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Stepwise Square Integrability for Nilradicals of Parabolic Subgroups

and Maximal Amenable Subgroups

Joseph A. Wolf∗

September 23, 2014

Abstract

In a series of recent papers ([15], [16], [17], [18]) we extended the notion of square integrability, for
representations of nilpotent Lie groups, to that of stepwise square integrability. There we discussed a
number of applications based on the fact that nilradicals of minimal parabolic subgroups of real reductive
Lie groups are stepwise square integrable. In Part I we prove stepwise square integrability for nilradicals
of arbitrary parabolic subgroups of real reductive Lie groups. This is technically more delicate than the
case of minimal parabolics. We further discuss applications to Plancherel formulae and Fourier inversion
formulae for maximal exponential solvable subgroups of parabolics and maximal aamenable subgroups of
real reductive Lie groups. Finally, in Part II, we extend a number of those results to (infinite dimensional)
direct limit parabolics.

Part I: Finite Dimensional Theory

1 Stepwise Square Integrable Representations

There is a very precise theory of square integrable representations of nilpotent Lie groups due to Moore
and the author [7]. It is based on the Kirillov’s general representation theory [2] for nilpotent Lie groups,
in which he introduced coadjoint orbit theory to the subject. When a nilpotent Lie group has square
integrable representations its representation theory, Plancherel and Fourier inversion formulae, and other
aspects of real analysis, become explicit and transparent.

Somewhat later it turned out that many familiar nilpotent Lie groups have foliations, in fact semidi-
rect product towers composed of subgroups that have square integrable representations. These include
nilradicals of minimal parabolic subgroups, e.g. the group of strictly upper triangular real or complex ma-
trices. All the analytic benefits of square integrability carry over to stepwise square integrable nilpotent
Lie groups.

In order to indicate our results here we must recall the notions of square integrability and stepwise
square integrability in sufficient detail to carry them over to nilradicals of arbitrary parabolic subgroups
of real reductive Lie groups.

A connected simply connected Lie group N with center Z is called square integrable, or is said to have
square integrable reprsentations, if it has unitary representations π whose coefficients fu,v(x) = 〈u, π(x)v〉
satisfy |fu,v| ∈ L2(N/Z). C.C. Moore and the author worked out the structure and representation theory
of these groups [7]. If N has one such square integrable representation then there is a certain polynomial
function Pf(λ) on the linear dual space z∗ of the Lie algebra of Z that is key to harmonic analysis on N .
Here Pf(λ) is the Pfaffian of the antisymmetric bilinear form on n/z given by bλ(x, y) = λ([x, y]). The
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square integrable representations of N are the πλ (corresponding to coadjoint orbits Ad∗(N)λ) where
λ ∈ z∗ with Pf(λ) 6= 0, Plancherel almost irreducible unitary representations of N are square integrable,

and, up to an explicit constant, |Pf(λ)| is the Plancherel density on the unitary dual N̂ at πλ. Concretely,

Theorem 1.1. [7] Let N be a connected simply connected nilpotent Lie group that has square integrable
representations. Let Z be its center and v a vector space complement to z in n, so v∗ = {γ ∈ n∗ | γ|z = 0}.
If f is a Schwartz class function N → C and x ∈ N then

(1.2) f(x) = c

∫
z∗

Θπλ(rxf)|Pf(λ)|dλ

where c = d!2d with 2d = dim n/z , rxf is the right translate (rxf)(y) = f(yx), and Θ is the distribution
character

(1.3) Θπλ(f) = c−1|Pf(λ)|−1

∫
O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N).

Here f1 is the lift f1(ξ) = f(exp(ξ)) of f from N to n, f̂1 is its classical Fourier transform, O(λ) is the
coadjoint orbit Ad∗(N)λ = v∗ + λ, and dνλ is the translate of normalized Lebesgue measure from v∗ to
Ad∗(N)λ.

More generally, we will consider the situation where

(1.4)

N =L1L2 . . . Lm−1Lm where

(a) each factor Lr has unitary representations with coefficients in L2(Lr/Zr),

(b) each Nr := L1L2 . . . Lr is a normal subgroup of N with Nr = Nr−1 o Lr semidirect,

(c) if r = s then [lr, zs] = 0

The conditions of (1.4) are sufficient to construct the representations of interest to us here, but not
sufficient to compute the Pfaffian that is the Plancherel density. For that, in the past we used the strong
computability condition

(1.5)
Decompose lr = zr + vr and n = s + v (vector space direct) where s = ⊕ zr and v = ⊕ vr; then

[lr, ls] ⊂ vs for r > s.

The problem is that the strong computability condition (1.5) can fail for some non–minimal real parabol-
ics, but we will see that, for the Plancherel density, we only need the weak computability condition

(1.6)
Decompose lr = l′r ⊕ l′′r , direct sum of ideals, where l′′r ⊂ zr and vr ⊂ l′r; then

[lr, ls] ⊂ l′′s + vs for r > s.

where we retain lr = zr + vr and n = s + v.

In the setting of (1.4), (1.5) and (1.6) it is useful to denote

(1.7)

(a) dr = 1
2

dim(lr/zr) so 1
2

dim(n/s) = d1 + · · ·+ dm , and c = 2d1+···+dmd1!d2! . . . dm!

(b) bλr : (x, y) 7→ λ([x, y]) viewed as a bilinear form on lr/zr

(c) S = Z1Z2 . . . Zm = Z1 × · · · × Zm where Zr is the center of Lr

(d) P : polynomial P (λ) = Pf(bλ1)Pf(bλ2) . . .Pf(bλm) on s∗

(e) t∗ = {λ ∈ s∗ | P (λ) 6= 0}

(f) πλ ∈ N̂ where λ ∈ t∗ : irreducible unitary representation of N = L1L2 . . . Lm as follows.

Construction 1.8. [16] Given λ ∈ t∗, in other words λ = λ1 + · · · + λm where λr ∈ zr with each

Pf(bλr ) 6= 0, we construct πλ ∈ N̂ by recursion on m. If m = 1 then πλ is a square integrable
representation of N = L1 . Now assume m > 1. Then we have the irreducible unitary representation
πλ1+···+λm−1 of L1L2 . . . Lm−1 . and (1.4(c)) shows that Lm stabilizes the untary equivalence class of
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πλ1+···+λm−1 . Since Lm is topologically contractible the Mackey obstruction vanishes and πλ1+···+λm−1

extends to an irreducible unitary representation π′λ1+···+λm−1
on N on the same Hilbert space. View the

square integrable representation πλm of Lm as a representation ofN whose kernel contains L1L2 . . . Lm−1 .
Then we define πλ = π′λ1+···+λm−1

⊗̂πλm . ♦
Definition 1.9. The representations πλ of (1.7(f)), constructed just above, are the stepwise square
integrable representations of N relative to the decomposition (1.4). If N has stepwise square integrable
representations relative to (1.4) we will say that N is stepwise square integrable. ♦
Remark 1.10. Construction 1.8 of the stepwise square integrable representations πλ uses (1.4(c)),
[lr, zs] = 0 for r > s, so that Lr stabilizes the unitary equivalence class of πλ1+···+λr−1 . The condition
(1.5), [lr, ls] ⊂ v for r > s, enters the picture in proving that the polynomial P of (1.7(d)) is the Pfaffian
Pf = Pfn of bλ on n/s. However we don’t need that, and the weaker (1.6) is sufficient to show that P is
the Plancherel density. See Theorem 1.12 below. ♦
Lemma 1.11. [16] Assume that N has stepwise square integrable representations. Then Plancherel
measure is concentrated on the set {πλ | λ ∈ t∗} of all stepwise square integrable representations.

Theorem 1.1 extends to the stepwise square integrable setting, as follows.

Theorem 1.12. [16] Let N be a connected simply connected nilpotent Lie group that satisfies (1.4) and
(1.6). Then Plancherel measure for N is concentrated on {πλ | λ ∈ t∗}. If λ ∈ t∗, and if u and v belong
to the representation space Hπλ of πλ, then the coefficient fu,v(x) = 〈u, πν(x)v〉 satisfies

(1.13) ||fu,v||2L2(N/S) =
||u||2||v||2

|P (λ)| .

The distribution character Θπλ of πλ satisfies

(1.14) Θπλ(f) = c−1|P (λ)|−1

∫
O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N)

where C(N) is the Schwartz space, f1 is the lift f1(ξ) = f(exp(ξ)), f̂1 is its classical Fourier transform,
O(λ) is the coadjoint orbit Ad∗(N)λ = v∗ + λ, and dνλ is the translate of normalized Lebesgue measure
from v∗ to Ad∗(N)λ. The Plancherel formula on N is

(1.15) f(x) = c

∫
t∗

Θπλ(rxf)|P (λ)|dλ for f ∈ C(N).

Theorem 1.12 is proved in [16] for groups N that satisfy (1.4) together with (1.5). We will need it for
(1.4) together with the somewhat less restrictive (1.6). The only point where the argument needs a slight
modification is in the proof of (1.13). The action of Lm on l1 + · · · + lm−1 is unipotent, so there is an
Lm–invariant measure preserving decomposition Nm/Sm = (L1/Z1)× · · · × (Nm/Zm). The case m = 1

is the property |fu,v|2L2(L1/Z1) = ||u||2||v||2
|Pf(λ)| < ∞ of coefficients of square integrable representations.

By induction on m, |fu,v|2L2(Nm−1/Sm−1)) = ||u||2||v||2
|Pf(λ1)...Pf(λm−1)| for Nm−1 . Let π′ be the extension of

π ∈ N̂m−1 to N . Let u, v ∈ Hπλ1+...λm−1
and write vy for π′λ1+···+λm−1

(y)v. Let u′, v′ ∈ Hπλm .

||fu⊗u′,v⊗v′ ||2L2(N/S) =

∫
N/S

|〈u, π′λ1+...λm−1
(xy)v〉|2|〈u′, πλm(y)v′〉|2d(xySm)

=

∫
Lm/Zm

|〈u′, πλm(y)v′〉|2
(∫

Nm−1/Sm−1

|〈u, π′λ1+...λm−1
(xy)v〉|2d(xSm−1)

)
d(yZm)

=

∫
Lm/Zm

|〈u′, πλm(y)v′〉|2
(∫

Nm−1/Sm−1

|〈u, π′λ1+...λm−1
(x)vy〉|2d(xSm−1)

)
d(yZm)

=

∫
Lm/Zm

|〈u′, πλm(y)v′〉|2
(∫

Nm−1/Sm−1

|〈u, πλ1+...λm−1(x)vy〉|2d(xSm−1)

)
d(yZm)

=
||u||2||vy||2

|Pf(λ1)...Pf(λm−1)|

∫
Nm/Zm

|〈u′, πλm(y)v′〉|2d(yZm)

= ||u||2||v||2
|Pf(λ1)...Pf(λm−1)|

∫
Nm/Zm

|〈u′, πλm(y)v′〉|2d(yZm) =
||u⊗ u′||2||v ⊗ v′||2

|Pf(λ1) . . .Pf(λm)| <∞.
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Thus Theorem 1.12 is valid as stated.

The first goal of this note is to show that if N is the nilradical of a parabolic subgroup Q of a real
reductive Lie group, then N is stepwise square integrable, specifically that it satisfies (1.4) and (1.6), so
that Theorem 1.12 applies to it. That is Theorem 4.10. The second goal is to examine applications to
Fourier analysis on the parabolic Q and to some infinite dimensional parabolics.

In Section 2 we recall the restricted root machinery used in [16] to show that nilradicals of minimal
parabolics are stepwise square integrable. In Section 3 we make a first approximation to refine that
machinery to apply to general parabolics. That is enough to see that they satisfy (1.4) and construct
the stepwise square integrable representations, but not enough to compute the Plancherel density. Then
in Section 4 we complete the argument, proving (1.6) to compute the Plancherel density and verify the
estimates and inversion formula of Theorem 1.12 for arbitrary parabolic subgroups of real reductive Lie
groups. The main result is Theorem 4.10.

In Section 5 we apply Theorem 4.10 to obtain explicit Plancherel and Fourier inversion formulae for
the maximal exponential solvable subgroups AN in real real parabolic subgroups Q = MAN , follow-
ing the lines of the minimal parabolic case studied in [17]. The key point here is computation of the
Dixmier–Pukánszky operator D for the group AN . Recall that D is a pseudo–differential operator that
compensates lack of unimodularity in AN .

There are technical obstacles to extending our results to non-minimal parabolics Q = MAN , many
involving the orbit types for noncompact reductive groups M , but in Section 6 we do carry out the
extension to the maximal amenable subgroups (M ∩ K)AN . This covers all the maximal amenable
subgroups of G that satisfy a certain technical condition [6].

Finally, in Section 6 we look at direct limit parabolics in direct limit locally reductive Lie groups.

2 Specialization to Minimal Parabolics

In order to prove our result for nilradicals of arbitrary parabolics we need to study the construction
that gives the decomposition N = L1L2 . . . Lm of 1.4 and the form of the Pfaffian polynomials for the
individual the square integrable layers Lr .

Let G be a connected real reductive Lie group, G = KAN an Iwasawa decompsition, and Q = MAN
the corresponding minimal parabolic subgroup. Complete a to a Cartan subalgebra h of g. Then h = t+a
with t = h ∩ k. Now we have root systems

• ∆(gC, hC): roots of gC relative to hC (ordinary roots),

• ∆(g, a): roots of g relative to a (restricted roots),

• ∆0(g, a) = {α ∈ ∆(g, a) | 2α /∈ ∆(g, a)} (nonmultipliable restricted roots).

The choice of n is the same as the choice of a positive restricted root systen ∆+(g, a). Define

(2.1)
β1 ∈ ∆+(g, a) is a maximal positive restricted root and

βr+1 ∈ ∆+(g, a) is a maximum among the roots of ∆+(g, a) orthogonal to all βi with i 5 r

The resulting roots (we usually say root for restricted root) βr , 1 5 r 5 m, are mutually strongly
orthogonal, in particular mutually orthogonal, and each βr ∈ ∆0(g, a). For 1 5 r 5 m define

(2.2)
∆+

1 = {α ∈ ∆+(g, a) | β1 − α ∈ ∆+(g, a)} and

∆+
r+1 = {α ∈ ∆+(g, a) \ (∆+

1 ∪ · · · ∪∆+
r ) | βr+1 − α ∈ ∆+(g, a)}.

We know [16, Lemma 6.1] that if α ∈ ∆+(g, a) then either α ∈ {β1, . . . , βm} or α belongs to exactly one
of the sets ∆+

r . Further [16, Lemma 6.2] if α ∈ ∆+(g, a) then either α ∈ {β1, . . . , βm} or α belongs to
exactly one of the sets ∆+

r .

The layers are are the

(2.3) lr = gβr +
∑

∆+
r

gα for 1 5 r 5 m
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Denote

(2.4) sβr is the Weyl group reflection in βr and σr : ∆(g, a)→ ∆(g, a) by σr(α) = −sβr (α).

Then σr leaves βr fixed and preserves ∆+
r . Further, if α, α′ ∈ ∆+

r then α+α′ is a (restricted) root if and
only if α′ = σr(α), and in that case α+ α′ = βr .

From this it follows [16, Theorem 6.11] that N = L1L2 . . . Lm satisfies (1.4) and (1.5), so it has
stepwise square integrable representations. Further [16, Lemma 6.4] the Lr are Heisenberg groups in a
sense that if λr ∈ z∗r with Pf lr (λr) 6= 0 then lr/ kerλr is an ordinary Heisenberg group of dimension
dim vr + 1.

3 Intersection with an Arbitrary Real Parabolic

Every parabolic subgroup ofG is conjugate to a parabolic that contains the minimal parabolicQ = MAN .
Let Ψ denote the set of simple roots for the positive system ∆+(g, a). Then the parabolic subgroups of
G that contain Q are in one to one correspondence with the subsets Φ ⊂ Ψ, say QΦ ↔ Φ, as follows.
Denote Ψ = {ψi} and set

(3.1)
Φred =

{
α =

∑
ψi∈Ψ

niψi ∈ ∆(g, a) | ni = 0 whenever ψi /∈ Φ
}

Φnil =
{
α =

∑
ψi∈Ψ

niψi ∈ ∆+(g, a) | ni > 0 for some ψi /∈ Φ
}
.

Then, on the Lie algebra level, qΦ = mΦ + aΦ + nΦ where

(3.2)

aΦ = {ξ ∈ a | ψ(ξ) = 0 for all ψ ∈ Φ} = Φ⊥ ,

mΦ + aΦ is the centralizer of aΦ in g, so mΦ has root system Φred, and

nΦ =
∑

α∈Φnil
gα , nilradical of qΦ , sum of the positive aΦ–root spaces.

Since n =
∑
r lr, as given in (2.3) we have

(3.3) nΦ =
∑

r
(nΦ ∩ lr) =

∑
r

(
(gβr ∩ nΦ) +

∑
∆+
r

(gα ∩ nΦ)
)
.

As ad (m) is irreducible on each restricted root space, if α ∈ {βr} ∪∆+
r then gα ∩ nΦ is 0 or all of gα .

Lemma 3.4. Suppose gβr ∩ nΦ = 0. Then lr ∩ nΦ = 0.

Proof. Since gβr ∩ nΦ = 0, the root βr has form
∑
ψ∈Φ nψψ with each nψ = 0 and nψ = 0 for ψ /∈ Φ. If

α ∈ ∆+
r it has form

∑
ψ∈Ψ n

′
ψψ with 0 5 n′ψ 5 nψ for each ψ ∈ Ψ. In particular n′ψ = 0 for ψ /∈ Φ. Now

every root space of lr is contained in mΨ . In particular lr ∩ nΦ = 0.

Remark 3.5. We can define a partial order on {βi} by: βi+1 � βi when the set of positive roots of
which βi+1 is a maximum is contained in the corresponding set for βi . This is only a consideration when
one further disconnects the Dynkin diagram by deleting a node at which −βi attaches, which doesn’t
happen for type A. If βs � βr in this partial order, and gβr ∩ nΦ = 0, then gβs ∩ nΦ = 0 as well, so
ls ∩ nΦ = 0. ♦
Lemma 3.6. Suppose gβr ∩nΦ 6= 0. Define Jr ⊂ ∆+

r by lr∩nΦ = gβr +
∑
Jr

gα . Decompose Jr = J ′r∪J ′′r
(disjoint) where J ′r = {α ∈ Jr | σrα ∈ Jr} and J ′′r = {α ∈ Jr | σrα /∈ Jr}. Then gβr +

∑
J′′r

gα belongs to

a single aΦ–root space in nΦ , i.e. α|aΦ = βr|aΦ , for every α ∈ J ′′r .

Proof. Two restricted roots α =
∑

Ψ niψi and α′ =
∑

Ψ n
′
iψi have the same restriction to aΦ if and only

if ni = n′i for all ψi /∈ Φ. Now suppose α ∈ J ′′r and α′ = σrα . Then ni > 0 for some ψi /∈ Φ but n′i = 0
for all ψi /∈ Φ. Thus α and βr = α+ σrα have the same ψi–coefficient ni = ni + n′i for every ψi /∈ Φ. In
other words the corresponding restricted root spaces are contained in the same aΦ–root space.
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Lemma 3.7. Suppose lr ∩ nΦ 6= 0. Then the algebra lr ∩ nΦ has center gβr +
∑
J′′r

gα , and lr ∩ nΦ =

(gβr +
∑
J′′r

gα) + (
∑
J′r

gα)). Further, lr ∩ nΦ =
(∑

J′′r
gα
)
⊕
(
gβr +

(∑
J′r
gα
))

direct sum of ideals.

Proof. This is immediate from the statements and proofs of Lemmas 3.4 and 3.6.

Following the cascade construction (2.1) it will be convenient to define sets of simple restricted roots

(3.8) Ψ1 = Ψ and Ψs+1 = {ψ ∈ Ψ | 〈ψ, βi〉 = 0 for 1 5 i 5 s}.

Note that Ψr is the simple root system for {α ∈ ∆+(g, a) | α ⊥ βi for i < r}.

Lemma 3.9. If r > s then [lr ∩ nΦ , gβs +
∑
J′′s

gα] = 0.

Proof. Suppose that α ∈ J ′′s . Express α and σsα as sums of simple roots, say α =
∑
niψi and σsα =∑

n′iψi . Then, n′i = 0 for all ψi ∈ Ψs ∩ Φnil and βs =
∑

(ni + n′i)ψi . In other words the coefficient
of ψi is the same for α and βs whenever ψi ∈ Ψs ∩ Φnil. Now let γ ∈ ({βr} ∪∆+

r ) ∩ Φnil where r > s,
and express γ =

∑
ciψi . Then ci0 > 0 for some βi0 ∈ (Ψr ∩ Φnil). Note Ψr ⊂ Ψs , so ci0 > 0 for some

βi0 ∈ (Ψs ∩ Φnil) . Also, [lr, ls] ⊂ ls because r > s. If γ + α is a root then its ψi0–coefficient is greater
than that of βs , which is impossible. Thus γ + α is not a root. The lemma follows.

We look at a particular sort of linear functional on
∑
r

(
gβs +

∑
J′′s

gα
)
. Choose λr ∈ g∗βr such that

bλr is nondegenerate on
∑
r

∑
J′r

gα . Set λ =
∑
λr . We know that (1.4(c)) holds for the nilradical of

the minimal parabolic q that contains qΦ . In view of Lemma 3.9 it follows that bλ(lr, ls) = λ([lr, ls] = 0
for r > s. For this particular type of λ, the bilinear form bλ has kernel

∑
r

(
gβs +

∑
J′′s

gα
)

and is

nondegenerate on
∑
r

∑
J′r

gα .

At this point, the decomposition NΦ = (L1 ∩ NΦ)(L2 ∩ NΦ) . . . (Lm ∩ NΦ) satisfies the first two
conditions of (1.4):

(a) each factor Lr ∩NΦ has unitary representations with coefficients in L2((Lr ∩NΦ)/(center)), and

(b) each Nr ∩NΦ := (L1 ∩NΦ) . . . (Lr ∩NΦ) is a normal subgroup of NΦ

with Nr ∩NΦ = (Nr−1 ∩NΦ) o (Lr ∩NΦ) semidirect.

With Lemma 3.9 this is enough to carry out Construction 1.8 of our representations πλ of NΦ . However
it is not enough for (1.4(c)) and (1.6). For that we will group the Lr ∩NΦ in a way that gives us (1.6)
in such a way that (1.4(c)) follows from Lemma 3.9. This will be done in the next section.

4 Extension to Arbitrary Parabolic Nilradicals

In this section we address (1.4(c)) and (1.6), completing the proof that NΦ has a decomposition that
leads to stepwise square integrable representations.

We start with some combinatorics. Denote sets of indices as follows. q1 is the first index of (1.4)
(usually 1) such that βq1 |aΦ 6= 0; define

I1 = {i | βi|aΦ = βq1 |aΦ}.

Then q2 is the first index of (1.4) such that q2 /∈ I1 and βq2 |aΦ 6= 0; define

I2 = {i | βi|aΦ = βq2 |aΦ}.

Continuing, qk is the first index of (1.4) such that qk /∈ (I1 ∪ · · · ∪ Ik−1) and βqk |aΦ 6= 0; define

Ik = {i | βi|aΦ = βqk |aΦ}

as long as possible. Write ` for the last index k that leads to a nonempty set Ik . Then, in terms of the
index set of (1.4), I1 ∪ · · · ∪ I` consists of all the indices i for which βi|aΦ 6= 0.

For 1 5 j 5 ` define

(4.1) lΦ,j =
∑

i∈Ij
(li ∩ nΦ) =

(∑
i∈Ij

li
)
∩ nΦ and lcomplΦ,j =

∑
k=j

lΦ,k .
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Lemma 4.2. If k = j then [lΦ,k, lΦ,j ] ⊂ lΦ,j . For each index j, lΦ,j and lcomplΦ,j are subalgebras of nΦ and

lΦ,j is an ideal in lcomplΦ,j .

Proof. As we run along the sequence {β1, β2, . . . } the coefficients of the simple roots are weakly decreas-
ing, so in particular the coefficients of the roots in Ψ \ Φ are weakly decreasing. If r ∈ Ik, s ∈ Ij and
k > j now r > s. Using [lr, ls] ⊂ ls (and thus [(lr ∩ nΦ), (ls ∩ nΦ)] ⊂ ls ∩ nΦ) for r > s it follows that
[lΦ,k, lΦ,j ] ⊂ lΦ,j for k > j.

Now suppose k = j. If r = s then [lr, lr] = gβr , so we may assume r > s, and thus [lr, ls] ⊂ ls ⊂ lΦ,j .
It follows that [lΦ,k, lΦ,j ] ⊂ lΦ,j for k = j.

Now it is immediate that lΦ,j and lcomplΦ,j are subalgebras of nΦ and lΦ,j is an ideal in lcomplΦ,j .

Lemma 4.3. If k > j then [lΦ,k , lΦ,j ] ∩
∑
i∈Ij gβi = 0.

Proof. This is implicit in Theorem 1.12, which gives (1.6), but we give a direct proof for the convenience
of the reader. Let gγ ⊂ lΦ,k and gα ⊂ lj with [gγ , gα]∩

∑
i∈Ij gβi 6= 0. Then [gγ , gα] = gβi where gγ ⊂ lr

and gα ⊂ li , so gγ = gβi−α ⊂ lr ∩ li = 0. That contradiction proves the lemma.

Given r ∈ Ij we use the notation of Lemma 3.6 to decompose

(4.4) lr ∩ nΦ = l′r + l′′r where l′r = gβr +
∑

J′r
gα and l′′r =

∑
J′′r

gα .

Here J ′r consists of roots α ∈ ∆+
r such that gα + gβr−α′ ⊂ nΦ , and J ′′r consists of roots α ∈ ∆+

r such
that gα ⊂ nΦ but gβr−α′ 6⊂ nΦ . For 1 5 j 5 ` define

(4.5) zΦ,j =
∑

i∈Ij
(gβi + l′′i )

and decompose

(4.6) lΦ,j = l′Φ,j + l′′Φ,j where l′Φ,j =
∑

i∈Ij
l′i and l′′Φ,j =

∑
i∈Ij

l′′i .

Lemma 4.7. Recall lcomplΦ,j =
∑
k=j lΦ,k from (4.1). For each j, both zΦ,j and l′′Φ,j are central ideals in

lcomplΦ,j , and zΦ,j is the center of lΦ,j.

Proof. Lemma 3.6 shows that α|aΦ = βi|aΦ whenever i ∈ Ij and gα ⊂ l′′Φ,j . If [lΦ,k, l
′′
i ] 6= 0 it contains

some gδ such that gδ ⊂ lΦ,j and at least one of the coefficients of δ along roots of Ψ \ Φ is greater than
that of βi. As gδ ⊂ li that is impossible. Thus l′′Φ,j is a central ideal in lcomplΦ,j . The same is immediate
for zΦ,j =

∑
i∈Ij (gβi + l′′i ) . In particular zΦ,j is central in lΦ,j . But the center of lΦ,j can’t be any larger,

by definition of l′Φ,j .

Decompose

(4.8) nΦ = zΦ + vΦ where zΦ =
∑
j

zΦ,j , vΦ =
∑
j

vΦ,j and vΦ,j =
∑
i∈Ij

∑
α∈J′i

gα .

Then Lemma 4.7 gives us (1.6) for the lΦ,j : lΦ,j = l′Φ,j ⊕ l′′Φ,j with l′′Φ,j ⊂ zΦ,j and vΦ,j ⊂ l′Φ,j .

Lemma 4.9. For generic λj ∈ z∗Φ,j the kernel of bλj on lΦ,j is just zΦ,j, in other words bλj is is
nondegenerate on vΦ,j ' lΦ,j/zΦ,j. In particular LΦ,j has square integrable representations.

Proof. From the definition of l′Φ,j , the bilinear form bλj on lΦ,j annihilates the center zΦ,j and is non-
degenerate on vΦ,j . Thus the corresponding representation πλj of LΦ,j has coefficients that are square
integrable modulo its center.

Now we come to our first main result:
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Theorem 4.10. Let G be a real reductive Lie group and Q a real parabolic subgroup. Express Q = QΦ

in the notation of (3.1) and (3.2). Then its nilradical NΦ has decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` that
satisfies the conditions of (1.4) and (1.6) as follows. The center ZΦ,j of LΦ,j is the analytic subgroup for
zΦ,j and

(a) each factor LΦ,j has unitary representations with coefficients in L2(LΦ,j/ZΦ,j), and

(b) each NΦ,j := LΦ,1LΦ,2 . . . LΦ,j is a normal subgroup of NΦ

with NΦ,j = NΦ,j−1 o LΦ,j semidirect,

(c) [lΦ,k, zΦ,j ] = 0 and [lΦ,k, lΦ,j ] ⊂ vΦ + l′′Φ,j for k > j.

In particular NΦ has stepwise square integrable representations relative to the decomposition NΦ =
LΦ,1LΦ,2 . . . LΦ,` .

Proof. Statement (a) is the content of Lemma 4.9, and statement (b) follows from Lemma 4.2. The first
part of (c), [lΦ,k, zΦ,j ] = 0 for k > j, is contained in Lemma 4.7. The second part, [lΦ,k, lΦ,j ] ⊂ vΦ + l′′Φ,j
for k > j, follows from Lemma 4.3.

5 The Maximal Exponential–Solvable Subgroup AΦNΦ

In this section we extend the considerations of [17, §4] from minimal parabolics to the exponential–
solvable subgroups AΦNΦ of real parabolics QΦ = MΦAΦNΦ. It turns out that the of Plancherel and
Fourier inversion formulae of NΦ go through, with only small changes, to the non–unimodular solvable
group AΦNΦ . We follow the development in [17, §4].

Let H be a separable locally compact group of type I. Then [3, §1] the Fourier inversion formula for
H has form

(5.1) f(x) =

∫
Ĥ

traceπ(D(r(x)f))dµH(π)

where D is an invertible positive self adjoint operator on L2(H), conjugation semi–invariant of weight

equal to that of the modular function δH , and µ is a positive Borel measure on the unitary dual Ĥ.
When H is unimodular, D is the identity and (5.1) reduces to the usual Fourier inversion formula
for H. In general the semi–invariance of D compensates any lack of unimodularity. See [3, §1] for a
detailed discusison including a discussion of the domains of D and D1/2. Here D ⊗ µ is unique up to
normalization of Haar measure, but (D,µ) is not unique, except of course when we fix one of them,
such as in the unimodular case when we take D = 1. Given such a pair (D,µ) we refer to D as a
Dixmier–Pukánszky operator and to µ as the associated Plancherel measure.

The goal of this section is to describe a “best” choice of the Dixmier–Pukánszky operator for AΦNΦ in
terms of the decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` that gives stepwise square integrable representations
of NΦ .

Let δ denote the modular function of QΦ . Its kernel contains MΦNΦ because Ad(MΦ) is reductive
with compact center and Ad(NΦ) is unipotent. Thus δ(man) = δ(a), and if ξ ∈ aΦ then δ(exp(ξ)) =
exp(trace (ad (ξ))). Note that δ also is the modular function for AΦNΦ .

Lemma 5.2. Let ξ ∈ aΦ . Then each dim lΦ,j + dim zΦ,j is even, and
(i) the trace of ad (ξ) on lΦ,j is 1

2
(dim(lΦ,j + dim zΦ,j)βj0(ξ) for any j0 ∈ Ij,

(ii) the trace of ad (ξ) on nΦ, on aΦ + nΦ and on qΦ is 1
2

∑
j(dim lΦ,j + dim zΦ,j)βj0(ξ), and

(iii) the determinant of Ad(exp(ξ)) on nΦ , on aΦ + nΦ , and on qΦ , is
∏
j exp(βj0(ξ))

1
2

(dim lΦ,j+dim zΦ,j .

Proof. We use the notation of (4.4), (4.5) and (4.6). It is immediate that dim lr + dim(gβr + l′′r ) is even.
Sum over r ∈ Ij to see that dim lΦ,j + dim zΦ,j is even.

The trace of ad (ξ) on lr ∩ nΦ is (dim gβr )βr(ξ) on gβr , plus 1
2

∑
α∈J′r

(dim gα)βr(ξ) (for the pairs

gα, g
′
α ∈ ∆+

r ∩ Φnil that pair into gβr ), plus
∑
α∈J′′r

(dim gα)βr(ξ) (since α ∈ J ′′r implies α|aΦ = βr|aΦ).
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Now the trace of ad (ξ) on lr ∩ nΦ is
( 1

2
dim gβr + 1

2
dim l′r + dim l′′r )βr(ξ) = 1

2
(dim(lr ∩ nΦ) + dim(gβr + l′′r )βr(ξ)

summing over r ∈ Ij we arrive at assertion (i). Then sum over j for (ii) and exponentiate for (iii).

We reformulate Lemma 5.2 as

Lemma 5.3. The modular function δ = δQΦ of QΦ = MΦAΦNΦ is

δ(man) =
∏

j
exp(βj0(log a))

1
2

(dim lΦ,j+dim zΦ,j) .

The modular function δAΦNΦ is δ|AΦNΦ .

Consider semi-invariance of the polynomial P of (1.7(d)), which by definition is the product of factors
Pf lΦ,j . Using (4.8) and Lemma 4.9, calculate with bases of the vΦ,j as in [17, Lemma 4.4] to arrive at

Lemma 5.4. Let ξ ∈ aΦ and a = exp(ξ) ∈ AΦ . Then ad (ξ)P =
(

1
2

∑
j dim(lΦ,j/zΦ,j)βj0(ξ)

)
P and

Ad(a)P =
(∏

j(exp(βj0(ξ)))
1
2

∑
j dim(lΦ,j/zΦ,j)

)
P .

Definition 5.5. The quasi-center of nΦ is sΦ =
∑
j zΦ,j . Fix a basis {et} of sΦ consisting of ordinary

root vectors, et ∈ gαt . The quasi-center determinant relative to the choice of {et} is the polynomial
function DetsΦ(λ) =

∏
t λ(et) on s∗Φ . ♦

Let a ∈ AΦ and compute (Ad(a)DetsΦ)(λ) = DetsΦ(Ad∗(a)−1λ) =
∏

t λ(Ad(a)et). Each et ∈ zΦ,j is
multiplied by exp(βj0(log a)). So (Ad(a)DetsΦ)(λ) =

(∏
j exp(βj0(log a))dim zΦ,j

)
DetsΦ(λ). Now

Lemma 5.6. If ξ ∈ aΦ then Ad(exp(ξ))DetsΦ =
(∏

j exp(βj0(ξ))dim zΦ,j
)

DetsΦ (j0 ∈ Ij).

Combining Lemmas 5.2, 5.3 and 5.6 we have

Proposition 5.7. The product P · DetsΦ is an Ad(QΦ)-semi-invariant polynomial on s∗Φ of degree
1
2
(dim nΦ + dim sΦ) and of weight equal to the weight of the modular function δQΦ .

Denote VΦ = exp(vΦ) and SΦ = exp(sΦ). Then VΦ × SΦ → NΦ , by (v, s) 7→ vs, is an analytic
diffeomorphism. Define

(5.8) D : Fourier transform of P ·DetsΦ acting on AΦNΦ = AΦVΦSΦ by acting on the SΦ variable.

Theorem 5.9. The operator D of (5.8) is an invertible self–adjoint differential operator of degree
1
2
(dim nΦ+dim dΦ) on L2(AΦNΦ) with dense domain the Schwartz space C(AΦNΦ), and it is Ad(MΦAΦNΦ)

semi–invariant of weight equal to that of the modular function. In other words, |D| is a Dixmier–
Pukánszky operator on AΦNΦ with domain equal to the space of rapidly decreasing C∞ functions.

Proof. Since it is the Fourier transform of a real polynomial, D is a differential operator which is invertible
and self–adjoint on L2(AΦNΦ). Its degree as differential operator is the same as the degree of the
polynomial. Further it has dense domain C(AΦNΦ). By Proposition 5.7 its degree is 1

2
(dim nΦ + dim sΦ)

and D is Ad(MΦAΦNΦ) semi–invariant as claimed.

The action of aΦ on zΦ,j is scalar, ad (α)ζ = βj0(α)ζ where (as before) j0 ∈ Ij . So the isotropy
algebra (aΦ)λ is the same at every λ ∈ t∗Φ , given by (aΦ)λ = {α ∈ aΦ | every βj0(α) = 0}. Thus the
(AΦ)–stabilizer on t∗Φ is

(5.10) A′Φ := {exp(α) | every βj0(α) = 0}, independent of choice of λ ∈ t∗Φ .

Given λ ∈ t∗Φ, in other words give a stepwise square integrable representation πλ where λ ∈ s∗Φ , we
write π†λ for the extension of πλ to a representation of A′ΦNΦ on the same Hilbert space. That extension
exists because A′Φ is a vector group, thus contractible to a point, so H2(A′Φ;C′) = H2(point;C′) = {1},
and the Mackey obstruction vanishes. Now the representations of A′ΦNΦ corresponding to πλ are the

(5.11) πλ,φ := IndAΦNΦ

A′ΦNΦ
(exp(iφ)⊗ π†λ) where φ ∈ a′Φ .

Note also that

(5.12) πλ,φ ·Ad(an) = πAd∗(a)λ,φ for a ∈ AΦ and n ∈ NΦ .

The resulting Plancherel formula (5.1), f(x) =
∫
Ĥ

traceπ(D(r(x)f))dµH(π), H = AΦNΦ , is
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Theorem 5.13. Let QΦ = MΦAΦNΦ be a parabolic subgroup of the real reductive Lie group G. Given

πλ,φ ∈ ÂΦNΦ as described in (3.1) and (3.2) let Θπλ,φ : h 7→ traceπλ,φ(h) denote its distribution
character. Then Θπλ,φ is a tempered distribution. If f ∈ C(AΦNΦ) then

f(x) = c

∫
(a′Φ)∗

(∫
s∗Φ/Ad∗(AΦ)

Θπλ,φ(D(r(x)f))|Pf(λ)|dλ

)
dφ

where c > 0 depends on normalizations of Haar measures

Proof. We compute along the lines of the computation of [4, Theorem 2.7] and [5, Theorem 3.2].

traceπλ,φ(Dh)

=

∫
x∈AΦ/A

′
Φ

δ(x)−1trace

∫
NΦA

′
Φ

(Dh)(x−1nax) · (π†λ ⊗ exp(iφ))(na) dn da dx

=

∫
x∈AΦ/A

′
Φ

trace

∫
NΦA

′
Φ

(Dh)(nx−1ax) · (π†λ ⊗ exp(iφ))(xnx−1a) dn da dx.

Now

(5.14)

∫
(a′Φ)∗

traceπλ,φ(Dh) dφ

=

∫
Â′Φ

∫
x∈AΦ/A

′
Φ

trace

∫
NΦA

′
Φ

(Dh)(nx−1ax)(π†λ ⊗ exp(iφ))(xnx−1a) dn da dx dφ

=

∫
x∈AΦ/A

′
Φ

∫
Â′Φ

trace

∫
NΦA

′
Φ

(Dh)(nx−1ax)(π†λ ⊗ exp(iφ))(xnx−1a) dn da dφ dx

=

∫
x∈AΦ/A

′
Φ

trace

∫
NΦ

(Dh)(n)π†λ(xnx−1)dn dx

=

∫
x∈AΦ/A

′
Φ

trace

∫
NΦ

(Dh)(n)(Ad(x−1) · π†λ)(n)dn dx

=

∫
x∈AΦ/A

′
Φ

trace (Ad(x−1) · π†λ)(Dh)) dx

=

∫
x∈AΦ/A

′
Φ

(Ad(x−1) · π†λ)∗(D) trace (Ad(x−1) · π†λ)(h)dx

=

∫
x∈AΦ/A

′
Φ

(π†λ)∗(Ad(x) ·D) trace (Ad(x−1) · π†λ)(h) dx

=

∫
x∈AΦ/A

′
Φ

δAΦNΦ(x) trace (Ad(x−1) · π†λ)(h) dx =

∫
λ′∈Ad∗(AΦ)λ

traceπ†λ′(h)|Pf(λ′)|dλ′.

Summing over λ = Ad∗(AΦ)(λ) ∈ t∗/Ad∗(AΦ) we now have

(5.15)

∫
λ∈t∗Φ/Ad∗(AΦ)

(∫
(a′Φ)∗

traceπλ,φ(Dh) dφ

)
dλ

=

∫
λ∈t∗Φ/Ad∗(AΦ)

(∫
λ′∈Ad∗(AΦ)λ

traceπ†λ′(h)|Pf(λ′)|dλ′
)
dλ

=

∫
λ∈s∗Φ

traceπλ(h)|Pf(λ)|dλ = h(1).

Let h denote any right translate of f . The theorem follows.
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6 The Maximal Amenable Subgroup UΦAΦNΦ

In this section we extend our results on NΦ and AΦNΦ to the maximal amenable subgroups

EΦ := UΦAΦNΦ where UΦ is a maximal compact subgroup of MΦ .

Of course if Φ = ∅, i.e. if QΦ is a minimal parabolic, then UΦ = MΦ . We start by recalling the
classification of maximal amenable subgroups in real reductive Lie groups.

Recall the definition. A mean on a locally compact group H is a linear functional µ on L∞(H) of norm
1 and such that µ(f) = 0 for all real–valued f = 0. H is amenable if it has a left–invariant mean. There
are more than a dozen useful equivalent conditions. Solvable groups and compact groups are amenable,
as are extensions of amenable groups by amenable subgroups. In particular if UΦ is a maximal compact
subgroup of MΦ then EΦ := UΦAΦNΦ is amenable.

We’ll need a technical condition [6, p. 132]. Let H be the group of real points in a linear algebraic
group whose rational points are Zariski dense, let A be a maximal R–split torus in H, let ZH(A) denote
the centralizer of A in H, and let H0 be the algebraic connected component of the identity in H. Then
H is isotropically connected if H = H0 · ZH(A). More generally we will say that a subgroup H ⊂ G is
isotropically connected if the algebraic hull of AdG(H) is isotropically connected. The point is Moore’s
theorem

Proposition 6.1. [6, Theorem 3.2]. The groups EΦ := UΦAΦNΦ are maximal amenable subgroups of
G. They are isotropically connected and self–normalizing. As Φ runs over the 2|Ψ| subsets of Ψ the EΦ

are mutually non–conjugate. An amenable subgroup H ⊂ G is contained in some EΦ if and only if it is
isotropically connected.

Now we need some notation and definitions.

if α ∈ ∆+(g, a) then [α] = [α]Φ = {γ ∈ ∆+(g, a) | γ|aΦ = α|aΦ} and g[α] =
∑

γ∈[α]
gγ .

Recall [12, Theorem 8.3.13] that the various g[α], α /∈ Φred, are ad (mΦ)–invariant and are absolutely
irreducible as ad (mΦ)–modules.

Definition 6.2. The decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` of Theorem 4.10 is strongly invariant if each
ad (mΦ)zΦ,j = zΦ,j , equivalently if each Ad(MΦ)zΦ,j = zΦ,j , in other words whenever zΦ,j = g[βj0 ] . The
decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` is weakly invariant if each Ad(UΦ)zΦ,j = zΦ,j . ♦

Here are some special cases.
(1) If Φ is empty, i.e. if QΦ is a minimal parabolic, then the decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` is

strongly invariant.
(2) If |Ψ \ Φ| = 1, i.e. if QΦ is a maximal parabolic, then NΦ = LΦ,1 , strongly invariant.

(3) Let G = SL(6;R) with simple roots Ψ = {ψ1 , . . . , ψ5} in the usual order and Φ = {ψ1, ψ4, ψ5}. Then

β1 = ψ1 + · · · + ψ5, β2 = ψ2 + ψ3 + ψ4 and β3 = ψ3 . Note β1|aΦ = β2|aΦ 6= β3|aΦ = (ψ3 + ψ4)|aΦ .
Thus nΦ = lΦ,1 + lΦ2 with lΦ,1 = (l1 + l2) ∩ nΦ and lΦ2 = gβ3 . Now g[β3] 6= zΦ,2 so the decomposition
NΦ = LΦ,1LΦ,2 . . . LΦ,` is not strongly invariant.
(4) In the example just above, [β3] = {ψ3, ψ3 + ψ4, ψ3 + ψ4 + ψ5}. The semisimple part [mΦ,mΦ] of

mΦ is direct sum of m1 = sl(2;R) with simple root ψ1 and m4,5 = sl(3;R) with simple roots ψ4 and
ψ5 . The action of [mΦ,mΦ] on g[β3] is trivial on m1 and the usual (vector) representation of m4,5.
That remains irreducible on the maximal compact so(3) in m4,5. It follows that here the decomposition
NΦ = LΦ,1LΦ,2 . . . LΦ,` is not weakly invariant.

Lemma 6.3. Let F = exp(ia) ∩K. Then F is an elementary abelian 2–group of cardinality 5 2dim a.
In particular, F is finite, and if x ∈ F then x2 = 1. Further, F is central in MΦ (thus also in UΦ),
UΦ = FU0

Φ, EΦ = FE0
Φ and MΦ = FM0

Φ .

Proof. Let θ be the Cartan involution of G for which K = Gθ. If x ∈ F then x = θ(x) = x−1 so x2 = 1.
Now F is an elementary abelian 2–group of cardinality 5 2dim a, in particular F is finite.
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Let Gu denote the compact real form of GC such that G ∩Gu = K, and let (AΦ)u denote the torus
subgroup exp(iaΦ). The centralizer ZGu((AΦ)u) is connected. Let x ∈ UΦ . It belongs to a maximal
torus (HΦ)u(AΦ)u) of ZGu((AΦ)u). As x ∈ K we max choose (HΦ)u to be invariant under θ. In other
words (HΦ)u is a compact real form of a group (HΦ)C where HΦ ⊂ MΦ . Here HΦ = H ′ΦH

′′
Φ where

H ′Φ = K ∩HΦ and H ′′Φ ⊂ A. Express x = x1x2 where x1 ∈ H ′Φ and x2 ∈ H ′′Φ . Note that H ′′Φ ⊂ A∩MΦ is
connected so x2 ∈ U0

Φ . Also, H ′Φ = exp(k∩hΦ)(K ∩ (exp(ih′′Φ) exp(iaΦ))) = exp(k∩hΦ)(K ∩ (exp(iaΦ)) =
F exp(k ∩ hΦ). Now x ∈ FU0

Φ . We have proved UΦ ⊂ FU0
Φ . Since UΦ is a maximal compact subgroup

of MΦ and the latter has only finitely many topological components it follows that MΦ ⊂ FM0
Φ. Since

F ⊂ M ⊂ UΦ ⊂ MΦ now UΦ = FU0
Φ and MΦ = FM0

Φ . As EΦ is the semidirect product of UΦ with an
exponential solvable (thus topologically contractible) group it also follows that EΦ = FE0

Φ .

Lemma 6.4. The action of F on s∗Φ is trivial.

Proof. We know that the action of F is trivial on each z∗j [17, Proposition 3.6]. The action of MΦ is
absolutely irreducible on every aΦ–root space [12, Theorem 8.13.3]. Using Lemma 3.6 we see that the
action of F is trivial on each zΦ,j , thus trivial on their sum sΦ , by duality trivial on s∗Φ .

When NΦ = LΦ,1LΦ,2 . . . LΦ,` is weakly invariant we can proceed more or less as in [17]. Set

(6.5) r∗Φ = {λ ∈ s∗Φ | P (λ) 6= 0 and Ad(UΦ)λ is a principal UΦ–orbit on s∗Φ}.

Then r∗Φ is dense, open and UΦ–invariant in s∗Φ . By definition of principal orbit the isotropy subgroups
of UΦ at the various points of r∗Φ are conjugate, and we take a measurable section σ to r∗Φ → r∗Φ\UΦ on
whose image all the isotropy subgroups are the same,

(6.6) U ′Φ : isotropy subgroup of UΦ at σ(UΦ(λ)), independent of λ ∈ r∗Φ .

In view of Lemma 6.4 the principal isotropy subgroups U ′Φ are specified by the work of W.–C. and W.–Y.
Hsiang [1] on the structure and classification of principal orbits of compact connected linear groups.
With a glance back at (5.10) we have

(6.7) U ′ΦA
′
Φ : isotropy subgroup of UΦAΦ at σ(UΦAΦ(λ)), independent of λ ∈ r∗Φ .

The first consequence, as in [17, XX], is

Theorem 6.8. Suppose that NΦ = LΦ,1LΦ,2 . . . LΦ,` is weakly invariant. Let f ∈ C(UΦNΦ) Given λ ∈ r∗Φ
let π†λ denote the extension of πλ to a representation of U ′ΦNΦ on the space of πλ. Then the Plancherel

density at Ind UΦNΦ

U′ΦNΦ
(π†λ ⊗ γ), γ ∈ Û ′Φ , is (dim γ)|P (λ)| and the Plancherel Formula for UΦNΦ is

f(un) = c

∫
r∗Φ/Ad∗(UΦ)

∑
γ∈Û′Φ

trace Ind UΦNΦ

U′ΦNΦ
r(un)(f) · dim(γ) · |P (λ)|dλ

where c = 2d1+···+dmd1!d2! . . . dm! , from (1.7).

Combining Theorems 5.13 and 6.8 we have

Theorem 6.9. Let QΦ = MΦAΦNΦ be a parabolic subgroup of the real reductive Lie group G. Let UΦ

be a maxixmal compact subgroup of MΦ , so EΦ = UΦAΦNΦ is a maximal amenable subgroup of QΦ .
Suppose that the decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` is weakly invariant. Given λ ∈ r∗Φ, γ ∈ a′Φ and

γ ∈ Û ′Φ denote

πλ,φ,γ = Ind U′ΦA
′
ΦNΦ

UΦAΦNΦ ∈ ÊΦ .

Let Θπλ,φ,γ : h 7→ traceπλ,φ,γ(h) denote its distribution character. Then Θπλ,φ,γ is a tempered distribu-
tion on the maximal amenable subgroup EΦ . If f ∈ C(EΦ) then

f(x) = c

∫
(a′Φ)∗

(∫
r∗Φ/Ad∗(UΦAΦ)

Θπλ,φ,γ (D(r(x)f))|P (λ)|dλ

)
dφ

where c = ( 1
2π

)dim aΦ/2 2d1+···+dmd1!d2! . . . dm! .
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When weak invariance fails we replace the zΦ,j by the larger

(6.10) z̃Φ,j =
∑

α∈Yj
gα where Yj = {α ∈ ∆+(g, a) | α|aΦ = βj0 |aΦ}.

Note that z̃Φ,j is an irreducible Ad(M0
Φ)–module. We need to show that we can replace sΦ =

∑
zΦ,j by

s̃Φ :=
∑

z̃Φ,j

in our Plancherel formulae. The key is

Lemma 6.11. Let λj ∈ z̃Φ,j
∗

. Split z̃Φ,j = zΦ,j + wΦ,j where wΦ,j = z̃Φ,j ∩ vΦ is the sum of the gα that
occur in z̃Φ,j but not in zΦ,j . Then the Pfaffian Pfj(λj) = Pfj(λj |zΦ,j ).

Proof. Write λj = λz,j + λw,j where λz,j(wΦ,j) = 0 = λw,j(zΦ,j). Let gγ , gδ ⊂ lΦ,j with [gγ , gδ] 6= 0.
Then [gγ , gδ] ⊂ lΦ,j , so [gγ , gδ] ∩ wΦ,j = 0, in particular λw,j([gγ , gδ]) = 0. In other words λj([gγ , gδ]) =
λj |zΦ,j ([gγ , gδ]). Now bλj |zΦ,j

= bλj , so their Pfaffians are the same.

In order to extend Theorems 6.8 and 6.9 we now need only make some trivial changes to (6.5), (6.6,
(6.7) and the measurable section:

• r̃Φ
∗ = {λ ∈ s̃Φ

∗ | P (λ) 6= 0 and Ad(UΦ)λ is a principal UΦ–orbit on s̃Φ
∗}.

• σ̃: measurable section to r̃Φ
∗ → r̃Φ

∗\UΦ on whose image all the isotropy subgroups are the same.

• U ′Φ : isotropy subgroup of UΦ at σ̃(UΦ(λ)), independent of λ ∈ r̃Φ
∗ .

• U ′ΦA′Φ : isotropy subgroup of UΦAΦ at σ̃(UΦAΦ(λ)), independent of λ ∈ r̃Φ
∗ .

Then Theorems 6.8 and 6.9 extend mutatis mutandis without the condition that NΦ = LΦ,1LΦ,2 . . . LΦ,`

is weakly invariant.

Part II: Infinite Dimensional Theory

7 Direct limit parabolics

In this section we carry our results on NΦ and UΦNΦ over to a class of infinite dimensional Lie groups,
the direct limits NΦ,∞ = lim−→NΦ,n, where {NΦ,n} is a strict direct system of nilradicals of a system of
appropriately aligned parabolics QΦ,n = MΦ,nAΦ,nNΦ,n . In order to do this we must adjust ordering in
the decompositions (1.4) of the connected simply connected nilpotent Lie groups NΦ,n so that they fit
together as n increases. We do that by reversing the indices and keeping the Lr constant as n goes to
infinity. First, we suppose that

(7.1)
{Nn} is a strict direct system of connected

simply connected nilpotent Lie groups,

in other words the connected simply connected nilpotent Lie groups Nn have the property that Nn is
a closed analytic subgroup of N` for all ` = n. As usual, Zr denotes the center of Lr . For each n, we
require that

(7.2)

Nn = L1L2 · · ·Lmn where

(a) Lr is a closed analytic subgroup of Nn for 1 5 r 5 mn and

(b) each Lr has unitary representations with coefficients in L2(Lr/Zr).

(x) Lp,q = Lp+1Lp+2 · · ·Lq(p < q) and N`,n = Lm`+1Lm`+2 · · ·Lmn = Lm`,mn(` < n);

(c) N`,n is normal in Nn and Nn = Nr nNr,n semidirect product,

(d) decompose lr = zr + vr and nn = sn + lcompln where sn =
⊕

r5mn
zr and

lcompln =
⊕

r5mn
vr; then [lr, zs] = 0 and [lr, ls] ⊂ l′′s + v for r < s where

lr = l′r ⊕ l′′r direct sum of ideals with l′′r ⊂ zr and vr ⊂ l′r
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With this setup we can follow the lines of the constructions in [16, Section 5] as indicated in §1 above.
Denote

(7.3) Pn(γn) = Pf1(λ1)Pf2(λ2) · · ·Pfmn(λmn) where λr ∈ z∗r and γn = λ1 + · · ·+ λmn

and the nonsingular set

(7.4) t∗n = {γn ∈ s∗n | Pn(γn) 6= 0}.

When γn ∈ t∗n the stepwise square integrable representation πγn ∈ N̂n is constructed recursively as in 1.8
with the indices reversed: πγn = π′γn−1

⊗̂πλn , and Hπγn = Hπγn−1
⊗̂Hπλn is its representation space.

The parameter space for our representations of the direct limit Lie group N = lim−→Nn is

(7.5) t∗ =
⋃
n>0

{
γ =

∑
λr ∈ s∗

∣∣∣ γ` ∈ t∗` for ` 5 n and λr = 0 ∈ z∗r for r > mn

}
where s∗ :=

⋃
`>0 s

∗
` =

∑
r>0 z

∗
r . The representations πγ of N are defined as above: given γ =

∑
λr ∈ t∗

we have the index n = n(γ) defined by γ` ∈ t∗` for ` 5 n(γ) and λr = 0 ∈ z∗r for ` > mn(γ). Express

(7.6) N = Nn(γ) nNn(γ),∞ semidirect product, where Nn(γ),∞ =
∏

r>mn(γ)

Lr .

In particular the closed normal subgroup Nn(γ),∞ satisfies Nn(γ)
∼= N/Nn(γ),∞, and we denote

(7.7) πγ : lift to N of the stepwise square integrable πλ1+···+λmn(γ)
∈ N̂n(γ) .

The representation space of πγ is the projective (jointly continuous) tensor product

(7.8) Hπγ = Hπλ1
⊗̂Hπλ2

⊗̂ · · · ⊗̂Hπλn(γ)

These representations πγ are the limit stepwise square integrable representations of N . medskip

8 Direct Limit Groups

We adapt the constructions (7.7) and (7.8) to limits of nilradicals of parabolic subgroups. That requires
some alignment of root systems so that the direct limit respects the restricted root structures, in par-
ticular the strongly orthogonal root structures, of the Nn . We enumerate the set Ψn = Ψ(gn, an) of
nonmultipliable simple restricted roots so that, in the Dynkin diagram, for type A we spread from the
center of the diagram. For types B, C and D, ψ1 is the right endpoint, In other words for ` = n Ψ` is
constructed from Ψn adding simple roots to the left end of their Dynkin diagrams. Thus

(8.1)
A2`+1

aψ−` p p p aψ−n p p p aψ0 p p p aψn p p p aψ` ` = n = 0

A2`
aψ−` p p p aψ−n p p p aψ−1 aψ1 p p p aψn p p p aψ` ` = n = 1

(8.2)

B` bψ` p p p bψn bψn−1 p p p bψ2 rψ1
` = n = 2

C` rψ` p p p rψn rψn−1 p p p rψ2 bψ1
` = n = 3

D`

bψ` p p p bψn bψn−1 p p p bψ3

HH bψ1

��
bψ2

` = n = 4
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We describe this by saying that G` propagates Gn . For types B, C and D this is the same as the notion
of propagation in [8] and [9].

The direct limit groups obtained this way are SL(∞;C), SO(∞;C), Sp(∞;C), SL(∞;R), SL(∞;H),
SU(∞, q) with q 5∞, SO(∞, q) with q 5∞, Sp(∞, q) with q 5∞, Sp(∞;R) and SO∗(2∞).

Let {Gn} be a direct system of real semisimple Lie groups in which G` propagates Gn for ` = n. Then
the corresponding simple restricted root systems satisfy Ψn ⊂ Ψ` as indicated in (8.1) and (8.2). Consider
conditions on a family Φ = {Φn} of subsets Φn ⊂ Ψn such that Gn ↪→ G` maps the corresponding
parabolics QΦ,n ↪→ QΦ,`. Then we have

(8.3) QΦ,∞ := lim−→QΦ,n inside G∞ := lim−→Gn .

Express QΦ,n = MΦ,nAΦ,nNΦ,n and QΦ,` = MΦ,`AΦ,`NΦ,` . Then MΦ,n ↪→ MΦ,` is equivalent to
Φn ⊂ Φ` , AΦ,n ↪→ AΦ,` is implicit in the condition that G` propagates Gn , and NΦ,n ↪→ NΦ,` is
equivalent to (Ψn \ Φn) ⊂ (Ψ` \ Φ`) . As before let UΦ,n denote a maximal compact subgroup of MΦ,n ;
we implicitly assume that UΦ,n ↪→ UΦ,` whenever MΦ,n ↪→MΦ,` .

We will extend some of our results from the finite dimensional setting to these subgroups of QΦ,∞ .

(8.4)

NΦ,∞ := lim−→NΦ,n maximal locally unipotent subgroup, requiring (Ψn \ Φn) ⊂ (Ψ` \ Φ`),

AΦ,∞ := lim−→AΦ,n ,

UΦ,∞ := lim−→UΦ,n maximal lim–compact subgroup, requiring Φn ⊂ Φ`,

UΦ,∞NΦ,∞ := lim−→UΦ,nNΦ,n requiring Φn = Φ` .

We will also say something, but not much, about

(8.5)
AΦ,∞NΦ,∞ := lim−→AΦ,nNΦ,n max. exponential solvable subgroup where (Ψn \ Φn) ⊂ (Ψ` \ Φ`),

UΦ,∞AΦ,∞NΦ,∞ := lim−→UΦ,nAΦ,nNΦ,n maximal amenable subgroup where Φn = Φ` .

The difficulty with the two limit groups of (8.5) is that we don’t have a Dixmier–Pukánszky operator, so
we don’t have a Fourier inversion formula.

Start with NΦ,∞ . For that we must assume (Ψn \ Φn) ⊂ (Ψ` \ Φ`). In view of the propagation
assumption on the Gn the maximal set of strongly orthogonal non–multipliable roots in ∆+(gn, an) is
increasing in n. It is obtained by cascading up (we reversed the indexing from the finite dimensional
setting) has form {β1, . . . , βrn}. Following ideas of Section 4 we construct the sets In,k of indices for
which the βi have the same restriction to aΦ,n and all belong to ∆(gn, an). Note that In,k can increase
as n increases, for example in some cases the Φ stop growing, i.e. where there is an index n0 such that
Φn = Φn0 6= ∅ for n = n0 . This happens when ∆(gn, an) is of type An with each Ψ = {ψ1}. Thus we
also denote I∞,k =

⋃
n In,k .

As in (4.1), define

(8.6)

lΦ,n,j =
∑
i∈In,j

(li ∩ nΦ,n) =
( ∑
i∈In,j

li
)
∩ nΦ,n and lcomplΦ,n,j =

∑
k=j

lΦ,n,k,

lΦ,∞,j =
∑

i∈I∞,j

(li ∩ nΦ) =
( ∑
i∈I∞,j

li
)
∩ nΦ and lcomplΦ,∞,j =

∑
k=j

lΦ,∞,k .

LΦ,n,j denotes the analytic subgroup with Lie algebra lΦ,n,j and LΦ,∞,j = lim−→n
LΦ,n,j has Lie algebra

lΦ,∞,j . We have this set up so that NΦ,∞ = lim−→n
NΦ,n = lim−→j

LΦ,∞,j = lim−→j
lim−→n

LΦ,n,j .

Edited up to here.

15



References

[1] W.-C. Hsiang & W.-Y. Hsiang, Differentiable actions of compact connected classical groups II,
Annals of Math. 92 (1970), 189–223.

[2] A. A. Kirillov, Unitary representations of nilpotent Lie groups. Uspekhi Math. Nauk. 17 (1962),
57–110 (English: Russian Math. Surveys 17, (1962) 53–104.)

[3] R. L. Lipsman & J. A. Wolf, The Plancherel formula for parabolic subgroups of the classical groups.
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