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3Department of Radiation Oncology, UCSF Medical Center at Mission Bay, San Francisco, CA, 
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Abstract

Purpose: A situational awareness Bayesian network (SA-BN) approach is developed to improve 

physicians’ trust in the prediction of radiation outcomes and evaluate its performance for 

personalized adaptive radiotherapy (pART).

Methods: 118 non-small-cell lung cancer patients with their biophysical features were employed 

for discovery (n=68) and validation (n=50) of radiation outcomes prediction modeling. Patients’ 

important characteristics identified by radiation experts to predict individual’s tumor local control 

(LC) or radiation pneumonitis with grade ≥2 (RP2) were incorporated as expert knowledge (EK). 

Besides generating an EK-based naïve BN (EK-NBN), an SA-BN was developed by incorporating 

the EK features into pure data-driven BN (PD-BN) methods to improve the credibility of LC or / 

and RP2 prediction. After using area under the free-response receiver operating characteristics 

curve (AU-FROC) to assess the joint prediction of these outcomes, their prediction performances 

were compared with a regression approach based on the expert yielded estimates (EYE) penalty 

and its variants.

Results: In addition to improving the credibility of radiation outcomes prediction, the SA-BN 

approach outperformed the EYE penalty and its variants in terms of the joint prediction of LC and 

RP2. The value of AU-FROC improves from 0.70 (95% CI: 0.54–0.76) using EK-NBN, to 0.75 

(0.65–0.82) using a variant of EYE penalty, to 0.83 (0.75–0.93) using PD-BN and 0.83 (0.77–

0.90) using SA-BN; with similar trends in the validation cohort.

*Corresponding author at: Department of Radiation Oncology, The University of Michigan, 519 West William Street, Ann Arbor, MI, 
USA. YL1515@gmail.com (Y. Luo). 
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Conclusions: The SA-BN approach can provide an accurate and credible human-machine 

interface to gain physicians’ trust in clinical decision-making, which has the potential to be an 

important component of pART.

Keywords

Situational awareness; Bayesian networks; Accuracy and credibility; Personalized adaptive 
radiotherapy

1. Introduction

Lung cancer is the leading cause of cancer death in the world. About 80% to 85% of lung 

cancer cases are non-small-cell lung cancer (NSCLC). Radiotherapy is one of the main 

treatment modalities for locally advanced NSCLC. While some patients may get tumor local 

control (LC) from the radiotherapy without any complications, some of them may not get 

cured, and in the meantime, they may suffer from additional radiation-induced toxicities 

(RITs). In order to improve NSCLC patients’ therapeutic satisfaction, personalized adaptive 

radiotherapy (pART) was proposed to explore an individual patient’s radiation treatment 

plans based on his / her biophysical characteristics before and during the course of 

radiotherapy by maximizing the patient’s tumor LC and minimizing the probability of 

receiving RITs simultaneously [1]. However, the mechanisms of tumor response to the 

radiotherapy are still under-explored. Although trial and error methods cannot be ethically 

used in clinical practice, the increasing amount of available clinical data before and during 

radiotherapy has the potential to provide useful biophysical patterns for the realization of 

pART. Also, the improvement of computing hardware allows more sophisticated machine 

learning (ML) algorithms to investigate these patterns from the data directly.

While datasets in the field of radiation oncology usually have a small sample size, each 

patient owns high-dimensional biophysical features datasets, including his / her physical, 

biological, imaging, genomic and dosimetric information along the course of radiation 

treatment. As accuracy is typically an essential criterion to evaluate the performance of an 

outcome prediction model, explainability is another important aspect due to its potential to 

produce insights into the cause of the algorithmic decisions [2]. Being a generative ML 

approach, Bayesian networks (BNs) enjoy an explainable network structure to display the 

dependent / independent relationship among random variables. A pure data-driven BN (PD-

BN) approach was developed in our previous research to unravel the biophysical pathways 

among patients’ characteristics, radiation outcomes and treatment plans from radiation 

oncology datasets for LC or / and radiation pneumonitis (RP) with grade ≥2 (RP2) 

prediction [3–5]. However, a purely data-driven radiation outcome prediction model with a 

good performance may not be recognized or accepted by physicians in clinical practice and 

still fail to garner their trust because it may fail to reflect their conceived knowledge or 

known predictors in the literature. For instance, our previously developed PD-BNs included 

existing but also new findings that have yet to be proven in the lab or to be adopted for 

clinical practice; however, it didn’t explicitly select some other risk factors known by 

physicians such as smoking or chemotherapy.
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Since an outcome prediction model needs to be accepted by physicians before it could be 

applied to clinical decision-making, credibility has been proposed recently to indicate the 

capability of a model to gain clinicians’ trust [6]. This concept originated from studies 

related to explainability and interpretability [7–9]. Credibility generally represents the ability 

of an outcome prediction model to provide reasons for its predictions that are, at least in 

part, in line with the physicians’ understanding (or prior knowledge) while its prediction 

accuracy does no worse (is not inferior) than that of a corresponding (data-driven) model [6]. 

When the explainable new findings from the data-driven models can barely gain physicians’ 

trust, credibility becomes a new criterion to guide the application of ML approaches in 

developing outcome prediction models. The purpose of this study is to develop and 

demonstrate a new BN-based approach for accurate and credible pART outcomes prediction 

in lung cancer patients.

Including the phases of perception, comprehension and projection from human factors 

engineering research [10], situational awareness (SA) is recognized as a critical foundation 

for effective clinical communication and successful decision-making in healthcare [11]. The 

realization of SA depends on data-driven and goal-driven processing. While the former is a 

bottom-up way to indicate how changes in the environment can affect a switch in active goal 

states, the latter is a top-down approach to guide the search for better interpretation of 

information and plans to achieve those goals [10]. By alternating these two ways to simulate 

human information processing, SA intends to direct attention and interpret information in 

the environment. Due to its potential to increase the credibility of an outcome prediction 

model and gain physicians’ trust in medical care settings, the concept of SA is employed to 

build our new outcome prediction model for pART applications.

Obviously, previous PD-BN approaches only represent SA’s data-driven processing for 

radiation outcome estimation. To gain physicians’ trust in the outcome prediction for pART, 

goal-driven processing needs to come into play. The physicians’ trust is related to their 

accumulative knowledge gained from years of experience, reading articles, training, 

colleagues, which is named expert knowledge (EK) in this study. In addition to bypassing 

otherwise complex systems and providing parsimonious solutions that focus on key aspects 

of a given situation [12], the EK can add new information to the models learned from data 

only [13,14]. Using the incorporation of the EK into the PD-BN method to capture SA’s 

goal-driven processing, we developed an SA-BN approach for radiation outcome prediction 

in pART. Additionally, we extended a well-known credible concept, the EYE penalty 

approach [6], to radiation outcomes prediction and evaluated its performance as benchmark 

to that of our proposed credible model.

The developed SA-BNs offer a human-machine interface to allow potential human 

involvement in pART. In addition to enabling exploring biophysical pathways starting with 

EK, the SA-BNs can help physicians to conduct their familiar “what if” counterfactual 

analysis along the biophysical pathways, which can provide great potentials to gain their 

trust in clinical practice. The rest of the paper is organized as follows. Section 2 introduces 

the SA-BN approach to develop credible outcome prediction BN models, and presents EYE 

penalty and its variant methods to benchmark our new approach. The performance 

comparisons among EK based naïve BN (EK-NBN), PD-BN, SA-BN, LASSO, EYE penalty 
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and its variants are introduced in Section 3. Section 4 mainly discusses the credibility and 

accuracy of the SA-BNs with correct EK compared to the PD-BNs. Conclusions are drawn 

in Section 5.

2. Methods and Materials

2.1. Study participants and data collection

Our study to explore a SA-BN approach for the clinical decision support of pART has been 

approved by institutional review board (IRB). The datasets to build and validate SA-BNs 

contain 118 stage III NSCLC patients including adenocarcinoma, squamous cell carcinoma 

sub-categories treated by volumetric modulated arc therapy (VMAT) and / or chemotherapy. 

All stereotactic body radiation therapy (SBRT) patients were excluded from this study due to 

varying regimens. Planning information followed standard clinical protocols [15,16]. 

Relevant to this study, the generalized equivalent uniform dose (gEUD) was used to evaluate 

the effect of radiation dose to treatment outcomes; the clinical target volume margin was 

developed based on clinical standards at our institution with 6–8 mm isotropic extension; 

and the addition of the random error margin due to respiratory motion (~1 cm) gave the 

planning target volume (PTV).

The number of NSCLC patients, radiation outcome events and median follow-ups time in 

discovery and validation datasets are shown in Table 1. While each patient in these datasets 

had 297 features, a radiation outcome such as LC or RP2 is not necessarily related to all of 

them. In our study, positron emission tomography (PET) radiomics before and during 

radiotherapy are designed to predict LC only. Including all the features for LC or RP2 

prediction not only can add noise to the development of an outcome prediction model, but 

also may mislead it. For example, PET radiomics features for LC prediction may be selected 

as the part of a RP2 prediction model based on a data-driven approach. Then, features in the 

whole dataset were allocated into LC’s or RP2’s feature datasets for LC or / and RP2 

prediction based on the experience of physicians and medical physicists in our study. Table 2 

shows the categories of biophysical features before and during radiation treatment and the 

number of features in each category of the whole dataset, LC’s and RP2’s feature datasets. 

As we can see from the table, 15 common dosimetric parameters were distributed to LC’s or 

RP2’s feature dataset, all the pre- and during treatment PET radiomics features were 

included in LC’s feature dataset.

In our study, radiomics investigates the extraction of quantitative, sub-visual image features 

to create mineable databases from radiological images [17], and it includes widely used 

gray-level co-occurrence matrix (GLCM), neighborhood gray-tone difference matrix 

(NGTDM), run-length matrix (RLM), and gray-level size-zone matrix (GLSZM). The slopes 

(SLP) of cytokines change and the relative changes (RD) of PET tumor imaging / radiomics 

features with fluorodeoxyglucose as the radiotracer during the courses of radiotherapy were 

calculated from the patients’ responses by the end of weeks 2 and 4 radiation treatment. The 

details of all the features can be found in our previous studies [3–5].

Patients were considered to have LC if their clinical, radiographic, or biopsy evidence of 

progression were not observed with a minimum follow-up of six months. While the patients’ 
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LC rate by the end of the follow-up is 71%, their overall survival rate at 3 years after 

treatment is 26%. RP is a common and explicit complication caused by radiotherapy in lung 

cancer patients [18]. Five grades based on common terminology criteria for adverse events 

(CTCAE 3.0) were employed to score the patients’ RP based on clinical assessment and 

imaging findings, and the level of RP was identified by the maximal RP score during follow-

up. As a serious complication in radiation treatment practice, RP2 is usually studied in 

radiation oncology literatures [18–20]. To keep the same caliber, RP2 is also considered as 

representative of a typical RIT in our study.

A radiation outcome’s EK dataset was selected from the outcome’s feature dataset based on 

two lung cancer physicians’ experience in our study. It is assumed that LC’s EK dataset 

includes the following EK factors for LC prediction before and during the courses of 

radiation treatment, “Stage”, “gross tumor volume (GTV)”, “PTV”, “Age”, “chemotherapy 
(Chemo)”, “Tumor gEUD”, “dose that covers 95% of planning target volume (PTVD95)”, 

“dose that covers 95% of the GTV (GTVD95)”, “biologically effective dose (BED)”, “Dose 
Per Fraction”, “Treatment Duration”, “Total Treatment Time”, and the rest of factors in LC’s 

feature dataset constitute LC’s non-EK (NEK) dataset; RP2’s EK dataset consists of the 

following EK variables for RP2 prediction before and during radiation treatment, “Total 
Lung Volume”, “Smoking”, “Lung gEUD”, “the volume of normal lung receiving 20 Gy 
(V20)”, “the volume of normal lung receiving 5 Gy (V5)”, “Dose Per Fraction”, “Chemo”, 

and RP2’s NEK dataset includes the rest of variables in RP2’s feature dataset.

Although there may exist other factors that can be explored in the future for better radiation 

outcomes prediction, these EK factors are so far the most common and well-recognized 

knowledge based on the experience of lung cancer experts. Since the discovery and 

validation datasets are collected from patients treated in different time periods and the latter 

is not considered in the discovery phase of the SA-BNs, our validation strategy for model 

development and assessment satisfies the transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) type 2b recommendations. (Note: 

type 2b of prediction model studies covered by the TRIPOD statement indicates that the data 

are nonrandomly split (e.g., by location or time) into two groups: one to develop the 

prediction model and another to evaluate its prediction performance [21].)

2.2. Situational awareness BN (SA-BN) approach

Our previous PD-BN approach for LC or / and RP2 prediction mainly includes feature 

selection and BN structure learning. Markov blanket (MB) developed based on incremental 

association Markov blanket (IAMB) or its variants [22,23] has the potential to identify a 

variable’s patients, descendances and spouses such that the variable is independent of other 

variables given its inner family. The first step of the PD-BN approach is to identify the most 

important features related to LC or RP2 by exploring its extended Markov blankets (EMBs) 

based on the discovery dataset, which includes not only its inner family and but also each 

family member’s next of kin. The second step is to find the best stable structure of a single 

or a multi-objective BN in terms of their radiation outcome(s) prediction performance from 

these important features [3–5]. While the PD-BNs enjoy encoding causal relations in their 

structure (or topology) and good prediction performance, well-known EK features may not 
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be selected from the first step to participate in BN structure learning at the second step, 

resulting in barriers to gain the trust of physicians. Thus, a SA-BN approach is developed to 

incorporate the EK into these two steps without comprising its prediction performance 

compared to the PD-BN approach.

The major differences between the SA-BN approach and the PD-BN method is during the 

process of feature selection as illustrated in Fig. 1. While LC’s or RP2’s feature dataset in 

the former approach is separated into two parts including an EK dataset and a NEK dataset, 

the concept of EMB in the latter method [5] is employed to identify LC’s or RP2’s EMB 

from their EK and NEK datasets in the former approach, which are denoted as LC’s or 

RP2’s EK-EMB and NEK-EMB respectively. If an EMB of LC or RP2 includes both EK 

and NEK features, these features together with important EK features identified from an EK-

EMB of LC or RP2 are treated as the inputs of SA-BN structure learning as illustrated by the 

left path in Fig. 1; otherwise, whether the EK features can be incorporated to the structure of 

a SA-BN depends on the property of the EK-EMB of LC or RP2. If it is not empty, the 

contained important EK features together with critical NEK features identified from a NEK-

EMB of LC or RP2 are considered as inputs to learn BN structure as shown by the right path 

in the figure; otherwise, only important NEK features are considered as the inputs of BN 

structure learning as described by the middle path in Fig. 1.

For the joint radiation outcomes prediction of LC and RP2, important EK features (if 

possible) and NEK features are identified by following the above feature selection process 

for LC or RP2 separately, and then they are combined as inputs to learn the structure of two-

objective SA-BN. Being similar as that of the PD-BN approach, the structure learning of a 

single or a multi-objective SA-BN is a backward feature elimination process from the 

selected EK and NEK features by removing so far the most un-important “leaf node” in the 

network to improve the SA-BN’s prediction performance. Here, the importance of each leaf 

node is assessed by the strength of the arcs that connect them to the outcome(s) and other 

features in the SA-BN. At the beginning of the network structure learning or after 

eliminating a “leaf node” from the network, the best SA-BN structure is identified by score-

based algorithms such as Tabu search [24]. However, the final SA-BN may have multiple 

different structures with or without directed edges opposite to known cause-effect 

mechanisms, which is called Markov equivalent [25] in literature. Then, the most reasonable 

SA-BN is identified by following timestamps, literature, and expert experience to determine 

the order of different kinds of features in biophysical pathways.

2.3. Comparison models of the SA-BN for radiation outcomes prediction

EK-NBNs are designed to explore the impact of the EK to radiation outcomes by connecting 

important EK (if possible) and NEK features selected from the EK-EMBs and NEK-EMBs 

to LC or / and RP2 directly. Also, a logistic regression prediction model with an EYE 

regularization term, named EYE penalty approach, is employed for LC or / and RP2 

prediction by constraining weights for EK features with L2-norm and weights for NEK 

variables with L1-norm. While the L2-norm intends to maintain a dense structure among the 

EK factors, the L1-norm is designed to encourage sparsity on the NEK covariates like least 

absolute shrinkage and selection operator (LASSO) approach. By assuming the EK could be 
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wrong, the EYE penalty approach is proven to have the desired properties of a linear 

credible model in a least-square regression setting [6].

It is recognized that the impact of comparably high-dimensional features with less samples 

in radiation oncology datasets on the performance of the EYE penalty is unknown. Then, a 

variant of the EYE penalty approach, named LASSO-EYE, is developed in this study to 

evaluate it by identifying important features related to LC or RP2 before and during 

treatment from NEK datasets through the LASSO and combining them with all the 

corresponding EK features as the inputs of the EYE penalty approach for LC or / and RP2 

prediction.

2.4. Prediction performance evaluation based on discovery and validation datasets

In a single objective model for LC or RP2 prediction, nested cross-validation to evaluate the 

entire process of PD-BN approach [3] was employed to tune parameters of EK-NBN, SA-

BN, EYE, LASSO and LASSO-EYE models and to evaluate their prediction performance 

before and during radiotherapy from the NSCLC patients in a discovery dataset (n=68). The 

prediction performance of pre- and during treatment outcome prediction models developed 

from the whole discovery dataset was further evaluated by other NSCLC patients in a 

validation dataset (n=50), which is named external validation in our study.

For the joint prediction of LC and RP2, single EK-NBN and SA-BN can predict these two 

objectives simultaneously; however, in contrast a logistic regression model cannot consider 

two radiation outcomes at the same time. Then, we developed an analytic model for LC or 

RP2 prediction separately using EYE, LASSO or LASSO-EYE approach and combined 

these two models to evaluate the joint prediction of LC and RP2 of these methods. Being an 

extension of the conventional receiver operating characteristic (ROC) used with single 

endpoints, a free-response ROC (FROC) curve was employed to evaluate these approaches’ 

prediction performance with two endpoints (LC and RP2) for the nested cross-validation and 

external validation [4,26].

In our study, the development and evaluation of the EK-NBN, SA-BN and LASSO 

approaches were conducted in R version 4.0.0 designed for statistical computation and 

graphics, and the development and evaluation of the EYE and LASSO-EYE methods were 

implemented using Pytorch version 1.5 in the Python environment modified from the code 

given in [6]. Moreover, Delong test was used to evaluate the difference of the prediction 

performance between the SA-BN and other approaches with single or two radiation 

outcomes before or during radiotherapy based on the discovery or validation dataset. In 

order to compare two FROC curves, each of them was transferred into the corresponding 

ROC curves [26], and Delong test was employed to compare these two ROC curves [27].

3. Results

3.1. Single-objective SA-BN models for LC or RP2 prediction

Figs. 2(a) and 2(b) illustrate the stable structure of pre- and during treatment SA-BNs to 

predict LC based on the discovery dataset, respectively. In addition to SNPs, miRNAs, 

cytokines, PET radiomics features and dosimetric information, EK features, such as “Age”, 
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“GTV” and “Tumor_gEUD”, were selected and displayed as nodes in the SA-BNs through 

the feature selection and BN structure learning algorithms. In a SA-BN, nodes represent 

selected important variables, and their dependencies are described by directed edges. The 

thickness of an edge denotes the strength of a connection, where the thicker edge represents 

a stronger connection. While a green or red color is employed to denote monotonic positive 

or negative influences through the edges between the connected nodes, a gray color indicates 

non-monotonic or mixed influences between them. The performance of the SA-BN approach 

to predict LC before and during radiation treatment are evaluated by area under ROC curves 

(AUCs) based on nested cross-validations within the discovery dataset as shown in Table 3. 

The performance of the SA-BNs in Fig. 2 for LC prediction are evaluated by the AUCs of 

external validations based on the validation dataset as listed in Table 3.

Based on the discovery dataset, the pre- and during treatment SA-BNs for RP2 prediction 

were developed as shown in Figs. 3(a) and 3(b) respectively. EK features, such as “Chemo”, 

“Smoking”, “Total Lung Volume” and “Lung_gEUD”, were selected and displayed as nodes 

in the SA-BNs via the feature selection and BN structure learning algorithms. The 

performances of the SA-BN approach and the SA-BNs in Fig. 3 to predict RP2 before or 

during radiation treatment are evaluated by nested cross-validations and external validations 

based on the discovery and validation datasets respectively as illustrated in Table 3.

3.2. Multi-objective SA-BN models for joint prediction of LC and RP2

Figs. 4(a) and 4(b) show pre- and during treatment SA-BNs for the joint prediction of LC 

and RP2 based on the discovery dataset. EK features, such as “Age”, “GTV”, “Chemo”, 

“Lung_gEUD”, “Tumor_gEUD”, “Smoking” and “Total Lung Volume”, were selected as 

key variables for the joint prediction of PR2 and LC before and during the radiotherapy. The 

performance of the SA-BN approach or the SA-BNs in Fig. 4 for the joint prediction of LC 

and RP2 before and during radiation treatment are evaluated by nested cross-validations or 

external validations based on the discovery or validation dataset as listed in Table 3. 

Especially, the performance of the SA-BN approach for joint LC and RP2 prediction based 

on the discovery dataset is 0.83 with the 95% CI of 0.77–0.90 based on 2000 bootstrap 

samples. Figs. 5(a) and 5(b) show the FROC curves of the SA-BN approach and the SA-BN 

in Fig. 4(b) to predict both LC and RP2 during treatment, respectively.

3.3. Other radiation outcomes prediction methods

Based on target nominal type I error rate 0.1, pre-treatment important EK features related to 

LC prediction such as “Stage”, “GTV”, “Age”, “Chemo” and “Tumor gEUD” were selected 

from the EK-EMB of LC based on its EK dataset, and pre-treatment important EK variables 

related to RP2 prediction like “Total Lung Volume”, “Smoking”, “Chemo” and “Lung 

gEUD” were chosen from the EK-EMB of RP2 based on its EK dataset. The above 

important EK features related to LC or RP2 were combined for joint LC and RP2 prediction. 

Since there are no additional EK features identified from during treatment, the EK-NBNs for 

LC or / and RP2 prediction before and during the treatment based on the discovery or 

validation dataset are the same, resulting in their similar prediction performances as shown 

in Table 4. The performance of EK-NBN for joint LC and RP2 prediction based on the 

discovery dataset is 0.70 with the 95% CI of 0.54–0.76 based on 2000 bootstrap samples.
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The performance of the PD-BN approach and its associated PD-BNs in our previous 

research [3–5] are also listed in the same table for comparison. Especially, the performance 

of PD-BN for joint LC and RP2 prediction based on the discovery dataset is 0.83 with the 

95% CI of 0.75–0.93. The performance of EYE, LASSO and LASSO-EYE approaches or 

their associated prediction models for radiation outcomes prediction were evaluated from the 

nested cross-validation or external validation based on the discovery or validation dataset as 

summarized in Table 4. The values of AU-FROC of EYE, LASSO and LASSO-EYE 

approaches for joint LC and RP2 prediction based on the discovery dataset are 0.70 (95% 

CI: 0.60–0.78), 0.53 (0.43–0.64) and 0.75 (0.65–0.82), respectively. In the meantime, Table 

A1 in Appendix A shows the important features and their coefficients in LC or RP2 

prediction models before and during treatment developed from LASSO and EYE approaches 

based on the discovery dataset.

3.4. Comparison of prediction performance between the SA-BN and other approaches

The differences of prediction performance between the SA-BN model and other prediction 

models with single or two radiation outcomes before or during treatment based on the 

discovery or validation dataset were evaluated by Delong test [27,28], which can be 

described by p values as shown in Table 4. In the table, if the p-values are greater than or 

equal to 0.05, their original values are kept; otherwise, they are classified into different 

categories and replaced by corresponding labels “<0.05”, “<0.01” or “<0.001”. The testing 

results in the table show that:

• The differences between SA-BN and EK-NBN or LASSO for LC or / and RP2 

prediction are significant (p-values<0.001 or 0.01 or 0.05).

• The differences between SA-BN and EYE or LASSO-EYE for RP2 prediction 

and the joint prediction of LC and RP2 are significant (p-values<0.001 or 0.01 or 

0.05).

• SA-BN has similar prediction performance as PD-BN for LC or / and RP2 

prediction (p-values> 0.05).

• SA-BN has similar prediction performance as EYE or LASSO-EYE for LC 

prediction (p-values> 0.05).

4. Discussion

4.1. Related studies on Bayesian networks and expert knowledge

Standard literature on BN construction describes in details the valuable contributions of the 

EK to help identify BN structures and parameters [29]. However, the construction and 

analysis of BNs and their variant influence diagrams are conducted mainly based on datasets 

with a limited number of features. In the field of radiation oncology, more and more 

patients’ information including their physical, clinical, biological, genetic, imaging features 

are becoming available from different resources for outcome prediction as shown in Table 2. 

Being a small part of these high-dimensional datasets, the EK features might not be selected 

by a pure data-driven approach such as the PD-BN for radiation outcomes prediction as 

shown in our previous study [3–5].
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However, this does not mean that the EK expertise is not important anymore, which is to the 

contrary as shown in this resulting model with tighter confidence intervals. Although big 

data has the potential to help outcome prediction achieve a better performance, the data-

driven approach may not be able to recognize and distinguish complex biophysical 

relationships from too many variables and limited sample sizes without human being’s 

intervention, which has the potential to mislead physicians. Also, the process of identifying 

useful pattens to build the prediction model might not be efficient. Hence, by incorporating 

the EK features into the PD-BN method, we developed a novel SA-BN approach to explore 

EK involved biophysical pathways and identify the best treatment plans from maximizing 

the probability of a patient’s getting tumor LC and minimizing the probability of his / her 

receiving RP2 before and during radiotherapy.

The EK has been intensively used to help BN development in the field of radiation oncology. 

In a study of distributed learning of lung cancer to allow the developments of prediction 

models on data originating from multiple hospitals while avoiding many of the data sharing 

barriers, both the EK and data-driven approach were used to determine the structure of the 

BN from known clinical and physical variables and the performances of these two structures 

were found to be similar [30,31]. In order to model the radiation therapy process of prostate 

cancer and prognostic indicators such as distant metastasis, rectal and bladder complications 

for more outcome-focused decision making, an influence diagram network / BN was 

developed using expert opinion, results of clinical trials, and published research [32]. 

Considering the critical outcomes of tumor eradication and normal tissue sparing, the role of 

PET was evaluated in the treatment of occult disease in head and neck cancer by using 

influence diagram to get the optimal policy with maximum expected utility. The structure of 

the influence diagram was developed from expert opinions in this study [33]. Unlike using 

either EK or pure data-driven approaches to develop the BNs / influence diagrams in these 

studies, the SA-BN approach incorporates the former into the latter for BN’s construction in 

order to improve the credibility of radiation outcome prediction models.

In another study to evaluate the feasibility of BNs for personalized survival estimates and 

treatment selection recommendations based on the English Lung Cancer Database, a hybrid 

approach was developed by incorporating the EK into the learning process of the BNs, and 

its associated BNs had little effect on the Bayesian score or the predictive performances 

attained and helped yield structures that look more similar to the expert elicited structure 

[34]. Our SA-BN approach is different from this hybrid method mainly in the following two 

aspects. First, it includes a feature selection process, which can efficiently handle high-

dimensional datasets obtained from different biophysical resources. Secondly, by assuming 

that the EK could be wrong, it can choose the right EK features for BN structure learning by 

using the EMBs or the EK-EMBs through the process of feature selection. Details of 

credibility and accuracy roles of our SA-BN approach for better informing radiation 

outcomes prediction in pART are further discussed below.

4.2. The credibility of the SA-BN approach for radiation outcomes prediction

The basic concept of credibility is increasing the explainability of a prediction model 

without compromising its prediction accuracy. While an EK-NBN is developed only based 
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on the EK features related to radiotherapy resulting in a good interpretation of patients’ 

status in pART, its prediction accuracy performance is undesired compared to other 

presented models in Table 4 due to the limited information involved. Although a PD-BN 

built from all biophysical features has a better prediction accuracy compared to the EK-NBN 

as listed in Table 4, the EK features might not be selected as part of the PD-BN. It is harder 

for the physicians to relate or interpret the biophysical pathways in the PD-BN for clinical 

decision-making in pART. Then, neither the EK-NBN nor the PD-BN can by themselves 

meet the criterion of credibility.

The SA-BN approach is developed in this study with the intention of improving the 

credibility of PD-BN models by incorporating the EK features into the BN construction. 

Compared the SA-BNs with the PD-BNs [4] for the joint prediction of LC and RP2 before 

and during the radiotherapy, we can find that while the former keeps the most of the latter’s 

important features, there exists some differences between them. Not being in the selected 

EK features’ EMBs, some important features in the PD-BNs could be replaced by other 

variables in the EMBs. For example, SNPs “atm_Rs664143”, “tp53_Rs1042522” appear in 

the SA-BNs due to the incorporation of the EK, and pre-treatment PET radiomics 

“pre_MTV” in the PD-BNs is replaced by “GLRLM_LGRE” in the SA-BNs as shown in 

Fig. 4. Similarly, pre-treatment cytokines “pre_IL_4” and “pre_IL_10” are replaced by 

“pre_eotaxin”, the relative change of during treatment PET radiomics 

“RD_GLSZM_LZLGE” is replaced by the slope of the change in during treatment cytokine 

“SLP_GM_CSF”.

In comparison to PD-BNs, SA-BNs display more common biophysical pathways related to 

radiation outcomes. For instance, smoking is the major factor along with other 

environmental and genetic risk factors; patients are eligible for certain treatments from 

surgery to radiation to chemotherapy as well as targeted therapy depending on the staging of 

lung cancer; carriers of TP53 germline sequence variations who also smoke are more than 3 

times more likely to develop lung cancer than nonsmokers [35,36]. In addition to radiation 

treatment, patients’ treatment outcomes also depend on their individual characteristics and 

other therapies. The integration of these important causes of lung cancer into the biophysical 

pathways for the joint prediction of LC and RP2 in a pre-treatment SA-BN as illustrated in 

Fig. 4(a) has the potential to help physicians understand the cause-effect of the radiation 

outcomes before identifying the best treatment plans for pART. For NSCLC patients with 

three-dimensional conformal radiation therapy, GTV has been identified as a highly-valued 

prognostic for overall and cause-specific survival and local tumor control compared to 

gender, race, histology, tumor stage and node stage, and may be important in stratification of 

patients in prospective therapy trials [37,38]. Our SA-BNs illustrate the importance of GTV 

in LC prediction and the joint prediction of LC and RP2.

The biophysical relationships explored by the SA-BN approach are supported by cited 

literatures. Tumor cell growth and migration can be directly regulated by chemokines such 

as eotaxin, and the level of eotaxin can be used to improve the creditability of tumor local 

progression before and during treatment [39]. Also, the contribution of IL-5 was examined 

in an experimental model of lung fibrosis induced by bleomycin. The findings show that 

IL-5 is a key mediator in the recruitment of lung eosinophils to exacerbate lung fibrosis by 
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secreting profibrotic mediators [40], which supports the role of IL-5 for RP2 prediction in 

SA-BNs as shown in Figs. 3(a) and 3(b). Moreover, the connection between pre-IL-8 and 

SLP-TGF-beta1 for during treatment RP2 prediction as illustrated in Fig. 3(b) is supported 

by a NSCLC validation study, which concluded that lower pre-treatment IL-8 and higher the 

change of TGF-beta during the treatment were associated with higher risk of RP2 [41]. The 

consideration of both LC and RP2 is usually related to overall survival (OS). In a systematic 

assessment of the clinicopathological prognostic significance of tissue cytokine expression 

for lung adenocarcinoma (LUAD) based on integrative analysis of TCGA data, it was 

observed that for LUAD patients diagnosed <45 years old, low expression of CXCL10 

(encoding IP-10), CCL11 (encoding eotaxin), IL-15 (encoding IL-15) and CSF3 (encoding 

G-CSF) was associated with shorter OS [42]. The observation supports the explored 

biophysical pathway in a during treatment SA-BN for the joint prediction of LC and RP2 as 

illustrated in Fig. 4(b).

Furthermore, biophysical pathways explored from the SA-BNs can help gain physicians’ 

trust in radiation outcomes prediction and treatment planning before and during the 

radiotherapy as shown in the following example. By employing Netica (developed by 

Norsys Software Corp. located in Vancouver, Canada) as an interface, the SA-BN model in 

Fig. 3(a) to predict RP2 before radiotherapy can also be represented by another format in 

Fig. 6. In the figure, while yellow rectangular boxes indicate the probability distribution of 

patients’ characteristics in different categories at a population level, full-length bars 

associated with 100-percentage probability in shadowed rectangular boxes denote a patient’s 

specific properties. According to physicians’ knowledge and experience, a smoker with large 

GTV treated by chemotherapy usually has a relatively high probability to get RP2 under a 

standard (medium) radiation treatment level. To avoid the serious complication, the 

physicians may choose a low radiation dose to the patient instead of the medium treatment 

level.

Without knowing a patient’s SNPs, miRNAs, and cytokines information, physicians can 

predict his / her potential of receiving RP2 based on the probability distribution of these 

features at the population level and the patient’s EK features as described by 100-percentage 

bars in shadow nodes “total lung volume”, “smoking”, “chemo” under medium and low 

radiation treatment levels as illustrated in Figs. 6(a) and 6(b) respectively. The SA-BNs in 

these figures show that the probability of the patient’s getting RP2 decreases from 43.4% to 

12.6% after changing the treatment plan as indicated by a red arrow in Fig. 6(b), which is 

clinically significant. As additional information such as SNPs, miRNAs and cytokines 

become available as denoted by the 100-percentage bars of these nodes in Fig. 6(c), the 

physicians can then get more affirmatory RP2 prediction from the SA-BN by considering the 

low radiation dose as the best treatment plan.

The above is just an example to show how a SA-BN has the potential to help physicians 

identify the best treatment plan by only considering a patient’s RP2. However, their 

decision-making process is more complicated in clinical practice, since whether the patient’s 

tumor can be locally controlled or not with the reduced dose is another important concern in 

determining the best treatment plan. Then the SA-BNs for the joint prediction of LC and 

RP2 before and during the courses of radiation treatment as shown in Figs. 4(a) and 4(b) can 
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help the physicians identify the best treatment plan by balancing a patient’s LC and RP2 

based on their EK on the patient’ personal characteristic and therapeutic satisfaction. One 

the other hand, except radiation treatment decision variables such as “Lung_gEUD” and 

“Tumor_gEUD”, the rest of EK features did not show in the PD-BNs based on our previous 

research work [3–5]. Since the new findings of biophysical pathways among the SNPs, 

miRNAs, and cytokines in the PD-BNs have not become the physicians’ common 

knowledge in clinical practice yet, the SA-BNs have a higher probability of gaining their 

trust than the PD-BNs for radiation outcomes prediction in pART.

Overall, the results of our data analysis show that a SA-BN supports or extends well-known 

biophysical understandings, explores more credible (known) relationships in radiotherapy, 

provides more confidence in physicians, and then it is more likely to be used as a human-

machine interface to help physicians’ clinical decision-making in pART compared to other 

models listed in Table 4. While the single-objective SA-BN in Fig. 2 or 3 specifies an EK 

involved biophysical pathway related to LC or RP2, the joint SA-BN in Fig. 4 describes a 

comprehensive one related to both. By exploring the differences among them, physicians can 

evaluate cross-talks between LC’s and RP2’s pathways. Moreover, the SA-BN approach has 

the similar prediction performance as the PD-BN method as shown in Tables 3 and 4. 

Therefore, the SA-BN is a credible outcome prediction model for pART. In addition, it 

demonstrated tighter confidence intervals, which is an important added value for future 

adoption.

4.3. The accuracy of the SA-BN approach for radiation outcomes prediction

Besides credibility, the accuracy of an outcome prediction model is another important aspect 

to gain physicians’ trust for clinical decision-making in pART. While the SA-BN approach 

has similar accuracy performance as the EYE penalty method for LC prediction before and 

during radiotherapy, its AUC values for RP2 prediction are better than those of the linear 

credible approach as described in Tables 3 and 4. The impact of high-dimensional dataset on 

the performance of the EYE penalty approach was evaluated in this study. A LASSO-EYE 

method was developed by selecting important features from the NEK dataset based on the 

LASSO and considering them and EK features as inputs for EYE penalty analysis. Since the 

performance of the LASSO-EYE method for radiation outcomes prediction is similar as that 

of the EYE penalty approach as shown in Table 4, high-dimensional dataset is not the reason 

for the EYE penalty to have poor RP2 prediction.

In general, radiation oncology datasets are associated with a large proportion of LC (70% in 

our study) and a small proportion of radiation-induced toxicities such as RP2 (17% in our 

study) after radiation treatment. Then the performance of the EYE and its variants for RP2 

prediction may have been affected by imbalanced class distribution in the radiation oncology 

datasets. Also, Table 4 shows that the difference between the SA-BN and EYE penalty 

approaches for the joint prediction of LC and RP2 is significant. In addition to low RP2 

event rate in the discovery and validation datasets, another reason of the poor joint 

prediction is that LC and RP2 cannot be predicted simultaneously in a logistic regression 

model. Unlike a SA-BN with two objectives, the performance of the joint prediction can be 
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compromised by combining two logistic regression models from the EYE penalty approach 

for LC or RP2 prediction.

Without distinguishing EK and NEK features, the feature selection of the PD-BN approach 

depends on the EMB that only includes a radiation outcome’s parents, descendants and 

spouses and their next-of-kin in a BN. Even though some EK features are strongly relevant 

to the outcome, they may not be selected if they are not within its EMB. To avoid the impact 

of NEK features on important EK features identification, the SA-BN’s feature selection 

process directly explores a radiation outcome’s EK-EMB from its EK dataset based on the 

targeted nominal type I error rate. After identifying important EK features from the EK-

EMB (if possible), they are combined with critical EK features from the EMB (if possible) 

and important NEK features from the NEK-EMB as the inputs of SA-BN structure learning. 

In other words, even if no or few important EK features have been selected by the EMB in 

the PD-BN approach, the EK-EMB offers another chance to explore the radiation outcome’s 

EK dataset and tries to incorporate as many EK features as possible into SA-BN structure 

learning for the credibility improvement.

However, if no EK feature is identified from both EMB and EK-EMB, it turns out that all 

the EK features are not critical to the radiation outcome prediction, and the structure of the 

SA-BN would be the same as that of the PD-BN. Therefore, the SA-BN’s prediction 

accuracy is not likely to be worse than that of the PD-BN approach as shown in Tables 3 and 

4. Moreover, while the important features selected from an EMB based on the constraint-

based algorithm may vary in terms of different training folds during the cross-validation of 

the PD-BN approach, the integration of important EK and NEK features at the stage of 

feature selection has the potential to stabilize the prediction performance of the SA-BN 

approach. This could be the reason why its 95% CI is narrower compared to that of the PD-

BN approach.

4.4. Limitations of our study

The SA-BN approach has the potential to improve the credibility and accuracy of radiation 

treatment outcome prediction compared to other methods. However, the number of NSCLC 

patients in the discovery dataset to build the SA-BNs for LC or / and RP2 prediction is 

limited and there are few events in the validation dataset for RP2 prediction performance 

evaluation. Then our approach is still at its infancy for gaining the physician’s trust and 

providing better decision support for pART in clinical practice. While the highest RP value 

was adopted from the clinical evaluation and diagnosis imaging to classify RP according to 

CTCAE 3.0, this grade determination seems to be general but not quantitative, which is a 

limitation of present outcome studies. However, this is currently the clinical standard for 

evaluation. Future use of pulmonary function or advances in quantitative imaging may 

provide more objective measures to improve the performance of these models. Moreover, 

since PET is not the worldwide accepted approach and is not always available in clinical 

practice, CT scan may be used in our future research to expand the usability of the SA-BN 

approach.

The limitations of this study related to the credibility can be described as follows. The 

accumulated effect of the EK along the biophysical pathway is still unknown, and the 
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causal-effect relationships among the EK and NEK features also need to be further 

investigated. Since the EK in the current study is provided by two main lung physicians’ 

experiences, involving more physicians’ expertise, incorporating more EK such as causal-

effect relation, monotonicity constraints into BN structure learning can further improve the 

SA-BNs’ credibility for the realization of pART. Furthermore, the calibration of 

probabilities obtained from our SA-BN approach to reflect the likelihood of true events still 

needs to be evaluated in the next step of our research.

5. Conclusions

We developed a new SA-BN approach to improve credibility and enhance physicians’ trust 

and help the clinical decision-making for pART. In addition to exploring biophysical 

pathways among patients’ physical, clinical, biological, genomic and PET radiomics 

features, the SA-BN approach has the potential to help physicians understand why, when, 

and how to conduct radiation treatment for the improvement of patients’ therapeutic 

satisfaction by incorporating EK into these biophysical pathways. Based on the nested cross-

validation and external validation, the SA-BN approach outperforms other credible models 

such as the EYE penalty and the LASSO-EYE in terms of the joint prediction of LC and 

RP2. While its prediction accuracy is not significantly better than that of the PD-BN 

approach, it has smaller 95% CIs on the performance, and more trustable ways to assess 

patients’ best treatment plans before and during the radiotherapy. As an accurate and 

credible model for radiation outcomes prediction, the SA-BN approach has the potential to 

be an important component of future pART. However, it still needs to be validated with 

external independent datasets via multi-institutional collaborations.
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Appendix A.

Table A1

The selected features and their coefficients in outcome prediction models developed from 

LASSO and EYE approaches

Pre-treatment LC (215 features)
(20 dosimetric / clinical features, 62 miRNAs, 60 SNPs, 43 PET radiomics, 30 Cytokines)

Methods Selected EK features Selected NEK features

LASSO Tumor gEUD (3.821*) Rs2234671 (0.043), Rs1799796 (−0.595), Rs1040363 (−1.707), pre-
ifn-gama (−0.033), pre-il10 (−0.040), pre-tgfa (−0.020), GLSZM-
SZLGE (−0.018)

EYE Chemo (0.05), Stage (−0.17), 
Age (−0.06), GTV (−0.11), BED 
(0.09), PTVD95 (−0.12), 
GTVD95 (−0.05), Tumor_gEUD 
(0.12)

Rs2234671 (0.06), Rs3857979 (−0.06), Rs1800795 (−0.05), 
Rs180925 (0.05), Rs689470 (−0.05), Rs7333607 (0.05), Rs1800469 
(0.05), Rs1061622 (0.05), Rs609261 (0.05), Rs238406 (0.05), 
Rs1042522 (0.05), pre_il13 (0.06), pre_il1b (−0.05), pre_il5 (−0.06), 
pre_il8 (0.05), pre_tnfa (−0.05), miR_100_5p (−0.05), miR_143_3p 
(−0.06), miR_192_5p (0.06), miR_19b_3p (−0.05), miR_25_3p 
(0.06), miR_29a_3p (−0.05), miR_145_5p (0.06), miR_15a_5p 
(−0.05), miR_30e_5p (−0.06), miR_15b_5p (−0.07), miR_191_5p 
(−0.05), miR_20a_5p (0.06), miR_93_5p (0.05), pre_MTV (0.07), 
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GLCM_Correlation (0.05), GLRLM_SRLGE (−0.06), 
GLRLM_LRHGE (−0.06), GLRLM_GLV (0.05)

During-treatment LC (288 features)
(20 dosimetric / clinical features, 62 miRNAs, 60 SNPs, 86 PET radiomics, 60 Cytokines)

Methods Selected EK features Selected NEK features

LASSO Tumor gEUD (3.962), Treatment 
Duration (−0.018)

Rs2234671 (2.577), Rs25487 (−0.85), Rs1799796 (−3.208), 
Rs1040363 (−4.902), pre-ifn-gama (−0.055), pre-il10 (−0.049), pre-
tgfa (−0.039), GLSZM-SZLGE (−0.016), GLCM-IDM (−0.508), 
SLP-tgfa (−0.067), RD-GLRLM-GLV (−0.126), RD-GLRLM-RP 
(0.238)

EYE Chemo (0.11), Stage (−0.16), 
Age (−0.07), GTV (−0.22), 
Treatment Duration (−0.19), 
BED (0.18), PTVD95 (−0.15), 
GTVD95 (−0.07), Tumor_gEUD 
(0.19)

Rs2234671 (0.07), Rs235756 (−0.05), Rs2070874 (0.05), Rs180925 
(0.05), Rs4760259 (−0.05), Rs4776342 (−0.05), miR_23a_3p (−0.06), 
miR_24_3p (0.05), GLCM_Homogeneity (−0.05), GLRLM_RLN 
(0.05), GLSZM_GLN (−0.05), RD_GLRLM_SRE (0.05), SLP_ip10 
(0.05)

Pre-treatment RP2 (175 features)
(23 dosimetric / clinical features, 62 miRNAs, 60 SNPs, 30 Cytokines)

Methods Selected EK features Selected NEK features

LASSO Lung gEUD (3.736) Rs1040363 (−0.761), Rs1799796 (−0.418), Rs1800468 (0.345), 
miR-92a-3p (−0.229), miR-124-3p (0.156), pre-ifn-gama (−0.027), 
pre-il10 (−0.038), pre-tgfa (−0.010)

EYE Chemo (0.09), Smoking
(0.21), Age (0.11), Total Lung 
Volume (0.06), Lung gEUD (1.7)

Rs3857979 (−0.07), Rs235756 (−0.24), Rs12906898 (0.05), 
Rs1800057 (−0.05), Rs11615 (−0.05), Rs17655 (−0.05), Rs9293329 
(−0.05), Rs1478486 (0.05), Rs2228001 (−0.05), miR_100_5p (−0.05), 
miR_125b_5p (0.05), miR_143_3p (−0.05), miR_17_3p (−0.07), 
miR_21_5p (0.06), miR_221_3p (−0.05), miR_23a_3p (−0.07), 
miR_25_3p (0.07), miR_296_5p (0.07), miR_423_5p (0.06), 
miR_193a_5p (−0.06), miR_7_5p (0.07), pre_il10 (−0.08), pre_il2 
(−0.08), pre_il5 (0.07), pre_il7 (0.08), pre_mcp1 (0.06), pre_mip1a 
(−0.06), pre_tnfa (0.07)

During-treatment RP2 (205 features)
(23 dosimetric / clinical features, 62 miRNAs, 60 SNPs, 60 Cytokines)

Methods Selected EK features Selected NEK features

LASSO Smoking (1.159), Treatment 
Duration (−0.269), Lung gEUD 
(4.092)

pre-TGF-beta1 (−0.610), Rs235756 (0.977), Rs11724777 (−3.143), 
Rs1800468 (4.680), Rs13181 (−3.733), Rs17655 (1.437), Rs1047768 
(2.395), Rs25487 (−3.454), Rs6464268 (−1.377), Rs1799796 
(−4.245), Rs1040363 (−8.268), miR-885-5p (0.276), pre-gmcsf 
(−0.005), pre-il10 (−0.093), pre-il12-p70 (0.056), pre-il6 (0.097), pre-
tgfa (−0.1891), pre-tnfa (0.174), SLP-fractal (−0.019), SLP-il12-p40 
(−0.007), SLP-mcp1 (0.009), SLP-mip1a (0.016), SLP-tgfa (−0.367),

EYE Chemo (0.07), Smoking (0.14), 
Age (0.12), Treatment Duration 
(−0.14), Lung gEUD (1.2)

Rs1801275 (0.05), Rs4760259 (0.05), Rs689470 (0.05), Rs1800469 
(−0.06), Rs1047768 (−0.07), Rs12917 (0.06), Rs1805794 (−0.05), 
Rs1625895 (0.06), Rs1042522 (−0.06), Rs2075685 (−0.06), 
pre_eotaxin (0.05), pre_il13 (0.07), pre_il2 (0.05), pre_il4 (−0.05), 
pre_il7 (−0.05), pre_mcp1 (0.14), pre_tgfa (−0.06), pre_tnfa (−0.05), 
miR_122_5p (0.05), miR_125b_5p (−0.07), miR_143_3p (0.05), 
miR_223_3p (−0.06), miR_224_5p (0.06), miR_27a_3p (−0.06), 
miR_885_5p (−0.06), miR_92a_3p (0.05), miR_193a_5p (0.07), 
miR_103a_3p (−0.05), miR_93_5p (0.05), miR_16_5p (0.06), 
SLP_eotaxin (−0.05), SLP_ifn_gamma (−0.06), SLP_il1a (0.05), 
SLP_il6 (0.05), SLP_tnfa (0.05), SLP_TGFbeta1 (−0.12)

*
the coefficient of a feature based on a prediction model.

LC means “local control”; RP2 means “radiation pneumonitis with grade ≥2”; EK-NBN means “expert knowledge based 
naïve Bayesian network”; PD-BN means “pure data-driven Bayesian network”; SA-BN means “situational awareness 
Bayesian network”; EYE means “expert yielded estimates”; LASSO means “least absolute shrinkage and selection 
operator”; gEUD means “generalized equivalent uniform dose”; EK means “expert knowledge”; RD means “relative 
difference”; SLP means “slope of changes”; GTV means “gross tumor volume”; BED means “biologically effective dose”; 
PTV means “planning target volume”; GLSZM means “gray level size zone matrix”; SZLGE means “small zone low 
gray-level”; GLCM means “grey level co-occurrence matrix”; GLRLM means “grey level run length matrix”; GLV means 
“gray level variance”; RP means “run percentage”; IDM means “inverse difference moment”; RLN means “run-length 
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nonuniformity”; GLN means “gray-level nonuniformity”; SRE means “short run emphasis”; SNP means “single nucleotide 
polymorphism”; Rs means “RefSNPs”; miR means “microRNA”.
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• A situational awareness Bayesian network is developed based on expert 

knowledge

• It enables exploring biophysical pathways starting with the expert knowledge

• It allows physicians to conduct their familiar “what if” counterfactual 

inference

• It outperforms other credible models for the joint prediction of treatment 

outcomes

• It has the potential to be a key component of personalized adaptive 

radiotherapy
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Fig. 1. 
SA-BN approach with focus on feature selection. EK dataset means “dataset with features 

from expert knowledge”; NEK dataset means “dataset without features from expert 

knowledge”; EK-EMB means “extended Markov blanket based on the EK dataset”; NEK-

EMB means “extended Markov blanket based on the NEK dataset”.
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Fig. 2. 
Pre (a) and during (b) treatment SA-BNs for LC prediction based on the discovery dataset.
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Fig. 3. 
Pre (a) and during (b) treatment SA-BNs for RP2 prediction based on the discovery dataset.
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Fig. 4. 
Pre (a) and during (b) treatment SA-BNs for the joint prediction of LC and RP2 based on the 

discovery dataset.
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Fig. 5. 
(a) The performance of the SA-BN approach based on the discovery dataset and (b) the 

performance of the SA-BN illustrated in Fig. 4(b) based on the validation dataset for the 

joint prediction of LC and RP2 during radiation treatment.
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Fig. 6. 
RP2 prediction with the EK under medium (a) and low (b) radiation dose levels; (c) RP2 

prediction with a patient’s full information under a low radiation dose level.
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Table 1

NSCLC patients’ information in datasets.

Datasets # of patients # of patients with LC # of patients with RP2 Median follow-ups of surviving patients (months)

Discovery 68 48 17 61

Validation 50 38 3 65
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Table 2

Number of biophysical features in the whole dataset, LC’s, and RP’s feature datasets.

Categories # of features in the 
whole dataset

# of features in LC’s 
feature dataset

# of features in RP2’s 
feature dataset

Common dosimetric information 15 6* 9**

Clinical factors 14 12* 10**

MicroRNAs (miRNAs) 62 62 62

Single nucleotide polymorphisms (SNPs) 60 60 60

Pre-treatment positron emission tomography (PET) 
radiomics 43 43*** 0

Relative difference (RD) of PET radiomics during 
treatment 43 43*** 0

Pre-treatment cytokines 30 30 30

Slopes (SLP) of cytokines change during treatment 30 30 30

Total 297 286 205

*
Dosimetric information and clinical factors that are related to LC prediction.

**
Dosimetric information and clinical factors that are related to RP2 prediction.

***
PET radiomics features before and during radiotherapy that are only related to LC prediction.
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Table 3

Performance evaluation (AUC / AU-FROC) of the SA-BN for LC or / and RP2 prediction before and during 

treatment based on the discovery and validation datasets.

Time Points

Performance Evaluation

LC Prediction (AUC) RP2 Prediction (AUC) Joint LC and RP2 Prediction (AU-FROC)

Discovery* Validation** Discovery Validation Discovery Validation

Pre-Treatment 0.76 0.72 0.77 0.75 0.79 0.76

During Treatment 0.81 0.78 0.82 0.79 0.83 0.79

*
performance is evaluated via nested cross-validations based on the discovery dataset.

**
performance is evaluated via external validations based on the validation dataset.

AUC means “area under receiver operating characteristics (ROC) curve”; AU-FROC means “area under free-response ROC curve”; LC means 
“local control”; RP2 means “radiation pneumonitis with grade ≥2”.
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Table 4

The performance of prediction models and their differences compared to the SA-BNs

Scenarios Datasets Time Points
LC Only RP2 Only Joint LC and RP2

AUC p value* AUC p value AU-FROC p value

EK-NBN

Discovery**
Pre 0.61 <0.001 0.62 <0.001 0.70 <0.01

During 0.61 <0.001 0.62 <0.001 0.70 <0.05

Validation***
Pre 0.54 <0.001 0.56 <0.001 0.63 <0.001

During 0.54 <0.001 0.56 <0.001 0.63 <0.01

PD-BN

Discovery
Pre 0.75 0.51 0.76 0.56 0.78 0.55

During 0.80 0.57 0.82 0.60 0.83 0.60

Validation
Pre 0.76 0.29 0.78 0.34 0.77 0.35

During 0.79 0.31 0.82 0.37 0.79 0.36

EYE

Discovery
Pre 0.74 0.31 0.60 <0.001 0.66 <0.01

During 0.76 0.37 0.63 <0.001 0.70 <0.01

Validation
Pre 0.63 0.16 0.53 <0.001 0.60 <0.001

During 0.66 0.24 0.57 <0.001 0.65 <0.001

LASSO

Discovery
Pre 0.53 <0.001 0.58 <0.001 0.57 <0.001

During 0.50 <0.001 0.51 <0.001 0.53 <0.001

Validation
Pre 0.51 <0.001 0.52 <0.001 0.54 <0.001

During 0.50 <0.001 0.50 <0.001 0.52 <0.001

LASSO-EYE

Discovery
Pre 0.76 0.32 0.61 <0.001 0.71 <0.05

During 0.78 0.39 0.66 <0.01 0.75 <0.05

Validation
Pre 0.64 0.18 0.55 <0.001 0.61 <0.001

During 0.68 0.25 0.58 <0.001 0.65 <0.01

*
The difference of prediction performance compared to the corresponding SA-BN.

**
The dataset to evaluate an approach’s prediction performance via nested cross-validation.

***
The dataset to evaluate an outcome prediction model’s performance via external validation.

LC means “local control”; RP2 means “radiation pneumonitis with grade ≥2”; CI means “confidential interval”; EK-NBN means “expert 
knowledge based naïve Bayesian network”; PD-BN means “pure data-driven Bayesian network”; SA-BN means “situational awareness Bayesian 
network”; EYE means “expert yielded estimates”; LASSO means “least absolute shrinkage and selection operator”.
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