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Abstract

In a series of recent papers ([15], [16], [17], [18]) we extended the notion of square integrability, for
representations of nilpotent Lie groups, to that of stepwise square integrability. There we discussed a
number of applications based on the fact that nilradicals of minimal parabolic subgroups of real reductive
Lie groups are stepwise square integrable. In Part I we prove stepwise square integrability for nilradicals
of arbitrary parabolic subgroups of real reductive Lie groups. This is technically more delicate than the
case of minimal parabolics. We further discuss applications to Plancherel formulae and Fourier inversion
formulae for maximal exponential solvable subgroups of parabolics and maximal aamenable subgroups of
real reductive Lie groups. Finally, in Part II, we extend a number of those results to (infinite dimensional)
direct limit parabolics.

Part I: Finite Dimensional Theory

1 Stepwise Square Integrable Representations

There is a very precise theory of square integrable representations of nilpotent Lie groups due to Moore
and the author [7]. It is based on the Kirillov’s general representation theory [2] for nilpotent Lie groups,
in which he introduced coadjoint orbit theory to the subject. When a nilpotent Lie group has square
integrable representations its representation theory, Plancherel and Fourier inversion formulae, and other
aspects of real analysis, become explicit and transparent.

Somewhat later it turned out that many familiar nilpotent Lie groups have foliations, in fact semidi-
rect product towers composed of subgroups that have square integrable representations. These include
nilradicals of minimal parabolic subgroups, e.g. the group of strictly upper triangular real or complex ma-
trices. All the analytic benefits of square integrability carry over to stepwise square integrable nilpotent
Lie groups.

In order to indicate our results here we must recall the notions of square integrability and stepwise
square integrability in sufficient detail to carry them over to nilradicals of arbitrary parabolic subgroups
of real reductive Lie groups.

A connected simply connected Lie group N with center Z is called square integrable, or is said to have
square integrable reprsentations, if it has unitary representations 7 whose coefficients fu »(x) = (u, 7(x)v)
satisfy |fu»| € L*(N/Z). C.C. Moore and the author worked out the structure and representation theory
of these groups [7]. If N has one such square integrable representation then there is a certain polynomial
function Pf(A) on the linear dual space 3* of the Lie algebra of Z that is key to harmonic analysis on N.
Here Pf(\) is the Pfaffian of the antisymmetric bilinear form on n/3 given by bx(z,y) = A([z,y]). The
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square integrable representations of N are the m (corresponding to coadjoint orbits Ad*(N)A) where
A € 3" with Pf(\) # 0, Plancherel almost irreducible unitary representations of N are square integrable,
and, up to an explicit constant, |Pf(\)] is the Plancherel density on the unitary dual N at w5. Concretely,

Theorem 1.1. [7] Let N be a connected simply connected nilpotent Lie group that has square integrable
representations. Let Z be its center and v a vector space complement to 3 inn, so v* = {y € n* | v|; = 0}.
If f is a Schwartz class function N — C and x € N then

(12) f@) =c [ OnranIPINdx

where ¢ = d\2% with 2d = dimn/3, r.f is the right translate (rof)(y) = f(yx), and © is the distribution
character

(1.3) Omy (f) = HPEN)| FL(&)dun(€) for f € C(N).

o)

Here f1 is the lift f1(§) = (exp( )) of f from N ton, f1 is its classical Fourier transform, O(N) is the
coadjoint orbit Ad*(N)\ = v* + X, and dvy is the translate of normalized Lebesgue measure from v* to

Ad*(N)A.
More generally, we will consider the situation where

N =L1Ly...Ly_1Ly where
(a) each factor L, has unitary representations with coefficients in L*(L,/Z,),
(b) each N, := L1Ly...L, is a normal subgroup of N with N, = N,_; x L, semidirect,
(c) if r = s then [, 3] =0

(1.4)

The conditions of (1.4) are sufficient to construct the representations of interest to us here, but not
sufficient to compute the Pfaffian that is the Plancherel density. For that, in the past we used the strong
computability condition

Decompose I = 3, + v, and n = s + v (vector space direct) where s = @3, and v = @ v,; then

(1.5)

[, ls] C vs for r > s.

The problem is that the strong computability condition (1.5) can fail for some non—minimal real parabol-
ics, but we will see that, for the Plancherel density, we only need the weak computability condition
Decompose [ = [;. @ [, direct sum of ideals, where [ C 3, and v, C [.; then

[, 1] C [7 + v, for r > s.

(1.6)

where we retain [, = 3, + v, and n =5+ v.

In the setting of (1.4), (1.5) and (1.6) it is useful to denote

a) dr = 2 dim(l,/3») so 2 dim(n/s) =di + -+ dm, and c = 2N dm g do) L dyy!

b) 2 (z,y) = A([z,y]) viewed as a bilinear form on [, /3,

c) S Z1Zs ... Ly = Z1 X -+ X Zmym where Z, is the center of L,

d) P : polynomial P(X\) = Pf(bx,)Pf(by,)...Pf(bx,,) on s

&)t = {res | P\ £0}

f) ™y € N where ) € t* : irreducible unitary representation of N = L1Ls... L, as follows.

(
(
(
(1.7) (
(
(

Construction 1.8. [16] Given A € t*, in other words A = A1 + --- + A\, where A\, € 3, with each
Pf(bx,.) # 0, we construct m» € N by recursion on m. If m = 1 then m\ is a square integrable
representation of N = L;. Now assume m > 1. Then we have the irreducible unitary representation
Tar+-+Am_1 Of LiLa...Ly—1. and (1.4(c)) shows that L., stabilizes the untary equivalence class of



T 4421~ Oince L, is topologically contractible the Mackey obstruction vanishes and mx; +...4x,,
extends to an irreducible unitary representation 7r§\1 fetAr,,_, o0 N on the same Hilbert space. View the
square integrable representation my,, of L., as a representation of N whose kernel contains L1La ... Ly—1 .
Then we define mx =74, ... 1x, _,®mx,, . &
Definition 1.9. The representations my of (1.7(f)), constructed just above, are the stepwise square
integrable representations of N relative to the decomposition (1.4). If N has stepwise square integrable
representations relative to (1.4) we will say that N is stepwise square integrable. &

Remark 1.10. Construction 1.8 of the stepwise square integrable representations mx uses (1.4(c)),
[l-,3s] = 0 for r > s, so that L, stabilizes the unitary equivalence class of 7x,+...+x,_,. The condition
(1.5), [tr, Is] C v for r > s, enters the picture in proving that the polynomial P of (1.7(d)) is the Pfaffian
Pf = Pf, of by on n/s. However we don’t need that, and the weaker (1.6) is sufficient to show that P is
the Plancherel density. See Theorem 1.12 below. &

Lemma 1.11. [16] Assume that N has stepwise square integrable representations. Then Plancherel

measure is concentrated on the set {mx | X € t*} of all stepwise square integrable representations.
Theorem 1.1 extends to the stepwise square integrable setting, as follows.

Theorem 1.12. [16] Let N be a connected simply connected nilpotent Lie group that satisfies (1.4) and

(1.6). Then Plancherel measure for N is concentrated on {mx | X € t*}. If A € t*, and if u and v belong

to the representation space Hx, of wx, then the coefficient fu.(x) = (u,m, (z)v) satisfies

2 Pl
(1.13) [ funllLe(nys) = POy
The distribution character O, of mx satisfies
(1.14) Oy (f) =c PO [ Fi(&)dva(§) for f € C(N)

o)

where C(N) is the Schwartz space, fi is the lift f1(€) = f(exp(§)), fi is its classical Fourier transform,
O()) is the coadjoint orbit Ad*(N)A = v* + X\, and dvx is the translate of normalized Lebesgue measure
from v* to Ad*(N)A. The Plancherel formula on N is

(1.15) flz) = c/ﬁ Oy (rof)|P(N)|dX for f € C(N).

Theorem 1.12 is proved in [16] for groups N that satisfy (1.4) together with (1.5). We will need it for
(1.4) together with the somewhat less restrictive (1.6). The only point where the argument needs a slight
modification is in the proof of (1.13). The action of L, on Iy + -+ + L,,—1 is unipotent, so there is an
L,—invariant measure preserving decomposition Ny, /Sm = (L1/Z1) X - -+ X (Nm/Zm). The case m =1

2 2
is the property |fu,v|%2(L1/zl) = % < oo of coefficients of square integrable representations.

2 2
By induction on m, |fu»v|2L2(Nm,1/Sm,1)) = % for Np,_1. Let @ be the extension of

7€ Np—1 to N. Let u,v € Hry  ,  and write vy, for 75, ...y, (y)v. Let u',v" € Hny

| funtwonr |22 n/s) = /N N P ) Py
- / a9 / (T 5n s (@9)0) [Pd(@Smr) | d(yZ0m)
Lm/Zm N'mfl/s'mfl
- / [ (90 / [t Th s ()00 (@S 1) | d(yZim)
Lm/Zm Nm—1/8Sm—1

- / (W ()0 2 ( / (u, mﬁ.nxm_l(x)vy>|2d<wsmn) d(yZum)
Lm/Zm Nm,1/5m71

M |<u/ T ( )1}/>|2d( 7 )
[PE(A 1) PT( A _1)] » TAm Y YZm
Nm/Zm

2 7112
— Pl / o Nz = L@ ulFllv @I
PEA).- PEA 1) Nm/Zm|< T (W)U dyZom) [Pf(A1) ... Pf(Am)|




Thus Theorem 1.12 is valid as stated.

The first goal of this note is to show that if N is the nilradical of a parabolic subgroup @ of a real
reductive Lie group, then N is stepwise square integrable, specifically that it satisfies (1.4) and (1.6), so
that Theorem 1.12 applies to it. That is Theorem 4.10. The second goal is to examine applications to
Fourier analysis on the parabolic @) and to some infinite dimensional parabolics.

In Section 2 we recall the restricted root machinery used in [16] to show that nilradicals of minimal
parabolics are stepwise square integrable. In Section 3 we make a first approximation to refine that
machinery to apply to general parabolics. That is enough to see that they satisfy (1.4) and construct
the stepwise square integrable representations, but not enough to compute the Plancherel density. Then
in Section 4 we complete the argument, proving (1.6) to compute the Plancherel density and verify the
estimates and inversion formula of Theorem 1.12 for arbitrary parabolic subgroups of real reductive Lie
groups. The main result is Theorem 4.10.

In Section 5 we apply Theorem 4.10 to obtain explicit Plancherel and Fourier inversion formulae for
the maximal exponential solvable subgroups AN in real real parabolic subgroups @ = M AN, follow-
ing the lines of the minimal parabolic case studied in [17]. The key point here is computation of the
Dixmier—Pukdanszky operator D for the group AN. Recall that D is a pseudo—differential operator that
compensates lack of unimodularity in AN.

There are technical obstacles to extending our results to non-minimal parabolics Q = M AN, many
involving the orbit types for noncompact reductive groups M, but in Section 6 we do carry out the
extension to the maximal amenable subgroups (M N K)AN. This covers all the maximal amenable
subgroups of G that satisfy a certain technical condition [6].

Finally, in Section 6 we look at direct limit parabolics in direct limit locally reductive Lie groups.

2 Specialization to Minimal Parabolics

In order to prove our result for nilradicals of arbitrary parabolics we need to study the construction
that gives the decomposition N = LiLs... Ly of 1.4 and the form of the Pfaffian polynomials for the
individual the square integrable layers L, .

Let G be a connected real reductive Lie group, G = KAN an Iwasawa decompsition, and Q = M AN
the corresponding minimal parabolic subgroup. Complete a to a Cartan subalgebra h of g. Then h = t+a
with t = h N €. Now we have root systems

e A(gc, be): roots of g relative to he (ordinary roots),
e A(g,a): roots of g relative to a (restricted roots),
o Ap(g,a) ={a € A(g,a) | 2a ¢ A(g,a)} (nonmultipliable restricted roots).

The choice of n is the same as the choice of a positive restricted root systen A1 (g, a). Define

B1 € At(g,a) is a maximal positive restricted root and

(2.1)

Bri1 € AT (g,a) is a maximum among the roots of A1 (g, a) orthogonal to all 8; with i < r

The resulting roots (we usually say root for restricted root) Br, 1 < r < m, are mutually strongly
orthogonal, in particular mutually orthogonal, and each 3, € Ag(g,a). For 1 £ r < m define

Af ={a € AT(g,a)| f1 —a € At(g,a)} and

(2.2) Af ={aeAT(ga)\ (AT U---UAS) | Brp1 —a € AT(g,a)}.

We know [16, Lemma 6.1] that if « € AT (g, a) then either o € {B1,...,Bm} or a belongs to exactly one
of the sets A, . Further [16, Lemma 6.2] if o € A" (g, a) then either o € {f1,...,Bm} or a belongs to
exactly one of the sets A} .

The layers are are the

(2.3) - = ga, + ZA+ go for 1<r<m



Denote

(2.4) s, is the Weyl group reflection in 3, and o, : A(g,a) — A(g, a) by or(a) = —sg,.(@).

Then o, leaves 3, fixed and preserves A;". Further, if o, o’ € A, then a4 o’ is a (restricted) root if and
only if @’ = 0,(a), and in that case o + o’ = f3,.

From this it follows [16, Theorem 6.11] that N = LiLs...L,, satisfies (1.4) and (1.5), so it has
stepwise square integrable representations. Further [16, Lemma 6.4] the L, are Heisenberg groups in a
sense that if A. € 35 with Pf; (\.) # 0 then [/ ker A, is an ordinary Heisenberg group of dimension
dimv, + 1.

3 Intersection with an Arbitrary Real Parabolic

Every parabolic subgroup of G is conjugate to a parabolic that contains the minimal parabolic @ = M AN.
Let ¥ denote the set of simple roots for the positive system A*(g,a). Then the parabolic subgroups of
G that contain @) are in one to one correspondence with the subsets & C W, say Q¢ <> P, as follows.
Denote ¥ = {4;} and set

red __ _ ol J— .
Pt = {a = Zwie\pnﬂ/a € A(g,a) | n; =0 whenever 9; ¢ <I>}

(3.1) ) )
M = {a = Zwiewmwi € A (g,a) | n; > 0 for some v; ¢ <I>}.

Then, on the Lie algebra level, g4 = mse + as + ne where

ap ={£€aly(@)=0foraly € P} =",
(3.2) me + ag is the centralizer of ag in g, so me has root system ®"°¢, and

ne = E it 90 nilradical of q¢ , sum of the positive ag—root spaces.
aceni

Since n =Y I, as given in (2.3) we have

(3.3) ne = ZT(I’L@ ni.) = ZT ((ggr Nna) + ZAfr (ga N 11<1>)) .

As ad (m) is irreducible on each restricted root space, if a € {3,} U A} then g, Nne is 0 or all of g, .

Lemma 3.4. Suppose gg, "\ne = 0. Then [, Nne = 0.

Proof. Since gs, Nne = 0, the root B has form - 4 1yt with each ny = 0 and ny =0 for ¢ ¢ ®. If
a € A it has form > wew Myt with 0 = ny, < ny, for each ¢ € W. In particular n;, = 0 for 1) ¢ ®. Now
every root space of [, is contained in my . In particular [, Nne = 0. O

Remark 3.5. We can define a partial order on {8;} by: SBi11 > [; when the set of positive roots of
which ;41 is a maximum is contained in the corresponding set for 8; . This is only a consideration when
one further disconnects the Dynkin diagram by deleting a node at which —f; attaches, which doesn’t
happen for type A. If 8s > [, in this partial order, and gg, Nne = 0, then gg, Nne = 0 as well, so
IsNng =0. ¢
Lemma 3.6. Suppose gg, Nna # 0. Define J. C A by l.Nns = gg, +2J7~ go. . Decompose J,. = J.UJ)
(disjoint) where J, ={a € J, | ora € Jp} and J! = {a € J, | ovax & Jr}. Then gg, + > 7y 8o belongs to

a single ap—root space in e, i.e. Alag = Brlag , for every o € J) .

Proof. Two restricted roots o = 3, nsps and o' = Y, nj1; have the same restriction to as if and only
if n;, = n} for all 1); ¢ ®. Now suppose a € J;' and o’ = o,a. Then n; > 0 for some v; ¢ ® but n; =0
for all ¢; ¢ ®. Thus a and 8, = a + ora have the same ;—coefficient n; = n; + n), for every 1; ¢ ®. In
other words the corresponding restricted root spaces are contained in the same ag—root space. O



Lemma 3.7. Suppose . Nng # 0. Then the algebra . Nne has center gg, + 3 ;1 ga, and [ Nng =
(98, + ZJT/\/ Ga) + (ZJ; 9a)). Further, [, Nng = (ZJ;,QO) @ (ggr + (ZJ;QQ)) direct sum of ideals.

Proof. This is immediate from the statements and proofs of Lemmas 3.4 and 3.6. O

Following the cascade construction (2.1) it will be convenient to define sets of simple restricted roots
(3.8) Uy =Wand Uep1 = {9 € ¥ | (3, 8) =0 for 1 <4 < s}
Note that ¥, is the simple root system for {a: € At (g,a) | o L B; for i < r}.

Lemma 3.9. Ifr > s then [l Nna, gg, + > ;8] = 0.

Proof. Suppose that « € J, . Express a and osa as sums of simple roots, say a = > n;1; and osa =
S njahi. Then, nj = 0 for all ¢; € U, N @™ and Bs = 3 (n: + n))ep; . In other words the coefficient
of 1; is the same for o and S5 whenever 1; € ¥, N ®". Now let v € {B-ruAahHN & where 7 > s,
and express v = Y ¢;¢; . Then ¢;, > 0 for some S3;, € (¥, N <I>"“). Note ¥,. C WU, so ¢;, > 0 for some
Bio € (Ts N <I>"il) . Also, [lr,ls] C s because r > s. If v+ « is a root then its ¥;,—coefficient is greater
than that of 85, which is impossible. Thus v + « is not a root. The lemma follows. O

We look at a particular sort of linear functional on >, (gs, + > ;/8a). Choose A, € gj such that
by, is nondegenerate on Y > ga. Set A = > A.. We know that (1.4(c)) holds for the nilradical of

the minimal parabolic q that contains qo . In view of Lemma 3.9 it follows that bx(lr,[s) = A([l, [s] =0
for r > s. For this particular type of A, the bilinear form by has kernel ) (ggs + ZJ,,ga) and is

nondegenerate on >, >}, ga -

At this point, the decomposition No = (L1 N Na)(L2 N Na)...(Ln N No) satisfies the first two
conditions of (1.4):

(a) each factor L, N Ng has unitary representations with coefficients in L*((L, N Na)/(center)), and
(b) each N, N Ng := (L1 N Na)...(Lr N Ng) is a normal subgroup of Ng
with N, N Ne = (Ny—1 N Na) ¥ (L, N Ng) semidirect.

With Lemma 3.9 this is enough to carry out Construction 1.8 of our representations my of Ny . However
it is not enough for (1.4(c)) and (1.6). For that we will group the L. N Ng in a way that gives us (1.6)
in such a way that (1.4(c)) follows from Lemma 3.9. This will be done in the next section.

4 Extension to Arbitrary Parabolic Nilradicals
In this section we address (1.4(c)) and (1.6), completing the proof that Ne has a decomposition that
leads to stepwise square integrable representations.

We start with some combinatorics. Denote sets of indices as follows. ¢i is the first index of (1.4)
(usually 1) such that 8, |ag # 0; define

I = {i| Bilag = Balas }-

Then g2 is the first index of (1.4) such that g2 ¢ I and Bg,|ag # 0; define
I = {Z | ﬂi|aq> = qu2|a<p}~

Continuing, gy is the first index of (1.4) such that gx ¢ ([1 U---U Ix—1) and Bq, |ay # 0; define
Iy = {i | Bilay = Baylas }

as long as possible. Write ¢ for the last index k that leads to a nonempty set I . Then, in terms of the
index set of (1.4), Iy U---U I, consists of all the indices ¢ for which S;|a, # 0.

For 1 £ j £/ define

(4.1) [q»yj = Zie] ([1 ﬂﬂ@) = (Zielj [Z) Nng and [S;;,”Pl — Zk>j[q>’k .

J =



Lemma 4.2. Ifk 2 j then [lok,lo,;] C lo,; . For each indez j, lo ; and [;:;”pl are subalgebras of ne and
mpl

. . . co
ls,; s an ideal in [q),]

Proof. As we run along the sequence {1, 32, ... } the coefficients of the simple roots are weakly decreas-
ing, so in particular the coefficients of the roots in ¥\ ® are weakly decreasing. If r € I, s € I; and
k> j now r > s. Using [l,, ] C s (and thus [(Ir Nns), ([s Nne)] C s Nng) for r > s it follows that
[[@JW [q>,j] C [q>,j for k > 7.

Now suppose k = j. If r = s then [l,,[.] = ggs,., so we may assume r > s, and thus [[,,[;] C s C ls;.
It follows that [(¢ &, l¢,;] C ls,; for k = j.

Now it is immediate that l¢ ; and are subalgebras of ne and lg ; is an ideal in [ b O

[compl
®,j

Lemma 4.3. If k > j then [l x,ls,;] N ZZEIJ_ gs, = 0.

Proof. This is implicit in Theorem 1.12, which gives (1.6), but we give a direct proof for the convenience
of the reader. Let g C I35 and go C I; with [g+, ga] ﬂzielj gs; 7 0. Then [g+, goa] = g, where g, C [,
and go C l;, 50 gy = g8,—a C I N[; = 0. That contradiction proves the lemma. O

Given r € I; we use the notation of Lemma 3.6 to decompose

(4.4) [, Nng = [ + [ where [ = gg, + ZJ;QQ and [ = LIS

Here J,. consists of roots o € A;f such that ga + gp. o C na, and J;' consists of roots @ € A;f such
that go C ne but gg,_o’ ¢ ne. For 1 £ j < £ define

(4.5) 3o = Zigj (g5, + 1)

and decompose

(4.6) lp,; = p; + 14 ; where I ; = ij (; and I ; = ZZ_EIJ (.

Lemma 4.7. Recall [2;;””1 = > kz,lok from (4.1). For each j, both e ; and Iy ; are central ideals in
[f;Tpl , and 3a.; is the center of ls ;.

Proof. Lemma 3.6 shows that aey = Bilay whenever i € I; and go C I3 ;. If [lgx,[]] # 0 it contains
some gs such that gs C lo,; and at least one of the coefficients of ¢ along roots of ¥\ @ is greater than
that of 8;. As gs C [; that is impossible. Thus [ ; is a central ideal in [;,‘tmpl . The same is immediate
for 30,5 = Zielj (g5, + 1) . In particular 34,; is central in I, ;. But the center of l¢ ; can’t be any larger,

by definition of [y ; . O
Decompose
(4.8) ne = 3o + Vo where jo = qu)’j , b = an)’j and Vo ; = Z Z Ja -
J J ielj aeJ]

Then Lemma 4.7 gives us (1.6) for the I ;: lo; =5 ; ® (4 ; with (5 ; C 3,5 and vs,; C [5 ;.
Lemma 4.9. For generic A\; € 33 ; the kernel of by, on lo; is just 3o, in other words by; is is

nondegenerate on vo,; ~ lo ;/35,5. In particular Ls ; has square integrable representations.

Proof. From the definition of [&,’j , the bilinear form bAj on lg ; annihilates the center 34 ; and is non-
degenerate on ve,; . Thus the corresponding representation my; of Le, ; has coeflicients that are square
integrable modulo its center. O

Now we come to our first main result:



Theorem 4.10. Let G be a real reductive Lie group and Q a real parabolic subgroup. Express Q = Qo
in the notation of (3.1) and (3.2). Then its nilradical No has decomposition No = Lo 1La,2 ... Lo, that
satisfies the conditions of (1.4) and (1.6) as follows. The center Zs ;j of Le ; is the analytic subgroup for
o5 and

(a) each factor Le ; has unitary representations with coefficients in L*(Ls,j/Zs.;), and
(b) each No,j := Lo, 1La,2 ... La,; is a normal subgroup of No
with N<1>7j = Nq>,j71 X Lq>,j semidirect,

(C) [[(b’k;’équj} =0 and [[¢7k, [@,j] C ve + [ﬁf),j fOT k> ]

In particular Ne has stepwise square integrable representations relative to the decomposition No =
L<1>,1L¢.,2 e Lq;l .

Proof. Statement (a) is the content of Lemma 4.9, and statement (b) follows from Lemma 4.2. The first
part of (¢), [le x,3%,5) = 0 for k > j, is contained in Lemma 4.7. The second part, [ls x, s ;] C e + (g
for k > j, follows from Lemma 4.3. O

5 The Maximal Exponential-Solvable Subgroup AsNg

In this section we extend the considerations of [17, §4] from minimal parabolics to the exponential—
solvable subgroups Ag Ng of real parabolics Qe = MaAs Ne. It turns out that the of Plancherel and
Fourier inversion formulae of Ng go through, with only small changes, to the non—unimodular solvable
group As No . We follow the development in [17, §4].

Let H be a separable locally compact group of type I. Then [3, §1] the Fourier inversion formula for
H has form

(5.1) $(@) = [ trace m(D(r(@)))dp ()

H

where D is an invertible positive self adjoint operator on L2(H ), conjugation semi-invariant of weight
equal to that of the modular function g, and p is a positive Borel measure on the unitary dual .
When H is unimodular, D is the identity and (5.1) reduces to the usual Fourier inversion formula
for H. In general the semi-invariance of D compensates any lack of unimodularity. See [3, §1] for a
detailed discusison including a discussion of the domains of D and D'Y2. Here D ® 4 is unique up to
normalization of Haar measure, but (D, u) is not unique, except of course when we fix one of them,
such as in the unimodular case when we take D = 1. Given such a pair (D, u) we refer to D as a
Dizmier—Pukdnszky operator and to p as the associated Plancherel measure.

The goal of this section is to describe a “best” choice of the Dixmier—Pukédnszky operator for Ag No in
terms of the decomposition No = Lo,1La,2 ... La, that gives stepwise square integrable representations
of Nq> .

Let § denote the modular function of Qs . Its kernel contains Mg No because Ad(Ms) is reductive
with compact center and Ad(Ns) is unipotent. Thus d(man) = §(a), and if £ € ag then d(exp(€)) =
exp(trace (ad (£))). Note that ¢ also is the modular function for Ag Ng .

Lemma 5.2. Let { € agp . Then each dimle ; + dimje,; is even, and
(i) the trace of ad (§) on ls; is %(dim([@,]’ + dim 3,5) B4 (€) for any jo € I;,
(ii) the trace of ad (§) on ne, on as + ng and on qe is %Zj(dim le,; + dim3s,5)85,(§), and

(iil) the determinant of Ad(exp(€)) on e, on ae +ne, and on qe , is [, exp(B;, (g))%(dim lg,j+dim e, ;
Proof. We use the notation of (4.4), (4.5) and (4.6). It is immediate that dim [, + dim(gg, + ;') is even.
Sum over r € I; to see that dim ¢ ; + dim 3s,; is even.

The trace of ad (£) on [. N ng is (dimgg, )Br(€) on gg,, plus 2> 5 (dimga)B-(€) (for the pairs
o, 06 € AF N @™ that pair into gg, ), plus Y., (dim ga)Br(€) (since o € J; implies @|ay = Brlay)-



Now the trace of ad (£) on [, Nng is
(dimgg, + & dim [, + dim 1£)8,(€) = (dim(t, 1ne) + dim(gs, + )5 (€)
summing over r € I; we arrive at assertion (i). Then sum over j for (ii) and exponentiate for (iii). O
We reformulate Lemma 5.2 as
Lemma 5.3. The modular function § = g, of Qo = MeAsNe is

§(man) H exp(Bj, (log a))%(dim lp,jtdimse ;)

The modular function dayNg 1S 6| AgNg -

Consider semi-invariance of the polynomial P of (1.7(d)), which by definition is the product of factors
Pfy, ;. Using (4.8) and Lemma 4.9, calculate with bases of the vs ; as in [17, Lemma 4.4] to arrive at
Lemma 5.4. Let { € as and a = exp(§) € Ap . Then ad (§)P = (% > dim([q>,j/3q>,j)ﬁjo(§)) P and

Ad(a)P = (Hj(exp(ﬂjo(é')))%zj dim(‘@,j/é@,j)) P

Definition 5.5. The quasi-center of ne is s¢ = Zj 3a,; . Fix a basis {e:} of s¢ consisting of ordinary
root vectors, e; € ga,. The quasi-center determinant relative to the choice of {e:} is the polynomial
function Detsy, (A) =TT, A(et) on 85 . O
Let a € Ag and compute (Ad(a)Detsz)(A) = Detsy (Ad*(a)71N) = [, AM(Ad(a)et). Each e: € 30,5 is
multiplied by exp(8j, (loga)). So (Ad(a)Detsg)(A) = ([1; exp(Bj, (loga))* ™ 3%:5) Detsy (). Now

Lemma 5.6. If £ € as then Ad(exp(€))Dets, = (HJ. eXp(ﬂjO(é'))dimZa@,j)Detsq) (o € I).
Combining Lemmas 5.2, 5.3 and 5.6 we have

Proposition 5.7. The product P - Dets, is an Ad(Qa)-semi-invariant polynomial on s3 of degree
%(dim ng + dimss) and of weight equal to the weight of the modular function dq, -

Denote Vo = exp(vs) and Sy = exp(ss). Then Vo x S — No, by (v,s) — vs, is an analytic
diffeomorphism. Define

(5.8) D : Fourier transform of P - Det,,, acting on A¢Ne = AsVsSs by acting on the S¢ variable.

Theorem 5.9. The operator D of (5.8) is an invertible self-adjoint differential operator of degree
%(dim nge+dimds) on LQ(A<1>N¢) with dense domain the Schwartz space C(AaNs), and it is Ad(Ma AsNag)
semi—invariant of weight equal to that of the modular function. In other words, |D| is a Dizmier—
Pukdnszky operator on As Ne with domain equal to the space of rapidly decreasing C° functions.

Proof. Since it is the Fourier transform of a real polynomial, D is a differential operator which is invertible
and self-adjoint on L?(AsNg). Its degree as differential operator is the same as the degree of the
polynomial. Further it has dense domain C(A¢Ng). By Proposition 5.7 its degree is 1 (dimng + dimsg)
and D is Ad(Ms As No) semi-invariant as claimed. O

The action of ag on 34,; is scalar, ad (o) = B, ()¢ where (as before) jo € I;. So the isotropy
algebra (ag)x is the same at every X € {3, given by (as)x = {& € as | every Bj,(a) = 0}. Thus the
(As)-stabilizer on t3 is

(5.10) Ay = {exp() | every Bj,(c) = 0}, independent of choice of A € t§ .

leen A € t}, in other words give a stepwise square integrable representation 7y where A € s3 , we
write 7rA for the extension of 7y to a representation of Ax Ng on the same Hilbert space. That extension
exists because A} is a vector group, thus contractible to a point, so H*(A%;C') = H?(point;C') = {1},
and the Mackey obstruction vanishes. Now the representations of A% Ng corresponding to 7y are the

(5.11) a6 := Ind A‘I’N“’(exp(uﬁ) ® 1) where ¢ € a .

Note also that

(5.12) ¢ - Ad(an) = Taq*(a)r,e for a € Ap and n € Ng .

The resulting Plancherel formula (5.1), f(z) = [5 tracew(D(r(z) f))dpu (7), H = AsNa , is



Theorem 5.13. Let Qs = MaAsNa be a parabolic subgroup of the real reductive Lie group G. Given
e € AsNao as described in (3.1) and (3.2) let ©r, , : h — tracems ¢(h) denote its distribution
character. Then Ox, , is a tempered distribution. If f € C(AeNeg) then

rw=ef ( L en,qﬁ(D(r(x)f)MPf(A)dA) d

where ¢ > 0 depends on normalizations of Haar measures
Proof. We compute along the lines of the computation of [4, Theorem 2.7] and [5, Theorem 3.2].

trace mx, o (Dh)

= / 8(z) ‘trace / (Dh)(z 'naz) - (ﬂl ® exp(ip))(na) dn da dx
w€Ag /A Ny A

= / trace / (Dh)(nz""ax) - (71'; ® exp(i¢))(znz ' a) dn da dz.
€A /AL Ng A’

Now
/ trace mx, ¢ (Dh) dd
(ag)*
:/A/ trace/ (Dh)(nz™ " az) (7] @ exp(ip))(znz " a) dn dadx dp
A, JeeAg /A, Ng A
:/ //\ trace/ (Dh)(nz™ " az) (7] @ exp(ip))(znz ™" a) dnda d¢ da
weAg /Al J AL N Al
:/ trace/ (DR)(n)7! (zna™")dn dx
16A¢/A Ng
_ —1y
(5.14) -/ g 0 [ R =)o

/ trace (Ad(z 1) - w1) (D)) da
T€Ag /A

/ (Ad(@™Y) - 7). (D) trace (Ad(x ™) - 1) (h)der
z€Ag /A

/ (1)« (Ad(x) - D) trace (Ad(z~") - 71)(h) da
€Ag /A

= / Sagng (z) trace (Ad(z ") - ) (h) dz = / traceﬂ'/\,( YPE(A)|dN .
wEAg /A N EAd* (Ag)A
Summing over A = Ad*(As)(A\) € t*/Ad*(As) we now have
< trace mx,6(Dh) ch)) dA
Aetg/Ad* Ag)
(5.15) _ / / trace !, (h)[PEV)|dN’ ) dX
Nety /Ad* (Ag) N EAd* (Agp)A

_ / trace ma (B)|PE(A)[dA = h(1).
Aesg

Let h denote any right translate of f. The theorem follows. O
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6 The Maximal Amenable Subgroup UsAsNo

In this section we extend our results on Ny and Ag No to the maximal amenable subgroups
Es := Ups Ao No where Ug is a maximal compact subgroup of Mg .

Of course if ® = ), i.e. if Qg is a minimal parabolic, then Us = Mg . We start by recalling the
classification of maximal amenable subgroups in real reductive Lie groups.

Recall the definition. A mean on a locally compact group H is a linear functional y on L*°(H) of norm
1 and such that p(f) = 0 for all real-valued f = 0. H is amenable if it has a left-invariant mean. There
are more than a dozen useful equivalent conditions. Solvable groups and compact groups are amenable,
as are extensions of amenable groups by amenable subgroups. In particular if Us is a maximal compact
subgroup of Mg¢ then Eg := Up Agp No is amenable.

We’ll need a technical condition [6, p. 132]. Let H be the group of real points in a linear algebraic
group whose rational points are Zariski dense, let A be a maximal R—split torus in H, let Zx(A) denote
the centralizer of A in H, and let Hp be the algebraic connected component of the identity in H. Then
H is isotropically connected if H = Ho - Zg(A). More generally we will say that a subgroup H C G is
isotropically connected if the algebraic hull of Adg(H) is isotropically connected. The point is Moore’s
theorem

Proposition 6.1. [6, Theorem 3.2]. The groups Eo := Us Ao No are mazimal amenable subgroups of
G. They are isotropically connected and self-normalizing. As ® runs over the 2'¥! subsets of ¥ the Es
are mutually non—congugate. An amenable subgroup H C G is contained in some Eo if and only if it is
isotropically connected.

Now we need some notation and definitions.

if @ € A™(g, ) then [a] = [a]e = {7y € AT(g,0) | Y]ap = lay} and gjo) = Zwe[a]gw
Recall [12, Theorem 8.3.13] that the various gj), @ ¢ ®"°%, are ad (me)-invariant and are absolutely
irreducible as ad (mg)-modules.

Definition 6.2. The decomposition No = Lo, 1Ls,2 ... Lo ¢ of Theorem 4.10 is strongly invariant if each
ad (me )3, = jo.;, equivalently if each Ad(Mas)3¢,; = jo.;, in other words whenever 3o ; = gg; |- The
decomposition No = Lo,1La,2 ... Lo, is weakly invariant if each Ad(Us)3a,; = 30,5 -

Here are some special cases.
(1) If @ is empty, i.e. if Qo is a minimal parabolic, then the decomposition No = Lo, 1La,2... Lo is
strongly invariant.
(2) If |¥ \ | =1, i.e. if Qs is a maximal parabolic, then Ng¢ = Ls,1, strongly invariant.
(3) Let G = SL(6;R) with simple roots ¥ = {t1,...,1s} in the usual order and ® = {1, 4, 5}. Then
Br =1+ -+ s, B2 = P2 +1h3 + s and B3 = 3. Note Silay = B2lag # B3lae = (Y3 + Pa)ag -
Thus ne = lo,1 + lo, with ls1 = (1 + [2) Nne and ls, = gg, . Now gjz,] # 3a,2 so the decomposition
N = Ls1Ls,2... Loy is not strongly invariant.
(4) In the example just above, [83] = {13, %3 + 1a,%s + 14 + ¥s}. The semisimple part [me, ms] of
mo is direct sum of m; = sl(2;R) with simple root 11 and mas = s[(3;R) with simple roots ¥4 and
15 . The action of [me,me] on gs,) is trivial on m; and the usual (vector) representation of mys.
That remains irreducible on the maximal compact s0(3) in my45. It follows that here the decomposition
No = Lo1La... Lo, is not weakly invariant.

Lemma 6.3. Let F = exp(ia) N K. Then F is an elementary abelian 2-group of cardinality < 24™¢,
In particular, F is finite, and if x € F then x> = 1. Further, F is central in Mg (thus also in Usg),
Up = FUY, Eg¢ = FEY and My = FMQ .

Proof. Let 0 be the Cartan involution of G for which K = G?. If z € F then = 0(z) = 2z~ so 2 = 1.
Now F is an elementary abelian 2—group of cardinality < 24™¢_in particular F is finite.

11



Let G, denote the compact real form of G¢ such that GN G, = K, and let (As )., denote the torus
subgroup exp(ias). The centralizer Zg, ((As)u) is connected. Let x € Us . It belongs to a maximal
torus (Ho)u(Aa)u) of Za, ((As)w). As z € K we max choose (Hg ), to be invariant under 6. In other
words (Hg), is a compact real form of a group (Hs)c where Hy C Mg . Here He = HyHJ where
Hiy = KNHg and HY C A. Express ¢ = 122 where x1 € Hy and 22 € HJ . Note that H} C AN Mg is
connected so x2 € U . Also, Hj = exp(ENha) (K N (exp(iby) exp(ias))) = exp(ENha) (K N (exp(ias)) =
Fexp(tNbs). Now z € FU3 . We have proved Us C FUY. Since Us is a maximal compact subgroup
of Mg and the latter has only finitely many topological components it follows that Mg C FM3. Since
FCMCUs C Mg now Up = FU2S and My = FMS . As Eg is the semidirect product of Up with an
exponential solvable (thus topologically contractible) group it also follows that Fe = FES . O

Lemma 6.4. The action of F' on s3 is trivial.

Proof. We know that the action of F' is trivial on each 3} [17, Proposition 3.6]. The action of Ms is
absolutely irreducible on every as—root space [12, Theorem 8.13.3]. Using Lemma 3.6 we see that the
action of F' is trivial on each 34,;, thus trivial on their sum ss , by duality trivial on s% . O

When No = Lo,1La,2 ... Lo ¢ is weakly invariant we can proceed more or less as in [17]. Set
(6.5) vty = {) €53 | P(\) # 0 and Ad(Us)A is a principal Us—orbit on s3 }.

Then t} is dense, open and Ug—invariant in s3 . By definition of principal orbit the isotropy subgroups
of Us at the various points of v} are conjugate, and we take a measurable section o to t3 — t3\Us on
whose image all the isotropy subgroups are the same,

(6.6) Uj @ isotropy subgroup of Us at o(Us())), independent of X € ¢} .

In view of Lemma, 6.4 the principal isotropy subgroups U} are specified by the work of W.—C. and W.-Y.
Hsiang [1] on the structure and classification of principal orbits of compact connected linear groups.
With a glance back at (5.10) we have

(6.7) Uy Al : isotropy subgroup of UsAs at o(UsAs())), independent of \ € v .

The first consequence, as in [17, XX], is

Theorem 6.8. Suppose that No = Lo 1La2 ... Lo ¢ is weakly invariant. Let f € C(UsNo) Given A € t
let 771\ denote the extension of ™ to a representation of Uy Ne on the space of wx. Then the Plancherel

density at Ind gi%i (rl®7), v € @ , is (dim~y)|P(\)| and the Plancherel Formula for Us N is

flun) = c/ . Zwel/ﬁ trace Ind gz%: r(un)(f) - dim(y) - |P(A\)|dA
tji) *(Ug P

where ¢ = 24T Fdm g, \dy! . dy!, from (1.7).
Combining Theorems 5.13 and 6.8 we have

Theorem 6.9. Let Qo = Mo AsNo be a parabolic subgroup of the real reductive Lie group G. Let Us
be a mazxixmal compact subgroup of Ms , so Es = UpsAsNa is a maximal amenable subgroup of Qs .
Suppose that the decomposition No = Lo 1Las...La ¢ is weakly invariant. Given \ € vy, v € ap and
v E (/]; denote

Taé,y = Ind UL AL NgUsAeNe € Es.
Let Ox, , , : h = tracems ¢, (h) denote its distribution character. Then Ox, ,  is a tempered distribu-
tion on the mazimal amenable subgroup Ee . If f € C(Fa) then

f@= c/(agp)* (/cfi,/Ad*(U@A@) GM'M(D(T(w)f)ﬂp()\)'d)\) @

where ¢ = (21 )dim ap/2 gdittdm g 1dol L d,,) .

™
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When weak invariance fails we replace the 3¢ ; by the larger

(6.10) doj = ZaeY-ga where Y; = {a € AJr(g: a) | &lag = Biolag }-
j

Note that zs is an irreducible Ad(M3)-module. We need to show that we can replace so = 3 35,; by

5= 5
in our Plancherel formulae. The key is
Lemma 6.11. Let \j € 3a,; . Split jo.; = 34,5 + 0 ; where Wo ; = jo,; N Ve is the sum of the go that
occur in 3¢5 but not in 3o; . Then the Pfaffian Pf;(X\;) = Pfj(Ajl;4;)-

PTOOf. Write )\j = )\37]' =+ )\m,j where Aé,j(mq),j) =0= Am,j(ﬁ@,j)~ Let gv,85 C [cpJ with [g.y,ga] 7& 0.
Then [g+,95] C lo,j, S0 [gy, 95] N Wa ; = 0, in particular Aw,;([g~, g5]) = 0. In other words \;([g+, g5]) =
Ajlse,; (9, 85]). Now by , = bx;, so their Pfaffians are the same. O

In order to extend Theorems 6.8 and 6.9 we now need only make some trivial changes to (6.5), (6.6,
(6.7) and the measurable section:
e 13" ={\€3sg" | P(A) # 0 and Ad(Us))\ is a principal Us—orbit on 55" }.
e &: measurable section to ts* — ta \Us on whose image all the isotropy subgroups are the same.
e U} : isotropy subgroup of Us at (Us())), independent of A € 3" .
Uy Al : isotropy subgroup of Us A at 6(UsAs())), independent of A € t3" .

Then Theorems 6.8 and 6.9 extend mutatis mutandis without the condition that No = Lo, 1La2... Lo
is weakly invariant.

Part II: Infinite Dimensional Theory

7 Direct limit parabolics

In this section we carry our results on Ng and Us Ng over to a class of infinite dimensional Lie groups,
the direct limits Ng oo = lim N, where {Ns ,} is a strict direct system of nilradicals of a system of
appropriately aligned parabolics Qo,n = M&,nAs nNa,»n . In order to do this we must adjust ordering in
the decompositions (1.4) of the connected simply connected nilpotent Lie groups Ng , so that they fit
together as n increases. We do that by reversing the indices and keeping the L, constant as n goes to
infinity. First, we suppose that

(1) {N,} is a strict direct system of connected
’ simply connected nilpotent Lie groups,

in other words the connected simply connected nilpotent Lie groups N,, have the property that N, is
a closed analytic subgroup of N; for all £ 2 n. As usual, Z, denotes the center of L,. For each n, we
require that
N, =LiLy---L,,, where
(a) L, is a closed analytic subgroup of N, for 1 < r < m,, and
(b) each L, has unitary representations with coefficients in L*(L,/Z,).
(x) Lp.g = Lpt1Lpt2 -+ Lg(p < q) and Nen = Luny1Lmgt2 -+ Limy = Ling,m, (€ < n);
(7.2) (¢) Ne¢,n is normal in N, and N,, = N, X N,.,, semidirect product,
)

(d) decompose [ = 3, + v, and n, = 5, + Iffmpl where s, = @ < b and

compl — @ - v-;then [[.,35] = 0 and [l,, [s] C I7 + v for r < s where

[, =0 @I direct sum of ideals with [/ C 3 and v, C [,
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With this setup we can follow the lines of the constructions in [16, Section 5] as indicated in §1 above.
Denote

(7.3) Po(vn) = Pf1(A1)Pf2(X2) - - - Pl (Am,,) where A\ € 37 and v, = A1+ -+ + Ay,

and the nonsingular set
(7.4) th = {n €5, | Pu(vn) # 0}

When v, € t;, the stepwise square integrable representation 7, € N:L is constructed recursively as in 1.8
with the indices reversed: m,, = 7rim71®7r>\n ,and H =Hnr,  ®Hx, Isits representation space.

Tyn

The parameter space for our representations of the direct limit Lie group N = liﬂNn is

(7.5) = U {'yzz/\ref‘wetz for /{ <mand A\, =0 € 3 forr>mn}

n>0

where 5% :=J,. (5, = > ,503r - The representations 7, of N are defined as above: given v =} A» € t*
we have the index n = n(y) defined by v, € t; for £ < n(y) and A, =0 € 37 for £ > m,,(,). Express

(7.6) N = Ny (y) X Np(y),00 semidirect product, where Ny () 00 = H L. .

T>Mn(y)

In particular the closed normal subgroup Ny (4 e satisfies Ny () =2 N/Ny ()00, and we denote

—

(7.7) w2 lift to N of the stepwise square integrable TAittAm, ) € Nigy) -

The representation space of 7 is the projective (jointly continuous) tensor product

(7.8) Hoy = Hoy, @Hony O OHar,

n(y)

These representations - are the limit stepwise square integrable representations of N. medskip

8 Direct Limit Groups

We adapt the constructions (7.7) and (7.8) to limits of nilradicals of parabolic subgroups. That requires
some alignment of root systems so that the direct limit respects the restricted root structures, in par-
ticular the strongly orthogonal root structures, of the N,. We enumerate the set ¥, = U(gn,a,) of
nonmultipliable simple restricted roots so that, in the Dynkin diagram, for type A we spread from the
center of the diagram. For types B, C and D, 1) is the right endpoint, In other words for £ = n W, is
constructed from ¥,, adding simple roots to the left end of their Dynkin diagrams. Thus

Aspin Yoo Yo o Yn e >2n>0
(8.1)

Age | B Fmm ¥ Yn ¥ s>

B, 1@‘ Un Yn—1 Y2 U 2n>2
(8.2) Cy % rle" d.}'“l Y2 7@1 0>n>3

Ve e ¢<¢2
D, U1 {>2n=>4
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We describe this by saying that G; propagates G, . For types B, C' and D this is the same as the notion
of propagation in [8] and [9].

The direct limit groups obtained this way are SL(oo; C), SO(o0; C), Sp(oo; C), SL(c0;R), SL(co; H),
SU (o0, q) with ¢ < 00, SO(o0, q) with ¢ < oo, Sp(00, q) with ¢ £ oo, Sp(oo; R) and SO*(200).

Let {G.} be a direct system of real semisimple Lie groups in which G, propagates G, for £ =2 n. Then
the corresponding simple restricted root systems satisfy ¥,, C W, as indicated in (8.1) and (8.2). Consider
conditions on a family ® = {®,} of subsets ®, C ¥, such that G,, < G¢ maps the corresponding
parabolics Qa,n < Qa,¢. Then we have

(8.3) Qa,00 = li_n)qu>,n inside G := li_rr>1Gn .

Express Q@m = M<1>7nAq>7nN<I>,n and qu[ = M@}[AQ[N@@. Then Mq;,n — Mq>,g is equivalent to
®, C Py, Ao,n — Ao, is implicit in the condition that G, propagates G, , and No,, — No. is
equivalent to (¥, \ ®,,) C (¥g\ ®¢). As before let Us,,, denote a maximal compact subgroup of Mg ;
we implicitly assume that Us,, < Us,¢ whenever Mo n — Ma ¢ .

We will extend some of our results from the finite dimensional setting to these subgroups of Qs -

Na,o0 := lim Ng » maximal locally unipotent subgroup, requiring (Up \ @) C (T \ Do),

ACD,OO = @A®,n ;
(8.4)
Usp o0 = h_n} Us,, maximal lim—compact subgroup, requiring ®, C ®,,

Us oo No oo 1= li_rr}qu>,an>,n requiring ®,, = &, .
We will also say something, but not much, about

A0 No oo := lim Ag nNa,n max. exponential solvable subgroup where (U, \ @) C (Vy\ D),

(8.5)

Ud,00 Ad,00 Nt 0o 1= liQUq>7nAq>,an>,n maximal amenable subgroup where ®,, = ®,.

The difficulty with the two limit groups of (8.5) is that we don’t have a Dixmier-Pukénszky operator, so
we don’t have a Fourier inversion formula.

Start with No,oo . For that we must assume (¥, \ ®,) C (¥, \ ®¢). In view of the propagation
assumption on the G, the maximal set of strongly orthogonal non-multipliable roots in A (g,, a,) is
increasing in n. It is obtained by cascading up (we reversed the indexing from the finite dimensional
setting) has form {f1,..., 05, }. Following ideas of Section 4 we construct the sets I, of indices for
which the §; have the same restriction to as,, and all belong to A(gn,a,). Note that I, 5 can increase
as n increases, for example in some cases the ® stop growing, i.e. where there is an index no such that
®,, = &,, # 0 for n = no. This happens when A(gn,a,) is of type A,, with each ¥ = {¢1}. Thus we
also denote I, = U,, In,k -

As in (4.1), define

lon,; = Z (LNngn) = ( Z [i) Nne,n and [;O,ZLEZ = ZLP,n,k»

i€l i€l k>
(8.6) -
_ _ compl __
[q>,°o,j = E ([Z N Ilq>) = ( E [1> Nne and [<I>,oo,j = E [Q,oo,k .
i€l j i€lco,j k23

L n,; denotes the analytic subgroup with Lie algebra l¢,,,; and Le,c,; = lim Ls,,,; has Lie algebra
[ i . We have this set up so that NN. =lim Ng, =Ilim L i = lim h—n;n L i
®,00,5 - p ®00 =lim Non =lm Lo co; =lim lim Lon,.

Edited up to here.
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