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ABSTRACT
Two-photon absorption in indirect gap semiconductors is a frequently encountered, but not well-understood phenomenon. To address this,
the real-density matrix approach is applied to describe two-photon absorption in silicon through the excitonic response to the interacting
fields. This approach produces an analytical expression for the dispersion of the two-photon absorption coefficient for indirect-gap materials
and can be used to explain trends in reported experimental data for bulk silicon both old and new with minimal fitting.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0219329

I. INTRODUCTION

Two-photon absorption (2PA) is a nonlinear optical phe-
nomenon in which the combined energy carried by two incident
photons is near-instantaneously absorbed by a material. Because
of its nonlinear intensity dependence, the 2PA process is spa-
tially confined when focused light is used, thus making it possible
to use the effect as a local probe in the material for imaging,1
microfabrication,2,3 or three-dimensional data storage.4 In semicon-
ducting materials, the 2PA phenomenon produces charge carriers
that can be read out electronically, a mechanism that has been
used extensively for measuring the envelopes of ultrashort optical
pulses.5,6 The use of semiconductors as 2PA detectors is particu-
larly attractive in the case of non-degenerate two-photon absorption
(NTA), in which case the energies of hωa and hωb of the two
photons in the interaction can be vastly different, enabling the
registration of individual photon energies that are well below the
bandgap energy of the semiconducting material. For instance, the
NTA process has made it possible to detect mid-infrared (MIR)
photons with wide-bandgap semiconductors, such as GaAs7 and
Si,8 thereby circumventing thermal noise issues that have plagued
traditional MIR photodetectors based on low-energy bandgap

materials. Moreover, the NTA principle has also been shown to
enable rapid MIR imaging with high-definition visible/near-IR
cameras,9–11 thereby overcoming several persistent limitations of
conventional MIR cameras.

The recent developments in NTA-based imaging underline the
potential of this nascent detection technology, particularly as it con-
cerns the use of Si-based cameras for versatile imaging in the MIR
range.9,11 From a commercial point of view, silicon is an attrac-
tive material because of its ubiquity as a feedstock and the mature
technology for Si-device fabrication. On the other hand, silicon is
an indirect semiconductor that has a much lower 2PA absorption
coefficient compared to direct semiconductors in the same spectral
range. The main reason for silicon’s lower performance as a 2PA
material is the additional involvement of lattice phonons for provid-
ing the momentum needed in the indirect transition, which lowers
the transition probability.

Improving the 2PA response of Si-based photodetectors
requires a better understanding of the indirect two-photon transi-
tion in silicon. Reasonable progress has been made in describing
degenerate and non-degenerate two-photon absorption in direct
bandgap semiconductors. Current models compute the 2PA tran-
sition rate in such materials through a second-order perturbation
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of stationary material states,12–14 or via evolving Volkov-type wave-
functions in the context of first-order perturbation theory.15 These
approaches have successfully produced expressions that generally
predict the energy scaling of the two-photon absorption coefficient
in direct bandgap materials, including the expected enhancement
of the 2PA effect in the case of extremely non-degenerate photon
energies.7 Existing models are flexible with respect to the input band
structure but do not incorporate dephasing mechanisms explicitly,
and extra care must be taken to account for material anisotropy.16

Alternative formulations include the use of semiconductor Bloch
equations, which have been evaluated in the framework of the den-
sity operator that is better equipped to account for relaxation and
dephasing mechanisms.17–19

The description of 2PA in indirect semiconductors, such as sili-
con, has so far relied heavily on the theoretical models developed for
direct bandgap materials. For instance, to account for the interaction
vertex with lattice phonons, higher order perturbative expansions
of stationary20,21 or dressed states22 have been developed to derive
expressions for the nonlinear absorption coefficient. Although such
models reproduce the general behavior of measured two-photon
absorption coefficients, quantitative matching between experiment
and theory has proven more challenging. Recently, Faryadraz et al.
obtained a semi-empirical scaling law for NTA coefficients, which
was compared with experimental data.23 While semi-empirical mod-
els can be useful for gaining mechanistic insights, a more complete
theory of two-photon absorption in indirect bandgap materials is
needed to quantitatively predict the scaling of 2PA coefficients over
a wide range of the energy ratio hωb/hωa.

In this work, we advance the theoretical description of the two-
photon absorption process in silicon through the application of the
real density matrix approach (RDMA). This approach has been suc-
cessful in describing linear and nonlinear optical properties of semi-
conductors in terms of Rydberg excitons for the case of one-photon
excitation.24,25 The RDMA method allows the use of a small num-
ber of well-known parameters (e.g., effective masses, gap energy, and
dielectric constant) to derive expressions for the optical response of
the material. Here, we adapt the RDMA for the case of two-photon
excitation in semiconductors, extending it for the case of silicon
to include both excitonic and continuum states, as well as lattice
phonons for momentum matching. Using this approach, we derive
analytical expressions for the two-photon coefficient while includ-
ing dephasing times and anisotropy of the material under study. We
compare the energy scaling of the predicted NTA coefficient with
published experimental data, supplemented with new experimental
data, and demonstrate excellent quantitative agreement over a broad
range of hωb/hωa dispersion values.

II. THEORY
A. Real density matrix approach

In this section, we briefly review the basic principles of the
RDMA method in the context of linear and nonlinear optical excita-
tions in semiconductors. In general, the optical response of semicon-
ductors to incoming electromagnetic (EM) waves can be described
in terms of the correlations in a many-body system (semiconduc-
tor) caused by the interactions between the EM fields, electrons, and
holes (quasiparticles). A variety of theoretical methods has been used
to describe the response, including Green’s function approach26,27

and the RDMA. The latter, also known as coherent wave theory or
the band edge equations, was developed in works by Stahl et al.; see,
for instance, Refs. 28 and 29.

In this work, we have chosen the RDMA to take advantage of
its formulation in the real space. The method provides a direct rela-
tion between the density matrices and relevant observables, allowing
an easy comparison between experimental and theoretical results. In
general, the Coulomb interaction between the carriers in a many-
body system produces an infinite hierarchy of evolution equations
for n-point density matrices. The lowest level consists of two-point
density matrices, which describe the interband transitions, between
the valence and the conduction band, as well as the intraband transi-
tions. Two-point density matrices are directly related to measurable
quantities such as polarization and carrier densities, whereas higher
order correlations are related, for example, to the formation of
biexcitons.30

Below, we restrict our model to two-point density matrices.
The basic equations of the chosen approach are called the consti-
tutive equations, or band-edge equations, and will be applied to
describe the 2PA processes. We follow the description developed
in Ref. 29. The RDMA takes into account the following contribu-
tions: (a) the electron–hole interaction, (b) the dipole interaction
between the electron–hole pairs and the electromagnetic field. (c)
the particle–surface interaction, and (d) the interaction between
electron–hole pairs (excitons) and phonons. We consider a semicon-
ductor in the real space representation, characterized by a number of
valence and conduction bands. Electrons at site j in the conduction
band are described by fermion operators ĉc†

j (ĉ
c
j), which correspond

to the creation (annihilation) operators. Similarly, operators d̂v†
j (d̂

v
j)

are creation (annihilation) operators for holes in valence bands
at site j. In the case of direct interband transitions, the Hamilton
operator in our model consists of four parts,

H = H0 +Hem +HC +Hph. (1)

The term H0 indicates the one-particle Bloch states in the con-
duction and valence bands and describes the intraband transport
processes,

H0 =∑
jℓ
(∑

c
Tc
ℓ j ĉ

c†
ℓ ĉc

j −∑
v

Tv
jℓ d̂v†

ℓ d̂v
j), (2)

where the transfer matrices Tc,v
ij are given in terms of the band

eigenvalues Ec,v(k) as

Tc
ij =

1
N∑k

eik(Ri−Rj)Ec(k)

Tv
ij =

1
N∑k

eik(Ri−Rj)Ev(k)
(3)

where Ri and Rj are lattice position vectors. The operator Hem
describes the interaction with the electromagnetic field,

Hem = −∑
jℓ

Ejℓ ⋅∑
cv

Mcv∗
jℓ d̂v

ℓĉc
j + h.c., (4)

and Mcv
jℓ is the interband-dipole matrix element between Wannier

states, which can be cast in the following form:
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Mcv
jℓ =

1
N∑k

eik(Rj−Rℓ)Mcv(k), (5)

in terms of the dipole matrix element between Bloch functions,

Mcv(k) = −e⟨ψc(k)∣r∣ψv(k)⟩. (6)

where r = re − rh is the relative electron-hole coordinate. Here, we
use the real-space version, i.e., Fourier transform, of Eq. (6),

Mλ,μ(r) =
eh̵

im0(2π)3∫BZ

pλ,μ(k)e
ikr

Ec,μ(k) − Ev,λ(k)
d3k, (7)

where Ec,v(k) represents the energy of the band electrons, pλ,μ(k)
is the momentum matrix element between Bloch states, and m0 is
the free electron mass. The integration extends over the first Bril-
louin zone. This form is chosen because all subsequent equations
are expressed in the real-space representation. The electric field Ejℓ
is considered at a mean point between the sites j and ℓ of the lattice;
below, this position is assumed to coincide with the exciton center-
of-mass. In the following, we assume the band structure is known
from specific calculations.

The carrier interactions are described by the term HC of the
Hamiltonian,

HC =
1
2∑i≠j

Vij(n̂i − ĥi)(n̂j − ĥj), (8)

where the electron–hole interaction is screened by a background
dielectric constant εb,

Vij =
e2

4πε0εb∣ri − rj ∣
, (9)

where ri and rj are the electron and hole positions, respectively.
Here, we define the electron and hole occupation numbers as

n̂j =∑
c

ĉc†
j ĉc

j , ĥj =∑
v

d̂v†
j d̂v

j. (10)

The free phonon Hamiltonian can be expressed as

Hph =∑
μ

h̵ωμb†
μbμ, (11)

where b†
μ and bμ are the phonon creation and annihilation operators

of mode μ with energy hωμ.
The physical quantities relevant for finding the optical proper-

ties can be expressed in terms of mean values of the following pair
operators:

excitonic transition density amplitude: Yαb
12 = ⟨Ŷαb

12⟩ = ⟨d̂α1 ĉb
2⟩,

electron density: Cab
12 = ⟨Ĉab

12⟩ = ⟨ĉa†
1 ĉb

2⟩,
hole density: Dαβ

12 = ⟨D̂
αβ
12⟩ = ⟨d̂

a†
1 d̂β2⟩,

(12)

where the indices a, b, . . . label the conduction bands, while α,β, . . .
label the valence bands. The excitonic transition density Yαb

12 con-
tributes to the interband transition polarization with the following
term:

P = 2Re (∫
r=r1−r2

d3r∑
cv

Mcv∗
21 Yvc

12), (13)

and the diagonal elements (the matrices C and D) correspond to the
densities of electrons,

ρe = − e∑
c

Ccc
12∣

r1=r2

, (14)

and holes,

ρh = e∑
v

Dvv
12∣

r1=r2

. (15)

The matrices above are sub-matrices of the following density matrix:

ρ̂ = (Ccc′ Y∗vc

Yvc 1 −Dvv′
). (16)

The dynamics of the two-point matrices Y , C, D is part of the hierar-
chy of reduced density matrices and is obtained from the Heisenberg
equations of motion,

ih̵∂t ρ̂ = [ρ̂ , H] + ih̵∂t ˙̂ρ
irrev

, (17)

where the term ˙̂ρ
irrev

describes the irreversible dissipation and radi-

ation decay processes due to all dephasing processes. In this paper,
we consider electron–electron interactions, electron–phonon inter-
actions, and the optical transitions caused by the electromagnetic
field. In many practical calculations, all irreversible processes are
described in terms of two dephasing times T1, T2, which are taken
as phenomenological constants that satisfy the following equation:

∂ρ̂

∂t

RRRRRRRRRRRRirrev

= −
⎛
⎜⎜
⎝

1
T1
[C(t) − C(0)] 1

T2
[Y∗(t) − Y∗(0)]

1
T2
[Y(t) − Y(0)] 1

T1
[D(t) −D(0)]

⎞
⎟⎟
⎠

. (18)

where the states with superscript (0) denote the steady-state solu-
tions. Although silicon is an indirect bandgap semiconductor, the
valence and conduction bands near the fundamental critical points
can be effectively approximated by paraboloids.31 Therefore, in
our current model, the Hamiltonian in Eq. (17) employs parabolic
bands. This Hamiltonian is derived from Eq. (1) by averaging the
relevant operators and can be expressed as follows:

H = Hee +Hhh +Heh +Hex−ph (19)

where the electron Hamiltonian,

Hee =
1

2me
[(p2 + eA2)2 − (p1 − eA1)2] + e(Φe

1 −Φe
2), (20)

the hole Hamiltonian,
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Hhh =
1

2mh
[(p2 − eA2)2 − (p1 + eA1)2] − e(Φh

1 −Φh
2) (21)

and the electron–hole interaction,

Heh = Eg − V12 +
1

2mh
(p1 − eA1)2 + 1

2me
(p2 + eA2)2 + e(Φh

1 −Φe
2),

(22)

where Eg denotes the gap energy, me, mh are the effective masses
of electrons and holes, respectively, −V12 is the statically screened
Coulomb potential, M0 is the element in Eq. (5) integrated over the
real space, Aj is the vector potential of the EM at position rj, which
may include an external magnetic field,Φe/h

j is the scalar, external, or
electromagnetically induced potential acting on electrons (or holes)
at position rj, and Ej denotes the electric field of the radiation at
the point rj. We neglect for the moment the vectorial and tensorial
indices and use the common notation for the momentum operators:
p1 = −ih∇1, etc. The electron–electron, hole–hole, and electron–hole
exchange terms are included in the third term of the Hamiltonian
(1), as given by expression (8), and are obtained by means of the
random phase approximation (RPA) decoupling scheme.32

The Hamiltonian Hph (11) is expressed using creation and
annihilation operators. In line with the RDMA approach, we
have replaced it with Hex-ph, the Hamiltonian corresponding to
exciton–phonon interaction, formulated in real space as

Hex−ph = a(q) e−iωphtVp(q, r) + c.c., (23)

with

Vp(q, r) =∑
Ra

( h̵
2Mωph

)
1/2

eiqRa e0∇rV(r − Ra). (24)

where ωph is the angular phonon frequency and q is its wave vector.
The a(q) is the phonon annihilation operator (with corresponding
momentum hq and energy hωph), its adjoint is the phonon creation
operator, V(r − Ra) is the potential at the point Ra, and e0 is the
phonon polarization.

With the above expressions, the Heisenberg Eq. (17) becomes
a closed set of differential equations (“constitutive equations”) for
Y , C, D, which can be obtained in explicit form using the following
procedure:33,34

(i) setting up the Heisenberg equations of motion for the pair
operators,

(ii) applying anti-commutation rules for the Fermion operators
ĉc†

j , ĉc
j , d̂v†

j , and d̂v
j to bring all operator products into normal

order,
(iii) computing the expectation values of the relevant operators,
(iv) using an interpolation procedure to obtain a continuum

dependence on the position variables (for example, Ref. 34),
(v) making use of the RPA to factorize four-point density

matrices.

As a result, we obtain the constitutive equations for the inter-
band transition density amplitudes, which for any couple of bands
are of the following form:

− ih̵∂tY12 +HehY12 + XY
12

=M0(Eδ12 − E1C12 − E2D21) − ih̵(∂Y12

∂t
)

irrev
,

(25)

with XY
12 being the electron–hole exchange term, while the last dissi-

pative term is responsible for irreversible excitation transfers. For
intraband transitions (time dependence of the population of the
band states), we obtain

− ih̵∂tC12 +HeeC12 + XC
12 = −M0(E1Y12 − E2Y∗21) − ih̵(∂C12

∂t
)

irrev
,

(26)

− ih̵∂tD12 +HhhD12 + XD
12 = −M0(Y21E1 − Y∗12E2) − ih̵(∂D12

∂t
)

irrev
,

(27)

where XC
12 and XD

12 are the electron–electron and hole–hole exchange
terms, respectively. We note that the relaxation processes incor-
porated here are characterized by the condition T1 ≫ T2. This
implies that phonons remain in equilibrium during the cre-
ation/annihilation of excitons. The numerical subscripts are abbre-
viations for the coordinates, such as in Y12 = Y(r1, r2), etc. The
exchange terms XY, XC, XD read

XY
12 =

i
h̵ ∫ d3r (V12 − V23)(Y13C32 −D31Y23),

XC
12 =

i
h̵ ∫ d3r (V13 − V23)(Y∗31Y32 + C13C32), (28)

XD
12 =

i
h̵ ∫ d3r (V13 − V23)(Y∗31Y32 +D13D32),

where V12 is the statistically screened Coulomb potential.35 It can be
seen that those terms represent four-point correlations but are not
taken into account for two-point correlation functions. It should be
stressed that Hamiltonians are bilocal—they are defined in (r1, r2)
space.

The electromagnetic fields A, E, and Φ that appear in (21)
and (22) are self-consistent fields that include the induced contribu-
tions produced by the sources and those contained in Y , C, D. The
spatial dependence of the functions Y , C, D in the constitutive equa-
tions refers to a macroscopic scale. Microscopic structures can be
taken into account by an appropriate choice of the parameters, as,
for example, effective masses and M0 in expressions (25)–(27). The
above expressions must be solved simultaneously with the Maxwell
field equations,

− c2ε0∇×∇ × E − εoεbË = P̈, (29)

where the polarization is given by expression (13), and c is the speed
of light. A theoretical scheme containing higher order correlations
has been presented in Ref. 36, which also discusses phonon-assisted
transitions.

As mentioned above, the term Hph in the Hamiltonian (19)
describes the electron–crystal lattice interaction. Using perturbation
calculus, we obtain the matrix elements of Heh, under the condi-
tion of momentum conservation, and that of Hph, which involves
transfer of a specific momentum q. The calculated transition prob-
ability per unit time of a process in which the valence electron is
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scattered to the conduction state ψck2 , and a photon of energy hω
with a phonon of momentum q = k1 − k2 and energy hωq are both
absorbed, which gives the absorption coefficient in the case of the
phonon absorption,37

αph,abs(ω) =
⎧⎪⎪⎨⎪⎪⎩

0, for h̵ω < Eg − h̵ωph

C1(h̵ω − Eg + h̵ωph)2nq, for h̵ω > Eg + h̵ωph
,

(30)

where nq is the phonon occupation number representing the num-
ber of available phonons with wave vector q, and C1 is a constant. By
considering all values of q corresponding to energy hωph, we use the
distribution

nph(ωph) =
1

exp
̵hωph
kB𝒯
− 1

, (31)

where kB is the Boltzmann constant, and 𝒯 is the temperature. The
absorption coefficient in the case of phonon emission is given by

αph, em(ω) =
⎧⎪⎪⎨⎪⎪⎩

0, h̵ω < Eg + h̵ωph

C1(h̵ω − Eg − h̵ωph)2nph, h̵ω > Eg + h̵ωph
, (32)

The case of exciton formation in an indirect transition can be
illustrated as follows. Following the discussion above, let us consider
the case of parabolic non-degenerate energy bands with a maximum
of the valence band at k = 0, and a minimum of the conduction band
at k = q0, with the dispersion,

Ec(ke) =
h̵2(ke − q0)

2

2m∗e
+ Eg , Ev(kh) = −

h̵2k2
h

2m∗h
. (33)

For kex = q0, we obtain possible exciton energies,

Eex(q0) = Eg − ∣EnℓmH ∣, (34)

[see also Eq. (48)] for states below the energy gap and a continuum
for states above the indirect gap. The absorption coefficients due
to indirect exciton transitions in a process in which a photon and
a phonon are simultaneously absorbed, and for the lowest exciton
state, are given by

αph, abs(ω) = 0 for h̵ω < Eg − E1 − h̵ωph,

αph, abs(ω) = C2(h̵ω − Eg + E1 + h̵ωph)1/2nph

for h̵ω > Eg − E1 − h̵ωph.

(35)

where C2 is a constant,37 and we have written E1 = ∣E100H ∣. The anal-
ogous expression for the absorption coefficient under the emission
of a phonon has the following form:

αph, em(ω) = 0 for h̵ω < Eg − E1 + h̵ωph,

αph, em(ω) = C2(h̵ω − Eg + E1 − h̵ωph)
1
2 nph

for h̵ω > Eg − E1 + h̵ωph.

(36)

The total contribution of phonons to the absorption is then given by

αph,total = αph, abs(ω) + αph,em(ω). (37)

It can be seen from the above expressions that the effect of phonons
is relevant when considering continuum states.

As discussed in Refs. 38 and 39, the phonon density of states
contains two local maxima at 20 and 60 meV, with a weighted
average of ∼hωph = 40 meV. This simplified approach of taking
an estimate of the average phonon energy provides a good fit to
experimental data. In the same manner, as mentioned above, an inte-
gration of nq over all of the values of q yields an average phonon
number nph that can be used in Eqs. (30)–(36).

B. Two-photon absorption
We next adapt the described RDMA approach to the case of

two-photon absorption. We assume that static external fields are
absent, thus neglecting the vector potential A and the scalar poten-
tialΦe/h in the Hamiltonian expressions (21) and (22). In expressions
(25)–(27), the electromagnetic field E now includes two frequencies
ωa and ωb and is written as

E = E0a exp (ikaR − iωat) + E0b exp (ikbR − iωbt) + c.c., (38)

where

∣kj ∣ =
ωj

c

√
ε(ωj) = nj

ωj

c
, j = a, b, (39)

and nj are refractive indices at the frequencies ωj and R is the
electron–hole pair center-of-mass coordinate,

R = R12 =
mhr1 +mer2

mh +me
. (40)

The linear optical properties are calculated by solving the interband
Eq. (25), supplemented by the corresponding Maxwell equation,
where the polarization (13) acts as a source. For computing the
nonlinear optical properties, we use the entire set of constitutive
Eqs. (25) and (26). Although finding a general solution of the equa-
tions is challenging, in special situations, a solution can be found.
For example, if one assumes that the matrices Y , C, and D can be
expanded in powers of the electric field E, an iterative procedure can
be used.

In general, solving for Y , C, and D in the context of two-
photon absorption depends on the relation between the incoming
frequencies ωa,ωb (and thus energies hωa, hωb) and the fundamen-
tal gap energy Eg , which enters as a parameter in the electron–hole
Hamiltonian. We consider two relevant cases to be discussed
separately.

1. When hωa + hωb < 2Eg , the excitation of discrete excitonic
states is possible. Therefore, we seek solutions in terms of
eigenfunctions and eigenvalues of the electron–hole Hamilto-
nian, taking also into account the phonons.

2. In the energy range hωa + hωb > 2Eg , we solve Eqs. (44) and
(77) and the following equations for the matrices C, D assum-
ing V12 = 0,24 thus entering the energy range represented
by continuum states. The solution is obtained in terms of
appropriate Green’s function.
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C. Discrete states—linear susceptibility
Our goal is to derive expressions for the NTA absorption

coefficients. These can be obtained from the third-order nonlinear
susceptibility, which, in turn, can be determined via an iterative pro-
cedure within the context of the RDMA. The first step in the iteration
consists of solving Eq. (25), which at this stage takes on the following
form:

ih̵∂tY(1) −HehY(1) = −ME + ih̵(∂Y(1)

∂t
)

irrev
. (41)

For the irreversible part, we assume the following simple form:

(∂Y(1)

∂t
)

irrev
= − 1

T2
Y(1). (42)

In the discussion of nonlinear effects, we also take into account
the non-resonant parts of the amplitude Y . The excitonic density
Y will consist of two parts, Ya, Yb, as defined by the angular fre-
quencies ωa and ωb. In addition, due to the valence band structure
of the semiconducting material (Si), we must consider heavy-hole
(H) and light-hole (L) excitons. Considering optical transitions
between the (H, L) valence bands and the conduction band, with the
mentioned inclusion of both the resonant and anti-resonant parts,
Eq. (12) generates eight equations: a pair for amplitude YaH : Y(1)aH−

∝ exp (−iωat) and for Y(1)aH+ ∝ exp (iωat), as follows:

ih̵(iωa +
1

T2
)Y(1)aH+ −HehY(1)aH+ = −MHE∗a (R, t), (43)

ih̵(−iωa +
1

T2
)Y(1)aH− −HehY(1)aH− = −MHEa(R, t), (44)

with similar equations for Y(1)bH±, where MH is the transition dipole
density. Analogous equations hold for the amplitudes Y(1)a,bL±, with
the appropriate transition dipole density ML. In the following, we
consider only one component of the vectors E, P, and M, and focus
our attention on the heavy hole exciton transition.

For the case of discrete exciton states, the exciton density in the
first step is found as

Y(1)daH− = Ea(R, t)∑
nℓm

cnℓmHφn(r)
h̵(ΩnℓmH − ωa − i/T2)

,

Y(1)daH+ = E∗a (R, t)∑
nℓm

cnℓmφnℓmH(r)
h̵(ΩnℓmH + ωa − i/T2)

,

(45)

and similar expressions for Y(1)dbH±. The subscript “d” indicates the
case of discrete excitonic states. The expansion coefficients are
defined as follows:

cnℓmH = ∫ d3rMH(r)φnℓmH(r),

h̵ΩnℓmH = h̵ΩnℓmH = Eg + EnℓmH(γaH),
φnℓmH = RnℓH(r)Yℓm(θ,ϕ),

(46)

where RnℓH are the hydrogen radial functions of the anisotropic
Schrödinger equation,40

r =

¿
ÁÁÀx2 + y2 + z2

γaH
, (47)

where Yℓm(θ,ϕ) are the spherical harmonics, and EnℓmH are the
corresponding eigenvalues,

EnℓmH = −
η2
ℓmH(γaH)R∗H

n2 , n = 1, 2, . . . , ℓ = 0, 1, 2, . . .n − 1,

m = 0, 1, 2, . . . ℓ,
(48)

where R∗H is the effective excitonic Rydberg energy for the heavy hole
exciton,

R∗H =
μ∥He4

2(4πε0
√ε∥εz)2h̵2 , (49)

and the anisotropy parameter γaH is defined as

γaH =
μ∥Hε∥
μzHεz

,

where μ
∥H and μzH are the heavy hole exciton reduced masses in the

x–y plane and in the z-direction, respectively,

1
μ∥H
= 1

me∥
+ 1

mh∥H
,

1
μzH
= 1

mez
+ 1

mhzH
. (50)

The anisotropic electron and heavy hole masses (in-plane and
in the z-direction) are listed in Table I, where ε0 is the vacuum dielec-
tric constant, and ε∥, εz are relative dielectric tensor elements. The
quantity ηℓmH(γaH) is given by the following expression:

ηℓmH(γaH) =
2π

∫
0

dϕ
π

∫
0

∣Yℓm∣2 sin θdθ√
sin2 θ + γaH cos2 θ

. (51)

In what follows, we consider only the excitonic s states, with
ℓ = m = 0, and denote

φn00H = φnH , cn00H = cnH , En00H = EnH ,
h̵Ωn00H = h̵ΩnH + En(γaH).

(52)

It should be noted that at room temperature, accounting for the
relatively low binding energy of excitons in Si (15 meV as in Ref. 41),
only the lowest excitonic state is relevant, so we set n = 1.

The solutions for Y(1)da,b± determined above permit the calcula-
tion of the linear polarization,

P(1)H (ω) = ∫ d3r[Y(1)daH− + Y(1)∗daH+]M
∗

H(r)

+ ∫ d3r[Y(1)dbH− + Y(1)∗dbH+]M
∗

H(r)

= E0a

h̵
2∣c1H ∣2Ω1H

Ω2
1H − (ωa + i/T2)2 +

E0b

h̵
2∣c1H ∣2Ω1H

Ω2
1H − (ωb + i/T2)2

= ε0χ(1)dH (ωa)E0a + ε0χ(1)dH (ωb)E0b. (53)

The susceptibilities defined in Eq. (53) can be expressed in
terms of the band parameters and, for energies below the gap, when
spatial dispersion is neglected, we obtain
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TABLE I. Band parameter values for Si, masses in free electron mass m0, H denotes
heavy-hole, and L light-hole, R∗H,L is calculated from (μ

∥H,L/ε2
b) × 13 600 meV, a∗H,L

is calculated from (1/μ
∥H,L)εb × 0.0529 nm, and me,dos (density-of-state effective

mass) is calculated from 62/3
(me∥me∥mez)

1/3.

Parameter Value (4.2 K) Value (300 K) Unit References

Eg 1170 1124 meV 43
ΔLTH 0.1 meV
R∗H 15 16.56 meV
R∗L 7.94 9.6 meV
γ1 4.285 2.45 44
γ2 0.339 0.194 44
γ3 1.446 0.826 44
mez 0.9163 1.09 m0 45
me∥ 0.1905 0.2 m0 45
me,dos 1.06 1.16 m0
mhzH 0.28 0.485 m0 Equation (102),46

mh∥H 0.72 1.25 m0 Equation (102)
mhzL 0.2 0.35 m0
mh∥L 0.14 0.24 m0
μzH 0.214 0.336 m0
μ
∥H 0.15 0.172 m0

μzL 0.164 0.26 m0
μ
∥L 0.08 0.1 m0

a∗H 4.13 3.66 nm
a∗L 7.74 6.3 nm
r0H 0.46 0.44 nm
r0L 0.64 0.58 nm
εb 11.7 11.9
T2 0.1 ns 41
T1 8 ns Fitting
hωph 40 meV Fitting39

χ(1)dH (ωj) = εb
f 1HΔLTH/R∗H

(ET1H − h̵ωj − ih̵/T2)/R∗H
, (54)

where j = a, b, and ET1H is the energy of the first heavy hole exciton
resonance. For the dipole density MH(r) described by the following
formula:

MH(r) =M0H
1√
4π

1
r r2

0Hγ
1/2
aH

e−r/r0H Y00(θ,ϕ), (55)

where r0H = (2μ∥HEg/h̵2)−1/2 is the so-called coherence radius, the
anisotropy-dependent oscillator strength f1H has the following form:

f 1H =
η3

00H(1 − η00Hr0H/a∗H)
(1 + η00Hr0H/a∗H)4 , (56)

where a∗H is the heavy hole effective excitonic Bohr radius,

a∗H =
4πh̵2ε0

√ε∥εz

μ∥He2 . (57)

The longitudinal transverse splitting of the ground state is29

ΔLTH

R∗
= 2

2μ∥H
ε0εbπ a∗H h̵2 M2

0H , (58)

where the above mentioned bulk dielectric constant is given by
εb =√εzε∥ and is fnΔLTH for the excited states (n > 1). Treating
ΔLTH as a known quantity, the above relation allows computation
of the dipole matrix element M0H .

D. Discrete states—nonlinear susceptibility
To obtain the nonlinear response, the solutions for Y(1)daH,b± are

inserted as a source term in the conduction band Eq. (26) and the
valence band Eq. (27). Note that each of these equations depends on
the electromagnetic field. If the irreversible terms are well defined,
Eqs. (26) and (27) can be solved, and this second step of the iteration
yields expressions for the density matrices CH and DH . We use for
the irreversible terms a linear relaxation time approximation,

(∂C
∂t
)

irrev
= −1

τ
[C(X, r, t) − f 0e(r)C(X, r = 0, t)] − C(0)

T1
, (59)

where X = (r1 + r2)/2, τ is the carrier relaxation time, and f0e, f0h
are normalized Boltzmann distributions for electrons and holes,
respectively,

f 0e(r) = ∫ d3q f 0e(q)e−iqr

= exp(−me∥kB𝒯

2h̵2 ρ2 − mezkB𝒯
2h̵2 z2), (60)

The same type of expression holds for the holes. The diagonal ele-
ments of the matrices are related to charge densities (14) and (15),
which are conserved quantities. Therefore, we assume that they relax
to an equilibrium normalized to the actual number of carriers. The
relaxation time T1 stands for the interband recombination time.42

Using the irreversible terms (59) in the intraband Eqs. (26) and (27),
and looking for stationary solutions, we obtain the matrices C, D in
the following form:

CH(r) = −
i
h̵
[τJCH(r) − τJCH(0) + T1 f 0e(r)JCH(0)],

DH(r) = −
i
h̵
[τJHH(r) − τJHH(0) + T1H f 0hH(r)JHH(0)],

where

JCH =
2iM0∣E0a∣2

h̵
[Im gH(−ωa, r) + Im gH(ωa, r)]

+ 2iM0∣E0b∣2
h̵

[Im gH(−ωb, r) + Im gH(ωb, r)], (61)

and

gH(±ωj , r) =∑
n

cnHφnH(r)
ΩnH ∓ ωj − i/T2

, (62)

with JCH = JDH . These density matrices can then, in turn, be used as
a source term for Eq. (25), which can be solved to obtain expressions
for Y(3)da,bH± in the final step of the iteration.
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The equations for the third-order coherent amplitudes Y(3)jH±
now take on the following form:

ih̵(iωa +
1

T2
)Y(3)aH+ −HehY(3)aH+ =M0H(E∗CH + E∗DH) = E∗(R, t)J̃H ,

(63)

ih̵(−iωa +
1

T2
)Y(3)aH− −HehY(3)aH−

=M0H(E∗CH + E∗DH) = E∗(R, t)J̃H , (64)

with similar equations for Y(1)bH±, where

J̃H = −
i
h̵

M0H[T1JCH(0) f 0eH(r) + T1JVH(0) f 0hH(r)].

Once Y(3)aH± and Y(3)bH± are known, the third-order polarization can be
determined as

P(3)H (ω) = ∫ d3r[Y(3)aH− + Y(3)∗aH+ ]M
∗

H(r)

+ ∫ d3r[Y(3)bH− + Y(3)∗bH+ ]M
∗

H(r). (65)

We consider nonlinear polarizations at the same frequency ω (or
frequencies in the case 2PA) as that of an incident field, which
means that we consider the susceptibilities χ(1) and χ(3) related to
the excitonic amplitudes Y (1) and Y (3), respectively.

Similar to the approach presented in Sec. II A, to account
for the presence of phonons, we separate the polarization related
to the emission of a phonon (subscript “em”) and the absorption
of a phonon (subscript “abs”). The emission contribution has the
following form:

P(3)dH,em(ωa,ωb) = P(3)daH,eme−iωat + P(3)dbH,eme−iωbt , (66)

where the polarization amplitudes are defined by

P(3)daH,em = ε0χ(3)dH,self,em(ωa,ωa)∣E(ωa)∣2 E(ωa)

+ ε0χ(3)dH,cross,em(ωa,ωb)∣E(ωb)∣2 E(ωa),

P(3)dbH,em = ε0χ(3)dH,self,em(ωb,ωb)∣E(ωb)∣2 E(ωb)

+ ε0χ(3)dH,cross,em(ωb,ωa)∣E(ωa)∣2 E(ωb),

The nonlinear susceptibilities have the following form:

χ(3)d H,self,em(ωj ,ωj) = −(nph + 1)2M2
0H

ε0

1
T2
(T1 +

ih̵δ(ω − 2ωj)
h̵ω + ih̵/T1

)

×∑
ℓ

cℓH(AℓH + BℓH)h̵ΩℓH,em

(h̵ΩℓH,em)2 − (h̵ωj + ih̵T−1
2 )2

×∑
n

cnHφnH(0)
(h̵ΩnH,em − h̵ωj)2 + (h̵/T2)2 , (67)

χ(3)d H,cross,em(ωa,ωb) = −(nph + 1)2M2
0H

ε0
(T1

T2
)

×∑
ℓ

cℓH(AℓH + BℓH)h̵ΩℓH,em

(h̵ΩℓH,em)2 − (h̵ωa + ih̵T−1
2 )2

×∑
n

cnHφnH(0)
(h̵ΩnH,em − h̵ωb)2 + (h̵/T2)2 . (68)

The additional cross term χ(3)dH,cross,em(ωb,ωa) is obtained by
permuting the frequencies ωa and ωb in Eq. (66). The expres-
sions hΩnH,em,abs are the exciton resonance energies that include the
phonon energies hωph,

h̵ΩnH,em,abs = Eg + EnH ± h̵ωph, (69)

where “+” stands for phonon emission and “−” for phonon
absorption. The coefficients AℓH , BℓH in Eq. (67) appearing in the
expressions for Y(3)da,bH± have the following form:

AℓH = ∫ d3r φℓH(r) f 0e(r)

= ∫ d3r φℓH(r) exp
⎛
⎝
− ρ2

2λ2
th,e∥
− z2

2λ2
th,ez

⎞
⎠

,

(70)

BℓH = ∫ d3r φℓH(r) f 0hH(r)

= ∫ d3r φℓH(r) exp
⎛
⎝
− ρ2

2λ2
th,h∥H

− z2

2λ2
th,hzH

⎞
⎠

,

where λth,e, λth,hH are the so-called thermal lengths for electrons and
holes, respectively,

λth,e = (
h̵2

mekB𝒯
)

1/2

, λth,hH = (
h̵2

mhkB𝒯
)

1/2

, (71)

determined for the appropriate masses (∥ or z). The above expres-
sions are valid when hω < Eg + hωph. For hω > Eg + hωph, one should
replace nph + 1 by

𝒞(h̵ω − Eg − h̵ωph)2(nph + 1). (72)

where 𝒞 is a constant.37

Analogous expressions can be obtained for the susceptibilities
that include phonon absorption,

χ(3)dH, self,abs(ωj ,ωj) = −nph
2M2

0

ε0

1
T2
(T1 +

ih̵δ(ω − 2ωj)
h̵ω + ih̵/T1

)

×∑
ℓ

cℓ(AℓH + BℓH)h̵ΩℓH,abs

(h̵ΩℓH,abs)2 − (h̵ωj + ih̵T−1
2 )2

×∑
n

cnHφnH(0)
(h̵ΩnH,abs − h̵ωj)2 + (h̵/T2)2 , (73)
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χ(3)dH, cross,abs(ωa,ωb) = −nph
2M2

0H

ε0
(T1

T2
)

×∑
ℓ

cℓH(AℓH + Bℓ)h̵ΩℓH,abs

(h̵ΩℓH,abs)2 − (h̵ωa + ih̵T−1
2 )2

×∑
n

cnHφnH(0)
(h̵ΩnH,abs − h̵ωb)2 + (h̵/T2)2 , (74)

plus the additional cross term χ(3)dH, cross,abs(ωb,ωa) obtained by per-
muting the input frequencies in (74). The above expressions are valid
when

h̵ω < Eg − h̵ωph.

Otherwise, nph should be replaced by

𝒞(h̵ω − Eg + h̵ωph)2nph. (75)

In Sec. II F, we use the expressions for the nonlinear susceptibility
above to determine the nonlinear absorption coefficients in silicon.

E. Continuum states
In this section, we consider the case relevant to heavy-hole exci-

ton transitions. If (hω − hωph) > Eg for the case of phonon emission,
or (hω + hωph) > Eg for the case of phonon absorption, then there is
no generation of bound exciton states, and continuum states consti-
tute the final states instead. In this case, Y(1)H is calculated in the first
iteration step by setting V12 = 0 in the electron–hole Hamiltonian,24

giving rise to equations of the following form:

(Eg ± h̵ω ± h̵ωph − i
h̵

T2
− h̵2

2μ∥H
∇2)YH± =MH(r)E. (76)

Equation (76) can be solved by means of appropriate Green’s
function,

Y(1)H± = ∫ d3 r′gH±(r, r′)MH(r′, θ,ϕ)E, (77)

where

gH±(r, r′) = 2μ∥H
h̵2

sinh κH±r<

4πκH±r<r>
e−κH±r> , (78)

r< = min(r, r′) and r> = max(r, r′), and

κ2
H± =

2μ∥H
h̵2 (Eg ± h̵ω ± h̵ωph − i

h̵
T2
). (79)

Assuming a linear polarization and the wave vector E having a
component E0 in a direction α, simultaneously with the dipole den-
sity MH having a component M0H in the same direction and, for
simplicity, using the dipole density of the following form:

MH(r) =
M0Hδ(r − r0H)

4πr2
0H

, (80)

we obtain

Y(1)H± =M0HE0 gH±(r, r0H). (81)

We may again define amplitudes of the form Y(1)caH±, Y(1)cbH±, where the
subscript “c” now indicates the involvement of continuum states. If,
in the case of phonon emission, we encounter κ2

H < 0, and introduce

κH = −iκ̃H , (82)

where

κ̃2
H− =

2μ∥H
h̵2 (h̵ω − h̵ωph − Eg + i

h̵
T2
),

and, in this case, Green’s function takes on the following form:

gH−(r, r′) = 2μ∥H
h̵2

sin κ̃H±r<

4πκ̃H±r<r>
eiκ̃ H±r>. (83)

The linear terms for the case of phonon emission and absorption and
input frequency ωa are found as

Y(1)caH−,em(r) =M0HE0agaH−,em(r, r0H), Y(1)caH−,abs(r)
=M0HE0agaH−,abs(r, r0H), (84)

with

gaH−,em(r, r0H) =
2μ∥H

h̵2
sin (κ̃aH−,emr<)

4πκ̃aH−,emrr0
eiκ̃ aH−,emr>,

κ̃2
aH−,em =

2μ∥H
h̵2 [h̵ωa − (Eg + h̵ωph)] + i

2μ∥H
h̵2

h̵
T2

.

Similar expressions can be obtained for the amplitudes at input
frequencies ωb. The linear amplitudes, thus, are obtained from the
source for calculating the CH and DH matrices, followed by the
third step to determine Y(3)ca,bH±, similar to the procedure described

in Sec. II C. Once the Y(3)ca,bH± amplitudes are found, for both
the phonon emission and absorption process, we may write the
nonlinear cross susceptibility for the continuum states as

χ(3)cH,cross = χ
(3)
cH,cross,em(ωa,ωb) + χ(3)cH,cross,abs(ωa,ωb), (85)

with

χ(3)cH,cross,em(ωa,ωb) = −(nph + 1) 2
ε0

2
T1

h̵
M4

0H(
2μ∥H

h̵2 )
2

× 1
4πr0H

( sin (κ̃ aH−,emr0H)
κ̃ aH−,emr0H

)
2

× [κ̃bH−,emr0H + κ̃bH−,absr0H]
× (𝒜eH,em +ℬhH,em), (86)

χ(3)cH,cross,abs(ωa,ωb) = −nph
2
ε0

2
T1

h̵
M4

0H(
2μ∥H

h̵2 )
2

× 1
4πr0H

( sin (κ̃ aH−,absr0H)
κ̃ aH−,absr0H

)
2

× [κ̃bH−,emr0H + κ̃bH−,absr0H]
× (𝒜eH,abs +ℬhH,abs), (87)
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where

κ̃jH−,emr0H = (xj −
Eg + h̵ωph

Eg
)

1/2

,

κ̃j−,absr0H = (xj −
Eg − h̵ωph

Eg
)

1/2

,

xj =
h̵ωj

Eg
.

(88)

Here, 𝒜eH,em,ℬhH,em,𝒜eH,abs,ℬhH,abs are the continuum coun-
terparts to expressions (70), appropriate for discrete states. Making
use of the relations (70), we obtain

𝒜eH,em = 𝒜 ′eH,em + i𝒜 ′′eH,em =
2μ∥H

h̵2
sin (κ̃aH−,emr0H)
κ̃aH−,emr0H

×
∞

∫
ρ0H

ρ dρ
∞

∫
0

dz
exp (−iκ̃aH−,em)

√
ρ2 + (z2/γaH)√

ρ2 + (z2/γaH)

× exp
⎛
⎝
− ρ2

2λ2
th,e∥
− z2

2λ2
th,ez

⎞
⎠

, (89)

with an analogous expression for 𝒜eH,abs, ℬhH,em, and ℬhH,abs. The
value ρ0H = r0h/a∗H .

F. Nonlinear absorption coefficients
The propagation of the field components E0a and E0b in the

semiconductor follows from the wave equation with P(3) as a source
term, which, after making the well-known slowly varying amplitude
approximation, yield the following coupled equations for the field
amplitudes:

∂E0a

∂z
= i

ωa

na c
χ(3)self H(ωa,ωa)∣E0a∣2 E0a

+ i
ωa

na c
χ(3)cross H(ωa,ωb)∣E0b∣2 E0a, (90)

∂E0b

∂z
= i

ωb

nb c
χ(3)self H(ωb,ωb)∣E0b∣2 E0b

+ i
ωb

nb c
χ(3)cross H(ωb,ωa)∣E0a∣2 E0b. (91)

From the equation above, the intensities of the input beams can
be found as

Ia = 2ε0 na c ∣E0a∣2,
∂Ia

∂z
= 2ε0 na c [E∗0a

∂E0a

∂z
+ E0a

∂E∗0a

∂z
]. (92)

Similar expressions are obtained for Ib, resulting in the fol-
lowing set of coupled Eqs. (90) and (91), and we obtain the set of
equations:

∂Ia

∂z
= −α2(ωa,ωa) I2

a(z) − α2(ωa,ωb) Ia(z)Ib(z),

(93)
∂Ib

∂z
= −α2(ωb,ωb) I2

b(z) − α2(ωb,ωa) Ib(z)Ia(z),

These equations define the nonlinear absorption coefficients
α2 as

α2H(ωa,ωa) =
ωa

2ε0 n2
ac2 χ(3),Iself H(ωa,ωa),

α2H(ωa,ωb) =
ωa

2ε0 na nb c2 χ(3),Icross H(ωa,ωb),

α2H(ωb,ωa) =
ωb

2ε0 na nb c2 χ(3),Icross H(ωb,ωa),

α2H(ωb,ωb) =
ωb

2ε0 n2
bc2 χ(3),Iself H(ωb,ωb),

(94)

where χ(3),IH indicates the imaginary part of χ(3)H . The refractive
indices na = n(ωa), nb = n(ωb) are defined by the real parts of the
linear susceptibility χ(1), written as

na = {[εb(1 + f 1ΔLT[h̵Ωn,em/Eg − xa]
[(h̵Ωn,em/Eg) − xa]2 + γ2

2
)]}

1/2

, (95)

with analogous formulas for ωb and the absorptive term hΩn,abs.
Here, γ2 = h/(EgT2), f1 is the oscillator strength (here for the heavy
hole exciton), written as

f 1H =
η3

00H

[1 + η00H(r0H/a∗H)]3
, (96)

see Eq. (56).
The susceptibilities and, consequently, the nonlinear absorp-

tion coefficients, are composed of four components: two corre-
sponding to the contributions of discrete and continuous states,
and each of them containing terms related to phonon emission and
absorption,

α2H(ωa,ωb) = α2dH(ωa,ωb) + α2cH(ωa,ωb). (97)

For the discrete states, we only consider the lowest exciton state with
n = 1, yielding the following form:

α2dH(ωa,ωb) = −2xaγ2α′(
T1

T2
){ εb

nanb

nph + 1
(h̵Ω1H,em/Eg − xb)2 + γ2

2

× h̵Ω1H,em/Eg

[(h̵Ω1H,em/Eg)2 − x2
a]2 + (2γ2xa)2

+ εb

nanb

nph

(h̵Ω1H,abs/Eg − xa)2 + γ2
2

× h̵Ω1H,abs/Eg

[(h̵Ω1H,abs/Eg)2 − x2
b]2 + (2γ2xb)2 }, (98)

where the constant α′ is defined as
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α′H(ωa,ωb)

= 2
4Eg

ε0h̵na nb2c2E3
g

2M2
0H

ε0
[φ1H(0)A1H + φ1H(0)B1H]c2

1H

= 2
1
4
ε2

0ε
2
bπ

2a∗6
H Δ2

LTH ×
4

πε0h̵na nbc2E2
g

× [φ1H(0)A1H + φ1H(0)B1H](
η00H

a∗H
)

3 1
(1 + η00Hr0H/a∗H)2

= 2
πε2

bΔ
2
LTH(η00Ha∗H)3

E2
g h̵c2 na nb

[φ1H(0)A1H + φ1H(0)B1H]
(1 + η00Hr0H/a∗H)2 .

The continuum states contribution has the following form:

α2cH(ωa,ωb) = α2cH,em(ωa,ωb) + α2cH,abs(ωa,ωb), (99)

where

α2cH,em(ωa,ωb)

= −4Eg(nph + 1)
ε0h̵ na nb c2 M4

0H(
2μ∥H

h̵2 )
2 1

4πr0H

T1

h̵

× xa(
sin (κ̃ aH−,emr0H)
κ̃ aH−,emr0H

)
2

[κ̃bH−,emr0H + κ̃bH−,absr0H]

× (𝒜′′eH,em +ℬ′′hH,em), (100)

and

α2cH,abs(ωa,ωb)

= − 4Eg nph

ε0h̵ na nb c2 M4
0H(

2μ∥H
h̵2 )

2 1
4πr0H

T1

h̵

× xa(
sin (κ̃ aH−,absr0H)
κ̃ aH−,absr0H

)
2

[κ̃bH−,emr0H + κ̃bH−,absr0H]

× (𝒜′′eH,abs +ℬ′′hH,abs). (101)

The solutions obtained in the two regimes of discrete and con-
tinuous states are smoothly connected via the use of hyperbolic tan-
gent functions. Using the above formula, we have calculated the 2PA
coefficient α2(ωa,ωb) as a function of the energies hωa + hωb. The
band parameters used in the calculations are listed in Tables I–III.

The masses are calculated from Luttinger parameters,

TABLE II. Anisotropy parameters for Si and excitonic energies calculated from
Eq. (48).

Parameter Value (4.2 K) Value (300 K) Unit Reference

γaH 0.7 0.51 Equation (51)
η00H 1.058 1.1 Equation (51)
∣E10H ∣ 16.79 20 meV

TABLE III. Thermal electron and hole lengths for Si and expressions
φ1H(0)A1H ,φ1H(0)B1H .

Quantity Value 4.2 K Value 300 K Reference

λth,e∥ 8.08 1.05 Equation (103)
λth,ez 3.68 0.45 Equation (103)
λth,h∥H 4.15 0.42 Equation (103)
λth,hzH 6.66 0.67 Equation (103)
φ1H(0)A1H 4 × 1.52 4 × 0.173
φ1H(0)B1H 4 × 1.34 4 × 0.06

mhzH =
m0

γ1 − 2γ2
,

mh∥H =
m0

γ1 − 2γ3
,

mhzL =
m0

γ1 + 2γ2
,

mh∥L =
m0

γ1 + 2γ3
.

(102)

With the reduced electron and hole masses, the thermal lengths are
given by

λth,e = (
h̵2

me∥kB𝒯
)

1/2

= (2 × h̵2

2μ∥H
× μ∥H

me∥

1
kB𝒯
)

1/2

= (2 × μ∥H
me∥

R∗H
kB𝒯
)

1/2

, λth,hH = (
h̵2

mh∥kB𝒯
)

1/2

kBT

= 8.617 × 10−2 meV
K

. (103)

The calculated values are summarized in Table III.

III. EXPERIMENTAL
We perform optical experiments to determine nonlinear

absorption coefficients of silicon to supplement existing data in the
literature, spanning a wider range of x = ̵h(ωa+ωb)

2Eg
values. For this

purpose, we perform cross-correlation experiments, using optical
pulses derived from a 1 kHz amplified femtosecond laser system
(Spitfire Ace, Spectra Physics). The laser seeds two optical para-
metric amplifiers (OPA, TOPAS-Prime, Light Conversion), where
one OPA is used as a source of near-infrared (NIR) probe radia-
tion between 1150 and 1350 nm (1.08–0.91 eV), producing pulses in
the range of 100–150 fs. The signal and idler pulses from the second
OPA system are used to generate MIR pump pulses through the pro-
cess of difference frequency generation (DFG) in the 2480–4651 nm
(0.5–0.27 eV) range, producing 175–265 fs pulses. The MIR pump is
modulated using an optical chopper at a frequency of 500 Hz that is
synchronized to the laser output (MC2000B, Thorlabs).

We use a 280 μm thick [100] silicon window (99.999% purity,
University Wafer) as the sample target. The MIR and NIR pulses are
focused in a non-collinear arrangement on the Si target, using nor-
mal incidence for the pump beam and a ∼20○ incidence angle for the
probe beam. Temporal overlap is controlled through an automated
translation stage (GTS150, Newport) in the probe arm, producing a
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FIG. 1. Exemplary pump–probe data and corresponding nonlinear transmittance
fit. The photon energies used here are 0.91 and 0.376 eV.

TABLE IV. Experimentally obtained values for α2 in cm/GW.

Wavelength (nm) 2480 3295 3755 4220

1150 1.099 0.71 0.823 0.955
1200 0.951 0.638 0.705 0.817
1250 0.846 0.564 0.501 0.481
1350 0.634 0.452 0.385 0.307

cross-correlation of pump-induced probe absorption via NTA. The
remaining probe is attenuated by an OD = 3 neutral density filter and
detected using a home-built InGaAs photodiode. The modulated
change induced by the MIR pump is analyzed by a lock-in amplifier
(SR860, Stanford Research Systems). The resulting cross-correlation
is then used to extract the nonlinear absorption coefficient α2 as
described by Negres et al.47

Figure 1 shows a representative cross-correlation and its cor-
responding fit, and the tabulated data of extracted α2 values are
presented in Table IV. A full description of the data analysis is pre-
sented in the supplementary material. Pump-to-probe beam radius
ratios were maintained to at least 8:1 as measured by knife edge
scan. The low irradiance of the probe beam in conjunction with the
use of a lock-in amplifier ensures that any degenerate two-photon
absorption present is excluded from the measured signal. The pump
beam is always the longer wavelength beam, minimizing free car-
rier absorption induced by the probe via three- or four-photon
absorption.

IV. RESULTS AND DISCUSSION
The derived form of α2H that follows from the RDMA con-

tains contributions from the two regimes of exciton production,
namely, the contributions from discrete states and continuum states,
see Eq. (97). The discrete regime is visually depicted in Fig. 2, which

FIG. 2. Scaling behavior of the two-photon absorption coefficient α2 [Eq. (103)] as
a function of normalized photon energy while both photons are below the gap.

highlights the two-dimensional dispersion of α2. The analysis rec-
ognizes the presence of a single discrete excitonic state below the
band edge, corresponding to the creation of a bound state through
the absorption of a phonon, hΩabs, which may provide considerable
enhancement to the 2PA process. This is manifested by the pres-
ence of resonant denominators for the discrete regime, which can be
written in a simplified form from Eq. (98) as

α2dH(ωa,ωb)∝
1

(h̵Ωabs/Eg − h̵ωb/Eg)2 + γ2
2

× h̵Ωem/Eg

[(h̵Ωem/Eg)2 − (h̵ωa)2]2 + (2γ2h̵ωa)2 (104)

This single state is the only one considered due to the low bind-
ing energy of Si, which precludes the formation of bound excitons
with higher principal quantum numbers. When hωb/hωa is detuned
away from degeneracy, we observe an increase of α2 that is as much
as 5× the equivalent degenerate response, amplifying the process as
it becomes doubly resonant with the lowest discrete state and the
edge of the continuum at room temperature. This behavior is evi-
dent in the corners of Fig. 2. While smaller in magnitude, the hΩabs
state provides additional enhancement when at least one incident
photon approaches this energy. An alternate resonance condition
exists when both photons are resonant with the discrete exciton level
at ∼95% of the band gap. This is a singly resonant process where
the intermediate state is the lowest excitonic state, providing some
enhancement to the two-photon process.

If the energy of the incident photons exceeds the bandgap
energy, then the two-photon absorption process proceeds entirely
via continuum states. This can be accessed by either phonon absorp-
tion or emission, and the nonlinear absorption coefficient has the
form as in Eq. (99). Beyond the band edge, the continuum causes
α2cH to further increase up to the point where the energy of at least
one of the photons has enough energy to reach the direct gap of sil-
icon at Eg = 3.43 eV. This increase is due to the oscillatory behavior
of the linear coherent amplitude of the exciton density Y (1), which
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FIG. 3. Scaling of the degenerate two-photon absorption coefficient α2 as a func-
tion of x = hω/E g. Squares are obtained from Ref. 48 and thick solid line results
from the RDMA analysis of two-photon absorption.

contributes to the induced polarization of the medium in order for
two-photon absorption to occur.

To validate the performance of the model, we first apply
it to explain an experimental data set of the degenerate two-
photon (DTA) cross section obtained from an open aperture Z-scan
reported in Ref. 48. As shown in Fig. 3(a), α2 for the DTA process
reveals a resonance-like behavior as a function of photon energy.
A previous analysis using a model for direct transitions, corrected
for the center of mass energy when phonon scattering is involved,49

reproduced the general dependence of α2 on the photon energy, but
it failed to predict the observed resonance structure. The RDMA
approach (indicated by the solid line in Fig. 3), on the other hand,
predicts a resonant behavior when the individual photon energy
approaches the energy of the discrete exciton state, resulting in
a satisfactory description of the data. When the photon energy
exceeds the bandgap, the role of the bound exciton states decreases,
and instead, the response is largely dictated by continuum states,
which results in a slight decrease of α2. Note that only the dephas-
ing times in the RDMA analysis are fitting parameters, while all
other parameters are obtained from the tabulated values given in
Tables I–III.

We next use the model to describe the energy scaling of the
NTA coefficient as measured in Ref 23, which encompasses pho-
tons with an energy ratio from 1.6 to 2.08 (Fig. 4). In addition,
we have performed measurements using pump photon energies of
0.294–0.5 eV and probe energies of 0.91–1.08 eV, corresponding
to the photon energy ratio from 1.82 to 3.67 (Fig. 5). Together,
these two sets of measurements cover a wide range of energy ratios
(1.6–3.7), offering a robust dataset for validating our model.

We observe that the RDMA predictions for α2 are in good
agreement with both experimental datasets. The most notable fea-
ture in the normalized photon energy curve is the appearance of a

FIG. 4. Scaling of the non-degenerate two-photon absorption coefficient α2 as
a function of the normalized equivalent energy. Experimental data points are
obtained from Ref. 23 and thick solid lines represent the results from the RDMA
analysis. Different colors correspond to different photon energies hωa.

peak, which the model attributes to the presence of the bound exci-
ton resonance. The position of this peak shifts in accordance with the
energy tuning of the lower energy pump photon, and its magnitude
is largely dictated by the damping terms in the resonant denom-
inators of α2dH . However, this resonant behavior is significantly
different from what is reported in Ref. 23, where the theoretical pre-
dictions anticipate a quasi-linear scaling of α2 as a function of the

FIG. 5. Scaling of the non-degenerate two-photon absorption coefficient α2 as a
function of the normalized equivalent energy. Data points indicate experimental
results obtained in this study, and thick solid lines represent the results from the
RDMA analysis. Different colors correspond to different photon energies hωa.
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normalized photon energy. Future work may include NTA experi-
ments to verify the behavior of α2 and the influence of continuum
states above the band edge, such as can be obtained with a two-color
Z-scan.

This work is a significant departure from the conventional
understanding of the two-photon absorption process in semicon-
ductors. Previous methods have described the 2PA absorption
process in terms of transition rate matrix elements based on elec-
tron band states, where significantly non-degenerate photon pairs
become resonant with the interband transition and an intraband
transition simultaneously. Within the framework of the RDMA,
the defining feature of the absorption process is the ability to pro-
duce either bound or free excitons within the material. Tracking
the formation of excitons allows the RDMA to yield general expres-
sions for semiconducting materials with low binding energies, i.e.,
only the lowest discrete state needs to be considered. These results
are analytical in that there is no parametrization done to provide
free variables for fitting. The only variability results from loosely
determined material parameters, namely the relaxation times T1
and T2.

It is possible to apply this analysis to direct gap two-photon
transitions as well, which omits the involvement of phonon absorp-
tion or emission processes in the final equations. The RDMA
also accounts for the physical realities of material anisotropy and
relaxation mechanisms that are often added phenomenologically
elsewhere. Bolstered by the excellent agreement between theory
and experiment over a wide range of photon energies and non-
degeneracy ratios, we believe that the current description pro-
vides a deeper insight into two-photon absorption process in
semiconducting materials.

V. CONCLUSION
We have employed the RDMA approach to elucidate two-

photon absorption (2PA) in indirect gap semiconductors, using
silicon as the representative material. Our methodology, in contrast
to existing models for 2PA in semiconductors, uniquely incorporates
a detailed description of DTA (degenerate two-photon absorp-
tion) and NTA (non-degenerate two-photon absorption) through
the production of excitons, a physical insight often overlooked in
prior analyses. The approach allows the computation of the non-
degenerate two-photon absorption coefficient, capturing the influ-
ence of both bound and free excitonic states within the material.
In addition, the RDMA enables the inclusion of the effects of
phonon-assisted transitions and material anisotropy. According to
our model, the two-photon absorption process in silicon intensifies
as the energy of individual incident photons, while below the gap,
approaches the single bound excitonic state. This prediction aligns
with recently obtained experimental NTA absorption data, shedding
new light on the interpretation of published DTA data in bulk sili-
con. Above the gap, the 2PA process primarily occurs through the
continuum of free states, providing a satisfactory description of the
DTA data across a wide range of photon energies (hω/Eg = 0.5–1.3).
Finally, the analysis outlined using the RDMA can be generalized
and readily applied to other indirect gap materials by adjusting the
necessary material values. Furthermore, the model can be adapted to
describe direct transitions by excluding the involvement of phonon
modes to complete the transition.

SUPPLEMENTARY MATERIAL

The supplementary material provides further discussion on
the extraction of the two-photon absorption coefficient from
time-resolved data using pulse cross-correlation techniques.
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