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Clustering symptomatic pixels in broomrape-infected carrots facilitates 
targeted evaluations of alterations in host primary plant traits 
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A B S T R A C T   

In this study, we explore spectral heterogeneity within plant canopies, a characteristic often observed in stressed 
plants where certain leaves or intra-leaf regions exhibit stress symptoms while others remain unaffected. 
Considering this variability in spectral signatures holds promise for enhancing remote sensing methodologies 
aimed at plant stress detection. Typically, remote sensing techniques analyze the plant as a whole, potentially 
overlooking stress-related spectral signatures due to the inclusion of unaffected pixels. We used a clustering- 
based technique, which incorporates semi-supervised learning elements for tuning hyper-parameters, to differ
entiate spectral patterns associated with and unique to pixels from broomrape-infected (Orobanche spp. and 
Phelipanche spp.) carrots from unrelated patterns. Ground-based hyperspectral (400–1000 nm) images of 
broomrape-infected and non-infected carrot canopies were used in an agglomerative clustering procedure fol
lowed by spectral angle mapper (SAM) analysis to identify a spectral endmember indicative of broomrape 
infection symptoms. Pixels from this cluster constituted an average of 8.5–11.5 % from the canopies of infected 
plants. Subsequently, we: (a) examined the relationship between carrot leaf mineral content and the percentage 
of symptomatic pixels to explore stress-induced alterations creating the unique spectral signatures of infected 
plants; and (b) utilized the inverse mode of PROSPECT, a radiative transfer model (RTM), to derive primary plant 
traits from the distinct spectral data of each cluster. We found that deficits in two macro elements, phosphorous 
and potassium, along with two pigments, chlorophyll and carotenoid, were correlated with the symptomatic 
cluster in infected plants. The methodology presented in this study paves the way for further research into 
broomrape detection in various crop species, as well as other plant stressors.   

1. Introduction 

Broomrapes (Orobanche spp. and Phelipanche spp.) are root parasitic 
weeds significantly hindering the cultivation of numerous vegetable and 
field crops worldwide. These chlorophyll-lacking holoparasitic plants 
attach to the host plant by forming haustoria (vascular connections) 
with the host’s roots. Then, the parasite becomes a sink and depletes 
water, nutrients, and minerals from the host for its own development, 
including tubercle production, apex formation, and the emergence of 

inflorescences above the soil surface (Parker, 2012). Carrot (Daucus 
carota, Apiaceae) is a high-income cash crop widely grown throughout 
Europe and the Mediterranean area. Two species of broomrape, Oro
banche crenata and Phelipanche aegyptiaca parasitize the carrot roots and 
in highly infested fields, can cause total yield loss (Bernhard et al., 1998; 
Cochavi et al., 2016b; Parker, 2012). 

Herbicide application is the most effective method to control 
broomrape in carrots and other crop species. The primary limitation of 
existing chemical control protocols is the uniform application of 
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herbicides, which ignores the spatial distribution of the broomrape in
festations within the fields (Cohen et al., 2017; Eizenberg and Gold
wasser, 2018). Adopting site-specific weed management (SSWM) 
approaches becomes imperative. Nonetheless, as most of the parasite’s 
life cycle occurs below the soil surface, detecting parasitized plants in 
the field through remote sensing presents a formidable challenge. 

Recently, several studies investigated the potential to detect 
broomrape-infected plants by remote sensing of the host plants. These 
preliminary studies, conducted on sunflowers, demonstrated that plants 
parasitized with sunflower broomrape (Orobanche cumana) exhibited 
differences in spectral reflectance (Atsmon et al., 2022; Cochavi et al., 
2017; Ortiz-Bustos et al., 2016) and morphological attributes (Lati et al., 
2019) compared to non-infected plants. Atsmon et al., (2022) also 
demonstrated the feasibility to utilize these differences for classification 
between infected and non-infected plants. An alternative approach for 
broomrape detection involves employing physically-based models ac
counting for the mechanistic link between measured data and plant 
traits. Until now, models demonstrated for broomrape detection have 
been empirical, relying on ML algorithms or statistical models focusing 
exclusively on improving classification accuracy. Empirical methods 
often overlook variables influencing remote sensing data accuracy, 
including image acquisition conditions, sun-view angle geometry, and 
the crop’s architecture and phenological stage (Jafarbiglu and Pourreza, 
2023), rendering the transferability of such classification models un
certain (Wang et al., 2023). In contrast, physically-based approaches, 
leveraging the inversion of radiative transfer models (RTMs), have been 
suggested to achieve robust remote sensing of crops (Féret et al., 2019; 
Li et al., 2018; Shiklomanov et al., 2016). PROSPECT, for instance, is an 
optical model capable of simulating reflectance and transmittance at the 
leaf level across the electromagnetic spectrum from 400 nm to 2500 nm 
(Féret et al., 2021). When operated in the inverse mode, PROSPECT can 
retrieve primary plant traits from spectral data. Combining RTMs and 
ML algorithms, simulated data generated by the RTM can be used to 
train a statistical model, which is eventually applied to real spectral 
observations (Peanusaha et al., 2024). 

An important insight gained by previous broomrape detection 
studies revealed a non-uniform spectral response within canopies of 
infected plants. Ortiz-Bustos et al., (2016) showed significant differences 
in the levels of red and far-red fluorescence reflected by infected and 
non-infected plants depended on the leaf pairs (e.g., 1st and 2nd vs. 3rd 
and 4th). Similar trend was observed by Atsmon et al., (2022) that 
showed the impact of the spatial location of the sampled area within the 
crop canopy (leaf center vs. edges) on the classification accuracy be
tween infected and non-infected plants. Considering this variation 
within the canopy response to the broomrape-related stress has potential 
to benefit future research and practice of remote sensing of broomrape 
infected plants. These attempts to address spectral heterogeneity within 
broomrape-infected canopies required manual labeling of suspected 
symptomatic regions within the plant (Atsmon et al., 2022; Ortiz-Bustos 
et al., 2016). However, recent advancements in sensors, computing ca
pabilities, and image processing systems have ushered in new data 
analysis methodologies enhancing the automation, precision, and 
robustness in identifying symptomatic regions in stressed plants (Jin 
et al., 2021; Singh et al., 2016). In a recent study, Omidi et al. (2022) 
suggested a semi-supervised approach to cluster symptomatic and 
asymptomatic leaves in root lesion nematode-infected walnut trees. An 
agglomerative style of hierarchical clustering based on leaf-level 
hyperspectral measurements was applied to identify a symptomatic 
cluster unique to infected plants. This technique could cluster asymp
tomatic leaves of infected trees with healthy leaves from non-infected 
trees, based on their spectral similarity, thereby isolating the symp
tomatic leaves to better represent the stress’ spectral signature. The 
development of such methodologies for identification of stress symp
tomatic regions at the intra-plant level holds substantial promise for 
various aspects related to remote sensing of plant stress, including 
broomrape-infected plants. 

In this study, agglomerative style of hierarchical clustering was 
employed. Symptomatic and asymptomatic pixels were clustered from 
hyperspectral images of broomrape-infected and non-infected carrot 
plants at early, pre-symptomatic stages. Subsequently, a new method
ology was developed, leveraging the clustering capability for broomrape 
symptomatic pixels to improve the specificity of two approaches for 
investigating broomrape-related alterations in plant traits. In the first 
approach, the percentage of symptomatic pixels within the plants was 
correlated to measured leaf concentrations of nitrogen (N), magnesium 
(Mg), potassium (K) and phosphorous (P). The second approach relied 
on the inversion of PROSPECT to retrieve primary plant traits from 
spectral data derived uniquely from pixels symptomatic to the broom
rape infection. Applying the model exclusively to broomrape-related 
spectra facilitated a more accurate linkage between foliar traits and 
leaf spectra. 

2. Materials and methods 

2.1. Plant material and experimental design 

On January 1st 2021, 147 seeds of the carrot cultivar ’Nairobi’ (Bejo 
Seeds, Oceano, CA, USA) were seeded into 3 L pots filled with infested or 
non-infested soil (Newe Ya’ar soil, Chromic Haploxererts, fine clay, 
montmorillonitic, thermic, 55 % clay, 25 % silt and 20 % sand, 2 % 
organic matter at pH 7.2). Phelipance aegyptiaca and O. crenata seeds 
were collected in 2014 from Ramat David and 2018 from Gazit, Israel, 
respectively. The seeds were passed through a 300-mesh sieve and 
stored in the dark at 4◦C. A germination test was performed under 
standard conditions at 25◦C, with germination stimulated by the syn
thetic stimulant GR-24, commonly used for broomrape germination 
tests. GR-24 was applied at 10 mg kg− 1 after 12 days of pre- 
conditioning, resulting in a germination rate of >90 %. Parasite seeds 
were mixed into the soil using a 50 L cement mixer, creating an infes
tation level of 15 mg kg− 1. Throughout the experiment, soil temperature 
was monitored using temperature data-loggers (UA-001-08 data logger, 
Onset, Co., Bourne, MA, United States) buried in the soil at a depth of 10 
cm. Below-ground parasitism dynamics were estimated using the ther
mal model developed by Cochavi et al., (2016a) and facilitated to 
perform the imaging at the specific parasitic developmental stage that is 
most susceptible to treatment. Plants were grown in a net-house (Newe 
Ya’ar Research Center, Israel) and were randomly placed to ensure 
similar conditions between the treatment groups (Fig. 1a). Plants were 
irrigated for field capacity plus 10 % in order to remove salts from the 
upper soil level. Fertilizer (27:10:17N-P-K) was applied at 1 g fertilizer/ 
500 L water every 14 days starting January 18th. 

Treatment groups were as follows: 32 plants of non-infested control, 
56 P. aegyptiaca infected plants, and 59 O. crenata infected plants. 
Measurements were conducted 77 days after planting (DAP), equivalent 
to 974 growing degree days (GDD), according to thermal time model 
(Cochavi et al., 2016a). At that stage, most parasite tubercles had 
attached to the host roots, but only a few inflorescences emerged above 
the soil (Fig. 1b). At the end of the experiment, the soil was gently 
removed from the carrot plants to produce ground-truth infection levels 
by counting the attached parasite tubercles and inflorescences, and 
carrot leaves were cut to experimentally determine leaf mineral content 
(Fig. 1c). 

2.2. Determination of leaf mineral concentrations 

At the end of the experiment, following the spectral measurements, 
the whole canopy of all carrot plants was oven-dried for 48 h at 65◦C. 
Nitrogen levels were measured using a FLASH 2000 CHNS/O Analyzer 
(Thermo Fisher Scientific, Waltham, MA, United States). Phosphorous, 
potassium, and magnesium measurements were taken using Inductively 
Coupled Plasma Optical Emission Spectroscopy (ICP-OES, Varian 720 
ES, Agilent Technologies, Santa Clara, CA, United States). Dry plant 
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material was extracted by overnight ash in a 470◦C oven, followed by 
nitric acid extraction. Samples were diluted with double-distilled water 
before measurements were taken. 

2.3. Ground truth measurements of broomrape infection levels 

Broomrapes that had already flowered are likely to have a more 
significant cumulated effect on the host than tubercles that are yet to 
flower. Therefore, the final values of infection levels (Fig. 2) were 
calculated by multiplying the number of tubercles at tubercle stages of 
S4 (Eizenberg et al., 2004) by three and adding the number of tubercles 
at tubercle stages of S1-S3, as follows:  

A = 3B + C                                                                                         

Where A is the calculated infection level, B is the number of 
broomrape inflorescences, and C is the number of broomrape tubercles. 

2.4. Hyperspectral data 

Plants were imaged using a ground-based hyperspectral camera 
(Specim IQ, Specim Ltd., Oulu, Finland) that relies on a push-broom line 
scanner mounted on an internal rotating stage. The camera provides 
images of 512 × 512 pixels with 204 spectral bands between 400 and 
1000 nm. The spectral resolution is 7 nm at full width half maximum 
(FWHM). Each image included five plants, in a random order, allowing a 
short image acquisition timeframe (11:00 A.M – 12:00 P.M), thereby 
reducing environmental variables during data collection. In addition, a 
white reference panel was placed in each frame to calibrate the raw data 
and account for changes in lighting conditions. The camera’s built-in 
calibration procedure produced calibrated reflectance values during 
the image acquisition steps (Behmann et al., 2018). The camera was 

mounted on a tripod, and the distance between the camera lens and the 
top end of the plant canopy was 0.5–1 m (Fig. 1a). In this range, the 
spatial resolution of one pixel is about 1 mm. Imaging was performed 
outside with the sun as the light source for illumination, and the scan
ning integration time was set to a minimum of 1 ms per line. 147 
hyperspectral images were taken of the whole canopy of the carrot plant. 
Normalized difference vegetation index (NDVI) and excess green index 
(EGI) were used to mask out background pixels (Fig. 1d). 

2.5. Sample clustering and SAM analysis 

In our approach, we utilized the agglomerative style of hierarchical 
clustering as suggested by Omidi et al., (2022) for this type of dataset 
and objectives. This method of clustering is superior in handling com
plex and high-dimensional hyperspectral data, supports any pairwise 
distance metric and performs well on common clustering test cases (El- 
Hamdouchi and Willet, 1989). While the core algorithm, agglomerative 
hierarchical clustering, operates unsupervised, semi-supervised learning 
elements were incorporated in the hyper-parameter optimization phase. 
This was facilitated primarily through fine-tuning the distance 
threshold, which was informed by prior knowledge about the charac
teristic cluster of infected samples. 

Complete linkage, which uses the maximum distances between all 
observations of two sets, was chosen to prevent intermediate samples 
between dense clusters from fusing those dissimilar dense clusters. 
Testing with other linkage methods, such as single linkage, produced 
poor clustering relative to complete linkage and were not used further. 
Cosine, which measures the angular similarity between two vectors, was 
set as the affinity type. Cosine was chosen as it performs well and 
commonly used with high-dimensional data, such as hyperspectral 
matrices. 

Employing agglomerative clustering on all pixels from 147 hyper
spectral images suffers from intrinsic computational complexity as the 
algorithm relies on a distance metric that grows quadraticaly in size as 
the number of samples increases. Therefore, a two-step process was 
developed for making the analyses feasible. Clustering was initially 
performed per each plant individually, resulting with a significant 
decrease in representative spectra. A fixed distance threshold of 0.002 % 
was used as it was found to reduce the number of samples in each image 
to between 20 and 250, thus still preserving the spectral heterogeneity of 
the image (Fig. 3a and Fig. 3b). In the second step, agglomerative 
clustering was performed on all retrieved spectra from the first step (n =
23,519). The prior knowledge about which plants belonged to the 
control and infected treatments facilitated to enhance the specificity of 
the model to the unique aspects of our research. A candidate cluster for 
representing broomrape stress contains symptomatic pixels which come 
exclusively from infected plants and not from control plants. Ideally, the 
candidate cluster would include samples from several different infected 
plants, i.e., a spectral pattern common among different broomrape 
infected plants. The distance threshold for clustering was tuned to 

Fig. 1. (a) Experimental and hyperspectral imaging set up, (b) Emergence of P. aegyptiaca inflorescences, (c) At the end of the experiment, the soil was washed from 
the roots and the number of broomrape tubercles (red) and shoots (blue) were counted, (d) Masking out background pixels with NDVI and EGI indices. 

Fig. 2. Histogram of broomrape infection levels.  
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produce the largest candidate cluster of broomrape-infected samples. 
Increasing the complete linkage distance threshold parameter resulted 
in fewer clusters. It was finally set to 0.04 %, resulting in three spectral 
clusters, amongst them the broomrape symptomatic cluster which was 
largest of all candidates (Fig. 3c and Fig. 3d). 

Finally, SAM was used to quantify the spectral similarity between 
each pixel spectrum and the reference spectra of the three obtained 
clusters. Pixels were assigned to clusters based on the highest cluster 
similarities (Fig. 4). SAM was chosen as the distance metric since it is 
sensitive to the shape of the spectral reflectance curve regardless of its 
magnitude, and it proved suitable in other hyperspectral studies (Kizel 
et al., 2017; Omidi et al., 2022; Zhang and Li, 2014). 

2.6. Cluster occupancies 

The percentage of pixels from each of the obtained three clusters 
within each plant’s canopy was determined and referred to as the cluster 
occupancy. 

2.7. Radiative transfer modeling (RTM) 

RTMs are used to investigate and retrieve various vegetation char
acteristics (Féret et al., 2021). Here, a two-step process using the 
PROSPECT model was utilized. Initially, PROSPECT, a common RTM 
that simulates the reflectance and transmittance of different plants at the 
leaf level, was run in forward mode to generate a comprehensive look-up 
table (LUT), simulating leaf reflectance and transmittance across a range 
of plant traits (such as chlorophyll, carotenoids, and anthocyanin). This 

Fig. 3. (a) Agglomerative hierarchical clustering was performed per plant - Example of a broomrape infected plant, originally containing 10,830 pixel spectra, 
resulting in 220 sub-clusters when a distance threshold of 0.002% was applied. (b) Heterogeneity in a carrot canopy – average reflectance of the obtained sub-clusters 
from one broomrape infected plant. (c) Agglomerative hierarchical clustering performed on 23,519 representative sub-clusters obtained from all plants resulted in 
three clusters when a distance threshold of 0.04% was applied. (d) Reflectance patterns of the obtained clusters. 

Fig. 4. Examples of soil-washed (a) control, (b) O. crenata infected, and (c) P. aegyptiaca infected carrots with their respective canopies, represented by the different 
clusters (top). 
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LUT served as a basis for the inverse mode operation, where we matched 
the observed spectral data from our study against this table. The 
mathematical essence of this process involves minimizing the difference 
between the observed reflectance and the simulated reflectance in the 
LUT to infer the corresponding plant trait values. N-structure (a leaf 
structure parameter) was not retrieved because our data is not based on 
pure proximity measurements. The input data for the model were the 
spectra of all sub-clusters (n = 23,519) obtained in the first clustering 
step which was performed on each hyperspectral image separately (as 
described in section 2.5.). Plotting the retrieved trait levels according to 
the final three clusters obtained after the second step of the clustering 
was facilitated by linking each sub-cluster to the final cluster in which it 
consisted. PROSPECT was analyzed using the package ’pracma’ in R 3.2. 

3. Results 

3.1. Clusters identification 

A candidate cluster representing broomrape stress should predomi
nantly consist of symptomatic pixels from infected plants and not con
trol plants. This prior knowledge regarding which plants were in the 
control and infected groups incorporates semi-supervised elements into 
the clustering technique. Ideally, the candidate cluster should include 
samples from several different infected plants. The first step towards 
identifying the candidate broomrape cluster entailed examining the 
canopies of all plants, represented by the obtained clusters corre
sponding to each pixel following SAM (Fig. 4). Upon analysis, it was 
observed that the red cluster was predominantly associated with 
O. crenata and P. aegyptiaca infected plants, in contrast to the control 
plants which were mainly represented by the ’green’ cluster. This 
observation led to the conclusion that the red cluster represents pixels 
that are spectrally symptomatic and exclusive to the broomrape infec
tion, while the green cluster represents ’healthy’ pixels unrelated to 
infection. Consequently, the green cluster pixels in infected plants were 
identified as asymptomatic pixels, demonstrating the spectral variation 
of carrot leaves in response to infection. 

3.2. Pixel cluster occupancy 

The second step entailed analyzing the pixel occupancies of the three 
clusters for each plant’s canopy concerning infection level (Fig. 5). This 
analysis clearly illustrated that the canopies of all control plants were 
primarily composed of pixels from the green, asymptomatic cluster, with 
an average occupancy of 94.6 % (Table. 1). However, it was also noted 
that the green cluster significantly represented P. aegyptiaca and 

O. crenata infected plants as well, with occupancies of 83.3 % and 78.5 
%, respectively, underscoring the relevance of acknowledging the 
asymptomatic pixels within infected plants. 

In contrast, the red pixels, indicative of symptomatic regions, had an 
average occupancy 0.7 % (maximum 4.1 %) within control plants, 
compared to 8.5 % (maximum 53.6 %) and 11.5 % (maximum 84.2 %) 
in P. aegyptiaca and O. crenata infected plants, respectively. This result 
further validates the observation that the red cluster, which was labeled 
symptomatic, is associated with infected plants. In general, the occu
pancy of the symptomatic cluster was found to correspond with infec
tion level. Higher infection levels in both P. aegyptiaca and O. crenata 
infected plants, were associated with an increase in symptomatic pixels 
and a decrease in asymptomatic pixel occupancy. Interestingly, an in
crease in the symptomatic pixels only begins at a certain level of 
infection. For instance, red cluster occupancy above 5 % (Fig. 5 – dashed 
line) was observed only in plants with infection levels of five or more for 
both broomrape species. 

The third cluster, colored in orange, accounted for an average of 4.5 
% in control plants and 8.1 % and 9.9 % in P. aegyptiaca and O. crenata 
infected plants, respectively. However, given its lack of correlation with 
infection levels (Table. 1), it is hypothesized that the orange cluster 
represents mixed pixels, encapsulating spectral patterns of both symp
tomatic and asymptomatic pixels. 

The average occupancies of all clusters was significantly different 
between infected plants (P. aegyptiaca and O. crenata) and control plants 
as validated by Tukey HSD at the 0.05 level. 

3.3. Cluster reflectance spectra 

Analyzing the reflectance patterns revealed distinct trends between 
the symptomatic and asymptomatic clusters. Specifically, the mean leaf 
reflectance from the symptomatic cluster exhibited higher green and red 
reflectance (~500–600 nm) and lower far-red and near infra-red 
reflectance (NIR ~ 750–100 nm) reflectance compared to the mean 
leaf reflectance of the asymptomatic cluster (Fig. 3d). High reflectance 
within the visible region (~500–600 nm) was previously associated with 
reduced foliar pigments, such as chlorophyll, carotenoids, and antho
cyanin (Hennessy et al., 2020). A similar chlorophyll-reflectance rela
tionship in broomrape-infected sunflower plants was also previously 
demonstrated (Ortiz-Bustos et al., 2016). Furthermore, lower NIR 
reflectance is often associated with stressed plants (Gill et al., 2022) and 
has also been observed in broomrape-infected sunflower plants, where it 
was correlated to an increase in the amount of air spaces within the leaf 
mesophyll of infected plants (Cochavi et al., 2017). Thus, the spectral 
patterns observed within the broomrape symptomatic and 

Fig. 5. Pixel cluster occupancies – each plant is represented by three dots, one from each cluster, which sum to a total occupancy of 1 (100%). (a) Canopies of control 
plants consisted mainly of pixels from the green cluster, (b) Increased infection levels of P. aegyptiaca and (c) O. crenata infected plants resulted in an increase in red 
cluster pixels and a decrease in green cluster pixels. Dot colors correspond to cluster colors. Dashed line at 0.05 occupancy. 
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asymptomatic clusters align with findings documented in the literature, 
corroborating the spectral indicators of plant stress and infection. 

3.4. A stress-related decrease in the levels of macro elements leads to 
higher occupancies of symptomatic pixels 

Identifying the symptomatic cluster unique to infected plants 
enabled an investigation into whether changes in mineral levels in the 
leaves of infected plants are associated with the representation of this 
cluster in infected plants. Generally, increased infection levels resulted 
in decreased mineral levels within the leaves of infected plants (Fig. 6a- 
d). However, plotting the symptomatic pixel occupancies in relation to 
the levels of these minerals in the carrot leaves revealed that only de
creases in phosphorous and potassium concentrations corresponded 
with higher pixel occupancies of the symptomatic cluster in both 
broomrape species (Fig. 6f-g). The increase in symptomatic pixels (or
ange and blue dots) began in plants when mineral levels fell below 0.25 
% phosphorous and 3 % potassium, which also represent the lower range 
of these minerals levels in control plants (green dots). These results 
indicate that deficiencies in phosphorous (R = -0.58, R2 = 0.33) and 
potassium (R = -0.43, R2 = 0.19) in infected plants are responsible for at 
least part of the distinctive spectral patterns of the symptomatic cluster 
that characterize canopies of broomrape-infected plants. In contrast, 
existing but less significant decreases in nitrogen (R = − 0.23, R2 = 0.05) 
and magnesium (R = − 0.14, R2 = 0.02) did not appear to influence the 
occupancy of the symptomatic cluster (Fig. 6e and Fig. 6h). 

3.5. Utilizing PROSPECT for prediction of chlorophyll, carotenoid, and 
anthocyanin levels in the broomrape symptomatic pixels 

The identification of symptomatic and asymptomatic clusters, 
coupled with the application of the inverse mode of PROSPECT, pro
vided a platform to estimate the levels of chlorophyll, carotenoid and 
anthocyanin specific to each cluster. Fig. 7 illustrates the levels of these 
plant traits across all sub-clusters, grouped by the final three clusters. 
The broomrape symptomatic cluster exhibited the lowest levels of 
chlorophyll and carotenoids, while anthocyanin levels were comparable 
across all clusters. The average level of chlorophyll in the symptomatic 
cluster was 31.6 (ug/cm2), significantly lower than the 71.1(ug/cm2) 
observed in the asymptomatic cluster (44 % of the asymptomatic level). 
Similarly, the average carotenoid levels were 10.4 and 19.6 (ug/cm2) 
for symptomatic and asymptomatic clusters, respectively, with the 
symptomatic cluster having only 53 % of the carotenoid level seen in the 
asymptomatic cluster. 

4. Discussion 

4.1. Clustering 

In this study, a clustering methodology which incorporates semi- 
supervised learning elements, was utilized for the first time on broom
rape infected crops. This methodology harnesses prior knowledge about 
the characteristic cluster of infected samples, for fine-tuning the hyper- 
parameter optimization of the agglomerative style of hierarchical clus
tering algorithm. Our results demonstrated the benefits of utilizing the 

Table 1 
Cluster occupancies within the carrot canopies under different treatments.   

Symptomaic pixels Asymptomatic pixels Unknown pixels  

Control P. aegyptiaca O. crenata Control P. aegyptiaca O. crenata Control P. aegyptiaca O. crenata 

Average occupancy 0.007 0.085 0.115  0.946  0.833  0.785  0.045 0.081  0.099 
Minimum occupancy 0 0 0  0.787  0.367  0.13  0.003 0  0.001 
Maximum occupancy 0.041 0.536 0.842  0.995  0.998  0.994  0.17 0.49  0.31  

Fig. 6. (a-d) Mineral levels in relation to infection level, and (e-f) Occupancy of symptomatic pixels in relation to mineral levels – broomrape-related decreases in the 
concentrations of phosphorous and potassium led to higher pixel occupancies of the symptomatic cluster in the canopies of O. crenata and P. aegyptiaca infec
ted carrots. 
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clustering methodology on image data, in contrast to previous use 
(Omidi et al., 2022) which was based on proximal leaf scans resulting in 
leaf-level resolution. The technique proved effective in discerning 
spectral variabilities within the canopies of broomrape-infected carrots. 
Clustering was successfully executed on images captured during the 
early, pre-symptomatic developmental stage of the parasite when the 
broomrape resided beneath the soil surface. The utilization of image 
data allowed for pixel-wise analysis and for exploration of possible 
matches between cluster spectra and broomrape infection while utiliz
ing the number of pixels per cluster in each canopy as a feature vector. 

A spectral cluster, distinct to pixels of infected plants, was identified. 
The pixels within this cluster were determined symptomatic of broom
rape infection and were shown to encompass only 8.5 % and 11.5 % of 
P. aegyptiaca and O. crenata infected plants, respectively. From an 
agronomic standpoint, interestingly, the symptomatic pixels in both 
P. aegyptiaca and O. crenata infected plants exhibited identical spectral 
patterns, clustering together into one symptomatic cluster. This suggests 
the robustness of this methodology for future broomrape detection tasks, 
regardless of the broomrape species involved. Another important 
finding was the increasing occupancies of symptomatic pixels at infec
tion levels of five attachments per plant. This implies that in practice, 
plants with low infection levels might fall outside the detection 
threshold. 

4.2. Utilizing the symptomatic cluster for evaluation of broomrape-related 
alterations within host plant traits 

In this study, we demonstrate two downstream approaches that 
leverage the clustering of symptomatic pixels for targeted investigation 
of broomrape-related alterations in host plant traits. 

4.2.1. Correlating occupancies of symptomatic pixels to broomrape to leaf 
mineral concentrations 

This study unveiled a decrease in the levels of measured N, P, K, and 
Mg as the broomrape infection escalated. However, only P and K de
ficiencies correlated with increased occupancies of the symptomatic 
cluster. By analyzing cluster occupancies concerning trait levels, the 
clustering method assisted in pinpointing which host plant traits were 
not only affected by the infection but also contributed to the unique 
spectral fingerprint of infected plants. Thus, compared to common ap
proaches for correlating plants spectra and traits, this approach is less 
prone to obscured results which might occur due the inclusion of 
asymptomatic pixels together with the symptomatic pixels. The 
observed deficiencies align with the findings of Cochavi et al., (2017), 
who demonstrated that sunflower broomrape parasitism in sunflower 
resulted in decreased levels of several macro elements, including P and 

K, which are crucial for plant growth and metabolism. 

4.2.2. Cluster level RTM 
RTMs harbor substantial promise for enhancing the robustness and 

scalability of remote sensing of crops through prediction of the end
member’s spectral signature (Féret et al., 2021). To the best of our 
knowledge, this study introduces for the first time a methodology that 
leverages the identification of distinct spectral clusters for a targeted 
deployment of an RTM specific to each cluster. The inverse mode of 
PROSPECT was performed on all sub-spectra linked to the three ob
tained clusters, focusing the estimation of plant traits solely on the 
symptomatic pixels exclusive to broomrape-infected plants. This trait 
evaluation zeroes in on the stress induced by broomrape, yielding more 
precise insights into the desired symptoms while minimizing interfer
ence from the predominantly asymptomatic pixels in the canopy of 
infected plants. 

The results revealed markedly lower levels of total chlorophyll and 
carotenoids per area (ug/cm^2) in the symptomatic leaf regions of 
broomrape-infected carrots compared to asymptomatic regions. This 
reduction in carotenoid and chlorophyll levels aligns with previous 
studies. A study in P. aegyptiaca infected carrots found a significant 24 % 
decrease in carotenoid levels and linked the decrease to hampered carrot 
development, given the crucial role of carotenoids in plant growth and 
bioactive compound biosynthesis. The authors suggested that 
P. aegyptiaca may alter the carotenoids obtained from the host and uti
lize them for synthesizing additional carotenoid compounds (Emran 
et al., 2020). Other studies highlighted chlorophyll level reduction in 
broomrape-infected plants, attributing the damage to P. ramosa infected 
tomatoes (Mauromicale et al., 2008) and O. crenata infected faba beans 
(El-okkiah et al., 2015) to the parasite-induced decrease in leaf chloro
phyll concentration, impacting the host’s photosynthetic machinery. 

4.3. Future perspectives and limitations 

RTMs have been suggested to achieve robust remote sensing of crops 
by simulating reflectance and transmittance of plants under varying 
conditions and stressors (Féret et al., 2019; Li et al., 2018; Shiklomanov 
et al., 2016). Our approach, which integrates clustering prior to inverse 
RTM application, unveils significant potential to benefit more accurate 
RTM estimations of plant traits, specific to broomrape infection. In a 
future study, the simulated data from RTM can be utilized in aiding the 
training of machine learning models for real spectral observation anal
ysis for broomrape detection (Peanusaha et al., 2024). It is worth 
exploring how such workflow could improve the preformance of existing 
broomrape detection methods of (Atsmon et al., 2022; Cochavi et al., 
2017; Ortiz-Bustos et al., 2016). Recently, Atsmon et al., (2022) utilized 

Fig. 7. Inverse mode of PROSPECT – lower levels of chlorophyll and carotenoids were observed in the broomrape symptomatic cluster compared to other clusters. 
(N = 1688, 17,429 and 4405 sub-clusters for the symptomatic, asymptomatic and ‘unknown’ clusters, respectively). 
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ground-based hyperspectral images of infected and non-infected sun
flower plants to train a logistic regression classifier and achieved 88 % 
classification accuracies. However, the robustness and transferability of 
such empirical methods, relying on small, high-resolution datasets, to 
varying environmental conditions and lower-resolution data, is uncer
tain. The prospect of the hybrid retrieval workflows (RTM coupled with 
machine learning models) have been implemented in several opera
tional processing chains, mainly in combination with neural networks 
and is very promising for vegetation property mapping, carrying ad
vantages that include robustness to variation in environments, cultivars 
and image acquisition conditions (Berger et al., 2020; Verger et al., 
2011).Further, RTM-based detection requires significantly less spectral 
while in a recent study it was also shown to retain an acceptable and 
consistent accuracy compared to data-driven approaches (Peanusaha 
et al., 2024). 

In addition to precise weed management, the method used in this 
study to isolate the symptomatic regions within plant canopies under 
diverse stressors or diseases can significantly contribute to a broad 
spectrum of precision agriculture fields. For instance, in high- 
throughput phenotyping for resistant genotypes, a workflow akin to 
that proposed by (Omidi et al., 2022) can be adopted. Clustering applied 
to a dataset consisting of images of different cultivars of a given crop (e. 
g., carrot), once a symptomatic cluster is identified, allows for the 
assessment of symptomatic pixel occupancies in each cultivar to rank its 
resistance/tolerance to broomrape infection compared to a manual 
phenotyping procedure of the germplasm. The methodology could also 
enhance deep-learning-based disease/infection-severity evaluations, 
where it can be used to isolate symptomatic regions prior to analysis, as 
these regions encapsulate the most pertinent information (Barbedo, 
2018). Further, it may facilitate the detection of subtle plant health and 
stress level changes that might otherwise be obscured when examining 
the entire plant, thereby augmenting sensitivity to early stress 
indicators. 

The methodology presented in this study is challenged by an 
inherent computational limitation of the clustering method and by an 
agronomic limitation, which is specific to our case-study. Applying the 
clustering approach on image data suffers from a computational 
complexity. To overcome it, a two-step clustering protocol was sug
gested. Further, in the case of large datasets, the clustering can be based 
on a proportion of the sample population, while the downstream, less 
complex analysis, (i.e., SAM) is applied to all samples. From an agro
nomic standpoint, this study found that plants with low infection levels 
consisted low levels of symptomatic pixels, possibly bellow detection 
threshold of future broomrape detection models. While such potential 
misdetection should be considered, it is unlikely to significantly impact 
the final yield, as damage at such infection levels is typically minimal 
(Barker et al., 1996). Further, this study performed clustering on images 
captured during early parasitism stages, a crucial period for treatment 
intervention. Extending this methodology to later stages, where the 
parasitic impact on host plants is more pronounced, might unveil 
symptoms even in plants with low infection levels. While herbicidal 
treatment at these later stages may not be efficient for the current sea
son’s yield, it can eradicate the broomrape seed production and 
contribute to lower infestation levels in the subsequent seasons. More
over, late detection still furnishes invaluable infestation maps, aiding 
farmers in making informed decisions in the years to follow. 

5. Conclusion 

The results of this study demonstrate the variability of pixel spectral 
patterns within broomrape infected carrot canopies. This variability 
should be considered in future precision agriculture practices and 
studies that aim to detect broomrape infected plants in the field. 
Agglomerative clustering followed by SAM successfully highlighted 
spectral symptoms exclusive to broomrape-infected plants, albeit 
without differentiating between the two broomrape species. A 

pioneering approach, melding clustering methodology with radiative 
transfer models, was developed to extract specific parasite-induced 
physiological alterations in host plants, which culminate in the 
distinct spectral fingerprint of infected plants. 

The identification of symptomatic pixels data holds great potential 
for advancing site-specific management of broomrape-infected crops 
and streamlining high-throughput phenotyping of crop cultivars for 
tolerance/resistance to broomrape infection. The demonstrated suit
ability of this method to image data is relevant for upscaling purposes 
where aerial-scale imaging sensor data collection is anticipated, facili
tating the collection of larger data sets. Nevertheless, it is necessary to 
investigate the effect of lower spectral and spatial resolution data, i.e., 
multispectral cameras mounted on unmanned airborne vehicles, on the 
clustering performance. The methodology presented in this study bears 
the potential for broader application across diverse broomrape and crop 
species as well as in other plant stress and disease studies. 
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