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ABSTRACT OF THE THESIS  

Feed-forward Neural Network Model Based on Back-propagation Algorithm for 

Voltage Prediction in Electric-Vehicle Batteries  

by 

Shuang-Yuan Chang 

Master of Science in Chemical Engineering 

University of California, Los Angeles, 2019 

Professor Panagiotis D. Christofides, Chair 

 

 

This work focuses on developing electric-vehicle battery models that can 

precisely predict voltage from measurable properties with limited errors using 

feed-forward neural network models of the backpropagation algorithm. Recently, the 

neural network has been utilized in a variety of different predictions such as the state 

of charge prediction or the state of health prediction. Also, electric vehicles like the 

model X, model 3, and model Y from Tesla have been widespread from 2015 until 

today. Our model for electric-vehicle battery voltage prediction achieves 25 times 

reduction in the maximum voltage error and 273 times reduction in the average 

voltage error comparing to the existing models from Contemporary Amperex 

Technology (CATL). This is accomplished by using the neural network models in 

comparison to the equivalent circuit model, which is a way to describe working 

conditions in a circuit by using the mathematical method, for the lithium-ion battery. 

Advantages of using a battery model to run the test instead of installing a pack in a 

vehicle are that our model can reach the tolerant error range. This allows automakers 
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to use our model to design cars at an initial stage and provide guidance to choose the 

particular specification of battery packs to run the vehicle performance test without 

much cost. 
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Chapter 1: Introduction  

 

To date, our civilization has become more and more advanced like introducing the great 

number of transporting vehicles using fuel. However, these vehicles contaminate our 

environment, especially the fresh air in the cities. Many countries around the world have been 

promoting electric vehicles instead of using fuel transportation to reduce environmental 

damage such as air pollution in their cities. Electric vehicles sales are gradually increasing 

around the world, but the lack of a credible battery model slows their spread. If several 

problems with electric vehicles can be solved, then electric vehicles will rapidly spread.[1] 

At the early design phase of a vehicle, automakers would benefit from a simulation 

model without a battery pack before the vehicle performance test on the production phase, 

which involves:  

1. selecting automobile types, automobile calibrations, initial design,  

2. managing heat (temperature change), 

3. maintaining the voltage (V), current (I), and power (P) between the maximum and 

minimum values. 

Thus, we try to simulate the battery model that can control voltage error in the acceptable 

range, and the appropriate voltage can be the input for driving an electric motor.  

To date, because there is no article discussing the voltage prediction using equivalent 

circuit models, we need to refer the article discussing the equivalent circuit models applied to 

the state of charge (SOC) prediction. The following Table 1.1 shows that the present 

equivalent circuit models cannot be acceptable in the battery simulation by automakers. This 

SOC prediction, which has also been applied to voltage prediction, is having high errors. 
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Table 1.1 The list shows that lowering the Relative SOC Error of Output by different 

equivalent circuit models. 

Battery 

System 

Capacity 

(Ah) 
Inputs Simulation Model 

Relative 

SOC Error 

of Output 

Reference 

Li-ion 

2.15 N/A 
Continuous-Discrete Extended 

Kalman Filter 
<0.01 [2] 

4.4 SOC 

An Improved 

Coulomb-Counting Algorithm 

Based on a Piecewise 

SOC-OCV Relationship 

<0.02 [3] 

6 Current 

An Electrochemical 

Model-driven Extended 

Kalman Filter 

~0.1 [4] 
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Chapter 2: Preliminary Background Information 

 

2.1 Definition of Nomenclatures 

 

2.1.1 Open Circuit Voltage (Voc) 

 

Open circuit voltage (or potential) is the potential difference between two terminals 

under the open loop, which is unconnected to any load in the circuit.[5]  

 

2.1.2 Terminal Voltage (V) 

 

Terminal voltage is the potential difference of the battery. If a battery does not connect 

to the circuit, the voltage of the terminal is equal to battery voltage.[6] 

 

2.1.3 Current (I) 

 

Current, which is equal to flow, is the rate of electrons flowing past a certain point in the 

overall circuit. One ampere means electrons in one coulomb (which is equal to 6.24 × 10 18 

electrons) go through a certain point in the overall circuit within one second. [7] 

 

2.1.4 State of Charge (SOC) 

 

State of Charge (SOC) is used to indicate how much distance people can drive and 

prevent overcharging and over-discharging from shortening the battery lifetime. SOC can be 

obtained by the integration of the C/D battery current over time when driving, and by OCV 

when a vehicle is parking. Therefore, in the context of parking, SOC is proportional to OCV 
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for different batteries. 

SOC describes the remaining charge in the battery equal to the ratio of current capacity 

to nominal capacity, which demonstrates the maximum amount of charge[11], is given by the 

following equation: 

 

                    𝑆𝑂𝐶 = 1 −
1

𝐶𝑛
∫ η𝑖(𝑡)𝑑𝑡                    (2.1) 

 

where i is current, t is time, Cn is nominal capacity, and η is coulomb efficiency (the ratio of 

the total output charge to the total input charge).[1] 

 

2.1.5 Errors 

 

In the Results and Discussion, we show our performance diagrams in absolute error 

versus time, which is widely used in industries while relative error versus time is used in the 

other publication. Also, we mark the mean error and the maximum error to check if they are 

in the tolerant range. The equations of the voltage errors are as shown in Eq. (1.2), Eq.(1.3), 

Eq.(1.4), and Eq.(1.5). 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑉𝑚𝑜𝑑𝑒𝑙(𝑖) − 𝑉𝑟𝑒𝑎𝑙(𝑖)                                (2.2) 

                    𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝑉𝑚𝑜𝑑𝑒𝑙(𝑖)−𝑉𝑟𝑒𝑎𝑙(𝑖)

𝑉𝑟𝑒𝑎𝑙(𝑖)
× 100                   (2.3) 

              𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
× ∑ |𝑉𝑟𝑒𝑎𝑙(𝑖) − 𝑉𝑚𝑜𝑑𝑒𝑙(𝑖)|𝑛

𝑖=1                 (2.4) 

            𝑀𝑎𝑥 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥(|𝑉𝑟𝑒𝑎𝑙(𝑖) − 𝑉𝑚𝑜𝑑𝑒𝑙(𝑖)|)                  (2.5) 
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where 𝑉𝑚𝑜𝑑𝑒𝑙(𝑖) is predicted by the simulation model, 𝑉𝑟𝑒𝑎𝑙(𝑖) is known from datasets, and 

n is the number of voltage samples. 

 

2.2 The Mechanism of the Feed-forward Neural Network Model of the Backpropagation 

Algorithm 

 

Neural network (Figure 2.1) is a popular method in machine learning. The neural 

network builds nonlinear functions from input to output variables. The basic feedforward 

structure has hidden layers with multiple inputs and a single output, where 𝑋𝑢𝑗, 𝑗 = 1, 2, … , 𝑛 

represents input variables in the input layer, 𝑦1𝑖, 𝑖 = 1, 2, … , 𝑚 performs the neurons in the 

hidden layers and 𝑌 are as shown in the following equations: 

 

                                                     𝑦1𝑖 = 𝑓1 (∑ 𝑊𝑖𝑗
(1)

𝑋𝑢𝑗 + 𝐵𝑖0
(1)

𝑛

𝑗=1

)                                                 (2.6) 

                                                     𝑌 = 𝑓2 (∑ 𝑊𝑗
(2)

𝑦1𝑖 + 𝐵0
(2)

𝑚

𝑗=1

)                                                    (2.7) 

 

where 𝑓1, 𝑓2 are nonlinear activation function, 𝑊𝑖𝑗
(1)

 and 𝑊𝑗
(2)

 are the weights, and 𝐵𝑖0
(1)

 

and 𝐵0
(2)

 are biases. To simplify, all inputs 𝑋𝑢𝑗 are represented by 𝑋𝑢, and all weights and 

biases are denoted by W.  
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In the training data points, the input vectors 𝑋𝑢
𝑖 = 1, 2, … 𝑋𝑇 and target vectors 𝑋𝑡

𝑖 are 

given to minimize the errors to train neural network models, and this can be expressed by loss 

function: 

 

                        𝐸(𝑊) =
1

2
∑ |𝑋𝑦

𝑖 (𝑋𝑢
𝑖 , 𝑊) − 𝑋𝑡

𝑖|2𝑋𝑇
𝑖=1                                          (2.8) 

 

where  𝑋𝑦
𝑖 (𝑋𝑢

𝑖 , 𝑊 ) belongs to 𝑋𝑢
𝑖  prediction category under W. By using the stochastic 

gradient descent (SGD), the nonlinear optimization problem can be solved, which applies the 

backpropagation to calculate the gradient of 𝐸(𝑊) and update W simultaneously: 

 

                              𝑊 = 𝑊 − 𝜂∇𝐸(𝑊)                                                       (2.9) 

 

where learning rate 𝜂 is assigned to determine the rate of convergence. Also, k-fold cross 

validation is applied to a random partition on a dataset, which is transferred into k-1 training 

subsets and one validation subset to avoid overfitting in the training process. 

 In brief, because the validation subset is independent of training subsets, the accuracy of 

the validation subset can prove the ability of neural networks, and the accuracy of training 

neural network model is shown: 

 

                               𝑁𝑎𝑐𝑐 =
𝑛𝑐

𝑛𝑣𝑎𝑙
                                                                  (2.10) 

 

where 𝑛𝑐 represents the number of data points of correct prediction, 𝑛𝑣𝑎𝑙 shows the total 

number of data points in the validation subset. The ability of neural networks usually depends 

on several factors; for example, the size of a dataset, the number of hidden layers and neurons, 
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and the degree of disturbance. [8] 

     

 

Figure 2.1 The structure of the feed-forward neural network  

 

2.2.1 Weights and Bias 

 

Weight represents the strength of the connection between units. The output is as shown 

in Eq.(2.11) 

 

                       𝑌 = 𝑓(∑ 𝑊𝑖𝑋𝑖
𝑛
𝑖=1 )                      (2.11) 

 

where i is one to the number of inputs (= 𝑛), 𝑊𝑖 represents the weights, 𝑋𝑖 represents inputs, 

and Y is the output. Weights in ANN are the most important factor in outputs.[8] 

  



 

8 

 

Bias is applied to adjusting outputs Y and the summation of inputs at neurons. The 

procedure is done by neurons described as Eq.(2.12):  

 

            𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 × 𝑖𝑛𝑝𝑢𝑡𝑠) + 𝑏𝑖𝑎𝑠            (2.12) 

 

2.2.2 Activation Function 

 

A function applied to the output is called the activation function (Figure 2.2)[8]. The 

standard choices of activation function are sigmoid function [Eq.(2.13)] and hyperbolic 

tangent function [Eq. (2.14)]. It has been reported that hyperbolic tangent function is 

equipped with nonlinear amplifying gain, which can manage weak signal among high gain in 

[-1, 1]. Also, when the difference in characteristics is apparent, tanh performs well. 

Furthermore, the effects of characteristics would continuously expand under the subsequent 

cycles. Last, tanh is similar to the y=x function and passes over the origin. The matrix 

operation can be directly performed under low activation value, so the training is relatively 

easy. Based on the above advantages, tanh is better than sigmoid, so tanh is applied as an 

activation function in our work.[10] 

 

 

Figure 2.2 The next layer input is the output of the neurons in previous layers through the 

activation function. 

 

Activation Function 



 

9 

 

 

                         𝜎(𝑥) =
1

1+𝑒−𝑥                        (2.13) 

                        𝑡𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
                      (2.14) 

 

where x represents the input data. 

 

2.3 The SOC Prediction Performance of Neural Network Models of the 

Backpropagation Algorithm 

 

There are many methods for lowering the voltage error, such as the integration of the 

charging/discharging battery current over time model, the open-circuit voltage model, the 

internal resistance method, the electrochemical model, and neural network models. Among 

these models, neural network models of the backpropagation algorithm, which is the 

traditional training method, achieve the best performance (Table 1.2). Therefore, we choose 

neural network models to predict the voltage. 
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Table 1.2 The list shows that lowering the Relative SOC Error of Output by different neural 

network model of the backpropagation (BP) algorithm. 

Battery 

System 

Capacity 

(Ah) 
Inputs Simulation Model 

Relative 

SOC 

Error of 

Output 

Reference 

LiFePO4 60 

Voltage, current, 

highest & lowest 

cell temperature, 

maximum & 

minimum cell 

voltage, cell 

voltage time, 

discharge power 

BP 

< 0.018 

0.0020 

(Average) 

[12] 

Li-ion 83 

Voltage, current 

and four 

different battery 

pack 

temperatures 

Recurrent Neural 

Network with BP 

Algorithm based on 

a Nonlinear 

Autoregressive with 

External Input 

< 0.0025 [1] 

LiFePO4 N/A N/A 
Modified Elman + 

BP 
0.005 [16] 

 

The neural network models perform precisely with a large amount of training data 

compared to other models. The accuracy of the models is determined by the performance of 

the training data.[10] Because there is a lack of reference for lowering the voltage error, we 

refer to [12] by discussing how to reduce SOC error instead. In the article, excellent SOC 

performance has been reported. The output relative error and the average error of the SOC are 

respectively under 0.018 and 0.0020 based on the feed-forward neural network with 

backpropagation algorithm, which is used in correcting weights (with inputs including 

voltage current, highest and lowest cell temperature, maximum and minimum cell voltage, 

time, discharge power).[15] (This excellent performance makes us choose the backpropagation 
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algorithm as our primary method.) 

After determining our model structure, we have to select which is that features from the 

battery would be the proper input. D. Jiménez-Bermejo et al. have proposed a way to improve 

the SOC prediction that applies real data from daily voyages of a vehicle. A nonlinear 

Autoregressive with External Input (NARX) artificial neural network (ANN) is built to 

evaluate the SOC of EV. The relative error of the SOC [k + 1] is smaller than 0.0025 by 

applying inputs of the previous and the present SOC, voltage (V), current (I), and four 

temperatures. [1] (This method was also introduced to our models.)  

Except for applying the above techniques to our system, electrode polarization usually 

has to be considered in a battery system. It is a mechanism when the potential of the anode is 

unexpectedly higher than the cathode. It causes the effects of lowering output voltage and 

increasing the voltage or decreasing current in the electrolytic cell.[12] 

 

2.4 The Current Voltage Prediction Performance of Equivalent Circuit Model at CATL 

 

The current voltage error performance (Table 1.3) is based on Resistor-capacitor (RC) 

Circuit with Kalman Filter, which is equivalent to circuit model, under current pulse profiles 

provided by the BMS department at CATL. To date, the maximum error is equal to 194.04 

mV under the SOC varying between 65% and 30%, and the mean error is equal to 60.01mV 

under the SOC varying between 15% and 0%. These values are not in the tolerant range for 

automakers. Thus, we need to seek another model that can satisfy the requirement of 

acceptable error range, and the appropriate voltage can be the input for driving an electric 

motor.  
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Table 1.3 The errors perform under current pulse profiles. 

SOC 

Range 
100%-65% 65%-30% 30%-15% 15%-0% 

Temp. 

(℃) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

25℃ 16.95  118.31  22.52  194.04  28.84  162.84  60.01  192.66  

 

 Equivalent circuit model with Kalman Filter originated as the prototype model called the 

rint models as following:  

 

                         Vk = VOC,k - ikRs                                     (2.15) 

 

where Vk is the battery's terminal voltage and ik is the throughput current. An ideal voltage 

source VOC to represent the battery's OCV as a function of SOC and an internal series 

resistance Rs, which describes the internal ohmic losses, is a function of temperature and 

SOC.[13] The internal resistance usually represents inside resistance in a battery, and it can 

limit the potential of external loading.[14] 

 

2.5 Goal 

 

Automakers need a more accurate voltage simulation to be the input in the electrical 

motor. The simulation test can lower the developing costs in the initial stage by replacing the 

process of the real battery pack test. 

By introducing the feed-forward neural network model of the backpropagation algorithm 

mentioned above (Figure 2.3), we set our goal on the output to lower the voltage error under 

30 mV between 20% and 80% SOC and decrease the voltage error under 50 mV for the rest. 
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Figure 2.3 The procedures of how we reach the outcome 
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Chapter 3: Approach 

 

3.1 Datasets 

 

Figure 3.4, Figure 3.5, and Figure 3.6 are three current and voltage profiles based on 

the experimental test data of LiNiMnCoO2 (NCM) battery pack from the research institute at 

CATL. The pack offered by CATL contains around ten cells in a module, and there are six 

modules in a pack. The current is constant in the series circuit, and the current and the voltage 

were measured by the current and the voltage sensors. The reason why voltage changes with 

current are because that ion transfer causes the potential difference when charging and 

discharging. The minimum and maximum values of voltage are between 2.8 V and 4.2 V. 

Figure 3.4 is the A1 working condition test report (Cell #: 061740204009, test #: 80509, 

Nominal capacity: 67Ah) obtained under 80% SOC-OCV at 25℃, and the battery is charged 

under constant current. 
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Figure 3.4 A1 working condition test report 

 

The A2 working condition test report (Cell #: 061740204009, test #: 80509, Nominal 

capacity: 67Ah) in Figure 3.5 is obtained under 80% SOC-OCV at 25℃, and the battery is 

charged under constant current. 
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Figure 3.5 A2 working condition test report with more data points 

 

The A3 working condition test report (Cell #: 061740204002, test #: 80508, Nominal 

capacity: 67Ah) in Figure 3.6 is obtained at 25℃, and the battery is cyclically charged, rested 

and discharged under changing current size. 
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Figure 3.6 A3 working condition test report  
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3.2 Datasets Treatment 

 

Before importing input data, we need to prepare the following raw datasets based on 

three different current and voltage pulse profiles. First, the charge capacity is converted to 

SOC by Eq.(1.1) in section 1.2.4. Second, current and voltage were normalized and translated 

[Eq.(2.1) and Eq.(2.2)] to meet the high gain interval of activation function, which is between 

-1 and 1. Third, the accumulated time (Table 3.1) is also considered because of the 

polarization effect, which happens when the anode’s potential is higher than the cathode’s.[12] 

The way of considering accumulated time is when the current is equal to zero, the Step_Time 

of last second (e.g., 10,821.35828) is used as a factor. 

 

Shift I=𝟐 ∗
[𝐂𝐮𝐫𝐫𝐞𝐧𝐭(𝐀)]−(−𝟐𝟓𝐀)

𝟐𝟓𝐀−(−𝟐𝟓𝐀)
− 𝟏                    (2.1) 

Shift V=𝟐 ∗
[𝐕𝐨𝐥𝐭𝐚𝐠𝐞(𝐕)∗𝟏𝟎𝟎𝟎]−𝟐𝟎𝟎𝟎𝐦𝐕

𝟓𝟎𝟎𝟎𝐦𝐕−𝟐𝟎𝟎𝟎𝐦𝐕
− 𝟏              (2.2) 

 

Table 3.1 The value of accumulated time assumed by how long the step time is 
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3.3 Inputs and Hyperparameters 

 

Before training our datasets to fit the neural network models, we have to select what 

features to be our inputs. For A1 and A2 working conditions in respectively section 4.1 and 

section 4.2, inputs include SOC, I, Temperature (T). For A3 working conditions in section 

4.3.1, inputs have SOC, I, T, accumulated time (tAcc). In section 4.3.2 and 4.3.3, inputs 

contain SOC, I, T, tAcc, and the last output with SOC(k-1), I(k-1), T(k-1), V(k-1). 

Table 3.2 shows an example of several hyperparameters that need to be decided for the 

neural network models such as layers, neurons, the range of characteristics (xlRange), 

DATA1_input, DATA1_target, the number of training data points, and the number of testing 

data points. Above these, layers, neurons, and activation function are the key factors that need 

to be adjusted. 

 

Table 3.2 The list of hyperparameters and inputs that were used in the experiments. 

Hyperparameters and Inputs Value 

Layers 3 

Neurons 10, 5 

xlRange  322-45,662 (total number of data = 45,340) 

The Number of Training Data Points 40,806 

The Number of Testing Data Points 4,534 

DATA1_input SOC, I, T (three inputs) 

DATA1_target V (one output) 
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Chapter 4: Results and Discussion 

 

4.1 A1 Working Conditions 

 

Figure 3.4 is the dataset which is applied to section 4.1. According to the references [1] 

and [12], SOC, I, T were selected as inputs to train model as seen in Figure 4.1. After 

training, testing data points based on 10% of the entire datasets, which has been optimized 

and reported in the literature, were used to estimate the prediction voltage. Then the training 

error and testing error were obtained to see how well the feed-forward neural network model 

of the backpropagation algorithm perform by comparing the prediction voltage with the true 

voltage value, which is gained from experimental data.  

 

Figure 4.1 The procedures of the feed-forward neural network model of the backpropagation 

algorithm with SOC, I, and T as inputs, and voltage as the output 

 

4.1.1 Hyperparameters and Inputs Based on Literatures 

 

In Table 4.1, hyperparameters and inputs have to be decided to train the datasets. 

Hyperparameters were assigned including layers, neurons, xlRange (the number of training 

data points and the number of testing data points). For inputs, there were SOC, I, T. For the 

output, there is V. In the reference, most of the papers show the feed-forward neural network 

model of the backpropagation algorithm have better performance with three layers. After the 

training process, the testing errors of ten, five, or four layers (each layer with ten neurons) 
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were not in the acceptable range, and the reason why they do not generalize well may be the 

training model overfits the datasets, therefore causing a high testing error for the new datasets. 

Thus, three layers were applied. The resulting diagram comparing predicted voltage values 

and measured voltage values while charging in a period is as shown in Figure 4.2. Figure 4.3 

and Figure 4.4 show how the training and testing errors perform. In Figure 4.3, the training 

errors come with the maximum error=8.46 mV and mean error=0.76 mV. In Figure 4.4, the 

testing errors come with the maximum error=6.22 mV and mean error=0.38 mV. 

 

Table 4.1 Hyperparameters and inputs before training 

Hyperparameters and Inputs Value 

Layers 3 

Neurons 10, 5 

xlRange  322(at 3.0V)-45,662(at 3.7V) 

The Number of Training Data Points 40,806 

The Number of Testing Data Points 4,534 

DATA1_input SOC, I, T 

DATA1_target V 

 

Figure 4.2 The voltage profile under A1 working conditions 
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Figure 4.3 The training errors of real voltage vs. estimated voltage based on the ANN model   
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Figure 4.4 The test errors of real voltage vs. estimated voltage based on the ANN model 
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4.1.2 Adjustment of Layers 

 

Table 4.2 shows that we lower the number of layers to lessen the burden of computation 

resource. Figure 4.5 presents the result by comparing the measured voltage with the 

estimated by the adjusted layers. Figure 4.6 and Figure 4.7 show how the training and 

testing errors perform. In Figure 4.6, the training errors come with the maximum 

error=13.71 mV and the mean error=0.77 mV. In Figure 4.7, the testing errors come with the 

maximum error=11.41 mV and mean error=0.53 mV. 

 

Table 4.2 Hyperparameters and inputs before training 

Hyperparameters and Inputs Value 

Layers 2 

Neurons 10 

xlRange  322(at 3.0V)-45,662(at 3.7V) 

The Number of Training Data Points 40,806 

The Number of Testing Data Points 4,534 

DATA1_input SOC, I, T 

DATA1_target V 

 

Figure 4.5 The voltage profile under A1 working conditions 
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Figure 4.6 The training errors of real voltage vs. estimated voltage based on the ANN model 
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Figure 4.7 The test errors of real voltage vs. estimated voltage based on the ANN model 

   

4.1.3 Comparison 

 

Table 4.3 demonstrates the underfitting problem. For instance, the use of two layers in 

hidden layers instead of three layers increased the maximum error by 62% even though the 

mean square error remains stable in the training errors and the maximum error by 83% while 

the mean square error rose by 39% in the testing errors. The above comparison suggests that 

three layers are proved to be a possible number of the hidden layers for voltage prediction. 

However, the bouncing voltage curves, which cause significant errors, remain unsolved in 

hyperparameter with three layers.  
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Table 4.3 The results of the training errors and testing errors under assigned hyperparameters 

and inputs  

Hyperparameters and Inputs Train Test 

Capacity 

(Ah)/ T 

(℃) 

Working 

Conditions 
Layers Neurons 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

67/25 A1 
3 10, 5 8.46 0.76 6.22 0.38 

2 10, 10 13.71 0.77 11.41 0.53 

 

4.2 A2 Working Conditions 

 

In this section, the results of section 4.1 will be applied to the A2 working condition 

datasets as seen in Figure 3.6. 

 

4.2.1 Adoption of the Best Hyperparameters in 3.1 with A2 Working Conditions 

 

The hyperparameter of three layers has better results in section 4.1, so this 

hyperparameter is used in section 4.2 with A2 working conditions as seen in Table 4.4. The 

resulting diagram comparing predicted voltage values and measured voltage values while 

charging in a period is as shown in Figure 4.8. Figure 4.9 and Figure 4.10 show how the 

training and testing errors perform. In Figure 4.9, the training errors come with the maximum 

error=7.93 mV and mean error=2.14 mV. In Figure 4.10, the testing errors come with the 

maximum error=7.94 mV and mean error=2.15 mV. 
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Table 4.4 Hyperparameters and inputs before training 

Hyperparameters and Inputs Value 

Layers 3 

Neurons 10, 5 

xlRange  20,098, 21,149(at SOC=20%)- 

45,662, 46,332(at SOC=80%) 

The Number of Training Data Points 45,672 

The Number of Testing Data Points 5,075 

DATA1_input SOC, I, T 

DATA1_target V 

 

 

Figure 4.8 The voltage profile under A2 working conditions demonstrated by two 

discontinuous datasets sheets  
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Figure 4.9 The training errors of real voltage vs. estimated voltage based on the ANN model   
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Figure 4.10 The test errors of real voltage vs. estimated voltage based on the ANN model 
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4.2.2 Adjustment of Neurons 

 

Based on section 4.2.1, the number of neurons is lowered to six and three corresponding 

to the first layer and second layer (Table 4.5) to increase the spare computation resource. The 

resulting diagram comparing predicted voltage values and measured voltage values while 

charging in a period is as shown in Figure 4.11. Figure 4.12 and Figure 4.13 are 

demonstrated how the training and testing errors perform. In Figure 4.12, the training errors 

come with the maximum error=8.84 mV and the mean error=3.59 mV. In Figure 4.13, the 

testing errors come with the maximum error=8.72 mV and the mean error=1.82 mV. 

 

Table 4.5 Hyperparameters and inputs before training 

Hyperparameters and Inputs Value 

Layers 3 

Neurons 6, 3 

xlRange  20,098, 21,149(at SOC=20%)- 

45,662, 46,332(at SOC=80%) 

The Number of Training Data Points 45,672 

The Number of Testing Data Points 5,075 

DATA1_input SOC, I, T 

DATA1_target V 

 

 

 

 

 

 

 

 



 

33 

 

 

 

 

 

 

 

Figure 4.11 The voltage profile under A2 working conditions demonstrated by two 

discontinuous datasets sheets 
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Figure 4.12 The training errors of real voltage vs. estimated voltage based on the ANN model   
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Figure 4.13 The test errors of real voltage vs. estimated voltage based on the ANN model 

 

4.2.3 Comparison 

 

Table 4.6 shows that the number of neurons with six and three for first and second 

layers in the neural network, and the training errors indicate that the maximum error 

increased by 11% while the mean error rose by 68%. The testing errors show that the 

maximum error raised by 10% while the mean error decreased by 15%. These results 

illustrate that the training errors and testing errors are still in the acceptable range. 

Additionally, although the less number of neurons present slightly worse performances, 

the lower number of neurons can help to decrease the computation resource. Therefore, these 

hyperparameters were applied to section 4.3.1. However, the bouncing voltage curves still 

occur in A2 working condition datasets. Thus, more features should be input to fit the 
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portions of the bouncing voltage curves better. 

 

Table 4.6 The results of the training errors and testing errors under assigned hyperparameters 

and inputs 

Hyperparameters and Inputs Train Test 

Capacity 

(Ah)/ T 

(℃) 

Working 

Conditions 
Layers Neurons 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

67/25 A2 
3 10, 5 7.93 2.14 7.94 2.15 

3 6, 3 8.84 3.59 8.72 1.82 
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4.3 A3 Working Conditions 

 

In section 4.3.1, the accumulated time has to be input because of the electrode 

polarization effect [Figure 4.14 (a)]. According to the literature, SOC(k-1), I(k-1), T(k-1), 

and V(k-1) were considered to improve the voltage prediction in section 4.3.2 (Figure 4.14 

(b)). Those inputs were applied in A3 working conditions (Figure 3.6). 

 

 

Figure 4.14 (a) The procedures of the feed-forward neural network model of the 

backpropagation algorithm including accumulated time as the additional input in 3.3.1, and 

(b) SOC(k-1), I(k-1), T(k-1), V(k-1) as additional inputs in 3.3.2 
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4.3.1 The Import of Accumulated Time Input with A3 Working Conditions 

 

Table 4.7 shows that the number of layers and neurons were applied to the A3 working 

conditions based on section 4.2. The resulting diagram comparing predicted voltage values 

and measured voltage values with charging, resting, and discharging procedures is as shown 

in Figure 4.15. Figure 4.16 and Figure 4.17 show how the training and testing errors 

perform. In Figure 4.16, the training errors come with the maximum error=502.00 mV and 

the mean error=9.92 mV. In Figure 4.17, the testing errors come with the maximum 

error=300.60 mV and the mean error=16.21 mV. The errors are quite large. Hyperparameters 

optimized in the A2 current and voltage profiles, which includes charging procedure, were 

applied in A3 current and voltage profiles. These likely result from the fact that significant 

errors are that two current and voltage profiles contain different procedures. 

When the switch between charging and discharging, the unexpected change of current 

may cause a significant change in voltage. This phenomenon is called the Hysteresis 

phenomenon, which is recognized as the most critical impact on the dynamic lithium-ion 

battery. This originated with the response of interior hyperparameters, especially the internal 

ohmic resistance. In an open circuit, the electrochemical effect gradually changed the voltage 

in the internal battery.[17] 
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Table 4.7 Hyperparameters and inputs before training 

Hyperparameters and Inputs Value 

Layers 3 

Neurons 6, 3 

xlRange  2-66,010 

The Number of Training Data Points 59,407 

The Number of Testing Data Points 6,601 

DATA1_input SOC, I, T, tAcc 

DATA1_target V 

 

 

Figure 4.15 Charging, discharging, and resting diagram of the voltage profile under A3 

working conditions demonstrated by continuous dataset sheets. 
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Figure 4.16 The training errors of real voltage vs. estimated voltage based on the ANN 

model   
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Figure 4.17 The test errors of real voltage vs. estimated voltage based on the ANN model 

 

4.3.2 The Import of Time Delay Input 

 

In Table 4.8, SOC(k-1), I(k-1), T(k-1), V(k-1) were considered based on the results in 

section 3.3.1. The resulting diagram comparing predicted voltage values and measured 

voltage values with charging, resting, and discharging procedures is as shown in Figure 4.18. 

Figure 4.19 and Figure 4.20 show how the training and testing errors perform. In Figure 

4.19, the training errors come with the maximum error=107.30 mV and the mean error=0.90 

mV. In Figure 4.20, the testing errors come with the maximum error=11.34 mV and the 

mean error=0.28 mV. 
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Table 4.8 Hyperparameters and inputs before training 

Hyperparameters and Inputs Value 

Layers 3 

Neurons 6, 3 

xlRange  2-66,010 

The Number of Training Data Points 59,407 

The Number of Testing Data Points 6,601 

DATA1_input SOC, I, T, tAcc, SOC(k-1), I(k-1), T(k-1), 

V(k-1) 

DATA1_target V 

 

Figure 4.18 Charging, discharging, and resting diagram of the voltage profile under A3 

working conditions demonstrated by continuous dataset sheets. 
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Figure 4.19 The training errors of real voltage vs. estimated voltage based on the ANN 

model 
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Figure 4.20 The test errors of real voltage vs. estimated voltage based on the ANN model 
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4.3.3 Hyperparameter Adjustment of Layers  

 

Because the results in section 4.3.2 do not reach our tolerant range, the number of layers 

was increased (Table 4.9). The resulting diagram comparing predicted voltage values and 

measured voltage values with charging, resting, and discharging procedures is as shown in 

Figure 4.21. Figure 4.22 and Figure 4.23 show how the training and testing errors perform. 

In Figure 4.22, the training errors come with the maximum error=8.15 mV and the mean 

error=0.27 mV. In Figure 4.23, the testing errors come with the maximum error=7.75 mV 

and the mean error=0.22 mV. 

 

Table 4.9 Hyperparameters and inputs before training 

Hyperparameters and Inputs Value 

Layers 4 

Neurons 10, 10, 10 

xlRange  2-66,010 

The Number of Training Data Points 59,407 

The Number of Testing Data Points 6,601 

DATA1_input SOC, I, T, tAcc, SOC(k-1), I(k-1), T(k-1), 

V(k-1) 

DATA1_target V 
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Figure 4.21 Charging, discharging, and resting diagram of the voltage profile under A3 

working conditions demonstrated by continuous dataset sheets. 
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Figure 4.22 The training errors of real voltage vs. estimated voltage based on the ANN 

model 

 

 

 

 

 

Error (mV) 

Time (s) 



 

48 

 

 

 

 

 

 

 

Figure 4.23 The test errors of real voltage vs. estimated voltage based on the ANN model 
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4.3.4 Comparison 

 

In Table 4.10, when the time delay was considered as inputs in the neural network, the training errors reveal that the maximum error 

declined by 79% while the mean error decreased by 91%. The testing errors show that the maximum error lowered by 96% while the mean error 

reduced by 98%. The number of layers was increased to four layers in the feed-forward neural network model of the backpropagation algorithm 

to improve the performances of the neural network. The training errors demonstrate that the maximum error dropped by 92% while the mean 

error shrank by 70%. The testing errors indicate that the maximum error declined by 32% while the mean error lessened by 21%. 

 

 Table 4.10 The results of the training errors and testing errors under assigned hyperparameters and inputs  

Hyperparameters and Inputs Train Test 

Capacity 

(Ah)/ T 

(℃) 

Working 

Conditions 
Accumulated Time Time-delay Layers Neurons 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

67/25 A3 

Yes No 3 6, 3 502.00 9.92 300.60 16.21 

Yes Yes 3 6, 3 107.30 0.90 11.34 0.28 

Yes Yes 4 10, 10, 10 8.15 0.27 7.75 0.22 
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4.4 Analysis of A1, A2, and A3 Working Conditions 

 

Overall, we chose the best number of three layers based on articles in the A1 working conditions. Then, we optimized neurons to six and 

three in the A2 working conditions. Finally, we adjusted to four layers and gained better error results. 

Table 4.11 shows that the training errors (the maximum error= 8.15 mV and the mean error= 0.27 mV) are back to the stable performance 

similar to section 4.1 or 4.2 results, which had reached a local minimum when four layers were applied in the neural network. It is observed that 

the output voltage from the model is very close to the real voltage with the maximum error of 7.75 mV and the mean error of 0.22mV in testing 

errors, respectively. This performance has achieved our goal, which is that the output voltage error does not exceed 30 mV (between 20% and 

80% SOC) and 50 mV (below 20% and above 80% SOC). 
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Table 4.11 The overall results of the training errors and testing errors under assigned hyperparameters and inputs 

 

Hyperparameters and Inputs Train Test 

Capacity 

(Ah)/ T (℃) 

Working 

Conditions 

Accumulated 

Time 
Time-delay Layers Neurons 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

Max 

Error 

(mV) 

Mean 

Error 

(mV) 

67/25 

A1 
No No 3 10, 5 8.46 0.76 6.22 0.38 

No No 2 10, 10 13.71 0.77 11.41 0.53 

A2 
No No 3 10, 5 7.93 2.14 7.94 2.15 

No No 3 6, 3 8.84 3.59 8.72 1.82 

A3 

Yes No 3 6, 3 502.00 9.92 300.60 16.21 

Yes Yes 3 6, 3 107.30 0.90 11.34 0.28 

Yes Yes 4 10, 10, 10 8.15 0.27 7.75 0.22 



 

52 

 

Chapter 5: Conclusion and Recommendation 

 

5.1 Conclusion 

 

The feed-forward neural network model of the backpropagation algorithm based 

voltage prediction performance demonstrated that we found that four layers and ten 

neurons for each layer have excellent outcomes, which is better than any other method 

for lowering the voltage error. We lowered the voltage error under 5.00 mV among 20 

% and 80 % SOC, and we lowered the voltage error under 8.15 mV for the rest. 

Second, we lowered the maximum voltage error by 25 times and the average voltage 

error by 273 times using feed-forward neural network models of the backpropagation 

algorithm in comparison to the equivalent circuit model for electric-vehicle battery at 

CATL. This allowed obtaining the correct input voltage for driving an electric motor 

from a simulation battery model, which can also predict next 10s or 20s voltage, at the 

early stage of designing a vehicle. 
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5.2 Future Work 

 

Current work will need to be improved if we want to ace this solution: the 

approach of the weight adjustment, which is initialized randomly, of the neural 

network should be further advanced. Next, by applying Python instead of MATLAB, 

it will increase the flexibilities to import new tools like TensorFlow to fit our model 

better. Additionally, by introducing a graphics processing unit to raise computing rate, 

this allows us to increase the layers and neurons to lower errors. Last, to improve the 

voltage accuracy, we can select potential features like the factors in the state of health 

and state of power, or use other models like recurrent neural network (RNN) to 

simulate the problem of bouncing voltage curve.  
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