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Professor Susan F. Tapert, Chair 

 

BACKGROUND: A positive family history (FHP) of alcohol use disorders 

(AUD) is linked to increased risk for personal AUD, but mechanisms behind this risk 

are unclear. FHP adolescents tend to be different from family history negative (FHN) 

youth on electrophysiological, brain volumetric, and neuropsychological measures. 

These differences diminish by young adulthood, suggesting that a subtle 

neurodevelopmental lag may contribute to AUD risk.  

METHODS: Neural networks of blood oxygen level dependent (BOLD) 

response to a spatial working memory (SWM) task were examined for markers of 

neuromaturational delay across FH groups. It was hypothesized that FHP adolescents 
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(n=24, ages 12-14), as compared to matched FHN youth (n=26, ages 12-14), would 

show less similarity to brain activity patterns observed in older adolescents (OA; 

n=35, ages 16-20). Structural equation modeling tested the fit of brain response in FH 

groups against the OA model. The influence of physiological noise was also examined 

using a filter to isolate task related response.  

RESULTS: Connectivity between key regions for SWM response was similar 

between FH groups, but FHN connectivity resembled OA patterns more than FHP 

adolescents did. FHP youth demonstrated higher bilateral association between right 

posterior and left frontal brain regions (rs=.49 v .22, p<.05) than FHN youth, and had 

a link between more superior posterior activation and poorer SWM accuracy (r=-.40, 

p<.05, r2=.16) not observed in other groups. Applying filters to model sources of noise 

did not alter results. 

CONCLUSIONS: Developmental stage of adolescence and FH status 

influenced functional connectivity to a SWM task. A bilateral brain connection was 

characteristic of FHP young adolescents but not to OA model fit, suggesting this as a 

less mature brain response pattern, and providing additional support for the notion of a 

neuromaturational lag in FHP youth. Protracted neuromaturation may be a mechanism 

by which FH increases risk for alcohol dependence, and this less mature neural 

connectivity pattern may provide a novel endophenotype for identifying youth at risk 

for drinking problems.
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FAMILY HISTORY OF ALCOHOL USE DISORDERS AND 
NEUROMATURATION: A FUNCTIONAL CONNECTIVITY  

STUDY WITH ADOLESCENTS 
 

INTRODUCTION 

Recent national surveys and community studies report that alcohol use is highly 

prevalent in the youth of America (L. Johnston, O'Malley, Bachman, & Schulenberg, 

2005; L. D. Johnston, O'Malley, Bachman, & Schulenberg, 2009). For youths ages 12 to 

17, past month alcohol use was 16% in 2007. Binge and heavy drinking rates for this age 

group were 10% and 2% (NSDUH, 2007), respectively. Heavy use of alcohol in 

adolescence increases risk for developing myriad secondary disorders such as 

psychopathology (Fidalgo, da Silveira, & da Silveira, 2008; Kandel, et al., 1997; Rohde, 

2001), physical problems (Aarons, 1999; Clark, Lynch, Donovan, & Block, 2001), 

cognitive decrements (Squeglia, Spadoni, Infante, Myers, & Tapert, in press; Tapert, 

Granholm, Leedy, & Brown, 2002), impaired social development (Baumrind & Moselle, 

1985; Maggs, Patrick, & Feinstein, 2008), and substance dependence (Englund, Egeland, 

Oliva, & Collins, 2008; Grant & Dawson, 1997). Early identification of youth at greatest 

risk for developing AUD will facilitate intervention development and implementation. 

 One of the most robust risk factors for developing an AUD is a positive family 

history of AUD (Capone & Wood, 2008; Cloninger, Sigvardsson, Reich, & Bohman, 

1986; Goodwin, 1979; King, et al., 2009; I. C. Liu, et al., 2004; Sartor, Agrawal, Lynskey, 

Bucholz, & Heath, 2008; Sartor, Lynskey, Heath, Jacob, & True, 2007; Schuckit, 1985). 

Risk of developing an AUD rises with increased family history density, or multiple 

generations of AUD (Capone & Wood, 2008; Dawson & Grant, 1998; S. Y. Hill, Shen, 
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Lowers, & Locke, 2000; Little, Handley, Leuthe, & Chassin, 2009; Nurnberger, et al., 

2004; Peterson, Finn, & Pihl, 1992; Sher, Bartholow, & Wood, 2000). Because many 

individuals with AUD are FHP, understanding the neural characteristics of FHP youth 

may help determine potential premorbid abnormalities in brain functioning of alcohol 

dependent individuals.  

BACKGROUND 

Neural Features Linked to FHP 

 FHP youth commonly perform differently from FHN controls on neurocognitive 

measures. Non-AUD FHP adolescents, especially males, tend to perform worse on tests of 

executive cognitive functioning (M. Corral, Holguin, & Cadaveira, 2003; Dolan, Bechara, 

& Nathan, 2008; Giancola, Martin, Tarter, Pelham, & Moss, 1996; Harden & Pihl, 1995; 

Nigg, et al., 2004) working memory, (M. M. Corral, Holguin, & Cadaveira, 1999; Dolan, 

et al., 2008; Harden & Pihl, 1995; T. Ozkaragoz, Satz, & Noble, 1997), perseveration 

(Giancola, Peterson, & Pihl, 1993), nonverbal memory (Sher, Walitzer, Wood, & Brent, 

1991), organization of new information (Peterson, et al., 1992), visuospatial skills 

(Berman, 1995; M. M. Corral, et al., 1999; Garland, 1993; T. Ozkaragoz, et al., 1997; T. 

Z. Ozkaragoz & Noble, 1995; Sher, et al., 1991), language functioning and academic 

achievement (Giancola, et al., 1993; Hegedus, Alterman, & Tarter, 1984; Najam, Tarter, 

& Kirisci, 1997; Poon, Ellis, Fitzgerald, & Zucker, 2000; Sher, et al., 2000; Tarter, 

Hegedus, Winsten, & Alterman, 1984; Viken, Kaprio, Koskenvuo, & Rose, 1999), and 

attention (Tarter, Jacob, & Bremer, 1989). Multigenerational transmission of alcohol 

dependence (Conrod, Pihl, & Ditto, 1995; LeMarquand, Benkelfat, Pihl, Palmour, & 

Young, 1999; Peterson, et al., 1996; R. Pihl & Bruce, 1995), high familial density (S. Y. 
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Hill, et al., 2000), early age of alcoholism onset in father (Tarter, et al., 1989), active 

paternal alcoholism (T. Ozkaragoz, et al., 1997), behavioral disinhibition (Lovallo, 

Yechiam, Sorocco, Vincent, & Collins, 2006), and genotypic features (Berman, 1995; 

Edenberg, et al., 2004; Enoch, et al., 2009; Schumann, et al., 2008) may increase the 

strength in relationship between FHP and NP functioning. However, some studies 

reported no neurocognitive differences (Bates & Pandina, 1992; Bjork, Knutson, & 

Hommer, 2008; Finn & Justus, 1999; Schuckit, Butters, Lyn, & Irwin, 1987), or effect of 

intelligence via genotype (Petrill, et al., 1997) between FHN and FHP participants. In 

sum, these findings raise the possibility that some neurocognitive deficits previously 

reported in alcoholics may predate the onset of heavy drinking.  

 A positive FH has also been linked to different patterns of brain activation during 

functional neuroimaging tasks. FHP youth had less brain response in the inferior frontal 

gyrus during response inhibition (Schweinsburg, et al., 2004), as well decreased activation 

in the middle temporal gyrus and inferior frontal gyrus while judging facial expressions  

(S. Y. Hill, et al., 2007). FHP youth also had relatively greater neural activation in the 

anterior cingulate cortex and caudate nucleus during a gambling task (Acheson, Robinson, 

Glahn, Lovallo, & Fox, 2009), and more activation in the orbital frontal gyrus in response 

to affective stimuli (Heitzeg, Nigg, Yau, Zubieta, & Zucker, 2008) than FHN peers in 

recent neuroimaging studies. Similar studies have also failed to isolate FH effects from 

behavioral undercontrol (Glahn, Lovallo, & Fox, 2007), or found no FH group differences 

(Bjork, et al., 2008). Taken together, these findings may suggest that a positive FH 

influences neural correlates of behavioral and affective regulation and, in turn, risk for 

personal AUD.  
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Decreases in intracranial and amygdala volume have also been evidenced in 

FHP individuals. FHP adolescents and young adults have demonstrated smaller 

volume of the right amygdala (S. Y. Hill, et al., 2001). Smaller intracranial volume 

and skull growth in children of alcoholics with AUD may indicate that reduced brain 

growth, whether by genetic or environmental mechanisms, increases risk for 

developing AUD in the offspring of problem drinkers (Gilman, Bjork, & Hommer, 

2007). Since amygdala and intracranial volume tends to increase over childhood and 

adolescence, reduced volumes in FHP youth may indicate a developmental lag.  

In addition to differences in NP performance, brain activation, and decreased 

intracranial and amygdala volumes, neurophysiological abnormalities have also been 

found in FHP youth (H.  Begleiter, Porjesz, & Bihiari, 1987; R. Pihl & Bruce, 1995; 

R. O. Pihl, Peterson, & Finn, 1990; Tarter, et al., 1984). The P300 component of the 

event-related potential (ERP), which serves as an indicator of rapid shifts in allocation 

of cognitive resources, has shown reduced amplitude in FHP children and adults 

(Almasy, et al., 1999; H. Begleiter, Porjesz, Bihari, & Kissin, 1984; Polich, Pollock, & 

Bloom, 1994; Porjesz, et al., 1998) as well as in heavy drinkers, suggesting an 

endophenotype of alcoholism (Hesselbrock, 2001). This feature is most consistently 

displayed in FHP individuals under age 18. After this age, FHP individuals begin to 

resemble FHN peers, suggesting an inherited developmental lag (Polich, et al., 1994). 

Aberration in P300 amplitude among FHP individuals also supports the developmental 

delay hypothesis. Delayed maturation of postural sway (S. Y. Hill, et al., 2000) as 

evidenced by abnormalities in the cerebellum and basal ganglia has also been 

implicated in FHP youth. 
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Spatial Working Memory Involves Shared Abnormalities in AUD and FHP 

Spatial working memory refers to the maintenance of spatial locations for 

further manipulation (Baddeley, 1986). The neural mechanism of these processes has 

been reliably demonstrated to involve a frontoparietal network including the 

dorsolateral prefrontal cortex (DLPFC), posterior parietal cortices, and cingulate 

cortex (Casey, et al., 1997; Courtney, Petit, Maisog, Ungerleider, & Haxby, 1998; 

Goldman-Rakic, 1987; McCarthy, et al., 1996; Ricciardi, et al., 2006; van Asselen, et 

al., 2006). While the frontal regions of the brain are linked to executive control, 

parietal cortices are thought to be recruited for tasks requiring accuracy and effort 

(Nelson, 2000; van Asselen, et al., 2006). Disorganization of source density maps of 

the P300 may indicate abnormalities of the frontal and prefrontal cortex in non-

drinking FHP individuals (Hada, 2001). Rangaswamy and colleagues (2004) postulate 

that dysfunction of the frontoparietal circuit underlies the low P300 amplitude in FHP 

individuals (Rangaswamy, Porjesz, Ardekani, et al., 2004). This suggests that in fMRI 

studies of alcoholics, the observed reorganization of frontoparietal pathways used to 

complete spatial working memory tasks (Pfefferbaum, et al., 2001; Tapert, et al., 

2001; Tapert, et al., 2004) may be moderated by premorbid FH effects.  

 

Maturation of the Neural Mechanisms Supporting Spatial Working Memory  

The organization of spatial working memory is also theorized to change during 

pre- to post-adolescent development (Klingberg, 2006; Klingberg, Forssberg, & 

Westerberg, 2002a; Nelson, 2000; Schweinsburg, Nagel, & Tapert, 2005; Thomas, et 
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al., 1999; Thomason, et al., 2009). Brain activation in the DLPFC appears more 

bilateral in younger children than older children (Tsujii, Yamamoto, Masuda, & 

Watanabe, 2009) and adults, who progressively demonstrate activation in 

predominantly right prefrontal regions (Thomas, et al., 1999). This right greater than 

left pattern of activation is consistently observed in adults (Courtney, Ungerleider, 

Keil, & Haxby, 1997; Jonides, et al., 1993; Smith, Jonides, & Koeppe, 1996). Children 

also show increased activity in prefrontal areas as compared to adults, who show 

greater volumes of parietal activity (Thomas, et al., 1999).  

Work from our lab indicates that typically developing adolescents show a 

positive relationship between age and brain activation of prefrontal and inferior 

parietal regions, and a negative relationship between age and superior parietal cortices 

(Schweinsburg, Nagel, et al., 2005). This evidence suggests that the underlying neural 

mechanisms of SWM develop over adolescence, shifting more posterior and 

lateralizing to the right side, and that the inferior parietal lobe becomes more 

important by late adolescence. Studies have also demonstrated correspondence 

between working memory ability and activity in the intraparietal cortex (Todd & 

Marois, 2004; Vogel & Machizawa, 2004), which corresponds to the increase in SWM 

capacity over development (Issacs & Vargha-Khadem, 1989; Logie & Pearson, 1997). 

Greater SWM task accuracy has been shown to be correlated with increasing 

activation in the inferior and intra-parietal cortices in conjunction with frontal cortices 

(Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002). Therefore, changes in brain 

activation over adolescence may reflect a shift in strategy, cortical organization, or a 

combination of the two processes (Edin, Macoveanu, Olesen, Tegner, & Klingberg, 
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2007; Klingberg, 2006; Schweinsburg, Nagel, et al., 2005; Thomas, et al., 1999). 

Examination of these activation patterns in FHP youth may ascertain whether they 

differ from that of FHN youth and show a less mature pattern of neural response.  

Studies examining the integrity of underlying anatomical connections also 

suggest that white matter increases occur in a specific temporal and spatial manner 

that is consistent with improved SWM functions (Klingberg, 2006). White matter 

tracts and the degree to which they are anisotropic, or constrict the motion of fluid in 

the direction parallel to the fiber, increase with brain development (Giedd, 

Blumenthal, Jeffries, Rajapakse, et al., 1999; Paus, et al., 2001). Changes in anisotropy 

are attributed to myelination, or the process of oligodendrocytes insulating axon fibers 

(Beaulieu, 2002), which is thought to improve the speed and efficiency of cortico-

cortical communication (Felts, Baker, & Smith, 1997; C. Liston, et al., 2006; 

Waxman, 1977). During adolescence, age related increases in total white matter 

volume are prominent (Caviness, Kennedy, Richelme, Rademacher, & Filipek, 1996; 

Giedd, et al., 1996; Hasan, et al., 2007; Hua, et al., 2009; Jernigan, et al., 1991; 

Pfefferbaum, et al., 1994; Reiss, Abrams, Singer, Ross, & Denckla, 1996; Sowell, et 

al., 1996), with demonstrated rapid increases from ages 12 to 15, and slowed 

continued increases through approximately age 30 (Courchesne, et al., 2000). The 

largest increase in anisotropy seems to occur between early and late adolescence (Qiu, 

Tan, Zhou, & Khong, 2008; Snook, Paulson, Roy, Phillips, & Beaulieu, 2005). 

Changes in connective fibers including the superior longitudinal fasciculus, which 

connects the frontal and parietal lobes, have been demonstrated to occur in older 

adolescents (Bava, Jacobus, Thayer, Frank, & Tapert, in preparation; Fair, et al., 2008; 
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Snook, et al., 2005). Eluvathingal and colleagues (2007) examined youth aged 6 to 17 

years and found higher anisotropy in all areas of the left fasciculus, except within the 

right frontoparietal segment of the fasciculus, suggesting a developmental process 

occurring specifically in the region where there are predicted age-related FH group 

differences (Eluvathingal, Hasan, Kramer, Fletcher, & Ewing-Cobbs, 2007). 

Additionally, in a study examining fMRI BOLD response in relation to white matter 

(Olesen, Nagy, Westerberg, & Klingberg, 2003), SWM scores were positively related 

to BOLD response in the inferior parietal lobe after controlling for age, and anisotropy 

values in frontoparietal white matter were also correlated with BOLD response in 

nearby gray matter in the superior frontal sulcus and inferior parietal lobe, suggesting 

coordinated development of an underlying SWM network. 

 

Functional Connectivity Can Help Elucidate Altered Systems of Complex Cognitive 

Tasks 

The relationship between neuromaturation and brain activation has yet to be 

fully understood. Change in PFC blood oxygen level dependent (BOLD) activation 

has been demonstrated to both increase (Casey, et al., 1997; Klingberg, Forssberg, & 

Westerberg, 2002b) and decrease with age (Adleman, et al., 2002). Because BOLD is 

only a proxy for neural activation in response to a task (Kim, et al., 2004; Logothetis, 

2002; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001), there is no direct 

measure of brain activity that can conclusively relate task response to activation of 

specific brain regions. Activation maps are also subject to multiple interpretations. 

Developmental literature typically associates focal increases and reduced extent of 
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activation with greater functional maturation (Kwon, Reiss, & Menon, 2002), while 

clinical studies commonly interpret increased activation as indicative of compensatory 

neural recruitment and neural inefficiency (Desmond, et al., 2003; Pfefferbaum, et al., 

2001; Tapert, et al., 2004).  

Explaining brain activity in terms of the volume and direction of activations 

may ignore connectivity of these regions. Yet, the manner in which brain areas work 

in concert to perform the task can provide useful information as to neural integrity (Y. 

Liu, et al., 2008; Supekar, Menon, Rubin, Musen, & Greicius, 2008) and efficiency 

(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006), and may be assessed by 

examining networks of activation (Stricker, Brown, Wetherell, & Drummond, 2006). 

For example, a recent study used functional connectivity to assess the age-related 

changes in the brain's default network (Fair, et al., 2008) which is anti-correlated with 

brain activation to cognitively challenging tasks (Fox, et al., 2005), and found that this 

network is minimally functionally connected at approximately 8 years of age, but that 

continued integration of these regions into a unified network occurs over development. 

As in functional imaging research, there is also evidence that patterns of connectivity 

change with age, some areas decreasing and other increasing in integration, allowing 

for improved efficiency (Fair, et al., 2007; M. C. Stevens, Kiehl, Pearlson, & Calhoun, 

2007). Functional connectivity analyses examining brain network dynamics during 

error commission, inhibition, and resting states have described neurobiological 

discrepancies between adolescent and adult networks (Fair, et al., 2007; M. C. 

Stevens, et al., 2007; M. C. Stevens, Kiehl, Pearlson, & Calhoun, 2009; M. C. Stevens, 

Pearlson, & Calhoun, 2009). The conclusions of resting state-based studies suggest 
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that within network connectivity becomes stronger, and between network interactions 

become weaker. The authors interpreted these findings as indicating more flexible 

intra-network processing capacity (M. C. Stevens, Kiehl, et al., 2009; M. C. Stevens, 

Pearlson, et al., 2009). Additionally, examination of inhibitory processes implicates 

increased participation of higher order cortices with increasing development (M. C. 

Stevens, et al., 2007). Therefore, while most studies assess functional specialization of 

brain regions, providing information in terms of a region’s contribution to a given 

behavior, they fail to characterize communication between these regions (Lee, 

Harrison, & Mechelli, 2003). By characterizing brain activity in terms of connectivity, 

or “the influence that one neural system exerts over another directly or indirectly” 

(Friston, 1994), valuable clinical information may be gleaned.  For instance, the 

influence of age and FH can be specified as increasing or decreasing the strength of 

communication between brain regions, or altering the influence one region has upon 

another. Connectivity changes as a function of FH could perhaps provide a 

“quantifiable marker of genetic risk (Bullmore & Sporns, 2009),” or endophenotype, 

for AUD. 

 

Structural Equation Modeling 

Structural equation modeling (SEM) techniques are part of the general linear 

model (GLM) family, can be used with latent variables and observed variables alike, 

and serve both confirmatory and exploratory analyses (Kline, 2005b). However, for 

models as those specified in these analyses, where no variable is both predictor and 

outcome of another variable (recursive) and is over-identified (the number of free 
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parameters is less than the number of observations), multiple regression can be used to 

complete the path analysis and will have practically identical results as the maximum 

likelihood estimation procedures used in SEM (Kline, 2005b). However, there are 

distinct advantages of performing a path analysis with SEM instead of with 

multivariate regression. Most importantly, SEM requires the a priori designation of 

models based on established data gleaned from neuroanatomical, neuropsychological, 

and functional neuroimaging studies of the brain (Friston, 1994). Therefore, SEM can 

be used to evaluate functional neuroimaging models generated by the researcher by 

testing their fit against observed patterns of brain activation. Also, SEM provides 

multiple indices of overall model fit necessary to delineate the best of competing 

models. These indices are not output by regression programs. Also, in the case that our 

hypothesized model does not fit, re-specification of the model with non-recursive 

(bidirectional) pathways could not be evaluated using multiple regression (Kline, 

2005b). 

 In addition to a SEM approach, functional connectivity has also been 

ascertained using a variety of other methods, such as dynamic causal modeling 

(Friston, Harrison, & Penny, 2003), seed voxel analyses (Cordes, et al., 2000), and 

various multivariate analyses (R. G. Schlosser, Wagner, G., Sauer, H., 2005). Where 

SEM and dynamic causal modeling use BOLD response to characterize regional 

interactions, dynamic causal modeling also attempts to make inferences regarding 

relationships at the neural level by exploiting knowledge of well-known 

neuroanatomical correlates of direct sensory input and concurrent cognitive 

functioning (R. G. Schlosser, Wagner, G., Sauer, H., 2005). Mapping the neural 
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coordinates of cognition with input that requires more complex processing than visual 

or auditory stimuli (i.e., working memory) may be too theoretical for dynamic causal 

modeling (R. G. Schlosser, Wagner, G., Sauer, H., 2005).  

In direct contrast to SEM and dynamic causal modeling approaches, seed voxel 

analysis does not begin with an a priori model of neural interactions. Instead, based on 

the selection of a start point, or “seed voxel,” one creates correlation maps to examine 

the relationships between signal in the chosen voxel and other voxels in the brain 

(Cordes, et al., 2000). Finally, multivariate approaches such as principle components 

analyses (Friston, Frith, & Frackowiak, 1993; Mikula & Ernst, 2007), independent 

component analyses, and partial least squares (Della-Maggiore, et al., 2000) may be 

used for data reduction and to compare models across groups. These approaches may 

produce similar solutions but do not offer summary indices of model fit necessary for 

comparing the utility of competing models. The SEM approach was therefore selected 

to allow testing a carefully reasoned a priori model, to examine the influence of each 

node in the specified model, and to provide model fit indices.  

 

Physiological Filtering 

 Changes in BOLD signal depend on blood oxygenation, volume, and flow 

during neural activity (Kwong et al., 1992). The percent of signal change that occurs 

in brain regions during engagement, such as an experimental task compared to a 

baseline condition, are very small in measure, usually between 1% and 5% (Huettel et 

al., 2004). Detection of task induced neural activity can be affected by a host of non-

neural influences such as thermal noise, variation due to scanner hardware, participant 
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movement, and several physiological processes. Filtering is traditionally used in signal 

detection processes to help refine a signal. If the signal of interest and noise occur at 

discrete frequencies, methods to attenuate undesired frequencies will increase signal to 

noise ratio. While small variations caused by gross subject movement can be corrected 

for with relative ease (Cox & Jesmanowicz, 1999), fluctuations due to physiological 

processes are not as easily ameliorated.  

The two chief sources of physiological variance affecting BOLD signal are 

cardiovascular and respiratory. Cardiovascular induced pulsations in blood can result 

in signal change in regions of the brain near highly vascularized regions (e.g., middle 

cerebral artery (Dagli, Ingeholm, & Haxby, 1999; Lowe, Mock, & Sorenson, 1998), 

and in cerebral spinal fluid (e.g., ventricles, edges of brain) as well as gray matter, 

especially near blood vessels (Jezzard & Song, 1996; Weisskoff, et al., 1993) where 

task-induced signal is localized. Change in arterial level of carbon dioxide (CO2) 

during respiration can also result in task correlated signal variation in gray matter 

(Stillman, Hu, & Jerosch-Herold, 1995; Weisskoff, et al., 1993).  Noise has also been 

detected in regions containing predominantly white matter (Stillman, et al., 1995; 

Weisskoff, et al., 1993).  

 Physiologic noise can be especially problematic in functional connectivity 

analyses of resting state BOLD signal (Biswal, DeYoe, & Hyde, 1996; Cordes, et al., 

2001) because it cannot easily be distinguished from neurally generated signal (R. M. 

Birn, Diamond, Smith, & Bandettini, 2006). Low frequency fluctuations (<0.1 Hz) are 

thought to result from a coordinated and structurally coherent network most active 

during rest. This “default network” includes the anterior cingulate and parts of medial 
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prefrontal cortex, extending inferiorly into orbitofrontal cortices (Greicius, Krasnow, 

Reiss, & Menon, 2003; Greicius & Menon, 2004; Hampson, Peterson, Skudlarski, 

Gatenby, & Gore, 2002; Raichle, et al., 2001). Reliably isolating respiratory or cardiac 

induced signal from neural based resting signal can be problematic because the fMRI 

sampling rate, or TR, is usually about 2 seconds while average breathing rate is about 

every 4 seconds. While a 2-second sampling rate is optimal for capturing peak BOLD 

signal (e.g., 1/TR, or .5 Hz (Menon, Hu, Mitra, Ogawa, & Ugurbil, 1994), it does not 

accurately sample high frequency physiological influences (e.g., ~.3 Hz respiration or 

~1-2 Hz cardiac influence (Lowe, et al., 1998). Cardiac and respiratory signal is 

subsequently aliased, or displaced, to lower frequencies (<.08 Hz) and thus difficult to 

isolate from signal of interest, especially when examining resting brain activity (Lowe 

et al., 1998). Fluctuations due to inspiration depth have also been shown to occur at 

very low frequencies (~0.03 Hz) and are therefore also very difficult to separate from 

resting brain-based activity (R. M. Birn, et al., 2006).  

 Several problems may result from ignoring physiological fluctuations in 

BOLD data. For example, when error is not independent or normally distributed, 

standard deviations may be falsely deflated, and statistical inference may be 

generously biased (Lund, Madsen, Sidaros, Luo, & Nichols, 2006). Wise and 

colleagues demonstrated that changes in CO2 during normal breathing have been 

shown to be significantly correlated with BOLD signal (Wise et al., 2004); therefore 

changes in breathing that are task related could falsely inflate effects (R. M. Birn, et 

al., 2006). In addition, regions of the default network also overlap with areas shown to 

be most influenced by fluctuations in CO2 (R. M. Birn, et al., 2006). Similarly, aliased 
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physiologic noise can increase correlations between non-default network (i.e., bilateral 

precentral gyri and right inferior parietal lobule) regions of interest sensitive to the 

physiological signal (Lowe, et al., 1998). Conversely, physiologic-related fluctuations 

can decrease sensitivity to task-induced BOLD variation, obscuring very small 

percentages of task-induced change with noise (Lund, et al., 2006). More obvious 

effects might result such as image artifact or non-uniform intensity (Glover, Li, & 

Ress, 2000). Also, because physiological noise depends on the total signal strength, it 

may constitute a larger fraction of the total noise with signal increases (Kruger & 

Glover, 2001; Triantafyllou, et al., 2005) and increased magnetic field strength (e.g., 

1.5T v. 3T) (Shmueli, et al., 2007). Therefore, while the final influence of 

physiological noise may be small, depending upon the experimental condition, region 

of interest, and field strength, separation of physiological signal from task-related 

signal may be vital for valid conclusions. 

Although the influence of high frequency physiological fluctuations has been 

well defined, methods by which to best deal with their influence are less clearly 

established.  Physiological noise correction can be done in either spatial domain (e.g., 

highlighting areas most likely to contain noise) or in the temporal domain, which 

incurs targeting suspect waveforms in the fMRI time course. Early attempts were k-

space corrections that used scanner-obtained information but were spatially non-

specific (Glover, et al., 2000; Hu, Le, Parrish, & Erhard, 1995; Wowk, McIntyre, & 

Saunders, 1997). The use of a fixed bandpass filter was also proposed to reject noise at 

cardiac and respiratory frequencies (Biswal, DeYoe, & Hyde, 1995), but such a filter 

can only produce meaningful results if the physiological noise is adequately sampled 
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(e.g., short TR) and not aliased to lower (and harder to approximate) frequencies 

(Shmueli, et al., 2007). Additionally, if the signal of interest is within the band of 

rejected frequencies, such as in resting state functional connectivity analyses, such 

correction cannot be applied without losing task-relevant information (Shmueli, et al., 

2007). 

In attempts to increase specificity of physiological noise correction, 

retrospective corrections based on parallel measures of respiration and cardiac activity 

collected with additional monitoring equipment have been developed (e.g., 

RETROICOR) (Glover, et al., 2000). These parallel measures have also been used to 

model the effects of physiological noise, and used nuisance regressors in the general 

linear model, reducing non-normality of residuals and bolstering validity statistical 

conclusions (Lund, et al., 2006). This regression method does not interfere with the 

signal extraction of functional activation is therefore preferred to a rejection filter 

(Deckers, et al., 2006). However, many noise reduction methods assume a stable 

cardiac cycle, and rely on this stability and its relationship in timing to fMRI sampling 

(A. D. Liston, et al., 2006; Vogt, Ibinson, Small, & Schmalbrock, 2006). Researchers 

have found that they could explain an additional 1% of BOLD signal by including 

heart rate fluctuation measures in the general linear model above and nuisance 

regressors based on parallel measures of cardiac and respiration (Shmueli, et al., 

2007). Mapping a response function for both respiration volume (R.M. Birn, Smith, 

Jones, & Bandettini, 2008) and heart rate (Chang, Cunningham, & Glover, 2009) in 

relation to BOLD and including these simultaneously in the model has also been 

demonstrated to increase subsequent functional connectivity in the default network 
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(Chang, et al., 2009), suggesting that inclusion of physiological noise and its relation 

to BOLD may be important to functional connectivity analysis.   

Parallel physiological measurements are not always possible to collect or 

available to researchers. Authors have also attempted to create generalizable filters 

based on an average of physiological data (Beall & Lowe, 2007; Chuang & Chen, 

2001). However, their estimates require that a researcher pre-plan to use a suggested 

prescription (Beall & Lowe, 2007; Murphy, Birn, Handwerker, Jones, & Bandettini, 

2009), or that the sampling rate be shorter than is typically optimal in fMRI (Chuang 

& Chen, 2001; Murphy, et al., 2009). Data reduction analyses (principal component 

analyses (PCA), or independent component analyses (ICA)) have been used to 

estimate noise (McKeown, et al., 1998). PCA clusters spatially and temporally 

correlated information across multiple scans of the same subject, but tends to overlap 

with regions that are active during resting states, complicating analysis in resting 

functional connectivity studies (Beall & Lowe, 2007). ICA also attempts to isolate 

non-task related (non-Gaussian) sources of variation into separable components 

(Beckmann, DeLuca, Devlin, & Smith, 2005; De Luca, Beckmann, De Stefano, 

Matthews, & Smith, 2006; McKeown, et al., 1998). However, evidence that these 

components do not contain neurally induced signal is lacking, in addition to the 

method’s failure to address aliasing problems (Beall & Lowe, 2007). Other ICA 

methods with greater specificity require parallel cardiac and respiratory monitoring 

(Beall & Lowe, 2007).  

As the influence of physiological noise has been shown to be potentially 

deleterious in functional connectivity analyses, a method of physiological noise 
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correction was included in the current analyses. No parallel physiological data were 

collected along with fMRI data, and therefore the type of correction that can be 

applied is limited.  Therefore, a spatial filtering method, based on filtering signal from 

regions of non-interest (i.e., white matter) was applied (A. N. Simmons, et al., 2008; 

Strigo, Simmons, Craig, & Paulus, 2006).  The benefits of this method are the ability 

to apply it retrospectively without measured physiological data, the reduced risk of 

affecting signal from the regions of interest in the gray matter, and its individual 

specificity. Because physiological sources of noise are increased at higher field 

strengths (Kruger, Kastrup, & Glover, 2001; Triantafyllou, et al., 2005) this correction 

will only be applied to the OA sample, which was collected on a 3T magnet. 

Functional connectivity analyses were carried out on these data with and without the 

correction for comparison.  

 

Specific Hypotheses 

This study tests the hypothesis that risk for AUD in FHP youth is moderated 

by a subtle lag in neuromaturation. The age range of interest (12 to 14) is prior to the 

time at which many alcohol dependent young adults typically began drinking. 

Importantly, neurodevelopmental processes, such as synaptic refinement of the frontal 

regions and gray matter pruning, are heightened between the ages of 12 and 14 years 

of age (Giedd, Blumenthal, Jeffries, Castellanos, et al., 1999; Gogtay, et al., 2004; 

Sowell, Thompson, Holmes, Jernigan, & Toga, 1999), making this an ideal window to 

capture developmental differences between groups. These results will also aid in 

interpreting whether deficits of spatial working memory in youth with AUD resulted 
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from alcohol involvement or were associated with premorbid factors such as FH. 

Using SEM, neural networks in young adolescents (aged 12 to 14) employed during a 

SWM paradigm using fMRI BOLD data will be compared between 1) youth with at 

least one parent who has a history of AUD (FHP), and 2) youth with no parent or 

grandparent with any history of a substance use disorder (FHN), and against 3) older 

adolescents (OA; aged 16 to 20) without histories of alcohol or drug abuse. This third 

comparison group of older adolescents ensures that a valid baseline of  “mature SWM 

network” is established.  

To test whether brain regions work together differently in youth with a positive 

family history, models of brain activity during SWM were developed. Specifically, the 

OA model was developed to include brain regions that best approximate patterns 

previously reported for older adolescents and adults in response to an SWM fMRI 

task. It is hypothesized that activation networks of FHN young adolescents will more 

closely resemble those of the OA comparison group than will the FHP youth, and that 

statistical comparison of SWM functional connectivity models will differentiate FHN 

and FHP youth (Figure 1). Regions of interest (ROIs) included: 1) right inferior 

parietal lobule, 2) right superior parietal lobule, 3) right middle frontal gyrus, and 4) 

left middle frontal gyrus, based on evidence that these regions are (a) integral to SWM 

functions (Casey, et al., 1997; Courtney, et al., 1998; Goldman-Rakic, 1987; 

McCarthy, et al., 1996; Ricciardi, et al., 2006; van Asselen, et al., 2006), (b) sensitive 

to shifts in cortical organization or change in strategies that accompany adolescent 

development (Edin, et al., 2007; Klingberg, 2006; Klingberg, et al., 2002a; Nelson, 

2000; Schweinsburg, Nagel, et al., 2005; Thomas, et al., 1999; Thomason, et al., 
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2009), and (c) susceptible to FH effects (Hada, 2001; Rangaswamy, Porjesz, 

Ardekani, et al., 2004).  The hypothesized relationships between these regions are 

specified below, but ultimately, will depend on the fit of the OA model. 

1) FHP youth have been shown to recruit neural resources more heavily from 

bilateral DLPFC (right and left middle frontal gyri) (Thomas, et al., 1999). 

Therefore, in FHP youth, it is predicted that the right middle frontal gyrus will 

have a weaker, positive influence on the left middle frontal gyrus, as compared 

to the FHN and OA youth, whose right middle frontal gyri will exert a greater 

positive influence on the left middle frontal gyri. 

2) Activation to this SWM task in the superior parietal lobule has been shown to 

be negatively correlated with increased age, while activation in the inferior 

parietal lobule shows a positive relationship with age (Schweinsburg, 

Schweinsburg, et al., 2005). It may be that as the inferior parietal lobule comes 

online, activation in the superior parietal region is no longer crucial for 

efficient task performance. Therefore, it is predicted that FHP subjects will rely 

more heavily on the superior parietal lobule and less in the inferior parietal 

lobule for SWM processing, thus producing a strong, negative influence of the 

inferior parietal lobule on the superior parietal lobule. OA and FHN negative 

youth will show the opposite relationship between parietal regions, and will 

demonstrate increasing inferior parietal activation with decreasing superior 

parietal response, thus also show a negative (though weaker) relationship. 

3) Relative decrease in the activation of the superior parietal lobule in FHN and 

OA youth will lead to a relatively weak, negative influence of this region on 
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the right middle frontal gyrus. The opposite pattern is predicted for the FHP 

youth. 

4) A right greater than left pattern of activation is consistently observed in adults 

in response to SWM tasks (Courtney, et al., 1997; Jonides, et al., 1993; Smith, 

et al., 1996; Thomas, et al., 1999). If there is increased response in the right 

middle frontal gyrus and concomitant increase in the right inferior parietal lobe 

in OA and FHN youth, a strong, positive relationship between these regions is 

proposed, thus mimicking the right greater than left pattern established in 

adults. The FHP youth will alternatively demonstrate a negative relationship 

between these two regions, owing to their comparatively decreased response of 

the inferior parietal lobule and simultaneously greater response of the superior 

parietal lobule. In FHP youth, the inferior parietal lobule will have a 

comparatively weaker and negative influence on the right inferior frontal 

gyrus.  

5) It was hypothesized that if improved SWM performance is positively related to 

connectivity associated with mature neural networks, then delayed 

neuromaturation in FHP youth gains further support as a risk factor for AUD.  

 

It was also hypothesized that the physiological correction would not 

meaningfully change the outcome of group comparisons, chiefly due to the location of 

the regions of interest as well as the frequency of their signal. The majority of research 

has found that physiological noise is most detrimental to resting state neural 

activation, as is not the case in the current study. Also, the brain regions most affected 
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by physiologic noise are midline and ventrolateral orbitofrontal regions of the default 

network, dissimilar to the current more dorsal regions of interest. However, due to the 

relative paucity of physiologic correction in studies of functional connectivity in these 

dorsal areas, it was thought to be an important comparison to document. 

         

FHN                                                                 FHP 

Figure 1. Hypothesized Models. Relationships for OA and FHN youth depicted in green; relationships 
for FHP in purple. Dashed lines: Pathways expected to demonstrate weaker correlations relative to the 
other group. Solid lines: Pathways expected to show stronger correlations within each group. Expected 
positive and negative relationships are depicted with “+” and “-”. 
 

 
METHODS 

Participants  

 Participants were sampled from two larger studies on neurocognition 1) 

youths at risk for AUD (R01 AA13419, PI: Tapert), and 2) older adolescent cannabis 

users and matched healthy controls (R01 DA021182, PI: Tapert). In both studies, 

adolescents are recruited by distributing flyers at local middle and high schools. 

Youths or parents responded by phone and were preliminarily screened for age, left-

handedness, MRI contraindications (e.g., braces, metal implants), and sensory 
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problems following parental informed verbal consent and youth assent. The current 

study includes only youth with limited personal substance use histories.  

 Early adolescents (N=50) were between the ages of 12 and 14, were 83% 

Caucasian, and 56% male (see Table 1). FHP (n=24) and FHN (n=26) groups were 

statistically equivalent on parental education, annual salary, and pubertal development. 

On average, parents were generally well educated and affluent. In terms of physical 

maturation, females as a group were just past the midpubertal stage and males were 

just under the midpubertal mark (Petersen, Crockett, Richards, & Boxer, 1988). Scores 

on measures of internalizing, externalizing, and depression were not clinically 

significant in any participant, and were statistically equivalent between groups. FHP 

youth were slightly more extraverted that FHN youth, but this difference was not 

clinically significant. Adolescents had minimal exposure to alcohol, cigarettes and 

marijuana.  

Subjects were excluded for a lifetime history of greater than 1 cigarette per 

month, or 10 cigarette or marijuana uses total. The maximum number of lifetime 

drinking episodes (defined as at least one full drink) was 4 episodes in one FHN 

youth, and 5 for one FHP youth. The maximum number of drinks consumed during a 

single time period (over the past 3 months) was 4 drinks in one FHN subject and 5 

drinks in one FHP subject. The average number of lifetime uses of alcohol was less 

than one instance for each group.  These youth had negligent other substance use 

histories. 

The youth was considered to have a positive family history of AUD if one or 

more parents was assessed to have a lifetime history of AUD based on the results of 
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the Family History Assessment Module screener (FHAM) (Andreasen, Rice, Endicott, 

Reich, & Coryell, 1986) and Schuckit’s Problem List (Schuckit et al., 1985). Of the 

FHP (n=24) group, 100% had a parent with an AUD history, 79% had a 

multigenerational history, 63% had a biological father with a history of AUD, 46% 

had a biological mother with a history of AUD, 8% had positive history in both 

parents, and one subject had a history of AUD solely in their biological mother. FHN 

youth (n=26) had no history of any substance use disorder in either parent or any 

grandparent. History of maternal AUD was confirmed as occurring before or after 

mothers’ pregnancies to avoid including subjects with fetal alcohol exposure. 

OA youth (n=35) were between the ages of 16 and 20, were 67% Caucasian, 

and 74% male (see Table 2). On average, parents attained 15 years of education and 

came from families with $116K annual salaries. A measure of depression indicated 

totals in the normal range (M=2.37, SD=3.44). OA youth also had minimal exposure 

to alcohol, cigarettes, and marijuana use. Subjects were qualitatively non-drinkers or 

light, social drinkers. The maximum number of lifetime drinking episodes (defined as 

at least one full drink) was <54 episodes and the maximum number of drinks 

consumed during a single time period (over the past 3 months) was <4 drinks. No 

participants met diagnostic criteria for an AUD; the average number of lifetime uses of 

alcohol was ~2 instances. Youth had negligible other substance use history. A youth 

was considered to have a positive family history if one or more parent was determined 

to have a lifetime history of AUD based on the results of the Family History 

Assessment Module screener (FHAM) (Andreasen, et al., 1986) and Schuckit’s 

Problem List (Schuckit et al., 1985). Of the OA group, 14% had a parent with an AUD 
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history, and 11% had a multigenerational history. Youth with a spectrum of FH 

backgrounds were included, as literature suggests that FH effects diminish by 

adulthood (Polich, et al., 1994). As with younger adolescents, history of maternal 

AUD was confirmed as occurring before or after mothers’ pregnancies to avoid 

including subjects with fetal alcohol exposure. 
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Table 1. Characteristics of adolescent participants (N=50)  
ANOVA and Chi-square comparing FH across categories 
                                                  FHN FHP                                                          
  n=26 n=24 
                                                 M (SD) or %       M (SD) or %          F/χ2  p-value  
Sex (% Male) 46% 67%  2.15 .14 
Age in years (range 12-14) 13.16 (0.82) 13.25 (0.86)  .17 .70 
Boys’ age in years 13.50 (0.68) 13.34 (0.85) 1.02 .32 
Pubertal Development Scale  
 Girls (n=24) 3.20 (1.15) 3.13 (0.64)  .29 .87 
 Boys (n=28) 2.38 (0.77) 2.88 (0.72)  3.14 .09 
Ethnicity (% Caucasian) 79% 88% .72 .40 
Conduct disorder diagnosis 11% 29% 2.83 .09 
Father education 16.64 (1.83)  15.64 (2.50)  2.70  .11 
Mother education 15.75 (1.82)  14.63 (2.34)  3.81  .06 
Parental annual salary ($K) 127.27 (53.46)  125.38 (94.05) .01 .93 
CBCL internalizing T-score 45.87 (6.20)  47.38 (7.29)  .61 .44 
CBCL externalizing T-score 44.93 (4.60)  46.87 (6.22)  1.55 .22 
Beck Depression Inventory total  3.04 (3.35)  3.13 (3.39)  .01 .93 
Spielberger State Anxiety T-score  27.96 (6.56)  30.67 (7.84)  1.83 .18 
Junior Eysenck Personality Inventory 
      Extraversion total 16.64 (3.69) 18.75 (3.14) 4.82 .03* 
      Neuroticism total  6.07 (5.89) 8.52 (5.55) 2.26 .14 
Alcohol Expectancy Questionnaire 
      Global Positive Expectancies 38.16 (8.45) 39.13 (8.78) .16 .69  
Lifetime uses of alcohol 0.39 (1.07)  0.63 (1.41)  .46 .50 
Maximum drinks per episode  4.00 5.00 .09 .77 
Lifetime uses of cigarettes 0.11 (0.32)  0.04 (0.21)  .69 .41 
Lifetime uses of marijuana 0.18 (0.67)  0.22 (0.67)  .04 .84 
 

* p < .05  
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Table 2. Characteristics of older adolescent (OA) participants (N=35)  
 
                                                            M (SD) or %  
Sex (% Male)  74%  
Age in years (range 16-20)   17.69 (1.07)   
Ethnicity (% Caucasian)  67%  
Conduct disorder diagnosis  0%  
Father education  15.12 (3.27)   
Mother education  14.35 (3.64)   
Parental annual salary ($K)  116.00 (71.41) 
CBCL internalizing T-score  44.66 (3.79) 
CBCL externalizing T-score  44.23 (4.57)  
Beck Depression Inventory total   11.00 (2.39)   
Spielberger State Anxiety T-score   38.03 (7.94)    
NEO Extraversion total T-score  44.82 (7.18)  
Lifetime uses of alcohol  1.86 (9.23)   
Maximum drinks per episode last 3 months  4.00 (0.34) 
Number of cigarettes past month  0.54 (3.21)    
Lifetime uses of marijuana  0.54 (1.27)   
 

 For youth aged 12 to 14, eligible adolescents were administered the computer 

assisted version of the Diagnostic Interview Scale for Children Predictive Scales 

(DPS)(Lucas, et al., 2001); Shaffer et al., 2000) to rule out history of DSM-IV Axis I 

psychiatric diagnoses. The Lifetime version of the Customary Drinking and Drug use 

Record (Brown, et al., 1998) was administered to assess previous alcohol, nicotine, 

and other drug use. Presence or absence of conduct disorder was assessed with the 

Conduct Disorder Questionnaire, a structured interview that ascertains DSM-III-R and 

DSM-IV criteria for conduct disorder (Brown, Gleghorn, Schuckit, Myers, & Mott, 

1996). The Short Michigan Alcoholism Screening Test (Selzer, Vinokur, & Van 

Rooijen, 1976), modified for reporting on fathers and mothers (Crews & Sher, 1992), 

was administered to enhance accuracy of FH information by multiple informant report 

(Andrews, Tildesley, Hops, & Li, 2002). To assess psychosocial functioning and 

health history (fetal and infant development, childhood behavior, psychosocial 

functioning, family characteristics, and parent education and occupation) a clinical 
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interview was administered separately to the parent and adolescent.  

 The biological mother of an eligible youth was administered the FHAM 

(Andreasen, et al., 1986) to assess for AUD and other substance use disorders (SUD), 

antisocial personality disorder, bipolar disorder, and schizophrenia in the youth’s first 

and second degree biological relatives. Youths’ psychopathology reports were 

augmented by administering the parent version of the DPS (Lucas, et al., 2001).  

The Computerized Diagnostic Interview Schedule for DSM-IV (Robins, 

Cottler, Bucholz, & Compton, 1996) modules of Antisocial Personality, Alcohol 

Dependence and Abuse, and Drug Dependence and Abuse were administered to both 

the biological father and biological mother. The FHAM (Andreasen, et al., 1986) was 

administered to both parents to ensure all of the child’s biological first and second-

degree relatives (i.e., the child’s other parent, siblings, maternal and paternal aunts, 

uncles, and grandparents) are assessed. Socioeconomic status was determined with the 

Revised Socioeconomic Index of Occupational Status (G. Stevens & Featherman, 

1981). The youth and participating family members were financially compensated for 

participation. 

Exclusionary criteria were: history of head injury with loss of consciousness 

>2 min, neurological or medical problems, learning disabilities, psychiatric disorder, 

current psychotropic medication use, significant maternal drinking or drug use during 

pregnancy, left-handedness, sensory deficits, MRI contraindications; and parental 

history of bipolar I, psychotic disorder, or antisocial personality disorder (E. M. Hill, 

Stoltenberg, Burmeister, Closser, & Zucker, 1999; Ichiyama, Zucker, Fitzgerald, & 

Bingham, 1996; Poon, et al., 2000). 
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Youth aged 16 to 20 were screened in a similar manner, except that parents 

were not administered the DIS regarding their psychiatric histories, and the Diagnostic 

Interview schedule was used for youth aged 18 or older who lived independently from 

parents, in place of the DPS.  

 

Measures 

Mood assessments. State measures are collected at the time of scanning. 

Current level of depression is assessed with the Beck Depression Inventory 

(BDI)(Beck, Ward, Mendelson, Mock, & Erbaugh, 1961), which has been validated 

with 12 to 14 year-olds (Steer, Kumar, Ranieri, & Beck, 1998). The state portion of 

the Spielberger State-Trait Anxiety Inventory (Spielberger, Gorsuch, & Lushene, 

1970) is administered to assess anxiety and ensure that youth are not experiencing any 

nervousness that could influence fMRI results (Harris & Hoehn-Saric, 1995). 

 Pubertal Development Scale. The Pubertal Development Scale is a self-report 

measure of pubertal status (Petersen, et al., 1988). Youth select one of five, sex-

specific, descriptive statements ranging from “has not begun yet” to “seems complete” 

to indicate current level of pubertal development. Multiple domains (i.e., presence of 

body hair, breast growth/voice change, menstruation/facial hair growth) are sampled 

in order to most closely ascertain their current Tanner-based stage of development. 

Pubertal staging is important to measure, as between group differences in Tanner stage 

could account for developmental differences in brain activation. This measure was not 

collected in the OA sample as it was assumed there would be a near ceiling effect. 

 Potential confounds. While FH is a robust risk factor in development of AUD, 
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externalizing and internalizing psychopathological traits (Siewert, Stallings, & Hewitt, 

2004; Windle & Davies, 1999), personality attributes (Anderson, et al., 2005; McGue, 

Iacono, Legrand, Malone, & Elkins, 2001; Tarter & Vanyukov, 1994), and positive 

attitudes about alcohol use (Brown, Christiansen, & Goldman, 1987; Brown, Creamer, 

& Stetson, 1987; Brown & Munson, 1987) have also been shown as important risk 

factors. To assess these constructs in our sample, performance on the Junior Eysenck 

Personality Inventory (JEPI) (Eysenck, 1963), Child Behavioral Checklist (CBCL) 

(Achenbach & Rescorla, 2001) and Alcohol Expectancy Questionnaire (AEQ) 

(Brown, Christiansen, et al., 1987) were collected as potential covariates in the models 

specified. 

 

Procedures 

Functional neuroimaging. Adolescents were assessed and scanned at the VA 

San Diego Healthcare System (youth aged 12 to 14 years; 1.5T) and the UCSD Keck 

fMRI Center (youth aged 16 to 20; 3T). Participants were trained on the SWM task. 

Once positioned in the scanner, the participant’s head was stabilized to minimize 

motion. The MRI technologist localized the head position, ensured that the participant 

could fully view the display screen, and asked the participant to test the four-button 

opto-isolated response box in the right hand. Task stimuli were presented from a 

laptop computer through a data projector to a screen in the MRI room positioned near 

the foot of the scanner bed. The participant views stimuli through a mirror mounted on 

the head coil. 
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Spatial Working Memory task. The spatial working memory task was chosen 

to explore the neural substrates of spatial working memory functioning and to probe 

the integrity of these brain regions in adolescents with a family history of AUD. The 

task (Kindermann, Brown, Zorrilla, Olsen, & Jeste, 2004; Tapert, et al., 2001) was 

adapted from McCarthy and colleagues (McCarthy, et al., 1994). The spatial working 

memory task (Figure 2) consists of 18 20-sec blocks alternating between experimental 

(spatial working memory) and baseline (vigilance) conditions. Blocks of rest were in 

the beginning, middle, and end of the task, during which a fixation cross appeared in 

the center of the screen. In the spatial working memory condition, figures appear one 

at a time in one of eight locations. Stimuli and locations were chosen to minimize 

verbal labeling (i.e., stimuli were abstract line drawings and were not presented in the 

four compass positions). Participants were to press a button when a design appears in a 

location already occupied in that block. On average, 3 of the 10 stimuli in each block 

were repeat locations, and repeats were 2-back. In the vigilance condition, the same 

stimuli were presented in the same locations, but a dot appeared above figures on 30% 

of trials. Participants were to press a button when a dot appeared. The purpose of the 

baseline is to control for simple motor and attention processes involved in the 

experimental condition. In both conditions, stimuli were presented for 1000 ms, and 

each interstimulus interval is 1000 ms (20 sec/block, repetition time (TR) = 3000 ms, 

156 repetitions). Accuracy and response times were recorded. 
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Figure 2: Spatial Working Memory task design. 

 
Scanning parameters. For youth aged 12 to 14, images were acquired on a 1.5 

Tesla General Electric Signa LX scanner. A high-resolution structural image was 

collected in the sagittal plane using an inversion recovery prepared T1-weighted three-

dimensional spiral fast-spin echo sequence (repetition time = 2,000 ms, echo time  = 

16 ms, field of view  = 240 mm, resolution = 0.9375 mm x 0.9375 mm x 1.328 mm) 

(Wong, Luh, Buxton, & Frank, 2000). Functional imaging was collected in the axial 

plane using T2-weighted spiral gradient recall echo imaging (156 repetitions, 

repetition time = 3000 ms, echo time = 40 ms, flip angle = 90°, field of view = 240 

mm, 20 continuous 7 mm slices, in-plane resolution = 1.875 mm x 1.875 mm).  

For youth aged 16 to 20, images were acquired on a 3T General Electric Excite 
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MR system with an 8-channel phase-array head coil (General Electric Medical System, 

Milwaukee, WI, USA).  A scout scan ensured good head placement and whole-brain 

coverage.  A high-resolution anatomical SPGR image was acquired sagittally (TR = 

7.784 ms, TE = 2.988 ms, flip angle = 12º, 1 mm3 voxels, FOV 240 mm, matrix 

256x192, slice thickness 1mm, 176 slices, bandwidth 31.25, acquisition time 7 

minutes and 19 seconds). Functional imaging was collected in the axial plane using 

T2-weighted gradient echo imaging (156 repetitions, repetition time = 3000 ms, echo 

time = 30 ms, flip angle = 90°, field of view = 240 mm, 32 continuous 3.8 mm slices, 

matrix 64 x 64, in-plane resolution = 3.75 mm x 3.75 mm, total time 7 minutes 48 

seconds). EPIs were unwarped with two field map acquisitions (each 1 minute and 8 

seconds acquisition time; TR: 1000 ms, flip angle 60, FOV 240 mm, 32 contiguous 

axial slice s each 3.8 mm thick, matrix 64 x 64, echo times 3.2 and 5.5 ms).  

 

Data Analysis and Statistics 

Image processing. Data were processed and analyzed using Analysis of 

Functional NeuroImages (AFNI; afni.nimh.nih.gov) (Cox, 1996). Motion in the time 

series data was corrected by registering each acquisition to a selected repetition with 

an iterated least squares algorithm (Cox & Jesmanowicz, 1999) to estimate three 

rotational and three displacement parameters for each participant. Subjects were 

excluded if more than 17% of repetitions were removed due to motion, or if SWM 

accuracy performance was less than 71% (n=3). An output file specifying adjustments 

made was subsequently used to control for spin history effects (Friston, Williams, 

Howard, Frackowiak, & Turner, 1996). In addition, applied adjustments were 
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compared between groups, and correlation with the task reference vector to see if 

motion indices need to be corrected in subsequent analyses.  

The time series data were deconvolved with a reference vector that coded the 

hypothesized BOLD signal for the alternating task conditions across the time series of 

the task while covarying for linear trends and the degree of motion correction 

previously applied (Bandettini, Jesmanowicz, Wong, & Hyde, 1993). The reference 

vector was convolved with a vector that modeled the typical hemodynamic response 

(Cohen, 1997). All data were transformed into standardized space (Talairach & 

Tournoux, 1988). The functional data were resampled into 3 mm cubic voxels, and a 

spatial smoothing Gaussian filter (full-width half maximum = 5 mm) was applied. 

These steps resulted in a fit coefficient for each voxel, representing BOLD response to 

SWM relative to the vigilance baseline condition. Activations that consisted of at least 

49 contiguous significantly (α =.025) activated voxels (1,323 µl) in the younger 

adolescent group will be interpreted, as well as activations that consist of at least 49 

contiguous significantly (α =.025) activated voxels (1,323 µl) in the OA. 

For determining whether motion during the spatial working memory task 

differed between groups, each participant’s absolute mean for each of the six motion 

parameters across the time series data were examined, and determined to be non-

contributory (<.8 mm and <.5 degrees). For estimating task-correlated motion, the six 

parameters were correlated with the task reference vector across the time series for 

each participant. These correlations were judged to be non-contributory since there 

was very little bulk motion.  
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Physiological filtering. The data from the OA sample were re-processed to 

minimize the influence of brain signal originating from regions outside those of 

interest. While gray matter is principally composed of neural cell bodies and dendrites 

that are responsible for relaying information through synaptic activity resulting in 

stimulus response, white matter is composed of myelinated nerve cell axons that 

connect gray matter areas of the brain to each other. Therefore, SWM related brain 

activity is chiefly localized to gray matter, and white matter is of less interest in the 

current analysis. Based on this logic, nuisance regressors were created using an in-

house pre-programmed procedure to censor-out signal originating in each individual’s 

white matter (http://mri.ucsd.edu/wiki/index.php/BuildMask (A.N. Simmons, 2007; A. 

N. Simmons, et al., 2008; Strigo, et al., 2006). First, intensity-defined gray matter, 

white matter, and whole brain masks were created for each subject from the high-

resolution anatomical brain scans. A histogram of the intensity values was then used to 

delineate gray from white matter. The gray matter time series, or corresponding 

measurements of gray matter signal in response to the SWM task, was then subtracted 

from the whole brain mask resulting in response specific to white matter. To reduce 

the influence of this “extra” signal, each individual’s white matter time series were 

used in the general linear model as nuisance regressors with the goal of better isolating 

SWM related activity.  

Hypothesis testing. To compare how FH might affect the maturation of 

functional networks in the samples of younger adolescents, it was imperative that the 

model be correctly specified to reflect how connectivity changes with age. Therefore a 

validation sample of older adolescents (OA; N=35) ages 16 to 20 (see Table 2 for 
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group characteristics) was used to establish a model of “mature” functional 

connectivity in the frontoparietal network. It was hypothesized that the FHN pattern 

would resemble the OA model than the FHP group. Specifically, FHP youth would 

show greater bilateral prefrontal and superior parietal lobule activation in BOLD 

response to SWM paradigm than FHN youth, and FHN youth would show more right 

lateralized frontal and inferior parietal lobule activation than FHP youth. In terms of 

connectivity, it was hypothesized that FHN youth, as compared to FHP youth, would 

demonstrate increased positive influence of the right middle frontal gyrus on the left 

middle frontal gyrus, and the right inferior parietal lobule on the right middle frontal 

gyrus, as well as an increased negative influence of the right inferior parietal lobule on 

the superior parietal lobule (see model depicted in Figure 1). 

 Data preparation. A three-step process was used to identify relevant activations 

for analysis as outlined by Stricker and colleagues (Stricker, et al., 2006). First, a 

stereotaxic brain atlas (Talairach Daemon (Cox, 1996; Lancaster, et al., 2000) was 

used to create a mask defining the a priori ROIs stated in the models (based on areas 

shown to be critical for SWM, their changes as a result of neuromaturation, and 

susceptibility to FH effects). Second, significant clusters of activation (α = .025; 

volume > 1,323 µL) were identified for each group using AFNI 3dttest within the 

regions defined in the prior step. Third, the peak activation within each significant 

cluster was extracted for each participant, representing the each subject’s maximal 

contrast between the SWM and baseline vigilance conditions of the areas that are 

active to this task within the specified ROIs. Peak values were used instead of average 

BOLD response values to avoid problems related to restricted range (Stricker, et al., 



 

37

2006). Peak activation has been demonstrated to be as valid and reliable as averaged 

activation in indicating activity within a selected ROI (Goncalves & Hall, 2003). Also, 

the likelihood that these values are falsely representative was reduced because they 

were chosen from the hypothesis-driven search regions, and met the predetermined 

volume threshold criterion (Stricker, et al., 2006).  

 Data quality. Many fMRI studies do not report on whether their data meet 

basic assumptions important for the validity and success of their analyses. Peak values 

extracted from the ROIs were screened for multivariate outliers and non-normal 

distribution. Regression diagnostic statistics indicate the distance in standard 

deviations between a set of scores for an individual case and the sample means for all 

variables. Cases where >3/5 of these criteria (i.e., Mahalanobis distance p<.001, 

leverage >3*number of predictors/n, standardized residuals >3SD, DFFITS >1SD, 

DFBETAS >1SD) were met were considered as outliers and removed from the 

analysis (n=3). The proposed estimation procedures require normality of distributions 

of the peak BOLD signal values and there were no extremely skewed or kurtotic 

distributions, or significant heteroscedasticity. There was also a similar ratio between 

the largest and smallest variance of the ROIs. Because these steps were taken in data 

preparation one can have more confidence in the stability of the solutions and the 

probability increases that results are due to real effects and are not artifacts of chance 

(Kline, 2005b). The Satorra-Bentler scaled chi-square statistic was used to correct for 

lesser degrees of non-normality. The correction adjusts the model fit chi-square 

statistic (downward) and the standard errors for parameter estimates (upward) based 
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on the degree of non-normality in the data thereby reducing the type 1 error rate for 

individual parameter estimate tests (UofT, 2009). 

 Statistical analyses. SEM analysis uses covariances of these peak values, 

computed across subjects among the predetermined ROIs, and thus examines the 

extent to which the areas most associated with the task covary (Stricker, et al., 2006). 

It also indicates the discrepancy between the hypothesis-driven path models specified 

for each group by testing them against the observed data. EQS software (Bentler & 

Wu, 1995) was used to assess the fit of these hypothesized models. In EQS, Maximum 

Likelihood was specified as the estimation procedure to reduce error in the predicted 

covariance structure relative to the specified models. Root Mean Square Error of 

Approximation (RMSEA) and Akaike’s Information Criterion (AIC) were consulted 

to for overall model fit between the observed data’s variance/covariance matrix with 

the predicted model’s matrix. RMSEA indicates overall model fit given the variability 

in the data, the parsimony of the model, and the number of subjects. Values below 

0.05 (range 0.0-1.0) indicate excellent model fit, while values above 0.1 indicate poor 

model fit (Browne & Cudeck, 1993) . The lower and upper bound 90% confidence 

intervals were documented to help assess the degree of uncertainty associated with 

RMSEA. However, RMSEA confidence intervals are sensitive to small sample size 

and were therefore very wide in these analyses. AIC, which is widely employed 

throughout SEM literature, adjusts fit by weighting values by the number of 

parameters estimated. Smaller values indicate better model fit. Therefore, the results 

of this analysis illustrate the difference found in overall model fit with the data where 

FH and age are considered. 
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Follow-up analyses examined the strength of the specified connections and 

allowed us to infer the importance of particular connections to the overall model fit. A 

high amount of covariation between particular areas may indicate that these regions 

are correlated with SWM-related demands, and that these regions are interacting with 

each other as part of effective SWM functioning. As in interpreting multiple 

regression coefficients, the unstandardized coefficients were compared between 

groups to assess the relative magnitude of variance accounted for by each ROI in its 

respective pathway, while holding other sources of variance constant.  

 After good model fits were obtained, the importance of each path to overall 

model fit was examined by removing paths from the good fitting model one at a time 

with replacement and re-running the structural equation analysis. The change in model 

fit when each connection is left out provided a descriptive indicator of that 

connection’s importance to overall model fit. This is akin to using Lagrange 

Multipliers, but expressed in terms of model fit indices instead of chi-square values 

(Kline, 2005a; Loehlin, 2004). The relative increase in RMSEA indicates each 

connection’s contribution to the model’s ability to fit the data. In other words, a 

smaller increase in RMSEA suggests that pathway is less important to overall model 

fit. Also, a significant change in S-B χ2 (based on a χ2 distribution, with appropriate 

applied correction because S-B χ
2 does not follow a chi-square distribution) between 

the less restrictive model (or nested model) and the more restrictive model (the one 

with a greater number estimated pathways and thus fewer degrees of freedom) 

suggests that the nested model is not equivalent to the restricted model, and is thus 
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unlikely to explain the data sufficiently if the more restrictive model (i.e., more 

specified paths) is a good fit. Smaller changes in S-B χ
2 suggest that a particular 

pathway is less important to the model, or perhaps that the nested model (i.e., fewer 

paths) is a more parsimonious way to explain the data (Byrne, 2006). The magnitude 

of the change in the Comparative Fit Index (CFI), which provides an index of the 

target model’s improved fit over the null model, and AIC is also used as a proxy of 

model change, with a decrease in CFI indicating poorer fit and an increase in AIC 

suggesting that a nested model is less likely to replicate in a separate sample. Partial 

model invariance (Byrne 1989) can also be statistically evaluated using a multi-group 

analysis, wherein shared pathways are constrained to be equal and LaGrange 

Multiplier tests of equality provide S-Bχ2 values for comparisons. Evidence for non-

invariance across groups is indicated by S-Bχ
2 values less than p=.05 (Byrne, 2006). 

 Several analyses were performed to ensure results are not to due to 

confounding variance. Task-correlated motion and between-group ANOVA of bulk 

motion confirmed these parameters were not unduly influencing model fit per group. 

Importantly, stage of pubertal development is matched between FH (12 to 14 year-old) 

groups. Performance on the task (percentage of correctly identified stimuli) as well as 

reaction time has been assessed for differences between groups. 
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RESULTS 

Behavioral performance and group membership 

A 3-way ANOVA compared performance of group by SWM and vigilance 

conditions (Table 3). Tukey’s post-hoc tests demonstrated that OA youth performed 

significantly better than FHN youth on all measures, and better than FHP on vigilance 

reaction time (rt). FHP youth performed significantly better than FHN youth on SWM 

accuracy. 

 

Table 3.  SWM performance of adolescent and young adult participants across SWM and vigilance 
conditions.  
                                              FHN (n=26) FHP (n=24) OA (n=35) 
                                              M (SD) %            M (SD) % M(SD) %  F-, p-values  
Vigilance accuracy (%)*  95.52 (2.13)  95.63 (2.17)  96.70 (1.49) 3.34, .04 
Vigilance rt (ms) * 656.32 (60.94) 654.42 (53.67)  605.50 (62.76) 5.60, .01 
SWM accuracy * 88.29 (7.62) 93.23 (4.23)  92.79 (5.01) 6.63, .00 
SWM rt (ms) * 622.67 (77.32)   576.38 (74.92) 558.49 (64.16) 5.68, .01 
* p < .05 
 

Model Fit in Young Adult Sample 

 In terms of model specification, the hypothesized model fit the OA validation 

sample well statistically (S-Bχ2 [2, N=35]=1.85, p=.40 and descriptively (CFI=1.00, 

RMSEA= .00, CI90% =.00-.33). All standardized path coefficients were ranged from 

.356 to .767 and were statistically significant (ps<.05).  
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Effect size per path                                                                                                      (r2) 
Rmfg � Rspl � Lmfg                                                                                                .58 
Rmfg � Rspl                                                                                                               .22 
Rspl � Ripl                                                                                                                 .59 
 
Figure 3. The results of fitting the covariance matrix to the proposed model in OA youth. Pathways 
labeled with unstandardized (standardized) coefficients (p<.05) and (standard) error terms for 
endogenous variables.  
(Rmfg = right middle frontal gyrus; Lmfg = left middle frontal gyrus; Rspl = right superior parietal 
lobule; Ripl = right inferior parietal lobule.) 
 
Primary Analyses: Results of FHN and FHP Adolescents samples 

The originally hypothesized model (Figure 1) tested on data from the OA 

(aged 16 to 20) validation sample fit well statistically and descriptively. To determine 

how this model changes over FH samples, these groups were constrained to the OA 

model. It was proposed that the FHN sample would fit the best fitting model generated 

from the OA validation sample better than the FHP adolescents, indicating more 

mature SWM networks (see Hypotheses for details). Covariance matrices for FHP 
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(n=24) and FHN (n=26) adolescents (ages 12 to 14) were generated and model fit 

indices were examined. The specified model did not fit either group statistically (FHN 

S-Bχ2 [2, N=26]=6.153, p=.046; FHP S-Bχ2 [2, N=24]=8.451, p=.015). The residual 

matrices for both groups indicated that the greatest amount of variance missing was 

from omitted bilateral connections, particularly between the right superior parietal 

lobule and the left middle frontal gyrus (e.g., standardized residual was .40 in FHP and 

.28 in FHN, indicating greater variance unaccounted for in the FHP group). The 

addition of a bilateral path from the right superior parietal lobule and left middle 

frontal gyrus (see Figure 3) greatly improved statistical fit (FHN S-Bχ2 [1, 

N=26]=0.133, p=.716; FHP S-Bχ2 [1, N=24]=0.891, p=.345) and was not statistically 

redundant (FHN RMSEA= 0.000 with CI90% =.000-.392; FHP RMSEA = 0.000 with 

CI90% =.000-.528). However, the path from the right superior parietal lobule and right 

middle frontal gyrus was not significant in either FH group of young adolescents. For 

FHN participants, the remaining standardized path coefficients were statistically 

significant (ps<.05) and ranged from .378 to .796. For the FHP group, connections 

between the right superior parietal lobule and right middle frontal gyrus, and right 

superior parietal lobule to left middle frontal gyrus were not significant, and remaining 

loadings ranged from .326 to .734, indicating less good fit to the mature model. 

 

Exploratory Analyses: Model Modification 

Theoretical and statistical criteria were used to identify models where all paths 

were statistically significant for both FHN and FHP groups. It was thought that if the 
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less mature SWM networks rely on greater bilateral connectivity, then anterior-

posterior gradients might be of lesser importance. Similarly, multivariate model 

modification indices, which approximate the improvement in model fit for the deletion 

(i.e., Wald Test) or addition (i.e., La Grange Multipliers) of a pathway, suggested that 

deletion of the right superior parietal lobule to the right middle frontal gyrus path 

(which was non-significant in both groups in both the original and newer model with 

the added bilateral connection) would improve overall model fit in FHN and FHP 

samples. Deletion of the right inferior parietal lobule to right middle frontal gyrus 

resulted in good overall fitting models for both groups (i.e., FHN S-Bχ
2 [2, 

N=26]=0.113, p=.945; FHP S-Bχ2 [2, N=24]=2.124, p=.346) was statistically 

parsimonious and more likely to replicate (FHN RMSEA= 0.000 with CI90% =.000-

.149; FHP RMSEA = 0.000 with CI90% =.000-.387). Standardized path coefficients 

were statistically significant (ps<.05) across groups and ranged from .326 to .734 and 

.411 to .804, respectively (Figure 4). 
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Effect size per path (r2)                                               FHN                        FHP 
Rmfg � Rspl � Lmfg                                                .569                        .552 
Rmfg � Rspl                                                               .256                        .240 
Rspl � Ripl                                                                 .647                        .539 

 
Figure 4. Best fitting FHN youth mode (green, left); Best fitting FHP youth model (purple, right); 
Pathways labeled with unstandardized (standardized) coefficients (*p<.05) and (standard) error of 
endogenous variables.  
(Rmfg = right middle frontal gyrus; Lmfg = left middle frontal gyrus; Rspl = right superior parietal 
lobule; Ripl = right inferior parietal lobule.) 
 

 Partial model invariance was established for OA and FH groups. Three of 4 

pathways in each groups’ final model (right middle frontal gyrus to left middle frontal 

gyrus, right superior parietal lobule to right middle frontal gyrus, and right inferior 

parietal lobule to right superior parietal lobule) (ps>.172) were statistically 

comparable. Comparison of FH groups on their shared final model indicated 

invariance on the pathway added from the right superior parietal lobule to the left 
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middle frontal gyrus (χ2 =4.75, p=.029; dashed line Figure 4). This pathway was 

redundant in the OA model. 

 

SWM Performance and Connectivity 

 It was hypothesized that if improved SWM performance is positively related to 

connectivity associated with mature neural networks, then delayed neuromaturation in 

FHP youth gains further support as a risk factor for AUD. When SWM accuracy 

scores were included in each samples’ model of best fit, as related to each region of 

interest, and re-run one relationship at a time, increased SWM accuracy scores were 

significantly and negatively related to activation of the right superior parietal node in 

the FHP sample (FHP S-Bχ2 [5, N=24]=7.135, p=.211, RMSEA= 0.000 with CI90% 

=.000-.279). The standardized factor loading between the right superior parietal lobule 

and SWM accuracy was negative (-.401) and statistically significant (p<.05). The 

effect size was small (r2=.16).  The remainder of the standardized loadings were 

positive and statistically significant (ps<.05) and ranged from .326 to .734. SWM 

accuracy was not significantly related to any other region of interest in this sample, 

and was not significantly associated with any nodes in the FHN or OA samples.  

Covariance of SWM performance across sample comparisons did not affect the 

previously described outcomes. Also, differences in sample size may have contributed 

to the greater influence of SWM accuracy in the smallest group. Furthermore, when 

the path between the right superior parietal lobule and SWM accuracy scores was 

constrained to be equal across family history groups the relationship was statistically 
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invariant across groups. In consideration of the small effect size of the path in the FHP 

group, differences in sample size, and invariance between groups, the influence of 

SWM accuracy on the overall model fit was judged to be insignificant. 

 

Follow-Up Analyses of Primary Hypotheses 

Model fit was calculated after each path was removed one at a time. The 

change in model fit gives an estimation of the importance of the pathway to the model. 

As Table 4 illustrates, removal of the right superior parietal lobule to right middle 

frontal gyrus connection has the least impact on the overall OA model fit. This path 

was not statistically significant in either FH group. The next least important 

connection was between right middle frontal gyrus and left middle frontal gyrus. 

Across all three models, the most robust relationship was between the right superior 

parietal lobule and the right inferior parietal lobule. Indeed, the right superior parietal 

lobule was the only node across all 3 models that was (negatively) statistically 

associated with improved SWM accuracy in the FHP sample. Of note, removal of the 

right superior parietal lobule to left middle frontal gyrus pathway, the connection that 

was statistically different between FH groups, decreased overall model fit much more 

in FHP than FHN models, underscoring the magnitude of group differences
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Table  4. Summary of Goodness of Fit Statistics: Overall fit indices for each group’s final best fitting model and respective changes with removal of each 
pathway. 

Model   S-B χ2  p-value df    ¥AIC ¥CFI SRMR ¥RMSEA ¥RMSEA90%CI ∆
¥S-Bχ2  

∆df ∆
¥CFI  ∆AIC 

OA best fit 1.85  .40 2 -2.15 1.00  .03 .00 .00 - .33 -- --  -- -- 
Lmfg � Rmfg -- --  0  --  --  -- --  --  -- --  -- -- 
Rspl � Rmfg  9.56  .02 3 3.56 .83  .08 .25 .08 - .44 7.34*  -1 -.17  5.71  
Ripl � Rmfg  5.91  .12 3 -.09  .92  .06 .17 .00 - .37 4.82*  -1 -.08  2.06 
Ripl � Rspl  20.51  .00 3 14.51 .58  .24 .41 .25 - .58 15.66*  -1 -.42  18.81 
 

FHN best fit .11  .95  2  -3.89 1.00 .01 .00 .00 - .15 -- --  --  -- 
Lmfg � Rmfg 4.50  .21  3  -1.50 .96 .11 .14 .00 - .38  3.51 -1 -.04 2.39 
Rspl � Rmfg 7.00 .07  3  1.00 .90 .23 .23 .00 - .45  35.74* -1 -.10 4.89  
Ripl � Rspl -- -- 0  --  -- -- -- --  -- --  -- -- 
Rspl � Lmfg 4.70 .20  3 -1.30  .96 .11 .15 .00 - .39  11.09*  -1 -.04  2.59 
 
FHP best fit  2.12 .35  2  -1.88 1.00  .01 .05 .00 - .41 -- -- -- -- 
Lmfg � Rmfg  4.01 .26 2  -1.99 .98  .10 .12 .00 - .38 1.52 -1  -.02 -.11 
Rspl � Rmfg 9.84 .02  2 3.84 .78  .26 .32 .11 - .53 7.63* -1  -.22  5.72 
Ripl � Rspl  -- --  0 --  -- -- --  --  -- --  -- -- 
Rspl � Lmfg 9.79 .02  2  3.79  .78  .19 .31 .11 - .53 5.47* -1 -.22  5.67 
 
* statistically significant ∆S-Bχ2 p<.05; ¥ S-B = corrected values. 
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Physiological Noise Filtering 

Data from the OA (aged 16 to 20) validation sample were subjected to 

physiological filtering to determine how the model would potentially change. 

Covariance matrices for OA were generated with the filtered data, and model fit 

indices were similar and slightly more robust than the non-filtered dataset (OA-filtered 

S-Bχ2 [2, N=35]=.575, p=.75; RMSEA= .00, CI90% =.00-.23). Standardized residuals 

ranged from .00 to .06, where largest residual was between the left middle frontal 

gyrus and the right superior parietal lobule. Standardized path coefficients were 

significant (ps<.05) and ranged from .429 to .735. The change in chi-square was not 

significant between the filtered and non-filtered models; tests of invariance were also 

non-significant. Comparisons between the filtered OA dataset and the FH groups 

yielded the same results as previously described.  

 

Summary of Findings and Original Hypotheses 

This is the first functional connectivity study of SWM, therefore, the 

hypothesized models of both “mature” and “immature” pathways were based on 

regional BOLD activation of adults and youth, and not necessarily how these regions 

interacted. Despite this, many of the proposed hypotheses describing “mature” and 

“immature” model relationships were supported and add to the validity of the current 

findings.  

1) It was predicted that the right middle frontal gyrus would have a weaker, 

positive influence on the left middle frontal gyrus in FHP youth as compared to 
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the FHN youth and OA groups. Examination of the unstandardized coefficients 

suggested that, as predicted, the influence of the right middle frontal gyrus was 

stronger in the OA model than both FH groups. There was no qualitative 

difference between FH groups, and differences between all three groups were 

not judged to be statistically different in formal tests of model invariance.  

2) It was predicted that FHP subjects would rely more heavily on the superior 

rather than inferior parietal lobule, producing a strong, negative influence of 

the inferior parietal lobule on the superior parietal lobule. Present results did 

not support this prediction. Instead, the superior parietal lobule demonstrated 

the strongest, positive connection across all three groups’ models, and this 

relationship was crucial for overall model fit. It was also hypothesized that the 

inferior parietal lobule would increase in importance with greater adolescent 

development. In line with this prediction, the connection between the right 

inferior parietal lobule and right middle frontal gyrus was only significant in 

the OA model. Additionally, it was predicted that as activation in the right 

inferior parietal lobule increased, superior parietal input would no longer 

crucial for efficient task performance in OA youth. This hypothesis was not 

supported. However, right superior parietal lobule activation was weakly and 

negatively related to SWM accuracy in FHP youth. In other words, for FHP 

youth, increasing activation in the right superior parietal lobule was related to 

poorer SWM accuracy. SWM was not related to any other brain region in FHP 

youth, and was not related to any region at all across the other groups, perhaps 

suggesting that decreased involvement of the right superior parietal lobule 
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during SWM with maturing brain networks. However, group differences could 

also be influenced by sample size, though sizes were very similar. 

3) It was also thought that a relative decrease in the activation of the superior 

parietal lobule in OA and FHN youth would lead to a relatively weak, negative 

influence of this region on the right middle frontal gyrus. This relationship was 

in fact positive across all groups, and although it was weaker in young 

adolescent groups than OA, this was not a significant different.  

4) Increased response in the right middle frontal gyrus and concomitant increase 

in the right inferior parietal lobe in OA and FHN youth was proposed to create 

a strong, positive relationship between these regions, thus mimicking the right 

greater than left activation pattern established in adults. These results partially 

supported this hypothesis and demonstrated that the pathway between the right 

inferior parietal lobule and the right middle frontal gyrus was additive in the 

OA model but extraneous in the FH groups.  

5) As hypothesized, physiological filtering of the OA dataset neither resulted in 

meaningful change in model fit or substantive change of between group 

comparisons.  

 

DISCUSSION 

Previous research suggests that a neurobiological mechanism may contribute to 

the increased risk that youth with positive family histories of AUD have for future 

problem drinking. Therefore, the primary goal of this study was to characterize SWM 

functions in youth with and without positive family histories via functional 
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connectivity models of SWM. “Mature” SWM functional connectivity was first 

established by modeling brain interactions on a group of demographically similar 16 

to 20 year-olds, and youth between the ages of 12 and 14 with and without FH risk 

factors were compared to this baseline “mature” model.  

It was proposed that the FHN young adolescents would demonstrate a pattern 

of functional connectivity that was more similar to the OA model than that of their 

FHP peers. Examination of the overall fit indices and relative strengths of the models’ 

connections within each group sample illustrated that both developmental stage (early 

versus late adolescence) and FH status influenced the pattern of interactions within the 

specified SWM network. Age independently influenced model fit, as the younger 

adolescents’ best fitting models required, 1) the addition of a bilateral pathway 

between the right superior parietal lobule and the left middle frontal gyrus, and 2) the 

deletion of the connection between the right middle frontal gyrus and right inferior 

parietal lobule, as compared to the young adult model of best fit. These findings are 

consistent with previous studies of localized BOLD response, citing increased right 

lateralized SWM in adults as compared to more bilateral SWM processes in children, 

and suggests increased specialization of SWM processing with age and experience.  

Differences between the FH groups also suggest that a family history of AUD 

influences brain networks in a manner consistent with the developmental delay 

hypothesis. The main FH comparison demonstrated that youth without dense family 

histories of AUD produced a network of brain activity that resembled the OA model 

more than that of the FHP comparison group. Specifically, FHP youth demonstrated a 

statistically significant stronger regression coefficient for the bilateral pathway, which 
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was an age-invariant connection, and therefore demonstrated less right-lateralized 

brain activity. Removal of the pathway between the right superior parietal lobule to 

left middle frontal gyrus from the FHP model also decreased overall fit indices much 

more than when it was removed from the FHN group, underscoring the extent of 

group differences. The difference between FHN and FHP remained unchanged after 

controlling for SWM performance, which was slightly superior in FHP youth (means 

= 88% v 92%), suggesting that this difference is not mediated by SWM performance. 

These data contribute to the growing evidence that familial history of AUD may 

influence neurobehavioral correlates and thus contribute to increased rates of problem 

drinking in FHP youth.  

The disparate relationship of SWM accuracy to brain networks across groups 

also provide support for subtle FH-related developmental differences. Improved SWM 

accuracy was weakly and negatively associated with activation in the right superior 

parietal lobule, but only in FHP youth. There was no relationship between the superior 

parietal lobule and SWM accuracy in either FHN or OA samples, demonstrating less 

involvement of this region during task performance. This is consistent with the 

expectation that the right superior parietal lobule would become less crucial for 

successful SWM performance with brain development (adolescent stage), and 

potentially suggests decreased involvement of the right superior parietal lobule during 

SWM as brain networks mature as previous studies have suggested (Schweinsburg, 

Schweinsburg, et al., 2005). However, the small effect size of this relationship and 

difference in sample size between groups precludes any strong conclusions regarding 

this finding.  



54 

 

Results of these analyses suggest that age impacts brain networks supporting 

effective SWM performance. It was predicted that the right inferior parietal lobule 

would become more integrated with age. Accordingly, young adults invoked an 

additional pathway for efficient SWM performance between the right inferior parietal 

lobule to the right middle frontal gyrus, which suggests that with ongoing 

neurodevelopment, changing strategy, or environmental experience, the right inferior 

parietal lobule asserts greater influence in more mature SWM networks. Indeed, 

increased white matter integrity of pathways connecting the frontal and parietal 

lobules (e.g, superior longitudinal fasciculus) has been demonstrated to occur in older 

adolescents (Bava, et al., in preparation; Eluvathingal, et al., 2007; Olesen, et al., 

2003; Qiu, et al., 2008), suggesting development of an underlying microstructural 

network supporting SWM. Of note, deletion of this path in the young adult model had 

the least impact on overall model fit, suggesting that this pathway might not yet have 

reached its maximum utility. Longitudinal studies of white matter integrity and 

functional connectivity of BOLD activation might determine whether this connection 

becomes increasingly important to SWM networks with age. While the connection 

between the right inferior parietal lobule and right middle frontal gyrus was more 

important in the OA sample, the observation that the connection from the right 

superior parietal lobule to the right inferior parietal lobule was by far the strongest 

pathway across all groups suggests persisting importance of the right superior parietal 

lobule throughout adolescence into young adulthood. 

A key finding was that FHP youth had a stronger bilateral connection between 

the right superior parietal lobule and the left middle frontal gyrus than the FHN cohort. 



55 

 

Since this connection was not observed in the young adult sample, a weaker 

connection between these regions may describe more fully developed SWM 

supportive processes in the FHN youth. FHP youth also demonstrated relatively more 

involvement of the right superior parietal lobule in SWM performance accuracy than 

other groups, which may also suggest developmental differences. Evidence of poorer 

performance on neurocognitive measures, aberrant neurophysiological indices (i.e., 

reduced amplitude of the P300 component, increased resting beta frequency, reduced 

intracranial volume, increased postural sway, and their relationship to genotypic 

features such as GABA A receptor genes) suggest a relationship between FHP and 

neurobiological risk factors, at least before the age of 18, when these differences are 

most robust. Therefore, understanding the neural characteristics of FHP youth may 

help determine potential interventions to reduce risk for future AUD. 

 The mechanism of FHP-related neurodevelopmental delay may be partially 

explained by genetic influence of gamma-aminobutyric acid (GABA) interneurons. 

Genetic links between GABAA receptor genes, the primary inhibitory neurotransmitter 

in the brain, have been linked to increased resting EEG beta frequency in the offspring 

of alcoholics (Bauer & Hesselbrock, 1993; Finn & Justus, 1999; Pollock, Earleywine, 

& Gabrielli, 1995; Rangaswamy, Porjesz, Chorlian, et al., 2004). Because the 

coordination of inhibitory inter-neurons and excitatory pyramidal cells depends on the 

action of GABAA (Whittington, Traub, Kopell, Ermentrout, & Buhl, 2000), alcoholics 

and their children who demonstrate increased beta activity (electrophysiological 

characteristic which seems to underscore differential P300 event-related potentials) 

may have a suboptimal balance between excitation and inhibition (Porjesz & 
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Rangaswamy, 2007). Variations in GABAA receptor genes (e.g., GABRA2) may 

influence neural excitability (Covault, Gelernter, Hesselbrock, Nellissery, & Kranzler, 

2004; Edenberg, et al., 2004) and predispose youth for alcoholism and related 

disinhibitory disorders (H. Begleiter & Porjesz, 1999). Deficits in GABA 

benzodiazepine receptors in individuals with a family history of AUD have also been 

observed in neuroimaging studies (Volkow, et al., 1995), supporting the role of 

GABAergic systems in risk for AUD.  

 However, abnormal GABA interneuron action, like reduced P300 frequencies 

which are characteristic of many disinhibitory conditions (e.g., anti-social personality 

disorder, conduct disorder, and attention deficit hyperactivity disorder (Porjesz, et al., 

2005), is also linked to a number of developmental disorders such as childhood 

schizophrenia (Lewis, Cruz, Eggan, & Erickson, 2004), Tourette’s syndrome 

(Kalanithi, et al., 2005), and autism (Belmonte, et al., 2004). Although the mechanism 

underlying organization of cortical GABAergic synapses is poorly understood, it is 

thought that errors in the process may have a profound impact cortical processing and 

plasticity (Di Cristo, 2007). Specificity aside, an initial genetic disturbance (no matter 

how minimal) will influence the developmental trajectory and in all subsequent 

interactions with external stimuli (Di Cristo, 2007). Therefore, differences in 

neurobiological development due to FH effects may have a small but important impact 

on how FHP youth respond to increased risk factors for future AUD during 

adolescence. 

CONCLUSIONS 

 These findings support the neurodevelopmental delay hypothesis, which suggests 
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that protracted neuromaturation is a potential mechanism through which a positive FH 

increases risk for alcohol dependence. Developmental literature suggests that with 

increasing skill in cognitive resources such as inhibition, processing speed, and working 

memory (Luna, Garver, Urban, Lazar, & Sweeney, 2004; Luna, et al., 2001), children and 

adolescents improve their mastery in tasks that require these component processes. 

Mastery and integration of each subcomponent improves overall cognitive control of 

behavior. A subtle deficit in one or more of these cognitive elements may lead to reduced 

complex cognitive control and postponed mastery of interdependent neurocognitive 

functions. Therefore, an adolescent with a subtle lag in fronto-parietal neuromaturation 

may also suffer a concomitant delay in achieving inhibitory control (Cloninger, 

Sigvardsson, & Bohman, 1988; McGue, Slutske, Taylor, & Iacono, 1997; Porjesz, et al., 

2005; Tarter, 1988).  

The potential influence of suboptimal cognitive behavioral control on teens 

exposed to high-risk situations is self-evident. In the context of many risk factors, 

neuromaturational lags may substantially increase transition to AUD. Recent national 

surveys estimate approximately 17% of youth between the ages of 12 to 17 have used 

alcohol in the past month(SAMHSA, 2008). Use of alcohol in adolescence increases the 

risk for developing secondary problems such as psychopathology (Rohde, 2001), physical 

problems (Aarons, 1999), impaired social development (Baumrind & Moselle, 1985), and 

substance dependence (Grant & Dawson, 1997). Alcohol consumption is also estimated to 

be responsible for roughly 4% of worldwide disease burden (Guilbert, 2003), which is 

comparable to rates of disease linked to hypertension (Room, Graham, Rehm, Jernigan, & 

Monteiro, 2003). Early identification of youth at greatest risk for developing AUD could 
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substantially reduce global rates of alcohol-related disease. Early identification will 

facilitate intervention development and implementation. Finally, these findings suggest 

that interventions need address the potentially protracted neurodevelopment of FHP youth. 

 

Strengths 

 Theoretically driven analyses. A particular strength of the present study is its 

theoretically driven nature. As opposed to the majority of existing functional 

connectivity studies that use data-driven methods to compose models (e.g., functional 

connectivity via ICA or PCA) the current models were chosen based on literature 

describing the brain regions supporting SWM and how these brain regions may 

change and interact with brain development. Independent selection of regions of 

interest aids decreases the selection bias of whole brain correlational analyses, the 

subject of much recent scrutiny (e.g., (Kriegeskorte, Simmons, Bellgowan, & Baker, 

2009)Vul et al., 2009), and guards against false inflation of secondary analysis.  

Data preparation. Unlike many fMRI studies, the current study employed 

multivariate regression diagnostics to ensure that assumptions important to the 

stability and validity of subsequent analyses were adequately met. ROIs were screened 

for multivariate outliers and non-normal distribution, and the Satorra-Bentler scaled 

chi-square statistic was used to correct for lesser degrees of non-normality. Improved 

data preparation increases the probability that these results are artifacts of noise.  

Sample quality. Adolescents were screened for a large number of potentially 

confounding influences. Across a large range of parameters, from developmental 

problems and demographic factors, to current substance use and mental health indices, 
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these youth were extremely similar across groups and unaffected by factors that might 

confuse final conclusions (e.g., current substance abuse, parental education).  

Additionally, because samples were so well-matched and free from confounding 

influences, the fact that we found differences between groups is even more 

remarkable, and speaks to the robustness of these findings.  

 

Limitations 

 Differences between scanners. The younger cohort was scanned on a 1.5T field 

strength magnet while the older cohort was imaged on a 3T system, which could 

potentially influence these findings. Stronger magnet strength improves signal to noise 

ratio, making it more likely to detect signals of interest. However, increased magnet 

strength also increases the sampling of non-random noise, such as cardiac, cerebral 

blood flow, and respiratory related influences. Although data was collected on 

disparate field strengths the relative relationships between the regions of interest 

should be proportionately scaled. Furthermore, FH history groups were collected on 

the same scanner, helping to ensure observed differences were due to the variable of 

interest. No parallel physiological data were collected along with fMRI data, however, 

when retrospective physiological filtering was applied to data collected on the 3T 

system, the relationships of interest remained unchanged.  

 Generalizability. The demographic make-up of our sample may attenuate FH 

effects on functional connectivity. Most participants are from relatively affluent areas 

of San Diego and have highly educated parents. Genetic risk for AUD is less likely to 

be expressed in such environments. For example, adoptees with a high genetic 
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predisposition for AUD were found to develop alcoholism more often when reared in 

low-socioeconomic (high-risk) environments (Sigvardsson, Bohman, & Cloninger, 

1996). Sampling a greater number of participants with increased risks for AUD, such 

as adverse childhood events, lower socioeconomic status, and conduct disorder, a 

well-known risk factor for the development of AUD, might increase the likelihood of 

finding FH effects on neuromaturation. On the other hand, such a sample would be 

more likely to carry confounding factors. Similarly, these results will only generalize 

to youth who match the inclusion and sizable exclusion criteria for our study, with 

either a strong positive FH, or no first or second degree relatives with AUD.  

Power and sample size. Although functional connectivity studies with much 

smaller samples have been published (Buchel & Friston, 1997; Hampson, Driesen, 

Skudlarski, Gore, & Constable, 2006; R. Schlosser, et al., 2003) our sample size is 

small by traditional SEM standards. SEM was designed for use in large samples, 

where large is loosely defined as N > 200 cases and small is anything less than N = 

100 (Kline, 2005b). While results calculated from larger samples have less sampling 

error and greater power to detect small effects, there is considerable variability in what 

has been suggested as adequate sample size. One factor confusing the issue is that 

SEM has been traditionally carried out on latent variables, composed of many 

observations, which vary in reliability. For these types of analyses, thousands of cases 

may be necessary to ensure close model fit and large power (MacCallum, Browne, & 

Sugawara, 1996), though Kline suggests that the minimum ratio of number of cases to 

free parameters is 5:1 (Kline, 2005b). However, SEM can also be used to test path 

models that do not contain latent variables. In this role, SEM can measure the fit 
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between hypothesis-driven path models and the actual data, which may be more 

reliable in the case of fMRI. Furthermore, in fMRI, the number of observations at the 

voxel level meets the criteria proposed by MacCallum and colleagues (MacCallum, et 

al., 1996). Additionally, simulation studies examining the effect of sample size on the 

validity and reliability of model fit and relative strength in connections support the 

adequacy of smaller size (Boucard, Marchand, & Nogues, 2007; Protzner & McIntosh, 

2006). For example, Boucard and colleagues (2007) found that very high validity and 

reliability can be achieved with N > 25, and that sample sizes N > 20 retain the 

accuracy of the relative strengths of coefficients 90% of the time (Boucard, et al., 

2007). Protzer and McIntosh (2006) similarly advocate that the relative strength of 

most path coefficients is maintained with a sample size N > 20 (Protzner & McIntosh, 

2006). These findings suggest that the current SEM study is adequately powered to 

detect valid and reliable FH effects.  

Task design. This analysis was carried out on fMRI data collected with a block 

design. Although an event-related design would provide more information on the 

effects of successful or unsuccessful recognition of spatial locations, a block design 

has the advantage of greater statistical power (Friston, Zarahn, Josephs, Henson, & 

Dale, 1999). Also, many of the studies that the model was derived from were collected 

using a block design, thus maintaining the consistency of the patterns of response to 

SWM.  

Temporal precedence. Temporal precedence, or whether activity in ROI “A” 

occurs prior to activity in ROI “B,” may be obscured at the hemodynamic level due to 

the delay between change at the synaptic level and hemodynamic response. 
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Covariances of BOLD activation are averaged over groups from a block design, which 

in and of itself requires averaging of responses. Therefore, temporal sequencing of 

ROI activations cannot be addressed using this approach. 

Directional inference. Connectivity equations are recursive, while cerebral 

physiology is bidirectional. Analysis of functional connectivity suggests that linear 

estimates can adequately represent observed changes in cerebral blood flow (Friston, 

1994). However, models are made recursive as even one bidirectional effect 

enormously complicates the analysis (Kline, 2005). Failure to include bidirectional 

relationships between regions of interest limits our ability to accurately represent 

neural networks. 

Models are underdetermined. Only a select few changes in observed voxels are 

used to characterize many voxels. Therefore the validity of such analyses depends on 

the validity of the model. Our simple model expresses the hemodynamic change at one 

voxel as a weighted sum of changes in regions hypothesized to be connected to an 

ROI being investigated (Friston, 1994). The weights of the path coefficients describe 

the degree of connectivity. Undoubtedly, this is a simplification of reality but 

hopefully captures an important mechanism by which we can improve identification of 

youth at greatest risk for AUD.  

Cross-sectional study. Longitudinal follow-up data in early adulthood will be 

needed to fully test the neuromaturational lag hypothesis, to examine whether the FHP 

youth do indeed catch up to the FHN youth, evidenced by having the same model fit 

for connectivity of these frontal and parietal regions 6-8 years after the baseline 

imaging data evaluated here. 
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Future Directions 

Sampling a greater number of participants with a greater number of risk 

factors, such as adverse childhood events, and especially, conduct disorder, a well-

known risk factor for the development of AUD (Sartor, et al., 2007) might increase the 

likelihood of finding FH effects on neuromaturation, although consideration of 

confounds (e.g., history of head trauma and psychiatric comorbidity) would be critical.  

 The validity and reliability of these models can be further tested with ongoing 

research in our lab. As this study is part of a larger ongoing longitudinal study, our 

group can verify that changes in networks are due to neuromaturational changes with 

follow-up data. It will also be possible to compare functional networks by examining 

the quality of connective white matter tracts (using diffusion tensor imaging data) to 

anatomically inform connectivity models. Other investigators will hopefully seek to 

replicate the model with independent samples. This final step is necessary to ascertain 

the reliability of the networks described in the work. 

 The influence of protracted neuromaturation within a larger constellation of 

risk factors for AUD has yet to be understood. Longitudinal studies need to address 

the contribution of neurodevelopment in order to understand the interplay of factors 

predicting AUD. Finally, future studies on individuals with AUD need to account for 

FH as a potential moderator of neurotoxic effects.  

 

 



64 

 

REFERENCES 
 
Aarons, G. A., et al. (1999). Adolescent alcohol and drug abuse and health. Journal of 

Adolescent Health, 6, 412-421. 
 
Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A 

resilient, low-frequency, small-world human brain functional network with 
highly connected association cortical hubs. J Neurosci, 26(1), 63-72. 

 
Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA School-Age 

Forms & Profiles. 
 
Acheson, A., Robinson, J. L., Glahn, D. C., Lovallo, W. R., & Fox, P. T. (2009). 

Differential activation of the anterior cingulate cortex and caudate nucleus 
during a gambling simulation in persons with a family history of alcoholism: 
studies from the Oklahoma Family Health Patterns Project. Drug Alcohol 
Depend, 100(1-2), 17-23. 

 
Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. 

H., et al. (2002). A developmental fMRI study of the Stroop color-word task. 
Neuroimage, 16(1), 61-75. 

 
Almasy, L., Porjesz, B., Blangero, J., Chorlian, D. B., O'Connor, S. J., Kuperman, S., 

et al. (1999). Heritability of event-related brain potentials in families with a 
history of alcoholism. Am J Med Genet., 88(4), 383-390. 

 
Anderson, K. G., Smith, G. T., McCarthy, D. M., Fischer, S. F., Fister, S., Grodin, D., 

et al. (2005). Elementary school drinking: the role of temperament and 
learning. Psychol Addict Behav, 19(1), 21-27. 

 
Andreasen, N. C., Rice, J., Endicott, J., Reich, T., & Coryell, W. (1986). The family 

history approach to diagnosis. How useful is it? Arch Gen Psychiatry., 43(5), 
421-429. 

 
Andrews, J. A., Tildesley, E., Hops, H., & Li, F. (2002). The influence of peers on 

young adult substance use. Health Psychology, 21(4), 349-357. 
 
Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press. 
 
Bandettini, P. A., Jesmanowicz, A., Wong, E. C., & Hyde, J. S. (1993). Processing 

strategies for time-course data sets in functional MRI of the human brain. 
Magnetic Resonance in Medicine, 30, 161-173. 

Bates, M. E., & Pandina, R. J. (1992). Familial alcoholism and premorbid cognitive 
deficit: a failure to replicate subtype differences. J Stud Alcohol, 53(4), 320-
327. 



65 

 

 
Bauer, L. O., & Hesselbrock, V. M. (1993). EEG, autonomic and subjective correlates 

of the risk for alcoholism. J Stud Alcohol, 54(5), 577-589. 
 
Baumrind, D., & Moselle, K. A. (1985). A development perspective on adolescent 

drug abuse. Adv Alcohol Subst Abuse., 4(3-4), 41-67. 
 
Bava, S., Jacobus, J., Thayer, R., Frank, L. R., & Tapert, S. F. (in preparation). 

Longitudinal Diffusion Tensor Imaging Anaysis of White Matter Maturation 
During Adolescence. 

 
Beall, E. B., & Lowe, M. J. (2007). Isolating physiologic noise sources with 

independently determined spatial measures. Neuroimage, 37(4), 1286-1300. 
 
Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - a 

technical review. NMR Biomed, 15(7-8), 435-455. 
 
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An 

Inventory for Measuring Depression. Arch Gen Psychiatry, 4, 561-571. 
 
Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations 

into resting-state connectivity using independent component analysis. Philos 
Trans R Soc Lond B Biol Sci, 360(1457), 1001-1013. 

 
Begleiter, H., & Porjesz, B. (1999). What is inherited in the predisposition toward 

alcoholism? A proposed model. Alcohol Clin Exp Res, 23(7), 1125-1135. 
 
Begleiter, H., Porjesz, B., Bihari, B., & Kissin, B. (1984). Event-related brain 

potentials in boys at risk for alcoholism. Science., 225(4669), 1493-1496. 
 
Begleiter, H., Porjesz, B., & Bihiari, B. (1987). Auditory brainstem potentials in sons 

of alcoholic fathers. Alcohol Clinical and Experimental Researcj, 11, 477-480. 
 
Belmonte, M. K., Cook, E. H., Jr., Anderson, G. M., Rubenstein, J. L., Greenough, W. 

T., Beckel-Mitchener, A., et al. (2004). Autism as a disorder of neural 
information processing: directions for research and targets for therapy. Mol 
Psychiatry, 9(7), 646-663. 

 
Bentler, P. M., & Wu, E. J. C. (1995). EQS for Windows User's Guide. Encino, CA.: 

Multivariate Software, Inc. 
 
Berman, S. M., & Noble, E. P. (1995). Reduced visuospatial performance in children 

with the D2 dopamine receptor A1 allele. Behavior Genetics, 25(1), 45-58. 
 



66 

 

Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, P. A. (2006). Separating 
respiratory-variation-related fluctuations from neuronal-activity-related 
fluctuations in fMRI. Neuroimage, 31(4), 1536-1548. 

 
Birn, R. M., Smith, M. A., Jones, T. B., & Bandettini, P. A. (2008). The respiration 

response function: The temporal dynamics of fMRI signal fluctuations related 
to changes in respiration. Neuroimage, 40, 644-654. 

 
Biswal, B., DeYoe, A. E., & Hyde, J. S. (1995). Reduction of physiological 

fluctuations in fMRI using digital filters. Magnetic resonance in medicine, 
35(1), 107-133. 

 
Biswal, B., DeYoe, A. E., & Hyde, J. S. (1996). Reduction of physiological 

fluctuations in fMRI using digital filters. Magn Reson Med, 35(1), 107-113. 
 
Bjork, J. M., Knutson, B., & Hommer, D. W. (2008). Incentive-elicited striatal 

activation in adolescent children of alcoholics. Addiction, 103(8), 1308-1319. 
 
Boucard, A., Marchand, A., & Nogues, X. (2007). Reliability and validity of structural 

equation modeling applied to neuroimaging data: A simulation study. J 
Neurosci Methods. 

 
Brown, S. A., Christiansen, B. A., & Goldman, M. S. (1987). The Alcohol Expectancy 

Questionnaire: an instrument for the assessment of adolescent and adult 
alcohol expectancies. J Stud Alcohol, 48(5), 483-491. 

 
Brown, S. A., Creamer, V. A., & Stetson, B. A. (1987). Adolescent alcohol 

expectancies in relation to personal and parental drinking patterns. J Abnorm 
Psychol, 96(2), 117-121. 

 
Brown, S. A., Gleghorn, A., Schuckit, M. A., Myers, M. G., & Mott, M. A. (1996). 

Conduct disorder among adolescent alcohol and drug abusers. J Stud Alcohol, 
57(3), 314-324. 

 
Brown, S. A., & Munson, E. (1987). Extroversion, anxiety and the perceived effects of 

alcohol. J Stud Alcohol, 48(3), 272-276. 
Brown, S. A., Myers, M. G., Lippke, L., Tapert, S. F., Stewart, D. G., & Vik, P. W. 

(1998). Psychometric evaluation of the Customary Drinking and Drug Use 
Record (CDDR): A measure of adolescent alcohol and drug involvement. 
Journal of Studies on Alcohol, 59, 427-438. 

 
Browne, M. W., & Cudeck, R. (Eds.). (1993). Alternative ways of assessing model fit. 

Newbury Park, CA: Sage. 
 



67 

 

Buchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by 
attention: cortical interactions evaluated with structural equation modelling and 
fMRI. Cereb Cortex, 7(8), 768-778. 

 
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical 

analysis of structural and functional systems. Nat Rev Neurosci, 10(3), 186-
198. 

 
Byrne, B. M. (2006). Structural Equation Modeling With Eqs: Basic Concepts, 

Applications, And Programming (2 ed.). Mahwah, NJ: Lawrence Erlbaum 
Associates, Publishers. 

 
Capone, C., & Wood, M. D. (2008). Density of familial alcoholism and its effects on 

alcohol use and problems in college students. Alcohol Clin Exp Res, 32(8), 
1451-1458. 

 
Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. 

N., et al. (1997). A developmental functional MRI study of prefrontal 
activation during performance of a go-no-go task. Journal of Cognitive 
Neuroscience, 9, 835-847. 

 
Caviness, V. S., Jr., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek, P. A. 

(1996). The human brain age 7-11 years: a volumetric analysis based on 
magnetic resonance images. Cereb Cortex, 6(5), 726-736. 

 
Chang, C., Cunningham, J. P., & Glover, G. (2009). Influence of heart rate on the 

BOLD signal: The cardiac response function. Neuroimage, 44, 857-869. 
 
Chuang, K. H., & Chen, J. H. (2001). IMPACT: image-based physiological artifacts 

estimation and correction technique for functional MRI. Magn Reson Med, 
46(2), 344-353. 

 
Clark, D. B., Lynch, K. G., Donovan, J. E., & Block, G. D. (2001). Health problems in 

adolescents with alcohol use disorders: self-report, liver injury, and physical 
examination findings and correlates. Alcohol Clin Exp Res, 25(9), 1350-1359. 

Cloninger, C. R., Sigvardsson, S., & Bohman, M. (1988). Childhood personality 
predicts alcohol abuse in young adults. Alcohol Clin Exp Res, 12(4), 494-505. 

 
Cloninger, C. R., Sigvardsson, S., Reich, T., & Bohman, M. (1986). Inheritance of risk 

to develop alcoholism. NIDA Res Monogr, 66, 86-96. 
 
Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. 

Neuroimage, 6(2), 93-103. 
 



68 

 

Conrod, P. J., Pihl, R. O., & Ditto, B. (1995). Autonomic reactivity and alcohol-
induced dampening in men at risk for alcoholism and men at risk for 
hypertension. Alcoholism, Clinical and Experimental Research, 19, 482-489. 

 
Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., 

et al. (2001). Frequencies contributing to functional connectivity in the 
cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol, 22(7), 1326-
1333. 

 
Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., Moritz, C. 

H., et al. (2000). Mapping functionally related regions of brain with functional 
connectivity MR imaging. AJNR Am J Neuroradiol, 21(9), 1636-1644. 

 
Corral, M., Holguin, S. R., & Cadaveira, F. (2003). Neuropsychological characteristics 

of young children from high-density alcoholism families: a three-year follow-
up. J Stud Alcohol, 64(2), 195-199. 

 
Corral, M. M., Holguin, S. R., & Cadaveira, F. (1999). Neuropsychological 

characteristics in children of alcoholics: familial density. J Stud Alcohol., 
60(4), 509-513. 

 
Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., et 

al. (2000). Normal brain development and aging: quantitative analysis at in 
vivo MR imaging in healthy volunteers. Radiology, 216(3), 672-682. 

 
Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). 

An area specialized for spatial working memory in human frontal cortex. 
Science., 279(5355), 1347-1351. 

 
Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and 

sustained activity in a distributed neural system for human working memory. 
Nature., 386(6625), 608-611. 

Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M., & Kranzler, H. R. (2004). 
Allelic and haplotypic association of GABRA2 with alcohol dependence. Am J 
Med Genet B Neuropsychiatr Genet, 129B(1), 104-109. 

 
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional 

magnetic resonance neuroimages. 29, 162-173. 
 
Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for 

functional MRI. Magnetic Resonance in Medicine, 42(6), 1014-1018. 
 
Crews, T. M., & Sher, K. J. (1992). Using adapted short MASTs for assessing parental 

alcoholism: reliability and validity. Alcohol Clin Exp Res, 16(3), 576-584. 
 



69 

 

Dagli, M. S., Ingeholm, J. E., & Haxby, J. V. (1999). Localization of cardiac-induced 
signal change in fMRI. Neuroimage, 9(4), 407-415. 

 
Dawson, D. A., & Grant, B. F. (1998). Family history of alcoholism and gender: their 

combined effects on DSM-IV alcohol dependence and major depression. J 
Stud Alcohol., 59(1), 97-106. 

 
De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. 

(2006). fMRI resting state networks define distinct modes of long-distance 
interactions in the human brain. Neuroimage, 29(4), 1359-1367. 

 
Deckers, R. H., van Gelderen, P., Ries, M., Barret, O., Duyn, J. H., Ikonomidou, V. 

N., et al. (2006). An adaptive filter for suppression of cardiac and respiratory 
noise in MRI time series data. Neuroimage, 33(4), 1072-1081. 

 
Della-Maggiore, V., Sekuler, A. B., Grady, C. L., Bennett, P. J., Sekuler, R., & 

McIntosh, A. R. (2000). Corticolimbic interactions associated with 
performance on a short-term memory task are modified by age. J Neurosci, 
20(22), 8410-8416. 

 
Desmond, J. E., Chen, S. H., DeRosa, E., Pryor, M. R., Pfefferbaum, A., & Sullivan, 

E. V. (2003). Increased frontocerebellar activation in alcoholics during verbal 
working memory: an fMRI study. Neuroimage, 19(4), 1510-1520. 

 
Di Cristo, G. (2007). Development of cortial GABAergic circuits and its implications 

for neurodevelopmental disorders. Clin Genet, 72, 1-8. 
 
Dolan, S. L., Bechara, A., & Nathan, P. E. (2008). Executive dysfunction as a risk 

marker for substance abuse: the role of impulsive personality traits. Behav Sci 
Law, 26(6), 799-822. 

Edenberg, H. J., Dick, D. M., Xuei, X., Tian, H., Almasy, L., Bauer, L. O., et al. 
(2004). Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) 
receptor, are associated with alcohol dependence and with brain oscillations. 
Am J Hum Genet, 74(4), 705-714. 

 
Edin, F., Macoveanu, J., Olesen, P., Tegner, J., & Klingberg, T. (2007). Stronger 

synaptic connectivity as a mechanism behind development of working 
memory-related brain activity during childhood. J Cogn Neurosci, 19(5), 750-
760. 

 
Eluvathingal, T. J., Hasan, K. M., Kramer, L., Fletcher, J. M., & Ewing-Cobbs, L. 

(2007). Quantitative diffusion tensor tractography of association and projection 
fibers in normally developing children and adolescents. Cereb Cortex, 17(12), 
2760-2768. 

 



70 

 

Englund, M. M., Egeland, B., Oliva, E. M., & Collins, W. A. (2008). Childhood and 
adolescent predictors of heavy drinking and alcohol use disorders in early 
adulthood: a longitudinal developmental analysis. Addiction, 103 Suppl 1, 23-
35. 

 
Enoch, M. A., Hodgkinson, C. A., Yuan, Q., Albaugh, B., Virkkunen, M., & 

Goldman, D. (2009). GABRG1 and GABRA2 as independent predictors for 
alcoholism in two populations. Neuropsychopharmacology, 34(5), 1245-1254. 

 
Eysenck, S. B. G. (1963). Manual for the Junior Eysenck Personality Inventory. San 

Diego, CA: Educational and Industrial Testing Service. 
 
Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. 

M., et al. (2008). The maturing architecture of the brain's default network. 
Proc Natl Acad Sci U S A, 105(10), 4028-4032. 

 
Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. 

M., et al. (2007). Development of distinct control networks through 
segregation and integration. Proc Natl Acad Sci U S A, 104(33), 13507-13512. 

 
Felts, P. A., Baker, T. A., & Smith, K. J. (1997). Conduction in segmentally 

demyelinated mammalian central axons. J Neurosci, 17(19), 7267-7277. 
 
Fidalgo, T. M., da Silveira, E. D., & da Silveira, D. X. (2008). Psychiatric comorbidity 

related to alcohol use among adolescents. Am J Drug Alcohol Abuse, 34(1), 83-
89. 

 
Finn, P. R., & Justus, A. (1999). Reduced EEG alpha power in the male and female 

offspring of alcoholics. Alcohol Clin Exp Res., 23(2), 256-262. 
 
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, 

M. E. (2005). The human brain is intrinsically organized into dynamic, 
anticorrelated functional networks. Proc Natl Acad Sci U S A, 102(27), 9673-
9678. 

 
Friston, K. J. (1994). Functional and Effective Connectivity: A Synthesis. Human 

Brain Mapping, 2, 56-78. 
 
Friston, K. J., Frith, C. D., & Frackowiak, R. S. (1993). Principal component analysis 

learning algorithms: a neurobiological analysis. Proc Biol Sci, 254(1339), 47-
54. 

 
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. 

Neuroimage, 19(4), 1273-1302. 
 



71 

 

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). 
Movement-related effects in fMRI time-series. Magn Reson Med., 35(3), 346-
355. 

 
Friston, K. J., Zarahn, E., Josephs, O., Henson, R. N., & Dale, A. M. (1999). 

Stochastic designs in event-related fMRI. Neuroimage, 10(5), 607-619. 
 
Garland, M. A., Parsons, O. A., & Nixon, S. J. (1993). Visual spatial learning in 

nonalcoholic young adults with and those without a family history of 
alcoholism. J Stud Alcohol, 54(2), 219-224. 

 
Giancola, P. R., Martin, C. S., Tarter, R. E., Pelham, W. E., & Moss, H. B. (1996). 

Executive cognitive functioning and aggressive behavior in preadolescent boys 
at high risk for substance abuse/dependence. J Stud Alcohol, 57(4), 352-359. 

 
Giancola, P. R., Peterson, J. B., & Pihl, R. O. (1993). Risk for alcoholism, antisocial 

behavior, and response perseveration. J Clin Psychol., 49(3), 423-428. 
 
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., 

et al. (1999). Brain development during childhood and adolescence: A 
longitudinal MRI study. Nature Neuroscience, 2(10), 861-863. 

 
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., 

et al. (1999). Development of the human corpus callosum during childhood 
and adolescence: A longitudinal MRI study. Progress in Neuro-
Psychopharmacology and Biological Psychiatry, 23(4), 571-588. 

 
Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et 

al. (1996). Quantitative magnetic resonance imaging of human brain 
development: Ages 4-18. Cerebral Cortex, 6(4), 551-560. 

 
Gilman, J. M., Bjork, J. M., & Hommer, D. W. (2007). Parental Alcohol Use and 

Brain Volumes in Early- and Late-Onset Alcoholics. Biol Psychiatry, 15, 15. 
 
Glahn, D. C., Lovallo, W. R., & Fox, P. T. (2007). Reduced amygdala activation in 

young adults at high risk of alcoholism: studies from the Oklahoma family 
health patterns project. Biol Psychiatry, 61(11), 1306-1309. 

 
Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for retrospective 

correction of physiological motion effects in fMRI: RETROICOR. Magn 
Reson Med, 44(1), 162-167. 

 
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et 

al. (2004). Dynamic mapping of human cortical development during childhood 
through early adulthood. Proc Natl Acad Sci U S A, 101(21), 8174-8179. 



72 

 

 
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of 

behavior by representational memory. Handbook of physiology, the nervous 
system, higher functions of the brain, 5, 373-417. 

 
Goncalves, M. S., & Hall, D. A. (2003). Connectivity analysis with structural equation 

modelling: an example of the effects of voxel selection. Neuroimage, 20(3), 
1455-1467. 

 
Goodwin, D. W. (1979). Alcoholism and heredity. A review and hypothesis. Arch Gen 

Psychiatry, 36(1), 57-61. 
 
Grant, B. F., & Dawson, D. A. (1997). Age at onset of alcohol use and its association 

with DSM-IV alcohol abuse and dependence: results from the National 
Longitudinal Alcohol Epidemiologic Survey. J Subst Abuse., 9, 103-110. 

 
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional 

connectivity in the resting brain: a network analysis of the default mode 
hypothesis. Proc Natl Acad Sci U S A, 100(1), 253-258. 

 
Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory 

task: uncoupled from deactivation but impacting activation. J Cogn Neurosci, 
16(9), 1484-1492. 

 
Guilbert, J. J. (2003). The world health report 2002 - reducing risks, promoting 

healthy life. Educ Health (Abingdon), 16(2), 230. 
 
Hada, M., Porjesz, B., Chorlian, D. B., Begleiter, H., & Polich, J. (2001). Auditory 

P3a deficits in male subjects at high risk for alcoholism. Biol Psychiatry, 49(8), 
726-738. 

 
Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). 

Brain connectivity related to working memory performance. J Neurosci, 
26(51), 13338-13343. 

 
Hampson, M., Peterson, B. S., Skudlarski, P., Gatenby, J. C., & Gore, J. C. (2002). 

Detection of functional connectivity using temporal correlations in MR 
images. Hum Brain Mapp, 15(4), 247-262. 

 
Harden, P. W., & Pihl, R. O. (1995). Cognitive function, cardiovascular reactivity, and 

behavior in boys at high risk for alcoholism. J Abnorm Psychol., 104(1), 94-
103. 

 
Harris, G. J., & Hoehn-Saric, R. (Eds.). (1995). Functional neuroimaging in biological 

psychiatry. Greenwich, CT: JAI Press. 



73 

 

 
Hasan, K. M., Sankar, A., Halphen, C., Kramer, L. A., Brandt, M. E., Juranek, J., et al. 

(2007). Development and organization of the human brain tissue compartments 
across the lifespan using diffusion tensor imaging. Neuroreport, 18(16), 1735-
1739. 

 
Hegedus, A. M., Alterman, A. I., & Tarter, R. E. (1984). Learning achievement in 

sons of alcoholics. Alcohol Clin Exp Res., 8(3), 330-333. 
 
Heitzeg, M. M., Nigg, J. T., Yau, W. Y., Zubieta, J. K., & Zucker, R. A. (2008). 

Affective circuitry and risk for alcoholism in late adolescence: differences in 
frontostriatal responses between vulnerable and resilient children of alcoholic 
parents. Alcohol Clin Exp Res, 32(3), 414-426. 

 
Hesselbrock, V., Begleiter, H., Porjesz, B., O'Connor, S., & Bauer, L. (2001). P300 

event-related potential amplitude as an endophenotype of alcoholism--evidence 
from the collaborative study on the genetics of alcoholism. J Biomed Sci, 8(1), 
77-82. 

Hill, E. M., Stoltenberg, S. F., Burmeister, M., Closser, M., & Zucker, R. A. (1999). 
Potential associations among genetic markers in the serotonergic system and 
the antisocial alcoholism subtype. Exp Clin Psychopharmacol., 7(2), 103-121. 

 
Hill, S. Y., De Bellis, M. D., Keshavan, M. S., Lowers, L., Shen, S., Hall, J., et al. 

(2001). Right amygdala volume in adolescent and young adult offspring from 
families at high risk for developing alcoholism. Biol Psychiatry., 49(11), 894-
905. 

 
Hill, S. Y., et al. (2000). Developmental changes in postural sway in children at high 

and low risk for developing alcohol-related disorders. Biological Psychiatry, 
47, 501-511. 

 
Hill, S. Y., Kostelnik, B., Holmes, B., Goradia, D., McDermott, M., Diwadkar, V., et 

al. (2007). fMRI BOLD response to the eyes task in offspring from multiplex 
alcohol dependence families. Alcohol Clin Exp Res, 31(12), 2028-2035. 

 
Hill, S. Y., Shen, S., Lowers, L., & Locke, J. (2000). Factors predicting the onset of 

adolescent drinking in families at high risk for developing alcoholism. Biol 
Psychiatry., 48(4), 265-275. 

 
Hu, X., Le, T. H., Parrish, T., & Erhard, P. (1995). Retrospective estimation and 

correction of physiological fluctuation in functional MRI. Magn Reson Med, 
34(2), 201-212. 

 



74 

 

Hua, X., Leow, A. D., Levitt, J. G., Caplan, R., Thompson, P. M., & Toga, A. W. 
(2009). Detecting brain growth patterns in normal children using tensor-based 
morphometry. Hum Brain Mapp, 30(1), 209-219. 

 
Ichiyama, M. A., Zucker, R. A., Fitzgerald, H. E., & Bingham, C. R. (1996). 

Articulating subtype differences in self and relational experience among 
alcoholic men using structural analysis of social behavior. J Consult Clin 
Psychol., 64(6), 1245-1254. 

 
Issacs, E. B., & Vargha-Khadem, F. (1989). Differential course of development of 

spatial and verbal memory span: A normative study. British Journal of 
Developmental Psychology, 7, 377-380. 

 
Jernigan, T. L., Butters, N., DiTraglia, G., Schafer, K., Smith, T., Irwin, M., et al. 

(1991). Reduced cerebral grey matter observed in alcoholics using magnetic 
resonance imaging. Alcoholism: Clinical and Experimental Research, 15(3), 
418-427. 

Jezzard, P., & Song, A. W. (1996). Technical foundations and pitfalls of clinical 
fMRI. Neuroimage, 4(3 Pt 3), S63-75. 

 
Johnston, L., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2005). 

Monitoring the Future national results on adolescent drug use: Overview of 
key findings, 2004. Bethesda, MD: National Institute on Drug Abuse. 

 
Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2009). 

Monitoring the Future national results on adolescent drug use: Overview of 
key findings, 2008. 

 
Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. 

(1993). Spatial working memory in humans as revealed by PET. Nature., 
363(6430), 623-625. 

 
Kalanithi, P. S., Zheng, W., Kataoka, Y., DiFiglia, M., Grantz, H., Saper, C. B., et al. 

(2005). Altered parvalbumin-positive neuron distribution in basal ganglia of 
individuals with Tourette syndrome. Proc Natl Acad Sci U S A, 102(37), 
13307-13312. 

 
Kandel, D. B., Johnson, J. G., Bird, H. R., Canino, G., Goodman, S. H., Lahey, B. B., 

et al. (1997). Psychiatric disorders associated with substance use among 
children and adolescents: findings from the Methods for the Epidemiology of 
Child and Adolescent Mental Disorders (MECA) Study. J Abnorm Child 
Psychol, 25(2), 121-132. 

 



75 

 

Kim, D. S., Ronen, I., Olman, C., Kim, S. G., Ugurbil, K., & Toth, L. J. (2004). 
Spatial relationship between neuronal activity and BOLD functional MRI. 
Neuroimage, 21(3), 876-885. 

 
Kindermann, S. S., Brown, G. G., Zorrilla, L. E., Olsen, R. K., & Jeste, D. V. (2004). 

Spatial working memory among middle-aged and older patients with 
schizophrenia and volunteers using fMRI. Schizophrenia Research, 68(2-3), 
203-216. 

 
King, S. M., Keyes, M., Malone, S. M., Elkins, I., Legrand, L. N., Iacono, W. G., et al. 

(2009). Parental alcohol dependence and the transmission of adolescent 
behavioral disinhibition: a study of adoptive and non-adoptive families. 
Addiction, 104(4), 578-586. 

 
Kline, R. B. (2005a). Principles and Practice of Structural Equation Modeling (2nd 

Edition ed.). New York: Guilford Press. 
 
Kline, R. B. (2005b). Principles and Practice of Structural Equation Modeling (2 ed.). 

New York: The Guilford Press. 
 
Klingberg, T. (2006). Development of a superior frontal-intraparietal network for 

visuo-spatial working memory. Neuropsychologia, 44(11), 2171-2177. 
 
Klingberg, T., Forssberg, H., & Westerberg, H. (2002a). Increased brain activity in 

frontal and parietal cortex underlies the development of visuospatial working 
memory capacity during childhood. J Cogn Neurosci, 14(1), 1-10. 

 
Klingberg, T., Forssberg, H., & Westerberg, H. (2002b). Increased brain activity in 

frontal and parietal cortex underlies the development of visuospatial working 
memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 
1-10. 

 
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular 

analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci, 
12(5), 535-540. 

 
Kruger, G., & Glover, G. H. (2001). Physiological noise in oxygenation-sensitive 

magnetic resonance imaging. Magn Reson Med, 46(4), 631-637. 
 
Kruger, G., Kastrup, A., & Glover, G. H. (2001). Neuroimaging at 1.5 T and 3.0 T: 

comparison of oxygenation-sensitive magnetic resonance imaging. Magn 
Reson Med, 45(4), 595-604. 

 
Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted 

developmental changes in visuo-spatial working memory. Proceedings of the 



76 

 

National Academy of Sciences of the United States of America, 99(20), 13336-
13341. 

 
Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., 

et al. (2000). Automated Talairach atlas labels for functional brain mapping. 
Human Brain Mapping, 10(3), 120-131. 

 
Lee, L., Harrison, L. M., & Mechelli, A. (2003). A report of the functional 

connectivity workshop, Dusseldorf 2002. Neuroimage, 19(2 Pt 1), 457-465. 
 
LeMarquand, D. G., Benkelfat, C., Pihl, R. O., Palmour, R. M., & Young, S. N. 

(1999). Behavioral disinhibition induced by tryptophan depletion in 
nonalcoholic young men with multigenerational family histories of paternal 
alcoholism. Am J Psychiatry., 156(11), 1771-1779. 

Lewis, D. A., Cruz, D., Eggan, S., & Erickson, S. (2004). Postnatal development of 
prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction 
in schizophrenia. Ann N Y Acad Sci, 1021, 64-76. 

 
Liston, A. D., Lund, T. E., Salek-Haddadi, A., Hamandi, K., Friston, K. J., & 

Lemieux, L. (2006). Modelling cardiac signal as a confound in EEG-fMRI and 
its application in focal epilepsy studies. Neuroimage, 30(3), 827-834. 

 
Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. 

(2006). Frontostriatal microstructure modulates efficient recruitment of 
cognitive control. Cereb Cortex, 16(4), 553-560. 

 
Little, M., Handley, E., Leuthe, E., & Chassin, L. (2009). The impact of parenthood on 

alcohol consumption trajectories: variations as a function of timing of 
parenthood, familial alcoholism, and gender. Dev Psychopathol, 21(2), 661-
682. 

 
Liu, I. C., Blacker, D. L., Xu, R., Fitzmaurice, G., Tsuang, M. T., & Lyons, M. J. 

(2004). Genetic and environmental contributions to age of onset of alcohol 
dependence symptoms in male twins. Addiction, 99(11), 1403-1409. 

 
Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., et al. (2008). Disrupted 

small-world networks in schizophrenia. Brain, 131(Pt 4), 945-961. 
 
Loehlin, J. C. (2004). Latent Variable Models: An Introduction to Factor, Path, and 

Structural Analysis (4th Edition ed.). Mahwah, N.J.: Lawrence Erlbau. 
 
Logie, R. H., & Pearson, D. G. (1997). The inner eye and the inner scribe of visuo-

spatial working memory: Evidence from developmental fractionation. 
European Journal of Cognitive Psychology, 9, 241-257. 

 



77 

 

Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent 
functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol 
Sci, 357(1424), 1003-1037. 

 
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). 

Neurophysiological investigation of the basis of the fMRI signal. Nature, 
412(6843), 150-157. 

 
Lovallo, W. R., Yechiam, E., Sorocco, K. H., Vincent, A. S., & Collins, F. L. (2006). 

Working memory and decision-making biases in young adults with a family 
history of alcoholism: studies from the Oklahoma family health patterns 
project. Alcohol Clin Exp Res, 30(5), 763-773. 

Lowe, M. J., Mock, B. J., & Sorenson, J. A. (1998). Functional connectivity in single 
and multislice echoplanar imaging using resting-state fluctuations. 
Neuroimage, 7(2), 119-132. 

 
Lucas, C. P., Zhang, H., Fisher, P. W., Shaffer, D., Regier, D. A., Narrow, W. E., et al. 

(2001). The DISC Predictive Scales (DPS): efficiently screening for diagnoses. 
J Am Acad Child Adolesc Psychiatry, 40(4), 443-449. 

 
Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). 

Maturation of cognitive processes from late childhood to adulthood. Child 
Dev., 75(5), 1357-1372. 

 
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. 

J., et al. (2001). Maturation of widely distributed brain function subserves 
cognitive development. Neuroimage, 13(5), 786-793. 

 
Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W. L., & Nichols, T. E. (2006). Non-

white noise in fMRI: does modelling have an impact? Neuroimage, 29(1), 54-
66. 

 
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power Analysis and 

Determination of Sample Size for Covariance Structure Modeling. 
Psychological Methods, 1(2), 130-149. 

 
Maggs, J. L., Patrick, M. E., & Feinstein, L. (2008). Childhood and adolescent 

predictors of alcohol use and problems in adolescence and adulthood in the 
National Child Development Study. Addiction, 103 Suppl 1, 7-22. 

 
McCarthy, G., Blamire, A. M., Puce, A., Nobre, A. C., Bloch, G., Hyder, F., et al. 

(1994). Functional magnetic resonance imaging of human prefrontal cortex 
activation during a spatial working memory task. Proceedings of the National 
Academy of Sciences of the United States of America, 91, 8690-8694. 

 



78 

 

McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., & Goldman-
Rakic, P. (1996). Activation of human prefrontal cortex during spatial and 
nonspatial working memory tasks measured by functional MRI. Cereb Cortex., 
6(4), 600-611. 

 
McGue, M., Iacono, W. G., Legrand, L. N., Malone, S., & Elkins, I. (2001). Origins 

and consequences of age at first drink. I. Associations with substance-use 
disorders, disinhibitory behavior and psychopathology, and P3 amplitude. 
Alcohol Clin Exp Res, 25(8), 1156-1165. 

McGue, M., Slutske, W., Taylor, J., & Iacono, W. G. (1997). Personality and 
substance use disorders: I. Effects of gender and alcoholism subtype. Alcohol 
Clin Exp Res, 21(3), 513-520. 

 
McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. 

J., et al. (1998). Analysis of fMRI data by blind separation into independent 
spatial components. Hum Brain Mapp, 6(3), 160-188. 

 
Menon, R. S., Hu, X., Mitra, P., Ogawa, S., & Ugurbil, K. (1994). Signal 

characteristics in function MRI of the brain upon visual stimulalation. Paper 
presented at the Society for Neuroscience. 

 
Mikula, S., & Ernst, N. (2007). A Novel Method for Visualizing Functional 

Connectivity Using Principal Component Analyses. International Journal of 
Neuroscience, 116, 419-429. 

 
Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). 

The impact of global signal regression on resting state correlations: are anti-
correlated networks introduced? Neuroimage, 44(3), 893-905. 

 
Najam, N., Tarter, R. E., & Kirisci, L. (1997). Language deficits in children at high 

risk for drug abuse. Journal of Child & Adolescent Substance Abuse, 6(69-80). 
 
Nelson, C. A., Monk, C. S., Lin, J., Carver, L. J., Thomas, K. M., & Truwit, C. L. 

(2000). Functional neuroanatomy of spatial working memory in children. 
Developmental Psychology, 36(1), 109-116. 

 
Nigg, J. T., Glass, J. M., Wong, M. M., Poon, E., Jester, J. M., Fitzgerald, H. E., et al. 

(2004). Neuropsychological executive functioning in children at elevated risk 
for alcoholism: findings in early adolescence. J Abnorm Psychol, 113(2), 302-
314. 

 
Substance Abuse and Mental Health Services Administration, Office of Applied 

Studies (2008). Results from the 2007 National Survey on Drug Use and 
Health: National Findings (NSDUH Series H-34, DHHS Publication No. SMA 
08-4343). Rockville, MD. 



79 

 

 
Nurnberger, J. I., Jr., Wiegand, R., Bucholz, K., O'Connor, S., Meyer, E. T., Reich, T., 

et al. (2004). A family study of alcohol dependence: coaggregation of multiple 
disorders in relatives of alcohol-dependent probands. Arch Gen Psychiatry, 
61(12), 1246-1256. 

 
Olesen, P. J., Nagy, Z., Westerberg, H., & Klingberg, T. (2003). Combined analysis of 

DTI and fMRI data reveals a joint maturation of white and grey matter in a 
fronto-parietal network. Brain Res Cogn Brain Res, 18(1), 48-57. 

Ozkaragoz, T., Satz, P., & Noble, E. P. (1997). Neuropsychological functioning in 
sons of active alcoholic, recovering alcoholic, and social drinking fathers. 
Alcohol, 14,, 31-37. 

 
Ozkaragoz, T. Z., & Noble, E. P. (1995). Neuropsychological differences between 

sons of active alcoholic and non-alcoholic fathers. Alcohol Alcohol., 30(1), 
115-123. 

 
Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). 

Maturation of white matter in the human brain: a review of magnetic resonance 
studies. Brain Res Bull, 54(3), 255-266. 

 
Pessoa, L., Gutierrez, E., Bandettini, P., & Ungerleider, L. (2002). Neural correlates of 

visual working memory: fMRI amplitude predicts task performance. Neuron, 
35(5), 975-987. 

 
Petersen, A. C., Crockett, L. J., Richards, M. H., & Boxer, A. M. (1988). A Self 

Report Measure of Pubertal Status: Reliability, Validity, and Initial Norms. 
Journal of Youth and Adolescence, 17(2), 117-133. 

 
Peterson, J. B., Finn, P. R., & Pihl, R. O. (1992). Cognitive dysfunction and the 

inherited predisposition to alcoholism. J Stud Alcohol., 53(2), 154-160. 
 
Peterson, J. B., Pihl, R. O., Gianoulakis, C., Conrod, P., Finn, P. R., Stewart, S. H., et 

al. (1996). Ethanol-induced change in cardiac and endogenous opiate function 
and risk for alcoholism. Alcohol Clin Exp Res., 20(9), 1542-1552. 

 
Petrill, S. A., Plomin, R., McClearn, G. E., Smith, D. L., Vignetti, S., Chorney, M. J., 

et al. (1997). No association between general cognitive ability and the A1 
allele of the D2 dopamine receptor gene. Behav Genet, 27(1), 29-31. 

 
Pfefferbaum, A., Desmond, J. E., Galloway, C., Menon, V., Glover, G. H., & Sullivan, 

E. V. (2001). Reorganization of frontal systems used by alcoholics for spatial 
working memory: an fMRI study. Neuroimage, 14(1 Pt 1), 7-20. 

 



80 

 

Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & 
Lim, K. O. (1994). A quantitative magnetic resonance imaging study of 
changes in brain morphology from infancy to late adulthood. Archives of 
Neurology, 51(9), 874-887. 

 
Pihl, R., & Bruce, K. (1995). Cognitive impairment in children of alcoholics. Alcohol 

Health & Research World, 19, 142-147. 
Pihl, R. O., Peterson, J., & Finn, P. (1990). Inherited predisposition to alcoholism: 

characteristics of sons of male alcoholics. J Abnorm Psychol., 99(3), 291-301. 
 
Polich, J., Pollock, V. E., & Bloom, F. E. (1994). Meta-analysis of P300 amplitude 

from males at risk for alcoholism. Psychol Bull., 115(1), 55-73. 
 
Pollock, V. E., Earleywine, M., & Gabrielli, W. F. (1995). Personality and EEG beta 

in older adults with alcoholic relatives. Alcohol Clin Exp Res, 19(1), 37-43. 
 
Poon, E., Ellis, D. A., Fitzgerald, H. E., & Zucker, R. A. (2000). Intellectual, 

cognitive, and academic performance among sons of alcoholics, during the 
early school years: differences related to subtypes of familial alcoholism. 
Alcohol Clin Exp Res, 24(7), 1020-1027. 

 
Porjesz, B., Begleiter, H., Reich, T., Van Eerdewegh, P., Edenberg, H. J., Foroud, T., 

et al. (1998). Amplitude of visual P3 event-related potential as a phenotypic 
marker for a predisposition to alcoholism: preliminary results from the COGA 
Project. Collaborative Study on the Genetics of Alcoholism. Alcohol Clin Exp 
Res., 22(6), 1317-1323. 

 
Porjesz, B., & Rangaswamy, M. (2007). Neurophysiological endophenotypes, CNS 

disinhibition, and risk for alcohol dependence and related disorders. 
ScientificWorldJournal, 7, 131-141. 

 
Porjesz, B., Rangaswamy, M., Kamarajan, C., Jones, K. A., Padmanabhapillai, A., & 

Begleiter, H. (2005). The utility of neurophysiological markers in the study of 
alcoholism. Clin Neurophysiol, 116(5), 993-1018. 

 
Protzner, A. B., & McIntosh, A. R. (2006). Testing effective connectivity changes 

with structural equation modeling: what does a bad model tell us? Hum Brain 
Mapp, 27(12), 935-947. 

 
Qiu, D., Tan, L. H., Zhou, K., & Khong, P. L. (2008). Diffusion tensor imaging of 

normal white matter maturation from late childhood to young adulthood: 
voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and 
axial diffusivities, and correlation with reading development. Neuroimage, 
41(2), 223-232. 

 



81 

 

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & 
Shulman, G. L. (2001). A default mode of brain function. Proc Natl Acad Sci 
U S A, 98(2), 676-682. 

 
Rangaswamy, M., Porjesz, B., Ardekani, B. A., Choi, S. J., Tanabe, J. L., Lim, K. O., 

et al. (2004). A functional MRI study of visual oddball: evidence for 
frontoparietal dysfunction in subjects at risk for alcoholism. Neuroimage, 21, 
329-339. 

 
Rangaswamy, M., Porjesz, B., Chorlian, D. B., Wang, K., Jones, K. A., Kuperman, S., 

et al. (2004). Resting EEG in offspring of male alcoholics: beta frequencies. Int 
J Psychophysiol, 51(3), 239-251. 

 
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). 

Brain development, gender and IQ in children. A volumetric imaging study. 
Brain, 119 ( Pt 5), 1763-1774. 

 
Ricciardi, E., Bonino, D., Gentili, C., Sani, L., Pietrini, P., & Vecchi, T. (2006). 

Neural correlates of spatial working memory in humans: a functional magnetic 
resonance imaging study comparing visual and tactile processes. Neuroscience, 
139(1), 339-349. 

 
Robins, L., Cottler, L., Bucholz, K. K., & Compton, W. (1996). The Diagnostic 

Interview Schedule, Version 4.0 (DIS 4.0). 
 
Rohde, P. a. e. a. (2001). Journal of the American Academy of Child & Adolescent 

Psychiatry, 40, 83-90. 
 
Room, R., Graham, K., Rehm, J., Jernigan, D., & Monteiro, M. (2003). Drinking and 

its burden in a global perspective: policy considerations and options. Eur 
Addict Res, 9(4), 165-175. 

 
SAMHSA (2008). Results from the 2007 National Survey on Drug Use and Health: 

National Findings (No. DHHS Publication No. SMA 08-4343). Rockville, 
MD. 

 
Sartor, C. E., Agrawal, A., Lynskey, M. T., Bucholz, K. K., & Heath, A. C. (2008). 

Genetic and environmental influences on the rate of progression to alcohol 
dependence in young women. Alcohol Clin Exp Res, 32(4), 632-638. 

 
Sartor, C. E., Lynskey, M. T., Heath, A. C., Jacob, T., & True, W. (2007). The role of 

childhood risk factors in initiation of alcohol use and progression to alcohol 
dependence. Addiction, 102(2), 216-225. 

 



82 

 

Schlosser, R., Gesierich, T., Kaufmann, B., Vucurevic, G., Hunsche, S., Gawehn, J., et 
al. (2003). Altered effective connectivity during working memory performance 
in schizophrenia: a study with fMRI and structural equation modeling. 
Neuroimage, 19(3), 751-763. 

Schlosser, R. G., Wagner, G., Sauer, H. (2005). Assessing the working memory 
network: studies with functional magnetic resonance imaging and structural 
equation modeling. Neuroscience, 29, 29. 

 
Schuckit, M. A. (1985). Genetics and the risk for alcoholism. Jama, 254(18), 2614-

2617. 
 
Schuckit, M. A., Butters, N., Lyn, L., & Irwin, M. (1987). Neuropsychologic deficits 

and the risk for alcoholism. Neuropsychopharmacology., 1(1), 45-53. 
 
Schumann, G., Johann, M., Frank, J., Preuss, U., Dahmen, N., Laucht, M., et al. 

(2008). Systematic analysis of glutamatergic neurotransmission genes in 
alcohol dependence and adolescent risky drinking behavior. Arch Gen 
Psychiatry, 65(7), 826-838. 

 
Schweinsburg, A. D., Nagel, B. J., & Tapert, S. F. (2005). fMRI reveals alteration of 

spatial working memory networks across adolescence. J Int Neuropsychol Soc, 
11(5), 631-644. 

 
Schweinsburg, A. D., Paulus, M. P., Barlett, V. C., Killeen, L. A., Caldwell, L. C., 

Pulido, C., et al. (2004). An FMRI study of response inhibition in youths with 
a family history of alcoholism. Ann N Y Acad Sci, 1021, 391-394. 

 
Schweinsburg, A. D., Schweinsburg, B. C., Cheung, E. H., Brown, G. G., Brown, S. 

A., & Tapert, S. F. (2005). fMRI response to spatial working memory in 
adolescents with comorbid marijuana and alcohol use disorders. Drug and 
Alcohol Dependence, 79, 201 - 210. 

 
Selzer, M. L., Vinokur, A., & Van Rooijen, L. (1976). A self-administered Short 

Michigan Alcoholism Screening Test (SMAST). Journal of Studies on 
Alcohol, 36, 117-126. 

 
Sher, K. J., Bartholow, B. D., & Wood, M. D. (2000). Personality and substance use 

disorders: a prospective study. J Consult Clin Psychol., 68(5), 818-829. 
 
Sher, K. J., Walitzer, K. S., Wood, P. K., & Brent, E. E. (1991). Characteristics of 

children of alcoholics: putative risk factors, substance use and abuse, and 
psychopathology. J Abnorm Psychol., 100(4), 427-448. 

 
Shmueli, K., van Gelderen, P., de Zwart, J. A., Horovitz, S. G., Fukunaga, M., Jansma, 

J. M., et al. (2007). Low-frequency fluctuations in the cardiac rate as a source 



83 

 

of variance in the resting-state fMRI BOLD signal. Neuroimage, 38(2), 306-
320. 

Siewert, E. A., Stallings, M. C., & Hewitt, J. K. (2004). Genetic influences on 
vulnerability to, and protective factors for, adolescent drinking. Twin Res, 7(6), 
617-625. 

 
Sigvardsson, S., Bohman, M., & Cloninger, C. R. (1996). Replication of the 

Stockholm Adoption Study of alcoholism. Confirmatory cross-fostering 
analysis. Arch Gen Psychiatry., 53(8), 681-687. 

 
Simmons, A. N. (2007).BuildMaskhttp://mri.ucsd.edu/wiki/index.php/ BuildMask 
 
Simmons, A. N., Paulus, M. P., Thorp, S. R., Matthews, S. C., Norman, S. B., & Stein, 

M. B. (2008). Functional activation and neural networks in women with 
posttraumatic stress disorder related to intimate partner violence. Biol 
Psychiatry, 64(8), 681-690. 

 
Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial 

working memory using PET. Cereb Cortex, 6(1), 11-20. 
 
Snook, L., Paulson, L., Roy, D., Phillips, L., & Beaulieu, C. (2005). - Diffusion tensor 

imaging of neurodevelopment in children and young adults. Neuroimage, 
26(4), 1164-1173. 

 
Sowell, E. R., Jernigan, T. L., Mattson, S. N., Riley, E. P., Sobel, D. F., & Jones, K. L. 

(1996). Abnormal development of the cerebellar vermis in children prenatally 
exposed to alcohol: size reduction in lobules I-V. Alcohol Clin Exp Res, 20(1), 
31-34. 

 
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). 

In vivo evidence for post-adolescent brain maturation in frontal and striatal 
regions. Nature Neuroscience, 2(10), 859-861. 

 
Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Manual for the State-

Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press. 
 
Squeglia, L. M., Spadoni, A. D., Infante, M. A., Myers, M. G., & Tapert, S. F. (in 

press). Initiating Moderate to Heavy Alcohol Use Predicts Changes in 
Neuropsychological Functioning for Adolescent Girls and Boys. Psychology of 
Addictive Behaviors. 

 
Steer, R. A., Kumar, G., Ranieri, W. F., & Beck, A. T. (1998). Use of the Beck 

Depression Inventory–II with adolescent psychiatric outpatients. Journal of 
Psychopathology and Behavioral Assessment, 20, 127-137. 

 



84 

 

Stevens, G., & Featherman, D. L. (1981). A revised socioeconomic index of 
occupational status. Social Science Research, 10, 364-395. 

 
Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2007). Functional 

neural networks underlying response inhibition in adolescents and adults. 
Behav Brain Res, 181(1), 12-22. 

 
Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2009). Brain network 

dynamics during error commission. Hum Brain Mapp, 30(1), 24-37. 
 
Stevens, M. C., Pearlson, G. D., & Calhoun, V. D. (2009). Changes in the interaction 

of resting-state neural networks from adolescence to adulthood. Hum Brain 
Mapp. 

 
Stillman, A. E., Hu, X., & Jerosch-Herold, M. (1995). Functional MRI of brain during 

breath holding at 4 T. Magn Reson Imaging, 13(6), 893-897. 
 
Stricker, J. L., Brown, G. G., Wetherell, L. A., & Drummond, S. P. (2006). The impact 

of sleep deprivation and task difficulty on networks of fMRI brain response. J 
Int Neuropsychol Soc, 12(5), 591-597. 

 
Strigo, I., Simmons, A., Craig, A. D., & Paulus, M. P. (2006). Breathing and BOLD 

fMRI: Watch out. . Paper presented at the 36th Annual Meeting of the Society 
of Neuroscience.  

 
Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network 

analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS 
Comput Biol, 4(6), e1000100. 

 
Talairach, J., & Tournoux, P. (1988). Coplanar stereotaxic atlas of the human brain. 

Three-dimensional proportional system: An approach to cerebral imaging. 
New York: Thieme. 

 
Tapert, S. F., Brown, G. G., Kindermann, S. S., Cheung, E. H., Frank, L. R., & 

Brown, S. A. (2001). fMRI measurement of brain dysfunction in alcohol-
dependent young women. Alcoholism: Clinical and Experimental Research, 
25(2), 236-245. 

 
Tapert, S. F., Granholm, E., Leedy, N. G., & Brown, S. A. (2002). Substance use and 

withdrawal: neuropsychological functioning over 8 years in youth. J Int 
Neuropsychol Soc, 8(7), 873-883. 

 
Tapert, S. F., Schweinsburg, A. D., Barlett, V. C., Brown, G. G., Brown, S. A., Frank, 

L. R., et al. (2004). Blood oxygen level dependent response and spatial 



85 

 

working memory in adolescents with alcohol use disorders. Alcoholism: 
Clinical and Experimental Research, 28(10), 1577-1586. 

 
Tarter, R. E. (1988). Are there inherited behavioral traits that predispose to substance 

abuse? J Consult Clin Psychol, 56(2), 189-196. 
 
Tarter, R. E., Hegedus, A. M., Winsten, N. E., & Alterman, A. I. (1984). 

Neuropsychological, personality, and familial characteristics of physically 
abused delinquents. J Am Acad Child Psychiatry., 23(6), 668-674. 

 
Tarter, R. E., Jacob, T., & Bremer, D. L. (1989). Specific cognitive impairment in sons 

of early onset alcoholics. Alcohol Clin Exp Res., 13(6), 786-789. 
 
Tarter, R. E., & Vanyukov, M. (1994). Alcoholism: a developmental disorder. J 

Consult Clin Psychol, 62(6), 1096-1107. 
 
Thomas, K. M., King, S. W., Franzen, P. L., Welsh, T. F., Berkowitz, A. L., Noll, D. 

C., et al. (1999). A developmental functional MRI study of spatial working 
memory. Neuroimage, 10(3 Pt 1), 327-338. 

 
Thomason, M. E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. H., & 

Gabrieli, J. D. (2009). Development of spatial and verbal working memory 
capacity in the human brain. J Cogn Neurosci, 21(2), 316-332. 

 
Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human 

posterior parietal cortex. Nature, 428(6984), 751-754. 
 
Triantafyllou, C., Hoge, R. D., Krueger, G., Wiggins, C. J., Potthast, A., Wiggins, G. 

C., et al. (2005). Comparison of physiological noise at 1.5 T, 3 T and 7 T and 
optimization of fMRI acquisition parameters. Neuroimage, 26(1), 243-250. 

 
Tsujii, T., Yamamoto, E., Masuda, S., & Watanabe, S. (2009). Longitudinal study of 

spatial working memory development in young children. Neuroreport. 
 
UofT (2009). Handling non-normal data in structural equation modeling, from 

http://ssc.utexas.edu/consulting/answers/general/gen33.html. 
 
van Asselen, M., Kessels, R. P., Neggers, S. F., Kappelle, L. J., Frijns, C. J., & 

Postma, A. (2006). Brain areas involved in spatial working memory. 
Neuropsychologia, 44(7), 1185-1194. 

 
Viken, R. J., Kaprio, J., Koskenvuo, M., & Rose, R. J. (1999). Longitudinal analyses 

of the determinants of drinking and of drinking to intoxication in adolescent 
twins. Behav Genet., 29(6), 455-461. 



86 

 

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual 
differences in visual working memory capacity. Nature, 428(6984), 748-751. 

 
Vogt, K., Ibinson, J., Small, R., & Schmalbrock, P. (2006). Pain fMRI studies are 

improved by slice-wise removal of cardiac noise. Paper presented at the 
International Society for Magnetic Resonance in Medicine, Seattle. 

 
Volkow, N. D., Wang, G. J., Begleiter, H., Hitzemann, R., Pappas, N., Burr, G., et al. 

(1995). Regional brain metabolic response to lorazepam in subjects at risk for 
alcoholism. Alcohol Clin Exp Res, 19(2), 510-516. 

 
Waxman, S. G. (1977). Conduction in myelinated, unmyelinated, and demyelinated 

fibers. Arch Neurol, 34(10), 585-589. 
 
Weisskoff, R. M., Baker, J., Belliveau, J., Davis, T. L., Kwong, K. K., Cohen, M. S., 

et al. (1993). Power spectrum analysis of functionally-weighted MR data: 
What's in the noise? , Proc SMRM (Vol. 1st Annual Meeting, pp. 1407). 

 
Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). 

Inhibition-based rhythms: experimental and mathematical observations on 
network dynamics. Int J Psychophysiol, 38(3), 315-336. 

 
Windle, M., & Davies, P. T. (1999). Depression and heavy alcohol use among 

adolescents: concurrent and prospective relations. Dev Psychopathol, 11(4), 
823-844. 

 
Wong, E. C., Luh, W. M., Buxton, R. B., & Frank, L. R. (2000). Single slab high 

resolution 3D whole brain imaging using spiral FSE. Proceedings of the 
International Society for Magnetic Resonance in Medicine, 8, 683. 

 
Wowk, B., McIntyre, M. C., & Saunders, J. K. (1997). k-Space detection and 

correction of physiological artifacts in fMRI. Magn Reson Med, 38(6), 1029-
1034. 

 
 




