to detect spatial 

features of the differences between two input patches (i.e., the patch of interest and its contralateral 

patch). Such differences were further expanded and stacked through multiple layers in the deep 

CNN and finally became the 128 features that were used to train a softmax classifier. The 

incorporation of the new convolutional layer changed the nature of the learned features in Unit 

CNNs, which ultimately led to features that achieved the best performance. Another contribution 

of this work is that the type of input patch does matter. Unit CNN achieved the best performance 

when it was trained with the contralateral patches. One interesting observation is that the deep 
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CNNs trained with random patches has higher AUROC (not statistically significant) than the deep 

CNNs trained with duplicate patches. This illustrates that additional random information may 

boost model performance. However, this boosting is not as good as using contralateral patches. 

Overall, the superior performance of the deep learning algorithm reinforces the findings of 

Christensen et al. [29] and Willats et al. [186] that summary parameters calculated without an AIF 

from source perfusion images contain enough information to determine tissue outcome. 

In addition to the imaging results, the study demonstrates that clinical variables are predictive 

of the final infarct volume. Surprisingly, the random forest models did not improve with the 

addition of treatment variables. This result contradicts some studies that treatments can improve 

patient outcomes [59], [187]. We suspect that this may be due to the small data set (n=82) and the 

relationship of outcome and treatment variables are not fully captured.  

This study does have some limitations. The training and evaluation data sets are relatively 

small and are not amenable to subgroup analysis. The data sets are small because often patients 

are discharged before three days after stroke onset in UCLA, and it is challenging to collect their 

post-FLAIR images. Another limitation is that the proposed deep CNNs only used the standard 

CNN architecture [188] as the baseline structure. There are new CNN building blocks that can 

achieve better performance, such as the ResNet [149] and the DenseNet [189]. A possible 

improvement is to incorporate these new building blocks in the existing architectures to generate 

better composite feature representations.  More details about future works will be presented in 

Chapter 7. 
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CHAPTER 4  

Stroke Onset Time Classification using Deep Learning 

4.1 Overview 

Intravenous tissue plasminogen activator (IV tPA) and clot retrieval devices are the two 

currently approved treatments by the National Institutes of Health for acute ischemic stroke 

patients. While the guidelines of using clot retrieval devices are still changing, the administration 

of the IV tPA has a clear cut-off time, i.e., within a maximum of 4.5 hours from time since stroke 

(TSS). Unfortunately, as many as 30% of acute stroke patients have unknown symptom onset times 

(e.g., wake up or unwitnessed strokes) [190]–[192]. These patients have historically been excluded 

from thrombolytic and endovascular treatments because of unknown TSS, even though their actual 

TSS may fall within the medically appropriate window for treatments [193]. This population may 

be possibly saved by methods that can determine the TSS without clinical history or witnessed 

events. Studies [30]–[33], [92], [120] have attempted to use an imaging feature, diffusion weighted 

imaging and fluid attenuated inversion recovery imaging mismatch (DWI-FLAIR mismatch), to 

approximate TSS. Yet these methods often achieved a moderate performance: a negative 

predictive value of 0.20 to 0.50, with a specificity of 0.60 to 0.80 and a sensitivity of 0.50 to 0.60. 

The major criticisms of these methods are the simplicity of the mismatch feature and the non-

standardized mismatch identification guidelines [34], [35], [49].  

This chapter details a novel machine learning approach for better TSS classification. The 

approach mainly consists of three steps: 1) defining and generating a set of imaging features from 

MR images and perfusion parameter maps; 2) proposing a novel deep autoencoder (AE) approach 

to learn deep features from four-dimensional perfusion images; and 3) training and comparing 
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several machine learning models using the generated features for TSS classification. The 

evaluation results demonstrate that the proposed machine learning approach outperforms the DWI-

FLAIR mismatch method. In the remainder of this chapter, Section 4.2 describes the dataset and 

the image preprocessing steps used for this study. Section 4.3 describes the proposed machine 

learning approach. Section 4.4 summarizes the evaluation methods and Section 4.5 reports the 

results. Section 4.6 discusses the limitations and future works. Some of the work presented in this 

chapter have been published in [194].  

4.2 Data Cohort and Image Preprocessing 

4.2.1 Patient cohort and imaging data 

The patient characteristics are summarized in Table 4.1. Under institutional review board 

(UCLA IRB#18-000329) approval, a total of 181 patient MR images (taken between December 

2011 and December 2017) were retrieved and examined from the UCLA picture archiving and 

communication system (PACS). The inclusion criteria were all patients with: 1) acute ischemic 

stroke due to middle cerebral artery (MCA) occlusion; 2) a recorded time of observed stroke 

symptom onset; 3) a recorded time of initial pretreatment imaging; and 4) a complete MR imaging 

sequence set (PWI, FLAIR, DWI, and ADC). After applying the inclusion criteria, a total of 131 

patients were retrieved for the analysis (85 positive class; 46 negative class). This cohort subset 

was used to build the models for TSS classification. Patients’ TSS was calculated by subtracting 

the time at which the stroke symptoms were first observed from the time at which the first imaging 

was obtained. Patient TSS was binarized based on an existing DWI-FLAIR TSS classification task 

[33]: positive (<4.5hrs) and negative (≥4.5hrs). 

All patients underwent MRI using a 1.5 or 3 Tesla echo planar MR imaging scanner (Siemens 

Medical Systems); scanning was performed with 12-channel head coils. The PWIs were acquired 

using a repetition time (TR) range of 1,490 to 2,640 ms and an echo time (TE) range of 23 to 50 
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ms. The pixel dimension of the PWIs varied from 1.72 × 1.72 × 6.00 to 2.61 × 2.61 × 6.00 mm. 

The FLAIR images were acquired using a TR range of 8,000 to 9,000 ms and a TE range of 88 to 

134 ms. The pixel dimension of the FLAIR images varied from 0.688 × 0.688 × 6.00 to 0.938 × 

0.938 × 6.50 mm. The DWI/ADC images were acquired using a TR range of 4,000 to 9,000 ms 

and a TE range of 78 to 122 ms. The pixel dimension of the DWI images varied from 0.859 × 

0.859 × 6.00 to 1.85 × 1.85 × 6.50 mm. The z-dimension is ignored in patch data generation due 

to slice thickness. Therefore, the notation of the size of a “voxel” is simplified to two-dimensional 

only (x-, and y- axes). 

Table 4.1: Patient cohort characteristics for TSS classification. 

 Patients (n = 131) 

Demographics  

Age 72.9±13.9 

Gender 59 males 

Clinical Presentation  

Time since stroke (continuous) 256±247 minutes 

NIHSS† 10.1±7.87 

Atrial fibrillation 37 

Hypertension 87 

Stroke location (hemisphere)  

Left 65 

Right 66 

Classification Label  

Time since stroke (binary) <4.5hrs (85); ≥4.5hrs (46) 

† NIHSS = NIH Stroke Scale International; scale: 0 (no stroke symptoms) - 42 (severe stroke) 
 

 

Table 4.2: Table 1. Patient cohort characteristics for TSS classification. 

 Patients (n = 131) 

Demographics  

Age 72.9±13.9 

Gender 59 males 

Clinical Presentation  

Time since stroke (continuous) 256±247 minutes 

NIHSS† 10.1±7.87 

Atrial fibrillation 37 

Hypertension 87 

Stroke location (hemisphere)  

Left 65 

Right 66 
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4.2.2 Image preprocessing 

The image preprocessing steps of TSS classification follow the image preprocessing steps of 

tissue outcome prediction (Chapter 3) closely. MR image intra-patient registration, noise removal, 

skull stripping, tissue type mask identification, perfusion parameter maps and arterial input 

functions (AIF) generation, and image standardization were performed. Please see Section 3.2.3 

for details.   

4.3 Methods 

Inspired by research in other medical domains (e.g., lung nodule detection [195]), in which 

hundreds of hand-crafted imaging features were defined and used for classification, a machine 

learning approach was proposed that involves imaging features derived from MR images and  

perfusion parameter maps to classify TSS. The machine approach consists of multiple components: 

1) defining regions of interest (ROIs); 2) building deep learning models to learn deep feature maps 

from PWIs; 3) generating a set of baseline imaging and deep learning features from ROIs; and 4) 

training machine learning models using the generated features for TSS classification. Figure 4.1 

shows the overview of the TSS classification. The details for the approach are described as the 

following subsections.  

4.3.1 Imaging feature generation 

PWIs are spatio-temporal imaging data (4-D) that show the flow of a gadolinium-based contrast 

bolus into and out of the brain over time. They contain concentration time curves (CTCs) for each 

brain voxel, that describe the flow of the contrast (i.e. signal intensity change) over time. Perfusion 

parameter maps can be derived from PWIs and describe tissue perfusion characteristics. The details 

of PWIs and the definition of different perfusion parameter maps are described in Chapter 2.3.3.  
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In this study, two ways to generate the imaging features for TSS classification were proposed 

and compared. The first way was to generate imaging features from MR images and perfusion 

parameter maps, in which descriptive statistical features (e.g., mean) and morphological features 

were defined. The second way was to generate imaging features directly from 4-D PWIs using 

deep learning. A deep learning approach was proposed to learn hidden representations of every 

CTC within the PWIs using a deep autoencoder. Then, these hidden representations were 

aggregated into new feature maps, which we hypothesized can indicate hidden characteristics of 

 

Figure 4.1: The overview of the proposed machine learning approach for TSS classification. The 

classification involved four steps: (1) ROI generation, (2) deep AE map learning, (3) feature 

generation, and (4) TSS classification. A set of 104 baseline imaging features and 384 deep AE 

features were generated and used for TSS classification.  
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stroke tissue and can improve TSS classification. The descriptive statistical features could then be 

generated from these new feature maps for TSS classification. The imaging feature generation 

involves three parts: (1) region of interest generation, (2) baseline imaging feature generation, and 

(3) deep imaging feature generation. 

4.3.1.1  Region of interest generation 

Stroke often occurs in only one cerebral hemisphere and generating imaging features based on 

entire brain MR images may be less descriptive to the stroke pathophysiology and less predictive 

of TSS. Therefore, ROIs were defined by a time-to-maximum cut-off (Tmax>6s), which captures 

both the dead tissue core and the salvageable tissue [96]. The largest connected region in which 

Tmax>6s on the stroke hemisphere was used as the ROI mask. 

4.3.1.2 Baseline imaging feature generation 

There are two major types of baseline imaging features: descriptive statistics and morphological 

features. These baseline imaging features were generated from MR images (DWI, ADC, and 

FLAIR), the perfusion parameter maps, and Tmax>6s ROI masks. The perfusion parameter maps 

included the cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), 

and time-to-peak (TTP). Descriptive statistics included the maximum, minimum, median, mean, 

standard deviation, and variance of the intensity/parameter value within the ROI. The ratio between 

a value of interest and the corresponding value on the contralateral side of the brain has been shown 

to be predictive in stroke tissue outcome prediction (Ch. 3), and therefore this type of relative 

features (e.g., relative maximum) was included as part of the descriptive statistics. Relative features 

of ADC-to-FLAIR and DWI-to-FLAIR were also included, as inspired by the DWI-FLAIR 

mismatch method. This resulted in a set of 96 baseline descriptive features. Morphological features 

[195] were calculated using the ROI mask, including area, volume, circularity, and sphericity. Two 

shape features [196] were included: the ratio between the volume of the ROI and its bounding box 
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(BE), and the ratio between the lesion surface area and the lesion volume (SV). The maximum and 

minimum diameter of the ROI mask were also included. This resulted in a set of eight baseline 

morphological features.  

In total, a set of 104 baseline imaging features were generated. All the features were 

standardized independently to zero mean with a standard deviation of one. The baseline imaging 

features are summarized in Table 4.2.  

4.3.1.3 Deep imaging feature generation 

PWIs are high-dimensional data, in which a typical convolutional neural network (CNN) [197] 

may not be capable of extracting representative features from the small stroke imaging dataset 

(n=131), even with a large amount of data augmentation and a well-tuned deep architecture. 

Therefore, we proposed to use deep autoencoders (deep AEs) [127] coupled with novel input 

approach to generate imaging features for TSS classification. Figure 4.2 shows the overview of 

the feature generation using the deep AE approach.  

Table 4.2: Imaging features for TSS classification. 

Type Features Sources 

Descriptive Statistics 

(n=96 for baseline 

features) 

(n=384 for deep 

features) 

(Relative†) maximum, (relative) minimum, 

(relative) median, (relative) mean, (relative) 

standard deviation, (relative) variance  

DWI, ADC, 

FLAIR, CBV, 

CBF, MTT, 

TTP, deep 

feature maps 

Morphological Features  

(n=8 for baseline 

features) 

Area, volume, circularity, sphericity, the ratio 

between the volume of the ROI and the 

bounding box, the ratio between the lesion 

surface area and the lesion volume, maximum 

diameter, minimum diameter 

Tmax > 6s ROI 

mask 

†Relative = the ratio between the value of interest and the value in its contralateral side  

 

Table 4.5: Imaging Features for TSS Classification. 

Type Features Sources 

Descriptive Statistics 

(n=96 for baseline 

features) 

(n=384 for deep 

features) 

(Relative†) maximum, (relative) minimum, 

(relative) median, (relative) mean, (relative) 

standard deviation, (relative) variance  

DWI, ADC, 

FLAIR, CBV, 

CBF, MTT, 

TTP, deep 

feature maps 

Morphological Features  

(n=8 for baseline 

features) 

Area, volume, circularity, sphericity, the ratio 

between the volume of the ROI and the 

bounding box, the ratio between the lesion 

surface area and the lesion volume, maximum 

diameter, minimum diameter 

Tmax > 6s ROI 

mask 

†Relative = the ratio between the value of interest and the value in its contralateral side  

 

Table 4.6: Imaging Features for TSS Classification. 

Type Features Sources 

Descriptive Statistics 

(n=96 for baseline 

(Relative†) maximum, (relative) minimum, 

(relative) median, (relative) mean, (relative) 

DWI, ADC, 

FLAIR, CBV, 
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Each PWI voxel CTC at location ijz, with a size of 1 x t (t = time for perfusion imaging), was 

transformed by the deep AE into K new feature representations that could represent complex voxel 

perfusion characteristics. The deep AE consisted of an encoder and a decoder. The encoder 

consisted of two components: 1) an input layer; and 2) fully-connected layers. The encoder was 

connected to the decoder, which followed reversely the same layer patterns of the encoder. The 

encoder output (i.e., the middle layer output of the deep AE) was the set of K new feature 

representations. Each new feature representation of all CTCs, 𝑓𝑖𝑗𝑧
𝑘 , was aggregated to form a new 

feature map, known as “AE feature map” (𝐹𝑘): 

 𝐹𝑘 = {𝑓𝑖𝑗𝑧
𝑘 }, ∀𝑖𝑗𝑧 ∈ 𝐼 , (4.1) 

where I was the set of pixels in a PWI. In total, there were K new AE feature maps for a PWI (K 

is equivalent to the encoder dimension in an optimal AE model). New AE deep imaging features 

 

Apply ROI 

mask and 

generate deep 

features

+
Matrix 

unroll

  

  

Encoder Decoder

Deep autoencoder (AE)

AE feature 

maps

Aggregation
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3 x 3 x 64
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A training patch

3 x 3 x 64

Voxel of interest

64s   

WH Contralateral
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Figure 4.2: Deep AE feature generation. Training patches (with a size of 3 x 3 x 64) were randomly 

generated from PWIs. Each patch was coupled with an extra patch (AIF only, contralateral only, 

or AIF+contralateral) and the combined matrix was unrolled into a 1D vector that would be fed 

into the deep network. The proposed deep AE consisted of an encoder and decoder. The encoder 

outputs were aggregated into the final deep AE feature maps, in which a ROI mask (Tmax>6s) 

was applied to them and generate the imaging features (descriptive statistics). Note that the input 

z-dimension is not included. 
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(descriptive statistics) were then generated from the AE features maps following the same 

procedure as used in the baseline feature generation. In total, a set of 384 deep imaging features 

were generated. 

The advantage of using the proposed deep AE is that it is trained via an unsupervised learning 

procedure, in which thousands of training data could be sample from the PWIs. The network was 

optimized to obtain weights, Θ, that minimized the binary cross-entropy loss between the input, I, 

and the reconstructed output, 𝐼(Θ), across the samples with size n [176]: 

   gmin
𝛩

1

𝑛
∑ [(𝐼𝑖 ∗ log (𝐼(Θ)) + (1 − 𝐼𝑖) ∗ 𝑙𝑜𝑔(1 − 𝐼(Θ))]
𝑛
𝑖=1 , (4.2) 

4.3.1.4 Input training patch coupling and feature generation 

As Chapter 3 suggests, regional information corresponding to a voxel’s surroundings can 

improve classification in the MR images. Therefore, a small region (8 neighboring voxels) was 

included in each training voxel, leading to a size of 3 x 3 x t patch (width x height x time; the z-

dimension is omitted; t = 64), where the center of the patch is the voxel of interest for the deep AE 

feature learning. Additionally, the patch coupling strategies in voxel-wise stroke classification 

indicate that reference patches may improve the learning of hidden features. This motivates the 

proposal of three patch coupling ways in TSS classification: (1) training patch with global AIF 

patch; (2) training patch with its corresponding contralateral patch; and (3) training patch with 

both the AIF patch and the contralateral patch.  

In the experiments, each training patch (with the coupled patch(es)) was unrolled from a size 

of 3 x 3 x t x p (p = 2 or p = 3, depending on the number of coupled patches) into a 1-D vector. 

The 1-D data were used to train the deep AEs, which consisted of the fully-connected layers. Three 

different deep AEs were optimized for the three patch coupling methods. In total, 131,000 training 

patches were generated by random and balanced sampling from all patient PWIs.  
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4.3.2 Classifying TSS using machine learning model 

Five machine learning models were trained using the generated features for binary TSS 

classification (TSS<4.5hrs or TSS≥4.5hrs). These classifiers included logistic regression (LR), 

random forest (RF), gradient boosted regression tree (GBRT), support vector machine (SVM), and 

stepwise multilinear regression (SMR). Briefly, LR is a probabilistic classification model in which 

binary label probabilities are found by fitting a logistic function of feature values [198]. RF is an 

ensemble learning method in which a multitude of decision trees are randomly constructed and the 

classification is based on the mode of the classes output by individual trees [185]. GBRT is an 

ensemble learning method similar to RF, in which a multitude of decision trees are randomly 

generated, yet these trees are added to the model in a stage-wise fashion based on their contribution 

to the objective function optimization [199]. SVM is a supervised learning classification algorithm 

that constructs a hyperplane (or set of hyperplanes) in a higher dimensional space for classification 

[200]. SMR is a stepwise method for adding and removing features from a multilinear model based 

on their statistical significance (e.g., F-statistics) to improve model performance [201].  

In addition to the five machine learning models, four end-to-end convolutional neural networks 

(CNNs) were trained for TSS classification. The first three CNN architectures were adapted from 

the popular ImageNet architectures: Alexnet [135], VGG-16 [202], and ResNet-18 [149]. The 

fourth CNN architecture was a shallow-Alexnet, which had only one convolution-pooling-rectified 

linear unit (ReLU) layer sequence and two fully-connected layers, to investigate if a smaller end-

to-end CNN is preferable for TSS classification. The inputs to the CNNs were the four-dimensional 

ROIs (width × height × depth × number of images) extracted from the stacked MR images (DWI, 

ADC, and FLAIR) and the perfusion parameter maps. The convolutional filters of each CNN 

architecture were modified from two dimensions to three dimensions to accommodate the change 

of the input data size. 
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4.3.3 Experimental setup 

4.3.3.1 Deep learning model configurations and implementations details 

The deep AE and the CNNs were optimized using Adam, which computes adaptive learning 

rates during training and has demonstrated superior performance over other optimization methods 

[145]. An early-stopping strategy was applied to improve the learning of the model weights and 

prevent overfitting, where the training would be terminated if the performance did not improve 

over five consecutive epochs (maximum number of training epochs: 50). The models were 

implemented in Torch7 [176] and Pytorch [203], and the training was done on two NVIDIA Titan 

X GPUs and an NVIDIA Tesla K40 GPU. Ten-fold patient-based cross-validation was performed 

to determine the optimal deep AE architectures, including the number of encoder hidden layers 

(from 1-3) and the number of hidden units (factor of 4, 8, 16, 32). 

4.3.3.2 Machine learning model training 

The LR, RF, and SVM were developed using the Python Scikit-learn library [204]. The SMR 

and GBRT were developed using MATLAB and the XGBoost library [205], respectively. 

Different model hyperparameters (e.g., a LR’s hyperparameter, C) contribute differently to the 

classification and different machine learning methods may not perform equally on the same feature 

set. Therefore, nested 10-fold cross-validations were used to evaluate all five classifier [206]. 

Briefly, an outer 10-fold cross-validation was performed to obtain the overall classifier 

performance. Within each outer fold (in which a validation fold was held out), an inner 10-fold 

cross-validation was performed to determine the optimal model hyperparameters using the training 

data (i.e., the nine out of ten folds), and then the model was trained with the optimal 

hyperparameters and applied to the validation fold.  

The optimal hyperparameters for LR (C, L2 regularization), RF (maximum tree depth, 100 

random trees), GBRT (gamma, maximum tree depth, 100 random trees), SVM (C, radial basis 
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function (rbf) kernel), and SMR (p-enter=0.05, p-remove=0.35, maximum iteration = 60) 

classifiers were determined using the inner cross-validation in the nested 10-fold cross-validation 

[206]. The range of tested C values for LR was [0.00001, 1]. The range of tested maximum tree 

depths for RF was [3, 12]. The range of tested gamma values and maximum tree depths for GBRT 

were [0.01, 1] and [3, 12], respectively. The range of tested C values for SVM was [0.00001, 1]. 

4.3.3.3 DWI-FLAIR mismatch 

The Medical Image Processing, Analysis, and Visualization (MIPAV) software [167] was used 

by an expert neuroradiologist (Dr. S. El-Saden) to determine the presence of DWI-FLAIR 

mismatch, following the published protocol [33]. The presence of a DWI-FLAIR mismatch was 

labeled 1; the absence of a DWI-FLAIR mismatch was labeled 0.  

4.4 Evaluations 

Several evaluations were performed to compare the machine learning models. These 

evaluations include ROI sensitivity analysis, feature correlation analysis, TSS subgroup 

classification analysis, and performance evaluation metrics. The details are described as follow. 

4.4.1 ROI sensitivity analysis 

The generation of ROIs (Tmax>6s) could have significant impact on the TSS classification. 

To investigate the effect of the ROIs on the classification, two additional Tmax cutoff values were 

evaluated [96], [99]. One is Tmax>4s, which is a softer cutoff value that may include normal brain 

tissue; one is Tmax>8s, which is a stricter cutoff value that captures only the severe hypoperfused 

stroke region. The same experimental procedures were used to extract the imaging features from 

the ROIs generated by the two new cutoff values and these features were used to train the machine 

learning classifiers. The same evaluation metrics were applied to these classifiers.  
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4.4.2 Feature correlation analysis 

Recently, deep learning has been criticized as a “black-box” approach [207] that yields state-

of-the-art performance, yet the classification mechanism is unclear. A question one may ask is the 

correlation of the new deep features to the baseline imaging features. To understand what the deep 

features represented, an approach was proposed based on a correlation analysis. First, the 

correlations between the deep AE features and the baseline imaging features were calculated. 

Then, the most correlated deep AE feature was identified for each baseline imaging feature. For 

each identified deep AE feature, the top five correlated baseline imaging features were obtained. 

All correlations were calculated using Pearson correlation [208].  

4.4.3 TSS subgroup classification analysis 

Changes in MR image acquisition parameters (e.g., field strength) over time may impact the 

classifier performance because the study data set was created from the patient imaging exams 

obtained from 2011 to 2017 [209]. Two image-related variations, magnetic field strength and year 

of imaging acquisition, were investigated on the TSS classification. For the field strength, two-

fold cross-validation was used to evaluate the classifiers on TSS classification, i.e., trained on a 

data subset with one field strength (e.g., 1.5T) and evaluated on a data subset with another field 

strength (e.g., 3T), and vice versa. For the year of imaging, the classifiers were first trained with 

the data collected from 2011-2014 and then evaluated with the data collected from 2015-2017. 

This evaluation was meant to explore whether the model still performed well on the newer data 

when training on the older data. 

4.4.4 Metrics 

The AUROCs were computed for all five classifiers. To determine if the performance of the 

TSS classification models significantly differed from each other, the Hanley and McNeil 
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significance test [182], [210] was used to compare the model AUROCs. Sensitivity, specificity, 

F1-score, positive predictive value (PPV), and negative predictive value (NPV) were calculated 

for the DWI-FLAIR mismatch method. Given the DWI-FLAIR mismatch method specificity, the 

performance (sensitivity, F1-score, PPV, and NPV) was calculated for the machine learning 

classifiers and compared against the DWI-FLAIR mismatch method.  

4.5 Results 

4.5.1 TSS classification 

Table 4.3 shows the optimal AE model architectures for three types of coupling patches as 

described in Section 4.3.1.4. All three optimal AE architectures achieved a mean square error 

(MSE) of at least 40% smaller than the average MSE of all of the trained AEs. All three optimal 

AE architectures had 32 hidden units (AE1 to AE32) in the middle layer (i.e., 32 deep feature 

maps). These optimal AE models were used to generate deep feature maps from patient PWIs for 

feature extraction.  

The classifiers were trained with three different groups of features (Table 4.2): (1) the baseline 

imaging (BI) features (96 descriptive statistics and 8 morphological features); (2) the deep AE 

features (384 descriptive statistics); (3) the baseline and deep AE features. The AUROCs of the 

classifiers are depicted in Table 4.4.  

Table 4.3: The optimal deep AE architectures for different coupling patch. 

Coupling Patch Type 
Optimal AE Architecture 

(# of hidden units/layer) 

Optimal MSE (Average 

Deep AE MSE) 

AIF patch only 1152-192-32-32-192-1152 0.606 (1.54) 

Contralateral patch only 1152-288-32-32-288-1152 1.16 (1.95) 

AIF + Contralateral patch 1728-288-32-32-288-1728 1.06 (4.49) 

 

 

Table 4.8: The optimal deep AE architectures for different coupling patch. 

Coupling Patch Type 
Optimal AE Architecture 

(# of hidden units/layer) 

Optimal MSE (Average 

Deep AE MSE) 

AIF patch only 1152-192-32-32-192-1152 0.606 (1.54) 

Contralateral patch only 1152-288-32-32-288-1152 1.16 (1.95) 

AIF + Contralateral patch 1728-288-32-32-288-1728 1.06 (4.49) 

 

 

Table 4.9: The optimal deep AE architectures for different coupling patch. 

Coupling Patch Type 
Optimal AE Architecture 

(# of hidden units/layer) 

Optimal MSE (Average 

Deep AE MSE) 

AIF patch only 1152-192-32-32-192-1152 0.606 (1.54) 

Contralateral patch only 1152-288-32-32-288-1152 1.16 (1.95) 

AIF + Contralateral patch 1728-288-32-32-288-1728 1.06 (4.49) 

 

 

Table 4.10: The optimal deep AE architectures for different coupling patch. 

Coupling Patch Type 
Optimal AE Architecture 

(# of hidden units/layer) 

Optimal MSE (Average 

Deep AE MSE) 

AIF patch only 1152-192-32-32-192-1152 0.606 (1.54) 
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With the baseline imaging features alone or the deep AE features alone, all classifiers (LR, RF, 

GBRT, SVM, and SMR) achieved an AUROC of at least 0.6 on TSS classification, showing that 

the MR imaging features were predictive of TSS. With the combination of baseline imaging 

features and deep features, all classifiers (except the GBRT trained with AIF coupling patch) 

showed improvement in AUROC, demonstrating that the proposed deep AEs extracted hidden 

features in PWIs which could improve TSS classification. Among all the patch coupling methods, 

deep features generated from the AIF + contralateral coupling method improved TSS classification 

in most of the classifiers, e.g., LR has the best AUROC with the AIF + contralateral patches (0.765 

vs. 0.658 vs. 0.676). Both LR and SVM had significantly better AUROCs (p-value=0.003 and p-

value=0.024 respectively) with the features from the AIF + contralateral coupling than with the 

features from only the baseline imaging. Comparing to the method published by Ho et al. in 2017, 

Table 4.4: The AUROCs of classifiers on TSS classification. 

Model 

Ho, et al. 

(2017) 

[26] 

No AE 
AIF coupling patch 

only 

Contralateral 

coupling patch 

only 

AIF + 

contralateral patch 

BI†  AE¥   BI+AE Ω AE BI+AE AE BI+AE 

LR 0.574 0.618 0.650 0.658 0.647 0.676 0.710 0.765* 

RF 0.624 0.640 0.650 0.669 0.662 0.682 0.592 0.690 

GBRT 0.567 0.608 0.590 0.570 0.676 0.674 0.612 0.670 

SVM 0.669 0.636 0.477 0.736 0.605 0.666 0.600 0.746* 

SMR 0.683 0.661 0.574 0.707 0.650 0.677 0.705 0.730 

Bold indicated the highest AUROC for a given classifier 

*statistically significant result (p-value<0.05) against model with BI features only. 
†BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 

morphological features) 
¥AE = Models were trained with the 384 descriptive features generated from deep AE feature 

maps) 
ΩBI + AE = Models were trained with the baseline and deep AE features 

 

Table 4.11: The AUROCs of classifiers on TSS classification. 

Model 

Ho, et al. 

(2017) 

[26] 

No AE 
AIF coupling patch 

only 

Contralateral 

coupling patch 

only 

AIF + 

contralateral patch 

BI†  AE¥   BI+AE Ω AE BI+AE AE BI+AE 

LR 0.574 0.618 0.650 0.658 0.647 0.676 0.710 0.765* 

RF 0.624 0.640 0.650 0.669 0.662 0.682 0.592 0.690 

GBRT 0.567 0.608 0.590 0.570 0.676 0.674 0.612 0.670 

SVM 0.669 0.636 0.477 0.736 0.605 0.666 0.600 0.746* 

SMR 0.683 0.661 0.574 0.707 0.650 0.677 0.705 0.730 

Bold indicated the highest AUROC for a given classifier 

*statistically significant result (p-value<0.05) against model with BI features only. 
†BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 

morphological features) 
¥AE = Models were trained with the 384 descriptive features generated from deep AE feature 

maps) 
ΩBI + AE = Models were trained with the baseline and deep AE features 
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all classifiers (AIF + contralateral patches) performed better using the current method. Compared 

to the best proposed model (LR), the best end-to-end CNN had a lower AUROC (0.575 vs. 0.765, 

p-value = 0.0001; Table 4.5). The low performance may be due to the limited training data (n=131) 

and a large number of trainable weights (>100,000). Transfer learning [211] and semi-supervised 

learning [156] may be explored to improve the CNN performance. 

Figure 4.3 shows the neuroradiologist performance using the DWI-FLAIR mismatch method, 

and the ROCs of the classifiers trained with the baseline features and the deep features (generated 

Table 4.5: The AUROCS of CNNs on TSS classification. 

 Alexnet VGG-16 ResNet-18 Shallow-Alexnet 

AUROC 0.525 0.548 0.557 0.575 

 

 

Table 4.14: The AUROCS of CNNs on TSS Classification. 

 Alexnet VGG-16 ResNet-18 Shallow-Alexnet 

AUROC 0.525 0.548 0.557 0.575 

 

 

Table 4.15: The AUROCS of CNNs on TSS Classification. 

 Alexnet VGG-16 ResNet-18 Shallow-Alexnet 

AUROC 0.525 0.548 0.557 0.575 

 

 

Table 4.16: The AUROCS of CNNs on TSS Classification. 

 Alexnet VGG-16 ResNet-18 Shallow-Alexnet 

AUROC 0.525 0.548 0.557 0.575 

 

  

Figure 4.3: The ROCs of different classifiers trained with both the baseline imaging features and 

the deep features (generated from the deep AE with the AIF + contralateral coupling patch). The 

red cross indicated the neuroradiologist classification using the DWI-FLAIR mismatch method.  
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from the deep AE with the AIF + contralateral coupling patch). Among all the classifiers, the LR 

trained with baseline imaging features and the deep features performed the best, with an AUROC 

of 0.765. Comparing to the mismatch method, three classifiers (LR, SMR, and SVM) achieved 

higher sensitivity (while having the same specificity) with the addition of the deep features, 

demonstrating the ability of using imaging features with machine learning models to classify TSS. 

Overall, LR achieved higher sensitivity (0.788 vs 0.694), F1-score (0.788 vs 0.728), NPV (0.609 

vs 0.519), and PPV (0.788 vs 0.766) while maintaining same specificity (0.609) as the DWI-

FLAIR mismatch method. Therefore, LR with the baseline imaging features and the deep AE 

features was determined to be the most suitable classifier for the TSS classification. 

4.5.2 Example of classification 

Figure 4.4 shows the TSS classification example of the optimal LR classifier, trained with both 

the baseline and deep AE features (generated from the AIF + contralateral coupling patch). When 

mismatch or absence of mismatch were clear between DWI and FLAIR, the classifier was able to 

classify correctly (patient #1 and patient #2). In cases where the mismatch was not clear, the 

classifier was able to correctly classify some cases (patient #3), but occasionally resulted in 

misclassification (patient #4).   

4.5.3 ROI sensitivity analysis 

Table 4.6 shows the TSS classification results on the sensitivity analysis. The deep AE features 

were still able to improve the performance of almost every classifier with two additional thresholds 

(Tmax>4s and Tmax>8s). The only exception was SMR with Tmax>8s, but the difference was not 

statistically significant (p-value=0.089). These results show that the deep AE feature generation is 

robust despite the change of the ROIs. Among all the cutoff values, Tmax>6s remained the 

threshold that provided the ROIs with the best performance in all classifiers with baseline and deep 
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AE features. This verifies that Tmax>6s is the optimal threshold to define hypoperfused regions 

for TSS classification. 

4.5.4 Feature correlation analysis 

Table 4.7 shows the top-10 correlated imaging features to the TSS label and Table 4.8 shows 

several examples of the deep AE feature correlation to the baseline imaging features. Four out of 

 

Figure 4.4: Examples of TSS classification of the optimal LR classifier trained with both the 

baseline and deep AE features. Patient #1 and patient #2 were correctly classified and showed 

clear mismatch and absence of mismatch respectively between DWI and FLAIR. In patient #3, the 

classifier still classified correctly even though the mismatch between DWI and FLAIR was less 

obvious. Patient #4 was misclassified. In patient #4, there was a visible mismatch between DWI 

and FLAIR images, but clinical history determined TSS to be >4.5hrs.  
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the top ten correlated features were the deep AE features. It is interesting to observe that the 

relationships can be grouped into certain categories. For example, the AE8 feature correlated well 

Table 4.6: Classifier AUROCs (with AIF + Contralateral patch) in ROI sensitivity analysis. 

Classifier 
Tmax>4s Tmax>6s¥ Tmax>8s 

BI†   BI+AEΩ BI BI+AE BI BI+AE 

LR 0.520 0.690* 0.618 0.765* 0.622 0.651 

RF 0.667 0.678 0.640 0.690 0.610 0.666 

GBRT 0.607 0.650 0.608 0.670 0.618 0.644 

SVM 0.479 0.649* 0.636 0.746* 0.624 0.683 

SMR 0.494 0.591 0.661 0.730 0.696 0.624 

* statistically significant result (p-value<0.05) against model with BI features only 
† BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 

morphological features) 
Ω BI + AE = Models were trained with the baseline and deep AE features 
¥ The result is obtained from Table 4.4 

 

Table 4.20: Classifier AUROCs (with AIF + Contralateral patch) in ROI Sensitivity Analysis. 

Classifier 
Tmax>4s Tmax>6s¥ Tmax>8s 

BI†   BI+AEΩ BI BI+AE BI BI+AE 

LR 0.520 0.690* 0.618 0.765* 0.622 0.651 

RF 0.667 0.678 0.640 0.690 0.610 0.666 

GBRT 0.607 0.650 0.608 0.670 0.618 0.644 

SVM 0.479 0.649* 0.636 0.746* 0.624 0.683 

SMR 0.494 0.591 0.661 0.730 0.696 0.624 

* statistically significant result (p-value<0.05) against model with BI features only 
† BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 

morphological features) 
Ω BI + AE = Models were trained with the baseline and deep AE features 
¥ The result is obtained from Table 4.4 

 

Table 4.21: Classifier AUROCs (with AIF + Contralateral patch) in ROI Sensitivity Analysis. 

Classifier 
Tmax>4s Tmax>6s¥ Tmax>8s 

BI†   BI+AEΩ BI BI+AE BI BI+AE 

LR 0.520 0.690* 0.618 0.765* 0.622 0.651 

RF 0.667 0.678 0.640 0.690 0.610 0.666 

GBRT 0.607 0.650 0.608 0.670 0.618 0.644 

Table 4.7 Top-10 correlated (Pearson correlation) baseline + deep features to the TSS label. 

Features |𝝆| 

AE25* relative maximum 0.307 

DWI mean 0.286 

AE25 relative variance 0.267 

FLAIR relative mean 0.261 

DWI variance 0.255 

AE23 minimum 0.246 

DWI relative minimum 0.241 

AE8 mean 0.239 

FLAIR relative minimum 0.236 

ADC-FLAIR maximum 0.236 

¥AE25 = Deep AE feature map #25. This applies to other abbreviations (e.g., AE23) 

 

 

Table 4.17 Top-10 correlated (Pearson correlation) baseline + deep features to the TSS label. 

Features |𝝆| 

AE25* relative maximum 0.307 

DWI mean 0.286 
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with the time-related baseline imaging features (TTP and MTT), whereas the AE7 feature 

correlated well with the morphological baseline imaging features (e.g., area). Some deep AE 

feature (e.g., AE16) correlated well to an image type (e.g., ADC). The correlation analysis 

demonstrates that the deep AE features capture a variety of complex representations (i.e., shape, 

morphology). 

4.5.5 TSS subgroup classification analysis 

Table 4.9 summarized the classifier performance in the TSS subgroup classification analysis. 

Three out of five classifiers showed improvement with the addition of deep AE features on the 

field strength subgroup analysis, and four out of five classifiers showed improvements on the year 

of imaging subgroup analysis. Overall, the results still align with the general finding, i.e., the 

proposed method generated deep features that could improve the TSS classification.  

Table 4.8: Feature correlation between the deep AE features and the baseline imaging features. 

Rank 
AE8 relative 

minimum 

AE7 Relative 

max 
AE16 variance 

AE23 Relative 

variance 

1 
TTP relative 

minimum 
Area ADC variance 

DWI relative 

maximum 

2 TTP minimum 
Maximum 

diameter 

ACD-FLAIR 

relative mean 
DWI variance 

3 
MTT relative 

minimum 
Volume 

ADC-FLAIR 

relative 

variance 

FLAIR relative 

maximum 

4 TTP maximum 
Minimum 

diameter 
MTT variance 

DWI-FLAIR 

relative 

variance 

5 DWI minimum TTP minimum ADC mean SV 

Interpretation Time-related 
Morphology-

related 
ADC-related DWI-related 

 

 

Table 4.23: Feature correlation between the deep AE features and the baseline imaging features. 

Rank 
AE8 relative 

minimum 

AE7 Relative 

max 
AE16 variance 

AE23 Relative 

variance 

1 
TTP relative 

minimum 
Area ADC variance 

DWI relative 

maximum 

2 TTP minimum 
Maximum 

diameter 

ACD-FLAIR 

relative mean 
DWI variance 

3 
MTT relative 

minimum 
Volume 

ADC-FLAIR 

relative 

variance 

FLAIR relative 

maximum 

4 TTP maximum 
Minimum 

diameter 
MTT variance 

DWI-FLAIR 

relative 

variance 

5 DWI minimum TTP minimum ADC mean SV 

Interpretation Time-related 
Morphology-

related 
ADC-related DWI-related 

 

 

Table 4.24: Feature correlation between the deep AE features and the baseline imaging features. 

Rank 
AE8 relative 

minimum 

AE7 Relative 

max 
AE16 variance 

AE23 Relative 

variance 

1 
TTP relative 

minimum 
Area ADC variance 

DWI relative 

maximum 

Maximum ACD-FLAIR 
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4.6 Discussion 

The DWI-FLAIR mismatch method is the current state-of-the-art method that can provide 

clinicians with insight into stroke onset time based on observable mismatch patterns between DWI 

and FLAIR. Yet this method suffers from its simplicity, i.e., the mismatch pattern between DWI 

and FLAIR may not capture all patients in whom TSS<4.5hrs [49], which can lead to a 

misclassification. Additionally, convolutional neural networks are often the first choices of model 

to generate hierarchical features for classification [135], yet they are not applicable in this study 

because of a limited number of patients (n=131) and high dimensional input data (4-D PWIs). This 

hypothesis was verified by the poor performance of standard CNNs in TSS classification (Table 

4.5). In this work, we proposed an approach for TSS classification that included machine learning 

model training, and novel imaging feature generation from MR images and perfusion parameter 

maps using deep learning. With only the proposed baseline imaging features, the best classifier 

Table 4.9: The AUROCs of classifiers in subgroup analysis. 

Classifier 
Field Strength Year of Imaging 

BI† AE¥ BI+AEΩ BI AE BI+AE 

LR 0.637 0.673 0.751 0.554 0.660 0.648 

RF 0.620 0.610 0.606 0.664 0.713 0.740 

GBRT 0.603 0.631 0.624 0.692 0.664 0.700 

SVM 0.605 0.496 0.728 0.577 0.596 0.673 

SMR 0.625 0.608 0.603 0.538 0.787 0.488 

BOLD indicated higher AUROC of model with BI+AE features against model with BI features 

only 
†BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 

morphological features) 
¥AE = Models were trained with the 384 descriptive statistics generated from the deep AE feature 

maps) 
ΩBI + AE = Models were trained with the baseline and deep AE features 

 

Table 4.26: The AUROCs of classifiers in subgroup analysis. 

Classifier 
Field Strength Year of Imaging 

BI† AE¥ BI+AEΩ BI AE BI+AE 

LR 0.637 0.673 0.751 0.554 0.660 0.648 

RF 0.620 0.610 0.606 0.664 0.713 0.740 

GBRT 0.603 0.631 0.624 0.692 0.664 0.700 

SVM 0.605 0.496 0.728 0.577 0.596 0.673 

SMR 0.625 0.608 0.603 0.538 0.787 0.488 

BOLD indicated higher AUROC of model with BI+AE features against model with BI features 

only 
†BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 

morphological features) 
¥AE = Models were trained with the 384 descriptive statistics generated from the deep AE feature 

maps) 
ΩBI + AE = Models were trained with the baseline and deep AE features 

 

Table 4.27: The AUROCs of classifiers in subgroup analysis. 

Classifier 
Field Strength Year of Imaging 

BI† AE¥ BI+AEΩ BI AE BI+AE 
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(SMR) can achieve an AUROC of 0.661 on TSS classification (Table 4.4). This indicates that the 

machine learning models capture signal changes from MR images and perfusion parameter maps 

that are predictive of TSS. One possible signal is the change of the perfusion parameter value (e.g., 

CBV) over time within the ischemic stroke regions, previously demonstrated in animal studies 

[212], [213]. This also shows that the enriched baseline imaging feature set improves the TSS 

classification, in which previous work [194] showed a limited performance (AUROC<0.700) with 

a single mean intensity value feature.  

Another interesting observation is that the deep AE feature maps generated from the AIF + 

contralateral coupling input are more predictive than the deep AE feature maps generated from 

either the AIF coupling input or the contralateral coupling input. This supports the hypothesis that 

the AIF patch provides the base for the initial bolus setting (e.g., how fast the bolus is injected) 

whereas the contralateral patch provides a matched control for the healthy brain concentration time 

curve. Adding the deep imaging features (from the AIF + contralateral coupling) could also 

improve the classifiers’ performance, e.g., the best classifier (LR) was improved by at least an 

AUROC of 0.1, and the correlation shows that 4 out of 10 top-10 correlated are the deep AE 

features. These observations suggest that the deep AE features are important for improving the 

TSS classification.  

This study does have some limitations. First, the machine learning models were trained and 

validated on only the MR images because MR images are commonly retrieved in the clinical 

routine of UCLA hospital. Yet, CT perfusion is becoming more widely used [214], and a study 

has shown that CT perfusion may help classifying TSS [215]. Second, clinical variables (e.g., age) 

were not investigated in the classification, which may further improve TSS classification because 

it is likely that they correlate with TSS. A possible improvement is to develop a multimodal 

framework [51] that uses both the imaging and clinical features to do TSS classification. More 

details about TSS classification and future works will be presented in Chapter 7. 

 



81 

 

CHAPTER 5  

Estimating Perfusion Parameter Maps Using Deep Learning  

5.1 Overview 

Magnetic resonance (MR) and computed tomography (CT) perfusion-weighted imaging 

generate four-dimensional spatial-temporal images that are often acquired during acute stroke 

evaluation. Perfusion parameter maps (e.g., CBF and Tmax) are derived from these high 

dimensional images for quantification of cerebral perfusion in the clinical diagnosis of acute stroke. 

These perfusion parameter maps are widely used. In the simplest application, a thresholding 

approach is applied to these maps for comparison with other MR images to identify volumes of 

salvageable tissue [16], [96]. In advanced analyses, the perfusion parameter maps are used in 

machine learning models to predict stroke tissue outcomes (Chapter 3) and estimate stroke onset 

time (Chapter 4). 

Methods have been developed to generate perfusion parameter maps from source perfusion-

weighted imaging. These methods are mostly based on the theory of singular value deconvolution 

(SVD), including delayed-corrected SVD (dSVD) [116], block-circulant SVD (bSVD) [95], and 

oscillation-index SVD (oSVD) [95]. Alternative approaches have been explored, including a 

Bayesian approach [117], and Tikhonov regularization [119]. Because the acquired concentration 

curves are generally noisy, some of these methods may produce residue functions that are not 

physiologically plausible and subject to distortions that can underestimate the perfusion parameters. 

Therefore, ongoing studies directly use source perfusion images instead for stroke image analysis, 

such as tissue outcome prediction in Chapter 3.  
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This chapter presents a novel approach to estimate perfusion parameters based on recognizing 

patterns from data using deep learning. We developed a deconvolution-free deep model to estimate 

perfusion parameters and the evaluation results demonstrate that the proposed approach is an 

alternative method that has the potential to improve the current quantitative analysis of perfusion 

images. In the remainder of this chapter, Section 5.2 describes the dataset and the data preprocessing 

steps. Section 5.3 describes the proposed deep learning model architecture for perfusion parameter 

estimation. Section 5.4 summarizes the experimental results. Section 5.5 discusses the limitations 

and future works. The work presented in this chapter has been published in [216], [217].  

5.2 Dataset and Data Preprocessing 

A set of 11 acute ischemic stroke patient MR perfusion data was collected retrospectively from 

UCLA picture archiving and communication system (PACS). The sparse perfusion deconvolution 

toolbox [168] and the ASIST-Japan perfusion mismatch analyzer [218] were used to generate the 

ground truth perfusion parameter maps and AIFs respectively. The perfusion parameter maps 

include the cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), 

and time-to-maximum (Tmax). All the perfusion images were interpolated and truncated to have 

a consistent 70 second time interval. The ranges of CBV, CBF, MTT, and Tmax values are between 

0-201 ml/100g, 0-1600 ml/100g/min, 0-25 s, and 0-69 s (Tmax was clipped at 11s because there 

were too few examples beyond this value) respectively. All perfusion parameter values were 

partitioned into ten equal-sized bins and training samples were drawn equally from each bin to 

avoid imbalance in the training dataset [11]. The number of samples for the CBV, CBF, MTT, and 

Tmax values were 91,950; 97,110; 87,080; and 74,850 respectively. 

5.3 Methods 

The estimation task was to estimate the perfusion parameters for a voxel, given its 

concentration time curve (CTC) and arterial input function (AIF). The pattern recognition method 
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for perfusion parameter estimation was a bi-input convolutional neural network (bi-CNN), which 

took the two inputs (CTC, AIF) and generated an estimated perfusion value for a voxel. The overall 

estimation task is defined as: 

 𝑣 = 𝑓(𝐴𝐼𝐹, 𝐶𝑇𝐶), (5.1) 

where v is the estimated value, and f(∙) is the bi-CNN with trained weights. Separate bi-CNNs 

were trained to estimate four perfusion parameter (CBV, CBF, MTT, and Tmax). Each bi-CNN 

was trained to learn important features from the input data to make an approximation. The details 

for bi-CNN models to complete the estimation task are described in the following subsections. 

5.3.1 Defining training data 

Each training example (voxel) consists of a pair: the CTC and its AIF. A CTC or AIF was a 

one-dimensional vector with a size of T, where T is the number of time points (in this study, T = 

70). A small region was included in each training voxel because a previous work suggests that 

regional information corresponding to a voxel’s surroundings can improve prediction in MR 

images [22]. This resulted in a patch size of 3 x 3 x T patch (width x height x time; the z-dimension 

is omitted) for every training example, where the center of the patch was the voxel of interest.  

5.3.2 Bi-CNNs for perfusion parameter estimation 

The proposed bi-CNN model was inspired by a denoising architecture [219]. A simple signal 

with artifacts model can be defined as: 

 𝑦 = 𝑥 ∗ 𝑘, (5.2) 

where y is the observed 1D signal (instead of a 2D image), x is the original artifact-free signal, and 

k is the convolution kernel that is caused by the artifacts. When a Fourier transform operator, 𝐹(∙), 

is applied with Tikhonov regularizer, x can be re-expressed as: 
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 𝑥 = 𝐹−1(
1

𝐹(𝑘)
{

|𝐹(𝑘)|2

|𝐹(𝑘)|2 +
1

𝑆𝑁𝑅

}) ∗ 𝑦 = 𝑘∗ ∗ 𝑦, (5.3) 

where SNR is the signal to noise ratio and k* is the pseudo inverse kernel. The new representation 

of x can be further expanded into a matrix representation by the kernel separability theorem, where 

k* is decomposed into 𝑘∗ = 𝑼 ∙ 𝑺 ∙ 𝑽𝑇. This leads to a new representation of x: 

 𝑥 = 𝑘∗ ∗ 𝑦 =∑𝑠𝑗 ∙ 𝑢𝑗
𝑗

∗ (𝑣𝑗
𝑇 ∗ 𝑦), (5.4) 

where 𝑢𝑗  and 𝑣𝑗  are the jth columns of U and V respectively, and sj is the jth singular value. This 

new expression shows that the original artifact-free signal, x, can be obtained via the weighted sum 

of separable 1D filters [219]. This motivates the design of a bi-CNN (Figure 5.1), which consisted 

of three components: (1) convolution, (2) maps stacking, and (3) fully-connected.  
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Figure 5.1: The proposed architecture of a bi-CNN for perfusion parameter estimation. It consists 

of three components: (1) convolution, (2) maps stacking, and (3) fully-connected. Feature maps 

are first learned separately for a CTC and its AIF in the convolution chains which follow the 

denoising architecture [219].  The feature maps are then stacked together in the maps stacking 

component, followed by two fully-connected layers for parameter estimation.  
 

 

 

 

 

Figure 5.2: The proposed architecture of a bi-CNN for perfusion parameter estimation. It consists 

of three components: (1) convolution, (2) maps stacking, and (3) fully-connected. Feature maps 

are first learned separately for a CTC and its AIF in the convolution chains which follow the 

denoising architecture [219].  The feature maps are then stacked together in the maps stacking 

component, followed by two fully-connected layers for parameter estimation.  
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In the convolution, a CTC and its AIF were convolved independently via multiple 

convolutional layers (i.e., two convolution chains) to remove artifacts (e.g., noise, distortion) that 

were often seen in the input perfusion signals, which was important to identify fine-grained 

features from CTC and AIF signals that help estimation. Following the denoising architecture 

[219], two separate 1D convolutions were first performed (L1 to L2 and L2 to L3), with a filter 

size of 1 x 1 x 36 and 1 x 1 x 35 respectively. Then, a convolutional layer (L3 to L4) was added 

after the denoising architecture to learn filters for detecting the spatial contributions of neighboring 

voxels. In total, 32 maps were learned (with zero-padding and a stride of one) in every 

convolutional layer. The output feature maps of the convolution chains were stacked together in 

the maps stacking layer (L5), resulting in a matrix with a size of 64 x 2 x 2 x 1. The matrix was 

connected to two fully-connected layers where hierarchical features were learned to correlate the 

AIF and CTC derived features. A rectified linear unit (ReLU) layer was attached to every 

convolutional and fully-connected layer. The output (L8) was the estimated parameter value.  

The training optimization of the network was to obtain network weights, Θ, that minimized the 

mean squared loss between the true value, V, and the estimated value, 𝑉̂(Θ), across the samples 

with size n: 

   g𝑚𝑖𝑛Θ 𝑙𝑜𝑠𝑠 =
1

𝑛
∑(𝑉𝑖 − 𝑉̂𝑖(Θ))

2

𝑛

𝑖=1

, (5.5) 

5.3.3 Model architecture for each perfusion parameter 

The proposed architecture (Figure 5.1) worked well for CBV, MTT, and Tmax estimation. For 

CBF, it is a physiological parameter representing the maximum cerebral blood flow. 

Mathematically, a CBF can be defined as the maximum value of a residue function: 

 𝐶𝐵𝐹 = 𝑚𝑎𝑥(𝑅(𝑡)) , (5.6) 
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where R(t) is the residue function of a CTC. This motivates a change in the original architecture, 

in which a max-pooling layer (with a max operator) was added to help identifying maximum 

values. The new max-pooling layer was inserted into L3 to replace the second convolutional layer 

in each convolutional chain for bi-CNNs of CBF. The size of the max-pooling layer was set to 1 x 

1 x 35 to maintain the size consistency across the rest of the network.  

5.4 Evaluation and Results 

5.4.1 Bi-CNN configuration and implementation 

There are two changes that are important to optimize the performance of the model, which are 

different from standard CNN configurations [188]. First, dropout was not included in the fully-

connected layers because it decreased performance during validation. This may be due to the 

nature of the problem of parameter estimation (i.e., estimating a continuous value versus predicting 

a categorical label), where every output unit may contribute (to some degree) to the estimated 

value. Second, the training losses can easily explode when a learning rate is too high, especially 

for perfusion parameters with high maximum values (e.g., max(CBF) = 1600). Therefore, the 

initial learning rates are different for different parameter estimations, i.e., they are 0.0005, 0.00005, 

0.005, 0.005 for CBV, CBF, MTT, and Tmax respectively, with a learning rate decay of 1e-8, 1e-

9, 1e-7, 1e-7 respectively.  

The bi-CNNs were trained with batch gradient descent (batch size: 50; epochs: 10) and 

backpropagation. A momentum of 0.9 was used. A heuristic was applied to improve the learning 

of deep CNN weights [188], where the learning rate was divided by 10 when the validation error 

rate stopped improving with the current learning rate. This heuristic was repeated three times. The 

deep CNNs were implemented in Torch7, and all the experiments were performed on a NVIDIA 

Tesla K40 GPU.  
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5.4.2 Evaluations 

There were two evaluations. First, models were evaluated using leave-one-patient-out cross-

validation, in which a validation was performed on a held-out patient and the model training was 

done using the remaining patients. The average root-mean-square error (ARMSE) of a validation 

was calculated using following definition: 

 𝐴𝑅𝑀𝑆𝐸 =
1

𝑛𝑇
∑√

1

𝑠𝑗
∑(𝑉𝑖,𝑗 − 𝑉̂𝑖,𝑗)

2

𝑠𝑗

𝑖=1

𝑛𝑇

𝑗=1

 ,  (5.7) 

where 𝑛𝑇 is the total number of patients, V is the ground truth value from bSVD, 𝑉̂ is the estimated 

value from bi-CNN, and sj is the number of samples. Second, published CBF and Tmax thresholds 

[96], [220] were used to define the salvageable tissue masks generated from the bi-CNN and the 

ground truth perfusion maps. The similarity between these masks (the ground truth salvageable 

tissue mask, A, and the estimated mask, B) was calculated using the Dice coefficient [221]: 

 Dic (𝐴, 𝐵) = 2
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 , ( 1 ) 

A value of 0 indicates no overlap, and a value of 1 indicates perfect similarity. A good overlap 

between masks is considered to have occurred when the Dice coefficient is larger than 0.7. 

5.4.3 Results 

5.4.3.1 Perfusion parameter estimation using Bi-CNNs 

The bi-CNNs achieved an ARMSE of 4.80 ml/100g, 27.4 ml/100g/min, 1.18 s, 1.33 s for CBV, 

CBF, MTT, and Tmax respectively, which are equivalent to 2.39%, 1.71%, 4.72%, and 1.19% of 

the individual perfusion parameter’s maximum value. The small ARMSE results show that the bi-

CNNs are capable of learning important patterns from the inputs to approximate perfusion 
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parameters from CTCs and AIFs without using standard deconvolution. Figure 5.2 shows several 

examples of estimated perfusion maps. We observed that all the estimated perfusion maps (CBV, 

CBF, MTT, and Tmax) showed good alignment with the ground truth and we could even identify 

hypoperfusion (i.e., less blood flow) in some of the estimated maps (red boxes). The differences 

between the estimated maps and the ground truth were minimal. 

To verify the usability of the estimated perfusion maps, the salvageable tissue masks (Figure 

5.3) were generated from a CBF cutoff of 50.2 ml/100g/min [220] and a Tmax cutoff of 4s [96] 

 

Figure 5.2: Examples of estimated perfusion maps (CBV, CBF, MTT, Tmax) generated by the bi-

CNNs. Top row: bi-CNN maps; middle row: ground truth; bottom row: the difference between 

the bi-CNN maps and the ground truth. The estimated perfusion maps show good alignment with 

the ground truth. Perfusion abnormalities (i.e., hypoperfusion) can be visually detected in some 

estimated perfusion maps (red boxes).  
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using the ground truth (from bSVD) and the estimated perfusion maps (from bi-CNN). The average 

Dice coefficients for the CBF and Tmax masks were 0.830±0.109 and 0.811±0.071 respectively, 

showing good overlap between the ground truth masks and the estimated masks. This result shows 

that the bi-CNN can generate useful masks for salvageable tissue approximation. 

5.4.3.2 Feature filters in Bi-CNNs 

Feature filters were learned in the convolution chains during training. Figure 5.4 shows some 

examples of learned convolutional filters from the first layer of the CTC convolution chain. Each 

row represents a 1 x 1 x 36 temporal filter and each column is a unit filter at a time point. As can 

be seen, these filters capture high signals (white) and low signals (black) at different time points, 

which helps the fine-grained temporal feature detections from the source signals. For example, 

feature filter 2 captured high signal mostly after 20s. In contrast, feature filter 4 captured high 

signal mostly before 15s. These feature filters are important to capture input signal patterns for 

perfusion parameter estimation. 

 

Figure 5.3: Salvageable tissue masks (red) defined on the CBF and Tmax maps generated bSVD 

and bi-CNNs. The bi-CNN generated salvageable tissue masks have good alignments with the 

bSVD generated masks. Note that the difference in contrast grayscale scale is caused by different 

range of perfusion parameter values.   
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5.5 Discussion 

The cross-validation results show that the patch-based bi-CNN model can estimate four 

perfusion parameters in stroke patients without using a standard deconvolution method (e.g., SVD) 

and the estimated perfusion parameter maps were numerically close to the ground truth maps 

generated from bSVD. Additionally, the binary mask results show the utility of the bi-CNN 

perfusion parameter maps in salvageable tissue identification. 

One limitation of this study is that the bi-CNNs were not evaluated using digital phantoms 

[218], which is a more accurate source of ground truth. The results show that it is feasible to apply 

a pattern recognition method (i.e., bi-CNN) to estimate perfusion parameter instead of using the 

standard deconvolution, which is a merit of this study. However, it would be more promising if 

the proposed models is evaluated using digital phantoms or even be compared against in vivo data 

[117]. Another limitation of the proposed method is that it generally requires more computational 

time than standard deconvolution (~5x slower) to generate an estimated perfusion map. This may 

limit the application of the proposed method in clinical practice because a fast imaging analysis is 

often required for acute stroke evaluation [222]. Therefore, future work will include evaluating the 
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Figure 5.4: Examples of learned temporal filters (1 x 1 x 36) in the first layer of the CTC 

convolution chain. Each row represents a temporal filter; each column represents a unit filter at a 

time point. These filters capture signal changes along the time dimension for parameter estimation. 
 

 

 

 

Figure 5.8: Examples of learned temporal filters (1 x 1 x 36) in the first layer of the CTC 

convolution chain. Each row represents a temporal filter; each column represents a unit filter at a 

time point. These filters capture signal changes along the time dimension for parameter estimation. 
 

 

 

 

Figure 5.9: Examples of learned temporal filters (1 x 1 x 36) in the first layer of the CTC 

convolution chain. Each row represents a temporal filter; each column represents a unit filter at a 

time point. These filters capture signal changes along the time dimension for parameter estimation. 
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proposed bi-CNNs using digital phantom, and exploring batch and multi-GPU processing to 

shorten the map generation time. More details about future works will be presented in Chapter 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

CHAPTER 6  

Acute Stroke Patient Clinical Outcome Predication  

6.1 Overview 

In recent decades, predictive models have been developed to predict acute stroke patient 

outcomes, such as patient mortality. Yet, these models often neglect the problem of between-class 

imbalance in binary classification tasks, which is common in medical datasets because oftentimes 

one class is highly dominant over another class [13]. Training classification models using an 

imbalanced dataset without proper handling may decrease model performance and lead to biased 

prediction [11]. This chapter details the comparison between six machine learning models for 

predicting stroke patient mortality at discharge. It includes methods for data balancing, which 

previous work has been focused on using only logistic regression models to predict stroke 

outcomes with imbalanced datasets [8], [100]–[104], [223], [224].  

The remainder of this chapter is organized as follows. Section 6.2 describes the dataset used 

for this study. Section 6.3 details the methods with data balancing techniques for stroke outcome 

prediction, which includes a systematic approach to identify the optimal feature set. Section 6.4 

describes evaluation methods and results for the machine learning model predictions. Section 6.5 

concludes with a discussion of the strengths and limitations of the analysis. This chapter is based 

on the content of a published work [179].  

6.2 Dataset 

The machine learning models for stroke patient outcome prediction were validated using data 

retrieved from UCLA REDCap database [166]. A total of 778 patients were identified from this 
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study cohort, each with more than 500 features, including demographic information, laboratory 

results, and medications. The patient inclusion criteria were all patients with: 1) acute ischemic 

stroke; 2) treatments received solely at UCLA; 3) hospital stays less than 20 days (patients who 

stay longer are more likely to have other conditions in addition to stroke; 4) all features values 

after using feature inclusion criteria; and 5) discharge modified Rankin Scale (discharge mRS). 

The feature inclusion criterion was only features that were available in over 90% of patient cases 

after the patients’ inclusion criteria. The prediction task was to predict patient mortality at 

discharge, and therefore discharge mRS was collapsed to two groups: alive (0-5) and dead (6). 

After applying the inclusion criteria, a total of 190 patients with 26 features were retrieved (156 

alive, 34 dead). Alive patients were labeled as class-1 and dead patients were labeled as class-2.  

6.3 Methods 

The prediction framework is shown in Figure 6.1. It mainly consists of three steps: 1) 

addressing the imbalance problem using a sampling method, called the Synthetic Minority Over-

 

Figure 6.1: The proposed prediction framework for acute ischemic stroke patient mortality 

prediction at discharge. A sub-cohort was first created. Then, the relevance between features and 

the classes were weighted by chi-square statistics, and a balanced dataset was created. The fourth 

step was an iterative process in which the highest weighted feature was first used to build 

classifiers and AUROC was calculated. Features were added to the training feature set sequentially 

in the order of weighting. After several iterations, optimal feature sets for all classifiers were 

obtained. Finally, six classifier performances were compared, and the best classifier was identified. 
 

 

 

 

 

Figure 6.2: The proposed prediction framework for acute ischemic stroke patient mortality 

prediction at discharge. A sub-cohort was first created. Then, the relevance between features and 

the classes were weighted by chi-square statistics, and a balanced dataset was created. The fourth 

step was an iterative process in which the highest weighted feature was first used to build 

classifiers and AUROC was calculated. Features were added to the training feature set sequentially 

in the order of weighting. After several iterations, optimal feature sets for all classifiers were 

obtained. Finally, six classifier performances were compared, and the best classifier was identified. 
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sampling Technique (SMOTE) [225]; 2) developing a systematic approach to identify the optimal 

feature set for every machine learning method by sequentially adding informative features until 

the performance no longer increased; and 3) training and comparing six machine learning methods 

for balanced and imbalanced datasets and determining the best model for predicting mortality at 

discharge. The details for each step are described in the following subsections. 

6.3.1 Balancing data 

The cohort subset was imbalanced (156 alive vs. 34 dead), in which the majority class (alive) 

was about five times more than the minority class (dead). In this case, trained models may predict 

all patients as alive to achieve high accuracy, but with low precision and recall [11]. Most machine 

learning algorithms do not deal with imbalanced datasets during training. In some cases, the 

minority are scattered in the feature space and the decision boundary is too specific. Therefore, we 

proposed to address this issue by using SMOTE, which is a sampling technique combining under-

sampling of the majority class with over-sampling of the minority class [225].  

SMOTE algorithm has two parts. In the first part, the minority class is over-sampled by taking 

each minority class sample and introducing new synthetic samples joining any or all the k minority 

class nearest neighbors, in which the closest neighbors are identified by Euclidean distance. 

Neighbors from the k nearest neighbors are randomly and uniformly chosen depending upon the 

number of samples required. Synthetic samples are generated using the following equation: 

 𝐹𝑛𝑒𝑤 = 𝐹𝑜𝑟𝑖𝑔 + 𝑟𝑎𝑛𝑑(0,1) × (𝐹𝑛𝑒𝑎𝑟 − 𝐹𝑜𝑟𝑖𝑔), (6.1) 

where  𝐹𝑜𝑟𝑖𝑔 is the normalized feature vector of a minority sample, 𝐹𝑛𝑒𝑎𝑟 is a randomly selected 

normalized nearest neighbor, and 𝐹𝑛𝑒𝑤  is the new synthetic sample. This approach essentially 

creates a random point along the line segment between two specific features and effectively forces 

the decision region of the minority class to become more general. Equation (6.1) is suitable for 

samples with only continuous features. If a sample also has binary features, the new value of each 
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binary feature is obtained by the majority vote (0 or 1) of all the neighbors. In the second part of 

algorithm, the majority class is under-sampled, in which random majority samples are neglected. 

However, this was not performed because the dataset was small, and all data should be considered.  

In the over-sampling step, five nearest neighbors (k) were used and one of them was randomly 

selected to generate a synthetic sample. The synthetic step was repeated until the number of 

minority was equivalent to the number of majority. The SMOTE algorithm was implemented in 

MATLAB and the new balanced dataset is denoted as SMOTE-dataset.  

6.3.2 Feature selection 

It is time-consuming to collect a comprehensive set of features for every patient, and not all 

the features are relevant. In addition, using all the features to construct a classifier may lead to 

decreased performance due to over-fitting, especially on small, imbalanced datasets, which are 

common in stroke. Therefore, a systematic approach was proposed to select a minimum feature 

set to mitigate these modeling challenges, which could also be externally validated more easily. 

The systematic approach consisted of several steps. First, chi-square tests were used to weight 

the association between features (categorical variables/binned continuous variables) and discharge 

mRS in the original dataset.  Then, the feature with the highest association weight was used to 

construct a single-variable classifier. The area under the receiver operating curve (AUROC) of 

each classifier was computed. The feature with the second highest association weight was then 

added, and the AUROC was re-calculated. This process of adding features was repeated until an 

optimal feature set for a machine learning method was obtained. The optimal feature set was 

defined as the first point at which adding any additional features did not increase the performance.  

After identifying the optimal feature set, the database was revisited to retrieve an additional set 

of patients who were not used in training and had all the optimal features. This set of patients was 

used as an independent test dataset.  
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6.3.3 Discharge mRS prediction 

Early research has emphasized using logistic regression models [24] to predict stroke outcome 

[7-10].  None have compared the performance of different machine learning methods in stroke 

outcome prediction, particularly with a balanced dataset. Therefore, five common machine 

learning methods were investigated. They were Naïve Bayes (NB) [226], Support Vector Machine 

(SVM) [200], Decision Tree (DT) [226], Random Forests (RF) [185], and Logistic Regression 

(LR) [198]. In addition, Gumus et. al. [227] have shown the effectiveness of using PCA to extract 

principal components for SVM classification. Therefore, the performance of a combined method, 

principal component analysis followed by support vector machine (PCA+SVM), was also 

investigated. All models were compared using AUROC and the best one was chosen for stroke 

patient mortality prediction at discharge. Models were fitted and compared using RapidMiner 

(RM) [228]. After identifying the best model and the number of top features, the database was 

revisited to identify patients that were not included in the initial filtering due to missing data, but 

had all the top features. These patients were then used as an independent test dataset to test the 

classifier. A Mann-Whitney U test and a weighted Wilcoxon signed-rank test were used to verify 

if the best classifier performance was better than random and was statistically significant.  

6.4 Results 

6.4.1 SMOTE sampling 

There were 190 patients in the data cohort with 156 class-1 patients (alive) and 34 class-2 

patients (dead). The balanced SMOTE-dataset had 156 class-1 patients and 156 class-2 patients. 

Table 6.1 shows the feature distribution of class-1 and class-2 patients before and after SMOTE.  
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Table 6.1: Feature distribution of alive and dead patients before and after SMOTE. 

  

Alive 

Dead 

(Before) 

Dead 

(After) 

Size  156 34 156 

Continuous 

features 

 
Average (SD) Average (SD) Average (SD) 

 Age 67.9 (17.1) 81.3 (9.6) 81.4 (8.2) 

 Pre-NIHSS 12.2 (7.2) 18.2 (5.9) 18.2 (4.8) 

 Systolic blood pressure 151.0 (28.2) 147.3 (31.0) 145.5 (27.5) 

 Diastolic blood pressure 82.4 (17.7) 79.1 (19.1) 77.9 (16.3) 

 Blood glucose 131.7 (48.1) 164.8 (74.7) 160.8 (63.0) 

 Blood platelet count 2245.0 (75.6) 181.5 (54.9) 179.4 (50.5) 

 Hematocrit 39.0 (5.3) 38.7 (5.4) 38.4 (4.8) 

 Time difference between first 

image and symptom (mins) 

178.8 (152.8) 166.2 (109.3) 171.4 (96.3) 

 Time difference between first 

image and admission (mins) 

44.7 (27.7) 49.4 (34.7) 48.9 (30.7) 

Binary 

features 

 % of presence  % of presence  % of presence 

 Gender (Male) 44.9 52.9 37.8 

 Hypertension 66.7 82.4 84.6 

 Diabetes 16.7 20.6 6.4 

 Hyperlipidemia 27.6 35.3 18.0 

 Atrial fib 30.1 55.9 41.7 

 Myocardial infarction 12.12 38.2 25.0 

 Coronary artery bypass 

surgery 

7.7 11.8 2.6 

 Congestive heart failure 3.2 26.5 8.3 

 Peripheral vascular disease 0.0 2.9 0.6 

 Carotid endarterectomy 

angioplasty 

1.9 5.9 1.3 

 Brain aneurysm 0.0 2.9 0.6 

 Active internal bleeding 0.0 0.0 0.0 

 Low platelet count 0.0 0.0 0.0 

 Abnormal glucose 0.0 0.0 0.0 

 Diabetes medication 14.7 32.4 10.9 

 Hypertension medication 53.2 82.4 86.5 

 Hyperlipidemia medication 16.7 23.5 7.7 
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Figure 6.2A shows the two-dimensional data distribution before SMOTE sampling and Figure 

6.2B shows the data distribution after SMOTE sampling. Pre-treatment National Institutes of 

Health Stroke Scale (pre-NIHSS) and age were used in the x-axis and y-axis respectively because 

a previous work found that they were predictive of stroke outcome [102]. The original class-2 

distribution was scattered, and it was hard to determine where the decision boundary should be. 

After oversampling by SMOTE, it was clear to observe that class-2 patients clustered in the region 

of high age and high Pre-NIHSS.  

6.4.2 Feature selection 

Chi-squared statistics (weights) were calculated to obtain a ranking of feature importance. 

Table 6.2 shows the top-10 normalized chi-squared statistics. Six out of 10 statistics belonged to 

continuous features. Among the top-10 features, pre-NIHSS and age were the first two features 

that were correlated the most to the discharge mRS.  

 

Figure 6.2: Data distribution before and after SMOTE sampling. (A) Before SMOTE, (B) After 

SMOTE.  
 

 

 

 

 
 

 

 

 

 

 

 

Figure 6.5: Data distribution before and after SMOTE sampling. (A) Before SMOTE, (B) After 

SMOTE.  
 

 

 

 

 



99 

 

6.4.3 Discharge mRS prediction models 

Ten-fold cross-validation was performed to compare different models. Model performance and 

model bias were evaluated using AUROC and F1-score respectively [229]. For the original dataset, 

nine folds of data were used to train classifiers and one data fold was classified. For the SMOTE-

dataset, nine folds of data were balanced using SMOTE first and then classifiers were trained using 

the balanced data. The held-out imbalanced one-fold data was then classified. Features were added 

sequentially to train a classifier in the order of largest weight to smallest weight.  

The AUROCs of each classifier with respect to features is shown in Figure 6.3. The 

performance of classifiers with optimal feature set is summarized in Table 6.3. Among all of the 

classifiers trained with the SMOTE-dataset, SVM performed the best with an AUROC of 0.865 

Table 6.2: Top ten normalized weights by chi-squared statistic. 

Feature Weight 

Pre-NIHSS 1.000 

Age 0.631 

Patient history of congestive heart failure 0.565 

Platelet count 0.450 

Patient history of myocardial Infarction 0.346 

Serum glucose 0.325 

Patient on hypertension medication 0.249 

Time difference between the first MRI image and 

admission 
0.243 

Systolic blood pressure 0.223 

Patient history of atrial fibrillation 0.209 

 

 

 

 
 

 

 

 

 

 

Table 6.5: Top ten normalized weights by chi-squared statistic. 

Feature Weight 

Pre-NIHSS 1.000 

Age 0.631 

Patient history of congestive heart failure 0.565 

Platelet count 0.450 

Patient history of myocardial Infarction 0.346 

Serum glucose 0.325 

Patient on hypertension medication 0.249 

Time difference between the first MRI image and 
0.243 
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and a F1-score of 0.594. PCA+SVM did not perform well, which could be due to a scenario where 

two classes overlapped more after projection [136]. RF and NB both generally performed more 

poorly than SVM in all feature sizes. DT had the worst performance with the first optimal AUROC 

 

 

Figure 6.3: The AUROCs of classifiers with respect to different number of top-ranked features. 

The size of the optimal feature set for each classifier was indicated by the enlarged marker. Each 

classifier has different size of optimal feature set. Among all classifiers, SVM has the highest 

AUROC with six features being used. 
 

 
 

 
 

 

 

 

 

 

 

 

Figure 6.8: The AUROCs of classifiers with respect to different number of top-ranked features. 

The size of the optimal feature set for each classifier was indicated by the enlarged marker. Each 

classifier has different size of optimal feature set. Among all classifiers, SVM has the highest 

AUROC with 6 features being used. 
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Table 6.3: The size of the optimal feature set for each classifier and the cross-validation result. 

Classifier 
Optimal feature 

set size 

SMOTE-dataset Original dataset 

AUROC F1-score AUROC F1-score 

SVM 6 0.865 0.594 0.868 0.336 

PCA&SVM 4 0.802 0.488 0.856 0.368 

DT 2 0.695 0.441 0.709 0.061 

RF 5 0.828 0.401 0.789 0.249 

NB 4 0.831 0.560 0.839 0.354 

LR 4 0.859 0.582 0.867 0.226 

 
 

 

 

 

 

 

Table 6.8: The size of the optimal feature set for each classifier and the cross-validation result. 

Classifier 
Optimal feature 

set size 

SMOTE-dataset Original dataset 

AUROC F1-score AUROC F1-score 

SVM 6 0.865 0.594 0.868 0.336 
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at 0.695. This is mostly because more features were required to build a good classifier based on 

the nature of DT. LR had the closest performance to SVM. However, previous research has shown 

that SVM performs better than LR in the case of multivariate and mixture of distributions with a 

better (or equivalent) misclassification rate [230]. Therefore, SVM is determined to be the most 

suitable classifier for acute ischemic stroke mortality prediction at discharge. 

After identifying the top six features for the SVM model, the database was revisited, and an 

additional 39 patients were retrieved and used as an independent test dataset to test the classifier. 

Six-variable SVM classifier trained with the SMOTE-dataset achieved higher AUROC and F1-

score (Table 6.4). Both SVM1 (trained without SMOTE) and SVM2 (trained with SMOTE) were 

statistically better than random (p=0.020 and p=0.011, respectively). The performance of SVM2 

was significantly better than the performance of SVM1 (p=0.039). These results suggest that 

balancing data (i.e., SMOTE) yields an improved classifier for predicting mortality at discharge in 

acute stroke patients. 

6.5 Discussion 

The performance of SVM, PCA-SVM, DT, RF, NB, and LR models were compared for 

predicting stroke patient mortality at discharge and SVM performed the best. With only one feature 

(Pre-NIHSS), all classifiers had moderate AUROCs (0.650-0.700) in the training dataset. The 

Table 6.4: Performance comparison of six-variable SVMs. 

 SVM 1 SVM 2 

Number of testing data 32 alive, 7 dead 

Number of features 6 

Applied SMOTE? No Yes 

c-statistic 0.750 0.781 

F1-score 0.400 0.500 
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performance gradually increased as more features were added. Each classifier reached to the first 

maximum AUROCs at a different number of features, with performance for each leveling off with 

additional features. This validates the hypothesis that more features may not necessarily improve 

the performance. 

The size of the optimal feature set for SVM was six: Pre-NIHSS, age, platelet count, serum 

glucose, congestive heart failure, and myocardial infarction. These features are routinely collected 

in acute stroke patients. Pre-NIHSS is a standard measure of impairment caused by a stroke, with 

most patients receiving Pre-NIHSS assessment immediately after hospital admission. Pre-NIHSS, 

age, platelet count, and serum glucose level have also been shown to be relevant to stroke outcomes 

[102], [231], [232]. Therefore, it is reasonable to expect other institutions may maintain these 

variables and could validate the model.  

There are a few limitations in this study. First, the distributions of binary features became more 

imbalanced after SMOTE (Table 6.1). A possible solution to this problem would be to assign 

values to binary features by sampling the probability distribution of nearest neighbors, rather than 

a majority vote. Second, mortality is a standard measure that most existing stroke models aim to 

predict. However, patients have different degrees of disability even though they are still alive. One 

clear difference is whether a patient can live independently or dependently [233]. A possible 

improvement is to extend the prediction ability to more classes (independent, dependent, and 

death) when a larger dataset is available. More details about future works will be presented in 

Chapter 7.   
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CHAPTER 7  

Conclusion 

7.1  Overview 

This chapter summarizes the results and contributions of this dissertation. It also suggests 

future work and directions as a result of this research. This chapter concludes by giving a 

concluding remark in stroke treatment guidance.   

7.2 Summary of Contributions and Results 

This dissertation presents methods that improve acute ischemic stroke imaging analysis to help 

guide stroke treatment. The approaches and analyses focus on several aspects of stroke, including 

tissue outcome classification, time since stroke classification, perfusion parameter estimation, and 

stroke mortality prediction. With these methods, researchers and clinicians can gain more insight 

of a stroke patient status and therefore may make better judgments on the stroke treatment plan. 

The specific contributions of this dissertation are as follows: 

• A deep convolutional neural network to predict acute ischemic stroke tissue outcome. We 

presented a novel deep CNN architecture that used contralateral information to better 

predict stroke tissue outcome using source perfusion images. 

• A robust machine learning approach to classify stroke onset time using MR images. We 

presented an end-to-end machine learning framework, which included deep learning 

feature generation, to classify acute ischemic stroke onset time (<4.5 hrs). 
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• A bi-input convolutional neural network for perfusion parameter estimation. We presented 

a convolution neural network that adapted a denoising architecture to estimate perfusion 

parameters and demonstrated that the perfusion parameter estimation could be achieved 

without deconvolution.   

• A machine learning model for acute stroke outcome prediction with an imbalanced data 

set. We described the imbalance data problem in stroke data set and developed a machine 

learning model for stroke patient mortality prediction.  

Predicting ischemic tissue outcome is a challenging and important task for better stroke 

evaluation and treatment planning. Knowing the potential tissue outcome before the use of an 

intervention has the potential to provide important information to clinicians about the relative value 

of interventions. In this dissertation, we demonstrated the use of deep CNNs in ischemic tissue 

outcome prediction (infarcted vs non-infarcted) and proposed a deep CNN that outperformed state-

of-the-art models in Chapter 3. There are two merits of the proposed model. First, the proposed 

algorithm can automatically learn hierarchical imaging features from only source pre-treatment 

perfusion images, which eliminates the use of AIF and deconvolution. The learned features 

represent more complicated characteristics than just the summary perfusion parameters (e.g., time-

to-peak), and the results in Section 3.4.4.2 shows that these features are predictive of tissue 

outcome. Second, the deep learning algorithm can better capture non-linear relationships than 

other models. Such non-linear relationships cannot be captured by linear models, such as GLMs. 

In Section 3.4.4.2, compared to models such as SR-KDA and SVM, the deep CNNs automatically 

learned spatio-temporal features from the source perfusion images that are more complex and 

predictive than perfusion parameters (e.g., Tmax). In Sections 3.4.4.2 and 3.4.4.3, the results show 
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that the use of contralateral patches (as matched controls) leads to the greater learning capability 

of the proposed CNNs. Overall, the proposed model may benefit the weight initialization of the 

deep learning models for body parts other than the brain when MR perfusion images are available.  

Determining stroke onset time independent of patient history is a challenging and important 

task for better stroke evaluation and stroke treatment decision-making. We proposed and 

performed a rigorous evaluation of the machine learning approach on TSS classification. This 

approach consisted of novel baseline and deep features generation using autoencoders, and the 

results in Section 4.5.1 show that the proposed deep feature generation approach achieved the best 

performance. In Sections 4.5.2 and 4.5.4, the ROI sensitivity analysis and the subgroup 

classification analysis demonstrate that the deep feature generation technique is robust to the 

change in ROI mask and the image acquisition parameters. To tackle the criticism of deep learning 

technique as a “black-box” approach, we suggested a feature correlation analysis in Section 4.4.2 

and the results in Section 4.5.3 show that the deep hidden representations correlated with certain 

tissue perfusion status. Overall, the proposed machine learning framework is highly applicable to 

any task when high dimensional data is used (e.g., four-dimensional PWIs) while the imaging data 

set is limited.  

In Chapter 5, the bi-input convolutional neural network approach builds the basis for 

estimating perfusion parameters without using deconvolution. This works provides a methodology 

to estimate perfusion parameters using pattern recognition. The results in Section 5.4.3 

demonstrate the deep learning approach works well and shows that it is possible to extract patterns 

from input patches to estimate perfusion parameters. This work serves as the foundation to move 

towards better perfusion parameters estimation, which are often used for stroke evaluation, such 
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as penumbra calculation [234]. In Chapter 6, we provided an analysis on machine learning models 

trained with imbalance data and suggested a systemic approach to tackle the imbalance problem 

for stroke outcome prediction. The results in Section 6.4 show that the six-variable SVM is the 

best model to predict stroke patient discharge mortality. This work illustrates the model bias 

prediction caused by using imbalanced data set and points out the significance of using balanced 

data set. The insights from this analysis are important to any task that involves an imbalance 

clinical dataset. Because of this work, the proposed methods for tissue outcome prediction, TSS 

classification, and perfusion parameter estimation all include a data balancing step, which is 

critical for model performance.  

7.3 Future Work 

While a substantial amount of work has been done to develop approaches presented in Chapters 

3-6, there are ways to improve the existing methodologies. A sample of such improvements are 

briefly discussed in the following sections.  

7.3.1 Developing a multimodal framework 

Because of the strict imaging criterion to define final infarct volume (3-7 days post-FLAIR), 

the collected data set was not big enough for patient subgroup analysis, and this limits the 

development of the deep CNNs model on tissue outcome prediction using clinical and treatment 

variables. Multi-modal deep learning frameworks have been developed that use different 

modalities of data (e.g., clinical and imaging data) to predict an outcome [51], [235], and this kind 

of framework can be adapted in stroke image analysis. In future work, multi-modal frameworks 
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may be combined with multi-task learning [236] to perform tissue outcome classification, stroke 

mortality prediction, and TSS classification simultaneously.  

7.3.2 Improving the deep models by advanced architectures 

Recent developments in deep model building blocks have raised significant interest. Some of 

these building blocks are slowly becoming standard layers in CNNs, such as the residual block 

[149], fire block [237], dense block [189], and squeeze-and-excitation block [150]. One possible 

extension of this dissertation is to apply these blocks or adapt the concepts of these blocks on the 

current proposed networks in tissue outcome prediction, TSS classification, and perfusion 

parameter estimation. The advantage of using these building blocks is not only to learn better 

features, but also to provide extra information to help interpret the models. For example, the 

squeeze-and-excitation block may provide the intra-correlation of feature maps within a 

convolutional layer. 

7.3.3 Interpreting deep models 

Deep learning approaches have been criticized as “black-boxes,” in which the learning and 

classification mechanisms are too complicated and difficult to understand, engendering doubt in 

medical applicability because clinical decision making is ideally evidence-based [238]. In this 

dissertation, we provided a methodology to interpret the complex deep AE features for TSS 

classification (Section 4.4.2). This is an important first step because it shows clinicians what these 

deep AE features may represent, helping them to understand more about how the classifiers make 

the classification and why they can achieve better performance. The next step may be using 

visualization techniques [148], [239]–[241] to bring further insight into stroke image analysis, like 
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highlighting important brain regions or signals that drive a specific classification. Through a 

comprehensive visualization tool, clinicians may then be able to associate clinical reasoning (e.g., 

the location and the strength of the highlighted signals) with classification, making the deep 

learning approach more intuitive and therefore integral to the medical decision-making process.  

7.3.4 Generalizing the TSS classification  

The proposed machine learning approach was only evaluated using MR images. Computed 

tomography (CT) perfusion imaging is cheaper, faster, and more readily available than MRI and 

could become the imaging modality of choice for acute ischemic stroke patients if TSS analysis 

on CT images was accurate and independent of clinical history. Future work could collect the CT 

perfusion images and validate the robustness of the model on this new imaging modality. 

Additionally, the TSS classification may not have to be limited to <4.5hrs only. Future work could 

change the classification model to classify different cutoff time points (e.g., <6hrs [71] or <24hrs 

[72]), or even make the classification model into a regression model to make it more generalizable.  

7.4 Concluding Remarks  

The goal of stroke treatments is to limit mortality and reduce the long-term effects of stroke. 

Making stroke treatment decisions is a complicated process that involves several factors, including 

the patient’s risk of hemorrhage and the findings in the perfusion images (e.g., the size of a 

penumbra). Yet the relationships between these factors and the patient outcomes (e.g., tissue fate, 

discharge mortality) are not fully understood. These challenges highlight the need for assisting 

clinicians with better understanding of stroke images to provide better stroke treatments. The 

contributions of this dissertation lay the foundation towards better understanding and utilizing 
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stroke images. First, the contributions include developing a pattern recognition approach to 

estimate perfusion parameters, which are often used to evaluate the size of a penumbra. This 

creates a base for the future research to improve perfusion parameter estimation using machine 

learning models. Second, this dissertation presents models using patient imaging and clinical 

features to predict tissue fate and patient discharge mortality. These models may generate extra 

information to assist clinicians for stroke treatment guidance. Lastly, the contributions also include 

a machine learning approach to classify TSS, which may serve as alternative to the DWI-FLAIR 

mismatch method. This new way provides a foundation to use imaging data in TSS classification, 

which could ultimately provide decision-making guidance for clinicians in acute stroke 

intervention treatment. 
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